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INTRODUCTION

Till so far we have learnt kinematics and kinetics of translation motion in which all the particles of a body undergo
identical motions i.e. at any instant of time all of them have equal velocities and equal accelerations and in any
interval of time they all follow identical trajectories. Therefore kinematics of any particle of a body or of its mass
center in translation motion is representative of kinematics of the whole body. But when a body is in rotation
motion, all of its particles and the mass center do not undergo identical motions. Newton’s laws of motion, which
are the main guiding laws of mechanics, are applicable to a point particle and if applied to a rigid body or system
of particles, they predict motion of the mass center. Therefore, it becomes necessary to investigate how mass
center and different particles of a rigid body move when the body rotates. In kinematics of rotation motion we
investigate relations existing between time, positions, velocities and accelerations of different particles and mass
center of a rigid body in rotation motion.

RIGID BODY

A rigid body is an assemblage of a large number of material particles, which do not change their mutual distances
under any circumstance or in other words, they are not deformed under any circumstance.

Actual material bodies are never perfectly rigid and are deformed under action of external forces. When these
deformations are small enough to be considered during their course of motion, the body is assumed a rigid body.
Hence, all solid objects such as stone, ball, vehicles etc. are considered as rigid bodies while analyzing their
translation as well as rotation motion.

To analyze rotation of a body relative motion between its particles cannot be neglected and size of the body
becomes a considerable factor. This is why study of rotation motion is also known as mechanics of rigid bodies.

ROTATION MOTION OF A RIGID BODY
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Any kind of motion of a body is identified by change in position or change in orientation or change in both. If a
body changes its orientation during its motion it said to be in rotation motion.

In the following figures, a rectangular plate is shown moving in the x-y plane. The point C is its mass center. In the
first case it does not changes orientation, therefore is in pure translation motion. In the second case it changes its
orientation by during its motion. It is a combination of translation and rotation motion.
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Rotation i.e. change in orientation is identified by the angle through which a linear dimension or a straight line
drawn on the body turns. In the figure this angle is shown by &



ROTATIONAL MOTION

Ex. Identify Translation and rotation motion

A rectangular plate is suspended from the ceiling by two parallel rods each
pivoted at one end on the plate and at the other end on the ceiling. The plate
is given a side-push to oscillate in the vertical plane containing the plate.
Identify motion of the plate and the rods.

Sol.

Neither of the linear dimensions of the plate turns during the motion. Therefore, the plate does not change its
orientation. Here edges of the body easily fulfill our purpose to measure orientation; therefore, no line is drawn on
it.

The plate is in curvilinear translation motion and the rods are in rotation motion.

Types of Motions involving Rotation

Motion of body involving rotation can be classified into following three categories.

I Rotation about a fixed axis.
|| Rotation about an axis in translation.
m Rotation about an axis in rotation

Rotation about a fixed axis

Rotation of ceiling fan, potter’s wheel, opening and closing of doors and needles of a wall clock etc. come into this
category.

When a ceiling fan it rotates, the vertical rod supporting it remains stationary and all the particles on the fan move
on circular paths. Circular path of a particle P on one of its blades is shown by dotted circle. Centers of circular
paths followed by every particle are on the central line through the rod. This central line is known as axis of
rotation and is shown by a dashed line. All the particles on the axis of rotation are at rest, therefore the axis is
stationary and the fan is in rotation about this fixed axis.

Door

Ceiling Fan

. ) Axis of ro tation |
Axis of rotation .

A door rotates about a vertical line that passes through its hinges. This vertical line is the axis of rotation. In the
figure, the axis of rotation is shown by dashed line.

Axis of rotation

(5/1 Axis of rotation

An imaginary line perpendicular to plane of circular paths of particles
of a rigid body in rotation and containing the centers of all these
circular paths is known as axis of rotation.

It is not necessary that the axis of rotation pass through the body.
Consider system shown in the figure, where a block is fixed on a
rotating disk. The axis of rotation passes through the center of the
disk but not through the block.
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Important observations

@

(i)

(iii)

@)

\J

Let us consider a rigid body of arbitrary shape rotating about a fixed
axis PQ passing through the body. Two of its particles 4 and B shown are
moving on their circular paths.

Q !Axis of rotation
All of its particles, not on the axis of rotation, move on circular paths with centers on the axis or rotation. All these
circular paths are in parallel planes that are perpendicular to the axis of rotation.

All the particles of the body cover same angular displacement in the same time interval, therefore all of them move
with the same angular velocity and angular acceleration.

Particles moving on circular paths of different radii move with different speeds and different magnitudes of linear
acceleration. Furthermore, no two particles in the same plane perpendicular to the axis of rotation have same
velocity and acceleration vectors.

All the particles on a line parallel to the axis of rotation move circular paths of the same radius therefore have same
velocity and acceleration vectors.

Consider two particles in a plane perpendicular to the rotational axis. Every such particle on a rigid body in
rotation motion moves on circular path relative to another one. Radius of the circular path equals to the distance
between the particles. In addition, angular velocity and angular acceleration equals to that of rotation motion of
the body.

Rotation about an axis in translation

Rotation about an axis in translation includes a broad category of motions. Rolling is an example of this kind of
motion. A rod lying on table when pushed from its one end in its perpendicular direction also executes this kind
of motion. To understand more let us discuss few examples.

Consider rolling of wheels of a vehicle, moving on straight level road. Relative

to a reference frame, moving with the vehicle wheel appears rotating about

its stationary axil. The rotation of the wheel from this frame is rotation about
fixed axis. Relative to a reference frame fixed with the ground, the wheel
appears rotating about the moving axil, therefore, rolling of a wheel is
superposition of two simultaneous but distinct motions — rotation about the
axil fixed with the vehicle and translation of the axil together with the vehicle.

Important observations

@

(i)

(iii)
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Every particle of the body always remains in a plane perpendicular to the rotational axis. Therefore, this kind of
motion is also known as general plane motion.

Relative to every particle another particle in a plane perpendicular to axis of rotation moves on circular path.
Radius of'the circular path equals to the distance between the particles and angular velocity and angular acceleration
equals to that of rotation motion of the body.

Rotation about axis in translation is superposition of pure rotation about the axis and simultaneous translation
motion of the axis.



ROTATIONAL MOTION

Rotation about an axis in rotation.

In this kind of motion, the body rotates about an axis that also rotates about some other axis. Analysis of rotation
about rotating axes is not in the scope of JEE, therefore we will discus it to have an elementary idea only.

As an example consider a rotating top. The top rotates about its central
axis of symmetry and this axis sweeps a cone about a vertical axis.

Rotation about
central axis

The central axis continuously changes its orientation, therefore is in
rotation motion. This type of rotation in which the axis of rotation
also rotates and sweeps out a cone is known as precession.

/" Precession of the
' central axis

Another example of rotation about axis in rotation is a table-fan swinging while rotating. Table-fan rotates about its
horizontal shaft along which axis of rotation passes. When the rotating table-fan swings, its shaft rotates about a
vertical axis.

Angular Displacement, Angular Velocity and Angular Acceleration

Rotation motion is the change in orientation of a rigid body with

=0 i
time. It is measured by turning of a linear dimension or a straight line =~ 777"
drawn on the body.

#
S
# . .
» New orientation

In the figure is shown at two different instants f=(Q and ¢ a
rectangular plate moving in its own plane. Change in orientation

during time ¢ equals to the angle & through which all the linear

-------------- Original orientation
dimensions of the plate or a line 4B turns.

If the angle @ continuously changes with time ¢, instantaneous angular velocity wand angular acceleration o for
rotation of the body are defined by the following equations.

_4do 1
a7 R— 1)

_d0_do_ do )
i o e Q)

Direction of angular motion quantities

Angular displacement, angular velocity and angular acceleration are known as angular motion quantities.
Infinitesimally small angular displacement, instantaneous angular velocity and angular acceleration are vector
quantities. Direction of infinitesimally small angular displacement and instantaneous angular velocity is given by
the right hand rule. For a disk rotating as shown in the figure, the angular velocity points upwards along the axis
of rotation.

Axis of rotation

Axis of rotation

The direction of angular acceleration depends on whether angular velocity increases or decreases with time. For
increasing angular velocity, the angular acceleration vector points in the direction of angular velocity vector and
for decreasing angular velocity, the angular acceleration vector points opposite to the angular velocity vector.
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Angular acceleration: Increasing angular speed . )
Angular acceleration: Decreasing angular speed

In rotation about fixed axis and rotation about axis in translation, the axis of rotation does not rotate and angular
velocity and acceleration always point along the axis of rotation. Therefore, in dealing these kinds of motions, the
angular motion quantities can used in scalar notations by assigning them positive sign for one direction and
negative sign for the opposite direction.

These quantities have similar mathematical relations as position coordinate, velocity, acceleration and time have in
rectilinear motion.

@) A body rotating with constant angular velocity @ and hence zero angular acceleration is said to be uniform
rotation. Angular position #is given by equation

0=0 +tot L 3)

(ii) Thus for a body rotating with uniform angular acceleration ¢, the angular position #and angular velocity @can be
expressed by the following equation.

o= +at L “)
0=0,+ot+tal =0, +Lo, +0)t ... 5)
o =a’+2a(0-0,) ©6)

Angular motion quantities in rotation and assumption of axis of rotation

Rotation is identified by change in orientation, which is measured by turning of a linear dimension of the body or
a line drawn on the body. It remains unchanged relative to all inertial frames.

Therefore, if we assume axis of rotation anywhere but parallel to the original one, angular displacement,
angular velocity and angular acceleration of rotation motion remain the same.

Ex. A wheel is rotating with angular velocity 2 rad/s. It is subjected to uniform angular acceleration 2.0 rad/s.
(a) How much angular velocity does the wheel acquire after 10 s?
(b) How many complete revolution it makes in this time interval?

Sol. The wheel is in uniform angular acceleration, therefore from eq. [4]

o= o, +at — Substituting values of O, o and t, we have w=2+2x10=22 rad/s

Fromeq.[5], we have

=6 + %(a)c + a)) t—  Substituting 8, =0 for initial position, and ®_ from above equation, we have
6=0+%(2+10)10 =60 rad.

In one revolution, the wheel rotates through 2 zradians. Therefore, number of complete revolutions n is

0 60

_—
~

n_
2n  2n
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Sol.

Sol.

A disk rotates about a fixed axis. Its angular velocity @wvaries with time according to equation ¢ = a7+ 4 . At the

instant ¢ = 0 its angular velocity is 1.0 rad/s and at angular position is 2 rad and at the instant # = 2 s, angular
velocity is 5.0 rad/s. Determine angular position #and angular acceleration @ when ¢ =4 s.

The given equation ¢ = af + b has form similar to eq.[4], therefore motion is rotation with uniform angular
acceleration.

Initial angular velocity = @w_ = b =1.0 rad/s

Angular acceleration o = a

Substituting these values in eq.[5], we get

0=1at’ +o,t+c

Since at =0, ® = 1.0 rad/s, we obtain the constant c.

Initial angular position= 6 = c=2.0rad

Since at £ = 2.0 s angular velocity is 5.0 rad/s, from given expression of angular velocity, we have

w=at+b—> Substituting b = 1.0 rad/s, t=2.0 s and ®= 5.0 rad/s, we have
a=2.0 rad/s?

Now we can write expressions for angular position, angular velocity and angular acceleration.
O=F +t+20 e 1)

©0=2.0t+1.0 e Q)

From the above equations, we can calculate angular position, angular velocity and angular acceleration at
t=4.0s

6, =22rad, o, =9.0rad/s, o = 2.0 rad/s’

An early method of measuring the speed of light makes use of a

rotating slotted wheel. A beam of light passes through slot at the
outside edge of the wheel, as shown in figure below, travels to a
distant mirror, and returns to the wheel just in time to pass through
the next slot in the wheel. One such slotted wheel has a radius of
5.0 cmand 500 slots at its edge. Measurements taken when the mirror

Mirror Perpendicular

is L = 500 m from the wheel indicate a speed of light of 3.0 x 10° Routne 10 Beht beam
km/s.
@ What is the (constant) angular speed of the wheel ?
(V)] What is the linear speed of a point on the edge of the wheel?
@) During the time light goes from the wheel to the mirror and comes back again, the wheel turns through
le of G—Z—R— 1.26 x 10?rad. That time is t = %—M—334X 10+
an angle o =00 b rad. That time is t = c 2.998x10°m/s > s

. 0 1.26x10°rad
So the angular speed of the wheel is ® = — Sk L L

— 3
T~ 334x10%s 3.8 x 10° rad/s

b) Linear speed of a point on the edge of a wheel v=cor=3.8 x 10* x 0.05=1.9 x 10 m/s
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Ex.

Sol.

Sol.
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A pulsar is rapidly rotating neutron star that emits a radio beam like a lighthouse emits a light beam. We receive
aradio pulse for each rotation of the star. The period T of rotation is found by measuring the time between pulses.
The pulsar in the Crab nebula has a period of rotation of T = 0.033 s that is increasing at the rate of
1.26 x 1073 second/year.

@
(b)
©

@

b)

©

What is the pulsar's angular acceleration?
If its angular acceleration is constant, how many years from now will the pulsar stop rotating?
The pulsar originated in a supernova explosion seen in the year 1054. What was the initial T for the pulsar?

(Assume constant angular acceleration since the pulsar originated.).

The angular velocity in rad/s w= 2rx/T .

The angular acceleration = o = o — 2% 4T
€ angular acceleration = dt 7—T2 at

dT 1.26x107%s/y

. - - - - 7 _ 13
For the pulsar described &t 316x107s/y 4.00 x 10

So o= _{(OOZTRS)Z} (4.00 x 10'13) =-2.3 x 107 rad/s?
. s

The negative sign indicates that the angular acceleration is opposite the angular velocity and the pulsar
is slowing down.

o =0, +ot for the time t when w=0.

2
- ( 23%10° ;T/ 2)(0 0335) =8.3 x10" s . This is about 2600 years.
—4.0X red/s . S

o N
—|a

(O]
t=— — =—
(04

The pulsar was born 1992— 1054 = 938 years ago.
This is equivalent to (938 y) (3.16 x 107 s/y) = 2.96 x 10'* s. Its angular velocity was then

2 2
® =, +at = Tn““ - o.ogss + (<23 x 10 rad/s?) (-2.96 x 10'%) = 258 rad/s.

. 21
Its period was T = o 24 x107s.

A turn table is rotating in a horizontal plane about the vertical axis passing through its centre with an angular
velocity 20 rad/s. It carries upon it a flywheel rotating with an angular velocity 40 rad/s about a horizontal axle
mounted in bearings. Find the angular velocity of the wheel as seen by an observer in the room.

As the axis of the turn table is vertical its angular velocity o is directed vertical. The axis of flywheel is horizontal

therefore its angular velocity o, is directed horizontal, hence the resultant angular velocity is ©p = ®; + ®

[ =\/(D§ + o =402 +20% = 20+/5 rad/s

O lies in a plane which makes an angle 6 with the horizontal

. ( wT\ (1
plane, given by 6 = tan™! km_J = tan >
F
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Kinematics of rotation about fixed axis

In figure is shown a rigid body of arbitrary shape rotating about the z-axis. In the

selected frame (here the coordinate system) all the three axes are at rest,
therefore the z-axis that is the axis of rotation is at rest and the body is in fixed
axis rotation. All of its particles other than those on the z-axis move on circular
paths with their centers on the z-axis. All these circular paths are parallel to the

x-y plane. In the figure, one of its particles P is shown moving with velocity ¢

on a circular path of radius » and center C. Its position vector is g . It were at

the line Cx at # = 0 and at the position shown at the instant 7. During time
interval ¢, it covers the circular arc of length s and its radius vector turns
through angle 6.

In an infinitesimally small time interval dt let, the particle covers infinitesimally small distance ds along its circular

path.

ds —@xFﬂxﬁ

- NS - S 7 V=—=
ds=dOx7=dOxR ™ VS dt e

Fromeq. [7] and [8] we have

V=@xXF=mxR e Q)

The above equation tells us the relation between the linear and angular velocity. Now we explore relation between
the linear and angular accelerations. For the purpose, differentiate the above equation with respect to time.

The first term on the RHS points along the tangent in the direction of the velocity vector and it is known as

tangential acceleration a, same as we have in circular motion. In addition, the second term point towards the

center C. Itis known as centripetal acceleration or normal component a_ of acceleration same as in circular motion.

Now we have

Tangential acceleration &, =axf . (1

Normal acceleration 3 =XV =—@T e 12)

How to Locate Axis of Rotation

@

(i)

Every particle in a plane perpendicular to the axis of rotation move with different /oo vy =0 x0A
., vy=0x0D
velocities and accelerations, moreover, they all have the same angular velocity e R '

and angular acceleration. Such a section of a body in rotation is shown here.
The particles 4, B and C at equal distance from the axis of rotation move with
equal speeds v, and the particle D moves with speed v, on concentric circular
paths. The location of rotational axis can be determined by any of the two
graphical techniques.

Lines perpendicular to velocity vectors and passing through the particles, whose velocity vectors are neither
parallel nor antiparallel intersect at the axis of rotation. See pairs of particles 4 and B, B and C and B and D.

Lines perpendicular to velocity vectors and passing through the particles, whose velocity vectors are either
parallel or antiparallel, coincide and intersect the line joining tips of their velocity vectors at the axis of rotation.
Refer pairs of particles 4 and C, 4 and D and C and D.
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Ex. A belt moves over two pulleys 4 and B as shown in the figure. The pulleys
are mounted on two fixed horizontal axils. Radii of the pulleys 4 and B are 50
cm and 80 cm respectively. Pulley 4 is driven at constant angular acceleration e
0.8 rad/s? until the pulley B acquires an angular velocity of 10 rad/s. The belt
does not slide on either of the pulleys.
(a) Find acceleration of a point C on the belt and angular acceleration of the pulley B.

(b) How long after the pulley B achieve angular velocity of 10 rad/s.

Sol. Since the belt does not slide on the pulleys, magnitude of velocity and acceleration of any point on the belt are
same as velocity and tangential acceleration of any point on periphery of either of the pulleys.

Using the above fact with eq.[11], we have

a, =QAXTF— a,=0,r, =a,r,
Substituting 7, = 0.5 m, r, = 0.8 mand o= 0.8 rad/s’, we have

a,=04m/sand o, = 2¢ = 4% _ 0 5 rad/s?

1, g
From eq. [4], we have ? ?
-

a)B Bo

=0, +at—> t=
aB
Substituting @, =0, w, =10 rad/s and a, = 0.5 rad/s?

we have t=20s

KINEMATICS OF ROTATION ABOUT AXIS IN TRANSLATION

In this kind of motion, the body rotates about an axis and the axis moves without 4
rotation. Rolling is a very common example of this kind of motion.

As an example consider a rod whose ends 4 and B are sliding on the x and y-
axis as shown in the figure. Change in its orientation measured by change in
angle 9 indicates that the rod is in rotation. Perpendiculars drawn to velocity
vector of its end points intersect at the axis of rotation, which is continuously
changing it position.

ESH

0 :
0 »>
A

Instantaneous Axis of Rotation (IAR)
It is a mathematical line about that a body in combined translation and rotation can be conceived in pure rotation
at an instant. It continuously changes its location.

Now we explore how the combined translation and rotational motion of the rod is superposition of translation
motion of any of its particle and pure rotation about an axis through that particle.

Consider motion of the rod from beginning when it was parallel to the y-axis. In the following figure translation
motion of point 4 is superimposed with pure rotation about 4.

Pure translation of 4 Pure rotation about 4 Combined translation and rotation
B v Yy e =
y e :
Bl . :
Vo —oxAB i
E — - E
H — = Ve E
i oA :
i i
i : —
: v e 0 g
5 y > o >
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Sol.

@

(b)

The motion of the rod can be conceived as superposition of translation of point 4 and simultaneous rotation about
an axis through 4.

The same experiment can be repeated to demonstrate that motion of the rod can be conceived as superposition of
translation of any of its particle and simultaneous rotation about an axis through that particle.

Considering translation of 4 and rotation about 4 this fact can be expressed by the following equation.
Combined Motion = Translation of point A + Pure rotation about point A

B/A e (13)

Since point B moves relative 4 moving on circular path its velocity relative to 4 is given by the equation

VB:VA+

<

Vgy = @O X AB.
Now we have Vy =V, +@xAB . (14)
The above fact is true for any rigid body in combined translation and rotation motion.

Rotation about an axis in translation of a rigid body can be conceived as well as analyzed as superposition of
translation motion of any of its particle and simultaneous rotation about an axis passing through that particle
provided that the axis is parallel to the actual one.

Similar to eq.[13], we can write equation for acceleration.
a, = ag + aga

’—/%
a, = ag + aps, T 3Apan (26)

i, = a, + AxAB + -0’AB
A 100 cm rod is moving on a horizontal surface. At an instant, when Y ‘ 30 cm/s
X

it is parallel to the x-axis its ends 4 and B have velocities 30 cm/s and
20 cm/s as shown in the figure. A€ B

(a) Find its angular velocity and velocity of its center. ';:) }
cm/s

(b) Locate its instantaneous axis of rotation.

Let the rod is rotating anticlockwise, therefore its angular velocity is given by 5 = % - Velocity vectors of all the
points on the rod and its angular velocity must satisfy the relative motion eq.[14].

Substituting velocities v, = 20 cm/s and Vg = 30j cm/s and angular velocity ¢ in eq.[14], we have

r75=z7A+E)xZ§—> o =0.5rad/s
Velocity vector of the center C of the rod also satisfy the following equation.

V=0, +@xAC—>  ,=-207+005kx507=5.0;cns

4B

Here velocity vectors of the particles 4 and B are antiparallel, therefore 30 em/s

%
o

common perpendicular to their velocity vectors and a line joining 20 cmis
tips of the velocity vectors. The required geometrical construction is e
shown in the following figure.

. . . . . < []
the instantaneous axis of rotation passes through intersection of the 4 l_‘ ﬁ-\, B

Since triangles A4 P and BB P are similar and 4B =100 cm, we have 4P = 40 cm.

The instantaneous axis of rotation passes through the point P, which is 40 cm from 4.

Analytical Approach.

The instantaneous center of rotation is at instantaneous rest. Using this fact in eq.[14], we have

U, =0, +&xAP—>  0=-20j+05kx(AP)j = AP =40cm
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Ex.
Sol.

Sol.

@

b)

132

Can you suggest a quick way to find angular velocity of a rod, if velocities of two of its points are known?
The eq.[14] suggest a quick way to determine angular velocity, when

distance between two points and their velocity components

perpendicular to the lining joining them are known. 4G
: B Vsl
v Vo — VU Var \;
Angular velocity of the rod ®= 7] = Po=tad N
AB AB

A 50 cm long rod AB is in combined translation and rotation motion

on a table. At an instant velocity component of point 4 perpendicular 45 B
the rod is 10 cm/s, velocity component of point B parallel to the rod "

is 6.0 cm/s and angular velocity of the rod is 0.4 rad/s in anticlockwise

sense as shown in the given figure.

(a) Find velocity vectors of point 4 and B.
(b) Locate the instantaneous axis of rotation.

Let x-y plane of a coordinate system coincides with the tabletop and the rod is parallel to the x-axis at the instant
considered. The rod is shown in this coordinate frame in the following figure.

Since distance between any two points remains unchanged, the velocity components of any two points parallel
to the line joining them must be equal. Therefore, we have

v =6.0cm/s ... a

AX:V

Bx
Velocities of points 4 and B must satisfy eq.[14]. Substituting angular velocity g = .4 rad/s, in this equation we

have

Vy=0,+@x AB—>  6.0i+v,j=6.0i-10j+0.4kx50]
Equating y-components of both the sides, we have
vg,=10cm/s L. ?2)
From eq. (1), (2) and the given information, we can express the velocity vectors of the points 4 and B.
v, =6.0i-10jcm/s,and v, =6.07 + 10 cm/s

The instantaneous axis of rotation is at instantaneous rest. Let the end 4 of the rod is at the origin and coordinates
of the point P in the x-y plane through which the IAR passes is (x, y). Now from eq.[14], we have

V,=U,+@xAP—> (= 6.02—10}+o.4/}x(x}+5&)
Equating coefficients of x and y-components of both the sides, we have

x=25cmand y=15cm

Therefore, coordinates of the point P through which IAR passes the x-y plane are (25, 15).
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ROLLING AS ROTATION ABOUT AN AXIS IN TRANSLATION

Wheels of a moving vehicle roll on road. A ball rolls on ground when pushed. In fact, a body of round section can
roll smoothly under favorable conditions. On the other hand, objects with corners, such as dice, roll by successive
rotations about the edge or corner that is in contact with the ground. This type of motion is usually known as
toppling.

If the point of contact of the of the rolling body does not slide it is known as rolling without slipping or pure rolling
or simply rolling and if the point of contact slides it is known as rolling with slipping.

All kind of rolling motion is examples of rotation abut an axis in translation.

Rolling without slipping on stationary surface.

We first discuss velocity relations and thereafter accelerations relations of two points of a body of round section
rolling on a stationary surface. For the purpose, we can use any of the following methods.

I Analytical Method: By using relative motion equations.
Il Superposition Method: By superimposing translation of a point and pure rotation about that point.
111 Use of ICR.

Velocity relations by Analytical Method

Its point of contact P does not slide on the surface, therefore velocity of the point of contact relative to the surface
is zero. In the next figure, velocity vectors of its center C and top point 4 are shown.

B
."~.‘.V'B

y
c ,
l x (6% v
G— e

U, =0

P P

Velocity of the center C can be obtained with the help of relative motion equation.

V.=, +@xPC— 7, =0+(-wk) xR

v.=0Ri 16)

The above equation is used as condition of rolling without slipping on stationary surface.

Velocity of the top point 4 can be obtained by relative motion equation.
U, =V, +@xPA> GC=6+(—le)x(R})

v,=20Ri =2V, a7
Once velocity of the center is obtained, we can use relative motion between 4 and C as well.

U, =Ve+@xCA> 0, =wRi+(-0k)x(2R))

A

v,=20Ri =2V, 18)
In similar fashion, velocity vector of an arbitrarily chosen point B.
U, = §C+E)x53—> v, = v01~'+(—a)/\:)x(—rcos€}+rsin9])
Vs =(Vc+a)rsint9)1~'+ wrcos@j . (19)
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Velocity relations by Superposition Method

Now we will see that the above velocity relation can also be obtained by assuming rolling of the wheel as
superposition of translation of its center and simultaneous rotation about the center.

yL
Ve = 0R Vic=wR d A

I A

ve = @R c 6) @
C |—

Pi
P
Voo =
P Ve = oR Pic=®R
Translation of the center Pure rotation about the center Rolling

Velocity of an arbitrary point B as superposition of translation of the center and rotation about the center.

Velocity relations by Use of ICR i

Sol.
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In rolling without slipping on stationary surface the point of contact is at
instantaneous rest, therefore the ICR and the IAR passes through it. We will
see how velocity of the center C, the top point 4 and an arbitrarily chosen
point B can be calculated by assuming the body in state of pure rotation
about the ICR.

Velocity of center C V.=mx PC = oR]
Velocity of the top point 4 v, = & x PA = 20Ri YZ20R

Velocity of the point B v, =@x PB= (v, +orsin )i+ orcos 0;

A cylinder of radius 5 m rolls on a horizontal surface. Velocity of its
center is 25 m/s. Find its angular velocity and velocity of the point 4.

In rolling the angular velocity & and velocity of the center of a round

section body satisfy condition described in the relative motion
eq.[14]. So we have

VC:(_[)X;C/p% 25;2601;)(5}267):—51;13(1/5

Angular velocity vector points in the negative z-axis so the cylinder rotates in clockwise sense.

Velocity of the point 4 can be calculated by either analytical method, superposition method or by using method of
ICR.
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Analytical Method
Uy =Vo+ @ x CA — v, = 257 +(-54) x(—5c0537°1~'+551n37°/~')
v, = (407 +20j) m/s
Superposition Method
Inrolling v, =v,. = ®wR =25m /s. The superposition i.e. vector
addition of the terms of equation v, = V. +V,. are shown in the

following figure. Resolving v,. = ®R =25m /s into its Cartesian

components and adding to v, we obtain

U, =V +T,,0 v, =257 +157+20j = (407 +20;) m/s

Use of ICR

The contact point P is the ICR in rolling. The cylinder is in pure rotation about
the ICR at the instant under consideration, so from the relative motion equation,
we have

V,=0XI,,—> U
v, = (407 +207) m/s

Ex. A disk of radius 7 is rolling down a circular track of radius R. There is no slipping
between the disk and the track. When line OC is at angle ddown the horizontal,
center of the disk has velocity v.. Assume center O of the tracks origin of
reference frame, find angular velocity of translation motion of the center of
the disk and angular velocity of rotation motion.

Sol. The angular velocity of translation motion of the center of the disk equals to the

rate of change is . Let us denote it by @ .

ae

o =—

° dt

The center of the disk moves on circular path of radius R — r. Relation between velocity v . of the center of the disk,
radius R of the circular track and radius of the disk is

Ve =, (R - r)
. . . . . VC
Therefore, angular velocity of translation motion of center of the disk is @, = 7
—r
Since the disk is rolling without slipping on the circular track, its angular velocity of rotation wis given by the
following equation.
vV, =or

C

v
Therefore, angular velocity of rotation of the disk is @ =—<
r
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Acceleration relations by Analytical Method

The point of contact P does not slide on the surface, therefore component of its y
acceleration parallel to the surface must be zero. However, it has an acceleration co—> ‘ x
component towards the center. The center always moves parallel to the ap, = o'R

horizontal surface and does not changes direction of its velocity; therefore, P ap, =0

its acceleration can only be parallel to the surface.

Relation between acceleration of acceleration vector of the center C and point of contact P can be obtained with
the help of relative motion [15] equation together with the above fact.

Ge=dp+@xPC-'PC—  aci=ayj+(-ak|x Rj-o'Rj=a,j+aRi-o'Rj
Equating coefficients of x and y-components on both the sides of the above equation, we have

a.=aRi (20)

a, ="K e 1)

The eq. (20) is used as condition for rolling without slipping together with eq. [16]
In the given figure, acceleration vectors the point of contact; center and the top

point are shown. Now we will see how these accelerations can be calculated
by using relative motion equation.

Once velocity of the center is obtained, we can use relative motion between 4
and C as well. Now we calculate acceleration of the top point 4.

3,=3.+axCA-w*CA—> éA:aRf+(—a/;)xR}—a)2R}
a,=2aRi—&'Rj . (22)
Acceleration vector of point 4 and its components are shown in the given figure.

Acceleration relations by Superposition Method

Now we see how acceleration relations are expressed for a rolling wheel by assuming its rolling as superposition
of its translation with the acceleration of center and simultaneous rotation about the centre.

aR atoR
2 ‘R
oR Yo R oR A A%
n ®'R (D ®'R _ o’'R+a (D a
o o’'R
4 o'R aR o'R4 R
aR aR a
Acceleration relations by use of ICR A 2R

Acceleration relations can also be obtained by assuming the body in pure rotation

about the ICR. Here we will use relative motion equation[15]. Always keep in
mind that the acceleration of the ICR is not zero, it has value &w’R and points
towards the center of the body. Now we will see how acceleration of the center
C, the top point 4 and an arbitrarily chosen point B can be calculated by
assuming the body in state of pure rotation about the ICR.




ROTATIONAL MOTION

Acceleration of center C 4. =a, + a x PC - 0’ PC = aRi

éC = OIR; VA :(Vc'“” Sin@)i+mrcos@3
Acceleration of the top point 4 a,=a,+ax PA- o /;Z} Y
X
- - 2 > vp=0
a, =2aRi- o Kj
Acceleration of the point B ag=a,+ax PB- &’ PB

a, = {a(R+rsin 9) + a)z}1~'+ {arcos 0— &’ rsin 9}17

Ex. A body of round section of radius 10 cm starts rolling on a horizontal
stationary surface with uniform angular acceleration 2 rad/s> y
(a) Find initial acceleration of the center C and top point A. x

(b) Find expression for acceleration of the top point 4 as function of time.

Sol. Initially when the body starts, it has no angular velocity; therefore, the
last term in relative motion equation [15] for acceleration vanishes and
for a pair of two points 4 and B the equation reduces to

3,=3a,+axBA
The angular acceleration vector is g = —92 ; rad/s%
)] Acceleration of the center C is obtained by using condition for rolling without slipping.
Go=axPC— 3,=-2kx10j=207 cm/s’

Acceleration of the point 4 can be obtained either by analytical method, superposition method or by use of ICR.
These methods for calculation of acceleration of the top point are already described; therefore, we use the result.

a,=2aRi—> &,=40icm/s’

(V)] Initially at the instant # = 0, when the body starts, its angular velocity is zero. At latter time it acquires angular
velocity ¢ , therefore acceleration of any point on the body, other than its center, has an additional component of
acceleration. This additional component is accounted for by the last term in the relative motion equation [15].

Angular velocity acquired by the body at time ¢ is obtained by eq.[4] used for a body rotating with constant
angular acceleration.

®=wo,+at—> Substituting @, =0, we have 5= 924

Analytical Method
Using the relative motion equation for the pair of points C and 4, we have
5,=3.+dxCA-w'CA—>  &,= aze;+(-a/;)xgj—wzﬁ;=2a;ﬁ_w2e}

Substituting the known values

o = —2krad/s?, 5 = _oz rad/sand R=10 cm

we have 3, =407 —40£ jcm/s
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Superposition Method

We superimpose translation motion of the center and rotation motion

about the center. In fact it is vector addition of terms of above
equation used in analytical method.

From the above figure, we have

i, =(a.+aR)i-o'Rj
Substituting known values a = 2k rad/s?, @ = -2tk rad/s and R=10 cm,

we have a, =407 —40£ cm/s?

Use of ICR

Sol.

Ex.

Sol.

138

The point of contact P is the ICR, because the body is rolling without slipping. We use relative motion
equation for pairs of points P and A4.

3,=3,+axPA—aw’PA— a,=w'Ri+2aRi - 2w’ Rj = 2aRi — &’ Rj
Substituting known values

a=2rad/s’, g =4rrad/sand R =10 cm,
we have &, =407 —40;cn/s?

Two identical disks, each of radius 7, are connected by a cord as shown in the

figure. The disk / rotates with constant angular acceleration arin anticlockwise
direction. Find acceleration of the center of disk /7 and its angular acceleration.

As the disk 7 rotates, the thread unwrap it. Acceleration of a point on the portion of the thread between the two
disks equals to tangential acceleration of any point on the periphery of the disk /. The extreme left point 4 of the
disk /I must also descend with the same acceleration.

Downward acceleration a, of point B = Tangential acceleration of a point on the periphery of disk /.
a,=a,r—> a, =ar

The point B on the thread is at rest relative to the ground; therefore, it can be assumed that the second disk is in
a motion similar to rolling without slipping on a vertical surface.

Now applying conditions of rolling without slipping we have

Acceleration of the center of the disk 7/ a.=ta,=ztar

a
Angular acceleration of the disk I/ @, =—< =1«
r

A uniform rod 4B of length / is supported with the help of two light inextensible

threads as shown in the figure. The thread supporting the end B is cut. If
magnitude of acceleration of the center C of rod is a, immediately after the
thread is cut, find angular acceleration of the rod and acceleration of its end 4. 4

Immediately after the thread is cut, all the forces acting on the rod are in vertical direction; therefore, acceleration
of its mass center is vertically downwards. The mass center of a uniform rod is at its center; therefore, acceleration
of the center C immediately after the thread is cut is in vertically downward direction.

The end 4 can move on circular path of radius equal to length of thread supporting the end A. Therefore,
acceleration @, of the end 4 is in horizontal direction immediately after the thread supporting the end B is cut.



ROTATIONAL MOTION

Analytical Method

If we assume angular acceleration ¢ of the rod in clockwise direction, we can write relative motion equation for
the pair of points 4 and C.

a.=a,+ax AC-*AC — The rod cannot acquire any angular velocity immediately after the thread is
cut due to inertia therefore the last term in the relative motion equation vanishes.

Substituting g, = _aC]', G=—ak»>a,= aA} and ZZ;:%/(COS i + sin 0]’),

we have —a,.j = a,i —Lalcos 0 +Lalsin 67
Equating coefficients of x and y-components, we have

2a,
a= /cosHG and a, =a,.tand

Superposition Method

We superimpose rod's translation with velocity of 4 and rotation about 4. The

rod cannot acquire any angular velocity immediately after the string is cut due
to its inertia; therefore, point C cannot have any term involving radial
acceleration. The acceleration vectors to be added are shown in the following

figure.

2a,
/cos @

al
From the figure, we have a,. = 5 08 0= a=

a,=a,tand

o o

In this section we deal with equilibrium of rigid bodies and kinetics of rigid bodies. Equilibrium of rigid bodies
includes both the translational equilibrium and rotational equilibrium. In kinetics we account for causes affecting

rotational motion.

TORQUE: MOMENT OF A FORCE

Torque is rotational analogue of force and expresses tendency of a force applied to an object to cause the object

to rotate about a given point.

To investigate further let us discuss an experiment. Consider a rod pivoted at the

point O. A force £ is applied on it at the point P. The component Fcos @ of
the force along the rod is counterbalanced by the reaction force of the pivot
and cannot contribute in rotating the rod. It is the component F sin @ of the
force perpendicular to the rod, which is responsible for rotation of the rod.
Moreover, farther is the point P from O, where the force is applied easier is to
rotate the rod. This is why handle on a door is attached as far away as possible

from the hinges.
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Torque

Sol.

140

Magnitude of torque of a force is proportional to the product of distance of point of application of the force from
the pivot and magnitude of the perpendicular component Fsin @ of the force. Denoting torque by symbol 1, the
distance of point of application of force from the pivot by », we can write

7 ocrfFsin@

. . . . . . V,
Since rotation has sense of direction, torque should also be a vector. Its direction (= 4
. . P AP
is given by right hand rule. Now we can express torque by the cross product G
of r and 1_5.' . Tnmediaely before the Tmmeditely aferthe
impact. impact.
T =rxF a

o

Here constant of proportionality has been assumed a dimensionless number unity because a unit of torque has
been chosen as product of unit of force and unit of length.

The geometrical construction shown in figure suggests a simple way to calculate torque. The line OQ (= rsin @)
known as moment arm, is the length of perpendicular drawn from O on the line of action of the force. The
magnitude of the torque equals to the product of OQ and magnitude of the force £ ..

about a Point and Torque about an Axes
We have defined torque of a force about a point as the moment of the force about that point. In dealing with
rotation about a fixed axis we need to know torque about the axis rotation.

When a body is in plane motion the net torque of all the forces including the forces necessary to restrain rotation
of the axis is along the axis of rotation. It is known as torque about the axis. Torque of a force about an axis of
rotation equals to the moment of force about the point where plane of motion of the point of application of the
force intersects the axis.

In analyzing plane motion we always consider torque about an axis under consideration and in rest of the book by
the term torque of force we mean torque about an axis.

A uniform disk of mass M and radius R rotating about a vertical axis passing S
through its center and perpendicular to its plane is placed gently on a rough @
horizontal ground, were coefficient of friction is s Calculate torque of the

frictional forces. L

When the disk rotates on the ground, kinetic friction acts at every contact point. Since

the gravity acts uniformly everywhere and the disk is also uniform, the normal reaction
form the ground is uniformly distributed over the entire contact area. Consider two
diametrically opposite identical portions 4 and B of the disk each of mass dm at
distance r from the center as shown in the adjacent figure. The normal reaction form
the ground on each of these portions equals to their weights and hence frictional

forces are df = udmg

Friction forces on these two and on all other diametrically opposite portions of the disk are equal and opposite,
therefore net resultant friction force on the disk is zero. But torque of friction force on every portion is in same
direction and all these torques add to contribute a net counterclockwise torque about the axis.

Consider a ring of radius » and width dr shown by dashed lines. Net torque d'z,. of friction force on this ring can
easily be expressed by the following equation.

Mass of the disk
Area of the disk

Integrating both sides of the above equation, we have

2uMg ¢ r
=" Ir:o rPdr =2 uMgR

2 Mrdr)
g

x Area of the ring] g= r,u( =

dr, = r,u(mass of the ring)g = r,u(
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Rotational Equilibrimum

A rigid body is said to be in state of rotational equilibrium if its angular acceleration is zero. Therefore a body in
rotational equilibrium must either be in rest or rotation with constant angular velocity.

Since scope of JEE syllabus is confimned only to rotation about a fixed axis or rotation about an axis in translation
motion, the discussion regarding rotational equilibrium is limited here to situations involving only coplanar
forces. Under these circumstances the necessary and sufficient condition for rotational equilibrium is

If a rigid body is in rotational equilibrium under the action of several coplanar forces,

the resultant torque of all the forces about any axis perpendicular to the plane
containing the forces must be zero.

In the figure a body is shown under the action of several external

coplanar forces F, F, ...... F,and F .

>.7,=0 7, y| T,

Here P is a point in the plane of the forces about which we calculate torque of all 4 D B
the external forces acting on the body. The flexibility available in selection of f—r —
the point P provides us with advantages that we can select such a point (/4 2

about which torques of several unknown forces will become zero or we can 200 21‘1]0

make as many number of equations as desired by selecting several different N

points. The first situation yields to a simpler equation to be solved and second situation though does not give
independent equation, which can be used to determine additional unknowns yet may be used to check the
solution.

The above condition reveals that a body cannot be in rotational equilibrium under the action of a single force
unless the line of action passes through the mass center of the body.

A case of particular interest arises where only three coplanar forces are involved and the body is in rotational
equilibrium. It can be shown that if'a body is in rotational equilibrium under the action of three forces, the lines
of action of the three forces must be either concurrent or parallel. This condition provides us with a graphical
technique to analyze rotational equilibrium.

Equilibrium of Rigid Bodies

Sol.

Acrigid body is said to be in equilibrium, if it is in translational as well as rotational equilibrium both. To analyze
such problems conditions for both the equilibriums must be applied.

A 10 kg uniform rod OA4 is pivoted at O on a vertical wall with the help of a cable AB. Find the tension in the cable
and reaction force applied by the pivot.

B
C
= : a |
1o} A
R w y‘
30°
) (o} X
1o} A .
Free-body diagram of the rod

The rod is in translational and rotational equilibrium under the action of three forces that are weight () of the rod,
the tension (7) in the cable, and the reaction (R) of the pivot. These forces are shown in the free-body diagram of
the rod.

Translational equilibrium

SF =0 R, =T =Tcos30° )

SF,=0— R +T,=W= R, +Tsin30°=W ... 0))
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Ex.

Sol.

Sol.

142

Rotational equilibrium: Let us apply the condition about O, because torque of the reaction R will become zero.
$7,=0- Wi/ 2 =(Tsin30°)/
T=W=100 N

Now from equations (1) and (2) wehave R=100 N

A uniformrod of 20 kg is hanging in horizontal position with the help of two threads. It also supports a 40 kg mass
as shown in the figure. Find the tension developed in each thread.

Free body diagram of the rod is shown in the figure.

Translational equilibrium y B

f—tii—]
1F,=0 > T,+T,=400+200=600 N 1) IJ__I
Rotational equilibrium: Applying the condition about 4, we get T, ke
37, =0 400(//4)+200(//2)~T,/=0 = T, =200 N
Similarly writing torque equation about B, we have

£7,=0— T,=400N.

A cylinder of radius R and weight W is to be raised against a step of height 4 by applying

a horizontal force at its center as shown in the figure. Find the required minimum
magnitude of this force. Assume sufficient friction between the cylinder and the corner

of the step to prevent slipping.

>

The forces acting on the sphere are its weight ¥, the horizontal pull F, reaction

R from the corner and the normal reaction from the ground. The reaction from DB =N2Rh—h’
the corner includes the normal reaction and friction. We need not to worry i p

about this force because its torque about the corner vanishes. The moment it
starts rising the normal reaction from the ground also vanishes. The
requirement that the force F should be of minimum magnitude will cause the y
cylinder to rotate about B at very small angular vacuity and with negligible

angular acceleration. Therefore the cylinder can be assumed in the state of

rotational equilibrium as well as translational equilibrium.

Theweight 7, the pull F and the reaction R from the corner are shown in the free body diagram of the cylinder.

Rotational equilibrium: The cylinder is in rotational equilibrium under the action of three coplanar forces
therefore these forces must be concurrent.

Torques equation of all the forces about the corner B to zero, we have
> %,=0—>  F(CD)=W(DB)

N2Rh - A’

By solving above equation we have F =W/ Ty



ROTATIONAL MOTION

Toppling :

Sol.

Sol.

—» F

For shown situation (A) & (B), more chances of toppling in (A). In case A oF

B
TTTHTTITIT ALIANNARAATANARARAARANANNANNY

of toppling, normal reaction must passes through end points.

. . . ~— >
Find the minimum value of F to topple about an edge. >F
AN bI M
. I
In case of toppling I Taking torque about O
b
a/2 ( aj Mga
STTTTIITTIRTITYTITTIRTTNTITT = - =
I F (b) = Mg o) = F . 2

Mg

Auniform cylinder of height h and radius r is placed with its circular face on a rough inclined plane and the inclination
of the plane to the horizontal is gradually increased. If 1t is the coefficient of friction, then under what conditions
the cylinder will (a) slide before toppling (b) topple before sliding.

@ The cylinder will slide if mg sin 6>umg cos® = tan6 > we(i)

h 2
The cylinder will topple if (mg sin 6) 5 >(mgcosO)r = tan6> f ... (i)

2r
Thus, the condition of sliding is tan6>u & condition of toppling is tan6 > N
. S . 2r
Hence, the cylinder will slide before toppling if 1 < N
. . . 2r
) The cylinder will topple before sliding if 1 > N
Concept of Rotational Inertia ) ma
Every particle of a rigid body in rotation moves on circular paths about the axis _
o T P o

of rotation; therefore a rigid body in rotation can be thought as a group of
large number of particle moving on circular paths.

Let a particle of mass m constrained by a string to move on a circular path of radius r about a fixed point O in free
space. To provide the particle tangential acceleration « there is a force £ and to provide the particle necessary

centripetal acceleration there is string tension 7= as shown in the figure.
F=ma_and T =-mo’7,,,

Taking moments about the center O of all the forces acting on the particle and then summing up them, the above
equations yield

oo XF+r,,,xT=r,,, P/O)

X ma,+71,,, % (—ma)ZF
The left hand side equals to resultant torque about the center O of all the external force acting on the particle. The

vector product 7,,, X &, in the first term of the right hand side become ,2g . The second term on both the side

vanishes.
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The above equation is similar to Newton’s second law of motion. It suggest that torque, angular acceleration and
the term mr? play similar roles in rotation motion as the net force, the acceleration and mass plays in translation
motion. Total mass of a body in translation motion is the measure of its inertia to translation motion, therefore the
sum of all terms m7? arising due to all particle of the rigid body provides suitable measure of its inertia to rotation
motion. The inertial to rotation motion is known as rotational inertia or more commonly moment of inertia.

Moment of inertia of a rigid body

144

A rigid body is continuous distribution of mass and can be assumed consisting of infinitely large number of point
particles. If one of the point particle of infinitely small mass dm is at a distance » from the axis of rotation OO’, the
moment of inertia of this point particle is given by

dl, = r2dm

The moment of inertia of the whole body about the axis OO’ can now be

obtained by integrating term of the above equation over the limits to cover whole of the body.

L=|dl,=[rdn ... &)

Expression for moment of inertia contains product of two terms. One of them is the mass of the body and the other
is a characteristic dimension, which depends on the manner how mass of the body is distributed relative to the
axis of rotation. Therefore moment of inertia of a rigid body depends on the mass of the body and distribution of
the mass relative to the axis of rotation. Obviously for uniform bodies expression of moment of inertia depends on
their shape and location and orientation of the axis of rotation. Based on these facts we can conclude

1. If mass distribution is similar for two bodies about an axis, expressions of their moment of inertia must be
of the same form about that axis.

2. If the whole body or any of its portions is shifted parallel to the axis of rotation, moment of inertia remains
unchanged.
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Moment of Inertia for some commonly used bodies

Body
Uniform thin rod bent into shape e
of an arc of mass m CG)

s,
.
\,
.,

Uniform ring of mass m

G
 —

Sector of a uniform disk of mass m gc<>

Uniform disk of mass m

Straight uniform rod

I
Homogeneous cylinder of mass m @ o

Homogeneous sphere of mass m

Spherical shell of mass m

AXis

Passing through center and

perpendicular to the plane

containing the arc

Passing through center and

perpendicular to the plane
containing the arc or the
centroidal axis.

Passing through center and

perpendicular to the rod or
the centroidal axis.

Passing through center and

perpendicular to the plane
containing the sector.

Passing through center and
perpendicular to the plane
containing the disk or the

centroidal axis.

Axis of the cylinder or the

centroidal axis.

Diameter or the

centroidal axis

Diameter or the

centroidal axis

Moment of Inertia

IC =mr
IC =mr
LZ
=2
12
mrz
I. =
2
1771‘2
I.=
2
1771‘2
I.=
2
I. =%mR’
I=2mR*?
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Theorems on Moment of Inertia

Moment of inertias of a rigid body about different axes may be different. There are two theorems known as theorem
of perpendicular axes and theorem of parallel axes, which greatly simplify calculation of moment of inertia about
an axis if moment of inertia of a body about another suitable axis is known.

Theorem of Perpendicular Axes

Sol.

This theorem is applicable for a rigid body that lies entirely within a plane i.e. a laminar body or a rod bent into
shape of a plane curve. The moment of inertia /, I} ~and /_of the body about the x, y and z-axis can be expressed by
the following equations.
I =1 +1
z v X
For a planar body, the moment of inertia about an axis perpendicular to the plane

of the body is the sum of the moment of inertias about two perpendicular axes
in the plane of the object provided that all the three axes are concurrent.

v

Find moment of inertia of a uniform disk of mass m and radius r about one of its diameter.

In the adjoining figure a disk is shown with two of its diameter perpendicular to <
each other. These diameters are along the x and the y-axis of a coordinate
system. The x-axis is perpendicular to the plane of the disk and passes through
its center is also shown.

Since the disk is symmetric about both the diameters, moment of inertias about both the diameters must be equal.
Thus substituting this in the theorem of perpendicular axes, we have

L=1+1,—~ [, =2 =2]
Moment of inertia of the disk about the z-axis is /, = %mrz . Substituting it in the above equation, we have

I, =1,=51I =imr®  Ans.

X z

Theorem of Parallel Axes

(@

(i)

146

This theorem also known as Steiner’s theorem can be used to determine the moment of inertia of a rigid body about
any axis, if the moment of inertia of the body about a parallel axis passing through mass center of the body and
perpendicular distance between both the axes is known.

Consider a body of arbitrary shape and mass m shown in the figure. Its

moment of inertia / and /_ are defined about two parallel axes. The axis about
which moment of inertia / is defined passes through the mass center C. c
Separation between the axes is 7. These two moment of inertias are related by
the following equation.

2 .
I, =1,.+Mx,
The above equation is known as the theorem of parallel axes or Steiner’s theorem.

The moment of inertia about any axis parallel to an axis through the mass center is given by sum of moment of
inertia about the axis through the mass center and product term of mass of the body and square of the distance
between the axes.

Among all the parallel axes the moment of inertia of a rigid body about the axis through the mass center is the
minimum moment of inertia.

The second term added to the moment of inertia /. about the centroidal axis in the above equation can be
recognized as the moment of inertia of a particle of mass equal to that of the body and located at its mass center.
It again reveals that the plane motion of a rigid body is superposition of pure rotation about the mass center or
centroidal rotation and translation of its mass center.
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Ex.

Sol.

Sol.

Ex.

Sol.

Sol.

Find moment of inertia of a uniform ring, uniform disk, uniform cylinder and uniform sphere each of mass m and
radius 7 about their instantaneous axis of rotation in rolling.

In rolling the instantaneous axis of rotation passes through the point of contact P with the surface on which the
body rolls. Each of these bodies has round section of radius » and can be represented in the adjoining figure.
Denoting the moment of inertia about the instantaneous axis of rotation by IP and through parallel centroidal axis
by’ o we have from the theorem of parallel axes.

Ring I, =1I.+Mr* =M+ M =2Mr*

Ci v,
Disk 1, = .+ Mr* =2 Ms* + Mr* = 3 My o (3——
Cylinder 7, = 1.+ Mr* = L Mr* + Mr* = 2 Mr* v

Sphere 1, = 1.+ Mr* =2Mr* + Mr* = ZMr*

Find expression for moment of inertia of a uniform disk of mass m, radius r about one of its secant making an angle
O with one of its diameter.

A disk, the secant OB and diameter OA are shown in the adjoining figure. The

secant OB is parallel to another diameter DE. Moment of inertia of the disk

about one of its diameter is %mrz and hence moment of inertia I1 about the

diameter DE. Distance between the secant OB and the parallel diameter DE is
rsiné.

Substituting above information in the theorem of parallel axes, we have

Ly=1+ m(rsin 9)2—> I, =mr’ (%+sin2 49)

. . . . . . . . Centroidal
Find moment of inertia about centroidal axis of a bobbin, which is constructed axis

by joining coaxially two identical disks each of mass m and radius 2r to a
cylinder of mass m and radius » as shown in the figure.

The bobbin is a composite body made by joining two identical disks coaxially to cylinder. The moment of inertia /
of the bobbin equals to the sum of moment of inertias of the two disks and moment of inertia of the cylinder about
their centroidal axes. Using expressions for the moment of inertia for disk and cylinder, we have

=271, +1

—9ol1 2l 102 9 2
disk T 4 cylinder —> /—2{2127(21’)}+2mr =g mr

2

Find moment of inertia about one of diameter of a hollow sphere of mass m, inner radius » and outer radius R.
The hollow sphere is assumed as if a concentric smaller sphere

ofradius r is removed from a larger sphere of radius R. Thus
the moment inertia of the hollow sphere about any axes can
be obtained by subtracting moment of inertia of the smaller
sphere from that of the larger sphere. As shown in the
following figure.

Let the mass of the hollow sphere is m.

Density of the material used is

3m
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Masses m and m, of the smaller spheres are

my =P(%”R3) :Rsm—i and m, =p(%7zr3) =

Subtracting 12 from I1 we have I.
2mR* 2m,r® 2177(1?5 - fs)

=l =~ 1== . 5(R3_r3)

Radius of Gyration

It is the radial distance from a rotation axis at which the mass of an object could be concentrated without altering

the moment of inertia of the body about that axis.

If the mass m of the body were actually concentrated at a distance & from the axis, the moment of inertia about that

axis would be mk>.

k=~

m

The radius of gyration has dimensions of length and is measured in appropriate units of length such as meters.

Force and Torque equations in General Plane Motion

148

A rigid body is a system of particles in which separation between the particles
remains unchanged under all circumstances. For a system of particles sum of
all the external forces equals to product of mass of the whole system and
acceleration of mass center. This fact we can express by the following equation

and call it as force equation.

SF, = M3,

To make use of the above idea we conceive general plane motion as superposition of translation of the mass
center and simultaneous centroidal rotation. In the figure is shown a body in general plane motion with acceleration
of the mass center and angular acceleration about the centroidal axis. Therefore we can write torque of all the

external forces about an axis parallel to the original one and passing through the origin of an inertial frame as sum
of moment of effective force (Méc) on mass center and effective torque (IC&) of centroidal rotation. Here /. is

the moment of inertia of the body about the centroidal axis parallel to the original one.
L7, =T.xMa,.+1.a

If we write torque of all the external forces about the centroidal axis the first term on the right hand side vanishes

and we obtain torque equation describing the centroidal rotation.
i, =1.a

If instantaneous axis of rotation is known we can write the torque equation about it. For the purpose, we make use

of parallel axis theorem of moment of inertia.

2T, = Lyt
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Dynamics of Rigid Body as a System of Particles
Motion of a rigid body either pure rotation or rotation about axis in translation can be thought and analyzed as
superposition of translation of any of its particle and simultaneous rotation about an axis passing through that
particle provided that the axis remain parallel to the original one. As far as kinematics in concerned this particle may
or may not be the mass center. Whereas in dealing with kinetics, general plane motion is conceived as superposition
of translation motion of the mass center and simultaneous centroidal rotation.
To make use the above idea and equations developed in the previous section we classify pure rotation i.e. rotation
about fixed axis into two categories and deal with general plane motion as the third category.

Pure centroidal rotation: Rotation about fixed axis through mass centre
In this kind of rotation motion the axis of rotation passes through the mass center and remain fixed in space.
Rotation of ceiling fan is a common example of this category. It is a subcategory of pure rotation. The axis of
rotation passes through the mass center and remains fixed. In this kind of rotation the mass center of the body
does not move.

N
In the figure, free body diagram and kinetic diagram of a body rotating about a F,
fixed axis passing through its mass center C is shown. The mass center of the F,
body does not accelerate; therefore we only need to write the torque equation. -
7. =1.a N S
sz FIX

Rotation about fixed axis not passing through mass center
In this kind of rotation the axis of rotation remains fixed and does not passes through the mass center. Rotation of
door is a common example of this category. Doors are hinged about their edges; therefore their axis of rotation does
not pass through the mass center. In this kind of rotation motion the mass center executes circular motion about
the axis of rotation.

In the figure, free body diagram and kinetic diagram of a body rotating about a
fixed axis through point P is shown. It is easy to conceive that as the body

=

rotates its mass center moves on a circular path of radius 7,,.. The mass

center of the body is in translation motion with acceleration g, on circular

path of radius r,,. . To deal with this kind of motion, we have to make use of
both the force and the torque equations.

. = YA 2-
Translation of mass center *F, = Ma, = Maxr,,,-Mw'r,,,

Centroidal Rotation 7. =1.a

Making use of parallel axis theorem (/P =Mrl, .+ IC) and a.,, =aX7r.,,-0I.,,
we can write the following equation also.
Pure Rotation about P X7, =1la

General Plane Motion: Rotation about axis in translation motion
Rotation of bodies about an axis in translation motion can be dealt with either as

T

superposition of translation of mass center and centroidal rotation or assuming =
pure rotation about the instantaneous axis of rotation. In the figure is shown
the free body diagram and kinetic diagram of a body in general plane motion. >

n
Translation of mass center ZF,» = Ma,
i=0

Centroidal Rotation Z 7. =1.a
i-1

This kind of situation can also be dealt with considering it rotation about IAR. It gives sometimes quick solutions,
especially when IAR is known and forces if acting at the IAR are not required to be found.
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Sol.

Ex.

Sol.
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A block of mass m is suspended with the help of a light cord wrapped over a
cylindrical pulley of mass M and radius R as shown in the figure. The system

is released from rest. Find the angular acceleration of the pulley and the

acceleration of the block.

After the system is released, the block is in translation motion and the pulley in N
rotation about an axis passing through its mass center i.e. in pure rotation. &\

a=aR

Let the block moves vertically down with acceleration a pulling the cord down and causing the pulley to rotate
clockwise. Since the cord is inextensible every point on its vertical portion and point of contact P of the pulley
move down with acceleration a as shown in the adjacent figure. It is the tangential acceleration of point P so the
angular acceleration & of the pulley rotating in clockwise sense is given by

a= aR .......... (l)
The forces acting on the pulley and on the block are shown in their free-body diagrams along with the effective

torque I, of the pulley and effective force ma of the block. Here T is the tension in the string, R is the reaction
by the axil of the pulley, Mg is weight of the pulley and mg is weight of the block.

The pulley is in rotation about fixed axis through its mass center so we use eq. .
Yi.=l.a> TR=Ia

After substituting /. = %MRQ and ¢ from eq. (1),

we have
T=tMa ... ?2)
y 3
The block is in translation motion, so we use Newton’s second law T

Zﬁ':m§—> mg—-T=ma ... A3) ml:lilg=li_n!a

From equation (2) and (3), we have

Accelerati f the block a_ﬂ
cceleration of the bloc A o
2mg

From eq. (1) and the above, we have a= R(M+2m)

A cylinder of radius 7 and mass m rests on two horizontal parallel corners of two
platforms. Both the platforms are of the same height. Platform B is suddenly
removed. Assume friction between the corner of the platform 4 and cylinder

to be sufficient enough to prevent sliding. Determine angular acceleration of

the cylinder immediately after the removal of the platform B.

Since the cylinder does not slide at the point of contact with the corner of platform 4, it rotates about fixed axis
through the point of contact in subsequent motion. Torque equation should be used.

Forces acting on the cylinder and the effective torque are shown in the adjacent figure. Since forces acting at the
point of contact does not contribute any torque about it, the normal reaction form the corner and the friction force
are not shown in the free body diagram.

Applying the torque equation about the fixed axis through P,

we have

Z?P =lL,a— mgrsnd=La ... m
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Ex.

Sol.

Applying the theorem of parallel axes and expression for moment of inertia about centroidal axes, we obtain
moment of inertia IP about an axis through the point P.

I,=1I.+mr’ — L=tmr+mr=3mr’* ... ¥))

Substituting IP fromeq. (2) in (1), we have

2gsin@

Angular acceleration of the cylinder & = 3
r

A thread is wrapped around a uniform disk of radius » and mass m. One end of
the thread is attached to a fixed support on the ceiling and the disk is held
stationary in vertical plane below the fixed support as shown in the figure.
When the disk is set free, it rolls down due to gravity. Find the acceleration of
the center of the disk and tension in the thread.

The point P, where the thread leaves the disk is always at instantaneous rest;
therefore the disk can be assumed rolling without slipping with ICR at point P.
Acceleration of the mass center a. and angular acceleration of the disk are

shown in the adjacent figure. Applying condition for rolling on stationary
surface, we have

a-=aXI,,p—> a.=ar e @

The disk rolls down on the vertical stationary thread. Its motion can either be analyzed as superposition of
translation of the mass center and simultaneous centroidal rotation or a pure rotation about ICR. Since tension,
which acts at the ICR is asked; we prefer superposition of translation of the mass center and simultaneous
centroidal rotation.

Forces acting on the disk are tension 7 applied by the thread at point P and weight of the disk. These forces and
the effective force ma_ and effective torque ICa are shown in the adjacent figure.

Applying Newton’s second law for translation of mass center, we have
Zl}i:MéC% mg-T=ma, ... ?2) P =
Applying torque equation for centroidal rotation, we have

Yi.=l.a—> Tr=I.a

Substituting %mr2 for IC and aformeq. (1), we have

T=+ma. 3

Fromeq. (2) and (3), we have

Acceleration of the mass center a.=—g

Tension in the string T= %mg
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A rod is pivoted at its one edge about point O. Other edge of rod is R
suspended from the ceiling through rope as shown. If the rope is suddenly
cut then find the angular acceleration of rod. [s0

‘When the rope is cut, weight of rod due to force of gravity will produce torque about point O. T = I, consider force mg acting

on shown in figure at CM of rod (i.e. middle point of the rod)

By e
L mL g La 3g DR
mg —|=——a _ = — = —= L v
g[z} 3 = 2 3 = 2L 2 mg

A uniform rod 4B of mass m and length ¢ is suspended in horizontal
position with the help of two strings as shown in the figure. The
string supporting the end B is cut. Find acceleration of the mass
center and end 4 immediately after the string is cut. 4 B
After the string is cut forces acting on the rod are tension in the string 4 and
weight of the rod. Both of these forces are in vertical direction so acceleration
of the mass center C must be vertically downwards. The string is inextensible

so the point 4 can have acceleration only in horizontal direction. Let A5 £ B

acceleration of the mass center C'is denoted by a, downwards and acceleration ~ “ ¢ a y

a of the point 4 towards the left as shown in the adjacent figure. x
A —

Applying the relative motion equation, we have

EC:5A+EC/A_> EC:§A+EIXAC—CU2AC

Immediately after the string is cut the rod cannot acquire any angular velocity. So the last term in the above
equation vanishes. Now we have

—a.j = —aA1~'+(—a/;) x (%K?)

Comparing x and y-components on both the sides we have

1
ac=—al 1
=3 @
a,=0
The rod is in plane motion, which can be analyzed as superposition
. . . [CX
of translation of the mass center and simultaneous centroidal I” c _ -
rotation. The forces acting on the rod immediately after the string at mg - na
B is cut, the effective force ma_ and the effective torque 1 o are ] x (

shown in the adjacent figure.
Applying Newton’s second law for translation of mass center, we
have

Z/E;:Mécﬁ mg—-T=ma,. ... ?2)
Applying torque equation for centroidal rotation, we have
Yi.=la-> T(i)=I.a

Substituting %méz for IC and aformeq. (1), we have

1
Tz;m%

From eq. (2) and (3), we have

. 3
Acceleration of the mass center a. = Zg
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Sol.

b)

A uniform rigid body of mass m and round section of radius 7 rests on

rough horizontal surface. The radius of gyration of the body about
its centroidal axis is k. It is pushed by a constant horizontal force F.
The height x of the point where the force is applied can be adjusted.

(a) Deduce suitable expression for magnitude and direction of'the friction
force necessary to ensure rolling.

(b) How direction of the friction force depends on x.

(a) The problem requires solution of the force and the torque equations consistent with the condition of rolling,
so it is not necessary to decide the direction of friction as priory. To start with let the static friction f acts in
the forward direction.

Let the mass center of the body moves towards right with acceleration a, and y
a, =or
angular acceleration « of the body is in clockwise sense as shown in the X ‘
P

adjacent figure.

Necessary condition for rolling in terms of acceleration a, of mass center and
angular acceleration « of the body is

a,=aAxXTI,,,—> aC=(—a/})xr]’ = a.=ar ... )]

The forces acting on the body are its weight mg, the normal reaction N from F

the ground and the force of static friction f. These forces are shown in the XI
adjacent figure together with the effective force ma_ and the effective torque |
ICa about the mass center. We analyze the problem as superposition of
translation of the mass center and simultaneous centroidal rotation.

Applying Newton’s second law for translation of mass center, we have
>.F, =Ma,— F+f=ma. ... Q)
Applying torque equation for centroidal rotation, we have

chz c&—>  Fx-fr=1_,x

Substituting ., 42 for IC , and value of & form eq. (1), we have

k2
Fé_é:f%;z .......... 3)

Fromeq. (2) and (3), we have

‘ :F(X—kz/r\

Force of static friction L
r+k° / r J

The above expression shows that to ensure rolling

For x > kz/r , the friction is in direction of the applied force F.
For x= kz/r, no friction is required to ensure rolling.

For x< kz/r, the friction must be in opposite to the applied force F.
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A block of mass m is attached at one end of a thin light cord, which passes over

an ideal pulley. At the other end, it is wrapped around a cylinder of mass M,
which can roll without slipping over a horizontal plane.

(a) What is the acceleration of the block?
(b) What is the friction force on the cylinder?

The problem requires solution of the force and the torque equations consistent with the condition of rolling, so
it is not necessary to decide the direction of friction as priory. To start with let the static friction f acts in the

forward direction.

Let the block descend with acceleration a. Since the cord is inextensible the top

point 4 of the cylinder also moves with the same acceleration. Applying
relative motion equation with the condition required for rolling that the particle
of the cylinder at the point of contact has no acceleration parallel to the
horizontal plane.

By = x> ay=(-ak)x(25) > @=L (1)

From eq. (1) and relative motion equation for P and the center C, we have

a, = AXTI,,,—> ac;'=(—a/;)X(r/~'):>ac=%a .......... ?)

string. These forces and the effective force ma are shown in the adjacent figure.

The block is in translation motion under the action of its weight mg and tension 7 in the = L|__|

Applying Newton’s second law for translation of mass center, we have
MFE=Mé.—» mg-T=ma . ?3)

The cylinder is in rolling under the action of its weight Mg, normal reaction N

form the ground; tension 7 in the cord and force of static friction f. These
forces, the effective force Mac and the effective torque Ica are shown in the
adjacent figure.

Applying Newton’s second law for translation of mass center, we have
D>.F, =Ma,,— T+f =Ma,
Substituting a, from eq. (2), we have
1
T+f =—Ma

c2
Applying torque equation for centroidal rotation, we have
Yi.=l.a—> Tr—fr=1I.a
Substituting %mr2 for IC , and value of & form eq. (1), we have

1
T-f =—M
sTa a Q)

Fromeq. (3), (4) and (5), we have

8mg
3M+8m

From eq. (4), (5) and above value of acceleration a, we have

Acceleration of the block a =

Mmg

F f static fricti [ =——"—
orce of static mriction s 3M +8m
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ENERGY METHODS

Newton’s laws of motion tell us what is happening at an instant, while method of work and energy equips us to
analyze what happens when a body moves from one place to other or a system changes its configuration. In this
section, we introduce how to use methods of work and energy to analyze motion of rigid bodies.

Concept of Work in rotation motion

Sol.

Work of a force is defined as the scalar product of the force vector and displacement vector of the point of

application of the force. If during the action of a force £ its point of application moves from position 7, to 7, , the

work W,

_,, done by the force is expressed by the following equation.

Wi, :J.:;—'ﬁ

Either we can use of this idea to calculate work of a force or its modified

version in terms of torque and angular displacement.

The work done by a torque during a finite rotation of the rigid body from initial
value g of the angle &to final value 49/, can be obtained by integrating both the
sides of the equation given

i>f T

W, =['%-d

A thin light cord is wound around a uniform cylinder placed on a rough horizontal ground. When free end of the
cord is pulled by a constant force F' the cylinder rolls. Denote radius of the cylinder by » and obtain expression for
work done by each of the forces acting on the cylinder when center of the cylinder shifts by distance x.

F

Forces acting on the cylinder are its weight W, the normal reaction from the mgﬁ» me R
G X ( C
o/ \ j

ground N, the tension T in the cord and the force of static friction f. The
tension in the cord equals to the applied force F. These forces are shown in

the adjacent figure. £ [ £
N N

In rolling point of contact P is at instantaneous rest, the center C moves with velocity v, = @r and the top point

moves with velocity v, = 2v,. = 2wr both parallel to the surface on which body rolls. Since the cord is inextensible

displacement of the top point equals to the displacement of the free end of the cord. These fact suggests that
during displacement x of the center the free end of the cord shift through a distance 2x.

Work done by the weight of the cylinder.

W, =0 The weigh is assumed to act on the center of gravity which coincides with the mass center in uniform gravitation

field near the ground. The displacement x of the mass center and weight both are perpendicular to each other so
the work done by gravity is zero.

Work done by the normal reaction on the cylinder

W, =0 The normal reaction acts on the particle of the body which is in contact with the ground. The particles making

contact continuously change and remain at instantaneous rest during contact. Therefore normal reaction does no
work.

Work done by the force of static friction.

W, =0 The force of static friction f acts on the particle of the body which is in contact with the ground. The particles

making contact continuously change and remain at instantaneous rest during contact. Therefore force of static
friction /* does no work.
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Work done by the tension in the cord.

W, = W, The particle of the wheel on which the tension in the cord acts is at the top
point. Though this particle is also continuously changing but it is not in instantaneous
rest and has velocity v So in every infinitesimally small time interval displacement of
this particleis v, df = 2v_.dt , thus work done d WT by the tension during a time interval
dt

dW, = T(2v.dt) = 2F (v,.dt)
When the center shifts by a distance x the work done by the tension becomes
W,=W.=2Fx

Potential Energy of a rigid body
Since potential energy of a system is function of its configuration and does not depend on the manner in which
the system is brought into a particular configuration, hence it does not depends on motion involved whether it is
translation, rotational or their combination.

Kinetic Energy of a rigid body in rotation motion

A rigid body can be represented as a system of large number of particles, >
which keep their mutual distances unchanged in all circumstances. Kinetic
energy of the whole body must be sum of kinetic energies of all of its particles.
In this section we develop expressions for kinetic energy of a rigid body.

Kinetic Energy of a rigid body in plane motion 0 x

In the figure is shown a body in plane motion. Its mass center at an instant is moving with velocity v, and

rotating with angular velocity ¢ . Both these motions are shown superimposed in the given figure.
Kinetic energy too can be written as sum of kinetic energy (% Mvi) due to translation motion of the mass center

and kinetic energy (% 7/ Ca)z) due to centroidal rotation.

_1an2 L1 2
K=1M+1l0

If location of the instantaneous axis of rotation (IAR) is known, making use of the parallel axis theorem we can
write kinetic energy by the following equation also.

K= %[lARa)Z
Kinetic Energy of a rigid body in rotation about fixed axis not passing through the mass centre

In this kind of motion the mass center is in circular motion about the axis of

rotation. In the figure is shown a body rotation with angular velocity wabout
a fixed axis through pint P and perpendicular to plane of the paper. Mass

center moves with speed v, = wr . Kinetic energy of the body can now be

expressed by the following equation.

_1 2 1 2
K_EMVC‘ +5/Ca)

Making use of the parallel axis theorem (l = Mr,f sot, C) we can write kinetic energy by the following equation also.
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Kinetic Energy of a rigid body in pure centroidal rotation

Sol.

Sol.

In pure centroidal rotation the mass center remain at rest; therefore kinetic energy due to translation of mass center
vanishes.

K=1l0"
W
A rod of mass m and length ¢ is pivoted to a fixed support at one of its ends O. 0@ )

It is rotating with constant angular velocity . Write expression for its kinetic
energy.

If the point C is the mass center of the rod, from theorem of parallel axes, the moment of inertia IO of'the rod about
the fixed axis is

,h—lz,/_’l

Iy=1.+m(0C) >  I,=1I.+Iml* o

Substituting - m¢* for I , we have
C
_ 1,2

[0 =3 mﬁ
Kinetic energy of the rod equals to kinetic energy due to rotation about the fixed axis.
K=1I 0" Using above expression for 1, we have

K=imlo’
A uniform rigid body of mass m and round section of radius r is rolling on

horizontal ground with angular velocity . Its radius of gyration about the
centroidal axis is .

(a) Write expression of its kinetic energy.

(b) Also express the kinetic energy as sum of kinetic energy due to translation of mass center and kinetic energy
due to simultaneous centroidal rotation.

(a) The point of contact with ground of a body rolling on the ground is its ICR. Let the point P is the ICR as shown
in the adjacent figure. The geometrical center C of a uniform body and the mass center coincide. Therefore
moment of inertia IP of the body about the ICR can be written by using the theorem of parallel axes.

I, =1, +m(PC)' > I, =1, +mr*

or

Substituting /. = mk”®, we have

N

=

A
"U/
v

I, =m (k2 + r2)
Kinetic energy of a rigid body equals to kinetic energy due to rotation about the ICR.
K=1Lo" > Substituting /_from eq. (1), we have

K= %m(kz + rz)a)z

(b) Kinetic energy of the body also equals to sum of kinetic energy due to translation of its mass center and
kinetic energy due to simultaneous centroidal rotation.

K =$mv’ +1/.0° —>Substituting condition for rolling v = @r and 7. = mk*, we have

2
Kz%m(a)r) +%mk2a)2 =%m(r2 +k2)a)2
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Sol.

l
Taking torque about point A : W (E cos 9) +1,R, (£sinB) =R, (fcosB) => W = 2R, (1—p, tanb)

A thin meter scale is kept vertical by placing its one end on floor, keeping the end

in contact stationary, it is allowed to fall. Calculate the velocity of its upper end
when it hit the floor . &

1 1m/? v i
Loss in PE = gain in rotational KE% = Elco2 = Emg X ;—2 = v =4/3g/ i

A uniform rod is made to lean between a rough vertical wall and the ground. Show that the least angle at which the

Mty
rod can be leaned without slipping is given by 6 = tan™! ( 2u J where ., is the coefficient of friction between
2

rod and wall, p, is the coefficient of friction between rod and ground.

For equilibriumofrod ~ XF,=0=> R,=wR, PR

A
LF=0=>puRAR=W=(upn, +HR,=W

Sopp,t1=2-2p, tand = tan@ = (m]
2p,

POWER

Power defined as the time rate of work done, takes into account the duration in which work is done. To calculate
power we make use of the following equation.

pIW
dt
Instantaneous power of a force can be expressed by the following equation. Here velocity § is the velocity of the

point of application of the force £ .

P=Fv

Work and Energy Theorem
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Work energy theorem can be applied in similar fashion as it was applied to analyze translation motion of a single
body or a system of several bodies.

Thework energy theoremrelateskinetic energy K| and K, of a body in its initial and final position with work W,
done by all the external forces acting on the body to carry it form the initial position to the final position according
to the following equation.

Wi, =K, - K
This equation is applicable in all inertial as well as non inertial frames. To write equation of work energy theorem
kinetic energy must be written relative to the frame under consideration. To calculate work consider only all the
physical forces in inertial frame and all the physical forces as well as pseudo force in non-inertial frame and
displacement of point of applications of these forces relative to the frame under consideration.
For a system of several bodies the corresponding equation of work energy theorem can be obtained by applying

the theorem for each individual body and then adding all of them. In this way we obtain an equation of the
following form.

W,

1-2

Here the term X I/,

152
are internal or external from point of view of the system under consideration. In systems of several bodies
interconnected by links of constant length e.g. inextensible cords, rods etc. or body in direct contact the total
work of internal forces vanishes. The work done by internal conservative forces can be accounted for by decrease

=K

2,5

- K,

1,s

equals to the work of all the forces acting on various bodies irrespective of whether the force

in corresponding potential energies. The terms A,  and A, are total kinetic energies of all the bodies in initial
and final configurations of the system.
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Conservation of Mechanical Energy

Sol.

The work of conservative forces equals to decrease in potential energy. When a single rigid body moves or a
system of rigid body changes its configuration under the action of conservative forces and non conservative
forces are either not present or if present do no work, the work energy principle can be expressed as

Ul,s + Kl,s = U2,5 + K2,5

The above equation expresses the law of conservation of mechanical energy and states that if a rigid body moves
or a system consisting of several rigid bodies changes its configuration under action of conservative forces the
mechanical energy i.e. sum of kinetic and potential energy remain constant; provided that non conservative, if
present, do no work.

Though the work energy principle and the law of conservation of mechanical energy are equivalent, we prefer to
use the former to account for non conservative forces easily

A uniform rod 4B of mass m and length / is pivoted at a point (O) to rotate in the o
vertical plane. The rod is held in horizontal position and released. Find the —5) )

distance x of the pivot from the mass center (C) of the rod, so that angular v]:—x—-|
speed wof the rod as it passes through the vertical position is maximum.

The problem involves change in angular velocity with change in position,

M4 Initial
o Position

therefore demands application of principle of work and energy. = )

The rod when released rotates about a fixed horizontal axis passing through n
the point O. Its initial and final positions are shown in the adjacent figure.
Moment of inertia of the rod about the pivot O can be calculated by theorem

Initial
Position

of parallel axes. -

I, = I + mx*—> Substituting & m(* for 1, we have

L=Ltm(r+12¢*) L. )
Kinetic energy in the initial position.
K=i10o"> K =0 )

Kinetic energy in the final position.
K= %10@2 —  Substituting for / form eq. (1), we have

K, =&m(¢+12x*)0” Ll 3)
Only gravity does work when the rod moves from the initial to final position.

szﬁdf‘—) W._,=mgx ()

Substituting values form eq. (2), (3) and (4) in equation of work energy principle, we have

W,

1-2

—K, - K > o=\240x/(" +125*) ... ®)
The above equation expresses angular velocity of the rod when it passes the vertical position. For it to be maximum

do_o el
dx - \/E
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Ex.

Sol.

@
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A uniform rigid body of mass m and round section of radius r rolls down a
slope inclined at an angle fto the horizontal. The radius of gyration of the
body about it central axis of symmetry is £.

(a) Derive suitable expressions for angular velocity and velocity of its mass
center after it covers a distance x.

(b) Obtain expression for its angular acceleration and acceleration of the mass
center.

The problem involves change in angular velocity with change in position, therefore demands application of
principle of work and energy

The geometrical center and mass center for uniform bodies coincide; therefore center C is the mass center.

In rolling the point of contact P must always be at instantaneous rest and angular velocity @, velocity of center C,
angular acceleration « and acceleration of the center must bear the following relations.

ve=wr and a,=ar = ... 1)

The rolling motion can be analyzed as superposition of translation of the mass center and simultaneous centroidal
rotation.

Kinetic energy in the initial position.
K =0 )
Kinetic energy in the final position.
K=%+mv.+1l.0°— Substituting for /. = mk®and v_formeq. (1), we have

mg sin®

Ky=tm(r@ +#)o® 3)

mg cos 0
The forces acting on the body are its weight mg, the normal reaction N from the
slope and the force of static friction /. These forces and displacement are
shown in the adjacent figure. The normal reaction and the force of static
friction do no work in rolling, it is the weight, which does work.

W = I]-: dar— W, ,=mgxsind ... “ _)_0

Substituting values form eq. (2), (3) and (4) in equation of work energy principle, we have

_ |2gxsin@
e = K, — K > W= W

W,
Substituting v, from eq. (1), we have

b= 2gxsin @
N (#/P)+1
Acceleration a, velocity v and position coordinate x bear the relation a = V(dv/ a’X) . Therefore acceleration of
mass center of the body.

dv,. gsiné
=y, A — a. =

Tax U (#)P)+1

Substituting acin eq. (1), we have the angular acceleration of the body.

ac

gsind

a. =ar— CXZW

C



ROTATIONAL MOTION

METHODS OF IMPULSE AND MOMENTUM

Methods of impulse and momentum describe what happens over a time interval. When motion of a body involves
rotation we have to consider angular impulse as well as angular momentum. In this section we discuss concept of
angular impulse, angular momentum of rigid body, angular impulse momentum principle and conservation of
angular momentum.

Angular Impulse
Like impulse of a force angular impulse of a constant torque equals to product of the torque and concerned time
interval and if the torque is not constant it must be integrated with time over the concerned time interval.

If torque 7, about an axis passing through O is constant, its angular impulse during a time interval from ¢, to ¢,

denoted by :70 is given by the following equation.

152

N\

0,152 = %o ([2 - tl)
If torque 7, about an axis passing through O is time varying, its angular impulse during a time interval from ¢, to

t, denoted by josz is given by the following equation.

e tZ —
Jo,l~>2 = J.’l Todt
Angular momentum of a particle

Angular momentum Zo about the origin O of a particle of mass m moving with

velocity ¢ is defined as the moment of its linear momentum p = mvy about
the point O.

L, :Fx(mﬁ) !

Angular Momentum of a Rigid Body

Angular momentum is quantity of rotation motion in a body. The angular momentum of a system of particles is the
sum of angular momentum all the particles within the system. A rigid body is an assemblage of large number of
particles maintaining their mutual distances intact under all circumstances, therefore angular momentum of a rigid
body must be sum of angular momenta of all of its particles.

Angular Momentum about a point and about an axis

Angular momentum of a particle is not defined about an axis instead it is defined about a point. Therefore above
idea of summing up angular momenta of all the particles about a point gives angular momentum of the rigid body
about a point. But while dealing with fixed axis rotation or rotation about axis in translation we need angular
momentum about an axis.

Angular momentum about an axis is calculated similar to torque abut an axis. To calculate angular momentum of a
particle of rigid body about an axis we take moment of momentum of the particle about the point where plane of
motion of the point of application of the force intersects the axis.

In the following figure is shown angular momentum dZZ = 7 x(dmv) = r*dme of a particle P of a rigid body

rotating about the z-axis. It is along the z-axis i.e. axis of rotation. In the next figure total angular momentum

ZZ = szz = /.o about the axis of rotation is shown. It is also along the axis of rotation.
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Angular Momentum in general plane motion
Angular momentum of a body in plane motion can also be written similar to

torque equation or kinetic energy as sum of angular momentum about the axis v
due to translation of mass center and angular momentum of centroidal rotation
about centroidal axis parallel to the original axis.

Consider a rigid body of mass M in plane motion. At the instant shown its

mass center has velocity pand it is rotating with angular velocity & about © x

an axis perpendicular to the plane of the figure. It angular momentum ZO

about an axis passing though the origin and parallel to the original is expressed
by the following equation.

L, =7 x(Mv.)+ 1.0

o

The first term of the above equation represent angular momentum due to translation of the mass center and the
second term represents angular momentum in centroidal rotation.

Angular momentum in rotation about fixed axis

Consider a body of mass M rotating with angular velocity wabout a fixed axis ”

perpendicular to plane of the figure passing through point P. Making use of

the parallel axis theorem 7, = Mr>,, + /. and equation U, = @x7,,, we can '

express the angular momentum /. » of the body about the fixed rotational

axis. o .

L, =16
The above equation reveals that the angular momentum of a rigid body in plane motion can also be expressed in

a single term due to rotation about the instantaneous axis of rotation.

Angular momentum in pure centroidal rotation
In pure centroidal rotation, mass center remains at rest, therefore angular

momentum due to translation of the mass center vanishes.

L.=1.0
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Rotational Equivalent of the Newton’s Laws of Motion

Differentiating terms on both the sides of equation Zo =7, X (M?C) + /. with respect to time, and making

substitution of v, = dr./dt, &, = dv,/dtand G = d@/dt we have

The first term on the right hand side vanishes, so we can write

dL

o

dt

=I.xMa,.+1I.a

Now comparing the above equation with torque equation X7 =7, x Ma,. + /.a, we have

. dL,
2% =

dt
The above equation though developed for plane motion only yet is valid for rotation about an axis in rotation also.
It states that the net torque about the origin of an inertial frame equals to the time rate of change in angular

momentum about the origin and can be treated as a parallel to Newton’s second law which states that net external
force on a body equals to time rate of change in its linear momentum.

Angular Impulse Momentum Principle

Rearranging the terms and integrating both the sides obtained form previous equation, we can write

L I
ZL Zdt=L,-L,
The left hand side of the above equation is the angular impulse of torque of all the external forces in the time
interval in the time interval ¢, to ¢,.

2J

0,152

:ZOZ _Z

ol

The idea expressed by the above equation is known as angular impulse momentum principle and states that
increment in the angular momentum of a body about a point in a time interval equals to the net angular impulse of
all the external forces acting on it during the concerned time interval.

For the ease of application the above equation is rearranged as

Zol + Zjo,lﬁZ = Zoz

Like linear impulse momentum principle, the angular impulse momentum principle provides us solution of problems
concerned with change in angular velocity in a time interval or change in angular velocity during very short
interval interactions.

Method of Impulse Momentum Principle for Plane motion of a Rigid Body

Linear momentum and angular momentum serve as measures of amount of translation and rotation motion
respectively. The external forces acting on a rigid body can change its state of translation as well as rotation
motion which is reflected by change in linear as well as angular momentum according to the principles of linear
impulse and momentum and angular impulse and momentum.
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Ex.

Sol.
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[Fdi

IFJ dt I F.dt

Linear and angular momenta

Impulse of all the forces during X
at the instant t,

Linear and angular momenta mpe
time interval t, to t,

at the instant t,

In the above figure is shown strategy to apply method of impulse and momentum. Consider a rigid body of mass
M in plane motion. Its moment of inertial about the centroidal axis perpendicular to plane of motionis /.. Let v,

and @, represent velocity of its mass center and its angular velocity at the beginning of a time interval ¢, to ,.
Under the action of several forces /:"1 , /32 ....... ﬁl /f"n during the time interval its mass center velocity and

angular velocity become v, and @, respectively. The adjacent figure shows strategy representing how to write
equations for linear and angular impulse momentum principles.

While applying the principle it becomes simpler to consider translation of the mass center and centroidal rotation
separately. Thus in an alternative way we apply linear impulse momentum principle for translation of the mass
center and angular impulse momentum principle for centroidal rotation.

Translation of mass center: zLinear impulse momentum principle.
/31 + / mpl—2 :/32
Here p, = Mv,, and p, = Mv,_, represent linear momentums at the beginning and end of the time interval and
/

o1z Stands for impulse of all the external forces during the time interval.

Centroidal rotation: Angular impulse momentum principle.
Lc1 + Z ‘/c,142 = ch
Here [ o =10, and L o = 1.0, Tepresent angular momentums about the centroidal axis at the beginning and

end of the time interval and Z J 1.2 Stands for angular impulse of all the external forces about the centroidal axis

during the time interval.

«
A uniform disk of mass M and radius R rotating with angular velocity @ about a nd
vertical axis passing through its center and perpendicular to its plane is placed Q;
gently on a rough horizontal ground, where coefficient of friction is . How
long it will take to stop. [

Refer the worked out example 8.12. The torque of friction forces is

T.=2uMgR 1)

The angular impulse of the torque of friction is responsible to stop the disk. Applying angular impulse
momentum principle, we have

ch + Z‘_jm%z = Zcz - lew, -7.t=0
Substituting /. = + MAR? and 7. from eq. (1), we have

3Rw,
4pug

=
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Sol.

A uniform sphere of mass m and radius  is projected along a rough horizontal floor with linear velocity v_and no
angular velocity. The coefficients of kinetic and static frictions are represented by x and  respectively.

(a) How long the sphere will slide on the floor before it starts rolling. @
(b) How far the sphere will slide on the floor before it starts rolling. \&

(¢) Find the linear and angular velocities of the sphere when it starts rolling.

(d) Find the work done by frictional forces during the process and thereafter.

When the sphere touches the floor it is on translation motion. All the points
including the bottom one are moving with the same velocity v . Thus the

bottom point which makes the contact with the floor slide on it cauging kinetic

friction to act in backward direction. In the adjacent figure the forces acting on

the sphere are shown. Here mg represent weight, N the normal reaction from

the ground and fk .

Since the sphere has no vertical component of acceleration, by applying

Newton’s law we have
> F,=0> N=mg

The kinetic friction f = uN =umg ... 4]

The only force which applied torque about the centroidal axis is the kinetic friction. Angular impulse of torque of
kinetic friction increases the angular velocity wand impulse of kinetic friction decreases the mass center velocity
v, till both bear following condition required for rolling. Thereafter the sphere will continue to roll with the uniform

velocity.
vVe=or ?)

In the adjacent figure of impulse momentum diagram the impulse of kinetic friction is shown

[fide =1t

Translation of mass center: Applying linear impulse momentum principle in x direction, we have

b+ ij;ﬂaz =p, —> Dy _fkt =Dy
Substituting psp, and fk from eq. (1), we have

Ve=v,—pugt A3)

Centroidal rotation: Angular impulse momentum principle about the centroidal axis.
Lo+ Y dpyy=Loy— O+frt=10
Substituting %mr2 for IC and fk from eq. (1), we have

o= Sugt
2r
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@

(b)

©

@
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Substituting values of v, and wformeq. (3) and (4) into eq. (2), we have

2
Time when rolling starts ¢ = oo Q)

Tug

Eq. (3) reveals that the mass center is in uniformly retarded motion. So its displacement in time ¢, when it starts
rolling is given by the following equation.

X = %(vo + Vc) t— Substituting values for v, and ¢ from eq. (3) and (5) respectively we have
12¢2
X =
©ug (6)

Linear and angular velocities of the sphere when it starts rolling can be obtained by substituting ¢ from eq. (5) into
(3) and (4) respectively.

Linear velocity when rolling starts v. =2v, ... ™
) . 5v,
Angular velocity when rolling starts @ = e ®)

Work done by a force depends on displacement of point of application or displacement of the particle on which
force is applied. The particle of the body in contact with the ground on which force of kinetic friction acts
continuously changes; therefore it is recommended to calculate work done with the help of work energy theorem
instead of using definition of work.

Kinetic energy in the initial position at the instant ts
_ 1 2 1 2 _1 2
K_EmVC+EICw - Kl =y;mv_ (9)

Since in the beginning angular velocity is zero.

Kinetic energy in the final position at the instant L,

K=1imv}+il,0"— Substituting values of v, and wformeq. (7) and (8) and £ ms” for 1, we can write
P 35mv’ 10)
, 98 e

Only force of kinetic friction does work during sliding. Denoting it by W, ,, in the equation of work energy

theorem, we have

K, +W,

152

=K,—> w,

e = Ky — K
Substituting values of K1 and K2 form eq. (9) and (10), we have

—_1 2
VVf1~>2 - 7mvo
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Ex. Abody of radius R and mass m is placed on horizontal rough surface with linear velocity v, after some time it comes
in the condition of pure rolling then determine :

() Time t at which body starts pure rolling.
(ii) Linear velocity of body at time t.
(iii) Work done by frictional force in this time t.

Sol. For translatory motion v=u-+at

Initial velocity u=v,

FBD

Let after time t pure rolling starts and at this time t final velocity =v and acceleration =a
FromFBD:

Normal Reaction N=mg f=uN
Friction force f=uN=pmg = ma=pumg [ = f=ma] -
Retardation a=pug

v = v, —at (-ve sign for retardation)

v=v,—pgt ..(D)
For rotatory motion o=o,tat (Initial angular velocity o, = 0)

> o=ot ...(ii)

t_ fRpmgR _ upgR
Yr=lo = OL:TZsz T = K? ...(1ii)

From eq™ (ii) and eq™ (iii) ® = l’;(gz t (iv)
. v
*» For pure rollingv=0oR = ® = R (V)
. v _ ugR ugR*t .
Fromeq. (iv) and (v) R = Ft orv = T ...(vi)
ugR %t v
substitute v from eq™ (vi) into eq™(i) K2 =v,—pgt =>t= —ORZ
Hg {1 + KZ}
. . . . _ Vo _ Vo Yy
Putting the value of t in equation (i) V=Vy ~Ug—F— 5 =V, — R - K?
;,lg|:1+K2} 1+F 1+F

Work done in sliding by frictional force = Initial kinetic energy — Final kinetic energy

2 2 2

Work done by friction W, = leg eV (1 +K—2\ = leg J1o My, My
2 2 R?) 2 2( K’ [, R’
1+— 201+

R K

Conservation of Angular Momentum

If angular impulse of all the external forces about an axis in time interval vanishes, the angular momentum of the
system about the same axis in that time interval remain unchanged.

fy . - -
If ZL 7,dt =0 we have L,=L,
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(@

(i)

(iii)

@iv)

Spinning Ice Skater

Student on rotating turntable

Sol.

168

The condition of zero net angular impulse required for conservation of angular momentum can be fulfilled in the
following cases.

If no external force acts, the angular impulse about all axes will be zero and hence angular momentum remains
conserved about all axes.

If net torque of all the external forces or torques of each individual force about an axis vanishes the angular
momentum about that axes will be conserved.

If all the external forces are finite in magnitude and the concerned time interval is infinitely small, the angular
momentum remain conserved.

If a system of rigid bodies changes its moment of inertia by changing its configuration due to internal forces only
its angular momentum about any axes remains conserved. If we denote the moment of inertias in two configurations
by I, and /, and angular velocities by @, and @,, we can write

Lo, = 1,0,

The principle of conservation of angular momentum governs a wide range of physical processes from subatomic
to celestial world. The following examples explicate some of these applications.

A spinning ice skater and ballet dancers can control her moment of inertia by spreading or ; tg)
. . . S\
bringing closer her hands and make use of conservation of angular momentum to perform their ~ «. Fw
spins. In doing so no external forces is needed and if we ignore effects of friction from the Ni '
ground and the air, the angular momentum can be assumed conserved. When she spreads her 3 A

hand or leg away, her moment of inertia decreases therefore her angular velocity decreases and )
when she brings her hands or leg closer her moment of inertia increases therefore her angular i
velocity increases. &£

The student, the turntable and dumbbells make an isolated system on which
no external torque acts, if we ignore friction in the bearing of the turntable and

air friction. Initially the student has his arm stretched on rotating turntable.

When he pulls dumbbells close to his body, angular velocity increases due to  rarger moment of Smaller moment of
. inertia and smaller inertia and larger

conservation of angular momentum. angular velocity angular velocity

Consider the disk 4 of moment of inertia /, rotating freely in horizontal plane

about its axis of symmetry with angular velocity @ . Another disk B of moment @

of inertia /, held at rest above the disk 4. The axis of symmetry of the disk B b oo

coincides with that of the disk 4 as shown in the figure. The disk B is released

to land on the disk 4. When sliding stops, what will be the angular velocity of
both the disks?

Both the disks are symmetric about the axis of rotation therefore does not require any external torque to keep the
axis stationary. When the disk B lands on A4 slipping starts. The force of friction provides an internal torque to
system of both the disk. It slows down rotation rate of 4 and increases that of B till both acquire same angular
velocity a.

Since there is no external torques on the system of both the disks about the axis of rotation, the total angular
momentum of the system remains conserved. The total angular momentum of the system is the sum of angular
momentum of both disks. Denoting the angular momentum of the disk 4 before B lands on it and long after slipping

between them stops by symbols L, , L, , L,, and L, respectively, we can express conservation of angular
momentum by the following equation.

iA1+ZB1:EA2+iBz_> Lo +0=Lo+I,0 = w= Lo,
IL+1,
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Ex.

Sol.

A cube of mass m and edge length ¢ can slide freely on a smooth horizontal floor.

Moving on the floor with velocity v , it strikes a long obstruction PP of small A »
height. The obstruction is parallel to the leading bottom edge of the cube. The
leading bottom edge gets pivoted with the obstruction and the cube starts / P

rotating. Determine angular velocity of the cube immediately after the impact. |

Before the impact, there is no external force in the horizontal direction and the cube slides with uniform velocity v ,
and during the impact reaction forces of the obstruction stops its leading bottom edge and cause it to rotate about
its leading bottom.

During the impact external forces acting on the cube are its weight, the normal reaction from the ground and
reaction from the obstruction. The weight and the normal reaction from the ground both are finite in magnitude and
the impact ends in infinitesimally small time interval so their impulses and angular impulses about any axes are
negligible. It is the reaction from the obstruction which has finite impulse during the impact. Its horizontal component
changes the momentum of the cube during the impact, but its angular impulse about the obstruction is zero,
therefore the angular momentum of the cube about an axis coincident with the leading bottom edge remain
conserved. v,

Let the velocity of the mass center and angular velocity of the

V,

cube immediately after the impact are v, and @. These velocities are k P' 4 b
shown in the adjacent figure. = &
We denote the angular momentum of the cube about axis coincident — Immediately before the Immediately after the
with the obstruction edge beforeand after theimpactby L and L . mpact impact.

Applying principle of conservation of angular momentum about an axis coincident with the obstruction, we have
f’m = Z’PZ - Te;p Xm0, = Ipé

Using theorem of parallel axes for moment of inertia IP about the leading bottom edge, we get
I, =1, +mr;,, =2m¢*. Substituting this in the above equation, we have

3v

o

4/

Angular velocity immediately after the impact @, =

Angular momentum of a body in combined translational and rotational motion

Sol.

Suppose a body is rotating about an axis passing through its centre of mass with an angular velocity o,y

and moving translationally with a linear velocity v. Then, the angular momentum of the body about a point P

outside the body in the lab frame is given by, ﬂp = ﬂcm + T X Py Wherer is the position vector of the centre

of mass with respect to point P. Hence, Lp =1, +f xmv,,

A solid sphere rolls without slipping on a rough surface and the centre of mass has constant speed v . If

0
mass of the sphere is m and its radius is R, then find the angular momentum of the sphere about the point of
contact.

“ Lp=Lgp +T XPem = Iem® + R xmv v
0

Since sphere is in pure rolling motion hence

©=voR=L, = [%MRZ %0] (&) +MVOR:%MVOR(—LE)
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ECCENTRIC IMPACT

In eccentric impact the line of impact which is the common normal drawn at the point of impact does not passes
through mass center of at least one of the colliding bodies. It involves change in state of rotation motion of either
or both the bodies.

Consider impact of two 4 and B such that the mass center C, of B does notlieonthe [ ¢ | . Line of
= Impact

forces must act along the line of impact. The reaction force of 4 on B does not passes
through the mass center of B as a result state of rotation motion of B changes during
the impact.

line of impact as shown in figure. If we assume bodies to be frictionless their mutual e
B

Problems of Eccentric Impact

Problems of eccentric impact can be divided into two categories. In one category both the bodies under going
eccentric impact are free to move. No external force act on either of them. There mutual forces are responsible for
change in their momentum and angular momentum. In another category either or both of the bodies are hinged.

Eccentric Impact of bodies free to move

Since no external force acts on the two body system, we can use principle of conservation of linear momentum,
principle of conservation of angular momentum about any point and concept of coefficient of restitution.

The coefficient of restitution is defined for components of velocities of points of contacts of the bodies along the
line of impact.

While applying principle of conservation of angular momentum care must be taken in selecting the point about
which we write the equation. The point about which we write angular momentum must be at rest relative to the
selected inertial reference frame and as far as possible its location should be selected on line of velocity of the
mass center in order to make zero the first term involving moment of momentum of mass center.

Eccentric Impact of hinged bodies

Ex.

Sol.

170

When either or both of the bodies are hinged the reaction of the hinge during the impact act as external force on
the two body system, therefore linear momentum no longer remain conserved and we cannot apply principle of
conservation of linear momentum. When both the bodies are hinged we cannot also apply conservation of angular
momentum, and we have to use impulse momentum principle on both the bodies separately in addition to making
use of coefficient of restitution. But when one of the bodies is hinged and other one is free to move, we can apply
conservation of angular momentum about the hinge.

A uniform rod of mass M and length / is suspended from a fixed support and can rotate

freely in the vertical plane. A small ball of mass m moving horizontally with velocity v,
strikes elastically the lower end of the rod as shown in the figure. Find the angular
velocity of the rod and velocity of the ball immediately after the impact.

The rod is hinged and the ball is free to move. External forces acting on the rod

ball system are their weights and reaction from the hinge. Weight of the ball as
well as the rod are finite and contribute negligible impulse during the impact, but E:>
impulse of reaction of the hinge during impact is considerable and cannot be
neglected. Obviously linear momentum of the system is not conserved. The

!

angular impulse of the reaction of hinge ab_out the hinge is zero. Ther_efore Yoy ' LA I
angular momentum of the system about the hinge is conserved. Let velocity of
the ball after the impact becomes v'; and angular velocity of the rod becomes @'.  Before the impact Immediately after

the impact
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Sol.

We denote angular momentum of the ball and the rod about the hinge before the impact by LB1 and LR1 and after
the impact by LB2 and LRz'

Applying conservation of angular momentum about the hinge, we have

Zm + Zm =L, + ZRZ - mv {+0=mv l+ /o
Substituting L A7¢* for I, we have

3mvy+ Ml@w'=3mv, (€))

The velocity of the lower end of the rod before the impact was zero and immediately after the impact it becomes ('
towards right. Employing these facts we can express the coefficient of restitution according to eq.
VeV,

v Vo, > to'-vy=ev, ?2)

Fromegq. (1) and (2), we have

] ) ) ] (Sm —eM ) v,
Velocity of the ball immediately after the impact vy = T M
m
, 3 (1 + e) mv,
Angular velocity of the rod immediately after the impact @ = (3—m + M) , —_— M

A uniform rod 4B of mass M and length ¢ is kept at rest on a smooth horizontal

plane. A particle P of mass m_ moving perpendicular to the rod with velocity
v_strikes the rod at one of its ends as shown in the figure. Derive suitable
expressions for the coefficient of restitution, velocity of mass center of the U
rod and angular velocity of the rod immediately after the impact. Assume it is

the coefficient of restitution.

Both the bodies can move freely in the horizontal plane, therefore no horizontal
external force acts on the particle-rod system. The linear momentum as well
as

angular momentum about any axis normal to the plane is conserved.

(; *)
T ‘

Let the velocity of the particle, angular velocity of the rod and velocity of the
mass center of the rod immediately after the impact are v', towards right, @'
in clockwise sense and v'_ towards right as shown in the adjacent figure.
Using relative motion equation, we can

express the velocity of the end 4 of the rod. B

’

vi=vi+te't m

We denote linear momentum of the particle and rod before the impact by p,, and p,., and immediately after the
impact by p,, and p ., respectively.
Applying conservation of linear momentum, we have

Ppy t Doy =Ppy +Poy = mv, +Mv.=mv_ ... ¥))
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172

The above equation shows that the mass center of the rod will move toward the right. If we write angular
momentum of the rod about a stationary point O, which is in line with the velocity V', the first term involving
moment of momentum of rod vanishes and only angular momentum due to its centroidal rotation remains in the
expression.

We denote angular momentum of the particle and the rod about the point O before the impact by LP1 and LR1 and
after the impact by LP2 and LRZ.

Applying conservation of angular momentum about the hinge, we have v, O A v, > A
sz + Zm = Zm + Zm = tmvil+l.0 =tmv,(
________ e o\ Ve
Substituting L M¢* for 1, we have e
o6mv,+Mlew' =6mv, 3)
Before the impact  Immediately after the
impact

The velocity of the end 4 of the rod before the impact was zero and immediately after the impact it becomes v,

towards right. Employing these facts we can express the coefficient of restitution as

e=—— "o —
o _y T Vh—vp=ev,
pn Qn

Substituting v', form eq. (1), we have
2vi+@'l-2v, =2ev, e )

Eq. (2), (3) and (4) involves three unknowns v'_, @and v',, which can be obtained by solving these equation.

] ) ] ) o= (4m —-eM j o
Velocity of the ball immediately after the impact P amemr )
. m (1 + e)
. . . . V= v
Velocity of mass center of rod immediately after the impact c am+ i[5
6m (1 + e) v,
. . . . W = 7
Angular velocity of the rod immediately after the impact am+M | ¢



ROTATIONAL MOTION

10.

11.

12.

) _ do
Angular velocity 0= m
Angul lerati 6= a9
ngular acceleration o A0
Angular momentum L=txp=1&
o L w_dD
Torque r:er:—t
. .. 1., L7
Rotational Kinetic energy K= EI(D =70
Rotational Power P=1®

For constant angular acceleration

1 . 5 o
0=0,+at, e:OJOt-i‘EO(t , O = +200 , en =M, +E(2n—l)
Moment of Inertia
(a) A tensor but for fixed axis it is a scalar

. . . . _ 2 2 _ 2
(b) For discrete distribution of mass I=m, r?+m,r’+...= Z:miri

(¢) For continuous distribution of mass I = IdI = J. dmr?

Radius of gyration k= \/g

Theorem regarding moment of inertia
(a) Theorem of parallel axes I . =1+ md* where d is the perpendicular distance between parallel axes

(b) Theorem of perpendicular axes I, =1 + Iy
Rod

Rectangular Lamina Esty M)

i 12

—Z
o~
T
EES
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13. Ring 14. Disc
. 1= MR’
Je I=MR <> I=MR
M M
(Geometric axis) (Geometric axis)
15. Circular Hollow Disk 16. Hollow cylinder
e 1=MR’
-M 2 2 - 2 2
\?bl Z(R\+R;) T \bI:M(ILZJF%

L] 4L

R
17. Solid cylinder 18. Solid & Hollow sphere
Je 1=
- B I+E M M
JeITMGE )
f A Solid { [
ol Hollow
R i#
. 5 I:?Mr
41;'5
19. Rolling motion
o 1., 1 5 M
Total kinetic energy = EMVCM +EI°‘“®
o ch
Total angular momentum = Mv_ R+1 y
20. Pure rolling (or rolling without slipping) on stationary surface

Condition : v..=Ro
In accelerated motion a, =Ra

Ifv,_ >R then rolling with forward slipping,
If vem <R o then rolling backward slipping

Total kinetic energy in pure rolling

2 2
Km]=le§m+l(Mk2) Yo Ly 1+k—2
2 2 R>) 2 R
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ROTATIONAL MOTION

21.

22.

23.

24.

25.

26.

27.

28.

29.

Pure rolling motion on an inclined plane

o)
Acceloration 4 — gsin 0
cceleration a = —1+k2 e
Minitum frictional coofficient po. = — 28—
inimum frictional coefficient K, 1+K2/R2

T %—I&—I@—d(lé)—g ord—j
orauer=E T T T ar dr dt

Change in angular momentum A7, = zAt

Work done by a torque W= j%.dé

A ladder is more apt to slip, when you are high up on it than when you just being to climb because at the high up
on a ladder the torque is large and on climbing up the torque is small.

When a sphere is rolls on a horizontal table, it slows down and eventually stops because when the sphere rolls
on the table, both the sphere and the surface deform near the contact. As a result the normal force does not pass

through the centre and provide an angular deceleration.

The spokes near the top of a rolling bicycle wheel are more blurred than those near the bottom of the wheel
because the spokes near the top of wheel are moving faster than those near bottom of the wheel.

Instantaneous angular velocity is a vector quantity because infinitesimal angular displacement is a vector.
The relative angular velocity between any two points of a rigid body is zero at any instant.

All particles of a rigid body, which do not lie on an axis of rotation move on circular paths with centres at an axis
of rotation.

Instantaneous axis of rotation is stationary w.r.t. ground.
Many greater rivers flow towards the equator. The sediment that they carry increases the time of rotation of the

earth about its own axis because the angular momentum of the earth about its rotation axis is conserved.
The hard boiled egg and raw egg can be distinguished on the basis of spinning of both.
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