SOLVED EXAMPLES

Ex. 1 Which of the following pictorial diagrams represent the function
(A)

(B)

(C)

(D)

Sol. B and D. In (A) one element of domain has no image, while in (C) one element of $1^{\text {st }}$ set has two images in $2^{\text {nd }}$ set

Ex. 2 Find the Domain of the following function :
(i) $y=\log _{(x-4)}\left(x^{2}-11 x+24\right)$
(ii) $f(x)=\sqrt{x^{2}-5}$
(iii) $\sin ^{-1}(2 x-1)$
(iv) $f(x)=\sqrt{\sin x}-\sqrt{16-x^{2}}$

Sol. (i) $y=\log _{(x-4)}\left(x^{2}-11 x+24\right)$
Here ' y ' would assume real value if,
$x-4>0$ and $\neq 1, x^{2}-11 x+24>0 \quad \Rightarrow \quad x>4$ and $\neq 5,(x-3)(x-8)>0$
$\Rightarrow \quad x>4$ and $\neq 5, x<3$ or $x>8 \quad \Rightarrow \quad x>8$
$\Rightarrow \quad$ Domain $(\mathrm{y})=(8, \infty)$
(ii) $\sqrt{\mathrm{x}^{2}-5} \mathrm{f}(\mathrm{x})=$ is real iff $\mathrm{x}^{2}-5 \geq 0$
$\Rightarrow \quad|x| \geq \sqrt{5} \Rightarrow \quad x \leq-\sqrt{5}$ or $x \geq \sqrt{5}$
$\therefore \quad$ the domain of f is $(-\infty,-\sqrt{5}] \cup[\sqrt{5}, \infty)$
(iii) $\sin ^{-1}(2 x-1)$ is real iff $-1 \leq 2 x-1 \leq+1$
$\therefore \quad$ domain is $\mathrm{x} \in[0,1]$
(iv) $\sqrt{\sin x}$ is real iff $\sin x \geq 0 \quad \Leftrightarrow \quad x \in[2 n \pi, 2 n \pi+\pi], n \in I$.
$\sqrt{16-x^{2}}$ is real iff $16-x^{2} \geq 0 \Leftrightarrow-4 \leq x \leq 4$.
Thus the domain of the given function is $\{x: x \in[2 n \pi, 2 n \pi+\pi], n \in I\} \cap[-4,4]=[-4,-\pi] \cup[0, \pi]$.

Ex. 3 Find the range of following functions :
(i) $f(x)=\frac{1}{8-3 \sin x}$
(ii) $f(x)=\frac{x^{2}-4}{x-2}$

Sol. (i)
$f(x)=\frac{1}{8-3 \sin x}$

$$
-1 \leq \sin x \leq 1
$$

$$
\therefore \quad \text { Range of } \mathrm{f}=\left[\frac{1}{11}, \frac{1}{5}\right]
$$

(ii) $f(x)=\frac{x^{2}-4}{x-2} \quad=x+2 ; x \neq 2$
$\therefore \quad$ graph of $\mathrm{f}(\mathrm{x})$ would be

Thus the range of $f(x)$ is $R-\{4\}$

Ex. 4 Find the range of following functions:
(i) $y=\ln \left(2 x-x^{2}\right)$
(ii) $y=\sec ^{-1}\left(x^{2}+3 x+1\right)$

Sol. (i) Step - 1
We have $2 x-x^{2} \in(-\infty, 1]$
Step-2
Let $\mathrm{t}=2 \mathrm{x}-\mathrm{x}^{2}$
For ℓ nt to be defined accepted values are $(0,1]$
Now, using monotonocity of $\ell \mathrm{nt}$,
$\ln \left(2 \mathrm{x}-\mathrm{x}^{2}\right) \in(-\infty, 0]$
$\therefore \quad$ range is $(-\infty, 0$]
(ii) $y=\sec ^{-1}\left(x^{2}+3 x+1\right)$

Let $t=x^{2}+3 x+1$ for $x \in R$, then $t \in\left[-\frac{5}{4}, \infty\right)$
but $\mathrm{y}=\sec ^{-1}(\mathrm{t}) \quad \Rightarrow \quad \mathrm{t} \in\left[-\frac{5}{4},-1\right] \cup[1, \infty)$

from graph the range is $\left[0, \frac{\pi}{2}\right) \cup\left[\sec ^{-1}\left(-\frac{5}{4}\right), \pi\right]$

Ex. 5 (i) Let $\{x\}$ and $[x]$ denote the fractional and integral part of a real number x respectively.
Solve $4\{x\}=x+[x]$
(ii) Draw graph of $f(x)=\operatorname{sgn}(\ell \ln x)$

Sol.
(i) \quad As $x=[x]+\{x\}$
$\therefore \quad$ Given equation $\Rightarrow \quad 4\{x\}=[x]+\{x\}+[x] \quad \Rightarrow \quad\{x\}=\frac{2[x]}{3}$
As $[\mathrm{x}]$ is always an integer and $\{\mathrm{x}\} \in[0,1)$, possible values are
[x]
0
$\{\mathbf{x}\}$
$x=[\mathbf{x}]+\{\mathbf{x}\}$
0
0
1
$\frac{2}{3}$
$\frac{5}{3}$
$\therefore \quad$ There are two Solution of given equation $\mathrm{x}=0$ and $\mathrm{x}=\frac{5}{3}$
(ii)

Ex. 6 Find the domain $f(x)=\frac{1}{\sqrt{|[|x|-5]|-11}}$ where [.] denotes greatest integer function.
Sol. $\quad|[|x|-5]|>11$

So	$[\|x\|-5]>11$	or	$[\|x\|-5]<-11$	
	$[\|x\|]>16$		$[\|x\|]<-6$	
	$\|\mathrm{x}\| \geq 17$	or	$[\|x\|]<-6$	(Not Possible)
\Rightarrow	$\mathrm{x} \leq-17$	or	$\mathrm{x} \geq 17$	
So	$\mathrm{x} \in(-\infty,-17] \cup[17, \infty)$			

Ex. 6 Examine whether following pair of functions are identical or not?
(i) $f(x)=\frac{x^{2}-1}{x-1} \quad$ and $g(x)=x+1$
(ii) $f(x)=\sin ^{2} x+\cos ^{2} x \quad$ and $g(x)=\sec ^{2} x-\tan ^{2} x$

Sol. (i) No, as domain of $f(x)$ is $R-\{1\}$
while domain of $\mathrm{g}(\mathrm{x})$ is R
(ii) No, as domain are not same. Domain of $f(x)$ is R
while that of $g(x)$ is $R-\left\{(2 n+1) \frac{\pi}{2} ; n \in I\right\}$

Ex. 7 Find the value of $\left[\frac{1}{2}\right]+\left[\frac{1}{2}+\frac{1}{1000}\right]+\ldots . .\left[\frac{1}{2}+\frac{2946}{1000}\right]$ where [.] denotes greatest integer function?

Sol. $\left[\frac{1}{2}\right]+\left[\frac{1}{2}+\frac{1}{1000}\right]+\ldots . .\left[\frac{1}{2}+\frac{499}{1000}\right]+\left[\frac{1}{2}+\frac{500}{1000}\right]+\ldots . .\left[\frac{1}{2}+\frac{1499}{1000}\right]+\left[\frac{1}{2}+\frac{1500}{1000}\right]+\ldots \ldots$.

$$
+\left[\frac{1}{2}+\frac{2499}{1000}\right]+\left[\frac{1}{2}+\frac{2500}{1000}\right]+\ldots \ldots .\left[\frac{1}{2}+\frac{2946}{1000}\right]
$$

$$
=0+1 \times 1000+2 \times 1000+3 \times 447=3000+1341=4341
$$

Ex. 8 Find the range of $f(x)=\frac{x-[x]}{1+x-[x]}$, where [.] denotes greatest integer function.
Sol. $\mathrm{y}=\frac{x-[x]}{1+x-[x]}=\frac{\{x\}}{1+\{x\}}$

$$
\begin{aligned}
& \therefore \quad \frac{1}{y}=\frac{1}{\{x\}}+1 \quad \Rightarrow \quad \frac{1}{\{x\}}=\frac{1-y}{y} \quad \Rightarrow \quad\{\mathrm{x}\}=\frac{y}{1-y} \\
& 0 \leq\{\mathrm{x}\}<1 \Rightarrow 0 \leq \frac{y}{1-y}<1
\end{aligned}
$$

Range $=[0,1 / 2)$
Ex. 9 Let $f(x)=e^{x} ; R^{+} \rightarrow R$ and $g(x)=\sin ^{-1} x ;[-1,1] \rightarrow\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Find domain and range of $f(x)$
Sol. Domain of $f(x):(0, \infty) \quad$ Range of $g(x):\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
values in range of $g(x)$ which are accepted by $f(x)$ are $\left(0, \frac{\pi}{2}\right]$
$\Rightarrow \quad 0<\mathrm{g}(\mathrm{x}) \leq \frac{\pi}{2} \quad \Rightarrow \quad 0<\sin ^{-1} \mathrm{x} \leq \frac{\pi}{2} \quad \Rightarrow \quad 0<\mathrm{x} \leq 1$
Hence domain of $\operatorname{fog}(x)$ is $x \in(0,1]$
Therefore

$$
\begin{array}{ll}
\text { Domain : } & (0,1] \\
\text { Range : } & \left(1, \mathrm{e}^{\pi / 2}\right]
\end{array}
$$

Ex. 10 Let $\mathrm{A}=\{\mathrm{x}:-1 \leq \mathrm{x} \leq 1\}=\mathrm{B}$ be a mapping $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$. For each of the following functions from A to B , find whether it is surjective or bijective.
(A) $\mathrm{f}(\mathrm{x})=|\mathrm{x}|$
(B) $\quad \mathrm{f}(\mathrm{x})=\mathrm{x}|\mathrm{x}|$
(C) $f(x)=x^{3}$
(D) $\quad \mathrm{f}(\mathrm{x})=[\mathrm{x}]$
(E) $\quad \mathrm{f}(\mathrm{x})=\sin \frac{\pi x}{2}$

Sol. (A) $\quad f(x)=|x|$
Graphically;
Which shows many one, as the straight line is parallel to x-axis and cuts at two points. Here range for $f(x) \in[0,1]$
Which is clearly subset of co-domain i.e., $\quad[0,1] \subseteq[-1,1]$ Thus, into.
Hence, function is many-one-into
$\therefore \quad$ Neither injective nor surjective

$f(x)=x|x|=\left\{\begin{array}{ll}-x^{2}, & -1<x<0 \\ x^{2}, & 0 x<1\end{array}\right\}$,
Graphically,
The graph shows $f(x)$ is one-one, as the straight line parallel to x -axis cuts only at one point.
Here, range

$$
f(x) \in[-1,1]
$$

Thus, range $=$ co-domain
Hence, onto.
Therefore, $\mathrm{f}(\mathrm{x})$ is one-one onto or (Bijective).
(C) $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}$,

Graphically;
Graph shows $f(x)$ is one-one onto (i.e. Bijective)

[as explained in above example]
(D) $\quad \mathrm{f}(\mathrm{x})=[\mathrm{x}]$,

Graphically;
Which shows $f(x)$ is many-one, as the straight line parallel to x-axis meets at more than one point.

Here, range

$$
f(x) \in\{-1,0,1\}
$$

which shows into as range \subseteq co-domain
Hence, many-one-into
(E)
$\mathrm{f}(\mathrm{x})=\sin$
Graphically;

Which shows $f(x)$ is one-one and onto as range
= co-domain.
Therefore, $f(x)$ is bijective.
Ex. 11 Composition of piecewise defined functions:
If $\quad f(x)=||x-3|-2| \quad 0 \leq x \leq 4$

$$
\mathrm{g}(\mathrm{x})=4-|2-\mathrm{x}| \quad-1 \leq \mathrm{x} \leq 3
$$

then find $\operatorname{fog}(x)$ and draw rough sketch of $\operatorname{fog}(x)$.
Sol. $\mathrm{f}(\mathrm{x})=||\mathrm{x}-3|-2| 0 \leq \mathrm{x} \leq 4$

$$
=\left\{\begin{array}{ll}
|x-1| & 0 \leq x<3 \\
|x-5| & 3 \leq x \leq 4
\end{array}= \begin{cases}1-x & 0 \leq x<1 \\
x-1 & 1 \leq x<3 \\
5-x & 3 \leq x \leq 4\end{cases}\right.
$$

$$
=\left\{\begin{array}{cccc}
-1-\mathrm{x} & -2 \leq \mathrm{x}<-1 & \text { and } & -1 \leq \mathrm{x}<2 \\
1+\mathrm{x} & -1 \leq \mathrm{x}<1 & \text { and } & -1 \leq \mathrm{x}<2 \\
3-\mathrm{x} & 1 \leq \mathrm{x} \leq 2 & \text { and } & -1 \leq \mathrm{x}<2 \\
\mathrm{x}-5 & -6 \leq-\mathrm{x}<-5 & \text { and } & 2 \leq \mathrm{x} \leq 3 \\
5-\mathrm{x} & -5 \leq-\mathrm{x}<-3 & \text { and } & 2 \leq \mathrm{x} \leq 3 \\
\mathrm{x}-1 & -3 \leq-\mathrm{x} \leq-2 & \text { and } & 2 \leq \mathrm{x} \leq 3
\end{array}=\left\{\begin{array}{cccc}
-1-\mathrm{x} & -2 \leq \mathrm{x}<-1 & \text { and } & -1 \leq \mathrm{x}<2 \\
1+\mathrm{x} & -1 \leq \mathrm{x}<1 & \text { and } & -1 \leq \mathrm{x}<2 \\
3-\mathrm{x} & 1 \leq \mathrm{x} \leq 2 & \text { and } & -1 \leq \mathrm{x}<2 \\
\mathrm{x}-5 & 5<\mathrm{x} \leq 6 & \text { and } & 2 \leq \mathrm{x} \leq 3 \\
5-\mathrm{x} & 3<\mathrm{x} \leq 5 & \text { and } & 2 \leq \mathrm{x} \leq 3 \\
\mathrm{x}-1 & 2 \leq \mathrm{x} \leq 3 & \text { and } & 2 \leq \mathrm{x} \leq 3
\end{array}\right.\right.
$$

$$
=\left\{\begin{array}{cc}
1+x & -1 \leq x<1 \\
3-x & 1 \leq x<2 \\
x-1 & 2 \leq x \leq 3
\end{array}\right.
$$

$$
\begin{aligned}
& \mathrm{g}(\mathrm{x})=4-|2-\mathrm{x}| \quad-1 \leq \mathrm{x} \leq 3 \\
& =\left\{\begin{array}{cc}
4-(2-x) & -1 \leq x<2 \\
4-(x-2) & 2 \leq x \leq 3
\end{array}=\left\{\begin{array}{cc}
2+x & -1 \leq x<2 \\
6-x & 2 \leq x \leq 3
\end{array}\right.\right.
\end{aligned}
$$

Ex. 12 (i) Find whether $f(x)=x+\cos x$ is one-one.
(ii) Identify whether the function $f(x)=-x^{3}+3 x^{2}-2 x+4$ for $f: R \rightarrow R$ is ONTO or INTO
(iii) $f(x)=x^{2}-2 x+3$; $[0,3] \rightarrow$ A. Find whether $f(x)$ is injective or not. Also find the set A, if $f(x)$ is surjective.

Sol. (i)

$$
\text { The domain of } f(x) \text { is } R . \quad f^{\prime}(x)=1-\sin x .
$$

$\therefore \quad \mathrm{f}^{\prime}(\mathrm{x}) \geq 0 \forall \mathrm{x} \in$ complete domain and equality holds at discrete points only
$\therefore \quad f(x)$ is strictly increasing on R. Hence $f(x)$ is one-one.
(ii) As range \equiv codomain, therefore given function is ONTO
(iii) $\mathrm{f}^{\prime}(\mathrm{x})=2(\mathrm{x}-1) ; 0 \leq \mathrm{x} \leq 3$

$$
\therefore \quad f^{\prime}(\mathrm{x})=\left\{\begin{array}{lll}
-\mathrm{ve} & ; & 0 \leq \mathrm{x}<1 \\
+\mathrm{ve} & ; & 1<\mathrm{x}<3
\end{array}\right.
$$

$\therefore \quad f(x)$ is non monotonic. Hence it is not injective.
For $f(x)$ to be surjective, A should be equal to its range. By graph range is [2, 6]
$\therefore \quad A \equiv[2,6]$
Ex. 13 If f be the greatest integer function and g be the modulus function, then $($ gof $)\left(-\frac{5}{3}\right)-($ fog $)\left(-\frac{5}{3}\right)=$
(A) 1
(B) -1
(C) 2
(D) 4

Sol. Given (gof) $\left(\frac{-5}{3}\right)-(\mathrm{fog})\left(\frac{-5}{3}\right)=g\left\{f\left(\frac{-5}{3}\right)\right\}-f\left\{g\left(\frac{-5}{3}\right)\right\}=\mathrm{g}(-2)-\mathrm{f}\left(\frac{5}{3}\right)=2-1=1$ Ans.(A)

Ex. 14 Show that $\log \left(x+\sqrt{x^{2}+1}\right)$ is an odd function.

Sol. Let $f(x)=\log \left(x+\sqrt{x^{2}+1}\right)$.
Then $f(-x)=\log \left(-x+\sqrt{(-x)^{2}+1}\right)$

$$
=\log \left(\frac{\left(\sqrt{x^{2}+1}-x\right)\left(\sqrt{x^{2}+1}+x\right)}{\sqrt{x^{2}+1}+x}\right)=\log \frac{1}{\sqrt{x^{2}+1}+x}=-\log \left(x+\sqrt{x^{2}+1}\right)=-f(x)
$$

or $\quad \mathrm{f}(\mathrm{x})+\mathrm{f}(-\mathrm{x})=0$
Hence $f(x)$ is an odd function.
Ex. 15 Show that $\cos ^{-1} x$ is neither odd nor even.
Sol. Let $f(x)=\cos ^{-1} x$. Then $f(-x)=\cos ^{-1}(-x)=\pi-\cos ^{-1} x$ which is neither equal to $f(x)$ nor equal to $-f(x)$. Hence $\cos ^{-1} x$ is neither odd nor even

Ex. 161 Which of the following functions is (are) even, odd or neither :
(i) $\quad \mathrm{f}(\mathrm{x})=\mathrm{x}^{2} \sin \mathrm{x}$
(ii) $\mathrm{f}(\mathrm{x})=\sqrt{1+x+x^{2}}-\sqrt{1-x+x^{2}}$
(iii) $f(x)=\log \left(\frac{1-x}{1+x}\right)$
(iv) $\quad f(x)=\sin x-\cos x$
(v) $\quad \mathrm{f}(\mathrm{x})=\frac{e^{x}+e^{-x}}{2}$

Sol. (i) $f(-x)=(-x)^{2} \sin (-x)=-x^{2} \sin x=-f(x)$. Hence $f(x)$ is odd
$\mathrm{f}(-\mathrm{x})=\sqrt{1+(-x)+(-x)^{2}}-\sqrt{1-(-x)+(-x)^{2}}$

$$
=\sqrt{1-x+x^{2}}-\sqrt{1+x+x^{2}}=-\mathrm{f}(\mathrm{x}) . \quad \text { Hence } \mathrm{f}(\mathrm{x}) \text { is odd. }
$$

$f(-x)=\log \left(\frac{1-(-x)}{1+(-x)}\right)=\log \left(\frac{1+x}{1-x}\right)=-f(x)$.

Hence $f(x)$ is odd
(iv) $\quad f(-x)=\sin (-x)-\cos (-x)=-\sin x-\cos x$.

Hence $f(x)$ is neither even nor odd.
(v) $\quad \mathrm{f}(-\mathrm{x})=\frac{e^{-x}+e^{-(-x)}}{2}=\frac{e^{-x}+e^{x}}{2}=\mathrm{f}(\mathrm{x})$.

Hence $f(x)$ is even

Ex. 17 Let $f: R \rightarrow R$ be defined by $f(x)=\left(e^{x}-e^{-x}\right) / 2$. Is $f(x)$ invertible? If so, find its inverse.
Sol. Let us check for invertibility of $\mathrm{f}(\mathrm{x})$:
(A) One-One :

Let $\quad x_{1}, x_{2} \in R$ and $x_{1}<x_{2}$
$\Rightarrow \quad e^{x_{1}}<e^{x_{2}} \quad \quad$ (Because base $\mathrm{e}>1$)
Also $\mathrm{x}_{1}<\mathrm{x}_{2} \quad \Rightarrow \quad-\mathrm{x}_{2}<-\mathrm{X}_{1}$
$\Rightarrow e^{-x_{2}}<e^{-x_{1}} \quad$ (Because base $\mathrm{e}>1$)
(i) + (ii) $\Rightarrow e^{x_{1}}+e^{-x_{2}}<e^{x_{2}}+e^{-x_{1}}$
$\Rightarrow \quad \frac{1}{2}\left(e^{x_{1}}-e^{-x_{1}}\right)<\frac{1}{2}\left(e^{x_{2}}-e^{-x_{2}}\right) \quad \Rightarrow \quad \mathrm{f}\left(\mathrm{x}_{1}\right)<\mathrm{f}\left(\mathrm{x}_{2}\right)$ i.e. f is one-one.
(B) Onto :

As x tends to larger and larger values so does $f(x)$ and when $\mathrm{x} \rightarrow \infty, \mathrm{f}(\mathrm{x}) \rightarrow \infty$.
Similarly as $\mathrm{x} \rightarrow-\infty, \mathrm{f}(\mathrm{x}) \rightarrow-\infty$ i.e. $-\infty<\mathrm{f}(\mathrm{x})<\infty$ so long as $\mathrm{x} \in(-\infty, \infty)$
Hence the range of f is same as the set R. Therefore $f(x)$ is onto.
Since $f(x)$ is both one-one and onto, $f(x)$ is invertible.
(C) To find f^{-1} :

Let f^{-1} be the inverse function of f, then by rule of identity fof $f^{-1}(x)=x$

$$
\begin{array}{cc}
& \frac{e^{f^{-1}(x)}-e^{-f^{-1}(x)}}{2}=x \quad \\
\Rightarrow \quad e^{2 f^{-1}(x)}-2 x e^{f^{-1}(x)}-1=0 \\
\Rightarrow & e^{f^{-1}(x)}=\frac{2 x \pm \sqrt{4 x^{2}+4}}{2} \quad \Rightarrow \quad e^{f^{-1}(x)}=x \pm \sqrt{1+x^{2}}
\end{array}
$$

Since $e^{f^{-1}(x)}>0$, hence negative sign is ruled out and
Hence $e^{f^{-1}(x)}=x+\sqrt{1+x^{2}}$
Taking logarithm, we have $\mathrm{f}^{-1}(\mathrm{x})=\ln \left(x+\sqrt{1+x^{2}}\right)$.
Ex. 18 Find the periods (if periodic) of the following functions, where [.] denotes the greatest integer function
(i) $f(x)=e^{\ln (\sin x)}+\tan ^{3} x-\operatorname{cosec}(3 x-5)$
(ii) $f(x)=x-[x-b], b \in R$
(iii) $\mathrm{f}(\mathrm{x})=\frac{|\sin x+\cos x|}{|\sin x|+|\cos x|}$
(iv) $\mathrm{f}(\mathrm{x})=\tan \frac{\pi}{2}[\mathrm{x}]$
(v) $f(x)=\cos (\sin x)+\cos (\cos x)$
(vi) $f(x)=\frac{(1+\sin x)(1+\sec x)}{(1+\cos x)(1+\operatorname{cosec} x)}$
(vii) $\quad \mathrm{f}(\mathrm{x})=e^{x-[x]+\cos \pi d++\cos 2 \pi d+\ldots \ldots . . .+\mid \cos n \pi 4}$

Sol.(i) $\quad f(x)=e^{\ell n(\sin x)}+\tan ^{3} x-\operatorname{cosec}(3 x-5)$
Period of $\mathrm{e}^{\ell \operatorname{nsin} x}=2 \pi, \tan ^{3} \mathrm{x}=\pi$
$\operatorname{cosec}(3 x-5)=\frac{2 \pi}{3}$
$\therefore \quad$ Period $=2 \pi$
(ii) $\mathrm{f}(\mathrm{x})=\mathrm{x}-[\mathrm{x}-\mathrm{b}]=\mathrm{b}+\{\mathrm{x}-\mathrm{b}\}$
$\therefore \quad$ Period $=1$
(iii) $\mathrm{f}(\mathrm{x})=\frac{|\sin x+\cos x|}{|\sin x|+|\cos x|}$

Since period of $|\sin x+\cos x|=\pi$ and period of $|\sin x|+|\cos x|$ is $\frac{\pi}{2}$. Hence $f(x)$ is periodic with π as its period
(iv) $\mathrm{f}(\mathrm{x})=\tan \frac{\pi}{2}[\mathrm{x}]$
$\tan \frac{\pi}{2}[\mathrm{x}+\mathrm{T}]=\tan \frac{\pi}{2}[\mathrm{x}] \quad \Rightarrow \quad \frac{\pi}{2}[\mathrm{x}+\mathrm{T}]=\mathrm{n} \pi+\frac{\pi}{2}[\mathrm{x}]$
$\therefore \quad \mathrm{T}=2$
$\therefore \quad$ Period $=2$
(v) $\quad \operatorname{Let} f(x)$ is periodic then $f(x+T)=f(x)$
$\Rightarrow \quad \cos (\sin (x+T))+\cos (\cos (x+T))=\cos (\sin x)+\cos (\cos x)$
If $x=0$ then $\cos (\sin T)+\cos (\cos T)=\cos (0)+\cos (1)=\cos \left(\cos \frac{\pi}{2}\right)+\cos \left(\sin \frac{\pi}{2}\right)$

On comparing $T=\frac{\pi}{2}$
(vi) $\quad \mathrm{f}(\mathrm{x})=\frac{(1+\sin x)(1+\sec x)}{(1+\cos x)(1+\operatorname{cosec} x)}=\frac{(1+\sin x)(1+\sec x)}{(1+\cos x)(1+\operatorname{cosec} x)}$
$\Rightarrow \quad \mathrm{f}(\mathrm{x})=\tan \mathrm{x}$
Hence $\mathrm{f}(\mathrm{x})$ has period π.
(vii)

$$
\mathrm{f}(\mathrm{x})=e^{x-[x]+\cos \pi \mathrm{d}++\cos 2 \pi \mathrm{~d}+\ldots \ldots .+\cos n \pi \mid}
$$

$$
\begin{aligned}
& \text { Period of } x-[x]=1 \\
& \text { Period of }|\cos \pi x|=1 \\
& \text { Period of }|\cos 2 \pi x|=\frac{1}{2}
\end{aligned}
$$

$$
\text { Period of }|\operatorname{cosn} \pi x|=\frac{1}{2}
$$

So period of $f(x)$ will be L.C.M. of all period $=1$

Ex. 19 Find the periods (if periodic) of the following functions, where [.] denotes the greatest integer function
(i) $f(x)=e^{x-[x]}+\sin x$
(iii) $\mathrm{f}(\mathrm{x})=\sin \frac{\pi x}{\sqrt{2}}+\cos \frac{\pi x}{\sqrt{3}}$
(iii) $\mathrm{f}(\mathrm{x})=\sin \frac{\pi x}{\sqrt{3}}+\cos \frac{\pi x}{2 \sqrt{3}}$

Sol.(i) Period of $\mathrm{e}^{\mathrm{x}-[\mathrm{x}]}=1$
period of $\sin x=2 \pi$
$\because \quad$ L.C.M. of rational and an irrational number does not exist.
$\therefore \quad$ not periodic.
(ii) Period of $=\sin \frac{\pi x}{\sqrt{2}}=\frac{2 \pi}{\pi / \sqrt{2}}=2 \sqrt{2}$

Period of $=\cos \frac{\pi x}{\sqrt{3}}=\frac{2 \pi}{\pi / \sqrt{3}}=2 \sqrt{3}$
$\because \quad$ L.C.M. of two different kinds of irrational number does not exist.
$\therefore \quad$ not periodic.
(iii)

Period of $\sin \frac{\pi x}{\sqrt{3}}=\frac{2 \pi}{\pi / \sqrt{3}}=2 \sqrt{3}$

Period of $\cos \frac{\pi x}{2 \sqrt{3}}=\frac{2 \pi}{\pi / 2 \sqrt{3}}=4 \sqrt{3}$
$\because \quad$ L.C.M. of two similar irrational number exist.
$\therefore \quad$ Periodic with period $=4 \sqrt{3}$
Ans.
20.(i) Let $f(x)=x^{2}+2 x ; x \geq-1$. Draw graph of $f^{-1}(x)$ also find the number of solutions of the equation, $f(x)=f^{-1}(x)$
(ii) If $y=f(x)=x^{2}-3 x+1, x \geq 2$. Find the value of $g^{\prime}(1)$ where g is inverse of f

Sol. (i)

$f(x)=f^{-1}(x)$ is equivalent to $f(x)=x$
$\Rightarrow \quad x^{2}+2 x=x \quad \Rightarrow \quad x(x+1)=0 \quad \Rightarrow \quad x=0,-1$
Hence two solution for $f(x)=f^{-1}(x)$
(iv) $\mathrm{y}=1$
$\Rightarrow \quad x^{2}-3 x+1=1$
$\Rightarrow \quad \mathrm{x}(\mathrm{x}-3)=0 \quad \Rightarrow \quad \mathrm{x}=0,3$
But $\quad \mathrm{x} \geq 2 \quad \therefore \quad \mathrm{x}=3$
Now $\quad g(f(x)) \quad=x$
Differentiating both sides w.r.t. x

$$
\left.\begin{array}{lll}
\Rightarrow & \mathrm{g}^{\prime}(\mathrm{f}(\mathrm{x})) \cdot \mathrm{f}^{\prime}(\mathrm{x})=1 & \Rightarrow \\
\Rightarrow & \mathrm{~g}^{\prime}(\mathrm{f}(\mathrm{x}))=\frac{1}{\mathrm{f}^{\prime}(\mathrm{x})} \\
\mathrm{g}^{\prime}(\mathrm{f}(3))=\frac{1}{\mathrm{f}^{\prime}(3)} & \Rightarrow & \mathrm{g}^{\prime}(1)==\frac{1}{6-3}=\frac{1}{3}
\end{array} \quad\left(\text { As }^{\prime}(\mathrm{x})=2 \mathrm{x}-3\right)\right)
$$

Ex. 21 Find $f(x)=\max \{1+x, 1-x, 2\}$.

Sol. From the graph it is clear that

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{lll}
1-x & ; & x<-1 \\
2 ; & -1 \leq x \leq 1 \\
1+x & ; & x>1
\end{array}\right.
$$

Ex. 22 Draw the graph of $\mathrm{y}=|2-|\mathrm{x}-1||$.
Sol.

Ex. 23 Draw the graph of $f(x)=\cos x \cos (x+2)-\cos ^{2}(x+1)$.
Sol. $f(x)=\cos x \cos (x+2)-\cos ^{2}(x+1)$

$$
\begin{aligned}
& =\frac{1}{2}[\cos (2 x+2)+\cos 2]-\frac{1}{2}[\cos (2 x+2)+1] \\
& =\frac{1}{2} \cos 2-\frac{1}{2}<0
\end{aligned}
$$

Exercise \# 1

[Single Correct Choice Type Questions]

1. The domain of $f(x)=\sqrt{\frac{1-|x|}{2-|x|}}$, is -
(A) $(-\infty, \infty)-[-2,2]$
(B) $(-\infty, \infty)-[-1,1]$
(C) $[-1,1] \cup(-\infty,-2) \cup(2, \infty)$
(D) none
2. The domain of the function $f(x)=\sin ^{-1}\left(\frac{1+x^{3}}{2 x^{3 / 2}}\right)+\sqrt{\sin (\sin x)}+\log _{(3\{x\}+1)}\left(x^{2}+1\right)$, where $\{$.$\} represents fractional part function, is:$
(A) $\mathrm{x} \in\{1\}$
(B) $\mathrm{x} \in \mathrm{R}-\{1,-1\}$
(C) $\mathrm{x}>3, \mathrm{x} \neq \mathrm{I}$
(D) none of these
3. The domain of the function $f(x)=\frac{1}{\log _{10}(1-x)}+\sqrt{x+2}$, is -
(A) $[-2,0) \cup(0,1)$
(B) $(-2,0) \cup(0,1]$
(C) $(-2,0) \cup(0,1]$
(D) $(-2,0) \cup[0,1]$
4. If $q^{2}-4 p r=0, p>0$, then the domain of the function $f(x)=\log \left(p x^{3}+(p+q) x^{2}+(q+r) x+r\right)$ is:
(A) $R-\left\{-\frac{q}{2 p}\right\}$
(B) $\mathrm{R}-\left[(-\infty,-1] \cup\left\{-\frac{\mathrm{q}}{2 \mathrm{p}}\right\}\right]$
(C) $R-\left[(-\infty,-1) \cap\left\{-\frac{q}{2 p}\right\}\right]$
(D) none of these
5. If $f(x)$ is a polynomial function satisfying the condition $f(x) . f(1 / x)=f(x)+f(1 / x)$ and $f(2)=9$ then -
(A) $2 \mathrm{f}(4)=3 \mathrm{f}(6)$
(B) $14 \mathrm{f}(1)=\mathrm{f}(3)$
(C) $9 \mathrm{f}(3)=\mathrm{f}(5)$
(D) $f(10)=f(11)$
6. Domain to function $\sqrt{\log \left\{\left(5 x-x^{2}\right) / 6\right\}}$ is -
(A) $(2,3)$
(B) $[2,3]$
(C) $[1,2]$
(D) $[1,3]$
7. Domain and range of $f(x)=\sqrt{x-1}+2 \sqrt{3-x}$ is
(A) $\mathrm{D}:[1,3] ; \mathrm{R}:[\sqrt{2}, \sqrt{10}]$
(B) $\mathrm{D}:[1,5]$; $\mathrm{R}:[\sqrt{2}, \sqrt{10}]$
(C) $\mathrm{D}:(-\infty, 1] \cup[3, \infty), \mathrm{R}:[1, \sqrt{3}]$
(D) $\mathrm{D}:[1,5], \mathrm{R}:[1, \sqrt{3}]$
8. If $A=\{-2,-1,0,1,2\} \& f: A \rightarrow Z ; f(x)=x^{2}+1$, then the range of f is
(A) $\{0,1,2,5\}$
(B) $\{1,2,5\}$
(C) $\{-5,-2,1,2,3\}$
(D) A
9. The greatest value of the function $f(x)=\left(\sin ^{-1} x\right)^{3}+\left(\cos ^{-1} x\right)^{3}$ is:
(A) $\frac{\pi^{3}}{32}$
(B) $\frac{\pi^{3}}{8}$
(C) $\frac{3 \pi^{3}}{8}$
(D) $\frac{7 \pi^{3}}{8}$
10. The range of the function $f(x)=e^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}$, is -
(A) $[0, \infty)$
(B) $(-\infty, 0)$
(C) $(-\infty, \infty)$
(D) none
11. The range of the function $f(x)={ }^{7-x} P_{x-3}$, is -
(A) $\{1,2,3\}$
(B) $\{1,2,3,4,5,6\}$
(C) $\{1,2,3,4\}$
(D) $\{1,2,3,4,5\}$
12. If $f(x)=2[x]+\cos x$, then $f: R \rightarrow R$ is: (where [.] denotes greatest integer function)
(A) one-one and onto
(B) one-one and into
(C) many-one and into
(D) many-one and onto
13. $\mathrm{f}:[-1,1] \rightarrow[-1,2], \mathrm{f}(\mathrm{x})=\mathrm{x}+|\mathrm{x}|$, is -
(A) one-one onto
(B) one-one into
(C) many one onto
(D) many one into
14. Let $f: R \rightarrow R$ be a function such that $f(0)=1$ and for any $x, y \in R, f(x y+1)=f(x) f(y)-f(y)-x+2$. Then f is
(A) one-one and onto
(B) one-one but not onto
(C) many one but onto
(D) many one and into
15. Let $\mathrm{f}: \mathrm{R} R$ be a function defined by $\mathrm{f}(\mathrm{x})=\frac{x^{2}-3 x+4}{x^{2}+3 x+4}$ then f is -
(A) one - one but not onto
(B) onto but not one - one
(C) onto as well as one - one
(D) neither onto nor one - one
16. Which one of the following pair of functions are identical ?
(A) $\mathrm{e}^{(\ln x) / 2}$ and $\sqrt{\mathrm{x}}$
(B) $\tan ^{-1}(\tan x)$ and $\cot ^{-1}(\cot x)$
(C) $\cos ^{2} \mathrm{x}+\sin ^{4} \mathrm{x}$ and $\sin ^{2} \mathrm{x}+\cos ^{4} \mathrm{x}$
(D) a $\frac{|\mathrm{x}|}{\mathrm{x}}$ and $\operatorname{sgn}(\mathrm{x})$, where $\operatorname{sgn}(\mathrm{x})$ stands for signum function.
17. If $f(x)=\cos \left[\frac{1}{2} \pi^{2}\right] x+\sin x\left[\frac{1}{2} \pi^{2}\right],[x]$ denoting the greatest integer function, then -
(A) $f(0)=0$
(B) $f\left(\frac{\pi}{3}\right)=\frac{1}{4}$
(C) $f\left(\frac{\pi}{2}\right)=1$
(D) $\mathrm{f}(\pi)=0$
18. If $f(x)=\cos (\log x)$, then $f(x) f(y)-\frac{1}{2}[f(x / y)+f(x y)]$ is equal to -
(A) -1
(B) $1 / 2$
(C) -2
(D) 0
19. The value of b and c for which the identity $f(x+1)-f(x)=8 x+3$ is satisfied, where $f(x)=b x^{2}+c x+d$, are -
(A) $\mathrm{b}=2, \mathrm{c}=1$
(B) $\mathrm{b}=4, \mathrm{c}=-1$
(C) $\mathrm{b}=-1, \mathrm{c}=4$
(D) $\mathrm{b}=-1, \mathrm{c}=1$
20. If $f(x)=\frac{4 a-7}{3} x^{3}+(a-3) x^{2}+x+5$ is a one-one function, then
(A) $2 \leq \mathrm{a} \leq 8$
(B) $1 \leq \mathrm{a} \leq 2$
(C) $0 \leq \mathrm{a} \leq 1$
(D) None of these
21. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be a function defined by then -
(A) f is a bijection
(B) f is an injection only
(C) f is a surjection
(D) f is neither injection nor a surjection
22. If $f(x)=\{x\}+\{x+1\}+\{x+2\} \ldots \ldots . .\{x+99\}$, then the value of $[f(\sqrt{2})]$ is, where $\{$.$\} denotes fractional part function$ $\&$ [.] denotes the greatest integer function
(A) 5050
(B) 4950
(C) 41
(D) 14
23. The minimum value of $f(x)=|3-x|+|2+x|+|5-x|$ is -
(A) 0
(B) 7
(C) 8
(D) 10
24. If the function $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{A}$ given by $f(x)=\frac{x^{2}}{x^{2}+1}$ is a surjection, then $\mathrm{A}=$
(A) R
(B) $[0,1]$
(C) $(0,1]$
(D) $[0,1)$
25. The fundamental period of function $f(x)=[x]+\left[x+\frac{1}{3}\right]+\left[x+\frac{2}{3}\right]-3 x+15$, where $[$.$] denotes greatest integer$ function, is :
(A) $\frac{1}{3}$
(B) $\frac{2}{3}$
(C) 1
(D) non-periodic
26. $f(x)=|x-1|, \quad f: R^{+} \rightarrow R, g(x)=e^{x}, g:[-1, \infty) \rightarrow R$. If the function fog (x) is defined, then its domain and range respectively are:
(A) $(0, \infty)$ and $[0, \infty)$
(B) $[-1, \infty)$ and $[0, \infty)$
(C) $[-1, \infty)$ and $\left[1-\frac{1}{\mathrm{e}}, \infty\right)$
(D) $[-1, \infty)$ and $\left[\frac{1}{\mathrm{e}}-1, \infty\right)$
27. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be a function defined by $\mathrm{f}(\mathrm{x})=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$ then -
(A) f is a bijection
(B) f is an injection only
(C) f is a surjection
(D) f is neither injection nor a surjection
28. Let $\mathrm{f}:(2,4) \rightarrow(1,3)$ be a function defined by $\mathrm{f}(\mathrm{x})=\mathrm{x}-\left[\frac{\mathrm{x}}{2}\right]$ (where [.] denotes the greatest integer function), then $\mathrm{f}^{-1}(\mathrm{x})$ is equal to :
(A) 2 x
(B) $x+\left[\frac{x}{2}\right]$
(C) $x+1$
(D) $x-1$
29. The mapping $f: R \rightarrow R$ given by $f(x)=x^{3}+a x^{2}+b x+c$ is a bijection if
(A) $\mathrm{b}^{2} \leq 3 \mathrm{a}$
(B) $\mathrm{a}^{2} \leq 3 \mathrm{~b}$
(C) $a^{2} \geq 3 b$
(D) $\mathrm{b}^{2} \geq 3 \mathrm{a}$
30. The period of the function $\mathrm{f}(\mathrm{x})=\sin \left(\cos \frac{x}{2}\right)+\cos (\sin \mathrm{x})$ equal -
(A) $\frac{\pi}{2}$
(B) 2π
(C) π
(D) 4π
31. Let $f(x)=\sin \sqrt{[a]} x$ (where [] denotes the greatest integer function). If f is periodic with fundamental period π, then a belongs to -
(A) $[2,3)$
(B) $\{4,5\}$
(C) $[4,5]$
(D) $[4,5)$
32. Which of the following function has a period of 2π ?
(A) $f(x)=\sin \left(2 \pi x+\frac{\pi}{3}\right)+2 \sin \left(3 \pi x+\frac{\pi}{4}\right)+3 \sin 5 \pi x$
(B) $\mathrm{f}(\mathrm{x})=\sin \frac{\pi x}{3}+\sin \frac{\pi x}{4}$
(C) $f(x)=\sin x+\cos 2 x$
(D) none
33. A function whose graph is symmetrical about the origin is given by -
(A) $f(x)=e^{x}+e^{-x}$
(B) $f(x)=\sin (\sin (\cos (\sin x)))$
(C) $f(x+y)=f(x)+f(y)$
(D) $\sin x+\sin |x|$
34. If $f: R \rightarrow R$ is a function satisfying the property $f(x+1)+f(x+3)=$ then the period of $f(x)$ is -
(A) 4
(B) K
(C) 1
(D) π
35. If $f(x)=3 x-5$, then $f^{-1}(x)-$
(A) is given by $\frac{1}{3 x-5}$
(B) is given by $\frac{x+5}{3}$
(C) does not exist because f is not one-one
(D) does not exist because f is not onto
36. If the function $f:[1, \infty)[1, \infty)$ is defined by $f(x)=2^{x(x-1)}$, then $f^{-1}(x)$ is -
(A) $\left(\frac{1}{2}\right)^{x(x-1)}$
(B) $\frac{1}{2}\left(1+\sqrt{1+4 \log _{2} x}\right)$
(C) $\frac{1}{2}\left(1-\sqrt{1+4 \log _{2} x}\right)$
(D) Not defined

Exercise \# 2

Part \# I [Multiple Correct Choice Type Questions]

1. Which of the functions defined below are NOT one-one function(s) ?
(A) $f(x)=5\left(x^{2}+4\right),(x R)$
(B) $g(x)=2 x+(1 / x)$
(C) $h(x)=\ln \left(x^{2}+x+1\right),(x R)$
(D) $f(x)=e^{-x}$
2. Which of the following functions from Z to itself are NOT bijections ?
(A) $f(x)=x^{3}$
(B) $f(x)=x+2$
(C) $f(x)=2 x+1$
(D) $f(x)=x^{2}+x$
3. If $f(x)=\sin \ell n\left(\frac{\sqrt{4-x^{2}}}{1-x}\right)$, then
(A) domain of $f(x)$ is $(-2,1)$
(B) domain of $f(x)$ is $[-1,1]$
(C) range of $f(x)$ is $[-1,1]$
(D) range of $f(x)$ is $[-1,1)$
4. The function $\cot (\sin x)$ -
(A) is not defined for $x=(4 n+1) \frac{\pi}{2}$
(B) is not defined for $\mathrm{x}=\mathrm{n} \pi$
(C) lies between $-\cot 1$ and $\cot 1$
(D) can't lie between - cot 1 and $\cot 1$
5. The graph of function $\mathrm{f}(\mathrm{x})$ is as shown, adjacently. Then the graph of $\frac{1}{f(|x|)}$ is -

(A)

(B)

(C)

(D)

6. Which of the following function(s) is/are periodic ?
(A) $f(x)=3 x-[3 x]$
(B) $g(x)=\sin (1 / x), x \quad 0 \& g(0)=0$
(C) $h(x)=x \cos x$
(D) $\mathrm{w}(\mathrm{x})=\sin (\sin (\sin \mathrm{x}))$
7. The fundamental period of $\frac{|\sin x|+|\cos x|}{|\sin x-\cos x|+|\sin x+\cos x|}$ is -
(A) π
(B) $\frac{\pi}{2}$
(C) 2π
(D) $\frac{2 \pi}{3}$
8. The range of the function $f(x)=\sin \left[\log \left(\frac{\sqrt{4-x^{2}}}{1-x}\right)\right]$ is -
(A) $[-1,1]$
(B) $(-1,1)$
(C) $[-1,1)$
(D) cannot be determined
9. If $F(x)=\frac{\sin \pi[x]}{\{x\}}$, then $F(x)$ is: (where $\{$.$\} denotes fractional part function and [..] denotes greatest integer$ function and $\operatorname{sgn}(x)$ is a signum function)
(A) periodic with fundamental period 1
(B) even
(C) range is singleton
(D) identical to $\operatorname{sgn}\left(\operatorname{sgn} \frac{\{x\}}{\sqrt{\{x\}}}\right)-1$
10. In the following functions defined from $[-1,1]$ to $[-1,1]$, then functions which are not bijective are
(A) $\sin \left(\sin ^{-1} x\right)$
(B) $\frac{2}{\pi} \sin ^{-1}(\sin x)$
(C) $(\operatorname{sgn} x) \ln e^{x}$
(D) $x^{3} \operatorname{sgn} x$
11. Let $f:[-1,1] \rightarrow[0,2]$ be a linear function which is onto, then $f(x)$ is/are
(A) $1-\mathrm{x}$
(B) $1+x$
(C) $x-1$
(D) $\mathrm{x}+2$
12. Which of the following functions are not homogeneous?
(A) $x+y \cos \frac{y}{x}$
(B) $\frac{x y}{x+y^{2}}$
(C) $\frac{x-y \cos x}{y \sin x+y}$
(D) $\frac{x}{y} \ln \left(\frac{y}{x}\right)+\frac{y}{x} \ln \left(\frac{x}{y}\right)$
13. Given the function $\mathrm{f}(\mathrm{x}) 2 f(x)+x f\left(\frac{1}{x}\right)-2 f\left(\left|\sqrt{2} \sin \pi\left(x+\frac{1}{4}\right)\right|\right)=4 \cos ^{2} \frac{\pi x}{2}+x \cos \frac{\pi}{x}$ such that , then which one of the following is correct?
(A) $f(2)+f(1 / 2)=1$
(B) $f(1)=-1$, but the values of $f(2), f(1 / 2)$ cannot be determined
(C) $f(2)+f(1)=f(1 / 2)$
(D) $f(2)+f(1)=0$
14. The function $\mathrm{f}(\mathrm{x})=\sqrt{\log _{\mathrm{x}^{2}}(\mathrm{x})}$ is defined for x belonging to -
(A) $(-\infty, 0)$
(B) $(0,1)$
(C) $(1, \infty)$
(D) $(0, \infty)$
15. If $f(x+a y, x-a y)=$ axy then $f(x, y)$ is equal to -
(A) $\frac{x^{2}-y^{2}}{4}$
(B) $\frac{x^{2}+y^{2}}{4}$
(C) $4 x y$
(D) none
16. Which of following pairs of functions are identical.
(A) $f(x)=e^{\ell n \sec ^{-1} x}$ and $g(x)=\sec ^{-1} x$
(B) $f(x)=\tan \left(\tan ^{-1} x\right)$ and $g(x)=\cot \left(\cot ^{-1} x\right)$
(C) $f(x)=\operatorname{sgn}(x)$ and $g(x)=\operatorname{sgn}(\operatorname{sgn}(x))$
(D) $f(x)=\cot ^{2} x \cdot \cos ^{2} x$ and $g(x)=\cot ^{2} x-\cos ^{2} x$
17. Let $f(x)=\left(\frac{1-x}{1+x}\right), 0 \leq x \leq 1$ and $g(x)=4 x(1-x), 0 \leq x \leq 1$, then
(A) fog $=\frac{1-4 \mathrm{x}+4 \mathrm{x}^{2}}{1+4 \mathrm{x}-4 \mathrm{x}^{2}}, 0 \leq \mathrm{x} \leq 1$
(B) fog $=\frac{1-4 x-4 x^{2}}{1+4 x-4 x^{2}}, \frac{1}{2} \leq x \leq 1$
(C) $\operatorname{gof}=\frac{8 x(1-x)}{(1+x)^{2}}, 0 \leq x \leq 1$
(D) gof $=\frac{8 x(1+x)}{(1+x)^{2}}, 0 \leq x \leq 1$
18. Function $f(x)=\sin x+\tan x+\operatorname{sgn}\left(x^{2}-6 x+10\right)$ is
(A) periodic with period 2π
(B) periodic with period π
(C) Non-periodic
(D) periodic with period 4π
19. Which of the functions are even -
(A) $\log \left(\frac{1+\mathrm{x}^{2}}{1-\mathrm{x}^{2}}\right)$
(B) $\sin ^{2} x+\cos ^{2} x$
(C) $\log \left(\frac{1+\mathrm{x}^{3}}{1-\mathrm{x}^{3}}\right)$
(D) $\frac{\left(1+2^{x}\right)^{2}}{2^{x}}$
20. Let $D \equiv[-1,1]$ is the domain of the following functions, state which of them are injective.
(A) $f(x)=x^{2}$
(B) $g(x)=x^{3}$
(C) $h(x)=\sin 2 x$
(D) $k(x)=\sin (\pi x / 2)$
21. The period of the function $f(x)=\sin ^{4} 3 x+\cos ^{4} 3 x$ is:
(A) $\pi / 6$
(B) $\pi / 3$
(C) $\pi / 2$
(D) $\pi / 12$
22. Which of the following functions are aperiodic (where [.] denotes greatest integer function)
(A) $y=[x+1]$
(B) $y=\sin x^{2}$
(C) $y=\sin ^{2} x$
(D) $y=\sin ^{-1} x$
23. If $\mathrm{f}: \mathrm{R} \rightarrow[-1,1]$, where $\mathrm{f}(\mathrm{x})=\sin \left(\frac{\pi}{2}[\mathrm{x}]\right)$, (where [.] denotes the greatest integer function), then
(A) $f(x)$ is onto
(B) $f(x)$ is into
(C) $f(x)$ is periodic
(D) $f(x)$ is many one
24. Identify the statement(s) which is/are incorrect?
(A) the function $f(x)=\cos \left(\cos ^{-1} x\right)$ is neither odd nor even
(B) the fundamental period of $f(x)=\cos (\sin x)+\cos (\cos x)$ is π
(C) the range of the function $f(x)=\cos (3 \sin x)$ is $[-1,1]$
(D) none of these

Part \# II [Assertion \& Reason Type Questions]

These questions contains, Statement I (assertion) and Statement II (reason).
(A) Statement-I is true, Statement-II is true ; Statement-II is correct explanation for Statement-I.
(B) Statement-I is true, Statement-II is true ; Statement-II is NOT a correct explanation for statement-I.
(C) Statement-I is true, Statement-II is false.
(D) Statement-I is false, Statement-II is true.

1. Statement-I : Fundamental period of $\cos x+\operatorname{cotx}$ is 2π.

Statement-II : If the period of $f(x)$ is T_{1} and the period of $g(x)$ is T_{2}, then the fundamental period of $f(x)+g(x)$ is the L.C.M. of T_{1} and T_{2}.
2. Statement - I If $y=f(x)$ is increasing in $[\alpha, \beta]$, then its range is $[f(\alpha), f(\beta)]$

Statement - III Every increasing function need not to be continuous.
3. Statement-I : Function $f(x)=\sin (x+3 \sin x)$ is periodic.

Statement-II : If $\mathrm{g}(\mathrm{x})$ is periodic, then $\mathrm{f}(\mathrm{g}(\mathrm{x}))$ may or may not be periodic.
4. Statement : I : All points of intersection of $y=f(x)$ and $y=f^{-1}(x)$ lies on $y=x$ only.

Statement : III : If point $P(\alpha, \beta)$ lies on $y=f(x)$, then $Q(\beta, \alpha)$ lies on $y=f^{-1}(x)$.
5. Let function $f: \mathrm{R} \rightarrow \mathrm{R}$ is such that $f(\mathrm{x}) f(\mathrm{y})-f(\mathrm{xy})=\mathrm{x}+\mathrm{y}$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$

Statement-I: $f(\mathrm{x})$ is a Bijective function.
Statement-III: $f(\mathrm{x})$ is a linear function.

Exercise \# 3 Part \# I $>$ [Matrix Match Type Questions]

Following questions contains statements given in two columns, which have to be matched. The statements in Column-I are labelled as A, B, C and D while the statements in Column-II are labelled as p, q, r and s. Any given statement in Column-I can have correct matching with one statement in Column-II.

1. Let $f(x)=\sin ^{-1} x, g(x)=\cos ^{-1} x$ and $h(x)=\tan ^{-1} x$. For what complete interval of variation of x the following are true.

Column-I
(A)

$$
\mathrm{f}(\sqrt{\mathrm{x}})+\mathrm{g}(\sqrt{\mathrm{x}})=\pi / 2
$$

(B) $\quad \mathrm{f}(\mathrm{x})+\mathrm{g}\left(\sqrt{1-\mathrm{x}^{2}}\right)=0$
(C) $g\left(\frac{1-x^{2}}{1+x^{2}}\right)=2 h(x)$
(D) $\quad \mathrm{h}(\mathrm{x})+\mathrm{h}(1)=\mathrm{h}\left(\frac{1+\mathrm{x}}{1-\mathrm{x}}\right)$
2. Column-I
(A) Total number of solution $x^{2}-4-[x]=0$ where [] denotes greatest integer function.
(B) Minimum period of $e^{\cos ^{4} \pi x+\cos ^{2} \pi x+x-[x]}$
(C) If $A=\left\{(x, y) ; y=\frac{1}{x}, x \in \mathrm{R}_{0}\right\}$ and
$B=\{(x, y): y=x, x \in R\}$ then number of elements in $\mathrm{A} \cap \mathrm{B}$ is (are)
(D) Number of integers in the domain of

$$
\sqrt{2^{x}-3^{x}}+\log _{3} \log _{1 / 2^{x}}
$$

3.

Column - I

(A) The period of the function
$\mathrm{y}=\sin (2 \pi \mathrm{t}+\pi / 3)+2 \sin (3 \pi \mathrm{t}+\pi / 4)+3 \sin 5 \pi \mathrm{t}$ is
(B) $y=\{\sin (\pi x)\}$ is a many one function for $x \in(0, a)$, where $\{x\}$ denotes fractional part of x, then a may be
(C) The fundamental period of the function
$\mathrm{y}=\frac{1}{2}\left(\frac{|\sin (\pi / 4) \mathrm{x}|}{\cos (\pi / 4) \mathrm{x}}+\frac{\sin (\pi / 4) \mathrm{x}}{|\cos (\pi / 4) \mathrm{x}|}\right)$ is
(D) If $\mathrm{f}:[0,2] \rightarrow[0,2]$ is bijective function defined by $f(x)=a x^{2}+b x+c$, where a, b, c are non-zero real numbers, then $f(2)$ is equal to

Column - II
(p) $[0, \infty)$
(q) $[0,1]$
(r) $\quad(-\infty, 1)$
(s) $[-1,0]$

Column - II
(p) 0
(q) 1
(r) 2
(s) 3

Column - II
(p) $1 / 2$
(q) 8
(r) 2
(s) 0
4.

> Column - I
(A) $\quad f: \mathrm{R} \rightarrow \mathrm{R}$

$$
f(x)=(x-1)(x-2) \ldots \ldots . .(x-11)
$$

(B)

$$
f: \mathrm{R}-\{-4 / 3\} \rightarrow \mathrm{R}
$$

$$
f(\mathrm{x})=\frac{2 x+1}{3 x+4}
$$

(C) $\quad f: \mathrm{R} \rightarrow \mathrm{R}$

$$
f(x)=e^{\sin x}+e^{-\sin x}
$$

(D) $\quad f: \mathrm{R} \rightarrow \mathrm{R}$

$$
f(x)=\log \left(x^{2}+2 x+3\right)
$$

Column-II

(p) one one
(q) onto
(r) many one
(s) into

Part \# II

[Comprehension Type Questions]

Comprehension \# 1

Given a function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$; where $\mathrm{A}=\{1,2,3,4,5\}$ and $\mathrm{B}=\{6,7,8\}$

1. \quad Find number of all such functions $y=f(x)$ which are one-one ?
(A) 0
(B) 3^{5}
(C) ${ }^{5} \mathrm{P}_{3}$
(D) 5^{3}
2. Find number of all such functions $y=f(x)$ which are onto
(A) 243
(B) 93
(C) 150
(D) none of these
3. The number of mappings of $g(x): B \rightarrow A$ such that $g(i) \leq g(j)$ whenever $i<j$ is
(A) 60
(B) 140
(C) 10
(D) 35

Comprehension \# 2

If $\quad f(\mathrm{x})=\left\{\begin{array}{ll}x+1, & \text { if } \\ 5 \leq 1 \\ 5-x^{2}, & \text { if }\end{array} \quad x>1 . \quad \& \quad \mathrm{~g}(\mathrm{x})= \begin{cases}x, & \text { if } x \leq 1 \\ 2-x, & \text { if } x>1\end{cases}\right.$
On the basis of above information, answer the following questions :

1. The range of $f(\mathrm{x})$ is -
(A) $(-\infty, 4)$
(B) $(-\infty, 5)$
(C) R
(D) $(-\infty, 4]$
2. If $\mathrm{x} \in(1,2)$, then $\mathrm{g}(f(\mathrm{x}))$ is equal to -
(A) $x^{2}+3$
(B) $x^{2}-3$
(C) $5-x^{2}$
(D) $1-x$
3. Number of negative integral solutions of $g(f(x))+2=0$ are -
(A) 0
(B) 3
(C) 1
(D) 2

Comprehension \#3

Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ is a function satisfying $\mathrm{f}(2-\mathrm{x})=\mathrm{f}(2+\mathrm{x})$ and $\mathrm{f}(20-\mathrm{x})=\mathrm{f}(\mathrm{x}), \forall \mathrm{x} \in \mathrm{R}$.
On the basis of above information, answer the following questions :

1. If $f(0)=5$, then minimum possible number of values of x satisfying $f(x)=5$, for $x \in[0,170]$ is-
(A) 21
(B) 12
(C) 11
(D) 22
2. Graph of $y=f(x)$ is -
(A) symmetrical about $x=18$
(B) symmetrical about $x=5$
(C) symmetrical about $\mathrm{x}=8$
(D) symmetrical about $\mathrm{x}=20$
3. If $f(2) \neq f(6)$, then
(A) fundamental period of $f(x)$ is 1
(B) fundamental period of $\mathrm{f}(\mathrm{x})$ may be 1
(C) period of $f(x)$ can't be 1
(D) fundamental period of $f(x)$ is 8

Comprehension \# 4

Let $\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}^{3}}{3}+\frac{\mathrm{x}^{2}}{2}+\mathrm{ax}+\mathrm{b} \quad \forall \mathrm{x} \in \mathrm{R}$

1. Least value of ' a ' for which $f(x)$ is injective function, is
(A) $\frac{1}{4}$
(B) 1
(C) $\frac{1}{2}$
(D) $\frac{1}{8}$
2. If $a=-1$, then $f(x)$ is
(A) bijective
(B) many-one and onto
(C) one-one and into
(D) many- one and into
3. $f(x)$ is invertible iff
(A) $\mathrm{a} \in\left[\frac{1}{4}, \infty\right), \mathrm{b} \in \mathrm{R}$
(B) $\mathrm{a} \in\left[\frac{1}{8}, \infty\right), \mathrm{b} \in \mathrm{R}$
(C) $\mathrm{a} \in\left(-\infty, \frac{1}{4}\right], \mathrm{b} \in \mathrm{R}$
(D) $\mathrm{a} \in\left(-\infty, \frac{1}{4}\right), \mathrm{b} \in \mathrm{R}$

Exercise \# 4

[Subjective Type Questions]

1. Find the domain of definitions of the following functions :
(i) $\quad \mathrm{f}(\mathrm{x})=\sqrt{3-2^{\mathrm{x}}-2^{1-\mathrm{x}}}$
(ii) $\mathrm{f}(\mathrm{x})=\left(\mathrm{x}^{2}+\mathrm{x}+1\right)^{-3 / 2}$
(iii) $\mathrm{f}(\mathrm{x})=\sqrt{\tan \mathrm{x}-\tan ^{2} \mathrm{x}}$
(iv) $\quad \mathrm{f}(\mathrm{x})=\log _{10}\left(1-\log _{10}\left(\mathrm{x}^{2}-5 \mathrm{x}+16\right)\right)$
(v) If $\mathrm{f}(\mathrm{x})=\sqrt{x^{2}-5 x+4} \& \mathrm{~g}(\mathrm{x})=\mathrm{x}+3$, then find the domain of $\frac{f}{g}(\mathrm{x})$
(vi)

$$
\mathrm{f}(\mathrm{x})=\frac{1}{[x]}+\log _{1-\{\mathrm{x}\}}\left(\mathrm{x}^{2}-3 \mathrm{x}+10\right)+\frac{1}{\sqrt{2-|x|}}+\frac{1}{\sqrt{\sec (\sin x)}}
$$

2. Find the range of the following functions :
(i) $\mathrm{f}(\mathrm{x})=1-|\mathrm{x}-2|$
(ii) $\mathrm{f}(\mathrm{x})=\frac{1}{\sqrt{\mathrm{x}-5}}$
(iii) $f(x)=\frac{1}{2-\cos 3 x}$
(iv) $f(x)=\frac{x+2}{x^{2}-8 x-4}$
(v) $f(x)=\frac{x^{2}-2 x+4}{x^{2}+2 x+4}$
(vi) $\quad f(x)=3 \sin \sqrt{\frac{\pi^{2}}{16}-x^{2}}$
(vii) $\mathrm{f}(\mathrm{x})=\mathrm{x}^{4}-2 \mathrm{x}^{2}+5$
(viii) $f(x)=x^{3}-12 x$, where $x \in[-3,1]$
(ix) $f(x)=\sin ^{2} x+\cos ^{4} x$
3. Let f be a function such that $\mathrm{f}(3)=1$ and $f(3 \mathrm{x})=\mathrm{x}+\mathrm{f}(3 \mathrm{x}-3)$ for all x . Then find the value of $\mathrm{f}(300)$.
4. Let $\mathrm{f}(\mathrm{x})=\frac{9^{x}}{9^{x}+3}$ then find the value of the sum $f\left(\frac{1}{2008}\right)+f\left(\frac{2}{2008}\right)+f\left(\frac{3}{2008}\right)+\ldots \ldots . f\left(\frac{2007}{2008}\right)$
5. Examine whether the following functions are even or odd or neither even nor odd, where [] denotes greatest integer function.
(i) $\quad \mathrm{f}(\mathrm{x})=\frac{\left(1+2^{\mathrm{x}}\right)^{7}}{2^{\mathrm{x}}}$
(ii) $f(x)=\frac{\sec x+x^{2}-9}{x \sin x}$
(iii) $\mathrm{f}(\mathrm{x})=\sqrt{1+\mathrm{x}+\mathrm{x}^{2}}-\sqrt{1-\mathrm{x}+\mathrm{x}^{2}}$
(iv) $\quad f(x)=\left\{\begin{array}{cc}x|x|, & x \leq-1 \\ {[1+x]+[1-x],} & -1<x<1 \\ -x|x|, & x \geq 1\end{array}\right.$
(v) $f(x)=\frac{2 x(\sin x+\tan x)}{2\left[\frac{x+2 \pi}{\pi}\right]-3}$
6. Find the fundamental period of the following functions :

$$
\begin{equation*}
f(x)=1-\frac{\sin ^{2} x}{1+\cot x}-\frac{\cos ^{2} x}{1+\tan x} \tag{i}
\end{equation*}
$$

(ii) $f(x)=\tan \frac{\pi}{2}[x]$, where [.] denotes greatest integer function.
(iii) $f(x)=\ell \log (2+\cos 3 x)$
(iv) $\quad f(x)=e^{\ln \sin x}+\tan ^{3} x-\operatorname{cosec}(3 x-5)$
(v) $\quad f(x)=\sin x+\tan \frac{x}{2}+\sin \frac{x}{2^{2}}+\tan \frac{x}{2^{3}}+\ldots \ldots \ldots+\sin \frac{x}{2^{n-1}}+\tan \frac{x}{2^{n}}$
(vi) $\quad f(x)=\frac{\sin x+\sin 3 x}{\cos x+\cos 3 x}$
7. Let $f(x)=\left\{\begin{array}{ll}1+x, & 0 \leq x \leq 2 \\ 3-x, & 2<x \leq 3\end{array}\right.$, then find (fof)(x).
8. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ is a function satisfying $\mathrm{f}(10-\mathrm{x})=\mathrm{f}(\mathrm{x})$ and $\mathrm{f}(2-\mathrm{x})=\mathrm{f}(2+\mathrm{x}) \forall \mathrm{x} \in \mathrm{R}$. If $\mathrm{f}(0)=101$, then the minimum possible number of values of x satisfying $f(x)=101 \forall x \in[0,25]$ is
9. Show if $\mathrm{f}(\mathrm{x})=\sqrt[n]{a-x^{n}}, \mathrm{x}>0 \mathrm{n} \geq 2, \mathrm{n} \in \mathrm{N}$, then (fof) $(\mathrm{x})=\mathrm{x}$. Find also the inverse of $\mathrm{f}(\mathrm{x})$.
10. Let $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$, where $\mathrm{f}(\mathrm{x})=\mathrm{x}+(-1)^{\mathrm{x}-1}$, then find the inverse of f .

Part \# I > [Previous Year Questions] [AIEEE/JEE-MAIN]

1. Which of the following is not a periodic function-
[AIEEE 2002]
(1) $\sin 2 x+\cos x$
(2) $\cos \sqrt{x}$
(3) $\tan 4 x$
(4) $\log \cos 2 x$
2. The period of $\sin ^{2} \mathrm{x}$ is-
(1) $\pi / 2$
(2) π
(3) $3 \pi / 2$
(4) 2π
3. The function $f: R \rightarrow R$ defined by $f(x)=\sin x$ is-
[AIEEE 2002]
(1) into
(2) onto
(3) one-one
(4) many-one
4. The range of the function $\mathrm{f}(\mathrm{x})=\frac{2+x}{2-x}, \mathrm{x} \neq 2$ is-
(1) R
(2) $R-\{-1\}$
(3) $\mathrm{R}-\{1\}$
(4) $\mathrm{R}-\{2\}$
5. The domain of $\sin ^{-1}\left[\log _{3}\left(\frac{x}{3}\right)\right]$
[AIEEE 2002]
(1) $[1,9]$
(2) $[-1,9]$
(3) $[-9,1]$
(4) $[-9,-1]$
6. The function $f(x)=\log \left(x+\sqrt{x^{2}+1}\right)$, is-
[AIEEE 2003]
(1) neither an even nor an odd function
(2) an even function
(3) an odd function
(4) a periodic function
7. Domain of definition of the function $f(x)=\frac{3}{4-x^{2}}+\log _{10}\left(x^{3}-x\right)$, is-
[AIEEE 2003]
(1) $(-1,0) \cup(1,2) \cup(2, \infty)$
(2) $(1,2)$
(3) $(-1,0) \cup(1,2)$
$(4)(1,2) \cup(2, \infty)$
8. If $f: R \rightarrow R$ satisfies $f(x+y)=f(x)+f(y)$, for all $x, y \in R$ and $f(1)=7$, then $\sum_{r=1}^{n} f(r)$ is
[AIEEE 2003]
(1) $\frac{7 \mathrm{n}(\mathrm{n}+1)}{2}$
(2) $\frac{7 n}{2}$
(3) $\frac{7(\mathrm{n}+1)}{2}$
(4) $7 \mathrm{n}(\mathrm{n}+1)$
9. A function from the set of natural numbers to integers defined by $f(n)=\left\{\begin{array}{l}\frac{n-1}{2}, \text { when } n \text { is odd } \\ -\frac{n}{2} \text {, when } n \text { is even }\end{array}\right.$ is - [AIEEE 2003]
(1) neither one-one nor onto
(2) one-one but not onto
(3) onto but not one-one
(4) one-one and onto both
10. The domain of the function $f(\mathrm{x})=\frac{\sin ^{-1}(x-3)}{\sqrt{9-x^{2}}}$ is
[AIEEE 2004]
(1) $[1,2)$
(2) $[2,3)$
(3) $[1,2]$
(4) $[2,3]$
11. The range of the function $f(x)={ }^{7-x} P_{x-3}$ is-
[AIEEE 2004]
(1) $\{1,2,3,4,5\}$
(2) $\{1,2,3,4,5,6\}$
(3) $\{1,2,3\}$
(4) $\{1,2,3,4\}$
12. If $f: \mathrm{R} \rightarrow \mathrm{S}$ defined by $f(\mathrm{x})=\sin \mathrm{x}-\sqrt{3} \cos \mathrm{x}+1$ is onto, then the interval of S is-
[AIEEE 2004]
(1) $[-1,3]$
(2) $[-1,1]$
(3) $[0,1]$
(4) $[0,-1]$
13. Let $f:(-1,1) \rightarrow \mathrm{B}$, be a function defined by $f(\mathrm{x})=\tan ^{-1} \frac{2 x}{1-x^{2}}$, then f is both one-one and onto when B is the interval-
[AIEEE 2005]
(1) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
(2) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(3) $\left(0, \frac{\pi}{2}\right)$
(4) $\left[0, \frac{\pi}{2}\right)$
14. A real valued function $f(\mathrm{x})$ satisfies the function equation $f(\mathrm{x}-\mathrm{y})=f(\mathrm{x}) f(\mathrm{y})-f(\mathrm{a}-\mathrm{x}) f(\mathrm{a}+\mathrm{y})$ where a is a given constant and $f(0)=1, f(2 \mathrm{a}-\mathrm{x})$ is equal to
[AIEEE 2005]
(1) $f(1)+f(\mathrm{a}-\mathrm{x})$
(2) $f(-x)$
(3) $-f(\mathrm{x})$
(4) $f(\mathrm{x})$
15. If x is real, the maximum value of $\frac{3 x^{2}+9 x+17}{3 x^{2}+9 x+7}$ is-
[AIEEE 2006]
(1) 41
(2) 1
(3) $\frac{17}{7}$
(4) $\frac{1}{4}$
16. The largest internal lying in $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ for which the function is defined, $\left[f(x)=4^{-x^{2}}+\cos ^{-1}\left(\frac{x}{2}-1\right)+\log (\cos x)\right]$ is
[AIEEE 2007]
(1) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(2) $\left[-\frac{\pi}{4}, \frac{\pi}{2}\right)$
(3) $\left[0, \frac{\pi}{2}\right)$
(4) $[0, \pi]$
17. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be a function defined by $\mathrm{f}(\mathrm{x})=\operatorname{Min}\{\mathrm{x}+1,|\mathrm{x}|+1\}$. Then which of the following is true ?
(1) $f(x)$ is not differentiable at $x=1$
(2) $f(x)$ is differentiable everywhere
(3) $f(x)$ is not differentiable at $x=0$
(4) $f(x) \geq 1$ for all $x \in R$
[AIEEE 2007]
18. Let f : N Y be a function defined as $f(x)=4 x+3$ where
[AIEEE 2008]
$Y=\{y \in N: y=4 x+3$ for some $x \in N\}$. So that f is invertible and its inverse is
(1) $g(y)=\frac{3 y+4}{3}$
(2) $g(y)=4+\frac{y+3}{4}$
(3) $g(y)=\frac{y+3}{4}$
(4) $g(y)=\frac{y-3}{4}$
19. For real x, let $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+5 \mathrm{x}+1$, then :-
[AIEEE 2009]
(1) f is one-one and onto R
(2) f is neither one-one nor onto R
(3) f is one-one but not onto R
(4) f is onto R but not one-one
20. Let $\mathrm{f}(\mathrm{x})=(\mathrm{x}+1)^{2}-1, \mathrm{x}-1$.
[AIEEE 2009]
Statement-1 : The set $\left\{\mathrm{x}: \mathrm{f}(\mathrm{x})=\mathrm{f}^{-1}(\mathrm{x})\right\}=\{0,-1\}$.
Statement-2 : f is a bijection.
(1) Statement -1 is true, Statement -2 is false.
(2) Statement-1 is false, Statement-2 is true.
(3) Statement-1 is true, Statement-2 is true ; Statement-2 is a correct explanation for Statement-1.
(4) Statement-1 is true, Statement-2 is true ; Statement-2 is not a correct explanation for statement-1.
21. The domain of the function $\mathrm{f}(\mathrm{x})=\frac{1}{\sqrt{|x|-x}}$ is :-
[AIEEE 2011]
(1) $(-\infty, 0)$
(2) $(-\infty, \infty)-\{0\}$
(3) $(-\infty, \infty)$
(4) $(0, \infty)$
22. Let f be a function defined by $f(x)=(x-1)^{2}+1,(x \geq 1)$
[AIEEE 2011]

Statement-1: The set $\left\{x: f(x)=f^{-1}(x)\right\}=\{1,2\}$

Statement - $2: \mathrm{f}$ is bijection and $f^{-1}(x)=1+\sqrt{x-1}, \mathrm{x} \geq 1$.
(1) Statement- 1 is true, Statement -2 is false.
(2) Statement-1 is false, Statement-2 is true.
(3) Statement-1 is true, Statement-2 is true ; Statement-2 is a correct explanation for Statement-1.
(4) Statement-1 is true, Statement-2 is true ; Statement-2 is not a correct explanation for statement-1.
23. If $f: R \rightarrow R$ is a function defined by $f(x)=[x] \cos \pi\left(\frac{2 x-1}{2}\right)$, where $[x]$ denotes the greatest integer function, then f is :
[AIEEE 2012]
(1) continuous only at $\mathrm{x}=0$.
(2) continuous for every real x.
(3) discontinuous only at $x=0$.
(4) discontinuous only at non-zero integral values of x.
24. If $X=\left\{4^{n}-3 n-1: n \varepsilon N\right\}$ and $Y=\{9(n-1): n \varepsilon N\}$, where N is the set of natural numbers, then $X \cup Y$ is equal to :
(1) N
(2) $Y-X$
(3) X
(4) Y
[Main 2014]
25. If $f(x)+2 f\left(\frac{1}{x}\right)=3 x, x \neq 0$ and $S=\{x \in R: f(x)=f(-x)\}$; then S :
[Main 2016]
(1) contains exactly one element.
(2) contains exactly two elements.
(3) contains more than two elements.
(4) is an empty set.
26. \quad For $x \in R, f(x)=|\log 2-\sin x|$ and $g(x)=f(f(x))$, then:
[Main 2016]
(1) $\mathrm{g}^{\prime}(0)=\cos (\log 2)$
(2) $g^{\prime}(0)=-\cos (\log 2)$
(3) g is differentiable at $\mathrm{x}=0$ and $\mathrm{g}^{\prime}(0)=-\sin (\log 2)$
(4) g is not differentiable at $x=0$

Part \# II

[Previous Year Questions][ITT-JEE ADVANCED]

1. The domain of definition of the function, $y(x)$ given by the equation, $2^{x}+2^{y}=2$ is :
(A) $0<x \leq 1$
(B) $0 \leq x \leq 1$
(C) $-\infty<x \leq 0$
(D) $-\infty<$ x <1
[JEE 2000]
2. Given $x=\{1,2,3,4\}$, find all one-one, onto mappings, $f: X \rightarrow X$ such that, $\mathrm{f}(1)=1, \mathrm{f}(2) \neq 2$ and $\mathrm{f}(4) \neq 4$.
[JEE 2000]
3. Let $g(x)=1+x-[x] \& f(x)=\left\{\begin{array}{cc}-1 & , \quad x<0 \\ 0 & , \quad x=0 \\ 1 & , \quad x>0\end{array}\right.$. Then for all $x, f(g(x))$ is equal to
[JEE 2001]
(A) x
(B) 1
(C) $f(x)$
(D) $g(x)$
where [] denotes the greatest integer function.
4. If $f:[1, \infty) \rightarrow[2, \infty)$ is given by, $f(x)=x+\frac{1}{x}$, then $f^{-1}(x)$ equals :
[JEE 2001]
(A) $\frac{x+\sqrt{x^{2}-4}}{2}$
(B) $\frac{\mathrm{x}}{1+\mathrm{x}^{2}}$
(C) $\frac{x-\sqrt{x^{2}-4}}{2}$
(D) $1-\sqrt{\mathrm{x}^{2}-4}$
5. The domain of definition of $f(x)=\frac{\log _{2}(x+3)}{x^{2}+3 x+2}$ is :
[JEE 2001]
(A) $\mathrm{R} \backslash\{-1,-2\}$
(B) $(-2, \infty)$
(C) $\mathrm{R} \backslash\{-1,-2,-3\}$
(D) $(-3, \infty) \backslash\{-1,-2\}$
6. Let $\mathrm{E}=\{1,2,3,4\} \& \mathrm{~F}=\{1,2\}$. Then the number of onto functions from E to F is
[JEE 2001]
(A) 14
(B) 16
(C) 12
(D) 8
7. Let $f(x)=\frac{\alpha x}{x+1}, x \neq-1$. Then for what value of α is $f(f(x))=x$?
(A) $\sqrt{2}$
(B) $-\sqrt{2}$
(C) 1
(D) -1
[JEE 2001]
8. Suppose $f(x)=(x+1)^{2}$ for $x \geq-1$. If $g(x)$ is the function whose graph is the reflection of the graph of $f(x)$ with respect to the line $y=x$, then $g(x)$ equals -
(A) $-\sqrt{\mathrm{x}}-1, x \geq 0$
(B) $\frac{1}{(1+x)^{2}}, x \geq-1$
(C) $\sqrt{\mathrm{x}+1}, \mathrm{x} \geq-1$
(D) $\sqrt{\mathrm{x}}-1, \mathrm{x} \geq 0$
9. Let function $f: R \rightarrow R$ be defined by $f(x)=2 x+\sin x$ for $x \in R$. Then f is -
(A) one to one and onto
(B) one to one but not onto
(C) onto but not one to one
(D) neither one to one nor onto
[JEE 2002]
10. Range of the function $f(x)=\frac{x^{2}+x+2}{x^{2}+x+1}$ is -
(A) $[1,2]$
(B) $[1, \infty)$
(C) $\left[2, \frac{7}{3}\right]$
(D) $\left(1, \frac{7}{3}\right]$
[JEE 2003]
11. $\operatorname{Let} f(x)=\frac{x}{1+x}$ defined from $(0, \infty) \rightarrow[0, \infty)$, then by $f(x)$ is -
(A) one-one but not onto
(B) one-one and onto
(C) Many one but not onto
(D) Many one and onto
12. Let $f(x)=\sin x+\cos x, g(x)=x^{2}-1$. Thus $g(f(x))$ is invertible for $x \in$
[JEE 2004]
(A) $\left[-\frac{\pi}{2}, 0\right]$
(B) $\left[-\frac{\pi}{2}, \pi\right]$
(C) $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$
(D) $\left[0, \frac{\pi}{2}\right]$
13. If functions $f(x)$ and $g(x)$ are defined on $R \rightarrow R$ such that $f(x)=\left\{\begin{array}{l}0, x \in \text { rational } \\ x, x \in \text { irrational }\end{array}, g(x)=\left\{\begin{array}{l}0, x \in \text { irrational } \\ x, x \in \text { rational }\end{array}\right.\right.$, then $(f-g)(x)$ is -
(A) one-one and onto
(B) neither one-one nor onto
(C) one-one but not onto
(D) onto but not one-one
[JEE 2005]
14. Let $f(x)=x^{2}$ and $g(x)=\sin x$ for all $x \in R$. Then the set of all x satisfying $(f \circ \mathrm{~g} \circ \mathrm{~g} \circ f)(\mathrm{x})=(\mathrm{g} \circ \mathrm{g} \circ f)(\mathrm{x})$, where $(f \circ \mathrm{~g})(\mathrm{x})=f(\mathrm{~g}(\mathrm{x}))$, is-
[JEE 2011]
(A) $\pm \sqrt{\mathrm{n} \pi}, \mathrm{n} \in\{0,1,2, \ldots$.
(B) $\pm \sqrt{\mathrm{n} \pi}, \mathrm{n} \in\{1,2, \ldots\}$
(C) $\frac{\pi}{2}+2 \mathrm{n} \pi, \mathrm{n} \in\{\ldots,-2,-1,0,1,2, \ldots$.
(D) $2 \mathrm{n} \pi, \mathrm{n} \in\{\ldots,-2,-1,0,1,2, \ldots$.
15. The function $f:[0,3] \rightarrow[1,29]$, defined by $f(x)=2 x^{3}-15 x^{2}+36 x+1$, is :
[JEE 2012]
(A) one-one and onto
(B) onto but not one-one
(C) one-one but not onto
(D) neither one-one nor onto
16. Let $f:(-1,1) \rightarrow \mathbb{R}$ be such that $f(\cos 4 \theta)=\frac{2}{2-\sec ^{2} \theta}$ for $\theta \in\left(0, \frac{\pi}{4}\right) \cup\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$. Then the value(s) of $f\left(\frac{1}{3}\right)$ is (are)-
[JEE 2012]
(A) $1-\sqrt{\frac{3}{2}}$
(B) $1+\sqrt{\frac{3}{2}}$
(C) $1-\sqrt{\frac{2}{3}}$
(D) $1+\sqrt{\frac{2}{3}}$
17. For every pair of continuous functions $\mathrm{f}, \mathrm{g}:[0,1] \rightarrow \mathrm{R}$ such that $\max \{\mathrm{f}(\mathrm{x}): \mathrm{x} \in[0,1]\}=\max \{\mathrm{g}(\mathrm{x}): \mathrm{x} \in[0,1]\}$, the correct statement(s) is (are) :
[JEE Ad. 2014]
(A) $(\mathrm{f}(\mathrm{c}))^{2}+3 \mathrm{f}(\mathrm{c})=(\mathrm{g}(\mathrm{c}))^{2}+3 \mathrm{~g}(\mathrm{c})$ for some $\mathrm{c} \in[0,1]$
(B) $(\mathrm{f}(\mathrm{c}))^{2}+\mathrm{f}(\mathrm{c})=(\mathrm{g}(\mathrm{c}))^{2}+3 \mathrm{~g}(\mathrm{c})$ for some $\mathrm{c} \in[0,1]$
(C) $(\mathrm{f}(\mathrm{c}))^{2}+3 \mathrm{f}(\mathrm{c})=(\mathrm{g}(\mathrm{c}))^{2}+\mathrm{g}(\mathrm{c})$ for some $\mathrm{c} \in[0,1]$
(D) $(\mathrm{f}(\mathrm{c}))^{2}=(\mathrm{g}(\mathrm{c}))^{2}$ for some $\mathrm{c} \in[0,1]$
18. Let $\mathrm{f}:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathrm{R}$ be given by
[JEE Ad. 2014]
$\mathrm{f}(\mathrm{x})=(\log (\sec \mathrm{x}+\tan \mathrm{x}))^{3}$
Then
(A) $f(x)$ is an odd function
(B) $f(x)$ is a one-one function
(C) $f(x)$ is an onto function
(D) $f(x)$ is an even function
19. Let $\mathrm{f}_{1}: \mathrm{R} \rightarrow \mathrm{R}, \mathrm{f}_{2}:[0, \infty) \rightarrow \mathrm{R}, \mathrm{f}_{3}: \mathrm{R} \rightarrow \mathrm{R}$ and $\mathrm{f}_{4}: \mathrm{R} \rightarrow[0, \infty)$ be defined by
[JEE Ad. 2014]
$f_{1}(x)=\left\{\begin{array}{ll}|x| & \text { if } x<0 \\ e^{x} & \text { if } x \geq 0\end{array} ; f_{2}(x)=x^{2} ; f_{3}(x)=\left\{\begin{array}{ll}\sin x & \text { if } x<0 \\ x & \text { if } x \geq 0\end{array} ; f_{4}(x)= \begin{cases}f_{2}\left(f_{1}(x)\right) & \text { if } x<0 \\ f_{2}\left(f_{1}(x)\right)-1 & \text { if } x \geq 0\end{cases}\right.\right.$

List - I
(p) f_{4} is

List - II

onto but not one-one
neither continuous nor one-one differentiable but not one-one continuous and one-one

Codes:

	p	q	r	s
(A)	3	1	4	2
(B)	1	3	4	2
(C)	3	1	2	4
(D)	1	3	2	4

20. Let $f(x)=\sin \left(\frac{\pi}{6} \sin \left(\frac{\pi}{2} \sin x\right)\right)$ for all $x \in R$ and $g(x)=\frac{\pi}{2} \sin x$ for all $x \in R$. Let $(f o g)(x)$ denote $f(g(x))$ and (gof $)(x)$ denote $\mathrm{g}(\mathrm{f}(\mathrm{x}))$. Then which of the following is (are) true?
[JEE Ad. 2015]
(A) Range of f is $\left[-\frac{1}{2}, \frac{1}{2}\right]$
(B) Range of fog is $\left[-\frac{1}{2}, \frac{1}{2}\right]$
(C) $\operatorname{Lim}_{x \rightarrow 0} \frac{f(x)}{g(x)}=\frac{\pi}{6}$
(D) There is an $x \in R$ such that $(\mathrm{gof})(x)=1$
21. Let $f: R \rightarrow R, g: R \rightarrow R$ and $h: R \rightarrow R$ be differentiable functions such that $f(x)=x^{3}+3 x+2(12 \alpha+20) \frac{K^{2}}{2}=K^{3}$, $g(f(x))=x$ and $h(g(g(x)))=x$ for all $x \in R$. Then
[JEE Ad. 2016]
(A) $g^{\prime}(2)=\frac{1}{15}$
(B) $h^{\prime}(1)=666$
(C) $h(0)=16$
(D) $h(g(3))=36$

MOCK TVEST

SECTION - I : STRAIGHT OBJECTIVE TYPE

1. If $f(x) \cdot f(y)=f(x)+f(y)+f(x y)-2 \quad \forall x, y \in R$ and if $f(x)$ is not a constant function, then the value of $f(1)$ is equal to
(A) 1
(B) 2
(C) 0
(D) -1
2. The domain of the function $f(x)=\sqrt{-\log _{\frac{x+4}{}}\left(\log _{2} \frac{2 x-1}{3+x}\right)}$ is
(A) $(-4,-3) \cup(4, \infty)$
(B) $(-\infty,-3) \cup(4, \infty)$
(C) $(-\infty,-4) \cup(3, \infty)$
(D) None
3. Let $f(x)=a x^{2}+b x+c$, where a, b, c are rational and $f: Z \rightarrow Z$, where Z is the set of integers. Then $a+$ b is :
(A) a negative integer
(B) an integer
(C) non-integral rational number
(D) none of these
4. If $f(x)=\frac{\sin ^{2} x+4 \sin x+5}{2 \sin ^{2} x+8 \sin x+8}$, then range of $f(x)$ is
(A) $\left(\frac{1}{2}, \infty\right)$
(B) $\left(\frac{5}{9}, 1\right)$
(C) $\left[\frac{5}{9}, 1\right]$
(D) $\left[\frac{5}{9}, \infty\right)$
5. If $f(x)=x+\tan x$ and $g(x)$ is the inverse of $f(x)$ then $g^{\prime}(x)$ is equal to
(A) $\frac{1}{1+(g(x)-x)^{2}}$
(B) $\frac{1}{2+(g(x)-x)^{2}}$
(C) $\frac{1}{2+(g(x)-x)^{2}}$
(D) none of these
6. Let $f(x)=\tan x, g(f(x))=f\left(x-\frac{\pi}{4}\right)$, where $f(x)$ and $g(x)$ are real valued functions. For all possible values of $x, f(g(x))=$
(A) $\tan \left(\frac{x-1}{x+1}\right)$
(B) $\tan (x-1)-\tan (x+1)$
(C) $\frac{f(x)+1}{f(x)-1}$
(D) $\frac{x-\pi / 4}{x+\pi / 4}$
7. The range of the function $f(x)=\sin ^{-1}\left[x^{2}+\frac{1}{2}\right]+\cos ^{-1}\left[x^{2}-\frac{1}{2}\right]$, where [] is the greatest integer function, is:
(A) $\left\{\frac{\pi}{2}, \pi\right\}$
(B) $\left\{0, \frac{\pi}{2}\right\}$
(C) $\{\pi\}$
(D) $\left(0, \frac{\pi}{2}\right)$
8. It is given that $f(x)$ is a function defined on R, satisfying $f(1)=1$ and for any $x \in R$
and $\quad \begin{aligned} & f(x+5) \geq f(x)+5 \\ & f(x+1) \leq f(x)+1\end{aligned}$
If $g(x)=f(x)+1-x$, then $g(2013)$ equals
(A) 2014
(B) 2013
(C) 1
(D) 0
9. The image of the interval $[-1,3]$ under the mapping specified by the function $f(x)=4 x^{3}-12 x$ is :
(A) $[\mathrm{f}(+1), \mathrm{f}(-1)]$
(B) $[\mathrm{f}(-1), \mathrm{f}(3)]$
(C) $[-8,16]$
(D) $[-8,72]$
10. Let $f(x)=x(2-x), 0 \leq x \leq 2$. If the definition of ' f ' is extended over the set, $R-[0,2]$ by $f(x-2)=f(x)$, then ' f ' is a :
(A) periodic function of period 1
(B) non-periodic function
(C) periodic function of period 2
(D) periodic function of period $1 / 2$

SECTION - II : MULTIPLE CORRECT ANSWER TYPE

11. $\operatorname{Suppose} f(x)=a x+b$ and $g(x)=b x+a$, where a and b are positive integers.

If $f(g(50))-g(f(50))=28$ then the product $(a b)$ can have the value equal to
(A) 12
(B) 48
(C) 180
(D) 210
12. Let $f(x)=\left\{\begin{array}{cl}0 & \text { for } x=0 \\ x^{2} \sin \left(\frac{\pi}{x}\right) & \text { for }-1<x<1(x \neq 0) \text {, then: } \\ x|x| & \text { for } x>1 \text { or } x<-1\end{array}\right.$
(A) $f(x)$ is an odd function
(B) $f(x)$ is an even function
(C) $f(x)$ is neither odd nor even
(D) $f^{\prime}(x)$ is an even function
13. Which of the functions defined below are one-one function(s) ?
(A) $f(x)=(x+1),(x \geq-1)$
(B) $g(x)=x+(1 / x)(x>0)$
(C) $h(x)=x^{2}+4 x-5,(x>0)$
(D) $f(x)=e^{-x},(x \geq 0)$
14. If the function $f(\mathrm{x})=\mathrm{ax}+\mathrm{b}$ has its own inverse then the ordered pair (a, b) can be
(A) $(1,0)$
(B) $(-1,0)$
(C) $(-1,1)$
(D) $(1,1)$
15. A continuous function $f(x)$ on $R \rightarrow R$ satisfies the relation

$$
f(\mathrm{x})+f(2 \mathrm{x}+\mathrm{y})+5 \mathrm{xy}=f(3 \mathrm{x}-\mathrm{y})+2 \mathrm{x}^{2}+1 \text { for } \forall \mathrm{x}, \mathrm{y} \in \mathrm{R}
$$

then which of the following hold($\mathbf{(s)} \operatorname{good}$?
(A) f is many one
(B) f has no minima
(C) f is neither odd nor even
(D) f is bounded

SECTION - III : ASSERTION AND REASON TYPE

16. Let $g: R \rightarrow R$ defined by $g(x)=\left\{e^{x}\right\}$, where $\{x\}$ denotes fractional part function. Statement-I : $g(x)$ is periodic function.
Statement-III: $\{x\}$ is periodic function.
(A) Statement-I is true, statement-II is true and statement-II is correct explanation for statement-I.
(B) Statement-I is true, statement-II is true and statement-II is NOT the correct explanation for statement-I.
(C) Statement-I is true, statement-II is false.
(D) Statement-I is false, statement-II is true
17. Statement-I: Fundamental period of $\sin x+\tan x$ is 2π

Statement-II : If the period of $f(x)$ is T_{1} and the period of $g(x)$ is T_{2}, then the fundamental period of $f(x)+g(x)$ is the L.C.M. of T_{1} and T_{2}
(A) Statement-I is true, statement-II is true and statement-II is correct explanation for statement-I.
(B) Statement-I is true, statement-II is true and statement-II is NOT the correct explanation for statement-I.
(C) Statement-I is true, statement-II is false.
(D) Statement-I is false, statement-II is true
18. Statement-I : If a function $y=f(x)$ is symmetric about $y=x$, then $f(f(x))=x$

Statement-II : If $f(x)=\left\{\begin{array}{ccc}x & : & x \text { is rational } \\ 1-x & : & x \text { is irrational }\end{array}\right.$, then $f(f(x))=x$
(A) Statement-I is true, statement-II is true and statement-II is correct explanation for statement-I.
(B) Statement-I is true, statement-II is true and statement-II is NOT the correct explanation for statement-I.
(C) Statement-I is true, statement-II is false.
(D) Statement-I is false, statement-II is true
19. Statement-1: f is an even function, g and h are odd functions, all 3 are polynomials. Given $f(1)=0, f(2)=1$, $\mathrm{f}(3)=-5, \mathrm{~g}(1)=1, \mathrm{~g}(-3)=2, \mathrm{~g}(5)=3, \mathrm{~h}(1)=3, \mathrm{~h}(3)=5$ and $\mathrm{h}(5)=1$.

The value of $\mathrm{f}(\mathrm{g}(\mathrm{h}(1)))+\mathrm{g}(\mathrm{h}(\mathrm{f}(3)))+\mathrm{h}(\mathrm{f}(\mathrm{g}(-1)))$ is equal to zero.
Statement-2: If a polynomial function $\mathrm{P}(\mathrm{x})$ is odd then $\mathrm{P}(0)=0$.
(A) Statement-I is true, statement-II is true and statement-II is correct explanation for statement-I.
(B) Statement-I is true, statement-II is true and statement-II is NOT the correct explanation for statement-I.
(C) Statement-I is true, statement-II is false.
(D) Statement-I is false, statement-II is true
20. Statement $-1: \mathrm{e}^{\mathrm{x}}$ can not be expressed as the sum of even and odd function.

Statement -2: e^{x} is neither even nor odd function
(A) Statement-I is true, statement-II is true and statement-II is correct explanation for statement-I.
(B) Statement-I is true, statement-II is true and statement-II is NOT the correct explanation for statement-I.
(C) Statement-I is true, statement-II is false.
(D) Statement-I is false, statement-II is true

SECTION - IV : MATRIX - MATCH TYPE

21. Column - I

Column - II
(A) Function $\mathrm{f}:\left[0, \frac{\pi}{3}\right] \rightarrow[0,1]$ defined by $\mathrm{f}(\mathrm{x})=\sqrt{\sin \mathrm{x}}$ is
(p) one to one function
(B) Function $\mathrm{f}:(1, \infty) \rightarrow(1, \infty)$ defined by $\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}+3}{\mathrm{x}-1}$ is
(q) many - one function
(C) Function $\mathrm{f}:\left[-\frac{\pi}{2}, \frac{4 \pi}{3}\right] \rightarrow[-1,1]$ defined by $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}$ is
(r) into function
(D) Function $\mathrm{f}:(2, \infty) \rightarrow[8, \infty)$ defined by $\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}^{2}}{\mathrm{x}-2}$ is
(s) onto function
22. Let $f(\mathrm{x})=\mathrm{x}+\frac{1}{\mathrm{x}}$ and $\mathrm{g}(\mathrm{x})=\frac{\mathrm{x}+1}{\mathrm{x}+2}$.

Match the composite function given in Column-I with their respective domains given in Column-II.

Column-I

(A)	fog
(B)	gof
(C)	fof
(D)	gog

Column-II
(p) $\mathrm{R}-\{-2,-5 / 3\}$
(q) $\mathrm{R}-\{-1,0\}$
(r) $\mathrm{R}-\{0\}$
(s) $\mathrm{R}-\{-2,-1\}$

SECTION - V : COMPREHENSION TYPE

23. Read the following comprehension carefully and answer the questions.

Let $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-2 \mathrm{x}-1 \quad \forall \mathrm{x} \in \mathrm{R}$. Let $\mathrm{f}:(-\infty, \mathrm{a}] \rightarrow[\mathrm{b}, \infty)$, where 'a' is the largest real number for which $\mathrm{f}(\mathrm{x})$ is bijective.

1. The value of $(a+b)$ is equal to
(A) -2
(B) -1
(C) 0
(D) 1
2. Let $f: R \rightarrow R, g(x)=f(x)+3 x-1$, then the least value of function $y=g(|x|)$ is
(A) $-9 / 4$
(B) $-5 / 4$
(C) -2
(D) -1
3. Let $\mathrm{f}:[\mathrm{a}, \infty) \rightarrow[\mathrm{b}, \infty)$, then $\mathrm{f}^{-1}(\mathrm{x})$ is given by
(A) $1+\sqrt{\mathrm{x}+2}$
(B) $1-\sqrt{\mathrm{x}+3}$
(C) $1-\sqrt{\mathrm{x}+2}$
(D) $1+\sqrt{\mathrm{x}+3}$
4. Let $f: R \rightarrow R$, then range of values of k for which equation $f(|x|)=k$ has 4 distinct real roots is
(A) $(-2,-1)$
(B) $(-2,0)$
(C) $(-1,0)$
(D) $(0,1)$
5. Read the following comprehension carefully and answer the questions.

Let $f(x)=\left\{\begin{array}{ccc}2 x+a & : & x \geq-1 \\ b x^{2}+3 & : & x<-1\end{array}\right.$
and $g(x)=\left\{\begin{array}{ccc}x+4 & : & 0 \leq x \leq 4 \\ -3 x-2 & : & -2<x<0\end{array}\right.$

1. $g(f(x))$ is not defined if
(A) $\mathrm{a} \in(6, \infty), \mathrm{b} \in(5, \infty)$
(B) $\mathrm{a} \in(4,6), \mathrm{b} \in(5, \infty)$
(C) $\mathrm{a} \in(6, \infty), \mathrm{b} \in(0,1)$
(D) $\mathrm{a} \in(4,6), \mathrm{b} \in(1,5)$
2. If domain of $g(f(x))$ is $[-1,2]$, then
(A) $\mathrm{a}=1, \mathrm{~b}>5$
(B) $a=2, b>7$
(C) $a=2, b>10$
(D) $a=0, b \in R$
3. If $a=2$ and $b=3$ then range of $g(f(x))$ is
(A) $(-2,8]$
(B) $(0,8]$
(C) $[4,8]$
(D) $[-1,8]$
4. Read the following comprehension carefully and answer the questions.

Let $f: R \rightarrow R$ is a function satisfying $f(2-x)=f(2+x)$ and $f(20-x)=f(x), \forall x \in R$. For this function f answer the following.

1. If $f(0)=5$, then minimum possible number of values of x satisfying $f(x)=5$, for $x \in[0,170]$, is
(A) 21
(B) 12
(C) 11
(D) 22
2. Graph of $y=f(x)$ is
(A) symmetrical about $\mathrm{x}=18$
(B) symmetrical about $\mathrm{x}=5$
(C) symmetrical about $x=8$
(D) symmetrical about $x=20$
3. If $f(2) \neq f(6)$, then
(A) fundamental period of $f(x)$ is 1
(B) fundamental period of $f(x)$ may be 1
(C) period of $f(x)$ can't be 1
(D) fundamental period of $f(x)$ is 8

SECTION - VI : INTEGER TYPE

26. If $f(x)+f(y)+f(x y)=2+f(x)$. $f(y)$, for all real values of x and y and $f(x)$ is a polynomial function with $f(4)=17$ and $f(1) \neq 1$, then find the value of $f(5)$.
27. If $f(x)+f(y)+f(x y)=2+f(x)$. $f(y)$, for all real values of $x \& y$ and $f(x)$ is a polynomial function with $f(4)=17$, then find the value of $f(5) / 14$, where $f(1) \neq 1$.
28. If f is a function satisfying the condition $f(x)+f(y)=f\left(x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}\right)$ for all x and y in domain of f, then find value of $f\left(4 x^{3}-3 x\right)+3 f(x)$.
29. If domain of $f(x)=\frac{\sin ^{-1}(\sin x)}{\sqrt{-\log _{\left(\frac{x+4}{2}\right)} \log _{2}\left(\frac{2 x-1}{3+x}\right)}}$ is $(a, b) \cup(c, \infty)$, then find the value of $a+b+3 c$.
30. The functional relation $f(x)+f\left(\frac{1}{1-x}\right)=\frac{2(1-2 x)}{x(1-x)}$ is satisfying by the function $f(x)=\frac{x+1}{\lambda(x-1)}$, then find value of λ

ANSWER KEY

EXERCISE - 1

1. C
2. D
3. A
4. B
5. B
6. B
7. A
8. B
9. D
10. C
11. A
12. C
13. D
14. A
15. D
16. C
17. C
18. D
19. B
20. A
21. D
22. C
23. B
24. D
25. A
26. B
27. D
28. C
29. B
30. D
31. D
32. C
33. C
34. A
35. B
36. B

EXERCISE - 2 : PART \# I

1. ABC
2. ACD
3. AC
4. BD
5. AD
6. AD
7. B
8. A
9. ABCD
10. BCD
11. AB
12. BC
13. ACD
14. BC
15. B
16. BCD
17. AC
18. AD
19. ABD
20. BD
21. ABC
22. ABD
23. BCD
24. ABC

PART - II

1. C 2. D 3. C 4. D 5. A

EXERCISE - 3 : PART \# I

1. $\mathrm{A} \rightarrow \mathrm{q} \quad \mathrm{B} \rightarrow \mathrm{s} \quad \mathrm{C} \rightarrow \mathrm{p} \quad \mathrm{D} \rightarrow \mathrm{r}$
2. $\mathrm{A} \rightarrow \mathrm{q} \quad \mathrm{B} \rightarrow \mathrm{r} \quad \mathrm{C} \rightarrow \mathrm{p} \quad \mathrm{D} \rightarrow \mathrm{s}$
3. $\mathrm{A} \rightarrow \mathrm{q}, \mathrm{r} \mathrm{B} \rightarrow \mathrm{q}, \mathrm{r} \mathrm{C} \rightarrow \mathrm{q} \quad \mathrm{D} \rightarrow \mathrm{s}$
4. $\mathrm{A} \rightarrow \mathrm{r} \quad \mathrm{B} \rightarrow \mathrm{p} \quad \mathrm{C} \rightarrow \mathrm{s} \quad \mathrm{D} \rightarrow \mathrm{q}$

PART - II

Comprehension \# 1: 1. A 2. C 3. D
Comprehension \#2: 1. A 2. B 3. C
Comprehension \# 3: 1. D 2. A 3. C
Comprehension \# 4 : 1.
2. B 3. A

EXERCISE - 5 : PART \# I

1. 2
2. 2
3. 1,4 4. 2
4. 1
5. 3
6. 1
7. 1
8. 4
9. 2
10. 3
11. 1
12. 2
13. 3
14. 1
15. 3
16. 2
17. 4
18. 1
19. 4 21. 1
20. 2
21. 2
22. 4
23. 2
24. 1

PART - II

1. D
2. $\{(1,1),(2,3),(3,4),(4,2)\} ;\{(1,1),(2,4),(3,2),(4,3)\}$ and $\{(1,1),(2,4),(3,3),(4,2)\}$
3. B
4. A
5. D
6. A 7. D
7. D 9. A
8. D 11. A
9. C
10. A
11. A
12. B
13. (zero marks to all)
14. AD
15. ABC
16. D
17. ABC
18. BC

MOCK TEST

