HINTS \& SOLUTIONS

EXERCISE - 1

Single Choice

1. Let point of intersection is $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$.

$$
\text { So } \begin{array}{ll}
& \sqrt{3} \mathrm{x}_{1}-\mathrm{y}_{1}=4 \sqrt{3} \mathrm{~K} \\
& \sqrt{3} K \mathrm{x}_{1}+K y_{1}=4 \sqrt{3} \tag{iii}
\end{array}
$$

Multiply (i) and (ii), we get $3 \mathrm{x}_{1}^{2}-\mathrm{y}_{1}^{2}=48$.
3. Centre of hyperbola is $(5,0)$, so equation is
$\frac{(x-5)^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
$a=5, a e-a=8 \Rightarrow e=\frac{13}{5}$
$b^{2}=144$.
So equation is $\frac{(x-5)^{2}}{25}-\frac{y^{2}}{144}=1$.
4. The equation of the hyperbola is
$\frac{\{(2 \mathrm{x}-\mathrm{y}+4) / \sqrt{5}\}^{2}}{1 / 2}=\frac{\{(\mathrm{x}+2 \mathrm{y}-3) / \sqrt{5}\}^{2}}{1 / 3}$
or $\frac{2}{5}(2 x-y+4)^{2}-\frac{3}{5}(x+2 y-3)^{2}=1$
5. Let ℓ be the length of double ordinate.

Co-ordinate of point A is

$$
\left(\ell \frac{\sqrt{3}}{2}, \frac{\ell}{2}\right)
$$

So. $\frac{3 \ell^{2}}{4 \mathrm{a}^{2}}-\frac{\ell^{2}}{4 \mathrm{~b}^{2}}=1$

$\Rightarrow \frac{\ell^{2}}{4}\left(\frac{3}{a^{2}}-\frac{1}{b^{2}}\right)=1 \Rightarrow \frac{3}{a^{2}}>\frac{1}{b^{2}}$
$\Rightarrow \frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}>\frac{1}{3} \Rightarrow \mathrm{e}^{2}-1>\frac{1}{3}$
$\Rightarrow \quad \mathrm{e}^{2}>\frac{4}{3}$
7. Equation of tangents to two hyperbolas are

$$
\begin{align*}
& \mathrm{y}=\mathrm{mx} \pm \sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}-\mathrm{b}^{2}} \tag{i}\\
& \mathrm{y}=\mathrm{mx} \pm \sqrt{-\mathrm{b}^{2} \mathrm{~m}^{2}+\mathrm{a}^{2}}
\end{align*}
$$

Solving (i) \& (ii) we get $\mathrm{m}= \pm 1$
\therefore equation of common tangent is
$y= \pm x \pm \sqrt{a^{2}-b^{2}}$.
8. Let $y=m x \pm \sqrt{m^{2} a^{2}-a^{2}}$ be two tangents that pass through (h, k). Then,

$$
(\mathrm{k}-\mathrm{mh})^{2}=\mathrm{m}^{2} \mathrm{a}^{2}-\mathrm{a}^{2}
$$

or $\mathrm{m}^{2}\left(\mathrm{~h}^{2}-\mathrm{a}^{2}\right)-2 \mathrm{khm}+\mathrm{k}^{2}+\mathrm{a}^{2}=0$
or $\mathrm{m}_{1}+\mathrm{m}_{2}=\frac{2 \mathrm{kh}}{\mathrm{h}^{2}-\mathrm{a}^{2}}$
and $\mathrm{m}_{1} \mathrm{~m}_{2}=\frac{\mathrm{k}^{2}+\mathrm{a}^{2}}{\mathrm{~h}^{2}-\mathrm{a}^{2}}$
Now, $\tan 45^{\circ}=\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}$
or $\quad 1=\frac{\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)^{2}-4 \mathrm{~m}_{1} \mathrm{~m}_{2}}{\left(1+\mathrm{m}_{1} \mathrm{~m}_{2}\right)^{2}}$
or $\left(1+\frac{\mathrm{k}^{2}+\mathrm{a}^{2}}{\mathrm{~h}^{2}-\mathrm{a}^{2}}\right)^{2}=\left(\frac{2 \mathrm{kh}}{\mathrm{h}^{2}-\mathrm{a}^{2}}\right)^{2}-4\left(\frac{\mathrm{k}^{2}+\mathrm{a}^{2}}{\mathrm{~h}^{2}-\mathrm{a}^{2}}\right)$
or $\quad\left(h^{2}+k^{2}\right)^{2}=4 h^{2} k^{2}-4\left(k^{2}+a^{2}\right)\left(h^{2}-a^{2}\right)$
or $\left(x^{2}+y^{2}\right)^{2}=4\left(a^{2} y^{2}-a^{2} x^{2}+a^{4}\right)$
or $\left(x^{2}+y^{2}\right)^{2}+4 a^{2}\left(x^{2}-y^{2}\right)=4 a^{2}$
9. Let the slope of common tangent be m.

Equation of tangent to parabola is

$$
\begin{equation*}
\mathrm{y}=\mathrm{mx}+\frac{2}{\mathrm{~m}} \tag{i}
\end{equation*}
$$

Equation of tangent to hyperbola is

$$
\begin{equation*}
y=m x \pm \sqrt{m^{2}-3} \tag{ii}
\end{equation*}
$$

By comparing (i) \& (ii), we get $m= \pm 2$.
$\therefore \quad$ Equation of common tangent is $\mathrm{y}= \pm(2 \mathrm{x}+1)$
i.e. $2 x \pm y+1=0$.
11. Let equation of asymptotes be $x y-3 x-2 y+\lambda=0$.

Then $\quad a b c+2 f g h-a f^{2}-\mathrm{bg}^{2}-\mathrm{ch}^{2}=0$
$\Rightarrow \frac{3}{2}-\frac{\lambda}{4}=0$
$\Rightarrow \lambda=6$
\therefore Equation of asymptotes is $x y-3 x-2 y+6=0$
i.e., $(x-2)(y-3)=0$.
13. Equation of normal of rectangular hyperbola $x y=c^{2}$ at $P(c t, c / t)$ will be
$\mathrm{y}-\frac{\mathrm{c}}{\mathrm{t}}=\mathrm{t}^{2}(\mathrm{x}-\mathrm{ct})$
as it also passes through t_{1}
$\Rightarrow \mathrm{c}\left(\frac{1}{\mathrm{t}_{1}}-\frac{1}{\mathrm{t}}\right)=\mathrm{ct}^{2}\left(\mathrm{t}_{1}-\mathrm{t}\right)$
$\Rightarrow \mathrm{t}^{3} \mathrm{t}_{1}=-1$
15. Normal at θ, ϕ are
$\left\{\begin{array}{l}a x \cos \theta+b y \cot \theta=a^{2}+b^{2} \\ a x \cos \phi+b y \cot \phi=a^{2}+b^{2}\end{array}\right.$
where $\phi=\frac{\pi}{2}-\theta$ and these passes through (h, k).
$\therefore \quad a h \cos \theta+b k \cot \theta=a^{2}+b^{2}$

$$
\begin{equation*}
\mathrm{ah} \sin \theta+\mathrm{bk} \tan \theta=\mathrm{a}^{2}+\mathrm{b}^{2} \tag{i}
\end{equation*}
$$

Multiply (i) by $\sin \theta \&$ (ii) by $\cos \theta \&$ subtract them, we get
$\Rightarrow\left(b k+a^{2}+b^{2}\right)(\sin \theta-\cos \theta)=0$
$\mathrm{k}=-\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right) / \mathrm{b}$
18. The equation of tangent at point $\mathrm{P}(\alpha \cos \theta, \sin \theta)$ is
$\frac{\mathrm{x}}{\alpha} \cos \theta+\frac{\mathrm{y}}{1} \sin \theta=1$
Let it cut the hyperbola at points P and Q .
Homogenizigin the hyperbola $\alpha^{2} x^{2}-y^{2}=1$ with the help of the above the equation, we get

$$
\alpha^{2} x^{2}-y^{2}=\left(\frac{x}{\alpha} \cos \theta+y \sin \theta\right)^{2}
$$

This is a pair of straight lines OP and OQ.
Given $\angle \mathrm{POQ}=\pi / 2$.
Coefficient of $x^{2}+$ Coefficient of $y^{2}=0$
or $\alpha^{2}-\frac{\cos ^{2} \theta}{\alpha^{2}}-1-\sin ^{2} \theta=0$
or $\quad \alpha^{2}-\frac{\cos ^{2} \theta}{\alpha^{2}}-1-1+\cos ^{2} \theta=0$
or $\cos ^{2} \theta=\frac{\alpha^{2}\left(2-\alpha^{2}\right)}{\alpha^{2}-1}$
Now, $0 \leq \cos ^{2} \theta \leq 1$
or $0 \leq \frac{\alpha^{2}\left(2-\alpha^{2}\right)}{\alpha^{2}-1} \leq 1$
Solving, we get $\alpha^{2} \in\left[\frac{\sqrt{5}+1}{2}, 2\right]$

EXERCISE-2

Part \# I : Multiple Choice

2. We have,
$\left|\sqrt{x^{2}+(y-1)^{2}}-\sqrt{x^{2}+(y+1)^{2}}\right|=K$
which is equivalent to $\left|\mathrm{S}_{1} \mathrm{P}-\mathrm{S}_{2} \mathrm{P}\right|=$ constant, where
$\mathrm{S}_{1} \equiv(0,1), \mathrm{S}_{2} \equiv(0,-1)$, and $\mathrm{P} \equiv(\mathrm{x}, \mathrm{y})$
The above equation represents a hyperbola. So, we have

$$
\begin{gathered}
2 \mathrm{a}=\mathrm{K} \\
\text { and } 2 \mathrm{ae}=\mathrm{S}_{1} \mathrm{~S}_{2}=2
\end{gathered}
$$

where 2 a is the transverse axis and e is the eccentricity.
Dividing, we have

$$
\mathrm{e}=\frac{2}{\mathrm{~K}}
$$

Since e >1 for a hyperbola, $\mathrm{K}<2$.
Also, K must be a positive quantity.
So, we have $K \in(0,2)$
4. $\mathrm{S} \equiv(2,0), \mathrm{S}^{\prime} \equiv(-2,0)$

Using reflection property of hyperbola,
$\mathrm{S}^{\prime} \mathrm{A}$ is incident ray.
Equation of incident ray
$S^{\prime} \mathrm{A}$ is $\mathrm{x}=-2$
Equation of reflected ray
SP is $3 x+4 y=6$.
Now $2 \mathrm{ae}=4 \Rightarrow \mathrm{ae}=2$
Point ($-2,3$) lies on hyperbola,
$\therefore \quad \frac{4}{a^{2}}-\frac{9}{b^{2}}=1 \Rightarrow \frac{4}{a^{2}}-\frac{9}{4-a^{2}}=1$
on solving it we get $a=4$ (reject), $a=1$
$\therefore \quad$ Using (i) \& (ii), we get $\mathrm{e}=2$
length of latus rectum $=2 a\left(e^{2}-1\right)=6$
6. Let $\mathrm{A}(5,12)$ and $\mathrm{B}(24,7)$ be two fixed points.

So, $|\mathrm{OA}-\mathrm{OB}|=12$ and $|\mathrm{OA}+\mathrm{OB}|=38$.
It the conic is an ellipse, then
$\mathrm{e}=\frac{\sqrt{386}}{38} \quad(\because 2 \mathrm{ea}=\sqrt{386}$ and $\mathrm{a}=19)$
If the conic is a hyperbola, then
$e=\frac{\sqrt{386}}{12} \quad(\because 2 \mathrm{ae}=\sqrt{386} \quad$ and $\mathrm{a}=6)$
8. $\tan \frac{\theta}{2}=\frac{\mathrm{b}}{\mathrm{a}} \Rightarrow \mathrm{e}^{2}-1=\tan ^{2} \frac{\theta}{2} \Rightarrow \sec \frac{\theta}{2}=\mathrm{e}$
or $\mathrm{e}^{2}-1=\cot ^{2} \frac{\theta}{2} \quad \Rightarrow \operatorname{cosec} \frac{\theta}{2}=\mathrm{e}$
$\Rightarrow \sec \frac{\theta}{2}=\frac{e}{\sqrt{e^{2}-1}}$.
11. The locus of the point of intersection of perpendicular tangents is director circle $x^{2}+y^{2}=a^{2}-b^{2}$. Now,

$$
\mathrm{e}^{2}=1+\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}
$$

If $a^{2}>b^{2}$, the there are infinite (or more than 1) points on the circle, i.e., $\mathrm{e}^{2}<2$ or $\mathrm{e}<\sqrt{2}$.
If $a^{2}<b^{2}$, there does not exist any point on the plane, i.e., $\mathrm{e}^{2}>2$ or $\mathrm{e}>\sqrt{2}$

If $\mathrm{a}^{2}=\mathrm{b}^{2}$, there is exactly one point (center of the hyperbola),
i.e., $\mathrm{e}=\sqrt{2}$.
12. Given equation will represent hyperbola if
$\lambda^{2}>(\lambda+2)(\lambda-1) \quad\left[\therefore h^{2}>a b\right]$
$\Rightarrow \lambda<2$
Also $\Delta \neq 0$
$\Rightarrow-2\left(\lambda^{2}+\lambda-2\right)-4(\lambda-1)+2 \lambda^{2} \neq 0$
$\Rightarrow \lambda \neq \frac{4}{3}$.

Part \# II : Assertion \& Reason

3. Let equation of circle is

$$
x^{2}+y^{2}+2 g x+2 f y+c=0
$$

Hyperbola $x y=4$ cut the circle at four points then
$x^{2}+\frac{16}{x^{2}}+2 g x+\frac{8 f}{x}+c=0$
$\mathrm{x}^{4}+2 \mathrm{gx}^{3}+\mathrm{cx}^{2}+8 \mathrm{fx}+16=0$
$\Rightarrow \mathrm{x}_{1} \mathrm{x}_{2} \mathrm{X}_{3} \mathrm{x}_{4}=16$
$\Rightarrow \quad 2.4 .6 .1 / 4=12$
\Rightarrow statement I is false
statement II is true.
4. We have
$\sqrt{(\lambda-3)^{2}+16}-4=1$
i.e., $\lambda=0$ or 6

EXERCISE - 3

Part \# I : Matrix Match Type

1. $\mathrm{a} \rightarrow \mathrm{p}, \mathrm{s} ; \mathrm{b} \rightarrow \mathrm{q}, \mathrm{r} ; \mathrm{c} \rightarrow \mathrm{r} ; \mathrm{d} \rightarrow \mathrm{p}, \mathrm{s}$
a. We must have

$$
\begin{array}{ll}
& \mathrm{e}_{1}<1<\mathrm{e}_{2} \\
\text { or } & \mathrm{f}(1)<0 \\
\text { or } & 1-\mathrm{a}+2<0 \\
\text { or } & \mathrm{a}>3
\end{array}
$$

b. We must have both the roots greater than 1 .
$\mathrm{D}>0$ or $\mathrm{a}^{2}-4>0$ or $\mathrm{a} \in(-\infty,-2) \cup(2, \infty)$

1. $\mathrm{f}(1)>0$ or $1-\mathrm{a}+2>0$ or $\mathrm{a}<3$
$\mathrm{a} / \mathrm{b} \geq 1$ or $\mathrm{a}>2$
(B) $e_{1}^{2}=1+\frac{5 \cos ^{2} \theta}{5} \& \mathrm{e}_{2}^{2}=1-\frac{25 \cos ^{2} \theta}{25}$

According to question $\mathrm{e}_{1}^{2}=3 \mathrm{e}_{2}^{2}$,

$$
1+\cos ^{2} \theta=3-3 \cos ^{2} \theta \Rightarrow \cos ^{2} \theta=\frac{1}{2}
$$

Smallest possible value of $\theta=\frac{\pi}{4}$.

Hence $\mathrm{p}=24$.
(C) Angle between asymptotes is

$$
\begin{equation*}
2 \tan ^{-1}\left(\pm \frac{1}{\sqrt{3}}\right)=\frac{\pi}{3} \text { or } \frac{2 \pi}{3} \tag{ii}
\end{equation*}
$$

$\therefore \frac{\pi}{3}=\frac{\ell \pi}{24} \Rightarrow \ell=8$.
or $\frac{2 \pi}{3}=\frac{\ell \pi}{24} \Rightarrow \ell=16$.
(D) Equation of tangents on hyperbola at $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is

$$
\mathrm{xy}_{1}+\mathrm{yx}_{1}=16
$$

\therefore It cuts the co-ordinate axes at

$$
\begin{aligned}
& \mathrm{A}\left(\frac{16}{\mathrm{y}_{1}}, 0\right) \quad \& \quad \mathrm{~B}\left(0, \frac{16}{\mathrm{x}_{1}}\right) \\
& \therefore \quad \Delta=16 . \quad\left(\because \mathrm{x}_{1} \mathrm{y}_{1}=8\right)
\end{aligned}
$$

Part \# II : Comprehension

Comprehension \#2

1. Tangent of $x y=c^{2}$ at $t_{1} \& t_{2}$ are

$$
\begin{align*}
x+t_{1}^{2} y & =2 \mathrm{ct}_{1} \tag{i}\\
\text { and } x+t_{2}^{2} y & =2 c t_{2} \tag{ii}
\end{align*}
$$

on solving (i) \& (ii) we get
$y=\frac{2 c}{t_{1}+t_{2}}=\frac{2 c}{4}, x=\frac{2 \mathrm{ct}_{1} t_{2}}{t_{1}+t_{2}}=\frac{4 c}{4}$
$\therefore \quad$ point of intersection is $\left(c, \frac{c}{2}\right)$.
2. $\mathrm{e}_{1}=\sqrt{2}, \mathrm{e}_{2}=\sqrt{2}$
$\Rightarrow \quad(\sqrt{2}, \sqrt{2})$ is the point on the circle.
\Rightarrow radius of $\mathrm{C}_{1}=2$.
\Rightarrow radius of director circle of $\mathrm{C}_{1}=2 \sqrt{2}$.
$\therefore \quad(\text { radius })^{2}=8$
3. Equation of normal of $x y=c^{2}$ at t_{1} is

$$
\mathrm{y}-\frac{\mathrm{c}}{\mathrm{t}_{1}}=\mathrm{t}_{1}^{2}\left(\mathrm{x}-\mathrm{ct} \mathrm{t}_{1}\right)
$$

As it also passes through t_{2},

$$
\begin{aligned}
& \frac{\mathrm{c}}{\mathrm{t}_{2}}-\frac{\mathrm{c}}{\mathrm{t}_{1}}=\mathrm{t}_{1}^{2}\left(\mathrm{ct}_{2}-\mathrm{ct} \mathrm{t}_{1}\right) \\
\Rightarrow & \mathrm{t}_{1} \mathrm{t}_{2}=-\mathrm{t}_{1}^{-2} .
\end{aligned}
$$

Comprehension \#3

1. (b), 2. (c) 3. (d)
2. (b) Perpendicular tangents intersect at the center of rectangular hyperbola. Hence, the center of the hyperbola is $(1,1)$ and the equations of asymptotes are x

$$
-1=0 \text { and } \quad y-1=0
$$

2. (c) Let the equation of the hyperbola be

$$
x y-x-y+1+\lambda=0
$$

It passes through (3, 2). Hence, $\lambda=-2$.
So, the equation of hyperbola is
$x y=x+y+1$
3. (d) From the center of the hyperbola, we can draw two real tangents to the rectangular hyperbola.

EXERCISE - 4

Subjective Type

1. Point of intersection of lines
$7 x+13 y-87=0 \& 5 x-8 y+7=0$ is $(5,4)$.
Then $\frac{25}{\mathrm{a}^{2}}-\frac{16}{\mathrm{~b}^{2}}=1$
Also latus rectum $\mathrm{LR}=\frac{2 \mathrm{~b}^{2}}{\mathrm{a}}=\frac{32 \sqrt{2}}{5}$
$\Rightarrow \mathrm{b}^{2}=\frac{16 \sqrt{2} \mathrm{a}}{5}$
From (i) \& (ii) $\mathrm{a}^{2}=\frac{25}{2}, \mathrm{~b}^{2}=16$.
2. Equation of tangent of given hyperbola at point
(h, k) is $\frac{h x}{a^{2}}-\frac{k y}{b^{2}}=1$
Equation of auxillary circle is $x^{2}+y^{2}=a^{2}$
from (i) \& (ii)
$\left[\left(1+\frac{k y}{b^{2}}\right) \frac{a^{2}}{h}\right]^{2}+y^{2}-a^{2}=0$
$\Rightarrow y^{2}\left(k^{2} a^{4}+b^{4} h^{2}\right)+2 k b^{2} a^{4} y+b^{4} a^{2}\left(a^{2}-h^{2}\right)=0$
Now $\frac{y_{1}+y_{2}}{y_{1} y_{2}}=-\frac{2 k b^{2} a^{4}}{b^{4} a^{2}\left(a^{2}-h^{2}\right)}=\frac{-2 k a^{2}}{b^{2} a^{2}\left(1-\frac{h^{2}}{a^{2}}\right)}$

$$
=\frac{-2 \mathrm{k}}{\mathrm{~b}^{2}\left(\frac{-\mathrm{k}^{2}}{\mathrm{~b}^{2}}\right)}=\frac{2}{\mathrm{k}} .
$$

3. Given hyperbola can be written as
$\frac{(x+1)^{2}}{9}-\frac{(y-2)^{2}}{16}=1$
so $\mathrm{e}=\frac{5}{3}$, centre is $(-1,2)$
foci $=(-1 \pm 5,2)=(-6,2) \&(4,2)$
directrix is $x+1= \pm \frac{9}{5} \Rightarrow x=-1 \pm \frac{9}{5}$
L.R. $=\frac{32}{3}$, Length of axes is 8 and 6,

Equation of axis is $\mathrm{y}-2=0$ and $\mathrm{x}+1=0$.
4. Let mid point of chord of given hyperbola is (h, k)

Also let $\left(\mathrm{ct}_{1}, \frac{c}{\mathrm{t}_{1}}\right) \&\left(\mathrm{ct}_{2}, \frac{c}{\mathrm{t}_{2}}\right)$ be the end points of the chord
then $2 \mathrm{~h}=\mathrm{c}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)$ and $2 \mathrm{k}=\mathrm{c}\left(\frac{1}{\mathrm{t}_{1}}+\frac{1}{\mathrm{t}_{2}}\right)$
According to question
$c^{2}\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right)^{2}+\mathrm{c}^{2}\left(\frac{1}{\mathrm{t}_{1}}-\frac{1}{\mathrm{t}_{2}}\right)^{2}=4 \mathrm{~d}^{2}$
$\Rightarrow \mathrm{c}^{2}\left[\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)^{2}-4 \mathrm{t}_{1} \mathrm{t}_{2}\right]\left[1+\frac{1}{\left(\mathrm{t}_{1} \mathrm{t}_{2}\right)^{2}}\right]=4 \mathrm{~d}^{2}$
$\Rightarrow c^{2}\left[\frac{4 h^{2}}{c^{2}}-\frac{4 h}{k}\right]\left[1+\frac{k^{2}}{h^{2}}\right]=4 d^{2}$
$\Rightarrow \quad\left(x y-c^{2}\right)\left(x^{2}+y^{2}\right)=d^{2} x y$.
5. Given conic can be written as

$$
\frac{(x-2)^{2}}{16}-\frac{(y-2)^{2}}{16}=-1
$$

so eccentricity is $\sqrt{2}$.
7. Equation of normal of given hyperbola at P is
ax $\cos \theta+$ by $\cot \theta=a^{2}+b^{2}$
As it cut x-axis at G, so $G\left(a e^{2} \sec \theta, 0\right)$
Now $S G=\mathrm{ae}^{2} \sec \theta-\mathrm{ae}$

$$
=\mathrm{e}(\mathrm{ae} \sec \theta-\mathrm{a})=\mathrm{e} S P
$$

8. Let any point on circle be $(\mathrm{r} \cos \theta, \mathrm{r} \sin \theta)$

Then equation of chord of contact is
$\frac{x}{a^{2}} r \cos \theta-\frac{y}{b^{2}} r \sin \theta=1$
Let mid point of chord of contact is (h, k)
Then equation of chord of contact is
$\frac{h x}{a^{2}}-\frac{k y}{b^{2}}=\frac{h^{2}}{a^{2}}-\frac{k^{2}}{b^{2}}$
On comparing (i) \& (ii)

$$
\frac{r \cos \theta}{h}=\frac{r \sin \theta}{k}=\frac{1}{\frac{\mathrm{~h}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{k}^{2}}{\mathrm{~b}^{2}}}
$$

On solving we get required locus i.e.
$\left(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\right)^{2}=\frac{x^{2}+y^{2}}{r^{2}}$.
9. If (h, k) be mid point of any chord of hyperbola $x^{2}-y^{2}=a^{2}$, then its equation is
$h x-k y=h^{2}-k^{2}$
But (i) is normal to hyperbola, then its equation is
$\mathrm{x} \cos \theta+\mathrm{y} \cot \theta=2 \mathrm{a}$
Comparing (i) \& (ii)
$\frac{\mathrm{h}}{\cos \theta}=\frac{-\mathrm{k}}{\cot \theta}=\frac{\mathrm{h}^{2}-\mathrm{k}^{2}}{2 \mathrm{a}}$
on solving it we get $\left(y^{2}-x^{2}\right)^{3}=4 a^{2} x^{2} y^{2}$
10. Equation of tangent to parabola $x^{2}=4 a y$
is $\quad y-m x+\mathrm{am}^{2}=0$
Let mid point of PQ is $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$.
Then equation of $P Q$ is

$$
\begin{equation*}
\mathrm{xy}_{1}+\mathrm{yx}_{1}=2 \mathrm{k}^{2} \tag{iii}
\end{equation*}
$$

On comparing (i) \& (ii)
$\frac{\mathrm{x}_{1}}{1}=\frac{\mathrm{y}_{1}}{-\mathrm{m}}=\frac{2 \mathrm{k}^{2}}{\mathrm{am}^{2}}$
$\Rightarrow \mathrm{x}_{1}=\frac{2 \mathrm{k}^{2}}{\mathrm{am}^{2}}$

$$
\begin{equation*}
y_{1}=\frac{-2 \mathrm{k}^{2}}{\mathrm{am}} \tag{iv}
\end{equation*}
$$

using (iii) \& (iv) eliminate m.
11. Let equation of asymptotes are
$2 x^{2}-3 x y-2 y^{2}+3 x-y+8+\lambda=0$
As it represents two straight lines
$\therefore \quad-4(8+\lambda)+\frac{9}{4}-\frac{1}{2}+\frac{9}{2}-(8+\lambda) \frac{9}{4}=0$
$\Rightarrow \lambda=-7$

So asymptotes are $2 x^{2}-3 x y-2 y^{2}+3 x-y+1=0$
$\Rightarrow 2 \mathrm{y}-\mathrm{x}-1=0 \& 2 \mathrm{x}+\mathrm{y}+1=0$
and the equation of conjugate hyperbola will be

$$
2 x^{2}-3 x y-2 y^{2}+3 x-y+8-14=0
$$

12. For the first hyperbola,
$(y-m x)\left(m \frac{d y}{d x}+1\right)+(m y+x)\left(\frac{d y}{d x}-m\right)=0$
or $\frac{d y}{d x}=\frac{-y+m^{2} y+2 m x}{2 m y+x-m^{2} x}=m_{1}$
For the second hyperbola,
$\left(m^{2}-1\right)\left(2 y \frac{d y}{d x}-2 x\right)+4 m\left(x \frac{d y}{d x}+y\right)=0$
or $\frac{d y}{d x}=\frac{-2 m y+m^{2} x-x}{m^{2} y-y+2 m x}=m_{2}$
$\therefore \quad \mathrm{m}_{1} \mathrm{~m}_{2}=-1$
The angle between the hyperbolas is $\pi / 2$.

EXERCISE - 5

Part \# I : AIEEE/JEE-MAIN

5. $2 \mathrm{ae}=4$
$\mathrm{ae}=2$
$a(2)=2$
$\mathrm{a}=1$
$\mathrm{b}^{2}=\mathrm{a}^{2}\left(\mathrm{e}^{2}-1\right)$ $=1(4-1)=3$
equation $\frac{x^{2}}{1}-\frac{y^{2}}{3}=1$

$$
3 x^{2}-y^{2}=3
$$

6. $\frac{2 b^{2}}{a}=8$
$2 \mathrm{~b}=\mathrm{ae}$
$4 b^{2}=a^{2} e^{2}$
$4 a^{2}\left(e^{2}-1\right)=a^{2} e^{2}$
$3 \mathrm{e}^{2}=4$
$e=\frac{2}{\sqrt{3}}$

Part \# II : IIT-JEE ADVANCED

1. Any point on $y^{2}=8 x$ is $\left(2 t^{2}, 4 t\right)$ where the tangent is $y t=x+2 t^{2}$

Solving it with $\mathrm{xy}=-1, \mathrm{y}\left(\mathrm{yt}-2 \mathrm{t}^{2}\right)=-1$
or $t y^{2}-2 t^{2} y+1=0$
For common tangent, it should have equal roots
$\therefore \quad 4 t^{2}-4 t=0$
$\Rightarrow t=0,1$
\therefore The common tangent is $\mathrm{y}=\mathrm{x}+2$,
(when $\mathrm{t}=0$, it is $\mathrm{x}=0$ which can touch $\mathrm{xy}=-1$ at infinity only)
2. The given equation of hyperbola is
$\frac{x^{2}}{\cos ^{2} \alpha}-\frac{y^{2}}{\sin ^{2} \alpha}=1$
$\Rightarrow \mathrm{a}=\cos \alpha, \mathrm{b}=\sin \alpha$
$\Rightarrow \mathrm{e}=\sqrt{1+\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}}=\sqrt{1+\tan ^{2} \alpha}=\sec \alpha$
$\Rightarrow \mathrm{ae}=1$
\therefore foci $(\pm 1,0)$
\therefore foci remain constant with respect to α.
5. Eccentricity of ellipse $=3 / 5$

Eccentricity of hyperbola $=5 / 3$ and it passes through ($\pm 3,0$)
\Rightarrow its equation $\frac{x^{2}}{9}-\frac{y^{2}}{b^{2}}=1$
where $1+\frac{\mathrm{b}^{2}}{9}=\frac{25}{9}$
$\Rightarrow \quad b^{2}=16$
$\Rightarrow \frac{x^{2}}{9}-\frac{y^{2}}{16}=1$
$\Rightarrow \frac{x^{2}}{9}-\frac{y^{2}}{16}=1$
and its foci are $(\pm 5,0)$
6. Given $3 x^{2}+4 y^{2}=12$ an ellipse
$\therefore \quad \mathrm{a}^{2}=4 \mathrm{~b}^{2}=3$
$\therefore \quad e=\sqrt{1-\frac{3}{4}}$
$\Rightarrow \mathrm{e}=\frac{1}{2}$
$\therefore \quad$ It's focus will be $(\pm 1,0)$
Since hyperbola is confocal to given ellipse, therefore $\pm \mathrm{ae}= \pm 1$, but $\mathrm{a}=\sin \theta$ given
$\therefore \quad \mathrm{e}=\frac{1}{\sin \theta}, \operatorname{Now~}^{2}=\mathrm{a}^{2}\left(\mathrm{e}^{2}-1\right)$

$$
\mathrm{b}^{2}=\sin ^{2} \theta \frac{\cos ^{2} \theta}{\sin ^{2} \theta} \quad \Rightarrow \mathrm{~b}^{2}=\cos ^{2} \theta
$$

Hence required equation will be,
$\frac{x^{2}}{\sin ^{2} \theta}-\frac{y^{2}}{\cos ^{2} \theta}=1$
$\Rightarrow \mathrm{x}^{2} \operatorname{cosec}^{2} \theta-\mathrm{y}^{2} \sec ^{2} \theta=1$
8. $\left(a x^{2}+b y^{2}+c\right)\left(x^{2}-5 x y+6 y^{2}\right)=0$
either $x^{2}-5 x y+6 y^{2}=0$
\Rightarrow two straight lines passing through origin.
or $a x^{2}+b y^{2}+c=0$
(A) If $\mathrm{c}=0$, and a and b are of same sign then it will represent a point.
(B) If $\mathrm{a}=\mathrm{b}, \mathrm{c}$ is of sign opposite to a then it will represent circle.
(C) When a \& b are of same sign and c is of sign opposite to a then it will represent ellipse.
(D) This is clearly incorrect.
9. The given equation is
$(x-\sqrt{2})^{2}-2(y+\sqrt{2})^{2}=4$
$\frac{(x-\sqrt{2})^{2}}{4}-\frac{(y+\sqrt{2})^{2}}{2}=1$
$\mathrm{a}=2, \quad \mathrm{~b}=\sqrt{2}$
hence eccentricity e $=\sqrt{1+\frac{b^{2}}{a^{2}}}=\sqrt{\frac{3}{2}}$
Area $=\frac{1}{2} a(e-1) \times \frac{b^{2}}{a}$

$$
=\left(\sqrt{\frac{3}{2}}-1\right) \text { sq. units. }
$$

10. $\mathrm{x}^{2}-\mathrm{y}^{2}=\frac{1}{2} \quad \ldots$.(i) \rightarrow its $\mathrm{e}=\sqrt{2}$
e of ellipse is $\frac{1}{\sqrt{2}}$
$\frac{x^{2}}{2}+\frac{y^{2}}{1}=b^{2}$
add (i) \& (ii) $\frac{3 \mathrm{x}^{2}}{2}=\frac{1}{2}+\mathrm{b}^{2}$
$3 \mathrm{x}^{2}=1+2 \mathrm{~b}^{2}$
$\mathrm{y}^{2}=\frac{1}{3}+\frac{2 \mathrm{~h}^{2}}{3}-\frac{1}{6}$
$y^{2}=\frac{1}{6}\left(4 b^{2}-1\right)$
$\mathrm{m}_{1} \cdot \mathrm{~m}_{2}=-1 \Rightarrow \frac{1+2 \mathrm{~b}^{2}}{3}=\frac{2\left(4 \mathrm{~b}^{2}-1\right)}{6}$
$b^{2}=1 \quad \Rightarrow \quad x^{2}+2 y^{2}=2$.

Paragraph for Question 11 and 12

11. Let the point on the hyperbola $P(3 \sec \theta, 2 \tan \theta)$

Equation of tangent $\frac{x \sec \theta}{3}-\frac{y \tan \theta}{2}=1$
$|\mathrm{p}|=\mathrm{r}$
$\frac{\left|\frac{4}{3} \sec \theta-1\right|}{\sqrt{\frac{\sec ^{2} \theta}{9}+\frac{\tan ^{2} \theta}{4}}}=4$
$\Rightarrow \quad \frac{16}{9} \sec ^{2} \theta+1-\frac{8}{3} \sec \theta=16\left(\frac{4 \sec ^{2} \theta+9 \tan ^{2} \theta}{4 \times 9}\right)$
$16 \sec ^{2} \theta+9-24 \sec \theta=52 \sec ^{2} \theta-36$
$\Rightarrow 36 \sec ^{2} \theta+24 \sec \theta-45=0$
$\Rightarrow 12 \sec ^{2} \theta+8 \sec \theta-15=0$
$\Rightarrow 12 \sec ^{2} \theta+18 \sec \theta-10 \sec \theta-15=0$
$\Rightarrow(6 \sec \theta-5)(2 \sec \theta+3)=0$
$\sec \theta=\frac{5}{6}$ (not possible), $\sec \theta=-\frac{3}{2}$
$\tan \theta= \pm \sqrt{\frac{9}{4}-1}= \pm \frac{\sqrt{5}}{2}$
$\left(\because\right.$ slope is positive $\left.\Rightarrow \tan \theta=-\frac{\sqrt{5}}{2}\right)$
Hence the required equation be $-\frac{3 x}{2 \times 3}+\frac{y \sqrt{5}}{2 \times 2}=1$
$\Rightarrow 2 x-\sqrt{5} y+4=0$
12. Solving (a) \& (b) for x, we get

$$
\begin{gathered}
x=6 \\
y= \pm 2 \sqrt{3} \\
(x-6)^{2}+y^{2}-12=0 \\
x^{2}+y^{2}-12 x+24=0
\end{gathered}
$$

Option (A) is correct
13. As directrix cut the x -axis at $(\pm \mathrm{a} / \mathrm{e}, 0)$

Hence, $\frac{2 \mathrm{a}}{\mathrm{e}}+0=1$ (for nearer directrix)
$\Rightarrow 2 \mathrm{a}=\mathrm{e}$
Now, $\quad b^{2}=a^{2}\left(e^{2}-1\right)=a^{2}\left(4 a^{2}-1\right)$
$\Rightarrow \frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}=4 \mathrm{a}^{2}-1$
Given line $y=-2 x+1$ is a tangent to the hyperbola condition of tangency is $c^{2}=a^{2} m^{2}-b^{2}$
$\Rightarrow \quad 1=4 \mathrm{a}^{2}-\mathrm{b}^{2}$
$\Rightarrow 4 a^{2}-1=b^{2}$
from (ii) \& (iii), $\mathrm{a}^{2}=1$
\Rightarrow from (ii), $b^{2}=3$
$\Rightarrow e=\sqrt{\frac{1+3}{1}}=2$
14. Given hyperbola is $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

$$
\text { ellipse is } \frac{x^{2}}{2^{2}}+\frac{y^{2}}{1}=1
$$

eccentricity of ellipse $=\sqrt{1-\frac{1}{4}}=\sqrt{\frac{3}{4}}=\frac{\sqrt{3}}{2}$
eccentricity of hyperbola $=\sqrt{1+\frac{b^{2}}{a^{2}}}=\sqrt{\frac{4}{3}}$
$\Rightarrow \frac{b^{2}}{a^{2}}=\frac{1}{3} \quad \Rightarrow 3 b^{2}=a^{2}$
also hyperbola passes through foci of ellipse $(\pm \sqrt{3}, 0)$
$\frac{3}{a^{2}}=1 \Rightarrow a^{2}=3$
from (i) \& (ii)
$b^{2}=1$
equation of hyperbola is $\frac{x^{2}}{3}-\frac{y^{2}}{1}=1$
$\Rightarrow x^{2}-3 y^{2}=3$
eccentricity of hyperbola $=\sqrt{1+\frac{1}{3}}=\sqrt{\frac{4}{3}}$
focus of hyperbola $=\left(\pm \sqrt{3} \cdot \frac{2}{\sqrt{3}}, 0\right) \equiv(\pm 2,0)$
15. Equation of normal at $P(6,3)$ on $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $\frac{a^{2} x}{6}+\frac{b^{2} y}{3}=a^{2} e^{2}$

It intersects x -axis at $(9,0)$
$\Rightarrow a^{2} \frac{9}{6}=a^{2} e^{2} \Rightarrow e=\sqrt{\frac{3}{2}}$
16. Let parametric coordinates be $\mathrm{P}(3 \sec \theta, 2 \tan \theta)$

Equation of tangent at point P will be

$$
\frac{x \sec \theta}{3}-\frac{y \tan \theta}{2}=1
$$

$\because \quad$ tangent is parallel to $2 \mathrm{x}-\mathrm{y}=1$
$\Rightarrow \frac{2 \sec \theta}{3 \tan \theta}=2 \Rightarrow \sin \theta=\frac{1}{3}$
$\therefore \quad$ coordinates are $\left(\frac{9}{2 \sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ and $\left(-\frac{9}{2 \sqrt{2}},-\frac{1}{2}\right)$

MOCK TEST

1. (B)
origin lies in acute angle of asymptotes $\mathrm{P}(1,2)$ lies in obtuse angle of asymptotes acute angle between the asymptotes is $\frac{\pi}{3}$

$$
\therefore \quad \mathrm{e}=\sec \frac{\theta}{2}=\sec \frac{\pi}{6}=\frac{2}{\sqrt{3}}
$$

3. (B)

$$
\begin{aligned}
& x-2=m \\
& y+1=\frac{4}{m}
\end{aligned}
$$

$\therefore \quad(x-2)(y+1)=4$

$$
\Rightarrow X Y=4, \text { where } X=x-2, Y=y+1
$$

and $S \equiv(x-2)^{2}+(y+1)^{2}=25$
$\Rightarrow X^{2}+Y^{2}=25$
Curve ' C ' \& circle S both are concentric
$\therefore \mathrm{OP}^{2}+\mathrm{OQ}^{2}+\mathrm{OR}^{2}+\mathrm{OS}^{2}=4 \mathrm{r}^{2}=4.25=100$
5. (A) Mid point is $\mathrm{M}\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}}{2}\right)$
$\therefore \quad$ equation of the chord to the hyperbola $x y=c^{2}$
whose midpoint is M, is $\frac{x}{\frac{x_{1}+x_{2}}{2}}+\frac{y}{\frac{y_{1}+y_{2}}{2}}=2$

$$
\Rightarrow \frac{x}{x_{1}+x_{2}}+\frac{x}{y_{1}+y_{2}}=1
$$

7. (C)

Equation of director circles of ellipse and hyperbola are respectively.

$$
\begin{array}{ll}
x^{2}+y^{2}=a^{2}+b^{2} & \text { and } \quad x^{2}+y^{2}=a^{2}-b^{2} \\
a^{2}+b^{2}=4 r^{2} & \quad \ldots \ldots . \text { (i) } \tag{i}
\end{array}
$$

$$
\begin{align*}
& a^{2}-b^{2}=r^{2} \tag{iii}\\
& a^{2}=\frac{5 r^{2}}{2}, \quad b^{2}=\frac{3 r^{2}}{2} \\
& e_{e}^{2}=1-\frac{b^{2}}{a^{2}} \\
& \Rightarrow \quad e_{e}^{2}=1-\frac{3 i i)}{2} \times \frac{2}{5 r^{2}}=1-\frac{3}{5}=\frac{2}{5} \\
& \Rightarrow \quad e_{h}^{2}=1+\frac{b^{2}}{a^{2}} \\
& \Rightarrow e_{h}^{2}+\frac{3}{5}=\frac{8}{5} \\
& \text { So } 4 e_{h}^{2}-e_{e}^{2}=4 \times \frac{8}{5}-\frac{2}{5}=\frac{30}{5}=6
\end{align*}
$$

9. (A)
S_{1} : Equation of hyperbola $(x-3)(y-2)=c^{2}$
$x y-2 x-3 y+6=c^{2}$
$\therefore \quad$ it passes through $(4,6)$, then
$4 \times 6-2 \times 4-3 \times 6+6=c^{2}$
$c^{2}=4$
$\mathrm{c}=2$
Latus rectum $(\ell)=2 \sqrt{2} \mathrm{c}=2 \sqrt{2} \times 2=4 \sqrt{2}$
S_{2} : Let the equation to the rectangular hyperbola be $x^{2}-y^{2}=a^{2}$
As the asymptotes of this are the axes of the other and vice-versa, hence the equation of the other hyperbola may be written as $\mathrm{xy}=\mathrm{c}^{2}$
Let (i) and (ii) meet at some point whose coordinates are $(a \sec \alpha, a \tan \alpha)$.
then the tangent at the point $(a \sec \alpha, a \tan \alpha)$ to equation on (i) is
$\mathrm{x}-\mathrm{y} \sin \alpha=\mathrm{a} \cos \alpha$
and the tangent at the point $(a \sec \alpha, a \tan \alpha)$ to equation on (ii) is

$$
\begin{equation*}
y+x \sin \alpha=\frac{2 c^{2}}{a} \cos \alpha \tag{iv}
\end{equation*}
$$

So, the slopes of the tangents given by (iii) and (iv) are respectively $\frac{1}{\sin \alpha}$ and $-\sin \alpha$ and their product is $-\sin \alpha \times \frac{1}{\sin \alpha}=-1$
Hence the tangents are a right angle.
S_{3} : Hyperbola $x y=16$
$\Rightarrow \mathrm{c}=4$
equation of directrices

$$
\begin{aligned}
& x+y= \pm \sqrt{2} c \\
& x+y= \pm 4 \sqrt{2}
\end{aligned}
$$

distance b / w directrices of hyperbola is
$\Rightarrow\left|\frac{8 \sqrt{2}}{\sqrt{1^{2}+1^{2}}}\right| \Rightarrow\left|\frac{8 \sqrt{2}}{\sqrt{2}}\right|=8$
S_{4} : Let point (h, k) on the parabola. then equation of tangent is $\frac{\mathrm{x}}{\mathrm{h}}+\frac{\mathrm{y}}{\mathrm{k}}=2$

Equation of line $\frac{x}{x_{1}}+\frac{y}{y_{1}}=1$
$\therefore \quad \mathrm{h}=\frac{\mathrm{x}_{1}}{2}$ and $\mathrm{k}=\frac{\mathrm{y}_{1}}{2}$
\therefore point of contact is $\left(\frac{\mathrm{x}_{1}}{2}, \frac{\mathrm{y}_{1}}{2}\right)$
11. (A, B, D)

For the ellipse : $\mathrm{e}=\sqrt{\frac{25-9}{25}}=\frac{4}{5}$
\therefore focii are $(-4,0)$ and $(4,0)$
For the hyperbola
$\mathrm{ae}=4, \mathrm{e}=2$
$\therefore \quad a=2$
$b^{2}=4(4-1)=12$
$\mathrm{b}=\sqrt{12}$
13. (A, B)
equation of tangent
$\frac{\mathrm{x} \sec \theta}{\mathrm{a}}-\frac{\mathrm{y} \tan \theta}{\mathrm{b}}=1$
compare this with eqution of tangent
$y=m x \pm \sqrt{a^{2} m^{2}-b^{2}}$
$\Rightarrow \frac{\mathrm{b}}{\mathrm{a}} \frac{\sec \theta}{\tan \theta}=\mathrm{m} \Rightarrow \frac{\mathrm{b}}{\mathrm{a} \sin \theta}=\mathrm{m}$
$\sin \theta=\frac{b}{m a}$
$\theta=\sin ^{-1}\left(\frac{\mathrm{~b}}{\mathrm{ma}}\right)$ and $\pi+\sin ^{-1}\left(\frac{\mathrm{~b}}{\mathrm{ma}}\right) \quad \mathrm{m}>0$
15. (B, C)

Equation of chord joining θ and ϕ

$$
\frac{x}{a} \cos \frac{\theta-\varphi}{2}-\frac{y}{b} \sin \frac{\theta+\varphi}{2}=\cos \frac{\theta+\varphi}{2}
$$

it passes through (ae, 0)
$\therefore \quad e \cos \frac{\theta-\varphi}{2}=\cos \frac{\theta+\varphi}{2}$
$\therefore \frac{\cos \frac{\theta-\varphi}{2}}{\cos \frac{\theta+\varphi}{2}}=\frac{1}{\mathrm{e}}$
$\frac{\cos \frac{\theta-\varphi}{2}-\cos \frac{\theta+\varphi}{2}}{\cos \frac{\theta-\varphi}{2}+\cos \frac{\theta+\varphi}{2}}=\frac{1-\mathrm{e}}{1+\mathrm{e}}$
$\frac{2 \sin \frac{\theta}{2} \sin \frac{\varphi}{2}}{2 \cos \frac{\theta}{2} \cos \frac{\varphi}{2}}=\frac{1-\mathrm{e}}{1+\mathrm{e}}$
$\Rightarrow \tan \frac{\theta}{2} \tan \frac{\varphi}{2}=\frac{1-\mathrm{e}}{1+\mathrm{e}}$
since the chord may also passes through ($-\mathrm{ae}, 0$)
similarly as above, we get $\tan \frac{\theta}{2} \tan \frac{\varphi}{2}=\frac{1+e}{1-e}$
16. (A)

Let P be the position of the gun
and Q be the position of the target.
Let u be the velocity of sound, v be the velocity of bullet

and R be the position of the man
then we have
$\mathrm{t}_{1}=\mathrm{t}+\mathrm{t}_{2}$
$\mathrm{t}_{1}-\mathrm{t}_{2}=\mathrm{t}\left(\mathrm{t}^{\prime}\right.$ represent time $)$
i.e. $\frac{P R}{u}-\frac{Q R}{u}=\frac{P Q}{v}$
i.e. $\mathrm{PR}-\mathrm{QR}=\frac{\mathrm{u}}{\mathrm{v}} . \mathrm{PQ}=$ constant and $\frac{\mathrm{u}}{\mathrm{v}} \mathrm{PQ}<\mathrm{PQ}$
$\therefore \quad$ locus of R is a hyperbola
17. (D)
$(5,0)$ is a focus of the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$
and $3 y \pm 4 x=0$ are assymptotes.
the auxiliarly circle is $x^{2}+y^{2}=9$
$\therefore \quad$ the feet lie on $\mathrm{x}^{2}+\mathrm{y}^{2}=9$
\therefore Statement-1 is false
Statement -2 is true.
19. (D)

Statement -2 is true
for the point $(2,2), \quad t_{1}=1$
for the point $(4,1), \quad t_{2}=2$
for the point $(6,2 / 3), t_{3}=3$
for the point $(1 / 4,16), t_{4}=\frac{1}{8}$
Now $\mathrm{t}_{1} \cdot \mathrm{t}_{2} \cdot \mathrm{t}_{3} \cdot \mathrm{t}_{4}=\frac{3}{4} \neq 1$
\therefore statement -1 is false
20. (A)

Statement -2 is true
Since $\left(\frac{15}{4}, 3\right)$ and $\left(-\frac{15}{4},-3\right)$ are extremities of a diameter
$\therefore \quad$ tangents at the points are parallel.
21. (A) Very important property of ellipse and hyperbola

$$
\left(\mathrm{p}_{1} \mathrm{p}_{2}=\mathrm{b}^{2}\right) \quad \Rightarrow(\mathbb{R}),(\mathrm{S})
$$

(B) $y \frac{d y}{d x}=2 \quad \Rightarrow \quad \frac{y^{2}}{2}=2 x+C$
$\mathrm{x}=1, \mathrm{y}=2 \quad \Rightarrow \mathrm{C}=0$
$\Rightarrow \mathrm{y}^{2}=4 \mathrm{x} \quad \Rightarrow$ parabola
$\Rightarrow \quad(\mathrm{Q})$
(C) Equation of normal at P

$$
Y-y=-\frac{1}{m}(X-x)
$$

$\mathrm{Y}=0, \quad \mathrm{X}=\mathrm{x}+\mathrm{my}$
$X=0, \quad Y=y-\frac{x}{m}$

hence $x+m y+x=0 \Rightarrow 2 x+y \frac{d y}{d x}=0$
$2 x d x+y d y=0$
$\mathrm{x}^{2}+\frac{\mathrm{y}^{2}}{2}=\mathrm{C}$ passes through $(1,4)$
$1+8=\mathrm{C}$
hence $x^{2}+\frac{y^{2}}{2}=9 \Rightarrow \frac{x^{2}}{9}+\frac{y^{2}}{18}=1$
\Rightarrow ellipse $\Rightarrow(\mathbb{R})$
(D) length of normal

$$
\begin{aligned}
& (x+m y-x)^{2}+y^{2}=4 \\
& m^{2} y^{2}+y^{2}=4 \\
m^{2}= & \frac{4-y^{2}}{y^{2}} ; \quad \frac{d y}{d x}=\frac{\sqrt{4-y^{2}}}{y} ; \int \frac{y d y}{\sqrt{4-y^{2}}}=\int d x \\
& -\sqrt{4-y^{2}}=x+C \\
& x=1, y=4 \Rightarrow C=-1 \\
\therefore \quad & (x-1)^{2}=4-y^{2} \\
& (x-1)^{2}+y^{2}=4 \Rightarrow \text { circle } \Rightarrow(P)
\end{aligned}
$$

22. (A) \rightarrow (r),
(B) \rightarrow (s),
(C) \rightarrow (s),
(D) \rightarrow (p)
(A) Since $3 x^{2}-5 x y-2 y^{2}+5 x+11 y+c=0$ are asympotes
$\therefore \quad$ it represents a pair of a straight lines
$\therefore 3(-2) c+2 . \frac{11}{2}\left(\frac{5}{2}\right)\left(\frac{-5}{2}\right)-3\left(\frac{11}{2}\right)^{2}-(-2)\left(\frac{5}{2}\right)^{2}$
$-\mathrm{c}\left(-\frac{5}{2}\right)^{2}=0$
i.e. $-6 \mathrm{c}-\frac{275}{4}-\frac{363}{4}+\frac{25}{2}-\frac{25}{4} \mathrm{c}=0$
i.e. $-24 \mathrm{c}-275-363+50-25 \mathrm{c}=0$
i.e. $49 \mathrm{c}=-588$
i.e. $\mathrm{c}=-12$
(B) Let the point be (h, k). Then equation of the chord of contact is $\mathrm{hx}+\mathrm{ky}=4$
Since $h x+k y=4$ is tangent to $x y=1$
$\therefore \quad \mathrm{x}\left(\frac{4-\mathrm{hx}}{\mathrm{k}}\right)=1$ has two equal roots
i.e. $h x^{2}-4 x+k=0$
i.e. $h k=4$
\therefore locus of (h, k) is $x y=4$
i.e. $c^{2}=4$
(C) Equation of the hyperbola is $\frac{x^{2}}{c / a}-\frac{y^{2}}{c / b}=1$ eccentricity $e=\sqrt{\frac{a+b}{b}}$
$\therefore \quad \sqrt{\frac{\mathrm{c}}{\mathrm{b}}}=\frac{5}{2}$ and $\frac{13}{2}=\sqrt{\frac{\mathrm{c}}{\mathrm{a}}} \cdot \sqrt{\frac{\mathrm{a}+\mathrm{b}}{\mathrm{b}}}$
$\Rightarrow \frac{13}{2}=\frac{5}{2} \sqrt{1+\frac{\mathrm{b}}{\mathrm{a}}} \Rightarrow \frac{\mathrm{b}}{\mathrm{a}}=\frac{144}{25}$
$\therefore \quad \frac{\mathrm{c}}{\mathrm{a}}=36$
$\therefore \quad$ the hyperbola is $25 \mathrm{x}^{2}-144 \mathrm{y}^{2}=900$
$\therefore \quad a=25, b=144, c=900$
$\therefore \quad \frac{\mathrm{ab}}{\mathrm{c}}=4$
(D) Let the hyperbola be $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

$$
\text { then } 2 \mathrm{a}=\mathrm{ae} \text { i.e. } \mathrm{e}=2
$$

$\therefore \quad \frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}=\mathrm{e}^{2}-1=3$
$\therefore \frac{(2 b)^{2}}{(2 a)^{2}}=3$
23.

1. (C)
$2 \mathrm{a}=3$
Distance between the focii $(1,2)$ and $(5,5)$ is 5

$$
\begin{array}{lll}
2 \mathrm{ae}=5 & \therefore & \mathrm{e}=\frac{5}{3} \\
\frac{1}{\mathrm{e}^{2}}+\frac{1}{\mathrm{e}^{\prime 2}}=1 & \Rightarrow & \mathrm{e}^{\prime}=\frac{5}{4}
\end{array}
$$

2. (D)

Director circle $(x-h)^{2}+(y-k)^{2}=a^{2}-b^{2}$, where (h, k) is centre
centre is $\left(\frac{1+5}{2}, \frac{2+5}{2}\right) \equiv\left(3, \frac{7}{2}\right)$
$b^{2}=a^{2}\left(e^{2}-1\right)=\left(\frac{3}{2}\right)^{2}\left(\left(\frac{5}{3}\right)^{2}-1\right)=4$

Director circle $(x-3)^{2}+\left(y-\frac{7}{2}\right)^{2}=\frac{9}{4}-4$

$$
(x-3)^{2}+\left(y-\frac{7}{2}\right)^{2}=-\frac{7}{4}
$$

this does not represent any real point
3. (B)

Slope of transverse axis is $\frac{3}{4}$
\therefore angle of rotation $=\theta=\tan ^{-1} \frac{3}{4}$
24. $Y-y=m(X-x)$; if $Y=0$ then
$X=x-\frac{y}{m}$ and if $X=0$ then $Y=y-m x$.
Hence $x-\frac{y}{m}=2 x \Rightarrow \frac{d y}{d x}=-\frac{y}{x}$

$\int \frac{d y}{y}+\int \frac{d x}{x}=c \Rightarrow x y=c$
passes through $(2,4)$
\Rightarrow equation of conic is $x y=8$
which is a rectangular hyperbola with $\mathrm{e}=\sqrt{2}$.

Hence the two vertices are $(2 \sqrt{2}, 2 \sqrt{2})$, $(-2 \sqrt{2},-2 \sqrt{2})$ focii are $(4,4) \&(-4,4)$
$\therefore \quad$ Equation of S is $\mathrm{x}^{2}+\mathrm{y}^{2}=32$
25.

1. (A)

Let centre of rectangular hyperbola (H) be $\mathrm{P}(\mathrm{h}, \mathrm{k})$ then
centroid of quadrilateral can be given by $\mathrm{G}\left(\frac{\mathrm{h}+0}{2}, \frac{\mathrm{k}+0}{2}\right)$
\{ G is same as midpoint of centres of circle and rectangular hyperbola $(\mathrm{H})\}$
Now $G\left(\frac{\mathrm{~h}}{2}, \frac{\mathrm{k}}{2}\right)$
lies on $3 x-4 y+1=0$

$$
\begin{aligned}
& \therefore \frac{3 \mathrm{~h}}{2}-\frac{4 \mathrm{k}}{2}+1=0 \\
& \Rightarrow 3 \mathrm{~h}-4 \mathrm{k}+2=0 \Rightarrow 3 \mathrm{x}-4 \mathrm{y}+2=0
\end{aligned}
$$

2. (B)

Let centre of circle and hyperbola are (α, β) and (h, k) respectively and points are $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \mathrm{C}\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$ and $\mathrm{D}\left(\mathrm{x}_{4}, \mathrm{y}_{4}\right)$, then

$$
\begin{equation*}
\frac{\mathrm{h}+\alpha}{2}=\frac{\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}}{4} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\text { and } \quad \frac{\mathrm{k}+\beta}{2}=\frac{\mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{3}+\mathrm{y}_{4}}{4} \tag{iii}
\end{equation*}
$$

As any chord passing through centre of hyperbola is bisected at the centre.
$\therefore \quad \mathrm{AB}$ is bisected at (h, k)
$\Rightarrow \quad \frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}=\mathrm{h}$
and $\quad \frac{\mathrm{y}_{1}+\mathrm{y}_{2}}{2}=\mathrm{k}$
From (i) and (iii) $\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}+\alpha=\frac{\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}}{2}$
$\Rightarrow \alpha=\frac{x_{3}+x_{4}}{2}$

From (ii) and (iv) $\beta=\frac{y_{3}+y_{4}}{2}$
$\Rightarrow \quad(\alpha, \beta)$ is mid-point of $C D$
$\Rightarrow(\alpha, \beta)$ is lies on CD
\Rightarrow centre of circle lies on CD.
3. (C)

Let the four concylic points at which normals to rectangular hyperbola are concurrent are $A\left(x_{1}, y_{1}\right)$, $B\left(x_{2}, y_{2}\right), C\left(x_{3}, y_{3}\right)$ and $D\left(x_{4}, y_{4}\right)$ and centre of circle be (h, k)
$\therefore \quad \frac{\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}}{4}=\frac{\mathrm{h}+\mathrm{o}}{2}$
and $\frac{y_{1}+y_{2}+y_{3}+y_{4}}{4}=\frac{\mathrm{k}+\mathrm{o}}{2}$
$\Rightarrow \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}=2 \mathrm{~h}$
and $y_{1}+y_{2}+y_{3}+y_{4}=2 k$
Normal to rectangular hyperbola $x y=c^{2}$ at (ct, $\frac{\mathrm{c}}{\mathrm{t}}$)
$\mathrm{ct}^{4}-\mathrm{xt}^{3}+\mathrm{yt}-\mathrm{c}=0$
As all normal pass through (α, β)

$$
\begin{align*}
& \therefore \quad \mathrm{ct}^{4}-\alpha \mathrm{t}^{3}+\beta \mathrm{t}-\mathrm{c}=0 \\
& \Rightarrow \quad \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}=\mathrm{c}\left(\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}+\mathrm{t}_{4}\right) \\
& \quad=\mathrm{c}\left(\frac{\alpha}{\mathrm{c}}\right)=\alpha \tag{iii}
\end{align*}
$$

and $y_{1}+y_{2}+y_{3}+y_{4}$

$$
\begin{align*}
& =c\left(\frac{1}{t_{1}}+\frac{1}{t_{2}}+\frac{1}{t_{3}}+\frac{1}{t_{4}}\right)=c\left(\frac{\sum t_{1} t_{2} t_{3}}{t_{1} t_{2} t_{3} t_{4}}\right) \\
& =c\left(\frac{-\beta \mid c}{-c \mid c}\right)=\beta \tag{iv}
\end{align*}
$$

From (i) and (iii), $2 \mathrm{~h}=\alpha$
From (ii) and (iv), $2 \mathrm{k}=\beta$
$\Rightarrow \quad(\mathrm{h}, \mathrm{k})=\left(\frac{\alpha}{2}, \frac{\beta}{2}\right)$
27. (4)

Let (h, k) be the mid-point of the chord of the circle $x^{2}+y^{2}=4$ so, by mid point form, equation is $T=S_{1}$
$h x+k y=h^{2}+k^{2}$ or $y=-\frac{h}{k} x+\frac{h^{2}+k^{2}}{k}$
$\Rightarrow \mathrm{y}=\mathrm{mx}+\mathrm{c}$
it will touch the hyperbola if $c^{2}=a^{2} m^{2}-b^{2}$
$\Rightarrow\left(\frac{\mathrm{h}^{2}+\mathrm{k}^{2}}{\mathrm{k}}\right)^{2}=4\left(\frac{-\mathrm{h}}{\mathrm{k}}\right)^{2}-16$
$\Rightarrow\left(x^{2}+y^{2}\right)^{2}=4 x^{2}-16 y^{2}$
29. (2)

Since $\frac{\mathrm{e}}{2}$ and $\frac{\mathrm{e}^{\prime}}{2}$ are eccentricities of a hyperbola and its conjugate
$\therefore \quad \frac{4}{\mathrm{e}^{2}}+\frac{4}{\mathrm{e}^{\prime 2}}=1$
i.e. $4=\frac{\mathrm{e}^{2} \mathrm{e}^{\prime 2}}{\mathrm{e}^{\prime 2}+\mathrm{e}^{\prime 2}}$
equation of variable line is $\frac{x}{e}+\frac{y}{e^{\prime}}=1$
$\mathrm{e}^{\prime} \mathrm{x}+\mathrm{ey}-\mathrm{ee}^{\prime}=0$
it is tangent to the circle $x^{2}+y^{2}=r^{2}$
$\therefore \quad \frac{\mathrm{ee}^{\prime}}{\sqrt{\mathrm{e}^{2}+\mathrm{e}^{\prime 2}}}=\mathrm{r}$
$\therefore \quad r^{2}=\frac{\mathrm{e}^{2} \mathrm{e}^{\prime 2}}{\mathrm{e}^{2}+\mathrm{e}^{\prime 2}}=4 \quad \therefore \quad \mathrm{r}=2$

