Limits and Derivatives

1. Limit

If x approches a i.e. $x \rightarrow a$, then $f(x)$ approaches / i.e. $f(x) \rightarrow l$, where l is a real number, then I is called limit of the function $f(x)$. In symbolic form, it can be written as $\lim _{x \rightarrow a} f(x)=1$.

2. Left Hand and Right Hand Limits

If values of the function at the point which are very near to a on the left tends to a definite unique number as x tends to a, then the unique number so obtained is called the Left Hand Limit (LHL) of $f(x)$ at $x=a$, we write it as

$$
f(a-0)=\lim _{x \rightarrow a^{-}} f(x)=\lim _{h \rightarrow 0} f(a-h)
$$

Similarly, Right Hand Limit (RHL) is

$$
f(a+0)=\lim _{x \rightarrow a^{+}} f(x)=\lim _{h \rightarrow 0} f(a+h)
$$

3. Existence of Limit

If the right hand limit and left hand limit coincide (i.e. same), then we say that limit exists and their common value is called the limit of $f(x)$ at $x=a$ and denoted it by $\lim _{x \rightarrow a} f(x)$.
4. Algebra of Limits

Let f and g be two functions such that both $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist, then
(i) $\lim _{x \rightarrow a}[f(x) \pm g(x)]=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)$
(ii) $\lim _{x \rightarrow a} k f(x)=k \lim _{x \rightarrow a} f(x)$
(iii) $\lim _{x \rightarrow a} f(x) \cdot g(x)=\lim _{x \rightarrow \mathrm{a}} f(x) \times \lim _{x \rightarrow \mathrm{a}} g(x)$
(iv) $\lim _{x \rightarrow \mathrm{a}} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow \mathrm{a}} f(x)}{\lim _{x \rightarrow \mathrm{a}} g(x)^{\prime}}$ where $\lim _{x \rightarrow \mathrm{a}} g(x) \neq 0$

5. Limits of a Polynomial Punction

A function f is said to be a polynomial function if $f(x)$ is zero function or if $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$, where a;'s are real number such that $a_{n} \neq 0$.
Then, limit of polynomial functions is

$$
\begin{aligned}
f(x) & =\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a}\left[a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}\right] \\
& =a_{0}+a_{1} a+a_{2} a^{2}+\ldots+a_{n} a^{n}=f(a)
\end{aligned}
$$

6. Limits of Rational Functions

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}=\frac{f(a)}{g(a)}
$$

(i) If $g(a)=0$ and $f(a) \neq 0$, then limit does not exist.
(ii) If $g(a)=0$ and $f(a)=0$, then we can find limit by using suitable method as direct substitution, factorisation. rationalisation method, etc.
7. Some Standard Limits
(i) $\lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{n-1}$
(ii) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
(iii) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0$
(iv) $\lim _{x \rightarrow 0} \frac{\tan x}{x}=1$
(v) $\lim _{x \rightarrow 0} \frac{a^{x}-1}{x}=\log _{e} a$
(vi) $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$
(vii) $\lim _{x \rightarrow 0} \frac{\log (1+x)}{x}=1$
(viii) $\lim _{x \rightarrow 0} \frac{\log (1-x)}{-x}=1$

8. Derivative at a Point

Suppose f is a real valued function, then
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ is called the derivative of f at x, iff $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exists finitely.
9. First Principle of Derivative

If f is a real valued function, then

$$
\frac{d}{d x} f(x)=f^{\prime}(x)=\lim _{x \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

provided this limit exists

10. Algebra of Derivative of Functions

Let f and g be two functions such that their dervatives are defined in a common domain, then
(i) $\frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x}[f(x)]+\frac{d}{d x}[g(x)]$
(ii) $\frac{d}{d x}[f(x)-g(x)]=\frac{d}{d x}[f(x)]-\frac{d}{d x}[g(x)]$
(iii) $\frac{d}{d x}[f(x) \cdot g(x)]=\left[\frac{d}{d x} f(x)\right] \cdot g(x)+f(x) \cdot\left[\frac{d}{d x} g(x)\right]$
(iv) $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{\left[\begin{array}{l}d \\ d x\end{array}(x)\right] \cdot g(x)-f(x) \cdot\left[\begin{array}{l}d \\ d x\end{array} g(x)\right]}{\{g(x)\}^{2}}$
11. Some Standard Derivatives
$\begin{array}{ll}\text { (i) } \frac{d}{d x} & \text { Constant })=0 \\ \text { (ii) } \frac{d}{d x}\left(x^{n}\right)=n x^{n-1}\end{array}$
(iii) $\frac{d}{d x}(\sin x)=\cos x$
(iv) $\frac{d}{d x}(\cos x)=-\sin x$
(v) $\frac{d}{d x}(\tan x)=\sec ^{2} x$
(vi) $\frac{d}{d x}(\cot x)=-\operatorname{cosec}^{2} x$
(vii) $\frac{d}{d x}(\sec x)=\sec x \tan x$
(viii) $\frac{d}{d x}(\operatorname{cosec} x)=-\operatorname{cosec} x \cot x$
(ix) $\frac{d}{d x}\left(a^{x}\right)=a^{x} \log _{e} a$
(x) $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
(xi) $\frac{d}{d x}\left(\log _{e} x\right)=\frac{1}{x}$

