HINTS \& SOLUTIONS

EXERCISE - 1

Single Choice

2. $\operatorname{Lim}_{\mathrm{x} \rightarrow 0} \frac{\mathrm{x}-\mathrm{e}^{\mathrm{x}}+1-(1-\cos 2 \mathrm{x})}{\mathrm{x}^{2}}=-\frac{1}{2}-2=-\frac{5}{2}$;

Hence for continuity $\mathrm{f}(0)=-\frac{5}{2}$
$\therefore \quad[\mathrm{f}(0)]=-3 ;\{\mathrm{f}(0)\}=\left\{-\frac{5}{2}\right\}=\frac{1}{2}$;
Hence $\left.[\mathrm{f}(0)]\{\mathrm{f}(0)\}=-\frac{3}{2}=-1.5\right]$
3. By theorem, if g and h are continuous functions on the open interval (a, b), then g / h is also continuous at all x in the open interval (a, b) where $h(x)$ is not equal to zero.
6. $\lim _{x \rightarrow 0^{+}} f(x)=0 \& \lim _{x \rightarrow 0^{-}} f(x)=1$
7. $\mathrm{f}\left(1^{+}\right)=\mathrm{f}\left(1^{-}\right)=\mathrm{f}(1)=2 \quad \mathrm{f}(0)=1, \mathrm{f}(2)=2$
$\mathrm{f}\left(2^{-}\right)=1 ; \quad \mathrm{f}(2)=2$
$\Rightarrow \mathrm{f}$ is not continuous at $\mathrm{x}=2$
9. $\underset{h \rightarrow 0}{\operatorname{Limit}} g(n+h)=\underset{h \rightarrow 0}{\operatorname{Limit}} \frac{e^{h}-\cos 2 h-h}{h^{2}}$
$=\underset{h \rightarrow 0}{\operatorname{Limit}} \frac{e^{h}-h-1}{h^{2}}+\operatorname{Limit}_{h \rightarrow 0} \frac{(1-\cos 2 h)}{4 h^{2}} .4$
$=\frac{1}{2}+2=\frac{5}{2}$
$\underset{h \rightarrow 0}{\operatorname{Limit}} \mathrm{~g}(\mathrm{n}-\mathrm{h})$
$=\frac{e^{1-\{n-h\}}-\cos 2(1-\{n-h\})-(1-\{n-h\})}{(1-\{n-h\})^{2}}$
$=\operatorname{Lim}_{\mathrm{h} \rightarrow 0} \frac{\mathrm{e}^{\mathrm{h}}-\cos 2 \mathrm{~h}-\mathrm{h}}{\mathrm{h}^{2}}(\{\mathrm{n}-\mathrm{h}\}=\{-\mathrm{h}\}=1-\mathrm{h})=\frac{5}{2}$
$\mathrm{g}(\mathrm{n})=\frac{5}{2}$. Hence $\mathrm{g}(\mathrm{x})$ is continuous at $\forall \mathrm{x} \in \mathrm{I}$.
Hence $g(x)$ is continuous $\forall x \in R$]
12. $h(x)=\left[\begin{array}{l}\frac{2 \cos x-\sin 2 x}{(\pi-2 x)^{2}} x<\frac{\pi}{2} \\ \frac{e^{-\cos x}-1}{8 x-4 \pi} x>\frac{\pi}{2}\end{array}\right.$

LHL at $\mathrm{x}=\pi / 2$
$\operatorname{Lim}_{h \rightarrow 0} \frac{2 \sin h-\sin 2 h}{4 h^{2}}=\operatorname{Lim}_{h \rightarrow 0} \frac{2 \sin h(1-\cos h)}{4 h^{2}}=0$
RHL: $\operatorname{Lim}_{h \rightarrow 0} \frac{e^{\sinh }-1}{((\pi / 2)+h)-4 \pi}=\operatorname{Lim}_{h \rightarrow 0} \frac{e^{\sinh }-1}{8 h} \cdot \frac{\sin h}{\sin h}=\frac{1}{8}$
$\Rightarrow \mathrm{h}(\mathrm{x})$ is discontinuous at $\mathrm{x}=\pi / 2$.
Irremovable discontinuity at $x=\pi / 2$.
$\mathrm{f}\left(\frac{\pi^{+}}{2}\right)=0$ and $\mathrm{g}\left(\frac{\pi^{-}}{2}\right)=\frac{1}{8}$
$\Rightarrow f\left(\frac{\pi^{+}}{2}\right) \neq g\left(\frac{\pi^{-}}{2}\right)$
14. $g(x)=x-[x]=\{x\}$
f is continuous with $\mathrm{f}(0)=\mathrm{f}(1)$

$$
h(x)=f(g(x))=f(\{x\})
$$

Let the graph of f is as shown in the figure

satisfying

$$
\begin{array}{ll}
& f(0)=f(1) \\
\text { now } & h(0)=f(\{0\})=f(0)=f(1) \\
& h(0.2)=f(\{0.2\})=f(0.2) \\
& h(1.5)=f(\{1.5\})=f(0.5) \text { etc. }
\end{array}
$$

Hence the graph of $\mathrm{h}(\mathrm{x})$ will be periodic graph as shown $\Rightarrow h$ is continuous in $R \Rightarrow C$

17. $\lim _{x \rightarrow 0^{-}} \frac{1-\cos 4 x}{x^{2}}=8$
$\lim _{x \rightarrow 0^{+}} \frac{\sqrt{x}}{\sqrt{16+\sqrt{x}}-4}=8 \quad \because \quad f(0)=8$
So $f(x)$ is continuous at $x=0$ when $a=8$
18. $f\left(2^{+}\right)=8 ; f\left(2^{-}\right)=16$
21. $f(x)=\lim _{x \rightarrow 0} \frac{x\left(1+a\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!} \cdots\right)\right)-b\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!} \cdot \frac{x^{7}}{7!} \cdots\right)}{x^{3}}$

$$
\begin{equation*}
=\lim _{x \rightarrow 0} \frac{(1+a-b)+x^{2}\left(\frac{-a}{2!}+\frac{b}{3!}\right)+\ldots}{x^{2}} \tag{i}
\end{equation*}
$$

$\Rightarrow 1+\mathrm{a}-\mathrm{b}=0$
and $\frac{-a}{2}+\frac{b}{6}=1$
Solving (i) and (ii) we get
$a=\frac{-5}{2}, b=\frac{-3}{2}$
22. $\mathrm{f}\left(0^{+}\right)=0 ; \mathrm{f}(0)=0 ; \mathrm{f}\left(0^{-}\right)=-1$
23. $f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=1$ also $f(0)=-c$
$f^{\prime}(x)=\operatorname{Lim}_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\operatorname{Lim}_{h \rightarrow 0} \frac{f(x)+f(h)+c-f(x)}{h}$

$$
=\operatorname{Lim}_{h \rightarrow 0} \frac{f(h)-f(0)}{h}=f^{\prime}(0)=1
$$

$\therefore \mathrm{f}^{\prime}(\mathrm{x})=1$
25. $\mathrm{y}=\frac{1}{\mathrm{t}^{2}+\mathrm{t}-2}$, where $\mathrm{t}=\frac{1}{\mathrm{x}-1}, \mathrm{y}=\mathrm{f}(\mathrm{x})$ is discontinuous at $x=1$, where t is discontinuous and $y=\frac{1}{(t+2)(t-1)}$ at $t=-2$ and $t=1$
$\Rightarrow \frac{1}{\mathrm{x}-1} \Rightarrow-2 \mathrm{x}+2=1$,
$\mathrm{x}=\frac{1}{2}$
$1-\frac{1}{\mathrm{x}-1} \quad \Rightarrow \mathrm{x}=2$
$\mathrm{f}(\mathrm{g}(\mathrm{x}))$ is discontinuous at $\mathrm{x}=\frac{1}{2}, 2,1$
26. $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{\sqrt{a^{2}-a x+x^{2}}-\sqrt{a^{2}+a x+x^{2}}}{\sqrt{a+x}-\sqrt{a-x}}$
on rationalizing both Nr. \& Dr. we get

$$
\lim _{\mathrm{x} \rightarrow 0} \mathrm{f}(\mathrm{x})=-\sqrt{a}
$$

So $\quad \mathrm{f}(0)=-\sqrt{a}$
27. for continuity $\operatorname{Lim}_{x \rightarrow 0} \frac{1-e^{x}}{x}=f(0)$;

Hence $f(0)=-\operatorname{Lim}_{h \rightarrow 0} \frac{e^{x}-1}{-x}=-1$
$f^{\prime}\left(0^{+}\right)=\operatorname{Lim}_{h \rightarrow 0} \frac{\frac{1-e^{h}}{h}+1}{h}=\operatorname{Lim}_{h \rightarrow 0} \frac{1-e^{h}+h}{h^{2}}=\frac{1-h-\left[1+\frac{h}{1!}+\frac{h^{2}}{2!}+\ldots . . .\right]}{h^{2}}$
$=-\frac{1}{2}$
$f^{\prime}\left(0^{-}\right)=\operatorname{Lim}_{h \rightarrow 0} \frac{\frac{1-e^{-h}}{-h}+1}{-h}=\operatorname{Lim}_{h \rightarrow 0} \frac{1-e^{-h}-h}{h^{2}}$
$=\frac{1-\mathrm{h}-\left[1-\frac{\mathrm{h}}{1!}+\frac{\mathrm{h}^{2}}{2!}-\ldots \ldots . .\right]}{\mathrm{h}^{2}}$
$=-\frac{1}{2}$

Hence $f(x)=\left[\begin{array}{cc}\frac{1-e^{-x}}{x} & \text { if } x \neq 0 \\ -1 & \text { if } x=0\end{array}\right.$
28. $(x-\sqrt{3}) f(x)=-x^{2}+2 x-2 \sqrt{3}+3$

$$
\begin{aligned}
& f(x)=\frac{-x^{2}+2 x-2 \sqrt{3}+3}{x-\sqrt{3}} \\
& \quad=\frac{(x-\sqrt{3})(2-\sqrt{3}-x)}{x-\sqrt{3}}=2-\sqrt{3}-x \\
& f(\sqrt{3})=2-2 \sqrt{3}
\end{aligned}
$$

EXERCISE - 2

Part \# I : Multiple Choice

6. $\mathrm{f}(\mathrm{x})=\frac{|\mathrm{x}+\pi|}{\sin \mathrm{x}}$
(A) $f\left(-\pi^{+}\right)=\lim _{h \rightarrow 0} \frac{|-\pi+h+\pi|}{\sin (-\pi+h)}=\lim _{h \rightarrow 0} \frac{|h|}{-\sinh }=-1$
(B) $f\left(-\pi^{-}\right)=\lim _{h \rightarrow 0} \frac{|-\pi-h+\pi|}{\sin (-\pi-h)}=\lim _{h \rightarrow 0} \frac{|h|}{\sin h}=1$
(C) $f\left(-\pi^{+}\right) \neq f\left(-\pi^{-}\right) \quad$ So $\quad \lim _{x \rightarrow-\pi} f(x)$ does not exist
(D) for $\lim _{x \rightarrow \pi} f(x)$

LHL $=\lim _{x \rightarrow \pi^{-}} \frac{|x+\pi|}{\sin x}=\lim _{h \rightarrow 0} \frac{2 \pi-h}{\sinh }=\frac{2 \pi}{0}=\infty$
RHL $=\lim _{x \rightarrow \pi^{+}} \frac{|x+\pi|}{\sin x}=\lim _{h \rightarrow 0} \frac{2 \pi+h}{-\sinh }=-\frac{2 \pi}{0}=-\infty$

LHL \neq RHL

So $\lim _{x \rightarrow \pi} f(x)$ does not exist.
7. $\lim _{x \rightarrow 0^{+}}(x+1) e^{-[2 / x]}=\lim _{x \rightarrow 0^{+}} \frac{x+1}{e^{2 / x}}=\frac{1}{e^{\infty}}=0$
$\lim _{x \rightarrow 0^{-}}(x+1) e^{-\left(-\frac{1}{x}+\frac{1}{x}\right)}=1$
Hence continuous for $x \in I-\{0\}$
10. (i) $\tan f(x)=\tan \left(\frac{x}{2}-1\right) \quad x \in[0, \pi]$

$$
0 \leq x \leq \pi \Rightarrow-1 \leq \frac{x}{2}-1 \leq \frac{\pi}{2}-1
$$

By graph we say $\tan (\mathrm{f}(\mathrm{x}))$ is continuous in $[0, \pi]$
(ii) $\frac{1}{f(x)}=\frac{2}{x-2}$ is not defined at $\mathrm{x}=2 \in[0, \pi]$
(iii) $y=\frac{x-2}{2}$
$\Rightarrow \mathrm{f}^{-1}(\mathrm{x})=2 \mathrm{x}+2$ is continuous in R .
11. (A) $f(x)$ is continuous no where
(B) $g(x)$ is continuous at $x=1 / 2$
(C) $h(x)$ is continuous at $x=0$
(D) $k(x)$ is continuous at $x=0$
13. $[|\mathrm{x}|]-|[\mathrm{x}]|=\left[\begin{array}{lr}0 & \mathrm{x}=-1 \\ -1 & -1<\mathrm{x}<0 \\ 0 & 0 \leq \mathrm{x} \leq 1 \\ 0 & 1<\mathrm{x} \leq 2\end{array}\right.$
\Rightarrow range is $\{0,-1\}$
The graph is

15. $\mathrm{RHL}=\lim _{x \rightarrow 0^{+}}\left(3-\left[\cot ^{-1}\left(\frac{2 \mathrm{x}^{3}-3}{\mathrm{x}^{2}}\right)\right]\right)$

$$
=3-\left[\cot ^{-1}(-\infty)\right]=3-3=0
$$

$$
\begin{aligned}
\text { LHL } & =\lim _{h \rightarrow 0}\left\{(0-h)^{2}\right\} \cos \left(e^{\left(\frac{1}{0-h}\right)}\right) \\
& =\lim _{h \rightarrow 0}(0-h)^{2} \cos \left(e^{-\infty}\right)=0
\end{aligned}
$$

17. Given f is continuous in [a, b]
g is continuous in [b, c]
$\mathrm{f}(\mathrm{b})=\mathrm{g}(\mathrm{b})$

$$
\left.\begin{array}{rlrl}
h(x) & =f(x) & & \text { for } x \in[a, b) \tag{iiii}\\
& =f(b)=g(b) & & \text { for } x=b \\
& =g(x) & & \text { for } x \in(b, c]
\end{array}\right\}
$$

$h(x)$ is continuous in $[a, b) \cup(b, c]$ [using (i), (ii)]
also $f\left(b^{-}\right)=f(b) ; g\left(b^{+}\right)=g(b)$....(5)
$\therefore \quad h\left(b^{-}\right)=f\left(b^{-}\right)=f(b)=g(b)=g\left(b^{+}\right)=h\left(b^{+}\right)$
[using (iv), (v)]
now, verify each alternative. Of course! $g\left(b^{-}\right)$and $f\left(b^{+}\right)$ are undefined.

$$
\begin{aligned}
\mathrm{h}\left(\mathrm{~b}^{-}\right) & =\mathrm{f}\left(\mathrm{~b}^{-}\right)=\mathrm{f}(\mathrm{~b})=\mathrm{g}(\mathrm{~b})=\mathrm{g}\left(\mathrm{~b}^{+}\right) \\
\text {and } \mathrm{h}\left(\mathrm{~b}^{+}\right) & =\mathrm{g}\left(\mathrm{~b}^{+}\right)=\mathrm{g}(\mathrm{~b})=\mathrm{f}(\mathrm{~b})=\mathrm{f}\left(\mathrm{~b}^{-}\right)
\end{aligned}
$$

hence $\quad h\left(b^{-}\right)=h\left(b^{+}\right)=f(b)=g(b)$
and $h(b)$ is not defined $\Rightarrow(A)$
18. (A) $\mathrm{LHL}=-1 \& \mathrm{RHL}=0$
(B) $\mathrm{LHL}=1 \quad \& \mathrm{RHL}=2 / 3$
(C) $\mathrm{LHL}=-1 \& \mathrm{RHL}=2 / 3$
(D) $\mathrm{LHL}=-2 \log _{2} 3 \& \mathrm{RHL}=2 \log _{3} 2$
21. $\underset{h \rightarrow 0}{\operatorname{Limit}} f(x+h)=\underset{h \rightarrow 0}{\operatorname{Limit}} f(x)+f(h)$
$=\mathrm{f}(\mathrm{x})+\underset{\mathrm{h} \rightarrow 0}{\operatorname{Limit}} \mathrm{f}(\mathrm{h})$
Hence if $h \rightarrow 0 \quad f(h)=0$
$\Rightarrow \quad$ ' f ' is continuous otherwise discontinuous
22. $f(x)=[x]$ and $g(x)=\left\{\begin{array}{lc}0, & x \in I \\ x^{2}, & x \in R-I\end{array}\right.$
$\lim _{x \rightarrow 1} g(x)=\lim _{x \rightarrow 1} x^{2}=1$, but $g(1)=0$
$\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1}[x]$ does not exist since
$\mathrm{LHL}=0$ and $\mathrm{RHL}=1$
$\operatorname{gof}(x)=g([x])=0$
$\Rightarrow \operatorname{gof}(x)$ is continous for all values of x
$f o g=\left\{\begin{array}{lc}0, & x \in I \\ {\left[x^{2}\right],} & x \in R-I\end{array}\right.$
$\operatorname{fog}(1)=0, \quad \lim _{x \rightarrow 1^{-}} \operatorname{fog}(x)=0, \quad \lim _{x \rightarrow 1^{+}} \operatorname{fog}(x)=1$
fog is not continous at $x=1$
23. $\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1^{+}} b\left([x]^{2}+[x]\right)+1$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} b\left([-1+h]^{2}+[-1+h]\right)+1 \\
& =b\left((-1)^{2}-1\right)+1=1
\end{aligned}
$$

$\Rightarrow b \in R$
$\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{-}} \sin (\pi(x+a))$
$=\lim _{\mathrm{h} \rightarrow 0} \sin (\pi(-1-\mathrm{h}+\mathrm{a}))=-\sin \pi \mathrm{a}$
$\sin \pi \mathrm{a}=-1$
$\pi \mathrm{a}=2 \mathrm{n} \pi+\frac{3 \pi}{2} \Rightarrow \mathrm{a}=2 \mathrm{n}+\frac{3}{2}$
Also option (C) is subset of option (A)

Part \# II : Assertion \& Reason

3. Statement -1
$\mathrm{f}(\mathrm{x})=\{\tan \mathrm{x}\}-[\tan \mathrm{x}]$
$\mathrm{f}(\mathrm{x})=\tan \mathrm{x}-2[\tan \mathrm{x}]=\left[\begin{array}{cc}\tan \mathrm{x} & , \\ 0 \leq \mathrm{x}<\frac{\pi}{4} \\ \tan \mathrm{x}-2 & , \\ \frac{\pi}{4} \leq \mathrm{x}<\tan ^{-1} 2\end{array}\right.$
obviously at $\mathrm{x}=\frac{\pi}{3} \mathrm{f}(\mathrm{x})$ is continuous. (True)

Statement-2
$y=f(x) \& y=g(x)$ both are continuous at $x=a$
then $y=f(x) \pm(g(x)$ will also be continuous at $x=a$ (True)
Statement-1 can be explained with the help of statement -2 .
5.

9. $\mathrm{f}(\mathrm{x})$ is discontinuous at $\mathrm{x}=0$ and $\mathrm{f}(\mathrm{x})<0 \forall \mathrm{x} \in[-\alpha, 0)$ and $\mathrm{f}(\mathrm{x})>0 \quad \forall \mathrm{x} \in[0, \alpha]$

EXERCISE - 3

Part \# I : Matrix Match Type

2. (A) $\lim _{\mathrm{h} \rightarrow 0} \sin \{1-\mathrm{h}\}=\cos 1+\mathrm{a}$

$$
\begin{aligned}
& \Rightarrow \lim _{\mathrm{h} \rightarrow 0} \sin (1-\mathrm{h})-\cos 1=\mathrm{a} \\
& \Rightarrow \mathrm{a}=\sin 1-\cos 1
\end{aligned}
$$

$$
\text { Now }|k|=\frac{\sin 1-\cos 1}{\sqrt{2}\left(\sin 1 \cdot \frac{1}{\sqrt{2}}-\cos 1 \cdot \frac{1}{\sqrt{2}}\right)}=1
$$

$$
\mathrm{k}= \pm 1
$$

(B) $f(0)=\lim _{x \rightarrow 0} \frac{2 \sin ^{2}\left(\frac{\sin x}{2}\right)}{x^{2}\left(\frac{\sin x}{2}\right)^{2}} \times\left(\frac{\sin x}{2}\right)^{2}$

$$
\Rightarrow \mathrm{f}(0)=\frac{1}{2}
$$

(C) function should have same rule for Q \& Q^{\prime}

$$
\Rightarrow \mathrm{x}=1-\mathrm{x} \quad \Rightarrow \quad \mathrm{x}=\frac{1}{2}
$$

(D) $f(x)=x+\{-x\}+[x]$
x is continuous at $x \in R$
Check at $\mathrm{x}=\mathrm{I} \quad$ (where I is integer),
$\mathrm{f}\left(\mathrm{I}^{+}\right)=2 \mathrm{I}+1$
$\mathrm{f}(\mathrm{I})=2 \mathrm{I}-1$
So $f(x)$ is discontinuous at every integer i.e., $1,0,-1$

Part \# II : Comprehension

Comprehension \# 2

$$
f(x)=\left\{\begin{array}{cc}
x+1 & 0 \leq x \leq 2 \\
-x+3 & 2<x<3
\end{array}\right.
$$

1. $f(x)$ is discontinuous
at $x=2$
2. $\quad \operatorname{fof}(x)=\left\{\begin{array}{cc}x+2 & 0 \leq x \leq 1 \\ -x+2 & 1<x \leq 2 \\ -x+4 & 2<x<3\end{array}\right.$
fof (x) is discontinuous at $x=1,2$
3. $f(19)=f(3 \times 6+1)=f(1)=2$

EXERCISE - 4

Subjective Type

1. $\mathrm{a}=-1 \mathrm{~b}=1$
2. (i) continuous at $x=1$
(ii) continuous
(iii) discontinuous
(iv) continuous at $\mathrm{x}=1,2$
3. non-removable - finite type
$f\left(0^{-}\right)=\lim _{h \rightarrow 0}\left(-\frac{2^{-1 / h}-1}{2^{-1 / h}+1}\right)=1$
$f\left(0^{+}\right)=\lim _{h \rightarrow 0}\left(-\frac{2^{1 / h}-1}{2^{1 / h}+1}\right)=-1$
\Rightarrow LHL \neq RHL \Rightarrow Non removable-finite discontinuity
4. gof is discontinuous at $x=0,1$ and -1
5. $\mathrm{a}=\frac{1}{2}, \mathrm{~b}=4$

$$
\begin{aligned}
& \lim _{x \rightarrow \frac{\pi^{-}}{2}} f(x)=\lim _{x \rightarrow \frac{\pi^{-}}{2}} \frac{1-\sin ^{3} x}{3 \cos ^{2} x}=\lim _{h \rightarrow 0} \frac{1-\cos ^{3} h}{3 \sin ^{2} h} \\
& {\left[\text { put } x=\frac{\pi}{2}-h\right]=\lim _{h \rightarrow 0} \frac{1-\left(1-\frac{h^{2}}{2!}+\frac{h^{4}}{4!}-\ldots\right)^{3}}{3 h^{2}}=\frac{1}{2}}
\end{aligned}
$$

and $\lim _{x \rightarrow \frac{\pi}{2}^{+}} f(x)=\lim _{x \rightarrow \frac{\pi}{2}^{+}} \frac{b(1-\sin x)}{(\pi-2 x)^{2}}$

$$
=\lim _{h \rightarrow 0} \frac{b(1-\cosh)}{4 h^{2}}=\frac{b}{8}
$$

So $\frac{1}{2}=\frac{\mathrm{b}}{8}=\mathrm{a}$
6. $\mathrm{a}=\frac{1}{\sqrt{2}}, \mathrm{~g}(0)=\frac{(\ln 2)^{2}}{8}$
$g\left(0^{-}\right)$
$=\lim _{\mathrm{h} \rightarrow 0} \frac{1-\mathrm{a}^{-\mathrm{h}}+(-\mathrm{h}) \mathrm{a}^{-\mathrm{h}} \ell \mathrm{n}(\mathrm{a})}{\mathrm{a}^{-\mathrm{h}}(-\mathrm{h})^{2}}=\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{a}^{\mathrm{h}}-1-\mathrm{h} \ell \mathrm{na}}{\mathrm{h}^{2}}$
$=\lim _{h \rightarrow 0} \frac{1+\mathrm{h} \ell n a+\frac{h^{2}}{2!}(\ell n a)^{2}+\ldots-1-h \ell n a}{h^{2}}=\frac{(\ell n a)^{2}}{2}$
$g\left(0^{+}\right)=\lim _{h \rightarrow 0} \frac{2^{h} a^{h}-h \ell n 2-h \ell n a-1}{h^{2}}$
$=\lim _{\mathrm{h} \rightarrow 0} \frac{1+\mathrm{h} \ell \mathrm{n}(2 \mathrm{a})+\frac{\mathrm{h}^{2}}{2!}(\ell \mathrm{n} 2 \mathrm{a})^{2}+\ldots-\mathrm{h} \ell \mathrm{na}-1}{\mathrm{~h}^{2}}=\frac{(\ell \mathrm{n} 2 \mathrm{a})^{2}}{2!}$
Now $g(x)$ is continuous so

$$
\begin{aligned}
&(\operatorname{lna})^{2}=(\ell \ln 2 \mathrm{a})^{2} \\
& \Rightarrow \quad(\operatorname{lna})^{2}=(\ln 2)^{2}+(\ln \mathrm{a})^{2}+2 \ln 2 \ln \mathrm{a} \\
& \Rightarrow \quad \ln \mathrm{a}=\frac{-1}{2} \ln 2 \Rightarrow \mathrm{a}=\frac{1}{\sqrt{2}} \\
& \mathrm{~g}(0)=\frac{\left(\log \left(\frac{1}{\sqrt{2}}\right)\right)^{2}}{2}=\frac{1}{8}(\ln 2)^{2}
\end{aligned}
$$

7. $a=0 ; b=-1$
8. $a=-3 / 2, b \neq 0, c=1 / 2$
$\lim _{x \rightarrow 0^{-}} \frac{\sin (a+1) x+\sin x}{x}=a+2$
and $\lim _{x \rightarrow 0^{+}} \frac{x+b x^{2}-x}{b x^{3 / 2}\left(\sqrt{x+b x^{2}}+\sqrt{x}\right)}=\frac{1}{2}$ as $b \neq 0$
according to question
$c=\frac{1}{2} \quad \& \quad a+2=\frac{1}{2} \Rightarrow a=\frac{-3}{2}$
9. $\mathrm{f}\left(0^{+}\right)=\frac{\pi}{2} ; \mathrm{f}\left(0^{-}\right)=\frac{\pi}{4 \sqrt{2}} \Rightarrow{ }^{\prime} \mathrm{f}$ ' is dicontinuous at $\mathrm{x}=0$;
$\mathrm{g}\left(0^{+}\right)=\mathrm{g}\left(0^{-}\right)=\mathrm{g}(0)=\frac{\pi}{2} \Rightarrow{ }^{\prime} \mathrm{g}^{\prime}$ is continuous at $\mathrm{x}=0$
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} \frac{\left(\frac{\pi}{2}-\sin ^{-1}\left(1-\{h\}^{2}\right)\right) \cdot \sin ^{-1}(1-\{h\})}{\sqrt{2}\left(\{h\}-\{h\}^{3}\right)}$
$=\lim _{h \rightarrow 0} \frac{\left(\frac{\pi}{2}-\sin ^{-1}\left(1-h^{2}\right)\right) \sin ^{-1}(1-h)}{\sqrt{2}\left(h-h^{3}\right)}$
$=\lim _{h \rightarrow 0} \frac{\cos ^{-1}\left(1-h^{2}\right)}{\sqrt{2}\left(1-h^{2}\right)} \times \frac{\sin ^{-1}(1-h)}{h}=\frac{\pi}{2}$
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0} \frac{\left(\frac{\pi}{2}-\sin ^{-1}\left(1-(1-h)^{2}\right) \sin ^{-1}(1-(1-h))\right.}{\sqrt{2}\left((1-h)-(1-h)^{3}\right)}$
$=\lim _{h \rightarrow 0} \frac{\frac{\pi}{2} \sin ^{-1} h}{\sqrt{2}(1-h)(2-h) h}=\frac{\pi}{4 \sqrt{2}}$

So
Now $g(x)=\left\{\begin{array}{cll}\frac{\pi}{2} & ; x \geq 0 \\ 2 \sqrt{2} \frac{\pi}{4 \sqrt{2}} & ; x<0\end{array}\right.$

$$
g(x)=\left\{\begin{array}{ll}
\frac{\pi}{2} & ;
\end{array} \quad x \geq 0\right.
$$

So $\quad g(x)$ is continuous at $x=0$
10. $f(1)=\lim _{n \rightarrow \infty} \frac{\log 3-1^{2 n} \sin 1}{1^{2 n}+1}=\frac{\log 3-\sin 1}{2}$
$f\left(1^{+}\right)=\lim _{h \rightarrow 0} \lim _{n \rightarrow \infty} \frac{\log (3+h)-(1+h)^{2 n}-\sin (1+h)}{(1+h)^{2 n}+1}=-\sin 1$
$f\left(1^{-}\right)=\lim _{h \rightarrow 0} \lim _{n \rightarrow \infty} \frac{\log (3+h)-(1-h)^{2 n}-\sin (1+h)}{(1-h)^{2 n}+1}=\log 3$
discontinous at $\mathrm{x}=1$
11. $f(0)=0$
$f\left(0^{+}\right)=\lim _{h \rightarrow 0} \frac{h}{h+1}+\frac{h}{(h+1)(2 h+1)}+$

$$
\frac{h}{(2 h+1)(3 h+1)}+
$$

\qquad ..∞

$$
=\lim _{h \rightarrow 0}\left\{1-\frac{1}{\mathrm{~h}+1}+\frac{1}{(\mathrm{~h}+1)}-\frac{1}{2 \mathrm{~h}+1}+\frac{1}{2 \mathrm{~h}+1}-\frac{1}{3 \mathrm{~h}+1}+\ldots \ldots \ldots \ldots\right.
$$

$\mathrm{f}(\mathrm{x})$ is not continous at $\mathrm{x}=0$
since $\mathrm{f}(0) \neq \mathrm{f}\left(0^{+}\right)$
12. f is continuous in $-1 \leq \mathrm{x} \leq 1$
13. (A) $-2,2,3$
(B) $\mathrm{K}=5$
(C) even
$f(x)=(x+2)(x-2)(x-3)$
$h(x)=\left\{\begin{array}{ll}(x+2)(x-2), & x \neq 3 \\ k & , x=3\end{array}\right.$ for continuity
14. Since g is onto continuous function so by reference of intermediate value theorem we get required result.
$k=\lim _{x \rightarrow 3} h(x)=5$
$\mathrm{h}(\mathrm{x})=(\mathrm{x}+2)(\mathrm{x}-2)=\mathrm{x}^{2}-4$ which is even $\forall \mathrm{x} \in \mathrm{R}$
15. $\mathrm{A}=-4, \mathrm{~B}=5, \mathrm{f}(0)=1$

$$
\begin{aligned}
& f(x)=\lim _{x \rightarrow 0} \frac{\sin 3 x+A \sin 2 x+B \sin x}{x^{5}} \\
& =\lim _{x \rightarrow 0} \frac{\sin x}{x}\left(\frac{3-4 \sin ^{2} x+2 A \cos x+B}{x^{4}}\right) \\
& =\lim _{x \rightarrow 0} \frac{1+2 \cos 2 x+2 A \cos x+B}{x^{4}}
\end{aligned}
$$

$$
=\lim _{x \rightarrow 0} \frac{1}{x^{4}}\left(1+2\left(1-\frac{(2 x)^{2}}{2!}+\frac{(2 x)^{4}}{4!}+\ldots\right)+2 A\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots\right)+B\right)
$$

$$
=\lim _{x \rightarrow 0} \frac{1}{x^{4}}\left(3+2 A+B+x^{2}(-4-A)+x^{4}\left(\frac{4}{3}+\frac{A}{12}\right)+\ldots\right)
$$

$$
\Rightarrow 2 \mathrm{~A}+\mathrm{B}+3=0 \text { and }-4-\mathrm{A}=0
$$

$$
\Rightarrow \quad \mathrm{A}=-4, \mathrm{~B}=5
$$

$$
\text { and } f(0)=1
$$

16. $k=0 \cdot g(x)=\left[\ln (\tan x) \quad\right.$ if $\quad 0<x<\frac{\pi}{4}$
17. $\mathrm{k}=0 ; \mathrm{g}(\mathrm{x})=\left[\begin{array}{cc} \\ 0 & \text { if } \frac{\pi}{4} \leq \mathrm{x}<\frac{\pi}{2}\end{array}\right.$.

Hence $\mathrm{g}(\mathrm{x})$ is continuous everywhere.

$$
\begin{aligned}
& f(x)=\sum_{r=1}^{n} \frac{\sin \left(\frac{x}{2^{r}}\right)}{\cos \left(\frac{x}{2^{r}}\right) \cos \left(\frac{x}{2^{r-1}}\right)}=\sum_{r=1}^{n} \frac{\sin \left(\frac{x}{2^{r-1}}-\frac{x}{2^{r}}\right)}{\cos \left(\frac{x}{2^{r}}\right) \cos \left(\frac{x}{2^{r-1}}\right)} \\
& =\sum_{r=1}^{\mathrm{n}}\left(\tan \left(\frac{\mathrm{x}}{2^{r-1}}\right)-\tan \left(\frac{\mathrm{x}}{2^{r}}\right)\right) \\
& =\tan \mathrm{x}-\tan \frac{\mathrm{x}}{2}+\tan \frac{\mathrm{x}}{2}-\tan \frac{\mathrm{x}}{4}+\ldots-\tan \left(\frac{\mathrm{x}}{2^{n}}\right) \\
& \mathrm{f}(\mathrm{x})=\tan \mathrm{x}-\tan \left(\frac{\mathrm{x}}{2^{n}}\right) \\
& \text { Now } \mathrm{g}(\mathrm{x})=\lim _{\mathrm{n} \rightarrow \infty} \frac{\ell \mathrm{ln} \tan \mathrm{x}-(\tan \mathrm{x})^{\mathrm{n}}\left[\sin \left(\tan \frac{\mathrm{x}}{2}\right)\right]}{1+(\tan \mathrm{x})^{\mathrm{n}}} \\
& \mathrm{~g}(\mathrm{x})=\left[\quad \ln (\tan \mathrm{x}) \quad \text { when } \mathrm{x}<\frac{\pi}{4}\right. \\
& -\left[\sin \left(\tan \frac{\mathrm{x}}{2}\right)\right] \quad \text { when } \quad \mathrm{x}>\frac{\pi}{4} \\
& \mathrm{~g}\left(\frac{\pi}{4}-\mathrm{h}\right)=\lim _{\mathrm{h} \rightarrow 0} \ln \left(\tan \left(\frac{\pi}{4}-\mathrm{h}\right)\right)=\ln 1=0 \\
& \Rightarrow \mathrm{~K}=0 \quad \text { and } \mathrm{g}(\mathrm{x}) \text { is continuous in }\left(0, \frac{\pi}{2}\right)
\end{aligned}
$$

17. (i) $x \in R-\{2,3\}$
(ii) $\mathrm{x} \in \mathrm{R}-\{-1,1\}$
(iii) $x \in R$
(iv) $\mathrm{x} \in \mathrm{R}-\{(2 \mathrm{n}+1), \mathrm{n} \in \mathrm{I}\}$
18. (i) continuous every where in its domain
(ii) continuous every where in its domain
19. $\mathrm{a}=\mathrm{e}^{-1}$
20. discontinuous at all integral values in $[-2,2]$
21. continuous every where except at $x=0$
22. The function f is continuous everywhere in [0, 2] except for $\mathrm{x}=0,1 / 2,1 \& 2$
$f(x)=\left\{\begin{array}{ccc}1 & , & x=0 \\ 0 & , & 0<x \leq 1 / 2 \\ -1 & , & 1 / 2<x \leq 1 \\ 5-4 x & , & 1<x<5 / 4 \\ 4 x-5 & , & 5 / 4 \leq x<2 \\ 6 & , & x=2\end{array}\right.$

$f(x)$ is discontinous at $x=0,1 / 2,1,2$ in $[0,2]$
23. $y_{n}(x)$ is continuous at $x=0$ for all n and $y(x)$ is discontinuous at $\mathrm{x}=0$
$y_{n}(x)=x^{2} \frac{\left(\frac{1}{\left(1+x^{2}\right)^{n}}-1\right)}{\frac{1}{1+x^{2}}-1}$
$=\left(1+x^{2}\right)\left(1-\frac{1}{\left(1+x^{2}\right)^{n}}\right) \quad$ when $x \neq 0, n \in \mathrm{~N}=0$
when $x=0, n \in N$
$y(x)=\lim _{n \rightarrow \infty} y_{n}(x)=\left[\begin{array}{cc}1+x^{2} & x \neq 0 \\ 0 & x=0\end{array}\right.$
so $y(x)$ is discontinuous at $x=0$
24. discontinuous at $\mathrm{n} \pi \pm \frac{\pi}{4},(2 \mathrm{n}+1) \frac{\pi}{2}, \mathrm{n} \in \mathrm{I}$
25. $A=1 ; f(2)=1 / 2$
26. $g(x)=2+x ; 0 \leq x \leq 1$,

$$
\begin{aligned}
& =2-x ; 1<x \leq 2, \\
& =4-x ; 2<x \leq 3,
\end{aligned}
$$

g is discontinuous at $\mathrm{x}=1 \& \mathrm{x}=2$
29. $-\frac{7}{3},-2,0$

$$
\mathrm{u}=\frac{1}{\mathrm{x}+2} \text { is discontinuous at } \mathrm{x}=-2
$$

$f(u)=\frac{3}{2 u^{2}+5 u-3}=\frac{3}{2 u^{2}+6 u-u-3}=\frac{3}{(2 u-1)(u+3)}$ is
discontinuous at $u=\frac{1}{2} \quad \& \quad-3$

$$
\begin{aligned}
& \therefore \quad \frac{1}{x+2}=\frac{1}{2} \quad \text { and } \quad \frac{1}{x+2}=-3 \\
& \Rightarrow \quad \mathrm{x}=0 \quad \text { and } \quad \mathrm{x}=-\frac{7}{3}
\end{aligned}
$$

Hence $\mathrm{y}=\mathrm{f}(\mathrm{u})$ is discontinous at $\mathrm{x}=-\frac{7}{3},-2,0$

EXERCISE - 5

Part \# I : AIECE/JEE-MAIN

2. $\mathrm{f}(\mathrm{x})=\left\{\left.\begin{array}{c}\mathrm{x} e^{-\left(\frac{1}{|\mathrm{x}|}+\frac{1}{\mathrm{x}}\right)}, \mathrm{x} \neq 0 \\ 0,\end{array} \quad \therefore \right\rvert\, \mathrm{x}=0.0 \begin{cases}\mathrm{x}, & \mathrm{x} \geq 0 \\ -\mathrm{x}, \mathrm{x}<0\end{cases}\right.$

$$
\text { so } f(x)=\left\{\begin{array}{cc}
x e^{-2 / x} & , x>0 \\
x & , x<0 \\
0 & , x=0
\end{array}\right.
$$

(I) continuous at $\mathrm{x}=0$
$\begin{array}{ll}\lim _{h \rightarrow 0} f(0+h)=\lim _{h \rightarrow 0} f(0-h)=f(0) \\ \lim _{h \rightarrow 0} f(0+h)=\lim _{h \rightarrow 0} h \times e^{-2 / h}=0 & \\ \lim _{h \rightarrow 0} f(0-h)=\lim _{h \rightarrow 0}=0 & f(0)=0\end{array}$
$f(x)$ is continuous at $x=0$ or $f(x)$ is continuous for all x
(III) differentiability at $\mathrm{x}=0$
L.H.D. $=\operatorname{Lf}(0)=\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{-h}=\frac{-h-0}{-h}=1$
R.H.D. $\operatorname{Rf}^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}$
$\Rightarrow \frac{\mathrm{h} \times \mathrm{e}^{-2 / \mathrm{h}}-0}{\mathrm{~h}}=\mathrm{e}^{-2 \mathrm{~h}}=0$
$\mathrm{Lf}^{\prime}(0) \neq \mathrm{Rf}^{\prime}(0)$
$f(x)$ is not differentiable at $x=0$
So that $f(x)$ is cont at $x=0$ but not differentiable at $x=0$
3. $\mathrm{f}(\mathrm{x})=\frac{1-\tan \mathrm{x}}{4 \mathrm{x}-\pi} \quad \mathrm{x} \neq \pi / 4 \quad \mathrm{x} \in[0, \pi / 2]$
$f(x)$ is continuous at $x \in[0, \pi / 2]$
So at $\mathrm{x}=\pi / 4$

$$
\lim _{\mathrm{h} \rightarrow 0} \mathrm{f}\left(\frac{\pi}{4}+\mathrm{h}\right)=\lim _{\mathrm{h} \rightarrow 0} \mathrm{f}\left(\frac{\pi}{4}-\mathrm{h}\right)=\mathrm{f}\left(\frac{\pi}{4}\right)
$$

So $\lim _{h \rightarrow 0} f\left(\frac{\pi}{4}+h\right)=f\left(\frac{\pi}{4}\right)$
$\lim _{h \rightarrow 0} f\left(\frac{\pi}{4}+h\right)=\frac{1-\tan x}{4 x-\pi}$
$=\lim _{h \rightarrow 0} \frac{1-\tan \left(\frac{\pi}{4}+h\right)}{4\left(\frac{\pi}{4}+h\right)-\pi}$

$$
\begin{aligned}
& =\lim _{\mathrm{h} \rightarrow 0} \frac{1-\left(\frac{\tan \frac{\pi}{4}+\tanh }{1-\tan \frac{\pi}{4} \tanh }\right)}{\pi+4 \mathrm{~h}-\pi} \\
& =\lim _{\mathrm{h} \rightarrow 0} \frac{1-\tanh -1-\tanh }{(1-\tanh) \times 4 \mathrm{~h}} \\
& =\lim _{\mathrm{h} \rightarrow 0} \frac{-2}{4}\left(\frac{\tanh }{\mathrm{~h}}\right)=-\frac{1}{2} \\
& \lim _{\mathrm{h} \rightarrow 0} \mathrm{f}\left(\frac{\pi}{4}+\mathrm{h}\right)=-\frac{1}{2}=\mathrm{f}\left(\frac{\pi}{4}\right) \\
& \mathrm{f}\left(\frac{\pi}{4}\right)=-\frac{1}{2}
\end{aligned}
$$

4. $\mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{x}}-\frac{2}{e^{2 \mathrm{x}}-1}$ can be continuous at $\mathrm{x}=0$

So $\lim _{h \rightarrow 0} f(0+h)=\lim _{h \rightarrow 0} f(0-h)=f(0)$
$\lim _{h \rightarrow 0} f(0+h)=\frac{1}{x}-\frac{2}{e^{2 x}-1}$
$\lim _{h \rightarrow 0} \frac{1}{h}-\frac{2}{e^{2 h}-1}$
$\lim _{h \rightarrow 0} \frac{\left(e^{2 h}-1\right)-2 h}{h \times\left(e^{2 h}-1\right)}=\frac{0}{0}$ form
$\lim _{\mathrm{h} \rightarrow 0} \frac{e^{2 \mathrm{~h}} \times 2-0-2}{\mathrm{~h} \times \mathrm{e}^{2 \mathrm{~h}} \times 2+e^{2 \mathrm{~h}}-1}=\frac{0}{0}$ form
$\lim _{\mathrm{h} \rightarrow 0} \frac{2 \times 2 e^{2 \mathrm{~h}}}{2 e^{2 \mathrm{~h}}+\mathrm{h} \times e^{2 \mathrm{~h}} \times 2 \times 2+e^{2 \mathrm{~h}} \times 2}=\frac{4}{4}=1$
$\mathrm{f}(0)=1$
5. $L H L=\lim _{x \rightarrow 0} \frac{\sin (p+1) x}{x}+\frac{\sin x}{x}$

$$
=(\mathrm{p}+1)+1=\mathrm{p}+2
$$

$$
\begin{equation*}
\mathrm{LHL}=\mathrm{f}(0) \Rightarrow \mathrm{p}+2=\mathrm{q} \tag{i}
\end{equation*}
$$

$$
\begin{aligned}
& \text { RHL }=\lim _{x \rightarrow 0} \frac{x^{2}}{x^{3 / 2}\left(\sqrt{x+x^{2}}+\sqrt{x}\right)}=\frac{1}{2} \\
& p+2=q=\frac{1}{2} \Rightarrow q=\frac{1}{2}, p=\frac{-3}{2}
\end{aligned}
$$

6. $f_{1}(\mathrm{x})=\mathrm{x} ; \mathrm{x} \in \mathrm{R}$ is continuous.
$f_{2}(x)=\left\{\begin{array}{cc}\sin \left(\frac{1}{x}\right) & ; \\ 0 \neq 0 \\ 0 & ; x=0\end{array}\right.$
$\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$ does not exist
$\therefore \quad f_{2}(\mathrm{x})$ is discontinuous on R .
Now, $f(x)=\left\{\begin{array}{cc}f_{1}(\mathrm{x}) . f_{2}(\mathrm{x}) & ; \mathrm{x} \neq 0 \\ 0 & ; \mathrm{x}=0\end{array}\right.$
$\Rightarrow \quad \lim _{\mathrm{x} \rightarrow 0} f_{1}(\mathrm{x}) \cdot f_{2}(\mathrm{x})=\lim _{\mathrm{x} \rightarrow 0} \mathrm{x} \cdot \sin \left(\frac{1}{\mathrm{x}}\right)$

$$
=\lim _{x \rightarrow 0} \frac{\sin \left(\frac{1}{x}\right)}{\left(\frac{1}{x}\right)}=0=f(0)
$$

$\therefore \quad f(\mathrm{x})$ is continuous on R
\therefore Statement-1 is true, statement-2 is false.
7. $f(x)=|x-2|+|x-5| ; x \in R$
$f(x)$ is continuous in $[2,5]$ and differentiable is $(2,5)$ and $f(2)=f(5)=3$.
$\therefore \quad$ By Rolle's theorem $\mathrm{f}^{\prime}(\mathrm{x})=0$ for at least one $\mathrm{x} \in(2,5)$.
$f^{\prime}(x)=\frac{|x-2|}{x-2}+\frac{|x-5|}{x-5}$
$\mathrm{f}^{\prime}(4)=0 \quad$ but $\quad \mathrm{f}^{\prime}(\mathrm{x})=0 \forall \mathrm{x} \in(2,5)$

Part \# II : IIT-JEE ADVANCED

2. For f to be continuous :
$f\left(2 \mathrm{n}^{-}\right)=f\left(2 \mathrm{n}^{+}\right)$.
$\Rightarrow b_{n}+\cos 2 \mathrm{n} \pi=\mathrm{a}_{\mathrm{n}}+\sin 2 \mathrm{n} \pi$
$\Rightarrow b_{n}+1=a_{n} \quad \Rightarrow a_{n}-b_{n}=1$
($\therefore \mathrm{B}$ is correct)
Also $f(x)=\left[\begin{array}{ll}b_{n}+\cos \pi x & (2 n-1,2 n) \\ a_{n}+\sin \pi x & {[2 n, 2 n+1]} \\ b_{n+1}+\cos \pi x & (2 n+1,2 n+2) \\ a_{n}+\sin \pi x & {[2 n+2,2 n+3]}\end{array}\right.$
Again $f\left((2 \mathrm{n}+1)^{-}\right)=f\left((2 \mathrm{n}+1)^{+}\right)$
$\Rightarrow a_{n}=b_{n+1}-1 \quad \Rightarrow a_{n}-b_{n+1}=-1$
$\Rightarrow \mathrm{a}_{\mathrm{n}-1}-\mathrm{b}_{\mathrm{n}}=-1 \quad(\therefore \mathrm{D}$ is correct $)$

MOCK TEST

1. $\lim _{x \rightarrow 0} \frac{\left(a^{2}-a x+x^{2}-a^{2}-a x-x^{2}\right)}{(a+x-a+x)}$

$$
\times \frac{(\sqrt{a+x}+\sqrt{a-x})}{\left(\sqrt{a^{2}-a x+x^{2}}+\sqrt{a^{2}+a x+x^{2}}\right.}
$$

$=\lim _{x \rightarrow 0}-\frac{2 a x}{2 x}\left(\frac{\sqrt{a+x}+\sqrt{a-x}}{\sqrt{a^{2}-a x+x^{2}}+\sqrt{a^{2}+a x+x^{2}}}\right)$
$=-\frac{\sqrt{\mathrm{a}}}{\mathrm{a}}=-\sqrt{\mathrm{a}}$
2. (A)
$\mathrm{f}(\mathrm{x})=[\mathrm{x}](\sin \mathrm{kx})^{\mathrm{p}}$
$(\sin k x)^{\mathrm{p}}$ is continuous and differentiable function $\forall \mathrm{x} \in \mathrm{R}, \mathrm{k} \in \mathrm{R}$ and $\mathrm{p}>0$.
[x] is discoutinuous at $\mathrm{x} \in \mathrm{I}$
For $\mathrm{k}=\mathrm{n} \pi, \mathrm{n} \in \mathrm{I}$
$\mathrm{f}(\mathrm{x})=[\mathrm{x}](\sin (\mathrm{n} \pi \mathrm{x}))^{\mathrm{p}}$
$\lim _{x \rightarrow a} f(x)=0, a \in I$
and $\mathrm{f}(\mathrm{a})=0$
So $f(x)$ becomes coutinuous for all $x \in R$
3. R.H.L $=\operatorname{Lim}_{h \rightarrow 0^{+}} f\left(\frac{\pi}{2}+h\right)=\operatorname{Lim}_{h \rightarrow 0^{+}} \frac{\sin (1-\sinh)}{h} \rightarrow \infty$
$\because \quad$ L.H.L $=\operatorname{Lim}_{h \rightarrow 0^{+}} f\left(\frac{\pi}{2}-h\right)=\operatorname{Lim}_{h \rightarrow 0^{+}} \frac{\sin (\sinh)}{-h}$
$=\operatorname{Lim}_{h \rightarrow 0^{+}}\left(\frac{\sin (\sinh)}{\sinh } \times \frac{\sinh }{-h}\right)=1 \times-1=-1$
$\therefore \quad$ L.H.L \neq R.H.L
4. (B)

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \frac{e^{e / x}-e^{-e / x}}{e^{1 / x}+e^{-1 / x}}=\lim _{x \rightarrow 0^{+}} \frac{e^{\frac{e-1}{e x}}\left(1-e^{-2 e / x}\right)}{\left(1+e^{-2 / x}\right)}=+\infty \\
& \lim _{x \rightarrow 0^{-}} \frac{e^{e / x}-e^{-e / x}}{e^{1 / x}+e^{-1 / x}}=\lim _{x \rightarrow 0^{-}} \frac{e^{-e / x}\left(e^{2 e / x}-1\right)}{e^{-e / x}\left(e^{+2 / x}+1\right)} \\
& \quad=\lim _{x \rightarrow 0^{-}} e^{-\left(\frac{e-1}{x}\right)}\left(\frac{e^{2 e / x}-1}{e^{2 / x}+1}\right)=-\infty
\end{aligned}
$$

limit doesn't exist So $f(x)$ is discoutinous
5. $\because \quad$ L.H.L. $=\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{e^{[x]+|x|}-2}{[x]+|x|}=\frac{e^{-1}-2}{-1}$
and R.H.L $=\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{e^{[x]+|x|}-2}{[x]+|x|}$
$=\lim _{x \rightarrow 0^{+}} \frac{\mathrm{e}^{\mathrm{x}}-2}{\mathrm{x}} \rightarrow-\infty \quad \therefore \quad$ L.H.L \neq R.H.L
\therefore (D)
6. (C)
$\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} x=a, x \in Q$
$\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a}(-x)=-a, x \in R \sim Q$
Limit exists $\Leftrightarrow \mathrm{a}=0$
7. $\mathrm{f}(\mathrm{x})=\left[\sqrt{2} \sin \left(\mathrm{x}+\frac{\pi}{4}\right)\right]$
discontinuity may arise at the points where
$\sin \left(x+\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}, \sin \left(x+\frac{\pi}{4}\right)=-\frac{1}{\sqrt{2}}$
and $\sin \left(x+\frac{\pi}{4}\right)=0$
$\mathrm{x}=\frac{\pi}{2} ; \mathrm{x}=\frac{\pi}{2}, \frac{3 \pi}{2} ; \mathrm{x}=\frac{3 \pi}{4}, \frac{7 \pi}{4}$ five points
\therefore (B)
8. (B)
$\mathrm{f}(\mathrm{g}(\mathrm{x}))=\left\{\begin{array}{ccc}1 & , & \mathrm{x}<-1 \\ 0 & , & \mathrm{x}=-1 \\ -1 & , & -1<\mathrm{x}<0 \\ 0 & , & \mathrm{x}=0 \\ 1 & , & 0<\mathrm{x}<1 \\ 0 & , & \mathrm{x}=1 \\ -1 & , & x>1\end{array}\right.$
\therefore points of discontinuity are $\mathrm{x}=-1,0,1$
9. $\lim _{x \rightarrow 0^{+}} x^{2}\left[\frac{1}{x^{2}}\right]=\lim _{x \rightarrow 0^{+}} x^{2}\left(\frac{1}{x^{2}}-\left\{\frac{1}{x^{2}}\right\}\right)$
$\Rightarrow \lim _{x \rightarrow 0^{+}}\left(1 \rightarrow x^{2}\left\{\frac{1}{x^{2}}\right\}\right)=0$
similarly $\lim _{x \rightarrow 0^{-}} f(x)=1$
\therefore (C)
10. (C)
S_{1} : False $(\operatorname{take} f(x)=0, x \in R$
S_{2} : Domain of $f(x)$ is $\{2\}$
$\therefore f(x)$ is not continuous at $x=2$
$S_{3}: e^{-|x|}$ not differentiable at $x=0$
S_{4} : Derivative of $|f|^{2}$ is 0 where ever $f(x)$ is 0 and the derivative of $|f|^{2}$ is $2|f(x)| \cdot \frac{f(x)}{|f(x)|}=2 f(x)$ where ever $\mathrm{f}(\mathrm{x}) \neq 0$
12. (B, D)
(A) $\lim _{x \rightarrow 1} f(x)$ does not exist
(B) $\lim _{x \rightarrow 1} f(x)=\frac{2}{3}$
$\therefore \quad \mathrm{f}(\mathrm{x})$ has removable discontinuity at $\mathrm{x}=1$
(C) $\lim _{x \rightarrow 1} f(x)$ does not exist
(D) $\lim _{x \rightarrow 1} f(x)=\frac{-1}{2 \sqrt{2}}$
$\therefore \mathrm{f}(\mathrm{x})$ has removable discontinuity at $\mathrm{x}=1$
13. $\lim _{x \rightarrow 0^{+}}(x+1) e^{-[2 / x]}=\lim _{x \rightarrow 0^{+}} \frac{x+1}{e^{2 / x}}=\frac{1}{e^{\infty}}=0$
$\lim _{x \rightarrow 0^{-}}(x+1) \mathrm{e}^{-\left(-\frac{1}{x}+\frac{1}{x}\right)}=1$
Hence continuous for $\mathrm{x} \in \mathrm{I}-\{0\}$
14. (A) $f(x)$ is continuous no where
(B) $g(x)$ is continuous at $x=1 / 2$
(C) $h(x)$ is continuous at $x=0$
(D) $k(x)$ is continuous at $x=0$
15. $\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1^{+}} b\left([x]^{2}+[x]\right)+1$
$=\lim _{h \rightarrow 0} b\left([-1+h]^{2}+[-1+h]\right)+1$
$=\mathrm{b}\left((-1)^{2}-1\right)+1=1 \Rightarrow \mathrm{~b} \in \mathrm{R}$
$\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{-}} \sin (\pi(x+a))$
$=\lim _{\mathrm{h} \rightarrow 0} \sin (\pi(-1-\mathrm{h}+\mathrm{a}))=-\sin \pi \mathrm{a}$
$\sin \pi \mathrm{a}=-1$
$\pi \mathrm{a}=2 \mathrm{n} \pi+\frac{3 \pi}{2} \Rightarrow \mathrm{a}=2 \mathrm{n}+\frac{3}{2}$
Also option (C) is subset of option (A)
17. (A)
$\lim _{x \rightarrow 0^{+}}(\sin x+[x])=0$
$\lim _{x \rightarrow 0^{-}}(\sin x+[x])=-1$
Limit doesn't exist

$$
\lim _{x \rightarrow a}(f(x)+h(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} h(x)
$$

$$
\neq \mathrm{f}(\mathrm{a})+\mathrm{h}(\mathrm{a})
$$

$\therefore \quad \mathrm{f}(\mathrm{x})+\mathrm{h}(\mathrm{x})$ is discontinuous function
19. (A)

Statement-II : [C \& D]

$$
\begin{aligned}
\mathrm{f}\left(\lim _{x \rightarrow \mathrm{a}} \mathrm{~g}(\mathrm{x})\right) & =\mathrm{f}(\mathrm{~b})=\lim _{\mathrm{x} \rightarrow \mathrm{~b}} \mathrm{f}(\mathrm{x})=\lim _{\mathrm{g}(\mathrm{x}) \rightarrow \mathrm{b}} \mathrm{f}(\mathrm{~g}(\mathrm{x})) \\
& =\lim _{\mathrm{x} \rightarrow \mathrm{a}} \mathrm{f}(\mathrm{~g}(\mathrm{x}))
\end{aligned}
$$

$\therefore \quad \lim _{x \rightarrow \mathrm{a}} \mathrm{f}(\mathrm{g}(\mathrm{x}))=\mathrm{f}\left(\lim _{\mathrm{x} \rightarrow \mathrm{a}} \mathrm{g}(\mathrm{x})\right)$
\therefore Statement is true
Statement-I :
Since f is continuous on R
and $f(x)=f\left(\frac{x}{3}\right)=f\left(\frac{x}{3^{2}}\right) \ldots \ldots=f\left(\frac{x}{3^{n}}\right)$
and $\lim _{n \rightarrow \infty} \frac{x}{3^{n}}=0$
$\therefore \quad \lim _{n \rightarrow \infty} f(x)=\lim _{n \rightarrow \infty} f\left(\frac{x}{3^{n}}\right)=f\left(\lim _{x \rightarrow 0} \frac{x}{3^{n}}\right)=f(0)$
$\therefore \mathrm{f}$ is a constant function
\therefore Statement is true
22. (A) $f(x)=\frac{\tan \left(\frac{\pi}{4}-x\right)}{\cos 2 x},(x \neq \pi / 4)$, is continuous at $x=\pi / 4$.

Therefore, $\mathrm{f}\left(\frac{\pi}{4}\right)=\lim _{\mathrm{x} \rightarrow \frac{\pi}{4}} \mathrm{f}(\mathrm{x})$

$$
=\lim _{x \rightarrow \frac{\pi}{4}} \frac{\tan \left(\frac{\pi}{4}-x\right)}{\cot 2 x}
$$

Now, by appliying L'Hospital rule,

$$
\lim _{x \rightarrow \frac{\pi}{4}} \frac{-\sec ^{2}\left(\frac{\pi}{4}-x\right)}{-2 \operatorname{cosec}^{2}(2 x)}=\frac{1}{2}
$$

(B) We have,

$$
\begin{aligned}
& \text { LHL }=\lim _{h \rightarrow 4^{-}} f(x) \\
&=\lim _{h \rightarrow 0} f(4-h) \\
&=\lim _{h \rightarrow 0} \frac{4-h-4}{|4-h-4|}+a \\
&=\lim _{h \rightarrow 0}\left(-\frac{h}{h}+a\right)=a-1 \\
& \text { RHL }=\lim _{x \rightarrow 4^{+}} f(x) \\
&=\lim _{h \rightarrow 0} f(4+h) \\
&=\lim _{h \rightarrow 0} \frac{4+h-4}{|4+h-4|}+b=b+1 \\
& \therefore \quad f(4)=a+b
\end{aligned}
$$

Since $f(x)$ is continuous at $x=4$.
$\lim _{x \rightarrow 4^{-}} f(x)=f(4)=\lim _{x \rightarrow 4^{+}} f(x)$
or $\mathrm{a}-1=\mathrm{a}+\mathrm{b}=\mathrm{b}+1$ or $\mathrm{b}=-1$ and $\mathrm{a}=1$
(C) $\lim _{x \rightarrow 0} \frac{x-e^{x}+1-(1-\cos 2 x)}{x^{2}}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0}\left[\frac{x-e^{x}+1}{x^{2}}-\frac{(1-\cos 2 x)}{x^{2}}\right] \\
& =\lim _{x \rightarrow 0}\left[\frac{x+1-\left(1+x+\frac{x^{2}}{2}\right)}{x^{2}}-\frac{2 \sin ^{2} x}{x^{2}}\right]
\end{aligned}
$$

(using expansion of e^{x})
$=-\frac{1}{2}-2=-\frac{5}{2}$
Hence, for continuity, $\mathrm{f}(0)=-\frac{5}{2}$
Now, $\quad[\mathrm{f}(0)]=-3 ;\{\mathrm{f}(0)\}=\left\{-\frac{5}{2}\right\}=\frac{1}{2}$
Hence, $[\mathrm{f}(0)]\{\mathrm{f}(0)\}=-\frac{3}{2}=-1.5$.
(D) $f(x)$ is discontinuous at $x=1$ and $x=2$.

Therefore, $f(f(x))$ may be discontinuous when $f(x)=1$ or 2. Now,

$$
\begin{array}{ll}
1-x=1 & \Rightarrow x=0, \text { where } f(x) \text { is continuous } \\
x+2=1 & \Rightarrow x=-1 \notin(1,2) \\
4-x=1 & \Rightarrow x=3 \in[2,4]
\end{array}
$$

Now,

$$
\begin{array}{ll}
1-x=2 & \Rightarrow x=-1 \notin[0,1] \\
x+2=2 & \Rightarrow x=0 \notin(1,2] \\
4-x=2 & \Rightarrow x=2 \in[2,4]
\end{array}
$$

Hence, $f(f(x))$ is discontinuous at $x=2,3$.
23. $F(x)=\lim _{n \rightarrow \infty} \frac{f(x)+x^{2 n} g(x)}{1+x^{2 n}}$

$$
\begin{aligned}
& =\left\{\begin{array}{cc}
f(x), & 0 \leq x^{2}<1 \\
\frac{f(x)+g(x)}{2}, & x^{2}=1 \\
g(x), & x^{2}>1
\end{array}\right. \\
& =\left\{\begin{array}{cc}
g(x), & x<-1 \\
\frac{f(-1)+g(-1)}{2}, & x=-1 \\
\frac{f(x),}{} & -1<x<1
\end{array}\right. \\
& \frac{f(1)+g(1)}{2},
\end{aligned}
$$

If $F(x)$ is continuous $\forall x \in R, F(x)$ must be made continuous at $\mathrm{x}= \pm 1$.
For continuity at $x=-1$
$f(-1)=g(-1)$ or $1-a+3=b-1$ or $a+b=5$
For continuity at $\mathrm{x}=1$,
$f(1)=g(1)$ or $1+a+3=1+b$ or $a-b=-3$
Solving equation (i) and (ii), we get $\mathrm{a}=1$ and $\mathrm{b}=4$.
$f(x)=g(x) \Rightarrow x^{2}+x+3=x+4$ or $x= \pm 1$.
24.

1. (D)

If $f(x)=\left\{\begin{array}{cc}x+2.7 & , \quad x<0 \\ 2.9, & x=0 \\ 2 x+3 & , x>0\end{array}\right.$
and $g(x)=\left\{\begin{array}{ccc}3 x+3 & , & x<0 \\ 2.8 & , & x=0 \\ -x^{2}+2.7 & , & x>0\end{array}\right.$
then $\lim _{x \rightarrow 0^{-}} f(x)=2.7, \lim _{x \rightarrow 0^{+}} f(x)=3$
$\therefore \quad|3-2.7|=0.3<1$ and $f(0)=2.9$ lies in $(2.7,3)$
$\therefore \mathrm{f}(\mathrm{x})$ is continuous under the system S_{2} $g(x)$ is also continuous under the system S_{2} under system S_{1}, since $\lim _{x \rightarrow 0} f(x)$ does not exist
$\therefore f(x)$ is not continuous
\therefore (i), (ii) and (iii) all are true
2. (D)

Let $\mathrm{f}(\mathrm{x})=\left[\begin{array}{ccc}\mathrm{x}+2.7 & , \quad \mathrm{x}<0 \\ 2.9 & , & x=0 \\ 2 \mathrm{x}+3 & , & \mathrm{x}>0\end{array}\right.$
and $g(x)=\left[\begin{array}{ccc}3 x+3 & , & x<0 \\ 2.9 & , & x=0 \\ -x^{2}+2.75 & , & x>0\end{array}\right.$
$\therefore \quad(\mathrm{f}+\mathrm{g})(\mathrm{x})=\left[\begin{array}{cc}4 \mathrm{x}+5.7 & , \quad \mathrm{x}<0 \\ 5.8 & , \quad \mathrm{x}=0 \\ 2 \mathrm{x}-\mathrm{x}^{2}+5.75 & , \quad \mathrm{x}>0\end{array}\right.$
$\therefore \quad \lim _{\mathrm{x} \rightarrow 0^{-}}(\mathrm{f}+\mathrm{g})(\mathrm{x})=5.7$ and $\lim _{\mathrm{x} \rightarrow 0^{+}}(\mathrm{f}+\mathrm{g})(\mathrm{x})=5.75$
$\therefore\left|\lim _{\mathrm{x} \rightarrow 0^{-}}(\mathrm{f}+\mathrm{g})-\lim _{\mathrm{x} \rightarrow 0^{+}}(\mathrm{f}+\mathrm{g})\right|=.05<1$ is satisfied
$\therefore \quad(\mathrm{f}+\mathrm{g})(0)=5.8$ which do not lie in $(5.7,5.75)$
$\therefore \quad \mathrm{f}+\mathrm{g}$ is not continuous
similarly we can show that $f-g$ and $f . g$ are not continuous under S_{2}.
3. (B)

A function continuous under system S_{2} may not be continuous under system S_{1}.
25. $\mathrm{f}(\mathrm{x})=$

$$
\left\{\begin{array}{cc}
{[\mathrm{x}],} & -2 \leq \mathrm{x} \leq-\frac{1}{2} \\
2 \mathrm{x}^{2}-1, & -\frac{1}{2}<\mathrm{x} \leq 2
\end{array}=\left\{\begin{array}{cc}
-2, & -2 \leq \mathrm{x}<-1 \\
-1, & -1 \leq \mathrm{x} \leq-\frac{1}{2} \\
2 \mathrm{x}^{2}-1, & -\frac{1}{2}<\mathrm{x} \leq 2
\end{array}\right.\right.
$$

$$
|\mathrm{f}(\mathrm{x})|=\left\{\begin{array}{cc}
2, & -2 \leq \mathrm{x}<-1 \\
1, & -1 \leq \mathrm{x} \leq-\frac{1}{2} \\
\left|2 \mathrm{x}^{2}-1\right|, & -\frac{1}{2}<\mathrm{x} \leq 2
\end{array}\right.
$$

$$
=\left\{\begin{array}{cc}
2, & -2 \leq x<-1 \\
1, & -1 \leq x \leq-\frac{1}{2} \\
1-2 x^{2}, & -\frac{1}{2}<x \leq \frac{1}{\sqrt{2}}
\end{array}\right.
$$

$$
2 \mathrm{x}^{2}-1, \quad \frac{1}{\sqrt{2}}<\mathrm{x} \leq 2
$$

$$
\mathrm{f}(|\mathrm{x}|)=\left\{\begin{array}{cc}
-2, & -2 \leq|\mathrm{x}|<-1 \\
-1, & -1 \leq|\mathrm{x}| \leq-\frac{1}{2}=2 \mathrm{x}^{2}-1,-2 \leq \mathrm{x} \leq 2 \\
2|\mathrm{x}|^{2}-1, & -\frac{1}{2}<|\mathrm{x}| \leq 2
\end{array}\right.
$$

$$
\therefore \mathrm{g}(\mathrm{x})=\mathrm{f}(|\mathrm{x}|)+|\mathrm{f}(\mathrm{x})|=\left\{\begin{array}{cc}
2 \mathrm{x}^{2}+1, & -2 \leq \mathrm{x}<-1 \\
2 \mathrm{x}^{2}, & -1 \leq \mathrm{x} \leq-\frac{1}{2} \\
0, & -\frac{1}{2}<\mathrm{x}<\frac{1}{\sqrt{2}}
\end{array}\right.
$$

$$
4 x^{2}-2, \quad \frac{1}{\sqrt{2}} \leq x \leq 2
$$

$g\left(-1^{-}\right)=\lim _{x \rightarrow-1}\left(2 x^{2}+1\right)=3, g\left(-1^{+}\right)=\lim _{x \rightarrow-1} 2 x^{2}=2$

$$
\begin{aligned}
& \mathrm{g}\left(-\frac{1^{-}}{2}\right)=\lim _{x \rightarrow \frac{1}{2}} 2 \mathrm{x}^{2}=\frac{1}{2}, \mathrm{~g}\left(-\frac{1}{2}^{+}\right)=\lim _{\mathrm{x} \rightarrow-\frac{1}{2}} 0=0 \\
& \mathrm{~g}\left(\frac{1}{\sqrt{2}}^{-}\right)=\lim _{\mathrm{x} \rightarrow \frac{1}{\sqrt{2}}} 0=0, \mathrm{~g}\left(\frac{1}{\sqrt{2}}^{+}\right)=\lim _{\mathrm{x} \rightarrow \frac{1}{\sqrt{2}}}\left(4 \mathrm{x}^{2}-2\right)=0
\end{aligned}
$$

Hence, $\mathrm{g}(\mathrm{x})$ is discontinuous at $\mathrm{x}=-1,-\frac{1}{2}$.
$\mathrm{g}(\mathrm{x})$ is continuous at $\mathrm{x}=\frac{1}{\sqrt{2}}$
Now, $\mathrm{g}^{\prime}\left(\frac{1}{\sqrt{2}}^{-}\right)=0, \mathrm{~g}^{\prime}\left(\frac{1}{\sqrt{2}}^{+}\right)=8\left(\frac{1}{\sqrt{2}}\right)=\frac{8}{\sqrt{2}}$
Hence, $\mathrm{g}(\mathrm{x})$ is non-differentiable at $\mathrm{x}=\frac{1}{\sqrt{2}}$.
26. $\lim _{\mathrm{x} \rightarrow 0^{-}} \frac{1-\mathrm{a}^{\mathrm{x}}+\mathrm{x} \cdot \mathrm{a}^{\mathrm{x}} \text { 梠 }}{\mathrm{x}^{2} \mathrm{a}^{\mathrm{x}}}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0^{-}} \frac{-\mathrm{a}^{\mathrm{x}} \ell n a+\ln \left(\mathrm{a}^{\mathrm{x}}+\mathrm{xa}^{\mathrm{x}} \ell n \mathrm{n}\right)}{\mathrm{x}^{2} \mathrm{a}^{\mathrm{x}} \ell n \mathrm{na}+2 \mathrm{x} \cdot \mathrm{a}^{\mathrm{x}}} \\
& =\lim _{\mathrm{x} \rightarrow 0^{-}} \frac{\mathrm{a}^{\mathrm{x}}(\ell \ln)^{2}}{\left(\mathrm{xa}^{\mathrm{x}} \ell n \mathrm{na}+2 \mathrm{a}^{\mathrm{x}}\right)}=\frac{(\ell \mathrm{na})^{2}}{2}
\end{aligned}
$$

$$
\lim _{x \rightarrow 0^{+}} \frac{(2 a)^{x}-x \ln 2 a-1}{x^{2}}
$$

$$
=\lim _{x \rightarrow 0^{+}} \frac{(2 a)^{x} \ln 2 a-\ln 2 a}{2 x}
$$

$$
=\lim _{x \rightarrow 0^{+}} \frac{(2 a)^{x}(\ln 2 a)^{2}}{2}=\frac{(\ln 2 a)^{2}}{2}
$$

for $g(x)$ to be continuous $(\ell n a)^{2}=(\ell n 2 a)^{2}$
$\Rightarrow \quad(\ell n a+\ln 2 a)=0$
$\Rightarrow \quad \mathrm{a}=\frac{1}{\sqrt{2}}$
$\therefore \quad g(0)=\frac{1}{8}(\ell \ln 2)^{2}$
27. \because R.H.L. $=\lim _{h \rightarrow 0^{+}} f(0+h)$

$$
=\frac{\cos ^{-1}\left(1-\{h\}^{2}\right) \sin ^{-1}(1-\{h\})}{\{h\}-\{h\}^{3}}
$$

$$
=\lim _{h \rightarrow 0^{+}} \frac{\cos ^{-1}\left(1-h^{2}\right)}{h} \cdot \lim _{h \rightarrow 0^{+}} \frac{\sin ^{-1}(1-h)}{1-h^{2}}
$$

(putting $\left.1-\mathrm{h}^{2}=\cos 2 \theta\right)=\left(\sin ^{-1} 1\right)$
$\lim _{\theta \rightarrow 0^{+}} \frac{\cos ^{-1}\left(1-2 \sin ^{2} \theta\right)}{\sqrt{2} \sin \theta}=\frac{\pi}{2 \sqrt{2}} \lim _{\theta \rightarrow 0^{+}} \frac{2 \theta}{\sin \theta}=\frac{\pi}{\sqrt{2}}$
$\because \quad$ L.H.L $=\lim _{h \rightarrow 0^{+}} f(0-h)$
$=\lim _{\mathrm{h} \rightarrow 0^{+}} \frac{\cos ^{-1}\left(1-\{-\mathrm{h}\}^{2}\right) \sin ^{-1}(1-\{-\mathrm{h}\})}{\{-\mathrm{h}\}-\{-\mathrm{h}\}^{3}}$
$=\lim _{h \rightarrow 0^{+}} \frac{\cos ^{-1}(h(2-h)) \sin ^{-1} h}{(1-h)(2-h) h}$
$=\lim _{h \rightarrow 0^{+}} \frac{\cos ^{-1}(h(2-h))}{(1-h)(2-h)} \lim _{h \rightarrow 0^{+}} \frac{\sin ^{-1} h}{h}$
$=\frac{\cos ^{-1} 0}{2}=\frac{\pi}{4}$
since R.H.L. \neq L.H.L
Therefore no value of $f(0)$ can make f continuous at $x=0$
29. As f is continuous on R , so $\mathrm{f}(0)=\operatorname{limit}_{\mathrm{x} \rightarrow 0} \mathrm{f}(\mathrm{x})$

Thus $f(0)=\operatorname{limit}_{n \rightarrow \infty} f\left(\frac{1}{4 n}\right)$
$=\operatorname{limit}_{n \rightarrow \infty}\left(\left(\sin e^{n}\right) e^{-n^{2}}+\frac{1}{1+\frac{1}{n^{2}}}\right)=0+1=1$
30. we have

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0^{+}}(\sin (-h)+\cos (-h))^{\operatorname{cosec}(-h)} \\
& =\lim _{h \rightarrow 0^{+}}(\cosh -\sinh)^{-\operatorname{cosech}}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{\mathrm{h} \rightarrow 0^{+}}\left(1+(\cosh -\sinh -1)^{\frac{1}{(\cosh -\sinh -1)} \cdot \frac{(\cosh -\sinh -1)}{(-\sinh)}}\right. \\
& =\lim _{\mathrm{h} \rightarrow 0^{+}} \mathrm{e}^{\frac{\cosh -\sinh -1}{-\sinh }}=\mathrm{e}
\end{aligned}
$$

Now we have

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} f(x) & =\lim _{h \rightarrow 0^{+}} \frac{e^{\frac{1}{h}}+e^{2 / h}+e^{3 / h}}{a e^{-2+1 / h}+b e^{-1+3 / h}} \\
& =\lim _{h \rightarrow 0^{+}} \frac{e^{-\frac{2}{h}}+e^{\frac{-1}{h}}+1}{\left(a e^{-2}\right) e^{-2 / h}+\left(b e^{-1}\right)}=\frac{e}{b}
\end{aligned}
$$

If ' f ' is continuous at $x=0$, then
$\mathrm{e}=\mathrm{a}=\frac{\mathrm{e}}{\mathrm{b}}$ gives $\mathrm{a}=\mathrm{e}$ and $\mathrm{b}=1$

