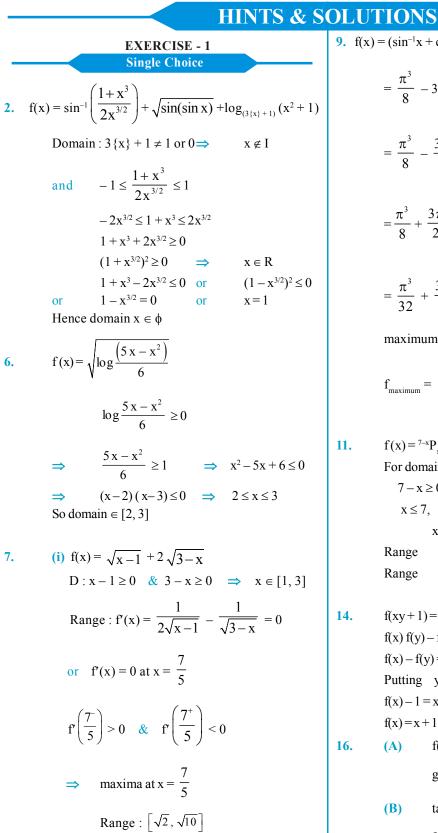
DCAM classes ynamic Classes for Academic Mastery

FUNCTION



9. $f(x) = (\sin^{-1}x + \cos^{-1}x)^3 - 3\sin^{-1}x\cos^{-1}x(\sin^{-1}x + \cos^{-1}x)$

$$=\frac{\pi^3}{8} - 3\sin^{-1}x\left(\frac{\pi}{2} - \cos^{-1}x\right) \frac{\pi}{2}$$

$$=\frac{\pi^3}{8}-\frac{3\pi^2}{4}\sin^{-1}x+3\frac{\pi}{2}(\sin^{-1}x)^2$$

$$=\frac{\pi^{3}}{8}+\frac{3\pi}{2}\left[\left(\sin^{-1}x\right)^{2}-\frac{\pi}{2}\sin^{-1}x+\frac{\pi^{2}}{16}\right]-\frac{3\pi^{3}}{32}$$

$$=\frac{\pi^3}{32}+\frac{3\pi}{2}\left(\sin^{-1}x-\frac{\pi}{4}\right)^2$$

maximum value of f(x) at x = -1

$$f_{maximum} = \frac{\pi^3}{32} + \frac{3\pi}{2} \times \frac{9\pi^3}{16} = \frac{7\pi^3}{8}$$

11. $f(x) = {}^{7-x}P_{x-3}$ For domain $7-x \ge 0, \quad \& \quad x-3 \ge 0 \quad \& \quad 7-x \ge x-3$ $x \le 7, \quad \& \quad x \ge 3 \quad \& \quad 2x \le 10 \Longrightarrow x \le 5$ $x \in \{3,4,5\}$ Range $\in \{f(3), f(4), f(5)\}$ Range $\in \{1,3,2\}$

14.
$$f(xy+1) = f(yx+1)$$

 $f(x) f(y) - f(y) - x + 2 = f(y) f(x) - f(x) - y + 2$
 $f(x) - f(y) = x - y$
Putting $y = 0$
 $f(x) - 1 = x - 0$
 $f(x) = x + 1$
16. (A) $f(x) = e^{1/2 \ln x} = \sqrt{x}$, $D: x > 0$

(B)
$$g(x) = \sqrt{x}, D: x \ge 0$$

(B) $\tan^{-1}(\tan x) = x \quad D: x \ne \pm (2n+1) \frac{\pi}{2}$
 $\cot^{-1}(\cot x) = x \qquad D: x \ne \pm n\pi$

(C) $f(x) = \cos^2 x + \sin^4 x = \cos^2 x + (1 - \cos^2 x)^2$ $= 1 - \cos^2 x + \cos^4 x = \sin^2 x + \cos^4 x$ $g(x) = \sin^2 x + \cos^4 x$ **(D)** $f(x) = \frac{|x|}{x}$, $D: x \neq 0$ $g(x) = sgn(x), \quad D: x \in R$ 19. f(x+1) - f(x) = 8x + 3f(0+1) - f(0) = 3 (put x = 0) ⇒ (b + c + d) - d = 3b + c = 3(i) ⇒ Also f(-1+1) - f(-1) = -8 + 3 (put x = -1) $f(0) - f(-1) = -5 \implies d - (b - c + d) = -5$ ⇒ -b + c = -5⇒(ii) from (i) and (ii) b = 4, c = -1 $f(x) = \frac{4a-7}{3}x^3 + (a-3)x^2 + x + 5$ 20. $f'(x) = (4a-7)x^2 + 2(a-3)x + 1$ $D \le 0$ for all $x \in R$ $4(a-3)^2 - 4(4a-7) \le 0$ $a^2 + 9 - 6a - 4a + 7 \le 0$ $a^2 - 10a + 16 \le 0$ $(a-8)(a-2) \le 0$ or $a \in [2, 8]$ f'(x) is always +ve for $a \in [2, 8]$ $f(x) = x - [x] + (x+1) - [x+1] + \dots$ 22. (x+99) - [x+99] $= x - [x] + x - [x] + \dots + x - [x]$ $=100(x-[x])=100 \{x\}$ $f(\sqrt{2}) = 100\{\sqrt{2}\} = 41$ $f\left(x+\frac{1}{3}\right) = \left[x+\frac{1}{3}\right] + \left[x+\frac{2}{3}\right] + \left[x+1\right] - 3\left(x+\frac{1}{3}\right) + 15$ 25. $=\left[x+\frac{1}{3}\right]+\left[x+\frac{2}{3}\right]+[x]-3x+15$ = f(x)fundamental period is 1/3 *....*

26.
$$f(x) = |x-1|$$
 f: R⁺ → R
 $g(x) = e^x$, g: $[-1, \infty) \to R$
 $fog(x) = f[g(x)] = |e^{x} - 1|$
D: $[-1, \infty)$
R: $[0, \infty)$
27. Hint: $f(x) = \frac{e^{|x|} - e^{-x}}{e^x + e^{-x}} = \begin{bmatrix} \frac{e^x - e^{-x}}{e^x + e^{-x}} & x > 0 \\ 0 & x \le 0 \end{bmatrix}$
and $\frac{e^x - e^{-x}}{e^x + e^{-x}} > 0 \forall x > 0$
29. f: R → R, $f(x) = x^3 + ax^2 + bx + c$
 $f'(x) = 3x^2 + 2ax + b$
D ≤ 0 or $4a^2 - 12b \le 0$
or $a^2 \le 3b$
31. f(x) = sin $\sqrt{|a|} = 2\pi$
 $\Rightarrow period of f(x) = \frac{2\pi}{\sqrt{|a|}} = \pi$
 $\Rightarrow \sqrt{|a|} = 2 \Rightarrow [a] = 4 \Rightarrow a \in [4, 5)$
33. Put y = -x, we get $f(x) = -x$ also $f(0) = 0$
 $f(x + y) = f(x) + f(y)$ is an odd function so it is
symmetric about origin.
34. $f(x+1) + f(x+3) = K \forall x$
put $x = -1$
 $f(0) + f(2) = K$ (i)
put $x = 1$ $f(2) + f(4) = K$ (ii)
from (i) & (ii)
 $f(4) = f(0) = 0 \Rightarrow period = 4$
36. $f(x) = 2^{x(x-1)}$
It is one-one onto function
 $\log_x y = x(x-1)$
 $\Rightarrow x^2 - x - \log_2 y = 0$
 $x = \frac{1 \pm \sqrt{1 + 4 \log_2 x}}{2}$

EXERCISE - 2 Part # I : Multiple Choice

3.
$$f(x) = \sin \log \left(\frac{\sqrt{4-x^2}}{1-x}\right)$$

$$4-x^2 > 0 \quad \text{or} \quad x \in (-2,2)$$
and
$$\frac{\sqrt{4-x^2}}{1-x} > 0$$

$$D: (-2,1)$$

$$R: [-1,1]$$

8.
$$f(x) = \sin\left[\log\left(\frac{\sqrt{4-x^2}}{1-x}\right)\right]$$

f(x) will be defined if $\frac{\sqrt{4-x^2}}{1-x} > 0 \& 4-x^2 > 0$

$$\Rightarrow -2 < x < 1 \qquad \& -\infty < \log \frac{\sqrt{4 - x^2}}{1 - x} < \infty$$
$$-1 \le \sin \left[\log \left(\frac{\sqrt{4 - x^2}}{1 - x} \right) \right] < 1$$

So range of
$$f(x)$$
 is $[-1, 1]$

13. put x = 1

$$2 f(1) + 1 f(1) - 2f(|\sqrt{2} \sin \frac{5\pi}{4}|) = -1$$

$$\Rightarrow 3 f(1) - 2 f(1) = -1 \Rightarrow f(1) = -1$$

Now put x = 2

$$2 f(2) + 2 f(\frac{1}{2}) - 2f(1) = 4 \cos^{2} \pi + 2 \cos \frac{\pi}{2}$$

$$\Rightarrow 2 f(2) + 2f(\frac{1}{2}) - 2 f(1) = 4$$

$$\Rightarrow f(2) + f(\frac{1}{2}) = 1 \dots \dots \dots (i)$$

Now put x = 1/2 we get

$$4 f(\frac{1}{2}) + f(2) = 1 \dots \dots (ii)$$

from (i) and (ii)

from (i) and (ii)

$$f\left(\frac{1}{2}\right) = 0 \quad \& \quad f(2) = 1$$

14.
$$\log_{x^2}(x) \ge 0$$
 & $x > 0, x \ne \pm 1$
∴ $x \in (0, 1) \cup (1, \infty)$

16. (A)
$$f(x) = e^{\ln(\sec^{-1}x)} = \sec^{-1}x,$$

$$\begin{aligned} x \in (-\infty, -1] \cup (1, \infty) \\ g(x) = \sec^{-1}x, & x \in (-\infty, -1] \cup [1, \infty) \\ \text{non-identical functions} \end{aligned}$$

(B)
$$f(x) = \tan(\tan^{-1} x) = x, x \in R$$
$$g(x) = \cot(\cot^{-1} x) = x, x \in R$$
identical functions

(C)
$$f(x) = \operatorname{sgn}(x) = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0 \end{cases}$$

$$\Rightarrow \qquad g(x) = \operatorname{sgn}(\operatorname{sgn} x) = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0 \end{cases}$$

Identical functions

(D)
$$f(x) = \cot^{2} x \cdot \cos^{2} x,$$
$$x \in R - \{n \pi\}, \quad n \in I$$
$$g(x) = \cot^{2} x - \cos^{2} x = \cot^{2} x (1 - \sin^{2} x)$$
$$= \cot^{2} x \cdot \cos^{2} x$$
$$x \in R - \{n \pi\}, \quad n \in I$$
Identical functions

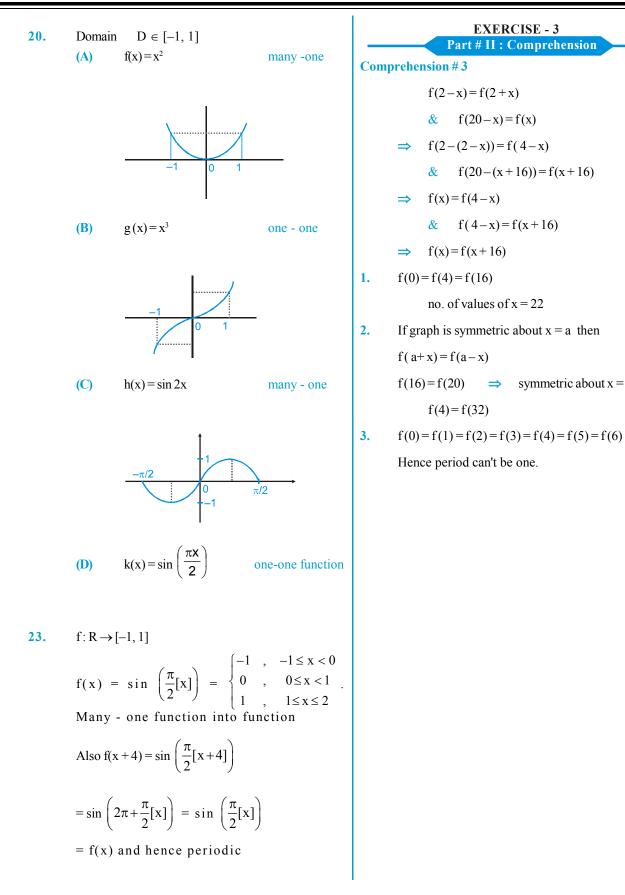
17.
$$f(x) = \frac{1-x}{1+x}, \quad 0 \le x \le 1$$
$$g(x) = 4x (1-x), 0 \le x \le 1$$
$$fog(x) = \frac{1-g(x)}{1+g(x)} = \frac{1-4x(1-x)}{1+4x(1-x)} = \frac{1-4x+4x^2}{1+4x-4x^2}$$
$$gof(x) = 4f(x) \cdot (1-f(x))$$
$$= 4\left(\frac{1-x}{1+x}\right) \left(1 - \left(\frac{1-x}{1+x}\right)\right) = \frac{8x(1-x)}{(1+x)^2}$$

MATHS FOR JEE MAIN & ADVANCED

EXERCISE - 3

symmetric about x = 18

 \Rightarrow



EXERCISE - 4 Subjective Type		
1.		(ii) R
	(iii) $\bigcup_{n \in I} \left[n\pi, n\pi + \frac{\pi}{4} \right]$ (iv) (2,3) (v) $\frac{f}{g}(x) = \frac{\sqrt{x^2 - 5x + 4}}{x + 3}$	
	\Rightarrow x ² -5x+4 \ge 0	
	$(x-4)(x-1) \ge 0$ also $x \ne -3$ So $x \in (-\infty, -3) \cup (-3, 1] \cup [4, \infty)$ 1	
	(vi) $\frac{1}{[x]} \implies x \notin [0, 1)$	
	and $\log_{1-\{x\}} (x^2 - 3x + 10)$	
		$\Rightarrow x \in \mathbb{R}$
		$\Rightarrow x \in \mathbb{R}$
	$1 - \{x\} \neq 1$ and $2 - x > 0$	$\Rightarrow x \notin 1$ $\Rightarrow x -2 < 0$
	and $2 - \mathbf{x} > 0$	$\Rightarrow x = 2 < 0$ $\Rightarrow x \in (-2, 2)$
	and sec (sinx) > 0 $\Rightarrow -1 \le \sin x \le 1 \Rightarrow x \in \mathbb{R}$ $x \in (-2, -1) \cup (-1, 0) \cup (1, 2)$	
2.	(i) (−∞, 1]	(ii) R ⁺
	(iii) $\left[\frac{1}{3}, 1\right]$	$(\mathbf{iv})\left(-\infty,-\frac{1}{4}\right]\cup\left[-\frac{1}{20},\infty\right)$
	(v) $\left[\frac{1}{3},3\right]$	(vi) $\left[0, \frac{3}{\sqrt{2}}\right]$
	(vii) [4,∞)	(viii) [-11, 16]
	(ix) $\left[\frac{3}{4}, 1\right]$	
3.	f(3) = 1 f(3x) = x + f(3x - 3) put x = 1 f(3) = 1 + f(0) f(0) = 0	

$$f(6) = 2 + f(3) = 3$$

$$f(9) = 3 + f(6) = 3 + 3 = 6$$

$$f(12) = 4 + 6 = 10$$

Hence $f(300) = 1 + 3 + 6 + 1 + \dots 100^{\text{th}} \text{ term}$

$$S = 1 + 3 + 6 + \dots + T_n$$

$$S = 1 + 3 + 6 + \dots + T_n$$

$$T_n = 1 + 2 + 3 + 4 \dots \text{ up 100 term}$$

$$= \frac{100}{2} \times 101 = 5050$$

$$f(x) = \frac{9^x}{9^x + 3}$$

$$f(1 - x) = \frac{9^{1 - x}}{9^{1 - x} + 3} = \frac{3}{3 + 9^x}$$

$$f(x) + f(1 - x) = 1$$

$$f\left(\frac{1}{2008}\right) + f\left(\frac{2007}{2008}\right) = 1 \qquad \dots (i)$$

$$f\left(\frac{2}{2008}\right) + f\left(\frac{2006}{2008}\right) = 1 \qquad \dots (i)$$

4.

$$f\left(\frac{1003}{2008}\right) + f\left(\frac{1005}{2008}\right) = 1$$
 (iii)

&
$$f\left(\frac{1004}{2008}\right) + f\left(\frac{1004}{2008}\right) = 1$$

$$\Rightarrow f\left(\frac{1004}{2008}\right) = \frac{1}{2} \qquad \dots \dots (iv)$$

add all we get

$$f\left(\frac{1}{2008}\right) + f\left(\frac{2}{2008}\right) + f\left(\frac{3}{2008}\right) + \dots + f\left(\frac{2007}{2008}\right)$$

= 1003.5

MATHS FOR JEE MAIN & ADVANCED

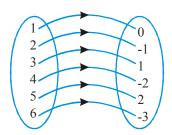
- 5. (i) neither even nor odd (ii) even
 (iii) odd (iv) even
 (v) odd
- 6. (i) π (ii) 2 (iii) $\frac{2\pi}{3}$ (iv) 2π (v) $2^{n}\pi$ (vi) π
- 7. (9)
- 9. $f(x) = (a x^n)^{1/n}$ $f(f(x)) = (a - (f(x))^n)^{1/n}$ $= [a - \{(a - x^n)^{1/n}\}^n]^{1/n} = (a - a + x^n)^{1/n} = x$ So fof(x) = x $\Rightarrow f^{-1}(x) = f(x) = (a - x^n)^{1/n}$
- 10. $f^{-1}(x) = x + (-1)^{x-1}, x \in N$

EXERCISE - 5 Part # I : AIEEE/JEE-MAIN

- 5. $y = \sin^{-1}[\log_3(x/3)] \implies -1 \le \log_3(x/3) \le 1$ $\implies \frac{1}{3} \le \frac{x}{3} \le 3 \implies 1 \le x \le 9 \implies x \in [1, 9]$
- 6. $f(x) = \log (x + \sqrt{x^2 + 1})$ and $f(-x) = -\log(x + \sqrt{x^2 + 1}) = -f(x)$ f(x) is odd function.
- 7. $f(x) = \frac{3}{4 x^2} + \log_{10}(x^3 x)$. So, $4 x^2 \neq 0$ $\Rightarrow x \neq \pm \sqrt{4}$ and $x^3 - x > 0 \Rightarrow x(x^2 - 1) > 0 \Rightarrow x > 0, x > 1$ $(-\sqrt{+})(-\sqrt{+})(-\sqrt{+})(x^3 - x)$

 \therefore D=(-1,0) \cup (1, ∞)-{ $\sqrt{4}$ }i.e.,D=(-1,0) \cup (1,2) \cup (2, ∞)

9. $f: N \to I$ f(1) = 0, f(2) = -1, f(3) = 1, f(4) = -2, f(5) = 2and f(6) = -3 so on.



In this type of function every element of set A has unique image in set B and there is no element left in set B. Hence f is one-one and onto function.

- 10. To define f(x), $9 x^2 > 0 \implies -3 < x < 3 \dots$ (i) $-1 \le (x - 3) \le 1 \implies 2 \le x \le 4 \dots$ (ii) From (i) and (ii), $2 \le x < 3$ i.e., [2, 3). 11. $f(3) = {}^{7-3}P_0 = 1$, $f(4) = {}^{3}P_1 = 3$ and $f(5) = {}^{2}P_2 = 2$ Hence, range of $f = \{1, 2, 3\}$. 12. Using $-\sqrt{a^2 + b^2} \le (a \sin x + b \cos x) \le \sqrt{a^2 + b^2}$ $-\sqrt{1 + (-\sqrt{3})^2} \le (sinx - \sqrt{3} cosx) \le \sqrt{1 + (-\sqrt{3})^2}$ $-2 \le (sinx - \sqrt{3} cosx) \le 2$ $-2 + 1 \le (sinx - \sqrt{3} cosx + 1) \le 2 + 1$
 - $-1 \le (\sin x \sqrt{3} \cos x + 1) \le 3$ i.e., range = [-1,3] \therefore For *f* to be onto S = [-1, 3].

13. For -1 < x < 1, $\tan^{-1} \frac{2x}{1-x^2} = 2 \tan^{-1} x$ Range of $f(\mathbf{x}) = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ \therefore Co-domain of function = B = $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ **14.** f(a - (x - a)) = f(A)f(x - a) - f(0)f(x) ... (i) Put x=0, y = 0; $f(0) = (f(0))^2 - [f(A)]^2 \implies f(A) = 0$ [:: f(0) = 1]. From (i), f(2a - x) = -f(x). 15. Let $y = \frac{3x^2 + 9x + 17}{3x^2 + 9x + 7}$ \Rightarrow 3(y - 1) x² + 9(y - 1) x + 7y - 17 = 0 Since x is real, we have $\{9(y-1)\}^2 - 4.3(y-1)(7y-17) \ge 0$ $\Rightarrow -3y^2 + 126y - 123 \ge 0$ \Rightarrow (y - 41) (y - 1) ≤ 0 $\Rightarrow 1 \le y \le 41$ So, maximum value of y is 41. **16.** f(x) is defined if $-1 \le \frac{x}{2} - 1 \le 1$ and $\cos x > 0$ or $0 \le x \le 4$ and $-\frac{\pi}{2} < x < \frac{\pi}{2}$ $\therefore x \in \left[0, \frac{\pi}{2}\right]$ **19.** For real x, $f(x) = x^3 + 5x + 1$ $\lim_{x \to \infty} f(x) = +\infty$ and $\lim_{x \to \infty} f(x) = -\infty$ \therefore Range is R – f(x) is on to Now $f'(x) = 3x^2 + 5 > 0$

 \therefore f(x) is one-one

f(x) is one-one onto.

20. $f(x) = (x + 1)^{2} - 1 ; x \ge -1$ $f'(x) = 2(x + 1) \ge 0 \text{ for } x \ge -1$ $\therefore f(x) \text{ is bijection}$ Statement (2) is correct
Now $f^{-1}(x) = f(x)$ To solve put y = x in f(x) $x = (x + 1)^{2} - 1$ $x + 1 = (x + 1)^{2}$ x = -1, x = 0 $x = \{0, -1\}$ Statement (1) is also correct

$$f(x) = \frac{1}{\sqrt{|x| - x|}}$$

For domain of real function |x| - x > 0|x| > x $x \in (-\infty, 0)$

22. $f(x) = (x - 1)^2 + 1$; $(x \ge 1)$ and $f'(x) = 2(x - 1) \ge 0$ for $x \ge 1$ \therefore f(x) is one-one and onto \Rightarrow f(x) is Bijection and $f^{-1}(x) = 1 + \sqrt{x - 1}$ Statement-2 is true Now $f(x) = f^{-1}(x)$ $\Rightarrow (x - 1)^2 + 1 = \sqrt{x - 1} + 1$

$$\Rightarrow$$
 x = 1,2

- :. Statement-1 is true
- 23. [x] is continuous at R I $\therefore f(x) \text{ is continuous at } R - I$ Now At x = I LHL = $\lim_{h \to 0} [I - h] \cos \frac{(2(I - h) - 1)}{2} \pi$ $\lim_{h \to 0} (I - 1) \cos [2I - 2h - 1] \frac{\pi}{2}$

 $=(I-1)\cos(2I-1)\frac{\pi}{2}=0$ similarly, RHL = 0and f(i) = 0... Function is continous everywhere **25.** $f(x) + 2f\left(\frac{1}{x}\right) = 3x, x \neq 0$ $f\left(\frac{1}{x}\right) + 2f(x) = \frac{3}{x}$ $3f(x) = \frac{6}{x} - 3x$ $f(x) = \frac{2}{x} - x$ $f(x) = f(-x) \implies \frac{2}{x} - x = \frac{-2}{x} + x$ $\frac{4}{x} = 2x$ \Rightarrow x²=2 \Rightarrow x = + $\sqrt{2}$ **26.** g(x) = f(f(x)) \Rightarrow g'(x)=f'(f(x)) f'(x) \Rightarrow g'(0) = f'(f(0)) f'(0) For $x \rightarrow 0$, $\log 2 > \sin x$ \therefore f(x) = log 2 - sin x \therefore f(x) = $-\cos x$ \Rightarrow f(0) = -1 Also $x \rightarrow \log 2, \log 2 > \sin x$ \therefore f(x) = log 2 - sin x \therefore f(x) = $-\cos x$ \Rightarrow f(log 2) = - cos (log 2) \therefore g'(0) = (-cos (log 2)) (-1) = cos (log 2)

Part # II : IIT-JEE ADVANCED 3. $g(x) = 1 + \{x\}$ $\Rightarrow 0+1 \le g(x) \le 1+1$ $\Rightarrow 1 \le g(x) \le 2$ f(g(x)) = 1 (:: g(x) > 0) 6. $n(into + onto) = 2^4$ n(into) = 2n(onto) = 16 - 2 = 147. $f(x) = \frac{\alpha x}{x+1}, x \neq -1$ Now $f(f(x)) = x \implies f(x) = f^{-1}(x)$ Let $y = \frac{\alpha x}{x+1} \implies xy+y = \alpha x$ \Rightarrow x (y- α) = -y \Rightarrow x = $\frac{-y}{y-\alpha}$ $f^{-1}(x) = \frac{-x}{x - \alpha}$ Now $\frac{\alpha x}{x+1} = \frac{-x}{x-\alpha}$ on solving we get $\alpha = -1$ **13.** $\phi(x) = f(x) - g(x)$ $=\begin{cases} -x & x \in Q \\ x & x \notin Q \end{cases}$ It is one-one onto function 14. Given $f(x) = x^2$; $g(x) = \sin x$ $f \circ g \circ g \circ f(x) = \sin^2(\sin x^2)$ and $gogo f(x) = sin(sinx^2)$ given fogogof(x) = gogof(x) \Rightarrow sin²(sinx²) = sin(sinx²) \Rightarrow sin(sinx²) = 0 or 1 (rejected) $\sin(\sin x^2) = 0$ \Rightarrow $x^2 = n\pi$ \Rightarrow x = ± $\sqrt{n\pi}$; x $\in \{0, 1, 2, 3,\}$

15.
$$f(x) = 2x^3 - 15x^2 + 36x + 1$$

⇒ $f'(x) = 6(x^2 - 5x + 6)$
 $= 6(x - 2)(x - 3)$
∴ $f(x)$ is non monotonic in $x \in [0,3]$
⇒ $f(x)$ is not one-one
 $f(x)$ is increasing in $x \in [0,2)$ and decreasing in $x \in (2,3]$
 $f(0) = 1, f(2) = 29 & f(3) = 28$
∴ Range of $f(x)$ is $[1,29]$
⇒ $f(x)$ is onto.
16. ∴ $\theta \in \left(0, \frac{\pi}{4}\right) \cup \left(\frac{\pi}{4}, \frac{\pi}{2}\right) \Rightarrow 2\theta \in \left(0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right)$
Now $f(\cos 4\theta) = \frac{2}{2 - \sec^2 \theta}$
 $= \frac{1 + \cos 2\theta}{\cos 2\theta} = 1 + \frac{1}{\cos 2\theta}$ (i)
Let $\cos 4\theta = \frac{1}{3}$ ⇒ $2\cos^2 2\theta - 1 = \frac{1}{3}$
⇒ $\cos 2\theta = \pm \sqrt{\frac{2}{3}}$
⇒ $f(x) = x^3 + 3x + 2$, $f(1) = 6, g(6) = 1$
 $g(f(x)) = x$ ⇒ $g'(f(x)) \times f(x) = 1$
 $put x = 0$, $g'(f(0)) \cdot f(0) = 1$
 $g'(2) \frac{1}{f'(0)} = \frac{1}{3}$
∴ $f(3) = 38$
∴ $g(38) = 3$
∴ $h(g(3)) = h(g(g38))) = 38$
 $f(2) = 16$

- \Rightarrow g(16)=2
- :. h(g(g(16)) = h(g(2)) = h(0)
- \therefore 16 = h(g(g(16)) = h(0)
- $\therefore (C) \text{ is correct.}$ $f(x) = 3x^2 + 3$

$$f(6) = 111, f(1) = 6 \implies g'(6) = \frac{1}{6}$$

h(g(g(x))) = x

$$\Rightarrow h'(g(g(x))) \times g'(g(x)) \times g'(x) = 1$$

Put x = 236, h'(g(g(236))) × g'(g(236)) × g'(236) = 1

$$\Rightarrow h'(g(6))g'(6) \times \frac{1}{f'(6)} = 1$$

$$\Rightarrow$$
 h'(1)=666 But g(1) \neq 1

NOCK TEST
1. (B)
Put
$$x = y = 1$$
, $(f(1))^2 = 3f(1) - 2$
 $\Rightarrow f(1) = 1 \text{ or } 2$
Let $f(1) = 1$, then put $y = 1$
 $f(x) : f(1) = 1$, then put $y = 1$
 $f(x) : f(1) = 1$, then put $y = 1$
 $f(x) : f(1) = 1$, then $put y = 1$
 $f(x) : f(1) = 1$, then $put y = 1$
 $f(x) : f(1) = 1$, then $put y = 1$
 $f(x) : f(1) = 1$, then $f(1) = 2$
2. $f(x) = \sqrt{-\log_{\frac{x+4}{2}}(\log_{2}\frac{2x-1}{3+x})}$
For domain : $\log_{\frac{x+4}{2}}(\log_{2}\frac{2x-1}{3+x}) \le 0$
Case-I
 $0 < \frac{x+4}{2} < 1 \Rightarrow -4 < x < -2$ A
then $\log_{\frac{x+4}{2}}(\log_{2}\frac{2x-1}{3+x}) \le 0$
 $\Rightarrow \log_{2}\frac{2x-1}{3+x} \ge 1 \Rightarrow \frac{2x-1}{3+x} \ge 2$
 $\Rightarrow x < -3$ B
 $\Rightarrow \text{ on A} \cap B = x \in (-4, -3)$ B
 $\Rightarrow \text{ on A} \cap B = x \in (-4, -3)$ B
 $\Rightarrow 0 < \log_{2}\frac{2x-1}{3+x} \le 1 \Rightarrow 1 < \frac{2x-1}{3+x} \le 2$
 $\Rightarrow x \in (4, \infty)$ (i)
 \therefore (i) \cup (ii) Domain $x \in (-4, -3) \cup (4, \infty)$
 \therefore (i) \cup (ii) Domain $x \in (-4, -3) \cup (4, \infty)$

7.
$$f(x) = \sin^{-1} \left[x^{2} + \frac{1}{2} \right] + \cos^{-1} \left[x^{2} - \frac{1}{2} \right]$$
Domain: $-1 \le \left[x^{2} - \frac{1}{2} \right] \le 1$

$$\Rightarrow x \in \left(-\sqrt{\frac{5}{2}}, \sqrt{\frac{5}{2}} \right) \text{ and } -1 \le \left[x^{2} + \frac{1}{2} \right] \le 1$$

$$\Rightarrow x \in \left(-\sqrt{\frac{3}{2}}, \sqrt{\frac{3}{2}} \right)$$

$$\Rightarrow \text{ domain is}$$

$$x \in \left(-\sqrt{\frac{3}{2}}, \sqrt{\frac{3}{2}} \right) \text{ or } x^{2} \in \left[0, \frac{3}{2} \right]$$
if (i) $x^{2} \in \left[0, \frac{1}{2} \right], \text{ then } f(x) = \pi$
if (ii) $x^{2} \in \left[\frac{1}{2}, 1 \right], \text{ then } f(x) = \pi$
if (iii) $x^{2} \in \left[1, \frac{3}{2} \right], \text{ then } f(x) = \pi$
if (iii) $x^{2} \in \left[1, \frac{3}{2} \right], \text{ then } f(x) = \pi$

$$\Rightarrow \text{ range } = \{\pi\}$$
8.
$$f(x) + 5 \le f(x + 5) \le f(x + 4) + 1 \le f(x + 3) + 2 \le f(x + 2) + 3 \le f(x + 1) + 4 \le f(x) + 5$$

$$\Rightarrow \text{ In all steps there is equality only}$$

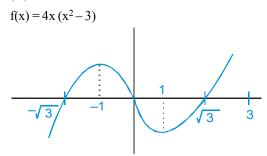
$$\Rightarrow f(x + 1) = f(x) + 1$$
Now
$$f(1) = 1$$

$$\Rightarrow f(2) = 2 = f(3) = 3 = f(4) = 4$$

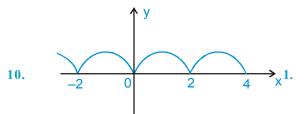
$$\vdots$$

$$i = i = i = 2 = 2 = 1 = 2 = 1$$

9. (D)



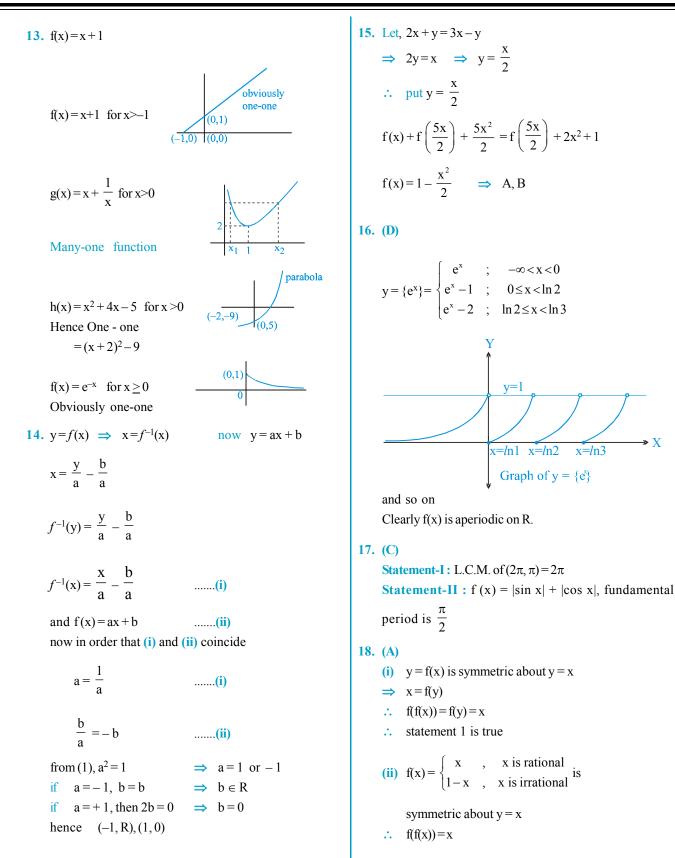
 $f^{x}(x) = 12 x^{2} - 12 = 0$ or $x = \pm 1$ $f(x) \in [f(1), \max(f(-1), f(3))] = [-8, 72]$



y = f(x + 2) is drawn by shifting the graph by 2 units horizontally.

11.
$$f[g(x)] = a(bx + a) + b = abx + a^2 + b$$
(i)
 $g[f(x)] = b(ax + b) + a$
 $= abx + b^2 + a$ (ii)
(i) - (ii) $f[g(50)] - g[f(50)] = a^2 - b^2 + b - a$
 $\therefore (a^2 - b^2) + (b - a) = 28$
 $(a - b)(a + b - 1) = 28 = (1 \times 28) \text{ or } (2 \times 14) \text{ or } (4 \times 7)$
let $a - b = 1$ and $a + b - 1 = 28$
and $2a - 2 = 28 \implies a = 15$; $b = 14$
 $\therefore ab = 210$
if $a - b = 2$ and $a + b - 1 = 14$ (not possible)
if $a - b = 2$ and $a + b - 1 = 7$
 $2a - 1 = 11 \implies a = 6$ and $b = 2$
 $\therefore ab = 12$
12. $f(-x) = \begin{cases} 0 & x = 0 \\ -x^2 \sin(\frac{\pi}{x}) & x \in (-1,1) - \{0\} = -f(x) \\ -x & |x| & |x| > | \end{cases}$

odd function



19. (A)

$$f(g(h(1))) = f(g(3)) = f(-g(-3)) = f(-2) = 1$$

$$g(h(f(3))) = g(h(-5)) = g(-h(5)) = g(-1) = -g(1) = -1$$

$$h(f(g(-1))) = h(f(-g(1))) = h(f(-1)) = h(f(1)) = h(0)$$

as h is odd $\Rightarrow h(x) + h(-x) = 0$

$$h(0) + h(0) = 0 \Rightarrow h(0) = 0$$

 \Rightarrow sum of composite functions is zero.

20. (D)

Statement -I : Every function can be written as the sum of even and odd function Statement -II : $f(x) = e^x$ $f(-x) = e^{-x}$

Here neither f(x) = f(-x) nor f(-x) = -f(x)So e^x is neither even nor odd function.

21. (A) \rightarrow (p, r), (B) \rightarrow (p, s), (C) \rightarrow (q, s), (D) \rightarrow (q, s)

(A) $f'(x) = \frac{1}{2\sqrt{\sin x}} \cos x$

$$f'(x)$$
 is positive if $x \in \left[0, \frac{\pi}{3}\right]$

f is one to one function

Since
$$0 \le x \le \frac{\pi}{3}$$

 $0 \le \sin x \le \frac{\sqrt{3}}{2}$

$$0 \le \sqrt{\sin x} \le \sqrt{\frac{\sqrt{3}}{2}} < 1$$

f is into function

(B)
$$f(x) = \frac{x+3}{x-1}$$

 $f'(x) = \frac{(x-1).1 - (x+3).1}{(x-1)^2}$

$$f'(x) = \frac{-4}{(x-1)^2}$$

f'(x) < 0 Hence f(x) is one to one Since x > 1

$$\therefore \quad \text{Range of } y = \frac{x+3}{x-1} \text{ is } (1,\infty)$$

f is onto function

(C)
$$-\frac{\pi}{2} \le x \le \frac{4\pi}{3}$$

 $f(x) = \sin x$
 $-\pi/2$
 $4\pi/3$
 $y = 1$
 x -axis
 $y = -1$

from graph f(x) is many-one and onto

(D)
$$f(x) = \frac{x^2}{x-2}$$

 $f'(x) = \frac{(x-2) \cdot 2x - x^2}{(x-2)^2}$
 $f'(x) = \frac{x^2 - 4x}{(x-2)^2}$
 $\therefore f'(x) < 0 \text{ if } 2 < x < 4$
 $f'(x) > 0 \text{ if } x > 4$
 $f(x) \text{ is many-one}$
 $f(4) = 8 \text{ (is the least value of } f(x))$
 $\therefore \text{ range} = [8, \infty)$
 $\therefore f(x) \text{ is onto.}$

22. (A)
$$\rightarrow$$
 (s); (B) \rightarrow (q); (C) \rightarrow (r); (D) \rightarrow (p)

fog =
$$\frac{2x^2 + 6x + 5}{x^2 + 3x + 2}$$
; gof = $\frac{x^2 + x + 1}{(x + 1)^2}$;
fof = $\frac{x^4 + 3x^2 + 1}{x(x^2 + 1)}$; gog = $\frac{2x + 3}{3x + 5}$

23.
1.
$$f(x) = (x-1)^2 - 2$$
 $a = 1, b = -2$
 $a + b = -1$
2. $g(x) = x^2 + x - 2 = \left(x + \frac{1}{2}\right)^2 - \frac{9}{4}$
 $\Rightarrow g|x| = \left(|x| + \frac{1}{2}\right)^2 - \frac{9}{4}$
 $g_{min} = g(0) = -2$
3. $f: [1, \infty) \rightarrow [-2, \infty)$, then $f^{-1}: [-2, \infty) \rightarrow [1, \infty)$;
 $f(x) = y \Rightarrow x^2 - 2x - (1 + y)$
 $x = \frac{2 \pm \sqrt{4 + 4(1 + y)}}{2}$; $x = 1 \pm \sqrt{2 + y}$;
 $f^{-1}(y) = 1 + \sqrt{2 + y}$; $f^{-1}(x) = 1 + \sqrt{2 + x}$

24.

1. (A)

Since period of f(x) is 2(10-2) = 16

:. f(0) = f(16) = f(32) = ... = f(160) = 5

- :. there are at least 11 values of x for which f(x) = 5
- f(0) = f(4) = f(16)

due to symmetry in one period length f(x) = 5 has solution other then 0, 16, 32, _____

 \therefore minimum possible number of values of x is

10 + 11 = 21

2. (A) Obvious by definition

3. (C)

If 1 is a period, then f(x) = f(x + 1), $\forall x \in R$ $\Rightarrow f(2) = f(3) = f(4) = f(5) = f(6)$ which contradicts the given hypothesis that $f(2) \neq f(6)$

 \therefore 1 cannot be period of f(x)

25.

1. (A)

 $f: (0, \infty) \to (0, \infty)$ $f(x f(y)) = x^2 y^a (a \in R)$

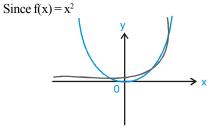
Put x = 1, we get
$$f(f(y)) = y^a$$

Put $f(y) = \frac{1}{x}$, we get $f(1) = \frac{1}{(f(y))^2}$. y^a and put $y = 1$ we
get $(f(1))^3 = 1$
 \therefore $f(1) = 1$
for $y = 1$, we have $f(x(f(1))) = x^2$
 \therefore $f(x) = x^2$
thus $a = 4$

2. (C)

$$\sum_{r=1}^{n} f(r) {}^{n}C_{r} = \sum_{r=1}^{n} r^{2} {}^{n}C_{r} = \sum_{r=1}^{n} (r(r-1)+r) {}^{n}C_{r}$$
$$= n(n-1) 2^{n-2} + n 2^{n-1}$$

3. (C)



$$\therefore 2x^2 = e^x$$

26. Let x = y = 1
f(x) + f(y) + f(xy) = 2 + f(x) . f(y)
3f (1) = 2 + (f(1))² ⇒ f(1) = 1, 2. But given that
f(1) ≠ 1 so f(1) = 2
Now put y =
$$\frac{1}{x}$$

f(x) + f $\left(\frac{1}{x}\right)$ + f(1) = 2 + f(x) . f $\left(\frac{1}{x}\right)$
⇒ f(x) + f $\left(\frac{1}{x}\right)$ = f(x) . f $\left(\frac{1}{x}\right)$
so f(x) = ± xⁿ + 1
Now f(4) = 17
⇒ ± (4)ⁿ + 1 = 17 ⇒ n = 2
f(x) = +(x)² + 1.
∴ f(5) = 5² + 1 = 26

27. (9) Let x = y = 1 $f(x) + f(y) + f(xy) = 2 + f(x) \cdot f(y)$ $3f(1) = 2 + (f(1))^2 \implies f(1) = 1, 2$. But given that $f(1) \neq 1$ so f(1) = 2Now put $y = \frac{1}{x}$ $f(x) + f(\frac{1}{x}) + f(1) = 2 + f(x) \cdot f(\frac{1}{x})$

so
$$f(x) = \pm x^n + 1$$

Now $f(4) = 17$
 $\Rightarrow \pm (4)^n + 1 = 17 \Rightarrow n = 2$
 $f(x) = +(x)^2 + 1$
 $\Rightarrow f(5) = 126$

28. Put y = -x f(x) + f(-x) = f(0) = 0 $f(-x) = -f(x) \implies f(x) \text{ is an odd function.}$ Now put $y = x \implies 2f(x) = f(2x\sqrt{1-x^2})$ Now put $y = 2x\sqrt{1-x^2}$ in $f(x) + f(y) = f(x\sqrt{1-y^2} + y\sqrt{1-x^2})$ $f(x) + f(2x\sqrt{1-x^2}) = f(x\sqrt{1-4x^2+4x^4} + 2x(1-x^2))$ $f(x) + 2f(x) = f(x(1-2x^2) + 2x - 2x^3)$ $3f(x) = f(3x - 4x^3) = -f(4x^3 - 3x)$ $\implies f(4x^3 - 3x) + 3f(x) = 0$

29. (5)

Domain of $\sin^{-1}(\sin x)$ is whole of R

$$-\log_{\frac{x+4}{2}}\log_2\left(\frac{2x-1}{3+x}\right) > 0$$

i.e.
$$\log_{\frac{x+4}{2}}\left(\log_2\left(\frac{2x-1}{3+x}\right)\right) < 0$$

Case-I If $0 < \frac{x+4}{2} < 1$ i.e. -4 < x < -2then $\log_2 \frac{2x-1}{3+x} > 1$ i.e. $\frac{2x-1}{3+x} > 2$ i.e. $\frac{2x-1-6-2x}{3+x} > 0$ i.e. x+3 < 0 i.e. x < -3:. -4 < x < -3(i) **Case-II** If $\frac{x+4}{2} > 1$ i.e. x > -2then $0 < \log_2 \frac{2x-1}{3+x} < 1$ i.e. $1 < \frac{2x-1}{3+x} < 2$ i.e. $\frac{2x-1-3-x}{x+3} > 0$ and $\frac{2x-1-6-2x}{x+3} < 0$ i.e. $\frac{x-4}{x+3} > 0$ and $\frac{-7}{x+3} < 0$ i.e. $\{x < -3 \text{ or } x > 4\}$ and x > -3i.e. x>4**(iii)** from (i) and (ii) $x \in (-4, -3) \cup (4, \infty)$ \therefore a = -4, b = -3, c = 4 and so a + b + 3c = 5 30. (1) $f(x) + f\left(\frac{1}{1}\right) = \frac{2}{1} - \frac{2}{1}$

$$(1-x) = x - 1 - x$$
Put $x = \frac{1}{1-t} - 1 - x = 1 - \frac{1}{1-t} = -\frac{t}{1-t}$

$$\therefore f\left(\frac{1}{1-t}\right) + f\left(\frac{t-1}{t}\right) = 2(1-t) - \frac{2(1-t)}{-t}$$

$$\therefore f\left(\frac{1}{1-x}\right) + f\left(\frac{x-1}{x}\right) = 2(1-x) + 2\left(\frac{1-x}{x}\right)$$
Put $\frac{x-1}{x} = t$

$$x - 1 = xt = \frac{1}{1-t}$$

$$1 - x = 1 - \frac{1}{1 - t} = \frac{-t}{1 - t}$$

$$\frac{1}{1 - x} = \frac{t - 1}{t}$$

$$\therefore f\left(\frac{t - 1}{t}\right) + f(t) = \frac{2t}{t - 1} + \left(\frac{2t}{t - 1}\right)\left(\frac{1 - t}{1}\right)$$

$$\therefore f\left(\frac{x - 1}{x}\right) + f(x) = \frac{2x}{x - 1} - 2x$$

$$\therefore 2f(x) = \frac{2}{x} - \frac{2}{1 - x} - 2(1 - x) - \frac{2(1 - x)}{x} + \frac{2x}{x - 1} - 2x$$

$$= \frac{2}{x} - \frac{2}{1 - x} - 2 + 2x - \frac{2}{x} + 2 + \frac{2x}{x - 1} - 2x$$

$$= \frac{2x}{x - 1} + \frac{2}{x - 1} = 2\left(\frac{x + 1}{x - 1}\right)$$

$$\therefore f(x) = \frac{x + 1}{x - 1}$$

DCAM classes Dynamic Classes for Academic Mastery