MATHS FOR JEE MAIN & ADVANCED

SOLVED EXAMPLES

DCAM classes

Ex.1 A function f(x) satisfies the following property : f(x + y) = f(x) f(y) Show that the function is continuous for all values of x if it is continuous at x = 1. Sol. As the function is continuous at x = 1, we have $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = f(1)$ $\lim_{h \to 0} f(1-h) = \lim_{h \to 0} f(1+h) = f(1)$ or $\lim_{h \to 0} f(1) f(-h) = \lim_{h \to 0} f(1) f(h) = f(1)$ [Using f(x + y) = f(x) f(y)]or $\lim_{h\to 0} f(-h) = \lim_{h\to 0} f(h) = 1$**(i)** or Now, consider any arbitrary point x = a. $= \lim_{h \to 0} f(a - h)$ LHL $= \lim_{h \to 0} f(a) f(-h)$ [As $\lim_{h\to 0} f(-h) = 1$, using (i)] $= f(a) \lim_{h \to 0} f(-h) = f(a)$ $= \lim_{h \to 0} f(a+h)$ RHL $= \lim_{h \to 0} f(a) f(h)$

$$= f(a) \lim_{h \to 0} f(h) = f(a)$$
 [As $\lim_{h \to 0} f(h) = 1$, using (i)]

Hence, at any arbitrary point (x = a), LHL = RHL = f(a). Therefore, the function is continuous for all values of x if its is continuous at 1.

Ex.2 Find the points of discontinuity of the following functions.

(i)
$$f(x) = \frac{1}{2\sin x - 1}$$

(ii) f(x) = [[x]] - [x - 1], where [.] represent the greatest integer function.

Sol.

(i)

$$f(x) = \frac{1}{2\sin x - 1}$$

f(x) is discontinuous when 2 sinx -1 = 0

or
$$\sin x = \frac{1}{2}$$
, i.e., $x = 2n\pi + \frac{\pi}{6}$ or $x = 2n\pi + \frac{5\pi}{6}$, $n \in \mathbb{Z}$

(ii) f(x) = [[x]] - [x-1] = [x] - ([x]-1) = 1Therefore, f(x) is continuous $\forall x \in \mathbb{R}$.

Ex.3 Let
$$f(x) = \begin{cases} \frac{\log_e \cos x}{\sqrt[4]{1+x^2}-1}, & x > 0\\ \frac{e^{\sin 4x}-1}{\log_e (1+\tan 2x)}, & x < 0 \end{cases}$$

Find the value of f(0) which makes the function continuous at x = 0,

LHL =
$$\lim_{x \to 0^{-}} \frac{e^{\sin 4x} - 1}{\log_e (1 + \tan 2x)}$$

$$= \lim_{x \to 0^{+}} \frac{\frac{e^{\sin 4x} - 1}{\sin 4x}}{\frac{\log_{e}(1 + \tan 2x)}{\tan 2x}} \implies \lim_{x \to 0^{-}} \frac{\sin 4x}{\tan 2x}$$
$$= 2$$
$$RHL = \lim_{x \to 0^{+}} \left(\frac{\log_{e} \cos x}{\sqrt[4]{(1 + x^{2})} - 1}\right)$$
$$= \lim_{x \to 0^{+}} \left(\frac{-\tan x}{\frac{1}{4}(1 + x^{2})^{-\frac{3}{4}}2x}\right)$$
[Using L'HR]
$$= -2$$

Here $f(0^-) \neq f(0^+)$

Hence f(x) cannot be defined.

Hence, f(x) has non-removable type of discontinuity.

Ex.4
$$f(x) = \begin{cases} \cos^{-1} \{\cot x\} \ x < \frac{\pi}{2} \\ \pi[x] - 1 \ x \ge \frac{\pi}{2} \end{cases}$$
; find jump of discontinuity, where [] denotes greatest integer &

{ } denotes fractional part function.

Sol.
$$f(x) = \begin{cases} \cos^{-1} \{\cot x\} & x < \frac{\pi}{2} \\ \\ \pi[x] - 1 & x \ge \frac{\pi}{2} \end{cases}$$

$$\lim_{x \to \frac{\pi^{-}}{2}} f(x) = \lim_{x \to \frac{\pi^{-}}{2}} \cos^{-1} \{\cot x\} = \lim_{h \to 0} \cos^{-1} \left\{ \cot \left(\frac{\pi}{2} - h \right) \right\} = \lim_{h \to 0} \cos^{-1} \left\{ \tanh \right\} = \frac{\pi}{2}$$
$$= \lim_{x \to \frac{\pi^{+}}{2}} f(x) = \lim_{x \to \frac{\pi^{+}}{2}} \pi[x] - 1 = \lim_{h \to 0} \pi \left[\frac{\pi}{2} + h \right] - 1 = \pi - 1$$
$$\therefore \qquad \text{jump of discontinuity} = \pi - 1 - \frac{\pi}{2} = \frac{\pi}{2} - 1$$

Ex.5 Let
$$f(x)$$
 be a function defined as $f(x) = \begin{cases} \frac{x^2 - 1}{x^2 - 2|x - 1| - 1}, & x \neq 1 \\ \frac{1}{2}, & x = 1 \end{cases}$

Discuss the continuity of the function at x = 1.

Sol.
$$f(1^{+}) = \lim_{x \to 1^{+}} \frac{x^{2} - 1}{x^{2} - 2|x - 1| - 1}$$
$$= \lim_{x \to 1^{+}} \frac{x^{2} - 1}{x^{2} - 2(x - 1) - 1}$$
$$= \lim_{x \to 1^{+}} \frac{(x + 1)}{(x + 1) - 2} = \infty$$
$$f(1^{-}) = \lim_{x \to 1^{-}} \frac{x^{2} - 1}{x^{2} - 2|x - 1| - 1}$$
$$= \lim_{x \to 1^{-}} \frac{x^{2} - 1}{x^{2} - 2(1 - x) - 1}$$
$$= \lim_{x \to 1^{-}} \frac{(x + 1)}{(x + 1) + 2} = \frac{1}{2}$$

Hence, f(x) is discontinuous at x = 1.

Ex.6
$$f(x) = \begin{cases} |x+1|; & x \le 0 \\ x; & x > 0 \end{cases}$$
 and $g(x) = \begin{cases} |x|+1; & x \le 1 \\ -|x-2|; & x > 1 \end{cases}$

Draw its graph and discuss the continuity of f(x) + g(x).

Sol. Since f(x) is discontinuous at x = 0 and g(x) is continuous at x = 0, f(x) + g(x) is discontinuous at x = 0. Since f(x) is continuous at x = 1 and g(x) is discontinuous x = 1, f(x) + g(x) is discontinuous at x = 1.

Ex. 7 Draw the graph and discuss continuity of $f(x) = [\sin x + \cos x], x \in [0, 2\pi]$, where [.] represents the greatest integer function.

Sol. $f(x) = [\sin x + \cos x] = [g(x)]$, where $g(x) = \sin x + \cos x$,

Clearly, from the graph given in fig. f(x) is discontinuous at x = 0, $\frac{\pi}{2}, \frac{3\pi}{4}, \pi, \frac{3\pi}{2}, \frac{7\pi}{2}, \pi$

Ex.8 Let $f(x) = \lim_{n \to \infty} \frac{1}{1 + n \sin^2 x}$, then find $f\left(\frac{\pi}{4}\right)$ and also comment on the continuity at x = 0

Sol. Let $f(x) = \lim_{n \to \infty} \frac{1}{1 + n \sin^2 x}$

$$f\left(\frac{\pi}{4}\right) = \lim_{n \to \infty} \frac{1}{1+n \cdot \sin^2 \frac{\pi}{4}} = \lim_{n \to \infty} \frac{1}{1+n\left(\frac{1}{2}\right)} = 0$$

Now

$$f(0) = \lim_{n \to \infty} \frac{1}{n \cdot \sin^2(0) + 1} = \frac{1}{1 + 0} = 1$$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \left[\lim_{n \to \infty} \frac{1}{1 + n \sin^2 x} \right] = 0$$

{here $\sin^2 x$ is very small quantity but not zero and very small quantity when multiplied with ∞ becomes ∞ } \therefore f(x) is not continuous at x = 0 Ex. 9 Discuss the continuity of $f(x) = \begin{cases} x\{x\}+1, & 0 \le x < 1\\ 2-\{x\}, & 1 \le x \le 2 \end{cases}$ where $\{x\}$ denotes the fractional part function. Sol. $f(0) = f(0^+) = 1$ f(2) = 2 and $f(2^-) = 1$ Hence, f(x) is discontinuous at x = 2. Also, $f(1^+) = 2$, $f(1^-) = 1 + 1 = 2$, and f(1) = 2Hence, f(x) is continuous at x = 1.

Ex. 10
$$f(x) = \begin{cases} sgn(x-2) \times [log_e x], & l \le x \le 3 \\ \{x^2\}, & 3 < x \le 3.5 \end{cases}$$

where [.] denotes the greatest integer function and $\{.\}$ represent the fractional part function. Find the point where the continuity of f(x) should be checked. Hence, find the points of discontinuity.

- **Sol.** (A) Continuity should be checked at the endpoints of intervals of each definition, i.e., x = 1, 3, 3, 5.
 - (B) For $\{x^2\}$, continuity should be checked when $x^2 = 10$, 11, 12 or $x = \sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$. $\{x^2\}$ is discontinuous for those values of x where x^2 is an integer (note, here x^2 is monotonic for given domain).
 - (C) for sgn (x 2), continuity should be checked when x 2 = 0 or x = 2.
 - (D) for $[\log_e x]$, continuity should be checked when $\log_e x = 1$ or x = e ($\in [1, 3]$). Hence, the overall continuity must be checked at $x = 1, 2, e, 3, \sqrt{10}, \sqrt{11}, \sqrt{12}, 3.5$ Further, f(1) = 0 and $\lim_{x \to 0} f(x) = \lim_{x \to 0} sgn(x-2) \times [\log_e x] = 0$

Hence, f(x) is continuous at x = 1. $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \operatorname{sgn}(x-2) \times [\log_{e_{x}} x] = (-1) \times 0 = 0$ $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \operatorname{sgn}(x-2) \times [\log_e x] = (1) \times 0 = 0$ Also, f(2) = 0.Hence, f(x) is continuous at x = 2. $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \operatorname{sgn}(x-2) \times [\log_x x] = (1) \times 0 = 0$ $\lim_{x \to e^+} f(x) = \lim_{x \to e^+} \operatorname{sgn}(x-2) \times [\log_e x] = (1) \times (1) = 1$ $x \rightarrow e^{-1}$ Hence f(x) is discontinuous at x = e. $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \operatorname{sgn}(x-2) \times [\log_e x] = 1$ $\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} \{x^2\} = 0$ Hence, f(x) is discontinuous at x = 3. Also, $\{x^2\}$, and hence, f(x) is discontinuous at $x = \sqrt{10}$, $\sqrt{11}$, $\sqrt{12}$. $\lim_{x \to 3.5^{-}} f(x) = \lim_{x \to 3.5^{-}} \{x^2\} = 0.25 = f(3.5)$ Hence, f(x) is discontinuous at $x = e, 3, \sqrt{10}, \sqrt{11}, \sqrt{12}$.

Ex. 11 If $f(x) = \frac{x+1}{x-1}$ and $g(x) = \frac{1}{x-2}$, then discuss the continuity of f(x), g(x) and fog(x).

Sol. $f(x) = \frac{x+1}{x-1}$

Thus, f is not defined at x = 1 and f is discontinuous at x = 1.

Now,
$$g(x) = \frac{1}{x-2}$$

g(x) is not defined at x = 2. Therefore, g is discontinuous at x = 2. Now, fog(x) will be discontinuous at

(A) x = 2 [point of discontinuity of g(x)]
 (B) g(x)=1 [when g(x) = point of discontinuity of f(x)]

For
$$g(x) = 1$$
, $\frac{1}{x-2} = 1$ or $x = 3$.

Therefore, fog(x) is discontinuous at x = 2 and x = 3.

Also,
$$fog(x) = \frac{\frac{1}{x-2} + 1}{\frac{1}{x-2} - 1}$$

Here, fog(2) is not defined.

$$\lim_{x \to 2} \log(x) = \lim_{x \to 2} \frac{\frac{1}{x-2} + 1}{\frac{1}{x-2} - 1} = \lim_{x \to 2} \frac{1 + x - 2}{1 - x + 2} = 1$$

Therefore, fog(x) is discontinuous at x = 2 and it has a removable discontinuity at x = 2. For continuity at x = 3,

Therefore, fog(x) is discontinuous at x = 3, and it is a non-removable discontinuity at x = 3.

Ex. 12 $f(x) = maximum (sin t, 0 \le t \le x), 0 \le x \le 2\pi$ discuss the continuity of this function at $x = \frac{\pi}{2}$

Sol. $f(x) = maximum (sin t, 0 \le t \le x), 0 \le x \le 2\pi$

if
$$x \in \left[0, \frac{\pi}{2}\right]$$
, sint is increasing function

Hence if $t \in [0, x]$, sint will attain its maximum value at t = x.

$$\therefore \qquad f(x) = \sin x \text{ if } x \in \left[0, \frac{\pi}{2}\right]$$
$$\text{if } x \in \left(\frac{\pi}{2}, 2\pi\right] \quad \text{and} \quad t \in [0, x]$$

then sint will attain its maximum value when $t = \frac{\pi}{2}$

$$\therefore \quad f(x) = \sin \frac{\pi}{2} = 1 \text{ if } x \in \left(\frac{\pi}{2}, 2\pi\right] \qquad \therefore \quad f(x) = \begin{cases} \sin x & \text{if } x \in \left[0, \frac{\pi}{2}\right] \\ 1 & \text{, if } x \in \left(\frac{\pi}{2}, 2\pi\right] \end{cases}$$
Now
$$f\left(\frac{\pi}{2}\right) = 1$$

$$\lim_{x \to \frac{\pi}{2}^{-}} f(x) = \lim_{x \to \frac{\pi}{2}^{-}} \sin x = 1$$

$$\lim_{x \to \frac{\pi}{2}^{+}} f(x) = \lim_{x \to \frac{\pi}{2}^{+}} 1 = 1$$
as
$$f(\pi/2) = \text{L.H.S.} = \text{R.H.S.} \qquad \therefore \qquad f(x) \text{ is continuous at } x = \frac{\pi}{2}$$

Ex. 13 Let f be continuous on the interval [0, 1] to R such that f(0) = f(1). Prove that there exists a point c in $\left[0, \frac{1}{2}\right]$ such that $f(c) = f\left(c + \frac{1}{2}\right)$.

Sol. Consider a continuous function
$$g(x) = f\left(x + \frac{1}{2}\right) - f(x)$$
 $\left(g \text{ is continuous } \forall x \in \left[0, \frac{1}{2}\right]\right)$

$$g(0) = f\left(\frac{1}{2}\right) - f(0) = f\left(\frac{1}{2}\right) - f(1)$$
[As $f(0) = f(1)$]
and $g\left(\frac{1}{2}\right) = f(1) - f\left(\frac{1}{2}\right) = -\left[f\left(\frac{1}{2}\right) - f(1)\right]$

Since g is continuous and g(0) and g(1/2) have opposite signs, the equation g(x) = 0 must have at least one root in [0, 1/2].

Hence, for some
$$c \in \left[0, \frac{1}{2}\right]$$
, $g(c) = 0$ implies $f\left(c + \frac{1}{2}\right) = f(c)$.

Ex. 14 Let $f: [0, 1] \xrightarrow{\text{onto}} [0, 1]$ be a continuous function, then prove that f(x) = x for at least one $x \in [0, 1]$ **Sol.** Consider g(x) = f(x) - x

 $\begin{array}{ll} g(0) = f(0) - 0 = f(0) \geq 0 & \{ \because \ 0 \leq f(x) \leq 1 \} \\ g(1) = f(1) - 1 \leq 0 & \Rightarrow & g(0) \cdot g(1) \leq 0 \\ g(x) = 0 \text{ has at least one root in } [0, 1] & \Rightarrow & f(x) = x \text{ for at least one } x \in [0, 1] \end{array}$

Ex. 15 Using intermediate value there, prove that exists a number x such that $x^{2005} + \frac{1}{(1+\sin^2 x)^2} = 2005$.

Sol. Let $f(x) = x^{2005} + (1 + \sin^2 x)^{-2}$.

Thus, f is continuous and f(0) = 1 < 2005 and $f(2) > 2^{2005}$, which is much greater than 2005. Hence, from the intermediate value theorem, there exists a number c in (0, 2) such that f(c) = 2005.

⇒

Exercise # 1[Single Correct Choice Type Questions]1. If $f(x) = \begin{cases} x+2 & , when x < 1 \\ 4x-1 & , when 1 \le x \le 3 \\ x^2+5 & , when x > 3 \end{cases}$, then correct statement is -(A) $\lim_{x \to 1} f(x) = \lim_{x \to 3} f(x)$ (B) f(x) is continuous at x = 3(C) f(x) is continuous at x = 1(D) f(x) is continuous at x = 1 and 32. If $f(x) = \frac{x - e^x + \cos 2x}{x^2}$, $x \ne 0$ is continuous at x = 0, then

(A)
$$f(0) = \frac{5}{2}$$
 (B) $[f(0)] = -2$ (C) $\{f(0)\} = -0.5$ (D) $[f(0)] \cdot \{f(0)\} = -1.5$

where [x] and $\{x\}$ denotes greatest integer and fractional part function

3. Let $f(x) = \frac{g(x)}{h(x)}$, where g and h are cotinuous functions on the open interval (a, b). Which of the following

statements is true for a < x < b? (A) f is continuous at all x for which x is not zero. (B) f is continuous at all x for which g(x) = 0(C) f is continuous at all x for which g(x) is not equal to zero. (D) f is continuous at all x for which h(x) is not equal to zero.

4. If $f(x) = \begin{cases} \frac{x^2 - (a+2)x + 2a}{x-2} & , x \neq 2\\ 2 & , x = 2 \end{cases}$ is continuous at x = 2, then a is equal to -

(A) 0 (B) 1 (C)
$$-1$$
 (D) 2

5. A function f(x) is defined as below $f(x) = \frac{\cos(\sin x) - \cos x}{x^2}$, $x \neq 0$ and f(0) = a

f(x) is continuous at x = 0 if 'a' equals (A) 0 (B) 4 (C) 5 (D) 6

6. If
$$f(x) = \begin{cases} \frac{1}{e^{1/x} + 1} & , & x \neq 0 \\ 0 & , & x = 0 \end{cases}$$
, then -
(A) $\lim_{x \to 0^+} f(x) = 1$
(B) $\lim_{x \to 0^-} f(x) = 0$
(C) $f(x)$ is discontinuous at $x = 0$
(D) $f(x)$ is continuous

MATHS FOR JEE MAIN & ADVANCED

7. Consider the function
$$f(x) = \begin{bmatrix} x(x) + 1 & 0 \le x \le 1 \\ 2 - (x) & 1 \le x \le 2 \end{bmatrix}$$
 where $\{x\}$ denotes the fractional part function. Which one of the following statements is NOT correct?
(A) $\lim_{x \to 1} f(x) = exists$
(B) $f(0) \neq f(2)$
(C) $f(x)$ is continuous in $[0, 2]$
(D) Rolles theorem is not applicable to $f(x)$ in $[0, 2]$
8. If $f(x) = \begin{bmatrix} |x| + |-x|, x \ne 2 \\ \lambda, x = 2 \end{bmatrix}$, f is continuous at $x = 2$ then λ is (where [.] denotes greatest integer).
(A) -1
(B) 0
(C) 1
(D) 2
9. Given $f(x) = \frac{e^x - \cos 2x - x}{x^2}$ for $x \in R - \{0\}$
 $g(x) = \begin{bmatrix} -f(-\{x\}) & for n < x < n + \frac{1}{2} \\ -f(1-\{x\}) & for n + \frac{1}{2} \le x < n + 1, n \in 1 \\ e^x + 1, n$

If function $f(x) = \frac{\sqrt{1+x} - \sqrt[3]{1+x}}{x}$, is continuous function, then f(0) is equal to -13. **(A)**2 **(B)** 1/4 (C) 1/6 **(D)** 1/3

14. Let [x] denote the integral part of $x \in R$. g(x) = x - [x]. Let f(x) be any continuous function with f(0) = f(1) then the function h(x) = f(g(x))

- (A) has finitely many discontinuities **(B)** is discontinuous at some x = c
- (C) is continuous on R

(D) is a constant function.

15. If
$$f(x) = \begin{cases} \frac{\log(1+2ax) - \log(1-bx)}{x} , x \neq 0\\ k , x = 0 \end{cases}$$
, is continuous at $x = 0$, then k is equal to $x = 0$.

(A)
$$2a + b$$
 (B) $2a - b$ (C) $b - 2a$ (D) $a + b$

16. Let f(x) = Sgn(x) and $g(x) = x (x^2 - 5x + 6)$. The function f(g(x)) is discontinuous at (B) exactly one point (A) infinitely many points (C) exactly three points (D) no point

17. If
$$f(x) = \begin{cases} \frac{1-\cos 4x}{x^2} & , x < 0\\ a & , x = 0 , \text{ then correct statement is } -\frac{\sqrt{x}}{\sqrt{16+\sqrt{x}-4}} & , x > 0 \end{cases}$$

(A) f(x) is discontinuous at x = 0 for any value of a **(B)** f(x) is continuous at x = 0 when a = 8(C) f(x) is continuous at x = 0 when a = 0**(D)** none of these

18. Let
$$f(x) = \begin{bmatrix} \frac{2^x + 2^{3-x} - 6}{\sqrt{2^{-x}} - 2^{1-x}} & \text{if } x > 2\\ \\ \\ \frac{x^2 - 4}{\sqrt{x^2 - 4}} & \text{if } x < 2 \end{bmatrix}$$

$$\frac{x^2 - 4}{x - \sqrt{3x - 2}} \quad \text{if} \quad x < 2$$

(A) $f(2) = 8 \implies f is continuous at x = 2$ **(B)** $f(2) = 16 \implies f \text{ is continuous at } x = 2$ (C) $f(2^{-}) \neq f(2^{+}) \implies f$ is discontinuous (D) f has a removable discontinuity at x = 2

19. If
$$f(x) = \frac{1 - \tan x}{4x - \pi}$$
, $x \neq \frac{\pi}{4}$, $x \in \left[0, \frac{\pi}{2}\right]$ is a continuous functions, then $f(\pi/4)$ is equal to -
(A)-1/2 (B) 1/2 (C) 1 (D)-1

20.	$f(x) = \begin{cases} \frac{\sqrt{(1+px)} - \sqrt{x}}{x} \\ \frac{2x+1}{x-2} \end{cases}$	$\overline{(1 - px)}$, $-1 \le x <$, $0 \le x \le 1$	0 is continuous in the inter	rval $[-1, 1]$, then 'p' is equal to:
	(A) -1	(B) – 1/2	(C) 1/2	(D) 1
21.	Let $f(x) = \frac{x(1 + a\cos x) - x^3}{x^3}$	$\frac{-b\sin x}{2}$, $x \neq 0$ and $f(0) = 1$.	The value of a and b so that	f is a continuous function are -
	(A) 5/2, 3/2	(B) 5/2, -3/2	(C) -5/2, -3/2	(D) none of these
22.	$\operatorname{Let} f(\mathbf{x}) = \begin{bmatrix} a \sin^{2n} \mathbf{x} \\ b (\cos^{2m} \mathbf{x}) \end{bmatrix}$	for $x \ge 0$ and $n \to \infty$ -1 for $x < 0$ and $m \to \infty$	then	
	(A) $f(0^{-}) \neq f(0^{+})$ (C) $f(0^{-}) = f(0)$		(B) $f(0^+) \neq f(0)$ (D) f is continuous at x = 0	0
23.	If $f(x+y) = f(x) + f(y) + f($	c, for all real x and y and $f(x)$	x) is continuous at $x = 0$ and $x = 0$	f'(0) = 1 then $f'(x)$ equals to
	(A) c	(B) -1	(C) 0	(D) 1
24.	Which of the following f (where [.] denotes greater	functions has finite number st integer)	of points of discontinuity i	n R
	(A) tan x	(B) x / x	(C) x+[x]	(D) $\sin[\pi x]$
25.	If $y = \frac{1}{t^2 + t - 2}$ where t	$x = \frac{1}{x-1}$, then the number	of points of discontinuitie	es of $y = f(x), x \in R$ is
	(A) 1	(B) 2	(C) 3	(D) infinite
26.	The value of $f(0)$, so that t	function, $f(x) = \frac{\sqrt{a^2 - ax + ax}}{\sqrt{a^2 - ax}}$	$\frac{\overline{x^2} - \sqrt{a^2 + ax + x^2}}{x + x - \sqrt{a - x}}$ become	es continuous for all x, is given by -
	(A) a√a	(B) – \sqrt{a}	(C) √a	(D) $-a\sqrt{a}$
27.	Let $f(x)$ be the continuou	is function such that $f(\mathbf{x}) =$	$\frac{1-e^x}{x} \text{for } x \neq 0 \text{ then}$	
	(A) $f'(0^+) = \frac{1}{2}$ and $f'(0^-)$	$) = -\frac{1}{2}$	(B) $f'(0^+) = -\frac{1}{2}$ and $f'(0^+) = -\frac{1}{2}$	$(r) = \frac{1}{2}$
	(C) $f'(0^+) = f'(0^-) = \frac{1}{2}$		(D) $f'(0^+) = f'(0^-) = -\frac{1}{2}$	

'f' is a continuous function on the real line. Given that $x^2 + (f(x) - 2)x - \sqrt{3} + f(x) + 2\sqrt{3} - 3 = 0$. Then the value of 28. $f(\sqrt{3})$ is -(A) $\frac{2(\sqrt{3}-2)}{\sqrt{3}}$ **(B)** $2(1-\sqrt{3})$ (C) zero (D) cannot be determined 29. The equation $2\tan x + 5x - 2 = 0$ has (A) no solution in $[0, \pi/4]$ (B) at least one real solution in $[0, \pi/4]$ (C) two real solution in $[0, \pi/4]$ **(D)** None of these $\sqrt{-x}$ $\quad \text{if} \ x < 0 \\$ Consider the piecewise defined function f(x) = 0if $0 \le x \le 4$ choose the answer which best describes **30.** x-4 if x > 4

the continuity of this function -

(A) the function is unbounded and therefore cannot be continuous

(B) the function is right continuous at x = 0

(C) the function has a removable discontinuity at 0 and 4, but is continuous on the rest of the real line

(D) the function is continuous on the entire real line

Exercise # 2 [Multiple Correct Choice Type Questions] Part # I 1. f(x) is continuous at x=0, then which of the following are always true? (A) $\lim_{x \to 0} f(x) = 0$ (B) f(x) is non continuous at x=1 (C) $g(x) = x^2 f(x)$ is continuous at x = 0(**D**) $\lim_{x \to 0^+} (f(x) - f(0)) = 0$ The value(s) of x for which $f(x) = \frac{e^{\sin x}}{4 - \sqrt{x^2 - 9}}$ is continuous, is (are) -2. (A) 3 (C) 5 (D) all $x \in (-\infty, -3] \cup [3, \infty)$ **(B)**-3 3. Which of the following function(s) not defined at x = 0 has/have removable discontinuity at x=0? (A) $f(x) = \frac{1}{1 + 2^{\cot x}}$ (B) $f(x) = \cos\left(\frac{|\sin x|}{x}\right)$ (C) $f(x) = x \sin \frac{\pi}{x}$ (D) $f(x) = \frac{1}{\ell n |x|}$ $f(x) = \frac{2\cos x - \sin 2x}{(\pi - 2x)^2}; \ g(x) = \frac{e^{-\cos x} - 1}{8x - 4\pi}$ 4. $h(x) \begin{cases} = f(x) \\ = g(x) \end{cases}$ for $x < \pi / 2$ for $x > \pi / 2$ then which of the followings does not holds ? (A) h is continuous at $x = \pi/2$ (B) h has an irremovable discontinuity at $x=\pi/2$ **(D)** $f\left(\frac{\pi^+}{2}\right) = g\left(\frac{\pi^-}{2}\right)$ (C) h has a removable discontinuity at $x = \pi/2$ If $f(x) = \cos \left| \frac{\pi}{x} \right| \cos \left(\frac{\pi}{2} (x - 1) \right)$; where [x] is the greatest integer function of x, then f(x) is continuous at -5. (A) x = 0**(B)** x = 1(C) x = 2(D) none of these Let $f(x) = \frac{|x + \pi|}{\sin x}$, then 6. (A) $f(-\pi^+) = -1$ **(B)** $f(-\pi^{-}) = 1$ (C) $\lim_{x \to -\pi} f(x)$ does not exist (**D**) $\lim_{x \to \pi} f(x)$ does not exist On the interval I = [-2, 2], the function $f(x) = \begin{cases} (x+1)e^{-\left\lfloor \frac{1}{|x|} + \frac{1}{x} \right\rfloor} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$ 7. (x = 0)then which one of the following hold good ? (A) is continuous for all values of $x \in I$ (B) is continuous for $x \in I - (0)$ (C) assumes all intermediate values from f(-2) & f(2)(D) has a maximum value equal to 3/e

8. Let $f(x) = [x] \& g(x) = \begin{cases} 0; x \in Z \\ x^2; x \in R - Z \end{cases}$, then (where [.] denotes greatest integer function) -

- (A) $\lim_{x \to 1} g(x)$ exists, but g(x) is not continuous at x=1.
- **(B)** $\lim_{x \to 1} f(x)$ does not exist and f(x) is not continuous at x=1.
- (C) gof is continuous for all x.
- (D) fog is continuous for all x.

9. Which of the following function(s) not defined at x = 0 has/have non-removable discontinuity at the point x = 0?

(A)
$$f(x) = \frac{1}{1 + 2^{\frac{1}{x}}}$$
 (B) $f(x) = \arctan \frac{1}{x}$ (C) $f(x) = \frac{e^{\frac{1}{x}} - 1}{e^{\frac{1}{x}} + 1}$ (D) $f(x) = \frac{1}{\ell n |x|}$

10. Indicate all correct alternatives if, $f(x) = \frac{x}{2} - 1$, then on the interval $[0,\pi]$

(A) $\tan(f(x)) \& \frac{1}{f(x)}$ are both continuous (B) $\tan(f(x)) \& \frac{1}{f(x)}$ are both discontinuous

(C) $\tan(f(x))$ & $f^{-1}(x)$ are both continuous

(D) $\tan(f(x))$ is continuous but $\frac{1}{f(x)}$ is not

11. Which of the following function(s) defined below has/have single point continuity.

$$(A) f(x) = \begin{bmatrix} 1 & \text{if } x \in Q \\ 0 & \text{if } x \notin Q \end{bmatrix}$$

$$(B) g(x) = \begin{bmatrix} x & \text{if } x \in Q \\ 1-x & \text{if } x \notin Q \end{bmatrix}$$

$$(C) h(x) = \begin{bmatrix} x & \text{if } x \in Q \\ 0 & \text{if } x \notin Q \end{bmatrix}$$

$$(D) k(x) = \begin{bmatrix} x & \text{if } x \in Q \\ -x & \text{if } x \notin Q \end{bmatrix}$$

12. Which of the following function(s) not defined at x = 0 has/have removable discontinuity at the origin ?

(A)
$$f(x) = \frac{1}{1 + 2^{\cot x}}$$

(B) $f(x) = \cos\left(\frac{|\sin x|}{x}\right)$
(C) $f(x) = x \sin \frac{\pi}{x}$
(D) $f(x) = \frac{1}{\ln |x|}$

13. The function, f(x) = [|x|] - |[x]| where [x] denotes greatest integer function (A) is continuous for all positive integers

(B) is discontinuous for all non positive integers

- (C) has finite number of elements in its range
- (D) is such that its graph does not lie above the x axis.

14. If
$$f(x) = \frac{1}{2}x - 1$$
, then on the interval $[0, \pi]$
(A) $\tan(f(x))$ and $\frac{1}{f(x)}$ are both continuous
(B) $\tan(f(x))$ and $\frac{1}{f(x)}$ are both discontinuous

(C) $\tan(f(x))$ and $f^{-1}(x)$ are both continuous

(D) tan (f(x)) is continuous but
$$\frac{1}{f(x)}$$
 is not.

15. Given
$$f(x) = \begin{bmatrix} 3 - \left[\cot^{-1} \left(\frac{2x^3 - 3}{x^2} \right) \right] & \text{for } x > 0 \\ \left\{ x^2 \right\} \cos\left(e^{1/x} \right) & \text{for } x < 0 \end{bmatrix}$$
 where $\{ \}$ & [] denotes the fractional part and the integral part

functions respectively, then which of the following statement does not hold good -(A) $f(0^-)=0$ (B) $f(0^+)=3$

(C) $f(0) = 0 \Rightarrow$ continuity of f at x = 0 (D) irremovable discontinuity of f at x = 0

16. If
$$f(x) = \frac{1}{x^2 - 17x + 66}$$
, then $f\left(\frac{2}{x - 2}\right)$ is discontinuous at $x =$

(A) 2 (B) $\frac{7}{3}$ (C) $\frac{24}{11}$ (D) 6,11

17. f is a continuous function in [a, b]; g is a continuous functin in [b, c] A function h (x) is defined as

$$h(x) \begin{cases} = f(x) & \text{for } x \in [a, b) \\ = g(x) & \text{for } x \in (b, c] \end{cases}$$

if $f(B) = g(B)$, then
(A) $h(x)$ has a removable discontinuity at $x=b$. (B) $h(x)$
(C) $h(b^{-}) = g(b^{+})$ and $h(b^{+}) = f(b^{-})$ (D) $h(b^{-}) = g(b^{+})$

(B) h(x) may or may not be continuous in [a, c]
 (D) h(b⁺) = g(b⁻) and h(b⁻) = f(b⁺)

18. Function whose jump (non-negative difference of LHL & RHL) of discontinuity is greater than or equal to one, is/are -

(A)
$$f(x) = \begin{cases} \frac{(e^{1/x} + 1)}{(e^{1/x} - 1)} ; & x < 0 \\ \frac{(1 - \cos x)}{x} ; & x > 0 \end{cases}$$
 (B) $g(x) = \begin{cases} \frac{x^{1/3} - 1}{x^{1/2} - 1} ; & x > 1 \\ \frac{\ln x}{(x - 1)} ; & \frac{1}{2} < x < 1 \end{cases}$

$$(\mathbf{C}) \mathbf{u}(\mathbf{x}) = \begin{cases} \frac{\sin^{-1} 2\mathbf{x}}{\tan^{-1} 3\mathbf{x}} & ; & \mathbf{x} \in \left(0, \frac{1}{2}\right) \\ \frac{|\sin \mathbf{x}|}{\mathbf{x}} & ; & \mathbf{x} < 0 \end{cases}$$
 (D) $\mathbf{v}(\mathbf{x}) = \begin{cases} \log_3(\mathbf{x}+2) & ; & \mathbf{x} > 2 \\ \log_{1/2}(\mathbf{x}^2+5) & ; & \mathbf{x} < 2 \end{cases}$

19.Let $f(x) = [x] + \sqrt{x - [x]}$, where [.] denotes the greatest integer function. Then(A) f(x) is continuous on R^+ (B) f(x) is continuous on R(C) f(x) is continuous on R - I(D) discontinuous at x = 1

20. Let 'f' be a continuous function on R. If $f(1/4^n) = (\sin e^n)e^{-n^2} + \frac{n^2}{n^2 + 1}$ then f(0) is -(A) not unique
(B) 1
(C) data sufficient to find f(0)(D) data insufficient to find f(0) 21. Let f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. Then (A) f(x) must be continuous $\forall x \in R$ **(B)** f(x) may be continuous $\forall x \in R$ (C) f(x) must be discontinuous $\forall x \in R$ (D) f(x) may be discontinuous $\forall x \in R$ Let f(x) and g(x) be defined by f(x) = [x] and $g(x) = \begin{cases} 0, & x \in I \\ x^2, & x \in R - I \end{cases}$ 22. (where [.] denotes the greatest integer function), then (A) $\lim_{x \to \infty} g(x)$ exists, but g is not continuous at x = 1(B) $\lim_{x \to \infty} f(x)$ does not exist and f is not continuous at x = 1(C) gof is continuous for all x (D) fog is continuous for all x Given f(x) $\begin{cases} =b([x]^2 + [x]) + 1 & \text{ for } x \ge -1 \\ =\sin(\pi(x+a)) & \text{ for } x < -1 \end{cases}$ 23. where [x] denotes the integral part of x, then for what values of a, b the function is continuous at x = -1? **(B)** a = 4n + 2; $b \in R$; $n \in I$ (A) a = 2n + (3/2); $b \in R$; $n \in I$ (C) a = 2n + (3/2); $b \in \mathbb{R}$; $n \in \mathbb{I}$ (D) a = 4n + 1; $b \in \mathbb{R}^+$; $n \in \mathbb{I}$

Part # II

[Assertion & Reason Type Questions]

These questions contains, Statement I (assertion) and Statement II (reason).

(A) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.

- (B) Statement-I is true, Statement-II is true; Statement-II is NOT a correct explanation for statement-I.
- (C) Statement-I is true, Statement-II is false.

(D) Statement-I is false, Statement-II is true.

1. Let
$$f(x) = \begin{cases} \frac{\cos x - e^{-x^2/2}}{x^3}, & x \neq 0\\ 0, & x = 0 \end{cases}$$
 then

Statement - I $f(\mathbf{x})$ is continuous at $\mathbf{x} = 0$.

Statement - II

$$\lim_{x \to 0} \frac{\cos x - e^{-x^2/2}}{x^4} = \frac{-1}{12}.$$

2. Statement - I Range of
$$f(x) = x \left(\frac{e^{2x} - e^{-2x}}{e^{2x} + e^{-2x}}\right) + x^2 + x^4$$
 is not R.

Statement - II Range of a continuous even function can not be R.

3. Statement - I $f(x) = \{\tan x\} - [\tan x] \text{ is continuous at } x = \frac{\pi}{3},$ where [.] and {.} represent greatest integral function and fractional part function respectively. Statement - II If y = f(x) & y = g(x) are continuous at x = a then $y = f(x) \pm g(x)$ are continuous at x = a

MATHS FOR JEE MAIN & ADVANCED

4.	Statement - I Statement - II	f(x) = sinx + [x] is discontinuous at $x = 0If g(x) is continuous & h(x) is discontinuous at x = a, then g(x) + h(x) will necessarily be discontinuous at x = a$
5.	$\text{Let}f(\mathbf{x}) = \mathbf{x} - \mathbf{x}^2$	and g (x) = {x} $\forall x \in \mathbb{R}$. Where { · } denotes fractional part function.
	Statement - I	$f(g(x))$ will be continuous $\forall x \in R$.
	Statement - II	f(0) = f(1) and $g(x)$ is periodic with period 1.
6.	Statement - I	$\lim_{x \to 0} \left[\frac{\sin x}{x} \right] \neq \left[\lim_{x \to 0} \frac{\sin x}{x} \right], \text{ where } [.] \text{ represents greatest integer function.}$
	Statement - II	$\lim_{x \to a} h(g(x)) = h\left(\lim_{x \to a} g(x)\right), \text{ if } y = h(x) \text{ is continuous at } x = \lim_{x \to a} g(x).$
7.	Statement - I	The equation $\frac{x^3}{4} - \sin \pi x + 3 = 2\frac{1}{2}$ has at least one solution in [-2, 2]
		4 3
	Statement - II	If $f:[a, b] \rightarrow R$ be a function & let 'c' be a number such that $f(a) < c < f(b)$, then there is atleast one number $n \in (a, b)$ such that $f(n) = c$.
8.	Statement - I	$f(x) = x - 2 + \frac{x^2 - 5x + 6}{x - 1} + \tan x$ is continuous function within the domain of f (x).
	Statement - II	All absolute valued polynomial function, Rational polynomial function, trigonometric functions are continuous within their domain.
	-	$ax^2 - b \mid x \mid -c \qquad -\alpha \le x < 0$
9.	Let $f(\mathbf{x}) = \begin{cases} \\ \\ \\ \\ \end{cases}$	where a, b, c are positive and $\alpha > 0$, then
	(a	$x^2 + b x + c \qquad 0 \le x \le \alpha$
	Statement - I	The equation $f(x) = 0$ has at least one real root for $x \in [-\alpha, \alpha]$
	Statement - II	Values of $f(-\alpha)$ and $f(\alpha)$ are opposite in sign.
		$\begin{bmatrix} 2\sin(a\cos^{-1}x) & \text{if } x \in (0,1) \end{bmatrix}$
10.	Consider $f(\mathbf{x}) =$	$\sqrt{3}$ if $x = 0$
		ax+b if $x<0$
	Statement-I : If	$b = \sqrt{3}$ and $a = \frac{2}{3}$ then f (x) is continuous in (- ∞ , 1)
	Statement-II : I	f a function is defined on an interval I and limit exist at every point of interval I then function is
	(continuous in I.

Exercise # 3 Part # I [Matrix Match Type Questions]

Following question contains statements given in two columns, which have to be matched. The statements in **Column-I** are labelled as A, B, C and D while the statements in **Column-II** are labelled as p, q, r and s. Any given statement in **Column-I** can have correct matching with one or more statement(s) in **Column-II**.

1.		Column - I	Colu	Column - II		
	(A)	If $f(x) = 1/(1-x)$, then the points at which	(p)	$\frac{1}{2}$		
		the function $fofof(x)$ is discontinuous				
	(B)	$f(u) = \frac{1}{u^2 + u - 2}$, where $u = \frac{1}{x - 1}$.	(q)	0		
		The values of x at which 'f' is discontinuous				
	(C)	$f(x) = u^2, \text{ where } u = \begin{cases} x - 1, x \ge 0 \\ x + 1, x < 0 \end{cases}$	(r)	2		
		The number of values of x at which				
		'f is discontinuous				
	(D)	The number of value of x at which the	(s)	1		
		function f(x) = $\frac{2x^5 - 8x^2 + 11}{x^4 + 4x^3 + 8x^2 + 8x + 4}$ is				
		discontinuous				
2.		Column - I	Colur	Column - II		
	(A)	If $f(x) = \begin{cases} \sin\{x\}; & x < 1\\ \cos x + a; & x \ge 1 \end{cases}$ where $\{.\}$ denotes	(p)	1		
		the fractional part function, such that $f(x)$ is				
		continuous at x = 1. If $ \mathbf{k} = \frac{d}{\sqrt{2} \sin \frac{(4-\pi)}{2}}$				
		then k is $\sqrt{2 \sin \frac{4}{4}}$				
	(B)	If the function $f(x) = \frac{(1 - \cos(\sin x))}{x^2}$ is	(q)	0		
		continuous at $x = 0$, then $f(0)$ is				
	(C)	$f(x) = \begin{bmatrix} x & , x \in Q \\ 1 - x & , x \notin Q \end{bmatrix}, \text{ then the values}$	(r)	-1		
		of x at which $f(x)$ is continuous				
	(D)	If $f(x) = x + \{-x\} + [x]$, where [x] and $\{x\}$	(s)	$\frac{1}{2}$		
		represents integral and fractional part				
		of x, then the values of x at which $f(x)$				
		is discontinuous				

Comprehension # 2

If both $\lim_{x\to c^-} f(x)$ and $\lim_{x\to c^+} f(x)$ exist finitely and are equal, then the function f is said to have removable discontinuity at x = c

If both the limits i.e. $\lim_{x\to c^-} f(x)$ and $\lim_{x\to c^+} f(x)$ exist finitely and are not equal, then the function f is said to have non-removable discontinuity at x = c and in this case $|\lim_{x\to c^+} f(x) - \lim_{x\to c^+} f(x)|$ is called jump of the discontinuity.

1. Which of the following function has non-removable discontinuity at the origin ?

(A)
$$f(x) = \frac{1}{\ell n |x|}$$
 (B) $f(x) = x \sin \frac{\pi}{x}$ (C) $f(x) = \frac{1}{1 + 2^{\cot x}}$ (D) $f(x) = \cos\left(\frac{|\sin x|}{x}\right)$

1

2. Which of the following function not defined at x = 0 has removable discontinuity at the origin ?

(A)
$$f(x) = \frac{1}{1+2^{\frac{1}{x}}}$$
 (B) $f(x) = \tan^{-1}\frac{1}{x}$ (C) $f(x) = \frac{e^{\frac{1}{x}} - 1}{e^{\frac{1}{x}} + 1}$ (D) $f(x) = \frac{1}{\ln|x|}$
If $f(x) = \begin{bmatrix} \tan^{-1}(\tan x); & x \le \frac{\pi}{4} \\ \pi[x]+1 & ; & x > \frac{\pi}{4} \end{bmatrix}$, then jump of discontinuity is

(where [.] denotes greatest integer function)

3.

3.

(A)
$$\frac{\pi}{4} - 1$$
 (B) $\frac{\pi}{4} + 1$ (C) $1 - \frac{\pi}{4}$ (D) $-1 - \frac{\pi}{4}$

Comprehension #3

If
$$S_n(x) = \frac{x}{x+1} + \frac{x^2}{(x+1)(x^2+1)} + \dots + \frac{x^{2^n}}{(x+1)(x^2+1)\dots(x^{2^n}+1)}$$
 and $x > 1$

$$\lim_{n \to \infty} S_n(x) = \ell$$

$$g(x) = \begin{cases} \frac{\sqrt{ax+b}-1}{x} , & x \neq 0\\ 1 & , & x = 0 \end{cases}$$

$$h: R \to R \quad h(x) = x^9 - 6x^8 - 2x^7 + 12x^6 + x^4 - 7x^3 + 6x^2 + x - 7$$

On the basis of above information, answer the following questions :

1. If g(x) is continuous at x = 0 then a + b is equal to -

2. If g(x) is continuous at x = 0 then g'(0) is equal to -

(A)
$$\ell$$
(B) $\frac{h(6)}{2}$ (C) $a - 2b$ (D) does not existIdentify the incorrect option -(A) $h(x)$ is surjective(B) domain of $g(x)$ is $[-1/2, \infty)$ (C) $h(x)$ is bounded(D) $\ell = 1$

is continuous at x = 0

9. Let
$$f(x) = \begin{bmatrix} \frac{\left(\frac{\pi}{2} - \sin^{-1}\left(1 - \{x\}^2\right)\right) \cdot \sin^{-1}\left(1 - \{x\}\right)}{\sqrt{2}\left(\{x\} - \{x\}^3\right)} & \text{for } x \neq 0 \\ \frac{\pi}{2} & \text{for } x = 0 \end{bmatrix}$$
 where $\{x\}$ is the fractional part of x.

Consider another function g(x); such that

$$g(x) = \begin{bmatrix} f(x) & \text{for } x \ge 0\\ 2\sqrt{2} & f(x) & \text{for } x < 0 \end{bmatrix}$$

Discuss the continuity of the functions f(x) & g(x) at x = 0.

10. If
$$f(x) = \underset{n \to \infty}{\text{Limit}} \frac{\log(x+2) - x^{2n} \sin x}{x^{2n} + 1}$$
 $(n \in N)$, examine the continuity of $f(x)$ at $x = 1$.

11. Examine the continuity at x = 0 of the sum function of the infinite series:

$$\frac{x}{x+1} + \frac{x}{(x+1)(2x+1)} + \frac{x}{(2x+1)(3x+1)} + \dots \infty$$

12. Draw the graph of the function $f(x) = x - |x - x^2|, -1 \le x \le 1$ & discuss the continuity or discontinuity of f in the interval $-1 \le x \le 1$.

13. Suppose that
$$f(x) = x^3 - 3x^2 - 4x + 12$$
 and $h(x) = \begin{bmatrix} \frac{f(x)}{x-3} & , & x \neq 3 \\ K & , & x = 3 \end{bmatrix}$, then

- (A) find all zeros of f
- (B) find the value of K that makes h continuous at x = 3
- (C) using the value of K found in (b), determine whether h is an even function.

14. If g : [a, b] onto [a, b] is continuous show that there is some $c \in [a, b]$ such that g(c) = c.

15. If
$$f(x) = \frac{\sin 3x + A \sin 2x + B \sin x}{x^5} (x \neq 0)$$
 is continuous at $x = 0$, then find A & B. Also find $f(0)$.

16. Given
$$f(x) = \sum_{r=1}^{n} \tan\left(\frac{x}{2^{r}}\right) \sec\left(\frac{x}{2^{r-1}}\right); r, n \in \mathbb{N}$$

$$g(x) = \begin{bmatrix} \lim_{n \to \infty} \frac{\ln\left(f(x) + \tan\frac{x}{2^{n}}\right) - \left(f(x) + \tan\frac{x}{2^{n}}\right)^{n} \cdot \left[\sin\left(\tan\frac{x}{2}\right)\right]}{1 + \left(f(x) + \tan\frac{x}{2^{n}}\right)^{n}} ; x \neq \pi/4$$

$$(K = \pi/4)$$

where [] denotes the greatest integer function and the domain of g(x) is $\left(0, \frac{\pi}{2}\right)$. Find the value of k, if possible, so that g(x) is continuous at $x = \pi/4$. Also state the points of discontinuity of g(x) in $(0, \pi/4)$, if any.

17. Find interval for which the function given by the following expressions are continuous :

(i)
$$f(x) = \frac{3x+7}{x^2-5x+6}$$
 (ii) $f(x) = \frac{1}{|x|-1} - \frac{x^2}{2}$
(iii) $f(x) = \frac{\sqrt{x^2+1}}{1+\sin^2 x}$ (iv) $f(x) = \tan\left(\frac{\pi x}{2}\right)$

18. If
$$f(x) = \begin{cases} 2x^2 + 12x + 16, & -4 \le x \le -2\\ 2 - |x|, & , & -2 < x \le 1\\ 4x - x^2 - 2, & , & 1 < x \le 3 \end{cases}$$
, then comment on continuity of

(i)
$$|f(x)|$$
 (ii) $f(|x|)$

19.
$$f(x) = \begin{cases} \frac{a^{\sin x} - a^{\tan x}}{\tan x - \sin x} & \text{for } x > 0\\ \frac{\ln(1 + x + x^2) + \ln(1 - x + x^2)}{\sec x - \cos x} & \text{for } x < 0 \end{cases}$$
 if 'f' is continuous at $x = 0$, find 'a'

now if
$$g(x) = ln\left(2 - \frac{x}{a}\right)$$
. cot $(x - a)$ for $x \neq a$, $a \neq 0$, $a > 0$. If 'g' is continuous at $x = a$ then show that $g(e^{-1}) = -e$

20. If $f(x) = x + \{-x\} + [x]$, where [.] is the integral part & {.} is the fractional part function. Discuss the continuity of f in [-2, 2]. Also find nature of each discontinuity.

21. If
$$f(x) = \begin{cases} -x^2, \text{ when } x \le 0\\ 5x - 4, \text{ when } 0 < x \le 1\\ 4x^2 - 3x, \text{ when } 1 < x < 2\\ 3x + 4, \text{ when } x \ge 2 \end{cases}$$
, discuss the continuity of $f(x)$ in R.

22. Discuss the continuity of f in [0,2] where $f(x) = \begin{cases} |4x-5| [x] & \text{for } x > 1 \\ [\cos \pi x] & \text{for } x \le 1 \end{cases}$; (where [x] is the greatest integer not greater than x). Also draw the graph.

23. Let
$$y_n(x) = x^2 + \frac{x^2}{1+x^2} + \frac{x^2}{(1+x^2)^2} + \dots + \frac{x^2}{(1+x^2)^{n-1}}$$
 and $y(x) = \lim_{n \to \infty} y_n(x)$. Discuss the continuity of $y_n(x)$ (n = 1, 2, 3, ..., n) and y(x) at x = 0

24. If $f(x \cdot y) = f(x)$. f(y) for all x, y and f(x) is continuous at x = 1. Prove that f(x) is continuous for all x except possibly at x = 0. Given $f(1) \neq 0$.

25. If
$$f(x) = \frac{x^2 + 1}{x^2 - 1}$$
 and $g(x) = \tan x$, then discuss the continuity of fog (x).

26. Show that :

- (A) a polynomial of an odd degree has at least one real root
- (B) a polynomial of an even degree has at least two real roots if it attains at least one value opposite in sign to the coefficient of its highest-degree term.
- 27. Let [x] denote the greatest integer function & f(x) be defined in a neighbourhood of 2 by

$$f(x) = \begin{bmatrix} \frac{\left(\exp\left\{\left(x+2\right)\ell n 4\right\}\right)^{\frac{\left[x+1\right]}{4}} - 16}{4^{x} - 16}, & x < 2\\ A\frac{1 - \cos(x-2)}{(x-2)\tan(x-2)}, & x > 2 \end{bmatrix}$$

Find the value of A & f(2) in order that f(x) may be continuous at x = 2.

- 28. Let $f(x) = \begin{bmatrix} 1+x & 0 \le x \le 2\\ 3-x & 2 \le x \le 3 \end{bmatrix}$. Determine the composite function g(x) = f(f(x)) & hence find the point of discontinuity of g, if any.
- 29. Find the point of discontinuity of y = f(u), where $f(u) = \frac{3}{2u^2 + 5u 3}$ and $u = \frac{1}{x + 2}$.
- 30. If f(x, y) = f(x). f(y) for all x, y and f(x) is continuous at x = 1. Prove that f(x) is continuous for all x except at x = 0. Given $f(1) \neq 0$.

Part # I > [Previous Year Questions] [AIEEE/JEE-MAIN] Exercise # 5 If $f(x) = \begin{cases} x & x \in Q \\ -x & x \notin Q \end{cases}$, then f is continuous at-1. [AIEEE 2002] (1) Only at zero (3) all real numbers (4) all rational numbers (2) only at 0, 1 If $f(x) = \begin{cases} xe^{-\left(\frac{1}{|x|} + \frac{1}{x}\right)}, x \neq 0 \text{ then } f(x) \text{ is-} \\ 0, x = 0 \end{cases}$ 2. [AIEEE 2003] (1) discontinuous everywhere (2) continuous as well as differentiable for all x (3) continuous for all x but not differentiable at x=0 (4) neither differentiable nor continuous at x=0Let $f(x) = \frac{1 - \tan x}{4x - \pi}$, $x \neq \frac{\pi}{4}$, $x \in \left[0, \frac{\pi}{2}\right]$, If f(x) is continuous in $\left[0, \frac{\pi}{2}\right]$, then $f\left(\frac{\pi}{4}\right)$ is-3. [AIEEE 2004] (1) 1 (2) 1/2
(3) -1/2(4) -1The function f: R/{0} \rightarrow R given by f(x) = $\frac{1}{x} - \frac{2}{e^{2x} - 1}$ can be made continuous at x = 0 by defining f(0) as-4. [AIEEE 2007] **(1)** 2 **(2)**-1 (3)0(4) 1 The values of p and q for which the function $f(x) = \begin{cases} \frac{\sin(p+1)x + \sin x}{x} , & x < 0 \\ q , & x = 0 \\ \frac{\sqrt{x+x^2} - \sqrt{x}}{\frac{\sqrt{3}}{2}} , & x > 0 \end{cases}$, x > 05. [**AIEEE 2011**]

(1)
$$p = -\frac{3}{2}, q = \frac{1}{2}$$
 (2) $p = \frac{1}{2}, q = \frac{3}{2}$ (3) $p = \frac{1}{2}, q = -\frac{3}{2}$ (4) $p = \frac{5}{2}, q = \frac{1}{2}$

6. Define F(x) as the product of two real functions $f_1(x) = x$, $x \in IR$, and $f_2(x) = \begin{cases} \sin \frac{1}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$ as follows:

F(x) = -	$\int f_1(\mathbf{x}) \cdot f_2(\mathbf{x})$	if	$x \neq 0$		
	0,	if	$\mathbf{x} = 0$	[AIEEE 20]	11]

Statement - 1 F(x) is continuous on IR.

Statement - 2 $f_1(x)$ and $f_2(x)$ are continuous on IR.

(1) Statemen-1 is false, statement-2 is true.

(2) Statemen-1 is true, statement-2 is true; Statement-2 is correct explanation for statement-1.

(3) Statement-1 is true, statement-2 is true, statement-2 is not a correct explanation for statement-1

(4) Statement-1 is true, statement-2 is false

[AIEEE 2012]

7. Consider the function, $f(x) = |x-2| + |x-5|, x \in \mathbb{R}$.

- Statement -1 f(4) = 0.
- **Statement 2** f is continuous in [2, 5], differentiable in (2, 5) and f(2) = f(5).
- (1) Statement–1 is true, Statement–2 is false.
- (2) Statement–1 is false, Statement–2 is true.
- (3) Statement-1 is true, Statement-2 is true ; Statement-2 is a correct explanation for Statement-1.
- (4) Statement-1 is true, Statement-2 is true ; Statement-2 is not a correct explanation for Statement-1.

Part # II / [Previous Year Questions][IIT-JEE ADVANCED]

1. Discuss the continuity of the function
$$f(\mathbf{x}) = \begin{cases} \frac{e^{1/(\mathbf{x}-1)} - 2}{e^{1/(\mathbf{x}-1)} + 2}, & \mathbf{x} \neq 1\\ 1, & \mathbf{x} = 1 \end{cases}$$
 at $\mathbf{x} = 1$.

[JEE 2001]

2. For every integer n, let a_n and b_n be real numbers. Let function $f : \mathbb{R} \to \mathbb{R}$ be given by

 $f(\mathbf{x}) = \begin{cases} \mathbf{a}_n + \sin \pi \mathbf{x}, & \text{for } \mathbf{x} \in [2n, 2n+1] \\ \mathbf{b}_n + \cos \pi \mathbf{x}, & \text{for } \mathbf{x} \in (2n-1, 2n) \end{cases}, \text{ for all integers n.} \end{cases}$

If f is continuous, then which of the following holds(s) for all n? [JEE 2012] (A) $a_{n-1} - b_{n-1} = 0$ (B) $a_n - b_n = 1$ (C) $a_n - b_{n+1} = 1$ (D) $a_{n-1} - b_n = -1$

7. Let $f(x) = [\cos x + \sin x]$, $0 < x < 2\pi$, where [.] denotes G.I.F. The number of points of discontinuity of f(x) is-**(A)**6 **(B)** 5 **(C)**4 **(D)**3 8. If f(x) = sgn(x) and $g(x) = x(1 - x^2)$, then the number of points of discontinuity of function f(g(x)) is (A) exact two (B) exact three (C) finite and more than 3 **(D)** infinitely many The function $f(x) = \begin{cases} x^2 \left[\frac{1}{x^2} \right] &, x \neq 0 \\ 0 &, x = 0 \end{cases}$, is (where [.] denotes G.I.F.) 9. (A) Continuous at x = 1**(B)** Continuous at x = -1(C) Discontinuous at x = 0(D) Continuous at x = 2**S**₁: If f is continuous and g is discontinuous at x = a, then f(x). g(x) is discontinuous at x = a. 10. **S**₂: $f(x) = \sqrt{2-x} + \sqrt{x-2}$ is not continuous at x = 2. **S**₃: $e^{-|x|}$ is differentiable at x = 0. **S**₄: If f(x) is differentiable every where, then $|f|^2$ is differentiable every where.

(A) TTFF (B) TTFT (C) FTFT (D) FFFT

SECTION - II : MULTIPLE CORRECT ANSWER TYPE

11.
$$f(x) = \frac{2\cos x - \sin 2x}{(\pi - 2x)^2}; \ g(x) = \frac{e^{-\cos x} - 1}{8x - 4\pi}$$
$$f(x) = \int f(x) \quad \text{for } x < \pi/2$$

 $\int g(x) = \int g(x) \quad \text{for } x > \pi/2$ then which of the followings does not holds ? (A) h is continuous at $x = \pi/2$

(C) h has a removable discontinuity at $x = \pi/2$

(B) h has an irremovable discontinuity at $x=\pi/2$

 $x = \pi/2$ (D) $f\left(\frac{\pi^+}{2}\right) = g\left(\frac{\pi^-}{2}\right)$

12. Which of the following function(s) has/have removable discontinuity at x = 1.

(A)
$$f(x) = \frac{1}{\ell n |x|}$$
 (B) $f(x) = \frac{x^2 - 1}{x^3 - 1}$ (C) $f(x) = 2^{-2^{\frac{1}{1 - x}}}$ (D) $f(x) = \frac{\sqrt{x + 1} - \sqrt{2x}}{x^2 - x}$
On the interval I = [-2, 2], the function $f(x) = \begin{cases} (x + 1)e^{-\left[\frac{1}{1 + x}\right]} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$

then which one of the following hold good ?

(A) is continuous for all values of $x \in I$

13.

(B) is continuous for $x \in I - (0)$

(C) assumes all intermediate values from f(-2) & f(2)

(D) has a maximum value equal to 3/e

14. Which of the following function(s) defined below has/have single point continuity.

(A) $f(x) = \begin{bmatrix} 1 & \text{if } x \in Q \\ 0 & \text{if } x \notin Q \end{bmatrix}$	(B) $g(x) = \begin{bmatrix} x & \text{if } x \in Q \\ 1-x & \text{if } x \notin Q \end{bmatrix}$
(C) $h(x) = \begin{bmatrix} x & \text{if } x \in Q \\ 0 & \text{if } x \notin Q \end{bmatrix}$	(D) $\mathbf{k}(\mathbf{x}) = \begin{bmatrix} \mathbf{x} & \text{if } \mathbf{x} \in \mathbf{Q} \\ -\mathbf{x} & \text{if } \mathbf{x} \notin \mathbf{Q} \end{bmatrix}$
Given f(x) = $\begin{cases} b([x]^2 + [x]) + 1\\ \sin(\pi(x+a)) \end{cases}$	for $x \ge -1$ for $x < -1$
where [x] denotes the integral part	t of x, then for what values of a, b the function is continuous at $x = -1$?
(A) $a = 2n + (3/2); b \in R$;	$n \in I$ (B) $a = 4n + 2$; $b \in R$; $n \in I$

(C) a = 4n + (3/2); $b \in R^+$; $n \in I$ (D) a = 4n + 1; $b \in R^+$; $n \in I$

SECTION - III : ASSERTION AND REASON TYPE

		$2\sin(a\cos^{-1}x)$	if	x ∈(0,1)
16.	Consider $f(\mathbf{x}) = \langle$	$\sqrt{3}$	if	$\mathbf{x} = 0$
		ax+b	if	x < 0

Statement-I: If $b = \sqrt{3}$ and $a = \frac{2}{3}$ then f(x) is continuous in $(-\infty, 1)$

Statement-II: If a function is defined on an interval I and limit exist at every point of interval I then function is continuous in I.

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True
- 17. Statement-I: f(x) = sinx + [x] is discontinuous at x = 0.

Statement-II: If g(x) is continuous & h(x) is discontinuous at x = a, then g(x) + h(x) will necessarily be discontinuous at x = a.

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True

18. Statement-I: The equation $\frac{x^3}{4} - \sin \pi x + 3 = 2\frac{1}{3}$ has at least one solution in [-2, 2]

Statement-II: If $f:[a, b] \rightarrow R$ be a function & let 'c' be a number such that f(a) < c < f(b), then there is at least one number $n \in (a, b)$ such that f(n) = c.

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True

15.

19. Statement-I: If $f: R \to R$ is a continuous function such that $f(x) = f(3x) \forall x \in R$, then f is constant function. Statement-II: If f is continuous at $x = \lim_{x \to a} g(x)$, then $\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right)$

(A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I

- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True

20. Statement-I: Range of
$$f(x) = x \left(\frac{e^{2x} - e^{-2x}}{e^{2x} + e^{-2x}} \right) + x^2 + x^4$$
 is not R.

Statement-II : Range of a continuous even function can not be R.

(A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I

(B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I

(C) Statement-I is True, Statement-II is False

(D) Statement-I is False, Statement-II is True

SECTION - IV : MATRIX - MATCH TYPE

21. **Column I Column II** If function $f(x) = \frac{\sqrt{1+x} - \sqrt[3]{1+x}}{x}$, is **(A)** 0 **(p)** continuous function, then f(0) is equal to -**(B)** The number of points where f(x) = [sinx + cosx]5 **(q)** (where [] denotes the greatest integer function), $x \in (0, 2\pi)$ is not continuous is -If $f(x) = \frac{1 - \tan x}{4x - \pi}, x \neq \frac{\pi}{4}, x \in \left[0, \frac{\pi}{2}\right]$ is a **(C) (r)** 1/6 continuous functions, then $f(\pi/4)$ is equal to -If $f(x) = \begin{cases} \frac{x^2 - (a+2)x + 2a}{x-2} , & x \neq 2\\ 2 , & x = 2 \end{cases}$, is **(D) (s)** -1/2

continuous at x = 2, then a is equal to

22.

Column I

Column II

-3/2

(A) If
$$f(x) = \frac{\tan\left(\frac{\pi}{4} - \pi\right)}{\cot 2x}$$
, $(x \neq \pi/4)$, is continuous at (p)

 $x = \pi/4$, then the value of $f\left(\frac{\pi}{4}\right)$ is

(B) Let
$$f(x) = \begin{cases} \frac{x-4}{|x-4|} + a, & x < 4 \\ a+b, & x = 4 \\ \frac{x-4}{|x-4|} + b, & x > 4 \end{cases}$$
 (q) 1

Then f(x) is continuous at x = 4, then the value of a & b

(C) If
$$f(x) = \frac{x - e^x + \cos 2x}{x^2}$$
, $x \neq 0$, is continuous (r) 1/2
at $x = 0$, then $[f(0)] \{f(0)\} =$
(D) Let $f(x)$ be defined in the interval at $[0, 4]$ such that (s) -1

$$f(x) = \begin{cases} 1-x, & 0 \le x \le 1 \\ x+2, & 1 < x < 2 \\ 4-x, & 2 \le x \le 4 \end{cases}$$

Then the number of points where f(f(x)) is discontinuous is (t) 2

SECTION - V : COMPREHENSION TYPE

23. Read the following comprehension carefully and answer the questions.

Consider $f(x) = x^2 + ax + 3$ and g(x) = x + b and $F(x) = \lim_{n \to \infty} \frac{f(x) + x^{2n}g(x)}{1 + x^{2n}}$, If F(x) is continuous at x = 1, then (A) b = a + 3 (B) b = a - 1 (C) a = b - 2 (D) None of these

- 2. If F(x) is continuous at x = -1, then
 - (A) a+b=-2 (B) a-b=3 (C) a+b=5 (D) None of these
- 3. If F(x) is continuous at x = ±1, then f(x) = g(x) has
 (A) imaginary roots
 (B) both the roots positive
 (C) both the roots negative
 (D) roots of opposite signs

1.

24. Read the following comprehension carefully and answer the questions.

There are two systems S₁ and S₂ of definitions of limit and continuity. In system S₁ the definition are as usual. In system S₂ the definition of limit is as usual but the continuity is defined as follows : A function f(x) is defined to be continuous at x = a if

(i) $\lim_{x \to a^{-}} f(x) - \lim_{x \to a^{+}} f(x) \le 1$ and

(ii) f(a) lies between the values of $\lim_{x \to a^-} f(x)$ and $\lim_{x \to a^+} f(x)$ if $\lim_{x \to a^+} f(x) \neq \lim_{x \to a^+} f(x)$

else $f(a) = \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$

If $f(x) = \begin{cases} x+2.7 & , x < 0 \\ 2.9 & , x = 0 \\ 2x+3 & , x > 0 \end{cases}$ and $g(x) = \begin{cases} 3x+3 & , x < 0 \\ 2.8 & , x = 0 \\ -x^2+2.7 & , x > 0 \end{cases}$, then consider statements

(i) $f(x)$ is discontinuous under the system S_1	(ii) $f(x)$ is continuous under the system S_2
(iii) $g(x)$ is continuous under the system S_2	
which 7 of the following option is correct	

(A) only (i) is true

(B) only (i) and (ii) are true (C) only (ii) and (iii) are true (\mathbf{D}) all (i), (ii), (iii) are true

2. If each of f(x) and g(x) is continuous at x = a in S_2 , then in S_2 which of the following is continuous (A) f+g**(B)** f - g(C) f.g (D) None of these

- 3. Which of the following is incorrect
 - (A) a continuous function under the definition in S_1 must also be continuous under the definition in S_2
 - (B) A continuous function under the definition in S_2 must also be continuous under the definition in S_1
 - (C) A discontinuous function under the definition in S_1 must also be discontinuous under the definition in S_2
 - (**D**) A discontinuous function under the definition in S_1 must be continuous under the definition in S_2

25. Read the following comprehension carefully and answer the questions.

Given the continuous function

$$y = f(x) = \begin{cases} x^2 + 10x + 8, & x \le -2 \\ ax^2 + bx + c, & -2 < x < 0, \ a \ne 0 \\ x^2 + 2x, & x \ge 0 \end{cases}$$

If a line L touches the graph of y = f(x) at the points, then

- 1. The slope of the line L is equal to **(A)**1 **(B)**2 **(C)**4 **(D)**6
- The value of (a + b + c) is equal to 2. (A) $5\sqrt{2}$ **(B)** 5 **(C)**6 **(D)**7
- If y = f(x) is differentiable at x = 0, then the value of b is -3. **(A)**-1 **(B)**2 (C)4 (D) cannot be determined

SECTION - VI : INTEGER TYPE

26. If
$$g(x) = \begin{cases} \frac{1 - a^{x} + xa^{x} \cdot lna}{x^{2}a^{x}} , & x < 0 \\ \frac{(2a)^{x} - x \cdot ln \cdot 2a - 1}{x^{2}} , & x > 0 \end{cases}$$

(where a > 0), then find 'a' and g(0) so that g(x) is continuous at x = 0.

27. Find the value of f(0) so that the function

$$f(x) = \frac{\cos^{-1}(1 - \{x\}^2)\sin^{-1}(1 - \{x\})}{\{x\} - \{x\}^3}, x \neq 0$$

($\{x\}$ denotes fractional part of x) becomes continuous at x = 0

28. The function
$$f(x) = \begin{cases} \left(\frac{6}{5}\right)^{\frac{\tan 6x}{\tan 5x}} & , & 0 < x < \frac{\pi}{2} \\ b + 2 & , & x = \frac{\pi}{2} \\ \left(1 + |\cos x|\right)^{\left(\frac{a|\tan x|}{b}\right)} & , & \frac{\pi}{2} < x < \pi \end{cases}$$
. Determine the values of 'a' & 'b', if f is continuous at

29. Let f be a continuous function on R such that $f\left(\frac{1}{4x}\right) = \left(\sin e^x\right) e^{-x^2} + \frac{x^2}{x^2 + 1}$, then find the value of f(0).

30. If the function f(x) defined as f(x) =
$$\begin{cases} (\sin x + \cos x)^{\cos ex} & , & -\frac{\pi}{2} < x < 0 \\ a & , & x = 0 \\ \frac{e^{\frac{1}{x}} + e^{\frac{2}{x}} + e^{\frac{3}{x}}}{ae^{-2 + \frac{1}{x}} + be^{-1 + \frac{3}{x}}} & , & 0 < x < \frac{\pi}{2} \end{cases}$$

is continuous at x = 0, then find a & b.

ANSWER KEY

EXERCISE - 1

 1. C
 2. D
 3. D
 4. A
 5. A
 6. C
 7. C
 8. A
 9. D
 10. C
 11. D
 12. B
 13. C

 14. C
 15. A
 16. C
 17. B
 18. C
 19. A
 20. B
 21. C
 22. A
 23. D
 24. B
 25. C
 26. B

 27. D
 28. B
 29. B
 30. D

EXERCISE - 2 : PART # I

1.	CD	2.	AB	3.	BCD	4.	ACD	5.	BC	6.	ABCD	7.	BCD	8.	ABC	9.	ABC
10.	CD	11.	BCD	12.	BCD	13.	ABCD	14.	CD	15.	BD	16.	ABC	17.	AC	18.	ACD
19.	ABC	20.	BC	21.	BD	22.	ABC	23.	AC								

PART - II

1. A 2. A 3. A 4. A 5. A 6. A 7. C 8. A 9. D 10. C

0

EXERCISE - 3 : PART # I

1. $A \rightarrow q$, $s B \rightarrow p$, r, $s C \rightarrow q D \rightarrow q$ **2.** $A \rightarrow p$, $r B \rightarrow s C \rightarrow s D \rightarrow p$, q, r

PART - II

 Comprehension #1: 1. A
 2. BC
 3. CA
 Comprehension #2: 1. C
 2. D
 3. C

 Comprehension #3: 1. D
 2. B
 3. C
 C

EXERCISE - 5 : PART # I

1. 1 **2.** 3 **3.** 3 **4.** 4 **5.** 1 **6.** 4 **7.** 4

PART - II

1. Discontinuous at
$$x = 1$$
; $f(1^+) = 1$ and $f(1^-) = -1$ **2.** B, D

MOCK TEST

- 1. C
 2. A
 3. C
 4. B
 5. D
 6. C
 7. B
 8. B
 9. C
 10. C
 11. ACD
 12. BD

 13. BCD
 14. BCD
 15. AC
 16. C
 17. A
 18. C
 19. A
 20. A
- 21. $A \rightarrow r B \rightarrow q C \rightarrow s D \rightarrow p$ 22. $A \rightarrow r B \rightarrow q, s C \rightarrow p D \rightarrow t$
- 23. 1. A 2. C 3. D 24. 1. D 2. D 3. B 25. 1. A 2. D 3. B
- **26.** $\frac{1}{\sqrt{2}}$, $\frac{1}{8}(\ln 2)^2$ **27.** no value of f(0) **28.** a=0, b=-1 **29.** 1 **30.** a=e, b=1