# DCAM classes

# MATHS FOR JEE MAINS & ADVANCED

# PARABOLA

#### **INTRODUCTION**

This chapter focusses on parabolic curves, which constitutes one category of various curves obtained by slicing a cone by a plane, called conic sections. A cone (not necessarily right circular) can be out in various ways by a plane, and thus different types of conic sections are obtained.

Let us start with the definition of a conic section and then we will see how are they obtained by slicing a right circular cone.

#### **CONIC SECTIONS**

A conic section, or conic is the locus of a point which moves in a plane so that its distance from a fixed point is in a constant ratio to its perpendicular distance from a fixed straight line.

- The fixed point is called the Focus.
- The fixed straight line is called the Directrix.
- The constant ratio is called the Eccentricity denoted by e.



The line passing through the focus & perpendicular to the directrix is called the Axis.

A point of intersection of a conic with its axis is called a Vertex.

#### **General Equation of a Conic**

If S is (p, q) & directrix is  $\ell x + my + n = 0$ 

then 
$$PS = \sqrt{(x-\alpha)^2 + (y-\beta)^2} \& PM = \frac{|\ell x + my + n|}{\sqrt{\ell^2 + m^2}}$$

$$\frac{PS}{PM} = e \implies (\ell^2 + m^2) \left[ (x - p)^2 + (y - q)^2 \right] = e^2 (\ell x + my + n)^2$$

Which is of the form  $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ 

### SECTION OF RIGHT CIRCULAR CONE BY DIFFERENT PLANES

A right circular cone is as shown in the figure -1



(i) Section of a right circular cone by a plane passing through its vertex is a pair of straight lines passing through the vertex as shown in the figure - 2.



(ii) Section of a right circular cone by a plane parallel to its base is a circle as shown in the figure -3.



(iii) Section of a right circular cone by a plane parallel to a generator of the cone is a parabola as shown in the figure-4.





(iv) Section of a right circular cone by a plane neither parallel to any generator of the cone nor perpendicular or parallel to the axis of the cone is an ellipse or hyperbola as shown in the figure -5 & 6.



### **3D** View



# **Distinguishing Various Conics**

The nature of the conic section depends upon the position of the focus S w.r.t. the directrix & also upon the value of the eccentricity e. Two different cases arise.

#### Case (I) When The Focus Lies On The Directrix.

In this case  $\Delta = abc + 2fgh - af^2 - bg^2 - ch^2 = 0$  & the general equation of a conic represents a pair of straight lines if:

- $e > 1 \equiv h^2 > ab$  the lines will be real & distinct intersecting at S.
- $e = 1 \equiv h^2 = ab$  the lines will coincident.
- $e < 1 \equiv h^2 < ab$  the lines will be imaginary.

#### Case (II) When The Focus Does Not Lie On Directrix.

| a parabola              | an ellipse                  | a hyperbola             | a rectangular hyperbola |
|-------------------------|-----------------------------|-------------------------|-------------------------|
| $e = 1; \Delta \neq 0,$ | $0 < e < 1; \Delta \neq 0;$ | $e > 1; \Delta \neq 0;$ | $e > 1; \Delta \neq 0$  |
| $h^2 = ab$              | $h^2 < ab$                  | $h^2 > ab$              | $h^2 > ab; a + b = 0$   |

#### PARABOLA

A parabola is the locus of a point which moves in a plane, such that its distance from a fixed point (focus) is equal to its perpendicular distance from a fixed straight line (directrix).

Standard equation of a parabola is  $y^2 = 4ax$ . For this parabola :

(i) Vertex is (0, 0) (ii) Focus is (a, 0)

(iii) Axis is y = 0

(iv) Directrix is x + a = 0



#### **(a) Focal distance :**

The distance of a point on the parabola from the focus is called the focal distance of the point.

**(b) Focal chord :** 

A chord of the parabola, which passes through the focus is called a focal chord.

**Double ordinate : (c)** 

A chord of the parabola perpendicular to the axis of the symmetry is called a double ordinate.

**(d)** Latus rectum :

> A double ordinate passing through the focus or a focal chord perpendicular to the axis of parabola is called the latus rectum. For  $y^2 = 4ax$ .

- Length of the latus rectum = 4a.
- Length of the semi latus rectum = 2a.
- Ends of the latus rectum are L(a, 2a) & L'(a, -2a)

#### **ETOOS KEY POINTS**

- Perpendicular distance from focus on directrix = half the latus rectum. **(i)**
- Vertex is middle point of the focus & the point of intersection of directrix & axis. **(ii)**
- Two parabolas are said to be equal if they have the same latus rectum. (iii)

- **Ex.** Find the equation of the parabola whose focus is at (-1, -2) and the directrix is x 2y + 3 = 0.
- Sol. Let P(x, y) be any point on the parabola whose focus is S(-1, -2) and the directrix x 2y + 3 = 0. Draw PM perpendicular to directrix x 2y + 3 = 0. Then by definition,

$$SP = PM$$

$$\Rightarrow SP^{2} = PM^{2}$$

$$\Rightarrow (x+1)^{2} + (y+2)^{2} = \left(\frac{x-2y+3}{\sqrt{1+4}}\right)^{2}$$

$$\Rightarrow 5[(x+1)^{2} + (y+2)^{2}] = (x-2y+3)^{2}$$

$$\Rightarrow 5[(x+1)^{2} + (y+2)^{2}] = (x-2y+3)^{2}$$

$$\Rightarrow 5(x^{2} + y^{2} + 2x + 4y + 5) = (x^{2} + 4y^{2} + 9 - 4xy + 6x - 12y)$$

$$\Rightarrow 4x^{2} + y^{2} + 4xy + 4x + 32y + 16 = 0$$
This is the equation of the required parabola.

Ex. Find the vertex, axis, directrix, focus, latus rectum and the tangent at vertex for the parabola  $9y^2 - 16x - 12y - 57 = 0$ .

Sol. The given equation can be rewritten as 
$$\left(y - \frac{2}{3}\right)^2 = \frac{16}{9}\left(x + \frac{61}{16}\right)$$
 which is of the form  $Y^2 = 4AX$ .

Hence the vertex is  $\left(-\frac{61}{16}, \frac{2}{3}\right)$ 

The axis is  $y - \frac{2}{3} = 0 \implies y = \frac{2}{3}$ 

The directrix is X + A = 0

$$\Rightarrow \qquad x + \frac{61}{16} + \frac{4}{9} = 0 \Rightarrow x = -\frac{613}{144}$$

The focus is 
$$X = A$$
 and  $Y = 0$ 

$$\Rightarrow x + \frac{61}{16} = \frac{4}{9} \text{ and } y - \frac{2}{3} = 0$$
$$\Rightarrow \qquad \text{focus} = \left(-\frac{485}{144}, \frac{2}{3}\right)$$

Length of the latus rectum =  $4A = \frac{16}{9}$ 

The tangent at the vertex is X = 0

$$\Rightarrow x = -\frac{61}{16}.$$

- Ex. The length of latus rectum of a parabola, whose focus is (2, 3) and directrix is the line x 4y + 3 = 0 is -
- **Sol.** The length of latus rectum =  $2 \times \text{perp.}$  from focus to the directrix

$$= 2 \times \left| \frac{2 - 4(3) + 3}{\sqrt{(1)^2 + (4)^2}} \right| = \frac{14}{\sqrt{17}}$$

#### **PARAMETRIC REPRESENTATION**

The simplest & the best form of representing the co-ordinates of a point on the parabola is (at<sup>2</sup>, 2at) i.e. the equations  $x = at^2 \& y = 2at$  together represents the parabola  $y^2 = 4ax$ , t being the parameter.

Parametric form for : 
$$y^2 = -4ax$$
 (-at<sup>2</sup>, 2at)  
 $x^2 = 4ay$  (2at, at<sup>2</sup>)  
 $x^2 = -4ay$  (2at, -at<sup>2</sup>)

#### **TYPE OF PARABOLA**

Four standard forms of the parabola are  $y^2 = 4ax$ ;  $y^2 = -4ax$ ;  $x^2 = 4ay$ ;  $x^2 = -4ay$ 



| Parabola            | Vertex | Focus    | Axis             | Directrix | Length of<br>Latus rectum | Ends of<br>Latus rectum | Parametric<br>equation | Focal<br>length |
|---------------------|--------|----------|------------------|-----------|---------------------------|-------------------------|------------------------|-----------------|
| $y^2 = 4ax$         | (0,0)  | (a,0)    | y= 0             | x=—a      | 4a                        | (a, ±2a)                | (at <sup>2</sup> ,2at) | x + a           |
| $y^2 = -4ax$        | (0,0)  | (-a,0)   | y = 0            | x=a       | 4a                        | (-a, ±2a)               | $(-at^2, 2at)$         | x–a             |
| $x^2 = +4ay$        | (0,0)  | (0,a)    | $\mathbf{x} = 0$ | y=-a      | 4a                        | (±2a, a)                | $(2at,at^2)$           | y+a             |
| $x^2 = -4ay$        | (0,0)  | (0,-a)   | $\mathbf{x} = 0$ | y=a       | 4a                        | (±2a, -a)               | $(2at, -at^2)$         | y—a             |
| $(y-k)^2 = 4a(x-h)$ | (h,k)  | (h+a,k)  | y = k            | x+a− h =0 | 4a                        | (h+a, k±2a)             | $(h+at^2,k+2at)$       | x–h+a           |
| $(x-p)^2 = 4b(y-q)$ | (p,q)  | (p, b+q) | x=p              | y+b-q=0   | 4b                        | (p±2a,q+a)              | $(p+2at,q+at^2)$       | y–q+b           |

**Ex.** The extreme points of the latus rectum of a parabola are (7, 5) and (7, 3). Find the equation of the parabola.

**Sol.** Focus of the parabola is the mid-point of the latus rectum.

 $\Rightarrow$  S is (7, 4). Also axis of the parabola is perpendicular to the latus rectum and passes through the focus. Its equation is

$$y-4 = \frac{0}{5-3}(x-7) \Longrightarrow y = 4$$

Length of the latus rectum = (5-3) = 2

Hence the vertex of the parabola is at a distance 2/4 = 0.5 from the focus. We have two parabolas, one concaveigh towards and the other concave leftwards.

The vertex of the first parabola is (6.5, 4) and its equation is  $(y-4)^2 = 2(x-6.5)$  and it meets the x-axis at (14.5, 0). The equation of the second parabola is  $(y-4)^2 = -2(x-7.5)$ . It meets the x-axis at (-0.5, 0).

**Ex.** Find the parametric equation of the parabola  $(x - 1)^2 = -12 (y - 2)$ 

Sol.

 $\cdot \cdot$ 

 $4a = -12 \implies a = -3, y - 2 = at^{2}$  $x - 1 = 2 at \implies x = 1 - 6t, y = 2 - 3t^{2}$ 

# MATHS FOR JEE MAINS & ADVANCED

#### POSITION OF A POINT WITH RESPECT TO A PARABOLA

The point  $(x_1, y_1)$  lies outside, on or inside the parabola  $y^2 = 4ax$  according as the expression  $y_1^2 - 4ax_1$  is positive, zero or negative.



**Ex.** Check whether the point (3, 4) lies inside or outside the paabola  $y^2 = 4x$ .

**Sol.**  $y^2 - 4x = 0$ 

:  $S_1 \equiv y_1^2 - 4x_1 = 16 - 12 = 4 > 0$ 

- $\therefore$  (3, 4) lies outside the parabola.
- Ex. Find the value of  $\alpha$  for which the point  $(\alpha 1, \alpha)$  lies inside the parabola  $y^2 = 4x$ .

**Sol.** : Point 
$$(\alpha - 1, \alpha)$$
 lies inside the parabola  $y^2 = 4x$ 

$$\therefore y_1^2 - 4ax_1 < 0$$

- $\Rightarrow \qquad \alpha^2 4(\alpha 1) < 0$
- $\Rightarrow \qquad \alpha^2 4\alpha + 4 < 0$ 
  - $(\alpha 2)^2 < 0$
- $\Rightarrow \quad \alpha \in \phi$

#### LINE & A PARABOLA

The line y = mx + c meets the parabola  $y^2 = 4ax$  in two points real, coincident or imaginary according as  $a \ge cm$ 

 $\Rightarrow$  condition of tangency is, c = a/m.

Length of the chord intercepted by the parabola

on the line 
$$y = mx + c$$
 is :

$$\left(\frac{4}{m^2}\right)\sqrt{a(1+m^2)(a-mc)}$$



The equation of a chord joining t<sub>1</sub> & t<sub>2</sub> is 2x - (t<sub>1</sub> + t<sub>2</sub>) y + 2 at<sub>1</sub>t<sub>2</sub> = 0.
 If t<sub>1</sub> & t<sub>2</sub> are the ends of a focal chord of the parabola y<sup>2</sup> = 4ax then t<sub>1</sub>t<sub>2</sub> = -1. Hence the co-ordinates at the extremities of a focal chord can be taken as (at<sup>2</sup>, 2at) & (a/t<sup>2</sup>, -2a/t)
 Focal chord
 Focal chord
 Length of the focal chord making an angle α with the x- axis is 4acosec<sup>2</sup> α.

- **Ex.** Discuss the position of line y = x + 1 with respect to parabola  $y^2 = 4x$ .
- **Sol.** Solving we get  $(x + 1)^2 = 4x \implies (x 1)^2 = 0$

so y = x + 1 is tangent to the parabola.

- **Ex.** If the line  $y = 3x + \lambda$  intersect the parabola  $y^2 = 4x$  at two distinct points then set of values of  $\lambda$  is -
- Sol. Putting value of y from the line in the parabola -
  - $(3x+\lambda)^2=4x$
  - $\Rightarrow$  9x<sup>2</sup>+(6 $\lambda$ -4)x+ $\lambda$ <sup>2</sup>=0
  - : line cuts the parabola at two distinct points
  - $\therefore$  D>0
  - $\Rightarrow \qquad 4(3\lambda-2)^2 4.9\lambda^2 > 0$
  - $\Rightarrow \qquad 9\lambda^2 12\lambda + 4 9\lambda^2 > 0$
  - $\Rightarrow \lambda < 1/3$

Hence,  $\lambda \in (-\infty, 1/3)$ 

- **Ex.** If  $t_1, t_2$  are end points of a focal chord then show that  $t_1, t_2 = -1$ .
- **Sol.** Let parabola is  $y^2 = 4ax$

since P, S & Q are collinear

$$\begin{array}{ccc} \vdots & m_{PQ} = m_{PS} \\ \Rightarrow & \frac{2}{t_1 + t_2} = \frac{2t_1}{t_1^2 - 1} \\ \Rightarrow & t_1^2 - 1 = t_1^2 + t_1 t_2 \\ \Rightarrow & t_1 t_2 = -1 \end{array}$$



# TANGENT TO THE PARABOLA $y^2 = 4ax$

#### (a) **Point form**

Equation of tangent to the given parabola at its point  $(x_1, y_1)$  is  $yy_1 = 2a (x + x_1)$ 

#### (b) Slope form

Equation of tangent to the given parabola whose slope is 'm', is

$$y=mx+\frac{a}{m}, m \neq 0$$

Point of contact is 
$$\left(\frac{a}{m^2}, \frac{2a}{m}\right)$$

#### (c) **Parametric form**

Equation of tangent to the given parabola at its point P(t), is  $ty = x + at^2$ 

Point of intersection of the tangents at the point  $t_1 \& t_2$  is  $[at_1t_2, a(t_1 + t_2)]$ .

Equation of tangent at a point on the parabola can be obtained by replacement method or using derivatives. In replacement method, following changes are made to the second degree equation to obtain T.  $x^2 \rightarrow x x_1, y^2 \rightarrow y y_1, 2xy \rightarrow xy_1 + x_1y, 2x \rightarrow x + x_1, 2y \rightarrow y + y_1$ So, it follows that the targents are :  $yy_1 = 2a(x + x_1)$  at the point  $(x_1, y_1)$ ; **(i)** (ii)  $y = mx + \frac{a}{m} (m \neq 0) \operatorname{at} \left( \frac{a}{m^2}, \frac{2a}{m} \right)$ (iii)  $ty = x + at^{2} at (at^{2}, 2at).$ Point of intersection of the tangents at the point  $t_1 \& t_2$  is  $\{at_1t_2, a(t_1+t_2)\}$ . (iv) Find the equation to the tangents to the parabola  $y^2 = 9x$  which goes through the point (4, 10). Ex. Equation of tangent to parabola  $y^2 = 9x$  is  $y = mx + \frac{9}{4m}$ Sol. Since it passes through (4, 10)  $\therefore \qquad 10 = 4m + \frac{9}{4m}$  $16 \text{ m}^2 - 40 \text{ m} + 9 = 0$ ⇒  $m = \frac{1}{4}, \frac{9}{4}$  $\therefore$  equation of tangent's are  $y = \frac{x}{4} + 9$ &  $y = \frac{9}{4}x + 1$ . A tangent to the parabola  $y^2 = 8x$  makes an angle of 45° with the straight line y = 3x + 5. Find its equation and its point Ex. of contact. Let the slope of the tangent be m Sol.  $\therefore \qquad \tan 45^\circ = \frac{3-m}{1+3m}$  $\Rightarrow$  1+3m = ±(3 - m)  $\therefore$  m=-2 or  $\frac{1}{2}$ As we know that equation of tangent of slope m to the parabola  $y^2 = 4ax$  is  $y = mx + \frac{a}{m}$  and point of contact is  $\left(\frac{a}{m^2}, \frac{2a}{m}\right)$ 

for m = -2, equation of tangent is y = -2x - 1 and point of contact is  $\left(\frac{1}{2}, -2\right)$ 

for  $m = \frac{1}{2}$ , equation of tangent is  $y = \frac{1}{2}x + 4$  and point of contact is (8, 8)

Ex. Prove that the straight line y = mx + c touches the parabola  $y^2 = 4a (x + a)$  if  $c = ma + \frac{a}{m}$ 

**Sol.** Equation of tangent of slope 'm' to the parabola  $y^2 = 4a(x + a)$  is

$$y = m(x + a) + \frac{a}{m}$$
  $\Rightarrow$   $y = mx + a\left(m + \frac{1}{m}\right)$ 

but the given tangent is y = mx + c

$$\therefore$$
  $c = am + \frac{a}{m}$ 

#### **Pair of Tangents**

The equation to the pair of tangents which can be drawn from any point  $(x_{1,}y_{1})$  to the parabola  $y^{2} = 4ax$  is given by:  $SS_{1} = T^{2}$  where :



- **Ex.** Write the equation of pair of tangents to the parabola  $y^2 = 4x$  drawn from a point P(-1, 2)
- **Sol.** We know the equation of pair of tangents are given by  $SS_1 = T^2$

:. 
$$(y^2 - 4x)(4 + 4) = (2y - 2(x - 1))^2$$

$$\Rightarrow \qquad 8y^2 - 32x = 4y^2 + 4x^2 + 4 - 8xy + 8y - 8x$$

$$\Rightarrow \qquad y^2 - x^2 + 2xy - 6x - 2y = 1$$

# NORMALS TO THE PARABOLA $y^2 = 4ax$

Normal is obtained using the slope of tangent.

Slope of tangent at 
$$(x_1, y_1) = \frac{2a}{y_1}$$

$$\Rightarrow$$
 Slope of normal =  $-\frac{y_1}{2a}$ 

(a) **Point form** 

Equation of normal to the given parabola at its point  $(x_1, y_1)$  is

$$\mathbf{y} - \mathbf{y}_1 = -\frac{\mathbf{y}_1}{2\mathbf{a}} (\mathbf{x} - \mathbf{x}_1)$$

#### (b) Slope form

Equation of normal to the given parabola whose slope is 'm', is  $y = mx - 2am - am^3$ 

foot of the normal is  $(am^2, -2am)$ 

#### (c) **Parametric form**

Equation of normal to the given parabola at its point P(t), is  $y + tx = 2at + at^3$ 



Point of intersection of normals at  $t_1 \& t_2$  is  $(a(t_1^2 + t_2^2 + t_1t_2 + 2), -at_1t_2(t_1 + t_2))$ . **(i)** If the normal to the parabola  $y^2 = 4ax$  at the point t<sub>1</sub>, meets the parabola again at the point t<sub>2</sub>, **(ii)** then  $t_2 = -\left(t_1 + \frac{2}{t_1}\right)$ . If the normals to the parabola  $y^2 = 4ax$  at the points  $t_1 \& t_2$  intersect again on the parabola at the point 't<sub>3</sub>' then (iii)  $t_1t_2 = 2$ ;  $t_3 = -(t_1 + t_2)$  and the line joining  $t_1 \& t_2$  passes through a fixed point (-2a, 0). (iv) If normal drawn to a parabola passes through a point P(h,k) then  $k = mh - 2 am - am^3$ , i.e.  $am^3 + m(2a - h) + k = 0$ .  $m_1m_2+m_2m_3+m_3m_1=\frac{2a-h}{a}$ ;  $m_1m_2m_3=\frac{-k}{a}$ This gives  $m_1 + m_2 + m_3 = 0$ ; where  $m_1, m_2, \& m_3$  are the slopes of the three concurrent normals :

- ÷ Algebraic sum of slopes of the three concurrent normals is zero.
- Algebraic sum of ordinates of the three co-normal points on the parabola is zero. ÷
- Centroid of the  $\Delta$  formed by three co-normal points lies on the axis of parabola (x-axis). ÷

If the normal at point 't<sub>1</sub>' intersects the parabola again at 't<sub>2</sub>' then show that  $t_2 = -t_1 - \frac{2}{t_1}$ Ex.

Sol. Slope of normal at 
$$P = -t_1$$
 and slope of chord  $PQ = \frac{2}{t_1 + t_2}$   

$$\therefore \quad -t_1 = \frac{2}{t_1 + t_2}$$

$$t_1 + t_2 = -\frac{2}{t_1} \implies t_2 = -t_1 - \frac{2}{t_1}.$$

- If two normals drawn from any point to the parabola  $y^2 = 4ax$  make angle  $\alpha$  and  $\beta$  with the axis such that Ex.  $\tan \alpha$ .  $\tan \beta = 2$ , then find the locus of this point.
- Sol. Let the point is (h, k). The equation of any normal to the parabola  $y^2 = 4ax$  is

$$y = mx - 2am - am^2$$

passes through (h, k)

$$k = mh - 2am - am^{3}$$
$$am^{3} + m(2a - h) + k = 0$$

$$(-h) + k = 0$$
 ....(i)

 $m_1, m_2, m_3$  are roots of the equation, then  $m_1, m_2, m_3 = -\frac{\kappa}{a}$ 

 $m_1m_2 = 2, m_3 = -\frac{k}{2a}$ but m<sub>2</sub> is root of (i)  $a\left(-\frac{k}{2a}\right)^3 - \frac{k}{2a}(2a-h) + k = 0 \implies k^2 = 4ah$ ...

Thus locus is  $y^2 = 4ax$ .

**Ex.** If the normals at points  $t_1$ ,  $t_2$  meet at the point  $t_3$  on the parabola then prove that

(i) 
$$t_1 t_2 = 2$$
 (ii)  $t_1 + t_2 + t_3 = 0$ 

**Sol.** Since normal at  $t_1 \& t_2$  meet the curve at  $t_3$ 

2

$$t_{3} = -t_{1} - \frac{-}{t_{1}} \qquad \dots (i)$$
  

$$t_{3} = -t_{2} - \frac{2}{t_{2}} \qquad \dots (ii)$$
  

$$(t_{1}^{2} + 2) t_{2} = t_{1} (t_{2}^{2} + 2)$$

$$t_1 t_2 (t_1 - t_2) + 2 (t_2 - t_1) = 0$$

$$t_1 \neq t_2, \quad t_1 t_2 = 2$$
 .....(iii)

Hence (i)  $t_1 t_2 = 2$ 

...

⇒

÷

from equation (i) & (iii), we get  $t_3 = -t_1 - t_2$ 

Hence (ii)  $t_1 + t_2 + t_3 = 0$ 

#### **LENGTH OF SUBTANGENT & SUBNORMAL**

PT and PG are the tangent and normal respectively at the point P to the parabola  $y^2 = 4ax$ . Then

TN = length of subtangent = twice the abscissa of the point P (Subtangent is always bisected by the vertex)



NG = length of subnormal which is constant for all points on the parabola & equal to its semilatus rectum (2a).

#### **DIRECTOR CIRCLE**

Locus of the point of intersection of the perpendicular tangents to the parabola  $y^2 = 4ax$  is called the **director circle**. It's equation is x + a = 0 which is parabola's own directrix.

- Ex. The circle drawn with variable chord x + ay 5 = 0 (a being a parameter) of the parabola  $y^2 = 20x$  as diameter will always touch the line -
- Sol. Clearly x + ay 5 = 0 will always pass through the focus of  $y^2 = 20x$  i.e. (5, 0). Thus the drawn circle will always touch the directrix of the parabola i.e. the line x + 5 = 0.

#### **CHORD JOINING TWO POINTS**

The equation of a chord of the parabola  $y^2 = 4ax$  joining its two points  $P(t_1)$  and  $Q(t_2)$  is  $y(t_1 + t_2) = 2x + 2at_1t_2$ 

• If PQ is focal chord then  $t_1 t_2 = -1$ .

Extremities of focal chord can be taken as  $(at^2, 2at) \& \left(\frac{a}{t^2}, \frac{-2a}{t}\right)$ 

| Ex.  | Throug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | bugh the vertex O of a parabola $y^2 = 4x$ chords OP and OQ are drawn at right angles to one another. Show that |                              |                    |                                   |  |  |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------|--------------------|-----------------------------------|--|--|--|--|
|      | for all position of P, PQ cuts the axis of the parabola at a fixed point.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |                              |                    |                                   |  |  |  |  |
| Sol. | The given the given the transmission of transm | ven parabola is $y^2 = 4x$                                                                                      |                              | (i)                |                                   |  |  |  |  |
|      | Let P =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\equiv (t_1^2, 2t_1), Q \equiv (t_2^2, 2t_2)$                                                                  |                              |                    |                                   |  |  |  |  |
|      | Slope of OP = $\frac{2t_1}{t_1^2} = \frac{2}{t_1}$ and slope of OQ = $\frac{2}{t_2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 |                              |                    |                                   |  |  |  |  |
|      | Since (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OP $\perp$ OQ, $\frac{4}{t_1 t_2} = -1$ or $t_1 t_2 = -4$                                                       |                              |                    | ( <b>ii</b> )                     |  |  |  |  |
|      | The eq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | uation of PQ is $y(t_1 + t_2) = 2 (x + t_1 t_2)$                                                                |                              |                    |                                   |  |  |  |  |
|      | ⇒                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $y\left(t_1 - \frac{4}{t_1}\right) = 2(x - 4)$                                                                  | [from (ii)]                  |                    |                                   |  |  |  |  |
|      | ⇒                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $2(x-4) - y\left(t_1 - \frac{4}{t_1}\right) = 0$                                                                | $\Rightarrow$ L <sub>1</sub> | $+\lambda L_2 = 0$ |                                   |  |  |  |  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | variable line PQ passes through a fi                                                                            | xed point whic               | h is point of inte | ersection of $L_1 = 0 \& L_2 = 0$ |  |  |  |  |
|      | i.e.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (4,0)                                                                                                           |                              |                    | . 2                               |  |  |  |  |

#### **CHORD OF CONTACT**

Equation to the chord of contact of tangents drawn from a point  $P(x_{1,} y_{1})$  is  $yy_{1} = 2a (x + x_{1})$ .



The area of the triangle formed by the tangents from the point  $(x_1, y_1)$  & the chord of contact is

$$\frac{1}{2a} (y_1^2 - 4ax_1)^{3/2} = \frac{(S_1)^{3/2}}{2a}$$

Find the length of chord of contact of the tangents drawn from point  $(x_1, y_1)$  to the parabola  $y^2 = 4ax$ . Ex.

**Sol.** Let tangent at 
$$P(t_1) \& Q(t_2)$$
 meet at  $(x_1, y_1)$ 

$$\therefore \quad at_{1}t_{2} = x_{1} \quad \& \quad a(t_{1} + t_{2}) = y_{1}$$

$$\therefore \quad PQ = \sqrt{(at_{1}^{2} - at_{2}^{2})^{2} + (2a(t_{1} - t_{2}))^{2}}$$

$$= a \sqrt{((t_{1} + t_{2})^{2} - 4t_{1}t_{2})((t_{1} + t_{2})^{2} + 4)} = \sqrt{\frac{(y_{1}^{2} - 4ax_{1})(y_{1}^{2} + 4a^{2})}{a^{2}}}$$

**Ex.** If the line x - y - 1 = 0 intersect the parabola  $y^2 = 8x$  at P & Q, then find the point of intersection of tangents at P & Q.

Sol. Let (h, k) be point of intersection of tangents then chord of contact is

yk = 4(x + h)4x - yk + 4h = 0 ...... (i) But given line is

x - y - 1 = 0 ...... (ii)

Comparing (i) and (ii)

$$\therefore \qquad \frac{4}{1} = \frac{-k}{-1} = \frac{4h}{-1} \qquad \implies \qquad h = -1, k = 4$$
$$\therefore \qquad \text{point} \equiv (-1, 4)$$

#### CHORD WITH A GIVEN MIDDLE POINT

Equation of the chord of the parabola  $y^2 = 4ax$  whose middle point is  $(x_1, y_1)$  is  $y - y_1 = \frac{2a}{y_1}(x - x_1)$ .



This reduced to T = S<sub>1</sub>, where T =  $yy_1 - 2a(x + x_1)$  & S<sub>1</sub> =  $y_1^2 - 4ax_1$ .

**Ex.** Find the locus of middle point of the chord of the parabola  $y^2 = 4ax$  which pass through a given point (p, q).

**Sol.** Let P(h, k) be the mid point of chord of parabola  $y^2 = 4ax$ ,

so equation of chord is  $yk - 2a(x + h) = k^2 - 4ah$ .

Since it passes through (p, q)

- $\therefore \qquad qk-2a(p+h)=k^2-4ah$
- .: Required locus is
  - $y^2 2ax qy + 2ap = 0.$
- **Ex.** Find the locus of middle point of the chord of the parabola  $y^2 = 4ax$  whose slope is 'm'.

**Sol.** Let P(h, k) be the mid point of chord of parabola  $y^2 = 4ax$ ,

so equation of chord is  $yk - 2a(x + h) = k^2 - 4ah$ .

but slope 
$$=$$
  $\frac{2a}{k} = m$   
 $\therefore$  locus is  $y = \frac{2a}{m}$ 

#### DIAMETER

The locus of the middle points of a system of parallel chords of a Parabola is called a DIAMETER. Equation to the diameter of a parabola is y = 2a/m, where m = slope of parallel chords.

#### **IMPORTANT CONCEPT**

(i) If the tangent & normal at any point 'P' of the parabola intersect the axis at T & G then ST = SG = SP where 'S' is the focus. In other words the tangent and the normal at a point P on the parabola are the bisectors of the angle between the focal radius SP & the perpendicular from P on the directrix. From this we conclude that all rays emanating from S will become parallel to the axis of the parabola after reflection.



(ii) The portion of a tangent to a parabola cut off between the directrix & the curve subtends a right angle at the focus. See figure above.



- (iii) The tangents at the extremities of a focal chord intersect at right angles on the directrix, and hence a circle on any focal chord as diameter touches the directrix. Also a circle on any focal radii of a point P (at<sup>2</sup>, 2at) as diameter touches the tangent at the vertex and intercepts a chord of length a  $\sqrt{1 + t^2}$  on a normal at the point P.
- (iv) Any tangent to a parabola & the perpendicular on it from the focus meet on the tangent at the vertex.



- (v) If the tangents at P and Q meet in T, then:
  - $\Rightarrow$  TP and TQ subtend equal angles at the focus S.
  - $\Rightarrow$  ST<sup>2</sup> = SP. SQ &  $\Rightarrow$  The triangles SPT and STQ are similar.



(vi) Semi latus rectum of the parabola  $y^2 = 4ax$ , is the harmonic mean between segments of any focal chord of the

parabola is;  $2a = \frac{2bc}{b+c}$  i.e.  $\frac{1}{b} + \frac{1}{c} = \frac{1}{a}$ .

- (vii) The area of the triangle formed by three points on a parabola is twice the area of the triangle formed by the tangents at these points.
- (viii) If normal are drawn from a point P(h, k) to the parabola  $y^2 = 4ax$  then

$$k = mh - 2am - am^3$$
 i.e.  $am^3 + m(2a - h) + k = 0$ .

$$m_1 + m_2 + m_3 = 0$$
;  $m_1 m_2 + m_2 m_3 + m_3 m_1 = \frac{2a - h}{a}$ ;  $m_1 m_2 m_3 = -\frac{k}{a}$ 

Where m<sub>1</sub> m<sub>2</sub> & m<sub>3</sub> are the slopes of the three concurrent normals. Note that



- $\Rightarrow$  algebraic sum of the slopes of the three concurrent normals is zero.
- $\Rightarrow$  algebraic sum of the ordinates of the three conormal points on the parabola is zero
- $\Rightarrow$  Centroid of the  $\Delta$  formed by three co-normal points lies on the x-axis.
- $\Rightarrow$  Condition for three real and distinct normals to be drawn from point P (h, k) is

$$h > 2a \& k^2 < \frac{4}{27A} (h - 2a)^3$$

(ix) Length of subtangent at any point P(x, y) on the parabola  $y^2 = 4ax$  equals twice the abscissa of the point P. Note that the subtangent is bisected at the vertex.



- (x) Length of subnormal is constant for all points on the parabola & is equal to the semi latus rectum. See figure above.
- (xi) Tangents and Normals at the extremities of the latus rectum of a parabola



|        | $y^2 = 4ax$ constitute a square, their points of intersection being (-a, 0) & (3a, 0).                                                           |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| (xii)  | The circle circumscribing the triangle formed by any three tangents to a parabola passes through the focus                                       |
| (xiii) | If a family of straight lines can be represented by an equation $\lambda^2 P + \lambda Q + R = 0$ where $\lambda$ is a parameter and P, Q, R are |
| l      | linear functions of x and y then the family of lines will be tangent to the curve $Q^2 = 4PR$ .                                                  |

- (a) The two tangents at the extremities of focal chord meet on the foot of the directrix.
- (b) Figure LNL'G is square of side  $2\sqrt{2}a$

# **TIPS & FORMULAS**

#### 1. Conic Section

A conic section, or conic is the locus of a point which moves in a plane so that its distance from a fixed point is in a constant ratio to its perpendicular distance from a fixed straight line.

- (a) The fixed point is called the FOCUS.
- (b) The fix straight line is called the DIRECTRIX.
- (c) The constant ratio is called the ECCENTRICITY denoted by e.
- (d) The line passing through the focus & perpendicular to the directrix is called the AXIS.
- (e) A point of intersection of a conic with its axis called a VERTEX.

#### 2. General Equation of a Conic : Focal Direction Property

The general equation of a conic section with focus(p, q) & directrix lx + my + n = 0 is  $(l^2 + m^2) [(x-p)^2 + (y-q^2)] = e^2 (lx + my + n)^2 \equiv ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ 

#### 3. Distinguishing Between the Conic

The nature of the conic section depends upon the position of the focus S w.r.t. the directrix & also upon the value of the eccentricity e. Two different cases arise.

Case (i) When the Focus Lies on the Directrix :

In this case  $D \equiv abc + 2 \text{ fgh} - af^2 - bg^2 - ch^2 = 0$  & the general equation of a conic represents a pair of straight lines and if :

e > 1,  $h^2 > ab$  the lines will be real & distinct intersecting at S.

e = 1,  $h^2 = ab$  the lines will coincident.

e < 1,  $h^2 < ab$  the lines will be imaginary.

#### Case (ii) When the Focus does not Lie on the Directrix :

The conic represents :

| a parabola        | an ellipse               | a hyperbola          | a rectangular hyperbola  |
|-------------------|--------------------------|----------------------|--------------------------|
| $e = 1; D \neq 0$ | $0 < e < 1$ ; $D \neq 0$ | $D \neq 0$ ; $e > 1$ | $e > 1$ ; $D \neq 0$     |
| $h^2 = ab$        | $h^2 < ab$               | $h^2 > ab$           | $h^2 > ab$ ; $a + b = 0$ |

#### 4. Parabola

A parabola is the locus of a point which moves in a plane, such that its distance from a fixed point (focus) is equal to its perpendicular distance from a fixed straight line (directrix).

Standard equation of a parabola is  $y^2 = 4$  ax. For this parabola :

(i) Vertex is (0,0) (ii) Focus is (a, 0) (iii) Axis is y=0 (iv) Directrix is x+a=0

(a) Focal Distance

The distance of a point on the parabola from the focus is called the FOCAL DISTANCE OF THE POINT.

(b) Focal Chord :

A chord of the parabola, which passes through the focus is called a FOCAL CHORD.

#### (c) **Double Ordinate :**

A chord of the parabola perpendicular to the axis of the symmetry is called a DOUBLE ORDINATE with respect to axis as diameter.

#### (d) Latus Rectum :

A focal chord perpendicular to the axis of parabola is called the LATUS RECTUM. For  $y^2 = 4ax$ 

- (i) Length of the latus rectum = 4a
- (ii) Length of the semi latus rectum = 2a
- (iii) Ends of the latus rectum are L(a, 2a) & L'(a, -2a)

#### Note that

- (i) Perpendicular distance from focus on directrix = half the latus rectum.
- (ii) Vertex is middle point of the focus & the point of intersection of directrix & axis.
- (iii) Two parabolas are said to be equal if they have latus rectum of same length.

### 5. Parametric Representation

The simplest & the best form of representing the co-ordinates of a point on the parabola  $y^2 = 4ax$  is (at<sup>2</sup>, 2at). The equation  $x = at^2$  & y = 2at together represents the parabola  $y^2 = 4ax$ , t being the parameter.

#### 6. Type of Parabola

Four standards forms of the parabola are  $y^2 = 4ax$ ;  $y^2 = -4ax$ ;  $x^2 = 4ay$ ;  $x^2 = -4ay$ 





$$\mathbf{y}^2 = -\mathbf{4}\mathbf{a}\mathbf{x}$$

Ζ





| Parabola                                                         | Vertex | Focus           | Axis                      | Directrix | Length<br>of<br>Latus<br>rectum | Ends of<br>Latus<br>rectum | Parametric<br>equation   | Focal<br>length |
|------------------------------------------------------------------|--------|-----------------|---------------------------|-----------|---------------------------------|----------------------------|--------------------------|-----------------|
| $y^2 = 4ax$                                                      | (0,0)  | (a,0)           | y=0                       | x = -a    | 4a                              | (a,± 2a)                   | (at <sup>2</sup> , 2at)  | x+a             |
| $y^2 = -4ax$                                                     | (0,0)  | (-a,0)          | y=0                       | x = a     | 4a                              | (-a,± 2a)                  | (-at <sup>2</sup> , 2at) | x-a             |
| $x^2 = +4ay$                                                     | (0,0)  | (0,a)           | x=0                       | y = -a    | 4a                              | (± 2a,a)                   | $(2at, at^2)$            | y+a             |
| $x^2 = -4ay$                                                     | (0,0)  | (0, <b>-</b> a) | x=0                       | y = a     | 4a                              | (± 2a, -a)                 | $(2at, -at^2)$           | y-a             |
| $(y-k)^2 = 4a(x-h)$                                              | (h,k)  | (h+a,k)         | y=k                       | x+a-h = 0 | 4a                              | (h+a, k ± 2a)              | $(h + at^2, k+2at)$      | x-h+a           |
| $(\mathbf{x}-\mathbf{p})^2 = 4\mathbf{b}(\mathbf{y}-\mathbf{q})$ | (p,q)  | (p, b+q)        | $\mathbf{x} = \mathbf{p}$ | y+b-q = 0 | 4b                              | (p ± 2a, q+a)              | $(q+2at, q+at^2)$        | y-q+b           |

#### 7. Position of a Point Relative to a Parabola

The point  $(x_1; y_1)$  lies outside, on or inside the parabola  $y^2 = 4ax$  according as the expression  $y_1^2 = -4ax_1$  is positive, zero ot negative.

#### 8. Chord Joining two Points

The equation of a chord of the parabola  $y^2 = 4ax$  joining its two points  $P(t_1)$  and  $Q(t_2)$  is  $y(t_1 + t_2) = 2x + 2at_1t_2$ Note

(i) If PQ is focal chord then  $t_1 t_2 = -1$ .

(ii) Extremities of focal chord can be taken as  $(at^2, 2at) \& \left(\frac{a}{t^2}, \frac{-2a}{t}\right)$ 

(iii) If  $t_1 t_2 = k$  then chord always passes a fixed point (-ka, 0).

#### 9. Line & a Parabola

- (a) The line y = mx + c meets the parabola  $y^2 = 4ax$  in two points real, coincident or imaginary according as a > = < cm
- $\Rightarrow$  condition of tangency is,  $c = \frac{a}{m}$ .

**Note :** Line y = mx + c will be tangent to parabola

 $x^2 = 4ay$  if  $c = -am^2$ .

(b) Length of the chord intercepted by the parabolay<sup>2</sup> = 4ax on the line y = mx + c is:  $\left(\frac{4}{m^2}\right)\sqrt{a(1+m^2)(a-mc)}$ .

**Note :** Length of the focal chord making an angle  $\alpha$  with the x-axis is 4a cosec<sup>2</sup>  $\alpha$ .

#### 10. Length of Subtangentubnormal

PT and PG are the tangent and normal respectively at the point P to the parabola  $y^2 = 4ax$ . Then

TN = length of subtangent = twice the abscisaa of the point P

(Subtangent is always bisected by the vertex)

NG = length of the subnormal which is constant for all points on the parabola & equal to its semilatus rectum (2a).

 $P(at^2, 2at)$ 

#### 11. Tangent to the Parabola $y^2 = 4ax$

#### (a) **Point Form :**

Equation of tangent to the given parabola at its point  $(x_1, y_1)$  is  $yy_1 = 2a (x + x_1)$ 

#### (b) Slope Form :

Equation of tangent to the given parabola whose slope is 'm', is

$$y = mx + \frac{a}{m}, (m \neq 0)$$

point of contact is  $\left(\frac{a}{m^2}, \frac{2a}{m}\right)$ 

#### (c) Parametric Form :

Equation of tangent to the given parabola at its point P(t), is - ty = x + at<sup>2</sup>

**Note :** Point of intersection of the tangents at the point  $t_1 & t_2$  is  $[at_1 t_2, a(t_1 + t_2)]$ . [i.e. G.M. and A.M. of abscissae and ordinates of the points]

#### **12.** Normal to the Parabola $y^2 = 4ax$

#### (a) **Point Form :**

Equation of normal to the given parabola at its point  $(x_1, y_1)$  is  $y - y_1 = -\frac{y_1}{2a}(x - x_1)$ 

#### (b) Slope Form :

Equation of normal to the given parabola whose slope is 'm', is  $y = mx - 2am - am^3$  foot of the normal is  $(am^2, -2am)$ 

#### (c) **Parametric Form :**

Equation of normal to the given parabola at its point P(t), is  $y + tx = 2at + at^2$ 

Note :

If the normal to the parabola  $y^2 = 4ax$  at the point  $t_2$ , then  $t_2 = -\left(t_1 + \frac{2}{t_1}\right)$ .

#### **13.** Pair of Tangents

The equation of the pair of tangents which can be drawn from any point  $P(x_1, y_1)$  outside the parabola  $y^2 = 4ax$  is given by :  $SS = T^2$ , where :

 $S = y^2 - 4ax$ ;  $S_1 = y_1^2 - 4ax_1$ ;  $T = yy_1 - 2a(x + x_1)$ .

