MATHS FOR JEE MAIN & ADVANCED

SOLVED EXAMPLES

DCAM classes

Ex.1 Which of the following pictorial diagrams represent the function

- Sol. B and D. In (A) one element of domain has no image, while in (C) one element of 1st set has two images in 2nd set
- **Ex. 2** Find the Domain of the following function :

(i)
$$y = \log_{(x-0)} (x^2 - 11x + 24)$$

(ii) $f(x) = \sqrt{x^2 - 5}$
(iii) $\sin^{-1} (2x - 1)$
(iv) $f(x) = \sqrt{\sin x} - \sqrt{16 - x^2}$
Sol. (i) $y = \log_{(x-0)} (x^2 - 11x + 24)$
Here 'y' would assume real value if,
 $x - 4 > 0$ and $\neq 1, x^2 - 11x + 24 > 0$ \Rightarrow $x > 4$ and $\neq 5, (x - 3) (x - 8) > 0$
 \Rightarrow $x > 4$ and $\neq 5, x < 3$ or $x > 8$ \Rightarrow $x > 8$
 \Rightarrow Domain (y) = (8, ∞)
(ii) $\sqrt{x^2 - 5}$ f(x) = is real iff $x^2 - 5 \ge 0$
 \Rightarrow $|x| \ge \sqrt{5} \Rightarrow$ $x \le -\sqrt{5}$ or $x \ge \sqrt{5}$
 \therefore the domain of f is $(-\infty, -\sqrt{5}] \cup [\sqrt{5}, \infty)$
(iii) $\sin^{-1} (2x - 1)$ is real iff $-1 \le 2x - 1 \le + 1$
 \therefore domain is $x \in [0, 1]$
(iv) $\sqrt{\sin x}$ is real iff $\sin x \ge 0$ \Leftrightarrow $x \in [2n\pi, 2n\pi + \pi], n \in I.$
 $\sqrt{16 - x^2}$ is real iff $16 - x^2 \ge 0$ \Leftrightarrow $-4 \le x \le 4$.
Thus the domain of the given function is $\{x : x \in [2n\pi, 2n\pi + \pi], n \in I\} \cap [-4, 4] = [-4, -\pi] \cup [0, \pi].$
Ex.3 Find the range of following functions :
(i) $f(x) = \frac{1}{8 - 3\sin x}$ (ii) $f(x) = \frac{x^2 - 4}{x - 2}$

Ex. 4 Find the range of following functions : (i) $y = ln (2x - x^2)$

(ii) $y = \sec^{-1}(x^2 + 3x + 1)$

Sol. (i) Step – 1

We have $2x - x^2 \in (-\infty, 1]$

Step – 2

Let $t = 2x - x^2$ For ℓ nt to be defined accepted values are (0, 1]Now, using monotonocity of ℓ n t, ℓ n $(2x - x^2) \in (-\infty, 0]$ \therefore range is $(-\infty, 0]$

(ii)
$$y = \sec^{-1}(x^2 + 3x + 1)$$

Let $t = x^2 + 3x + 1$ for $x \in R$, then $t \in \left[-\frac{5}{4}, \infty\right)$

from graph the range is $\left[0, \frac{\pi}{2}\right] \cup \left[\sec^{-1}\left(-\frac{5}{4}\right), \pi\right]$

Ex. 5 (i) Let $\{x\}$ and [x] denote the fractional and integral part of a real number x respectively. Solve $4\{x\} = x + [x]$

(ii) Draw graph of
$$f(x) = sgn(\ell n x)$$

Sol. (i) $As x = [x] + \{x\}$

 $\therefore \qquad \text{Given equation} \implies 4\{x\} = [x] + \{x\} + [x] \implies \{x\} = \frac{2[x]}{3}$

As [x] is always an integer and $\{x\} \in [0, 1)$, possible values are

[x] {x} $x = [x] + \{x\}$ 0 0 0 1 $\frac{2}{3}$ $\frac{5}{3}$ \therefore There are two Solution of given equation x = 0 and $x = \frac{5}{3}$

Ex. 6 Find the domain $f(x) = \frac{1}{\sqrt{|[|x|-5]|-11}}$ where [.] denotes greatest integer function.

- $\begin{aligned} & |[|x|-5]| > 11 \\ & So & [|x|-5] > 11 & or & [|x|-5] < -11 \\ & [|x|] > 16 & [|x|] < -6 \\ & |x| \ge 17 & or & [|x|] < -6 & (Not Possible) \\ \Rightarrow & x \le -17 & or & x \ge 17 \\ & So & x \in (-\infty, -17] \cup [17, \infty) \end{aligned}$
- **Ex.6** Examine whether following pair of functions are identical or not?
 - (i) $f(x) = \frac{x^2 1}{x 1}$ and g(x) = x + 1(ii) $f(x) = \sin^2 x + \cos^2 x$ and $g(x) = \sec^2 x - \tan^2 x$
- Sol. (i) No, as domain of f(x) is $R \{1\}$ while domain of g(x) is R
 - (ii) No, as domain are not same. Domain of f(x) is R

while that of g(x) is $R - \left\{ \left(2n+1\right)\frac{\pi}{2}; n \in I \right\}$

Ex. 7 Find the value of $\left[\frac{1}{2}\right] + \left[\frac{1}{2} + \frac{1}{1000}\right] + \dots + \left[\frac{1}{2} + \frac{2946}{1000}\right]$ where [.] denotes greatest integer function ?

Sol.
$$\left[\frac{1}{2}\right] + \left[\frac{1}{2} + \frac{1}{1000}\right] + \dots, \left[\frac{1}{2} + \frac{499}{1000}\right] + \left[\frac{1}{2} + \frac{500}{1000}\right] + \dots, \left[\frac{1}{2} + \frac{1499}{1000}\right] + \left[\frac{1}{2} + \frac{1500}{1000}\right] + \dots, \left[\frac{1}{2} + \frac{1499}{1000}\right] + \left[\frac{1}{2} + \frac{1500}{1000}\right] + \dots, \left[\frac{1}{2} + \frac{1499}{1000}\right] + \left[\frac{1}{2} + \frac{1500}{1000}\right] + \dots, \left[\frac{1}{2} + \frac{1499}{1000}\right] + \left[\frac{1}{2} + \frac{149}{1000}\right] + \left[\frac{1}{2}$$

$$+\left[\frac{1}{2} + \frac{2499}{1000}\right] + \left[\frac{1}{2} + \frac{2500}{1000}\right] + \dots \left[\frac{1}{2} + \frac{2946}{1000}\right]$$

$$= 0 + 1 \times 1000 + 2 \times 1000 + 3 \times 447 = 3000 + 1341 = 4341$$

Sol.

Ex.8 Find the range of $f(x) = \frac{x - [x]}{1 + x - [x]}$, where [.] denotes greatest integer function.

Sol.
$$y = \frac{x - [x]}{1 + x - [x]} = \frac{\{x\}}{1 + \{x\}}$$

 $\therefore \qquad \frac{1}{y} = \frac{1}{\{x\}} + 1 \qquad \Rightarrow \qquad \frac{1}{\{x\}} = \frac{1 - y}{y} \qquad \Rightarrow \qquad \{x\} = \frac{y}{1 - y}$
 $0 \le \{x\} < 1 \qquad \Rightarrow \qquad 0 \le \frac{y}{1 - y} < 1$
Range = [0, 1/2)
Ex. 9 Let $f(x) = e^x$; $R^+ \to R$ and $g(x) = \sin^{-1} x$; $[-1, 1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Find domain and range of fog(x)
Sol. Domain of $f(x)$: $(0, \infty)$ Range of $g(x)$: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
values in range of $g(x)$ which are accepted by $f(x)$ are $\left(0, \frac{\pi}{2}\right]$
 $\Rightarrow \qquad 0 < g(x) \le \frac{\pi}{2} \qquad \Rightarrow \qquad 0 < \sin^{-1}x \le \frac{\pi}{2} \qquad \Rightarrow \qquad 0 < x \le 1$
Hence domain of fog(x) is $x \in (0, 1]$
Therefore Domain : $(0, 1]$
Range : $(1, e^{x/2}]$
 $\begin{array}{c} (0, 1] \qquad \bigoplus \qquad 0 < x \le 1 \\ \text{Domain} \qquad = x^{-1} x =$

- **Ex. 10** Let $A = \{x : -1 \le x \le 1\} = B$ be a mapping $f : A \rightarrow B$. For each of the following functions from A to B, find whether it is surjective or bijective.
 - (A) f(x) = |x| (B) f(x) = x|x| (C) $f(x) = x^{3}$ (D) f(x) = [x] (E) $f(x) = \sin \frac{\pi x}{2}$

Sol. (A) f(x) = |x|

Graphically;

Which shows many one, as the straight line is parallel to x-axis and cuts at two points. Here range for $f(x) \in [0, 1]$ Which is clearly subset of co-domain i.e., $[0, 1] \subseteq [-1, 1]$ Thus, into.

Hence, function is many-one-into

.. Neither injective nor surjective

(B)
$$f(x) = x |x| = \begin{cases} -x^2, & -1 < x < 0 \\ x^2, & 0 x < 1 \end{cases}$$

Graphically,

The graph shows f(x) is one-one, as the straight line parallel to x-axis cuts only at one point. Here, range

Thus, range = co-domain Hence, onto. Therefore, f(x) is one-one onto or (Bijective).

(C)

 $f(x) = x^3$,

Graphically; Graph shows f(x) is one-one onto (i.e. Bijective)

[as explained in above example]

(D)

Graphically;

f(x) = [x],

Which shows f(x) is many-one, as the straight line parallel to x-axis meets at more than one point.

$$\begin{array}{c} 2 \\ -2 \\ -2 \\ -1 \\ -2 \end{array}^{Y} \\ 0 \\ -1 \\ -2 \end{array} \\ X$$

Here, range

$$f(x) \in \{-1, 0, 1\}$$

which shows into as range \subseteq co-domain Hence, many-one-into (E) $f(x) = \sin \theta$

Graphically;

Which shows f(x) is one-one and onto as range = co-domain.

Therefore, f(x) is bijective.

Ex. 11 Composition of piecewise defined functions :

If $\begin{aligned} f(x) &= ||x-3|-2| & 0 \le x \le 4 \\ g(x) &= 4 - |2-x| & -1 \le x \le 3 \end{aligned}$ then find fog(x) and draw rough sketch of fog(x).

Sol. $f(x) = ||x-3|-2| 0 \le x \le 4$

$\left[\left \mathbf{x} - 1 \right] \right]$	$0 \le x \le 3$		$\int 1 - x$	$0 \le x < 1$
$=\begin{cases} \mathbf{x} - \mathbf{x} \\ \mathbf{x} - \mathbf{y} \end{cases}$	$3 \le y \le A$	=	x -1	$1 \le x < 3$
	$J \ge \Lambda \ge T$		5-x	$3 \le x \le 4$

$$g(x) = 4 - |2 - x|$$
 $-1 \le x \le 3$

$$=\begin{cases} 4-(2-x) & -1 \le x < 2\\ 4-(x-2) & 2 \le x \le 3 \end{cases} =\begin{cases} 2+x & -1 \le x < 2\\ 6-x & 2 \le x \le 3 \end{cases}$$

$$\therefore \qquad \text{fog } (x) = \begin{cases} 1 - g(x) & 0 \le g(x) < 1 \\ g(x) - 1 & 1 \le g(x) < 3 \\ 5 - g(x) & 3 \le g(x) \le 4 \end{cases} = \begin{cases} 1 - (2 + x) & 0 \le 2 + x < 1 & \text{and} & -1 \le x < 2 \\ 2 + x - 1 & 1 \le 2 + x < 3 & \text{and} & -1 \le x < 2 \\ 5 - (2 + x) & 3 \le 2 + x \le 4 & \text{and} & -1 \le x < 2 \\ 1 - 6 + x & 0 \le 6 - x < 1 & \text{and} & 2 \le x \le 3 \\ 6 - x - 1 & 1 \le 6 - x < 3 & \text{and} & 2 \le x \le 3 \\ 5 - 6 + x & 3 \le 6 - x \le 4 & \text{and} & 2 \le x \le 3 \end{cases}$$

$$=\begin{cases} -1-x & -2 \le x < -1 & \text{and} & -1 \le x < 2 \\ 1+x & -1 \le x < 1 & \text{and} & -1 \le x < 2 \\ 3-x & 1 \le x \le 2 & \text{and} & -1 \le x < 2 \\ x-5 & -6 \le -x < -5 & \text{and} & 2 \le x \le 3 \\ 5-x & -5 \le -x < -3 & \text{and} & 2 \le x \le 3 \\ x-1 & -3 \le -x \le -2 & \text{and} & 2 \le x \le 3 \end{cases} = \begin{cases} -1-x & -2 \le x < -1 & \text{and} & -1 \le x < 2 \\ 1+x & -1 \le x < 1 & \text{and} & -1 \le x < 2 \\ 3-x & 1 \le x \le 2 & \text{and} & -1 \le x < 2 \\ 3-x & 1 \le x \le 2 & \text{and} & -1 \le x < 2 \\ x-5 & 5 < x \le 6 & \text{and} & 2 \le x \le 3 \\ 5-x & 3 < x \le 5 & \text{and} & 2 \le x \le 3 \\ x-1 & -3 \le -x \le -2 & \text{and} & 2 \le x \le 3 \end{cases}$$

$$= \begin{cases} 1+x & -1 \le x < 1 \\ 3-x & 1 \le x < 2 \\ x-1 & 2 \le x \le 3 \end{cases}$$

Ex. 12 (i) Find whether f(x) = x + cos x is one-one.
(ii) Identify whether the function f(x) = -x³ + 3x² - 2x + 4 for f: R → R is ONTO or INTO
(iii) f(x) = x² - 2x + 3; [0, 3] → A. Find whether f(x) is injective or not. Also find the set A, if f(x) is surjective.

Sol. (i) The domain of f(x) is R. $f'(x) = 1 - \sin x$.

:. $f'(x) \ge 0 \forall x \in complete domain and equality holds at discrete points only$

 \therefore f(x) is strictly increasing on R. Hence f(x) is one-one.

(ii) As range \equiv codomain, therefore given function is ONTO

(iii)
$$f'(x) = 2(x-1); 0 \le x \le 3$$

:. $f'(x) = \begin{cases} -ve ; 0 \le x < 1 \\ +ve ; 1 < x < 3 \end{cases}$

(D)4

f(x) is non monotonic. Hence it is not injective.
 For f(x) to be surjective, A should be equal to its range. By graph range is [2, 6]
 ∴ A ≡ [2, 6]

Ex.13 If f be the greatest integer function and g be the modulus function, then $(gof)\left(-\frac{5}{3}\right) - (fog)\left(-\frac{5}{3}\right) =$

(A) 1 (B) -1 (C) 2

Sol. Given
$$(gof)\left(\frac{-5}{3}\right) - (fog)\left(\frac{-5}{3}\right) = g\left\{f\left(\frac{-5}{3}\right)\right\} - f\left\{g\left(\frac{-5}{3}\right)\right\} = g(-2) - f\left(\frac{5}{3}\right) = 2 - 1 = 1$$
 Ans.(A)

Ex. 14 Show that $\log \left(x + \sqrt{x^2 + 1}\right)$ is an odd function.

Sol. Let $f(x) = \log \left(x + \sqrt{x^2 + 1} \right)$. Then $f(-x) = \log \left(-x + \sqrt{(-x)^2 + 1} \right)$ $= \log \left(\frac{\left(\sqrt{x^2 + 1} - x \right) \left(\sqrt{x^2 + 1} + x \right)}{\sqrt{x^2 + 1} + x} \right) = \log \frac{1}{\sqrt{x^2 + 1} + x} = -\log \left(x + \sqrt{x^2 + 1} \right) = -f(x)$

or f(x) + f(-x) = 0

Hence f(x) is an odd function.

- **Ex. 15** Show that $\cos^{-1} x$ is neither odd nor even.
- Sol. Let $f(x) = \cos^{-1}x$. Then $f(-x) = \cos^{-1}(-x) = \pi \cos^{-1}x$ which is neither equal to f(x) nor equal to -f(x). Hence $\cos^{-1}x$ is neither odd nor even

Ex.161 Which of the following functions is (are) even, odd or neither :

(i) $f(x) = x^2 \sin x$ (ii) $f(x) = \sqrt{1 + x + x^2} - \sqrt{1 - x + x^2}$ (iii) $f(x) = \log\left(\frac{1 - x}{1 + x}\right)$ (iv) $f(x) = \sin x - \cos x$ (v) $f(x) = \frac{e^x + e^{-x}}{2}$

Sol. (i)
$$f(-x) = (-x)^2 \sin(-x) = -x^2 \sin x = -f(x)$$
.
(ii) $f(-x) = \sqrt{1 + (-x) + (-x)^2} - \sqrt{1 - (-x) + (-x)^2}$
 $= \sqrt{1 - x + x^2} - \sqrt{1 + x + x^2} = -f(x)$.
Hence $f(x)$ is odd.
 $(1 - (-x))$ $(1 + x)$

(iii)
$$f(-x) = \log\left(\frac{1-(-x)}{1+(-x)}\right) = \log\left(\frac{1+x}{1-x}\right) = -f(x).$$

TI	amaa	£	()	1.	ad.	Л
П	lence	1	(X)	15	ou	u
			× 7			

(iv) f(-x) = sin(-x) - cos(-x) = -sinx - cosx.

Hence f(x) is neither even nor odd.

(v)
$$f(-x) = \frac{e^{-x} + e^{-(-x)}}{2} = \frac{e^{-x} + e^{x}}{2} = f(x).$$
 Hence $f(x)$ is even

Ex. 17 Let
$$f: \mathbb{R} \to \mathbb{R}$$
 be defined by $f(x) = (e^x - e^{-x})/2$. Is $f(x)$ invertible ? If so, find its inverse.

Sol. Let us check for invertibility of
$$f(x)$$
:

(A) One-One :

Let
$$x_1, x_2 \in R \text{ and } x_1 < x_2$$

 $\Rightarrow e^{x_1} < e^{x_2}$ (Because base $e > 1$)(i)
Also $x_1 < x_2 \Rightarrow -x_2 < -x_1$
 $\Rightarrow e^{-x_2} < e^{-x_1}$ (Because base $e > 1$)(ii)
(i) + (ii) $\Rightarrow e^{x_1} + e^{-x_2} < e^{x_2} + e^{-x_1}$

$$\Rightarrow \qquad \frac{1}{2} \left(e^{x_1} - e^{-x_1} \right) < \frac{1}{2} \left(e^{x_2} - e^{-x_2} \right) \qquad \Rightarrow \qquad f(x_1) < f(x_2) \text{ i.e. f is one-one.}$$

(B) Onto :

As x tends to larger and larger values so does f(x) and when $x \to \infty$, $f(x) \to \infty$. Similarly as $x \to -\infty$, $f(x) \to -\infty$ i.e. $-\infty < f(x) < \infty$ so long as $x \in (-\infty, \infty)$ Hence the range of f is same as the set R. Therefore f(x) is onto. Since f(x) is both one-one and onto, f(x) is invertible. (C) To find f^{-1} :

Let f^{-1} be the inverse function of f, then by rule of identity $fof^{-1}(x) = x$

$$\frac{e^{f^{-1}(x)} - e^{-f^{-1}(x)}}{2} = x \implies e^{2f^{-1}(x)} - 2xe^{f^{-1}(x)} - 1 = 0$$

$$\Rightarrow \qquad e^{f^{-1}(x)} = \frac{2x \pm \sqrt{4x^2 + 4}}{2} \implies e^{f^{-1}(x)} = x \pm \sqrt{1 + x^2}$$

Since $e^{f^{-1}(x)} > 0$, hence negative sign is ruled out and

Hence
$$e^{f^{-1}(x)} = x + \sqrt{1 + x^2}$$

Taking logarithm, we have $f^{-1}(x) = \ell n(x + \sqrt{1 + x^2})$.

Ex.18 Find the periods (if periodic) of the following functions, where [.] denotes the greatest integer function (i) $f(x) = e^{ln(sinx)} + tan^3x - cosec(3x - 5)$ (ii) $f(x) = x - [x - b], b \in \mathbb{R}$

(iii)
$$f(x) = \frac{|\sin x + \cos x|}{|\sin x| + |\cos x|}$$
 (iv) $f(x) = \tan \frac{\pi}{2} [x]$

(v)
$$f(x) = cos(sinx) + cos(cosx)$$

(vi)
$$f(x) = \frac{(1 + \sin x)(1 + \sec x)}{(1 + \cos x)(1 + \cos ec x)}$$

(vii)
$$f(x) = e^{x - [x] + \cos \pi t + \cos 2\pi t + \dots + \cos n\pi t}$$

Sol.(i)
$$f(x) = e^{\ell n (\sin x)} + \tan^3 x - \csc(3x - 5)$$

Period of $e^{\ell n \sin x} = 2\pi$, $\tan^3 x = \pi$

$$\operatorname{cosec} (3x-5) = \frac{2\pi}{3}$$
$$\therefore \quad \operatorname{Period} = 2\pi$$

(ii)
$$f(x) = x - [x-b] = b + \{x-b\}$$

$$\therefore \quad \text{Period} = 1$$

(iii)
$$f(x) = \frac{|\sin x + \cos x|}{|\sin x| + |\cos x|}$$

Since period of $|\sin x + \cos x| = \pi$ and period of $|\sin x| + |\cos x|$ is $\frac{\pi}{2}$. Hence f(x) is periodic with π as its period

(iv)
$$f(x) = \tan \frac{\pi}{2} [x]$$
$$\tan \frac{\pi}{2} [x+T] = \tan \frac{\pi}{2} [x] \implies \frac{\pi}{2} [x+T] = n\pi + \frac{\pi}{2} [x]$$
$$\therefore T = 2$$
$$\therefore \text{ Period} = 2$$

(v) Let f(x) is periodic then f(x + T) = f(x)

 $\Rightarrow \qquad \cos(\sin(x+T)) + \cos(\cos(x+T)) = \cos(\sin x) + \cos(\cos x)$

If x = 0 then $\cos(\sin T) + \cos(\cos T) = \cos(0) + \cos(1) = \cos\left(\cos\frac{\pi}{2}\right) + \cos\left(\sin\frac{\pi}{2}\right)$

On comparing T = $\frac{\pi}{2}$

(vi)
$$f(x) = \frac{(1+\sin x)(1+\sec x)}{(1+\cos x)(1+\cos ec x)} = \frac{(1+\sin x)(1+\sec x)}{(1+\cos x)(1+\cos ec x)}$$

 $\Rightarrow f(x) = \tan x$ Hence f(x) has period π .

(vii) $f(x) = e^{x - [x] + |\cos \pi x| + |\cos 2\pi x| + \dots + |\cos n\pi|}$

Period of x - [x] = 1Period of $|\cos \pi x| = 1$

Period of $|\cos 2\pi x| = \frac{1}{2}$ Period of $|\cos n\pi x| = \frac{1}{2}$

So period of f(x) will be L.C.M. of all period = 1

Ex.19 Find the periods (if periodic) of the following functions, where [.] denotes the greatest integer function

(i)
$$f(x) = e^{x - [x]} + \sin x$$
 (ii) $f(x) = \sin \frac{\pi x}{\sqrt{2}} + \cos \frac{\pi x}{\sqrt{3}}$

(iii)
$$f(x) = \sin \frac{\pi x}{\sqrt{3}} + \cos \frac{\pi x}{2\sqrt{3}}$$

Sol.(i) Period of $e^{x-[x]} = 1$

period of sinx = 2π

- : L.C.M. of rational and an irrational number does not exist.
- :. not periodic.

(ii) Period of
$$= \sin \frac{\pi x}{\sqrt{2}} = \frac{2\pi}{\pi/\sqrt{2}} = 2\sqrt{2}$$

Period of = $\cos \frac{\pi x}{\sqrt{3}} = \frac{2\pi}{\pi / \sqrt{3}} = 2\sqrt{3}$

: L.C.M. of two different kinds of irrational number does not exist.

... not periodic.

(iii) Period of
$$\sin \frac{\pi x}{\sqrt{3}} = \frac{2\pi}{\pi / \sqrt{3}} = 2\sqrt{3}$$

Period of $\cos \frac{\pi x}{2\sqrt{3}} = \frac{2\pi}{\pi/2\sqrt{3}} = 4\sqrt{3}$

- : L.C.M. of two similar irrational number exist.
- \therefore Periodic with period = $4\sqrt{3}$ Ans.
- **20.(i)** Let $f(x) = x^2 + 2x$; $x \ge -1$. Draw graph of $f^{-1}(x)$ also find the number of solutions of the equation, $f(x) = f^{-1}(x)$
- (ii) If $y = f(x) = x^2 3x + 1$, $x \ge 2$. Find the value of g'(1) where g is inverse of f

 $f(x) = f^{-1}(x) \text{ is equivalent to } f(x) = x$ $\Rightarrow \quad x^2 + 2x = x \quad \Rightarrow \quad x(x+1) = 0 \quad \Rightarrow \quad x = 0, -1$ Hence two solution for $f(x) = f^{-1}(x)$

(iv)

y=1 $\Rightarrow x^2-3x+1=1$ $\Rightarrow x(x-3)=0 \Rightarrow x=0,3$ But $x \ge 2$ \therefore x=3Now g(f(x)) = x

Differentiating both sides w.r.t. x

$$\Rightarrow g'(f(x)). f'(x) = 1 \qquad \Rightarrow \qquad g'(f(x)) = \frac{1}{f'(x)}$$
$$\Rightarrow g'(f(3)) = \frac{1}{f'(3)} \qquad \Rightarrow \qquad g'(1) = \frac{1}{6-3} = \frac{1}{3} \qquad (As f'(x) = 2x - 3)$$

Ex.21 Find $f(x) = \max \{1 + x, 1 - x, 2\}$.

Sol. From the graph it is clear that

$$f(x) = \begin{cases} 1-x \; ; \; x < -1 \\ 2 \; ; \; -1 \le x \le 1 \\ 1+x \; ; \; x > 1 \end{cases}$$

Ex.22 Draw the graph of y = |2 - |x - 1||.

Sol.

<mark>У</mark>↑

(-1,0)

(0,1

(0,0)

y=2

(1,0)

Ex.23 Draw the graph of $f(x) = \cos x \cos(x+2) - \cos^2(x+1)$.

Sol. $f(x) = \cos x \cos(x+2) - \cos^2(x+1)$

$$= \frac{1}{2} [\cos(2x+2) + \cos 2] - \frac{1}{2} [\cos(2x+2) + 1]$$

$$= \frac{1}{2} \cos 2 - \frac{1}{2} < 0$$

$$\frac{\frac{1}{2} \cos 2 - \frac{1}{2}}{\sqrt{2} \cos 2 - \frac{1}{2}} < 0$$

♠

9.	The greatest value of the function $f(x) = (\sin^{-1} x)^3 + (\cos^{-1} x)^3$ is:				
	(A) $\frac{\pi^3}{32}$	(B) $\frac{\pi^3}{8}$	(C) $\frac{3\pi^3}{8}$	(D) $\frac{7\pi^3}{8}$	
10.	The range of the function	$f(x) = e^{x} - e^{-x}$, is -			
	(A) [0,∞)	(B) $(-\infty, 0)$	(C) $(-\infty,\infty)$	(D) none	
11.	The range of the function	$f(x) = {}^{7-x}P_{x-3}$, is -			
	(A) {1,2,3}	(B) {1, 2, 3, 4, 5, 6}	(C) {1,2,3,4}	(D) {1,2,3,4,5}	
12.	If $f(x) = 2[x] + \cos x$, th (A) one-one and onto (C) many-one and into	en f: $R \rightarrow R$ is: (where []]	denotes greatest integer fu(B) one-one and into(D) many-one and onto	unction)	
13.	$f: [-1, 1] \rightarrow [-1, 2], f(x)$	= x + x , is -			
	(A) one-one onto	(B) one-one into	(C) many one onto	(D) many one into	
14.	Let $f: R \to R$ be a function (A) one-one and onto	n such that f(0) = 1 and for a (B) one-one but not onto	any $x, y \in R$, $f(xy+1) = f(x)$ (C) many one but onto	(b) $f(y) - f(y) - x + 2$. Then f is (b) many one and into	
15.	Let f: R R be a function d	efined by $f(x) = \frac{x^2 - 3x + 4}{x^2 + 3x + 4}$	$\frac{1}{4}$ then f is -		
	(A) one – one but not ont	0	(B) onto but not one – or	ne	
	(C) onto as well as one –	one	(D) neither onto nor one	– one	
16.	Which one of the following	ng pair of functions are iden	ntical?		
	(A) $e^{(\ell nx)/2}$ and \sqrt{x}				
	(B) $\tan^{-1}(\tan x)$ and $\cot^{-1}($	$\cot x$)			
		x + COS X			
	(D) $a \frac{ X }{x}$ and sgn (x), wh	ere sgn(x) stands for signuments of the sign of the si	m function.		
17.	If $f(x) = \cos\left[\frac{1}{2}\pi^2\right] x + \sin \theta$	$x\left[\frac{1}{2}\pi^2\right]$, [x] denoting the g	greatest integer function, th	en -	
	(A) $f(0) = 0$	(B) $f\left(\frac{\pi}{3}\right) = \frac{1}{4}$	(C) $f\left(\frac{\pi}{2}\right) = 1$	$\textbf{(D)} \mathbf{f}(\pi) = 0$	
18.	If $f(x) = \cos(\log x)$, then for	(x) $f(y) - \frac{1}{2} [f(x/y) + f(xy)]$	is equal to -		
	(A)-1	(B) 1/2	(C) –2	(D) 0	
19.	The value of b and c for w	which the identity $f(x+1) -$	f(x) = 8x + 3 is satisfied, v	where $f(x) = bx^2 + cx + d$, are –	
	(A) $b=2, c=1$	(B) $b = 4, c = -1$	(C) $b = -1, c = 4$	(D) $b = -1, c = 1$	

MATHS FOR JEE MAIN & ADVANCED

20.	If $f(x) = \frac{4a-7}{3}x^3 + (a-4)x^3 + (a-4)$	3) $x^2 + x + 5$ is a one-one fi	unction, then	
	$(\mathbf{A}) \ 2 \le \mathbf{a} \le 8$	(B) $1 \le a \le 2$	(C) $0 \le a \le 1$	(D) None of these
21.	Let $f : R \rightarrow R$ be a function (A) f is a bijection (C) f is a surjection	on defined by then -	(B) f is an injection only(D) f is neither injection r	nor a surjection
22.	If $f(\mathbf{x}) = {\mathbf{x}} + {\mathbf{x}} + 1} + {\mathbf{x}}$	$x+2$ }{x+99}, then the	value of $[f(\sqrt{2})]$ is, where	{.} denotes fractional part function
	& [.] denotes the greatest (A) 5050	integer function (B) 4950	(C) 41	(D) 14
23.	The minimum value of f(x	= 3-x + 2+x + 5	$-\mathbf{x}$ is -	
	(A) 0	(B) 7	(C) 8	(D) 10
24.	If the function $f : R \to A$	given by $f(x) = \frac{x^2}{x^2 + 1}$ is	a surjection, then A =	
	(A) R	(B) [0, 1]	(C) (0, 1]	(D) [0, 1)
25.	The fundamental period of function, is :	of function $f(x) = [x] + \left[x + \right]$	$\left[\frac{1}{3}\right] + \left[x + \frac{2}{3}\right] - 3x + 15, w$	where [.] denotes greatest integer
	(A) $\frac{1}{3}$	(B) $\frac{2}{3}$	(C) 1	(D) non-periodic
26.	$f(x) = x-1 $, $f: R^+ \rightarrow$ range respectively are: (A) $(0, \infty)$ and $[0, \infty)$	R, $g(x) = e^x$, $g: [-1, \infty)$ -	\rightarrow R. If the function fog (x) (B) $[-1, \infty)$ and $[0, \infty)$) is defined, then its domain and
	[1] (0, 1) and [0, 1)		[b][1 , 1]	
	(C) $[-1, \infty)$ and $\left\lfloor 1 - \frac{1}{e} \right\rfloor$		(D) $[-1, \infty)$ and $\begin{bmatrix} \frac{1}{e} - 1 \\ e \end{bmatrix}$	
27.	Let $f : R \to R$ be a function	on defined by $f(x) = \frac{e^{ x } - e}{e^x + e^x}$	$\frac{-x}{-x}$ then -	
	(A) f is a bijection		(B) f is an injection only	
	(C) f is a surjection		(D) f is neither injection n	or a surjection
28.	Let $f: (2, 4) \rightarrow (1, 3)$ be a then $f^{-1}(x)$ is equal to :	function defined by $f(x) =$	$= x - \left[\frac{x}{2}\right]$ (where [.] denote	es the greatest integer function),

(A) 2x (B) $x + \left[\frac{x}{2}\right]$ (C) x + 1 (D) x - 1

29. The mapping f: R→R given by f(x) = x³ + ax² + bx + c is a bijection if
(A) b² ≤ 3a (B) a² ≤ 3b (C) a² ≥ 3b (D) b² ≥ 3a
30. The period of the function f(x) = sin
$$\left(\cos \frac{x}{2}\right)$$
 +cos(sinx) equal-
(A) $\frac{\pi}{2}$ (B) 2π (C) π (D) 4π
31. Let $f(x) = \sin \sqrt{|a|} x$ (where [] denotes the greatest integer function). If f is periodic with fundamental period π, then a belongs to -
(A) [2, 3) (B) [4, 5] (C) [4, 5] (D) [4, 5)
32. Which of the following function has a period of 2π ?
(A) $f(x) = sin \left(2\pi x + \frac{\pi}{3}\right) + 2sin \left(3\pi x + \frac{\pi}{4}\right) + 3sin 5\pi x$ (B) $f(x) = sin \frac{\pi x}{3} + sin \frac{\pi x}{4}$
(C) $f(x) = sin x + cos 2x$ (D) none
33. A function whose graph is symmetrical about the origin is given by -
(A) $f(x) = e^x + e^x$ (B) $f(x) = sin(sin(cos(sinx)))$
(C) $f(x + y) = f(x) + f(y)$ (D) sinx + sin|x|
34. If f: R→R is a function satisfying the property $f(x+1) + f(x+3) =$ then the period of $f(x)$ is -
(A) 4 (B) K (C) 1 (D) π
35. If $f(x)=3x-5$, then f⁻¹(x)-
(A) is given by $\frac{1}{3x-5}$ (B) is given by $\frac{x+5}{3}$
(C) does not exist because f is not one-one (D) does not exist because f is not onto
36. If the function f(1,∞) [1,∞) is defined by $f(x)=2^{x(x-1)}$, then f⁻¹(x) is -
(A) $\left(\frac{1}{2}\right)^{x(x-1)}$ (B) $\frac{1}{2}(1+\sqrt{1+4\log_2 x})$ (C) $\frac{1}{2}(1-\sqrt{1+4\log_2 x})$ (D) Not defined

Exercise # 2 Part # I [Multiple Correct Choice Type Questions] 1. Which of the functions defined below are NOT one-one function(s)? (A) $f(x) = 5(x^2 + 4), (x R)$ **(B)** g(x) = 2x + (1/x)(C) $h(x) = \ell n(x^2 + x + 1), (x R)$ (**D**) $f(x) = e^{-X}$ 2. Which of the following functions from Z to itself are NOT bijections ? (A) $f(x) = x^3$ (**D**) $f(x) = x^2 + x$ **(B)** f(x) = x + 2(C) f(x) = 2x + 1If $f(x) = \sin \ell n \left(\frac{\sqrt{4-x^2}}{1-x} \right)$, then 3. (A) domain of f(x) is (-2, 1)**(B)** domain of f(x) is [-1, 1](C) range of f(x) is [-1, 1](D) range of f(x) is [-1, 1)The function cot(sinx) -4. (A) is not defined for $x = (4n + 1)\frac{\pi}{2}$ **(B)** is not defined for $x = n\pi$ (C) lies between -cot1 and cot1 (D) can't lie between -cot1 and cot1 The graph of function f(x) is as shown, adjacently. Then the graph of $\frac{1}{f(|x|)}$ is -5. y = f(x)**(A) (B)** b **(C) (D)** b а

Which of the following function(s) is/are periodic ? 6. (A) f(x) = 3x - [3x]**(B)** $g(x) = sin(1/x), x \ 0 \& g(0) = 0$ (C) $h(x) = x \cos x$ (D) w(x) = sin(sin(sinx))The fundamental period of $\frac{|\sin x| + |\cos x|}{|\sin x - \cos x| + |\sin x + \cos x|}$ is -7. (D) $\frac{2\pi}{3}$ (B) $\frac{\pi}{2}$ **(A)** π **(C)** 2π The range of the function $f(x) = \sin \left| \log \left(\frac{\sqrt{4 - x^2}}{1 - x} \right) \right|$ is -8. **(B)** (-1, 1) **(C)** [-1, 1) **(A)** [-1,1] (D) cannot be determined If $F(x) = \frac{\sin \pi [x]}{\{x\}}$, then F(x) is: (where $\{...\}$ denotes fractional part function and [...] denotes greatest integer 9. function and sgn (x) is a signum function) (A) periodic with fundamental period 1 (B) even (**D**) identical to sgn $\left(\frac{\operatorname{sgn} \frac{\{x\}}{\sqrt{\{x\}}}}{\sqrt{\{x\}}} \right) - 1$ (C) range is singleton 10. In the following functions defined from [-1, 1] to [-1, 1], then functions which are not bijective are (B) $\frac{2}{\pi} \sin^{-1}(\sin x)$ (A) $\sin(\sin^{-1}x)$ (C) (sgn x) $\ell n e^x$ **(D)** x^3 sgn x 11. Let $f: [-1, 1] \rightarrow [0, 2]$ be a linear function which is onto, then f(x) is/are (A) 1 - x**(B)** 1 + x(C) x - 1**(D)** x + 212. Which of the following functions are not homogeneous ? (A) $x + y \cos \frac{y}{x}$ (B) $\frac{xy}{x+y^2}$ (C) $\frac{x - y \cos x}{y \sin x + y}$ (D) $\frac{x}{y} \ln \left(\frac{y}{x}\right) + \frac{y}{x} \ln \left(\frac{x}{y}\right)$ Given the function $f(x) 2f(x) + xf\left(\frac{1}{x}\right) - 2f\left(\left|\sqrt{2}\sin \pi \left(x + \frac{1}{4}\right)\right|\right) = 4\cos^2\frac{\pi x}{2} + x\cos\frac{\pi}{x}$ such that , then which 13. one of the following is correct? (B) f(1) = -1, but the values of f(2), f(1/2) cannot be determined (A) f(2) + f(1/2) = 1(C) f(2) + f(1) = f(1/2)**(D)** f(2) + f(1) = 0The function $f(x) = \sqrt{\log_{x^2}(x)}$ is defined for x belonging to -14. (A) $(-\infty, 0)$ **(B)** (0, 1) (C) $(1, \infty)$ (D) $(0,\infty)$

15. If f(x + ay, x - ay) = axy then f(x, y) is equal to -

(A)
$$\frac{x^2 - y^2}{4}$$
 (B) $\frac{x^2 + y^2}{4}$ (C) 4xy (D) none

16. Which of following pairs of functions are identical.

(A)
$$f(x) = e^{\ln \sec^{-1} x}$$
 and $g(x) = \sec^{-1} x$
(B) $f(x) = \tan(\tan^{-1} x)$ and $g(x) = \cot(\cot^{-1} x)$
(C) $f(x) = \operatorname{sgn}(x)$ and $g(x) = \operatorname{sgn}(\operatorname{sgn}(x))$
(D) $f(x) = \cot^2 x \cdot \cos^2 x$ and $g(x) = \cot^2 x - \cos^2 x$

17. Let
$$f(x) = \left(\frac{1-x}{1+x}\right), 0 \le x \le 1 \text{ and } g(x) = 4x (1-x), 0 \le x \le 1, \text{ then}$$

(A) $fog = \frac{1-4x+4x^2}{1+4x-4x^2}, 0 \le x \le 1$
(B) $fog = \frac{1-4x-4x^2}{1+4x-4x^2}, \frac{1}{2} \le x \le 1$
(C) $gof = \frac{8x(1-x)}{(1+x)^2}, 0 \le x \le 1$
(D) $gof = \frac{8x(1+x)}{(1+x)^2}, 0 \le x \le 1$

18. Function $f(x) = \sin x + \tan x + \operatorname{sgn} (x^2 - 6x + 10)$ is (A) periodic with period 2π (C) Non-periodic

(B) periodic with period π
(D) periodic with period 4π

19. Which of the functions are even -

(A)
$$\log\left(\frac{1+x^2}{1-x^2}\right)$$
 (B) $\sin^2 x + \cos^2 x$ (C) $\log\left(\frac{1+x^3}{1-x^3}\right)$ (D) $\frac{(1+2^x)^2}{2^x}$

20. Let $D \equiv [-1, 1]$ is the domain of the following functions, state which of them are injective. (A) $f(x) = x^2$ (B) $g(x) = x^3$ (C) $h(x) = \sin 2x$ (D) $k(x) = \sin (\pi x/2)$

21. The period of the function $f(x) = \sin^4 3x + \cos^4 3x$ is: (A) $\pi/6$ (B) $\pi/3$ (C) $\pi/2$ (D) $\pi/12$

22. Which of the following functions are aperiodic (where [.] denotes greatest integer function) (A) y = [x + 1] (B) $y = \sin x^2$ (C) $y = \sin^2 x$ (D) $y = \sin^{-1} x$

23. If f: $\mathbf{R} \to [-1, 1]$, where f(x) = sin $\left(\frac{\pi}{2}[x]\right)$, (where [.] denotes the greatest integer function), then (A) f(x) is onto (B) f(x) is into (C) f(x) is periodic (D) f(x) is many one

- 24. Identify the statement(s) which is/are incorrect ?
 - (A) the function $f(x) = \cos(\cos^{-1} x)$ is neither odd nor even
 - (B) the fundamental period of $f(x) = \cos(\sin x) + \cos(\cos x)$ is π
 - (C) the range of the function $f(x) = \cos(3 \sin x)$ is [-1, 1]
 - (D) none of these

Part # II [Assertion & Reason Type Questions] These questions contains, Statement I (assertion) and Statement II (reason). (A) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I. (B) Statement-I is true, Statement-II is true; Statement-II is NOT a correct explanation for statement-I. (C) Statement-I is true, Statement-II is false. (D) Statement-I is false, Statement-II is true. 1. **Statement-I**: Fundamental period of $\cos x + \cot x$ is 2π . **Statement-II**: If the period of f(x) is T₁ and the period of g(x) is T₂, then the fundamental period of f(x) + g(x) is the L.C.M. of T_1 and T_2 . **Statement - I** If y = f(x) is increasing in $[\alpha, \beta]$, then its range is $[f(\alpha), f(\beta)]$ 2. **Statement - II** Every increasing function need not to be continuous. 3. **Statement-I**: Function f(x) = sin(x + 3sinx) is periodic. **Statement-II**: If g(x) is periodic, then f(g(x)) may or may not be periodic. **Statement : I :** All points of intersection of y = f(x) and $y = f^{-1}(x)$ lies on y = x only. **4**. **Statement : II :** If point P(α , β) lies on y = f(x), then Q(β , α) lies on y = f⁻¹(x).

5. Let function $f : \mathbb{R} \to \mathbb{R}$ is such that f(x) f(y) - f(xy) = x + y for all $x, y \in \mathbb{R}$ Statement-I: f(x) is a Bijective function. Statement-II: f(x) is a linear function.

Exercise # 3 Part # I [Matrix Match Type Questions]

Following questions contains statements given in two columns, which have to be matched. The statements in **Column-I** are labelled as A, B, C and D while the statements in **Column-II** are labelled as p, q, r and s. Any given statement in **Column-I** can have correct matching with one statement in **Column-II**.

1. Let $f(x) = \sin^{-1} x$, $g(x) = \cos^{-1} x$ and $h(x) = \tan^{-1} x$. For what complete interval of variation of x the following are true. Column – I
Column – II

(A)	$f\left(\sqrt{x}\right) + g\left(\sqrt{x}\right) = \pi/2$	(p)	$[0,\infty)$
------------	---	------------	--------------

(B) $f(x) + g(\sqrt{1-x^2}) = 0$ (q) [0,1]

(C)
$$g\left(\frac{1-x^2}{1+x^2}\right) = 2h(x)$$
 (r) $(-\infty, 1)$

(**b**)
$$h(x) + h(1) = h\left(\frac{1+x}{1-x}\right)$$
 (s) [-1,0]

2.	Colur	Column - I		
	(A)	Total number of solution $x^2 - 4 - [x] = 0$	(p)	0
		where [] denotes greatest integer function.		
	(B)	Minimum period of $e^{\cos^4\pi x + \cos^2\pi x + x - [x]}$	(q)	1
	(C)	If $A = \{(x, y); y = \frac{1}{x}, x \in R_0\}$ and	(r)	2
		$B = \{(x, y) : y = x, x \in R\} \text{ then number of }$		
		elements in $A \cap B$ is (are)		
	(D)	Number of integers in the domain of	(\$)	3
		$\sqrt{2^x - 3^x} + \log_3 \log_{1/2} x$		

3.	Colur	nn–I	Colur	nn – II
	(A)	The period of the function	(p)	1/2
		$y = \sin (2\pi t + \pi/3) + 2\sin (3\pi t + \pi/4) + 3\sin 5\pi t \text{ is}$		
	(B)	$y = {sin (\pi x)}$ is a many one function for $x \in (0, a)$,	(q)	8
		where $\{x\}$ denotes fractional part of x, then a may be		
	(C)	The fundamental period of the function		
		$y = \frac{1}{2} \left(\frac{ \sin(\pi/4)x }{\cos(\pi/4)x} + \frac{\sin(\pi/4)x}{ \cos(\pi/4)x } \right) $ is	(r)	2
	(D)	If $f: [0, 2] \rightarrow [0, 2]$ is bijective function defined by $f(x) = ax^2 + bx + c$,	(s)	0

where a, b, c are non-zero real numbers, then f(2) is equal to

4.		Column - I	Column	- II
	(A)	$f: \mathbf{R} \to \mathbf{R}$ $f(\mathbf{x}) = (\mathbf{x} - 1)(\mathbf{x} - 2)\dots(\mathbf{x} - 11)$	(p)	one one
	(B)	$f: \mathbf{R} - \{-4/3\} \to \mathbf{R}$	(q)	onto
		$f(\mathbf{x}) = \frac{2x+1}{3x+4}$		
	(C)	$f: \mathbf{R} \to \mathbf{R}$ $f(\mathbf{x}) = e^{\sin x} + e^{-\sin x}$	(r)	many one
	(D)	$f: \mathbf{R} \to \mathbf{R}$ $f(\mathbf{x}) = \log(\mathbf{x}^2 + 2\mathbf{x} + 3)$	(s)	into

Part # II **Source** [Comprehension Type Questions]

Comprehension #1

	Given a function $f: A \rightarrow H$	B; where $A = \{1, 2, 3, 4, 5\}$ a	and $B = \{6, 7, 8\}$			
1.	Find number of all such f (A) 0	functions $y = f(x)$ which are (B) 3^5	one-one ?	(D) 5^{3}		
2.	Find number of all such f	unctions v = f(x) which are	onto	(-)-		
	(A) 243	(B) 93	(C) 150	(D) none of these		
3.	The number of mappings	of $g(x) : B \rightarrow A$ such that g	(i) \leq g(j) whenever i < j is			
	(A) 60	(B) 140	(C) 10	(D) 35		
	Comprehension # 2					
	If $f(\mathbf{x}) = \begin{cases} x+1, \\ 5-x^2, \end{cases}$	$\begin{array}{ll} if x \leq 1 \\ if x > 1 \end{array} \qquad \& \qquad \end{array}$	$g(x) = \begin{cases} x, & \text{if } x \le 1\\ 2-x, & \text{if } x > 1 \end{cases}$			
	On the basis of above inf	ormation, answer the follow	ving questions :			
1.	The range of $f(\mathbf{x})$ is - (A) $(-\infty, 4)$	(B) (−∞, 5)	(C) R	(D) (-∞, 4]		
2.	If $x \in (1, 2)$, then $g(f(x))$ is (A) $x^2 + 3$	s equal to - (B) $x^2 - 3$	(C) $5-x^2$	(D) 1-x		
3.	Number of negative integ	ral solutions of $g(f(x)) + 2 =$	= 0 are -			
	(A) 0	(B) 3	(C) 1	(D) 2		

Comprehension #3

Let $f: R \to R$ is a function satisfying f(2-x) = f(2+x) and f(20-x) = f(x), $\forall x \in R$. On the basis of above information, answer the following questions :

1. If f(0) = 5, then minimum possible number of values of x satisfying f(x) = 5, for $x \in [0, 170]$ is-(A)21 **(B)** 12 **(C)**11 **(D)**22

2. Graph of y = f(x) is -(A) symmetrical about x = 18**(B)** symmetrical about x = 5(C) symmetrical about x = 8**(D)** symmetrical about x = 20

3. If $f(2) \neq f(6)$, then (A) fundamental period of f(x) is 1 **(B)** fundamental period of f(x) may be 1 (C) period of f(x) can't be 1 (D) fundamental period of f(x) is 8

Comprehension #4

Let
$$f(x) = \frac{x^3}{3} + \frac{x^2}{2} + ax + b \quad \forall x \in R$$

- 1. Least value of 'a' for which f(x) is injective function, is
 - (A) $\frac{1}{4}$ (C) $\frac{1}{2}$ **(D)** $\frac{1}{8}$ **(B)**1
- 2. If a = -1, then f(x) is (A) bijective (B) many-one and onto (C) one-one and into (D) many– one and into

f(x) is invertible iff 3.

(A)
$$\mathbf{a} \in \left[\frac{1}{4}, \infty\right], \mathbf{b} \in \mathbb{R}$$

(B) $\mathbf{a} \in \left[\frac{1}{8}, \infty\right], \mathbf{b} \in \mathbb{R}$
(C) $\mathbf{a} \in \left(-\infty, \frac{1}{4}\right], \mathbf{b} \in \mathbb{R}$
(D) $\mathbf{a} \in \left(-\infty, \frac{1}{4}\right), \mathbf{b} \in \mathbb{R}$

Exercise # 4

[Subjective Type Questions]

1

1. Find the domain of definitions of the following functions :

(i)
$$f(x) = \sqrt{3 - 2^x - 2^{1-x}}$$

(ii)
$$f(x) = (x^2 + x + 1)^{-3/2}$$

(iii)
$$f(x) = \sqrt{\tan x - \tan^2 x}$$

- (iv) $f(x) = log_{10}(1 log_{10}(x^2 5x + 16))$
- (v) If $f(x) = \sqrt{x^2 5x + 4}$ & g(x) = x + 3, then find the domain of $\frac{f}{g}(x)$

(vi)
$$f(x) = \frac{1}{[x]} + \log_{1-\{x\}} (x^2 - 3x + 10) + \frac{1}{\sqrt{2 - |x|}} + \frac{1}{\sqrt{\sec(\sin x)}}$$

2. Find the range of the following functions :

(i)
$$f(x) = 1 - |x-2|$$
 (ii) $f(x) = \frac{1}{\sqrt{x-5}}$

(iii)
$$f(x) = \frac{1}{2 - \cos 3x}$$

(iv) $f(x) = \frac{x+2}{x^2 - 8x - 4}$
(v) $f(x) = \frac{x^2 - 2x + 4}{x^2 + 2x + 4}$
(vi) $f(x) = 3 \sin \sqrt{\frac{\pi^2}{16} - x^2}$
(vii) $f(x) = x^4 - 2x^2 + 5$
(viii) $f(x) = \sin^2 x + \cos^4 x$

3. Let f be a function such that f(3) = 1 and f(3x) = x + f(3x - 3) for all x. Then find the value of f(300).

4. Let
$$f(x) = \frac{9^x}{9^x + 3}$$
 then find the value of the sum $f\left(\frac{1}{2008}\right) + f\left(\frac{2}{2008}\right) + f\left(\frac{3}{2008}\right) + \dots + f\left(\frac{2007}{2008}\right)$

5. Examine whether the following functions are even or odd or neither even nor odd, where [] denotes greatest integer function.

(i)
$$f(x) = \frac{(1+2^x)^7}{2^x}$$
 (ii) $f(x) = \frac{\sec x + x^2 - 9}{x \sin x}$

(iii)
$$f(x) = \sqrt{1 + x + x^2} - \sqrt{1 - x + x^2}$$

(iv)
$$f(x) = \begin{cases} x \mid x \mid, & x \le -1 \\ [1+x] + [1-x], & -1 < x < 1 \\ -x \mid x \mid, & x \ge 1 \end{cases}$$

(v)
$$f(x) = \frac{2x (\sin x + \tan x)}{2 \left[\frac{x + 2\pi}{\pi} \right] - 3}$$

6. Find the fundamental period of the following functions :

(i)
$$f(x) = 1 - \frac{\sin^2 x}{1 + \cot x} - \frac{\cos^2 x}{1 + \tan x}$$

(ii) $f(x) = \tan \frac{\pi}{2} [x]$, where [.] denotes greatest integer function.

(iii)
$$f(x) = log (2 + cos 3 x)$$

- (iv) $f(x) = e^{\ln \sin x} + \tan^3 x \csc(3x-5)$
- (v) $f(x) = \sin x + \tan \frac{x}{2} + \sin \frac{x}{2^2} + \tan \frac{x}{2^3} + \dots + \sin \frac{x}{2^{n-1}} + \tan \frac{x}{2^n}$

(vi)
$$f(x) = \frac{\sin x + \sin 3x}{\cos x + \cos 3x}$$

7. Let
$$f(x) = \begin{cases} 1+x, & 0 \le x \le 2\\ 3-x, & 2 < x \le 3 \end{cases}$$
, then find (fof)(x).

- 8. Let $f: R \to R$ is a function satisfying f(10-x) = f(x) and $f(2-x) = f(2+x) \forall x \in R$. If f(0) = 101, then the minimum possible number of values of x satisfying $f(x) = 101 \forall x \in [0,25]$ is
- 9. Show if $f(x) = \sqrt[n]{a-x^n}$, x > 0 $n \ge 2$, $n \in N$, then (fof) (x) = x. Find also the inverse of f(x).
- 10. Let $f: N \to N$, where $f(x) = x + (-1)^{x-1}$, then find the inverse of f.

	Exercise # 5	Part # I	> [Previous Year Questions]	[AIEEE/JEE-M	[AIN]
1.	Which of the following is	s not a periodic	function-		[AIEEE 2002]
	(1) $\sin 2x + \cos x$	(2) $\cos \sqrt{x}$	(3) tan4x	(4) logcos2x	
2.	The period of $\sin^2 x$ is- (1) $\pi/2$	(2) π	(3) 3π/2	(4) 2π	[AIEEE 2002]
3.	The function $f: R \rightarrow R$ de (1) into	efined by $f(x) =$ (2) onto	sinx is- (3) one-one	(4) many-one	[AIEEE 2002]
4.	The range of the function	$f(x) = \frac{2+x}{2-x}, x$	≠ 2 is-		[AIEEE 2002]
	(1) R	(2) $R - \{-1\}$	(3) $R - \{1\}$	(4) $R - \{2\}$	
5.	The domain of $\sin^{-1} \left[\log \left(\frac{1}{2} \right) \right]$	$g_3\left(\frac{x}{3}\right)$			[AIEEE 2002]
	(1)[1,9]	(2)[-1,9]	(3)[-9,1]	(4) [-9, -1]	
6.	The function $f(x) = \log(x)$	$(+\sqrt{x^2+1})$, is-			[AIEEE 2003]
	(1) neither an even nor at(3) an odd function	n odd function	(2) an even function(4) a periodic function	L	
7.	Domain of definition of the	ne function f(x)	$=\frac{3}{4-x^2} + \log_{10}(x^3 - x), \text{ is-}$		[AIEEE 2003]
	$(1)(-1,0)\cup(1,2)\cup(2,\infty)$)	(2)(1,2)		
	(3) (−1, 0) ∪ (1, 2)		(4) $(1, 2) \cup (2, \infty)$		
8.	If $f: R \rightarrow R$ satisfies $f(x +$	$\mathbf{y}) = \mathbf{f}(\mathbf{x}) + \mathbf{f}(\mathbf{y})$, for all x, y \in R and f(1) = 7, then $\sum_{r=1}^{n}$	$\int_{-1}^{1} f(\mathbf{r}) \mathrm{is}$ -	[AIEEE 2003]
	(1) $\frac{7n(n+1)}{2}$	(2) $\frac{7n}{2}$	(3) $\frac{7(n+1)}{2}$	(4) 7n(n+1)	
9.	A function f from the set of	f natural numbo	ers to integers defined by $f(n) = \begin{cases} \frac{n-1}{2} \\ -\frac{n}{2} \end{cases}$	l -, when n is odd is - , when n is even	- [AIEEE 2003]
	(1) neither one-one nor of	onto	(2) one-one but not or	nto	
	(3) onto but not one-one		(4) one-one and onto	both	

MATHS FOR JEE MAIN & ADVANCED

10.	The domain of the function	$ on f(x) = \frac{\sin^{-1}(x-3)}{\sqrt{9-r^2}} $ is			[AIEEE 2004]
	(1)[1,2)	(2) [2, 3)	(3)[1,2]	(4) [2, 3]	
11.	The range of the function	$f(x) = {^{7-x}P_{x-3}}$ is-			[AIEEE 2004]
	(1) {1, 2, 3, 4, 5}	(2) {1, 2, 3, 4, 5, 6}	(3) {1, 2, 3}	(4) {1, 2, 3, 4}	
12.	If $f : \mathbb{R} \to \mathbb{S}$ defined by f	$f(x) = \sin x - \sqrt{3} \cos x + 1 \text{ is}$	onto, then the interval of S	is-	
					[AIEEE 2004]
	(1) [-1,3]	(2) [-1, 1]	(3) [0, 1]	(4) [0,−1]	
13.	Let $f: (-1, 1) \rightarrow B$, be a	function defined by $f(\mathbf{x}) =$	$\tan^{-1}\frac{2x}{1-x^2}$, then f is both	h one-one and on	to when B is the
	interval-				[AIEEE 2005]
	(1) $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	(2) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$	$(3) \left(0, \frac{\pi}{2}\right)$	$(4)\left[0,\ \frac{\pi}{2}\right)$	
14.	A real valued function $f($ constant and $f(0) = 1$, $f(2)$	x) satisfies the function equ (2a - x) is equal to	nation $f(\mathbf{x} - \mathbf{y}) = f(\mathbf{x})f(\mathbf{y}) - f(\mathbf{x})f(\mathbf{y})$	$f(\mathbf{a} - \mathbf{x})f(\mathbf{a} + \mathbf{y})$ w	here a is a given

(1)
$$f(1) + f(a - x)$$
 (2) $f(-x)$ (3) $-f(x)$ (4) $f(x)$

15. If x is real, the maximum value of $\frac{3x^2 + 9x + 17}{3x^2 + 9x + 7}$ is-

(1) 41 (2) 1 (3)
$$\frac{17}{7}$$
 (4) $\frac{1}{4}$

16. The largest internal lying in
$$\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$$
 for which the function is defined, $\left[f(x) = 4^{-x^2} + \cos^{-1}\left(\frac{x}{2} - 1\right) + \log(\cos x)\right]$ is [AIEEE 2007]

 $(1)\left(-\frac{\pi}{2},\frac{\pi}{2}\right) \qquad (2)\left[-\frac{\pi}{4},\frac{\pi}{2}\right) \qquad (3)\left[0,\frac{\pi}{2}\right) \qquad (4)\left[0,\pi\right]$

17.Let $f: R \to R$ be a function defined by $f(x) = Min \{x + 1, |x| + 1\}$. Then which of the following is true ?(1) f(x) is not differentiable at x = 1(2) f(x) is differentiable everywhere[AIEEE 2007](3) f(x) is not differentiable at x = 0(4) $f(x) \ge 1$ for all $x \in R$

[AIEEE 2008]

 $Y = \{y \in N : y = 4x + 3 \text{ for some } x \in N\}. \text{ So that f is invertible and its inverse is}$ $(1) g(y) = \frac{3y+4}{3} \qquad (2) g(y) = 4 + \frac{y+3}{4} \qquad (3) g(y) = \frac{y+3}{4} \qquad (4) g(y) = \frac{y-3}{4}$ $(4) g(y) = \frac{y-3}{4}$ $(1) g(y) = \frac{y-3}{4} \qquad (4) g(y) = \frac{y-3}{4}$ $(1) f \text{ is one-one and onto R} \qquad (2) f \text{ is neither one-one nor onto R}$ $(3) f \text{ is one-one but not onto R} \qquad (4) f \text{ is onto R but not one-one}$ $(2) Let f(x) = (x+1)^2 - 1, x - 1. \qquad [AIEEE 2009]$ $Statement-1: The set \{x : f(x) = f^{-1}(x)\} = \{0, -1\}.$ Statement-2: f is a bijection.

(1) Statement–1 is true, Statement–2 is false.

Let f: N Y be a function defined as f(x) = 4x + 3 where

18.

- (2) Statement–1 is false, Statement–2 is true.
- (3) Statement–1 is true, Statement–2 is true; Statement–2 is a correct explanation for Statement–1.
- (4) Statement-1 is true, Statement-2 is true ; Statement-2 is not a correct explanation for statement-1.
- 21. The domain of the function $f(x) = \frac{1}{\sqrt{|x| x}}$ is :- [AIEEE 2011]
 - (1) $(-\infty, 0)$ (2) $(-\infty, \infty) \{0\}$ (3) $(-\infty, \infty)$ (4) $(0, \infty)$

22. Let f be a function defined by $f(x) = (x-1)^2 + 1, (x \ge 1)$

Statement - 1 : The set $\{x : f(x) = f^{-1}(x)\} = \{1, 2\}$

Statement - 2: f is bijection and $f^{-1}(x) = 1 + \sqrt{x-1}$, $x \ge 1$.

- (1) Statement–1 is true, Statement–2 is false.
- (2) Statement–1 is false, Statement–2 is true.
- (3) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
- (4) Statement–1 is true, Statement–2 is true; Statement–2 is not a correct explanation for statement–1.

[AIEEE 2011]

If f: R \rightarrow R is a function defined by $f(x) = [x] \cos \pi \left(\frac{2x-1}{2}\right)$, where [x] denotes the greatest integer function, 23. then f is : [AIEEE 2012] (1) continuous only at x = 0. (2) continuous for every real x. (3) discontinuous only at x = 0. (4) discontinuous only at non-zero integral values of x. 24. If $X = \{4^n - 3n - 1 : n \in N\}$ and $Y = \{9(n - 1) : n \in N\}$, where N is the set of natural numbers, then $X \cup Y$ is equal to : (1)N (2) Y - X(3) X (4) Y [Main 2014] If $f(x) + 2f(\frac{1}{x}) = 3x$, $x \neq 0$ and $S = \{x \in R : f(x) = f(-x)\}$; then S: 25. [Main 2016] (1) contains exactly one element. (2) contains exactly two elements. (3) contains more than two elements. (4) is an empty set. 26. For $x \in R$, $f(x) = |\log 2 - \sin x|$ and g(x) = f(f(x)), then: [Main 2016] (1) $g'(0) = \cos(\log 2)$ (2) $g'(0) = -\cos(\log 2)$ (3) g is differentiable at x = 0 and $g'(0) = -\sin(\log 2)$ (4) g is not differentiable at x = 0[Previous Year Questions][IIT-JEE ADVANCED] Part # II 1. The domain of definition of the function, y(x) given by the equation, $2^{x} + 2^{y} = 2$ is : (A) $0 < x \le 1$ **(B)** $0 \le x \le 1$ $(\mathbf{C}) - \infty < x \le 0$ (D) $-\infty < x < 1$ [**JEE 2000**] 2. Given $x = \{1, 2, 3, 4\}$, find all one-one, onto mappings, $f: X \rightarrow X$ such that, f(1) = 1, $f(2) \neq 2$ and $f(4) \neq 4$. [**JEE 2000**] Let g(x) = 1 + x - [x] & $f(x) = \begin{cases} -1 , x < 0 \\ 0 , x = 0 \\ 1 , x > 0 \end{cases}$. Then for all x, f(g(x)) is equal to 3. [**JEE 2001**]

(A) x (B) 1 (C) f(x) (D) g(x)

where [] denotes the greatest integer function.

4. If
$$f:[1, \infty) \to [2, \infty)$$
 is given by, $f(x) = x + \frac{1}{x}$, then $f^{-1}(x)$ equals: [JEE 2001]

(A)
$$\frac{x + \sqrt{x^2 - 4}}{2}$$
 (B) $\frac{x}{1 + x^2}$ (C) $\frac{x - \sqrt{x^2 - 4}}{2}$ (D) $1 - \sqrt{x^2 - 4}$

The domain of definition of $f(x) = \frac{\log_2 (x + 3)}{x^2 + 3x + 2}$ is : 5. [**JEE 2001**] (A) $R \setminus \{-1, -2\}$ **(B)** $(-2,\infty)$ (C) $\mathbb{R} \setminus \{-1, -2, -3\}$ (D) $(-3, \infty) \setminus \{-1, -2\}$ Let $E = \{1, 2, 3, 4\}$ & $F = \{1, 2\}$. Then the number of onto functions from E to F is [**JEE 2001**] **6**. **(A)** 14 **(B)** 16 **(C)** 12 **(D)** 8 Let $f(x) = \frac{\alpha x}{x+1}$, $x \neq -1$. Then for what value of α is f(f(x)) = x? 7. **(B)** $-\sqrt{2}$ (A) $\sqrt{2}$ **(C)** 1 **(D)** – 1 [**JEE 2001**] Suppose $f(x) = (x + 1)^2$ for $x \ge -1$. If g(x) is the function whose graph is the reflection of the graph of f(x) with 8. respect to the line y = x, then g(x) equals -(A) $-\sqrt{x} - 1, x \ge 0$ (B) $\frac{1}{(1 + x)^2}, x \ge -1$ (C) $\sqrt{x + 1}, x \ge -1$ (D) $\sqrt{x} - 1, x \ge 0$ 9. Let function f: R \rightarrow R be defined by f(x) = 2x + sinx for x \in R. Then f is -(A) one to one and onto (B) one to one but not onto (C) onto but not one to one (D) neither one to one nor onto [JEE 2002] Range of the function $f(x) = \frac{x^2 + x + 2}{x^2 + x + 1}$ is -10. (C) $\left[2,\frac{7}{3}\right]$ (D) $\left[1,\frac{7}{3}\right]$ **(B)** [1, ∞) (A) [1, 2] [JEE 2003] Let $f(x) = \frac{x}{1+x}$ defined from $(0, \infty) \rightarrow [0, \infty)$, then by f(x) is -11. (A) one-one but not onto (B) one-one and onto (D) Many one and onto (C) Many one but not onto Let $f(x) = \sin x + \cos x$, $g(x) = x^2 - 1$. Thus g(f(x)) is invertible for $x \in$ 12. [**JEE 2004**] (A) $\begin{bmatrix} -\frac{\pi}{2}, 0 \end{bmatrix}$ (B) $\begin{bmatrix} -\frac{\pi}{2}, \pi \end{bmatrix}$ (C) $\begin{bmatrix} -\frac{\pi}{4}, \frac{\pi}{4} \end{bmatrix}$ (D) $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ If functions f(x) and g(x) are defined on $R \to R$ such that $f(x) = \begin{cases} 0, x \in rational \\ x, x \in irrational \end{cases}$, $g(x) = \begin{cases} 0, x \in irrational \\ x, x \in rational \end{cases}$, $g(x) = \begin{cases} 0, x \in rational \\ x, x \in rational \end{cases}$ 13. then (f-g)(x) is -(B) neither one-one nor onto (A) one-one and onto (C) one-one but not onto (D) onto but not one-one [**JEE 2005**]

MATHS FOR JEE MAIN & ADVANCED

14. Let f(x) = x² and g(x) = sinx for all x ∈ R. Then the set of all x satisfying
(f o g o g o f) (x) = (g o g o f) (x), where (f o g) (x) = f(g(x)), is-
[JEE 2011]
(A) ±√nπ, n ∈ {0,1,2,...}
(B) ±√nπ, n ∈ {1,2,...}
(C)
$$\frac{\pi}{2} + 2n\pi, n ∈ {..., -2, -1, 0, 1, 2,}
(D) $2n\pi, n ∈ {1,2,...}$
(D) $2n\pi, n ∈ {1,2,...}
(D) $2n\pi, n ∈ {1,2,...$$$

- (p) f_4 is
- (q) f_3 is
- (r) $f_2 \circ f_1$ is
- (s) f_2 is (4)
- (1) onto but not one-one
- (2) neither continuous nor one-one
- (3) differentiable but not one-one
 - (4) continuous and one-one

[JEE Ad. 2015]

Codes:

	р	q	r	S
(A)	3	1	4	2
(B)	1	3	4	2
(C)	3	1	2	4
(D)	1	3	2	4

20. Let
$$f(x) = \sin\left(\frac{\pi}{6}\sin\left(\frac{\pi}{2}\sin x\right)\right)$$
 for all $x \in R$ and $g(x) = \frac{\pi}{2} \sin x$ for all $x \in R$. Let (fog) (x) denote $f(g(x))$ and (gof) (x)

denote g(f(x)). Then which of the following is (are) true ?

(A) Range of f is
$$\left[-\frac{1}{2}, \frac{1}{2}\right]$$

(B) Range of f og is $\left[-\frac{1}{2}, \frac{1}{2}\right]$
(C) $\lim_{x \to 0} \frac{f(x)}{g(x)} = \frac{\pi}{6}$
(D) There is an $x \in \mathbb{R}$ such that (gof) (x) = 1

21. Let $f: R \to R$, $g: R \to R$ and $h: R \to R$ be differentiable functions such that $f(x) = x^3 + 3x + 2(12\alpha + 20)\frac{K^2}{2} = K^3$, g(f(x)) = x and h(g(g(x))) = x for all $x \in R$. Then [JEE Ad. 2016]

(A) $g'(2) = \frac{1}{15}$ (B) h'(1) = 666 (C) h(0) = 16 (D) h(g(3)) = 36

8. It is given that f(x) is a function defined on R, satisfying f(1) = 1 and for any $x \in R$ $f(x+5) \ge f(x)+5$ and $f(x+1) \le f(x)+1$ If g(x) = f(x)+1-x, then g(2013) equals (A) 2014 (B) 2013 (C) 1 (D) 0

9.The image of the interval [-1, 3] under the mapping specified by the function $f(x) = 4x^3 - 12x$ is :(A) [f(+1), f(-1)](B) [f(-1), f(3)](C) [-8, 16](D) [-8, 72]

10. Let f(x) = x (2 - x), $0 \le x \le 2$. If the definition of 'f' is extended over the set, R - [0, 2] by f(x - 2) = f(x), then 'f' is a: (A) periodic function of period 1 (B) non-periodic function

(C) periodic function of period 2 (D) periodic function of period 1/2

SECTION - II : MULTIPLE CORRECT ANSWER TYPE

11. Suppose f(x) = ax + b and g(x) = bx + a, where a and b are positive integers. If f(g(50)) - g(f(50)) = 28 then the product (ab) can have the value equal to (A) 12 (B) 48 (C) 180 (D) 210

12. Let
$$f(x) = \begin{cases} 0 & \text{for } x = 0 \\ x^2 \sin\left(\frac{\pi}{x}\right) & \text{for } -1 < x < 1 \ (x \neq 0) \text{, then:} \\ x \mid x \mid & \text{for } x > 1 \text{ or } x < -1 \end{cases}$$

(A) $f(x)$ is an odd function	(B) $f(x)$ is an even function
(C) $f(x)$ is neither odd nor even	(D) $f'(x)$ is an even function

- 13.Which of the functions defined below are one-one function(s) ?(A) $f(x) = (x+1), (x \ge -1)$ (B) g(x) = x + (1/x) (x > 0)(C) $h(x) = x^2 + 4x 5, (x > 0)$ (D) $f(x) = e^{-x}, (x \ge 0)$
- 14.If the function f(x) = ax + b has its own inverse then the ordered pair (a, b) can be(A) (1,0)(B) (-1,0)(C) (-1,1)(D) (1,1)
- 15. A continuous function f (x) on R → R satisfies the relation f(x)+f(2x+y)+5xy=f(3x-y)+2x²+1 for ∀ x, y ∈ R then which of the following hold(s) good ?
 (A) f is many one
 (B) f has no minima
 (C) f is neither odd nor even
 (D) f is bounded

SECTION - III : ASSERTION AND REASON TYPE

16. Let $g: R \to R$ defined by $g(x) = \{e^X\}$, where $\{x\}$ denotes fractional part function.

Statement-I: g(x) is periodic function.

Statement-II: {x} is periodic function.

- (A) Statement-I is true, statement-II is true and statement-II is correct explanation for statement-I.
- (B) Statement-I is true, statement-II is true and statement-II is NOT the correct explanation for statement-I.
- (C) Statement-I is true, statement-II is false.
- (D) Statement-I is false, statement-II is true

17. Statement-I: Fundamental period of sinx + tan x is 2π Statement-II: If the period of f(x) is T_1 and the period of g(x) is T_2 , then the fundamental period of f(x) + g(x)is the L.C.M. of T_1 and T_2

- (A) Statement-I is true, statement-II is true and statement-II is correct explanation for statement-I.
- (B) Statement-I is true, statement-II is true and statement-II is NOT the correct explanation for statement-I.
- (C) Statement-I is true, statement-II is false.
- (D) Statement-I is false, statement-II is true
- **18.** Statement-I: If a function y = f(x) is symmetric about y = x, then f(f(x)) = x

Statement-II: If $f(x) = \begin{cases} x & : x \text{ is rational} \\ 1-x & : x \text{ is irrational} \end{cases}$, then f(f(x)) = x

(A) Statement-I is true, statement-II is true and statement-II is correct explanation for statement-I.

- (B) Statement-I is true, statement-II is true and statement-II is NOT the correct explanation for statement-I.
- (C) Statement-I is true, statement-II is false.
- (D) Statement-I is false, statement-II is true
- **19.** Statement-1: f is an even function, g and h are odd functions, all 3 are polynomials. Given f(1) = 0, f(2) = 1, f(3) = -5, g(1) = 1, g(-3) = 2, g(5) = 3, h(1) = 3, h(3) = 5 and h(5) = 1.

The value of f(g(h(1)))+g(h(f(3)))+h(f(g(-1))) is equal to zero.

Statement-2: If a polynomial function P(x) is odd then P(0) = 0.

- (A) Statement-I is true, statement-II is true and statement-II is correct explanation for statement-I.
- (B) Statement-I is true, statement-II is true and statement-II is NOT the correct explanation for statement-I.
- (C) Statement-I is true, statement-II is false.
- (D) Statement-I is false, statement-II is true

20. Statement -1 : e^x can not be expressed as the sum of even and odd function.

Statement -2 : e^x is neither even nor odd function

- (A) Statement-I is true, statement-II is true and statement-II is correct explanation for statement-I.
- (B) Statement-I is true, statement-II is true and statement-II is NOT the correct explanation for statement-I.
- (C) Statement-I is true, statement-II is false.
- (D) Statement-I is false, statement-II is true

 $R - \{-2, -1\}$

(s)

SECTION - IV : MATRIX - MATCH TYPE

21.	Column	-I	Column – II				
	(A)	Function f: $\left[0, \frac{\pi}{3}\right] \rightarrow \left[0, 1\right]$ defined by f(x) = $\sqrt{\sin x}$ is	(p)	one to one function			
	(B)	Function $f: (1, \infty) \to (1, \infty)$ defined by $f(x) = \frac{x+3}{x-1}$ is	(q)	many – one function			
	(C)	Function f: $\left[-\frac{\pi}{2}, \frac{4\pi}{3}\right] \rightarrow [-1, 1]$ defined by f(x) = sinx is	(r)	into function			
	(D)	Function $f: (2, \infty) \rightarrow [8, \infty)$ defined by $f(x) = \frac{x^2}{x-2}$ is	(s)	onto function			
22.	Let $f(\mathbf{x})$	$= x + \frac{1}{x}$ and $g(x) = \frac{x+1}{x+2}$.					
	Match th	ne composite function given in Column-I with their respective do	ve domains given in Column-II.				
	Column	-I	Column-	II			
	(A)	fog	(p)	$R - \{-2, -5/3\}$			
	(B)	gof	(q)	$R - \{-1, 0\}$			
	(C)	fof	(r)	$R-\{0\}$			

SECTION - V : COMPREHENSION TYPE

23. Read the following comprehension carefully and answer the questions.

(D)

gog

Let $f(x) = x^2 - 2x - 1 \quad \forall x \in \mathbb{R}$. Let $f: (-\infty, a] \rightarrow [b, \infty)$, where 'a' is the largest real number for which f(x) is bijective.

1.The value of
$$(a + b)$$
 is equal to
 $(A) - 2$ $(B) - 1$ $(C) 0$ $(D) 1$ 2.Let $f: R \to R, g(x) = f(x) + 3x - 1$, then the least value of function $y = g(|x|)$ is
 $(A) - 9/4$ $(B) - 5/4$ $(C) - 2$ $(D) - 1$ 3.Let $f: [a, \infty) \to [b, \infty)$, then $f^{-1}(x)$ is given by
 $(A) 1 + \sqrt{x+2}$ $(B) 1 - \sqrt{x+3}$ $(C) 1 - \sqrt{x+2}$ $(D) 1 + \sqrt{x+3}$ 4.Let $f: R \to R$, then range of values of k for which equation $f(|x|) = k$ has 4 distinct real roots is
 $(A) (-2, -1)$ $(B) (-2, 0)$ $(C) (-1, 0)$ $(D) (0, 1)$

24.	Read the following comprehension carefully and answer the questions.										
	Let $f(x) = \begin{cases} 2x + a & : x \ge -1 \\ bx^2 + 3 & : x < -1 \end{cases}$										
	and $g(x) = \begin{cases} x+4 & : \\ -3x-2 & : \end{cases}$	$0 \le x \le 4$ $-2 < x < 0$									
1.	g(f(x)) is not defined if										
	(A) $a \in (6, \infty), b \in (5, \infty)$	(B) $a \in (4, 6), b \in (5, \infty)$	(C) a ∈ (6, ∞), b ∈ (0, 1)	(D) $a \in (4, 6), b \in (1, 5)$							
2.	2. If domain of $g(f(x))$ is $[-1, 2]$, then										
	(A) $a = 1, b > 5$	(B) $a = 2, b > 7$	(C) $a = 2, b > 10$	(D) $a = 0, b \in \mathbb{R}$							
3.	If $a = 2$ and $b = 3$ then ran	ge of g(f(x)) is									
	(A) (-2, 8]	(B) (0, 8]	(C) [4,8]	(D) [-1, 8]							
25.	Read the following comprehension carefully and answer the questions.										
	Let $f: R \rightarrow R$ is a function following.	satisfying $f(2-x) = f(2+x)$	x) and $f(20-x) = f(x), \forall x$	$\in \mathbb{R}$. For this function f answer the							
1.	If $f(0) = 5$, then minimum possible number of values of x satisfying $f(x) = 5$, for $x \in [0, 170]$, is (A) 21 (B) 12 (C) 11 (D) 22										
2.	Graph of $y = f(x)$ is (A) symmetrical about $x =$ (C) symmetrical about x	= 18 = = 8	(B) symmetrical about $x = 5$ (D) symmetrical about $x = 20$								
3.	If $f(2) \neq f(6)$, then										
	(A) fundamental period of	f f(x) is 1	(B) fundamental period o	f f(x) may be 1							
	(C) period of $f(x)$ can't be	1	(D) fundamental period of $f(x)$ is 8								

SECTION - VI : INTEGER TYPE

- 26. If f(x) + f(y) + f(xy) = 2 + f(x). f(y), for all real values of x and y and f(x) is a polynomial function with f(4) = 17 and $f(1) \neq 1$, then find the value of f(5).
- 27. If f(x) + f(y) + f(xy) = 2 + f(x). f(y), for all real values of x & y and f(x) is a polynomial function with f(4) = 17, then find the value of f(5)/14, where $f(1) \neq 1$.
- 28. If f is a function satisfying the condition $f(x) + f(y) = f(x\sqrt{1-y^2} + y\sqrt{1-x^2})$ for all x and y in domain of f, then find value of $f(4x^3 3x) + 3 f(x)$.

29. If domain of
$$f(x) = \frac{\sin^{-1}(\sin x)}{\sqrt{-\log_{\left(\frac{x+4}{2}\right)}\log_2\left(\frac{2x-1}{3+x}\right)}}$$
 is $(a, b) \cup (c, \infty)$, then find the value of $a + b + 3c$.

30. The functional relation $f(x) + f\left(\frac{1}{1-x}\right) = \frac{2(1-2x)}{x(1-x)}$ is satisfying by the function $f(x) = \frac{x+1}{\lambda(x-1)}$, then find value of λ

• ANSWER KEY

EXERCISE - 1

 1. C
 2. D
 3. A
 4. B
 5. B
 6. B
 7. A
 8. B
 9. D
 10. C
 11. A
 12. C
 13. D

 14. A
 15. D
 16. C
 17. C
 18. D
 19. B
 20. A
 21. D
 22. C
 23. B
 24. D
 25. A
 26. B

 27. D
 28. C
 29. B
 30. D
 31. D
 32. C
 33. C
 34. A
 35. B
 36. B

EXERCISE - 2 : PART # I

1.	ABC	2.	ACD	3.	AC	4.	BD	5.	AD	6.	AD	7.	В	8.	А	9.	ABCD
10.	BCD	11.	AB	12.	BC	13.	ACD	14.	BC	15.	В	16.	BCD	17.	AC	18.	AD
19.	ABD	20.	BD	21.	ABC	22.	ABD	23.	BCD	24.	ABC						

PART - II

1. C 2. D 3. C 4. D 5. A

EXERCISE - 3 : PART # I

1. $A \rightarrow q$ $B \rightarrow s$ $C \rightarrow p$ $D \rightarrow r$ 2. $A \rightarrow q$ $B \rightarrow r$ $C \rightarrow p$ $D \rightarrow s$ 3. $A \rightarrow q, r$ $B \rightarrow q, r$ $C \rightarrow q$ $D \rightarrow s$ 4. $A \rightarrow r$ $B \rightarrow p$ $C \rightarrow s$ $D \rightarrow q$

PART - II

Comprehension #1: 1.	Α	2.	С	3.	D	Comprehension #2: 1.	Α	2.	B	3.	С
Comprehension #3: 1.	D	2.	Α	3.	С	Comprehension #4: 1.	Α	2.	В	3.	Α

EXERCISE - 5 : PART # I

 1.
 2
 2.
 2
 3.
 1,4
 4.
 2
 5.
 1
 6.
 3
 7.
 1
 8.
 1
 9.
 4
 10.
 2
 11.
 3
 12.
 1
 13.
 2

 14.
 3
 15.
 1
 16.
 3
 17.
 2
 18.
 4
 19.
 1
 20.
 4
 21.
 1
 22.
 2
 23.
 2
 24.
 4
 25.
 2
 26.
 1

PART - II

 1. D
 2. {(1,1), (2,3), (3,4), (4,2)}; {(1,1), (2,4), (3,2), (4,3)} and {(1,1), (2,4), (3,3), (4,2)}
 3. B
 4. A

 5. D
 6. A
 7. D
 8. D
 9. A
 10. D
 11. A
 12. C
 13. A
 14. A
 15. B

 16. (zero marks to all)
 17. AD
 18. ABC
 19. D
 20. ABC
 21. BC

MOCK TEST

 1. B
 2. A
 3. B
 4. C
 5. C
 6. A
 7. C
 8. C
 9. D
 10. C
 11. A, D
 12. A, D

 13. A, C, D
 14. A, B, C
 15. A, B
 16. D
 17. C
 18. A
 19. A
 20. D

 21. A \rightarrow p,r B \rightarrow p,s C \rightarrow q,s D \rightarrow q,s
 22. A \rightarrow s B \rightarrow q C \rightarrow r D \rightarrow p
 23. 1. B
 2. C
 3. A
 4. A
 24. 1. A
 2. A
 3. C
 25. 1. A
 2. A
 3. C

 26. 8
 27. 9
 28. 0
 29. 5
 30. 1
 30. 1
 30. 1
 30. 1
 30. 1
 30. 1

