HINTS \& SOLUTIONS

EXERCISE - 1

Single Choice

1. $\mathrm{j}=\frac{\mathrm{I}}{\mathrm{A}}=\mathrm{nev}_{\mathrm{d}}$

$$
\begin{equation*}
\frac{4 \mathrm{I}}{\pi \mathrm{~d}^{2}}=\text { nev } \ldots \text { (i) } \frac{16 \mathrm{I}}{\pi \mathrm{~d}^{2}}=\text { nev }^{\prime} . . \tag{iii}
\end{equation*}
$$

From equation (i) \& (iii) $\frac{4 \mathrm{I}}{16 \mathrm{I}}=\frac{\mathrm{v}}{\mathrm{v}^{\prime}} \Rightarrow \mathrm{v}^{\prime}=4 \mathrm{v}$
2. $\mathrm{j} \rightarrow$ Current density $\mathrm{n} \rightarrow$ Charge density
$\mathrm{j}=-$ nev $_{\mathrm{d}} \quad \mathrm{v}_{\mathrm{d}_{1}}=\frac{\mathrm{j}}{\mathrm{n}_{1} e}$
$\mathrm{v}_{\mathrm{d}_{2}}=\frac{\mathrm{j}}{\mathrm{n}_{2} \mathrm{e}}, \frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=\frac{1}{4} \Rightarrow \mathrm{n}_{2}=4 \mathrm{n}_{1}$
$\frac{\mathrm{v}_{\mathrm{d}_{1}}}{\mathrm{v}_{\mathrm{d}_{2}}}=\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}}=\frac{4 \mathrm{n}_{1}}{\mathrm{n}_{1}}=4: 1$
3. $\mathrm{i}=\operatorname{nev}_{\mathrm{d}} \mathrm{A} ; \mathrm{I}=\frac{2 \operatorname{env} \mathrm{~A}}{4}-(-\mathrm{nev} \mathrm{A})=\frac{3}{2} \operatorname{nevA}$
4. $\quad \mathrm{v}_{\mathrm{d}}=\frac{\mathrm{i}}{\text { Ane }} \quad$ As $\mathrm{A} \uparrow \quad$ so $\mathrm{v}_{\mathrm{d}} \downarrow \Rightarrow \mathrm{v}_{\mathrm{p}}>\mathrm{v}_{\mathrm{Q}}$
5. $\mathrm{R}=\frac{\rho \mathrm{L}}{\mathrm{A}} \frac{\mathrm{L}}{\mathrm{L}}=\frac{\rho^{2}}{\mathrm{~V}} \Rightarrow \mathrm{R} \propto \mathrm{L}^{2}$
6. $R=\frac{\rho L}{A} \frac{L}{L}=\frac{\rho L^{2}}{A L}=\frac{\rho L^{2}}{V}=\frac{\rho L^{2} d}{m}$
$\mathrm{d}, \rho \rightarrow$ same for all as the material is same for all.
$\Rightarrow \mathrm{R}_{1}: \mathrm{R}_{2}: \mathrm{R}_{3}=\frac{25}{1}: \frac{9}{3}: \frac{1}{5}=125: 15: 1$
7.

Balanced Wheatstone Bridge
As $\frac{1}{9}+\frac{1}{12}=\frac{7}{36}=\frac{36}{7} \quad$ So $R_{A B}=\frac{36}{7}+7=\frac{85 \Omega}{7}$
8.

This is balanced wheat stone bridge From maximum power transfer theorem Internal resistance $=$ External resistance

$$
\Rightarrow 4=\frac{3 \mathrm{R} \times 6 \mathrm{R}}{3 \mathrm{R}+6 \mathrm{R}} \Rightarrow 4=2 \mathrm{R} \Rightarrow \mathrm{R}=2 \Omega
$$

9.

$\mathrm{V}=\mathrm{IR} \Rightarrow 2=(\mathrm{I})(20) \Rightarrow \mathrm{I}=\frac{1}{10} \mathrm{~A}$
10. $\mathrm{P}=\mathrm{I}^{2} \mathrm{R}=\left(\frac{\mathrm{V}}{\mathrm{R}}\right)^{2} \mathrm{R}=\frac{\varepsilon^{2}}{(\mathrm{R}+\mathrm{r})^{2}} \mathrm{R}$
ε is constant and ($\mathrm{R}+\mathrm{r}$) increases rapidly Then $\mathrm{P} \downarrow$
11. $\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}}$ Initially, $\mathrm{I}=\frac{\mathrm{V}}{2 \mathrm{R}}$

Power across $\mathrm{P}_{\mathrm{x}}=\mathrm{P}_{\mathrm{Y}}=\left(\frac{\varepsilon^{2}}{4 \mathrm{R}}\right) \mathrm{R}$
Finally, $I=\frac{2 V}{3 R}$, Power $P_{x}=\frac{4 V^{2}}{9 R}, P_{y}=P_{z}=\frac{2 V^{2}}{9 R}$
Hence P_{x} increases, P_{y} decreases.
Alternative method:
Brightness $\propto i^{2} R$ when S is closed current drawn from battery increases because $R_{e q}$ decreases. i.e. current in X increases. So brightness of X increases and current in Y decreases. So brightness of Y decreases.
12. $\mathrm{R}_{1}=\frac{\rho \ell}{\mathrm{A}_{1}}, \mathrm{R}_{2}=\frac{\rho \ell}{\mathrm{A}_{2}} \quad$ As $\mathrm{A}_{1}<\mathrm{A}_{2}$ So $\mathrm{R}_{1}>\mathrm{R}_{2}$

In series $H=I^{2} \mathrm{Rt} \mathrm{H} \propto \mathrm{R} ; \mathrm{H}_{1}>\mathrm{H}_{2}$ In parallel $H=\frac{V^{2}}{R} t H \propto \frac{1}{R} ; H_{1}<H_{2}$
13. $\mathrm{P}=\mathrm{i}^{2} \mathrm{R} \Rightarrow 10=\mathrm{i}^{2} 5 \Rightarrow \mathrm{i}^{2}=\frac{10}{5}=2 \Rightarrow \mathrm{i}=\sqrt{2}$
$\mathrm{i}_{4}=\frac{\mathrm{i}_{5}}{2} \Rightarrow \mathrm{P}_{4}=\left(\frac{\mathrm{i}}{2}\right)^{2} 4, \mathrm{P}_{5}=\left(\mathrm{i}^{2}\right) 5$
$\frac{\mathrm{P}_{4}}{\mathrm{P}_{5}}=\frac{1}{5} \Rightarrow \mathrm{P}_{4}=\frac{\mathrm{P}_{5}}{5}, \mathrm{P}_{4}=\frac{10}{5}=2 \mathrm{cal} / \mathrm{s}$
14. $\mathrm{V}=\varepsilon+\mathrm{i}(\mathrm{r}) \Rightarrow 12.5=\varepsilon+\frac{1}{2}(1) \Rightarrow \varepsilon=12 \mathrm{~V}$
(As the battery is a storage battery it is getting charged)
15. $\mathrm{V}=\mathrm{IR} \Rightarrow 0.2=\mathrm{I}(20)$
$\mathrm{I}_{\mathrm{g}}=0.01 \mathrm{~A}$ (through the galvanometer)
$I_{g} G=\left(i-i_{g}\right) S \Rightarrow(0.01)(20)=(10-0.01) S$
$\Rightarrow \mathrm{S}=0.020 \Omega$
16. The correct answer is $\mathrm{R}=0$
17.

$1.6 \mathrm{I}_{1}-0.8 \mathrm{I}_{2}=4$...(i)
$1.6 \mathrm{I}_{2}-0.8 \mathrm{I}_{1}=4 \ldots$...ii)
from eq. $I_{1}=I_{2}=5$
voltage difference across any of the battery.

$\mathrm{V}_{\mathrm{a}}-1+0.2 \times 5-\mathrm{V}_{\mathrm{b}}=0$
$\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}=0$ Volt
18. $\mathrm{R}_{\mathrm{v}}=\frac{\mathrm{V}}{\mathrm{i}_{\mathrm{g}}}-\mathrm{G} \Rightarrow 910=\frac{\mathrm{V}}{10 \times 10^{-3}}-90$
$\Rightarrow \mathrm{V}=10 \Rightarrow$ No. of divisions $=\frac{10}{0.1}=100$
19. $I=\frac{12}{4+2+\infty}=0 . \operatorname{If} i=0$,
potential difference is equal of EMF of cell. $=12 \mathrm{~V}$
20. $20+\mathrm{R}=\frac{12}{0.1} \Rightarrow \mathrm{R}=100 \Omega$
21. $\mathrm{E}=\left(\frac{\mathrm{V}}{\ell}\right) \times \frac{\ell}{3} \quad \& \mathrm{E}=\left(\frac{\mathrm{V}}{3 \ell / 2}\right)\left(\ell^{\prime}\right) \Rightarrow \ell^{\prime}=\frac{\ell}{2}$
22. $\frac{P}{S}=\frac{Q}{625} \Rightarrow \frac{P}{Q}=\frac{S}{625}$
$\frac{Q}{S}=\frac{P}{676} \Rightarrow \frac{P}{Q}=\frac{676}{S}$
From (i) \& (iii) $\frac{676}{S}=\frac{S}{625}$
(676) (625) $=\mathrm{S}^{2} \Rightarrow \mathrm{~S}=650 \Omega$
23. Potential gradient
$\mathrm{x}=\left(\frac{12}{8+16}\right) \times 4=2 \mathrm{Vm}^{-1}$
Effective emf of E_{1} and E_{2}
$E=E=\frac{\frac{E_{2}}{r_{2}}-\frac{E_{2}}{r_{1}}}{1 / r_{1}+1 / r_{2}}=\frac{1}{2}$ volt

Balancing length $\mathrm{AN}=\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)=\frac{1}{4} \mathrm{~m}=25 \mathrm{~cm}$
24. Potential gradient
$\mathrm{x}=\left(\frac{5}{0.5+4.5}\right)\left(\frac{4.5}{3}\right)=1.5 \mathrm{Vm}^{-1}$
Here $(x)(A C)=3 \Rightarrow A C=\frac{3}{1.5}=2 m$
25. Potential gradient $x=\left(\frac{E}{10 r}\right)\left(\frac{9 r}{L}\right)$

According to question
$\frac{\mathrm{E}}{2}=\left(\frac{\mathrm{E}}{10 \mathrm{r}}\right)\left(\frac{9 \mathrm{r}}{\mathrm{L}}\right)(\ell) \Rightarrow \quad \ell=\frac{5 \mathrm{~L}}{9}$
26. (25W-220V)
$P_{1}=\frac{V_{1}^{2}}{R_{1}}, R_{1}=\frac{(220)^{2}}{25}=1936 \Omega$
(100W-220V)
$\mathrm{P}_{2}=\frac{\mathrm{V}_{2}^{2}}{\mathrm{R}_{2}}, \mathrm{R}_{2}=\frac{(220)^{2}}{100}=484 \Omega$
In Series (I same)
$\mathrm{H}=\mathrm{I}^{2} \mathrm{Rt}, \mathrm{H} \propto \mathrm{R}$ so if $\mathrm{R}_{1}>\mathrm{R}_{2}$ then $\mathrm{H}_{1}>\mathrm{H}_{2}$
R_{1} is likely to fuse
27. $\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}}=\frac{\mathrm{V}^{2} \mathrm{~A}}{\rho \ell} \alpha \frac{\mathrm{r}^{2}}{\ell}[\mathrm{~V} \rightarrow$ same $]$
28.

$\mathrm{E}=\frac{\frac{\mathrm{E}_{1}}{\mathrm{r}_{1}}+\frac{\mathrm{E}_{2}}{\mathrm{r}_{2}}}{\frac{1}{\mathrm{r}_{1}}+\frac{1}{\mathrm{r}_{2}}}=\frac{\frac{10}{2}+\frac{(-8)}{2}}{\frac{1}{2}+\frac{1}{2}}=1$ volt and
$r=\frac{r_{1} r_{2}}{r_{1}+r_{2}}=1 \Omega$. Therefore

29. $\mathrm{P} \Rightarrow \frac{\mathrm{V}^{2}}{\mathrm{R}} \Rightarrow \frac{\mathrm{V}^{2} \mathrm{~A}}{\mathrm{~L} \rho}$
$\mathrm{P}^{\prime}=\frac{\mathrm{V}^{2} \mathrm{~A}}{\left(\mathrm{~L}-\frac{\mathrm{L}}{10}\right)} \rho \Rightarrow \frac{10 \mathrm{~V}^{2} \mathrm{~A}}{9 \mathrm{~L} \rho}$
from eq. (i) \& (ii) $P^{\prime}=\frac{10}{9} P$

$$
\begin{aligned}
& \frac{\Delta \mathrm{P}}{\mathrm{P}} \times 100 \Rightarrow \frac{\left(\frac{10}{9} \mathrm{P}-\mathrm{P}\right)}{\mathrm{P}} \times 100 \\
\Rightarrow & \frac{1}{9} \times 100 \Rightarrow 11.11 \%
\end{aligned}
$$

30. In parallel combination the equivalent resistance is less than the two individual resistance connected and in series combination equivalent resistance is more than the two individual components.
31. Given circuit can be reduced to

Reading of ammeter $=\frac{4}{3+1}=1 \mathrm{~A}$
Reading of voltmeter $=3 \times 1=3 \mathrm{~V}$
32. Ans. (A)
33. $\mathrm{I}_{\text {wire }}=\frac{4 \mathrm{~V}}{0.4 \times 50 \Omega}=0.2 \mathrm{~A}$

Potential difference across voltmeter,

$$
\begin{aligned}
& \mathrm{V}=\mathrm{Ir}-2 \\
\Rightarrow \quad & 2 \sin \pi \mathrm{t}=0.2 \times 50 \mathrm{x}-2 \quad \Rightarrow 2 \pi \cos \pi \mathrm{t}=10 \mathrm{~V}
\end{aligned}
$$

$\Rightarrow \mathrm{V}=20 \pi(\cos \pi \mathrm{t}) \mathrm{cm} / \mathrm{s}$
34. Total length of wire $=90+90=180 \mathrm{~m}$; Total resistance of wire $=180 / 5=12 \Omega$.

As $\mathrm{I}=\frac{\mathrm{nE}}{\mathrm{R}+\mathrm{nr}} \Rightarrow 0.25=\frac{\mathrm{n} \times 1.4}{12+5+\mathrm{n} \times 2} \Rightarrow \mathrm{n}=4.7$
\Rightarrow Total number of cells required $=5$
35.

$$
\Rightarrow \underset{\mathrm{A}}{4 \Omega} \underset{6 \Omega}{ } \quad \mathrm{~B} \Rightarrow \mathrm{R}_{\mathrm{cq}}=10 \Omega
$$

36.

Points $1,2,3 \ldots \ldots \ldots . .8$ are of same potential and $1^{\prime}, 2^{\prime}$, $3^{\prime} \ldots8^{\prime}$ are of same potential.
$\mathrm{R}_{\mathrm{eq}}=\frac{3 \mathrm{R}}{8}$

EXERCISE - 2

Part \# I : Multiple Choice

1. $E_{e q}=\frac{E_{1} r_{2}-E_{2} r_{1}}{r_{1}+r_{2}}=\frac{2 \times 3-1 \times 4}{3+4}=\frac{2}{7}$

$\mathrm{r}_{\mathrm{eq}}=\frac{3 \times 4}{3+4}=\frac{12}{7} ; \mathrm{i}=\frac{2 / 7}{2+\frac{12}{7}}=\frac{1}{13} \mathrm{~A}$

$\mathrm{V}_{\mathrm{B}}>\mathrm{V}_{\mathrm{D}}=2\left(\frac{1}{13}\right) ; \mathrm{V}_{\mathrm{D}}-\mathrm{V}_{\mathrm{B}}=-\frac{2}{13} \mathrm{~V}$
From Figure 1 :
$\mathrm{V}_{\mathrm{B}}+4 \mathrm{i}_{1}-2-\mathrm{V}_{\mathrm{D}}=0 ; \frac{2}{13}-2+4 \mathrm{i}=0$
$\mathrm{i}=\frac{6}{13} \mathrm{~A} ; \mathrm{V}_{\mathrm{G}}=3-3 \times \frac{6}{13}$
$\mathrm{V}_{\mathrm{G}}=\frac{21}{13} \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=1+1 \times \frac{6}{13}=\mathrm{V}_{\mathrm{H}}=\frac{19}{13} \mathrm{~V}$

$\mathrm{R}_{\mathrm{eq}}=14 \Omega \Rightarrow \mathrm{I}=2 \mathrm{~A} ; \mathrm{V}_{\mathrm{AB}}=\mathrm{iR}=7$ volt
2. Free-electron density and the total current passing through wire does not depend on ' n '.
3. $\mathrm{I}=\frac{\mathrm{dq}}{\mathrm{dt}}=2-16 \mathrm{t}$

Power : $P=I^{2} R=(2-16 t)^{2} R$
Heat produced $=\int P d t=\int_{0}^{\frac{1}{8}}\left(4-256 t^{2}-64 t\right) R d t$

$$
=\left[\left(4 \mathrm{t}-\frac{256 \mathrm{t}^{3}}{3}-\frac{64 \mathrm{t}^{2}}{2}\right) \mathrm{R}\right]_{0}^{1 / 8}=\frac{\mathrm{R}}{6} \text { joules }
$$

5. Both ' 4Ω ' and ' 6Ω ' resistors are short circuited therefore R_{eq} of the circuit in 2Ω is 10 A .
Power $=\mathrm{VI}=200$ watt
Potential difference across both ' A ' and ' B ' $=0$
6. It is the concept of potentiometer.
7. By applying node analysis at point b

$$
\frac{\frac{\mathrm{V}}{2}-\mathrm{V}}{\mathrm{R}_{1}}+\frac{\frac{\mathrm{V}}{2}-\frac{\mathrm{V}}{4}}{\mathrm{R}_{1}}+\frac{\frac{\mathrm{V}}{2}}{\mathrm{R}_{2}}=0 \Rightarrow \frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\frac{1}{2}
$$

8. For wheat stone Bridge condition is $\frac{R_{1}}{R_{2}}=\frac{R_{3}}{R_{4}}$ Therefore null point is independent of the battery voltage.
9. $\Delta \mathrm{V}=\mathrm{E}+$ ir and in charging current flows from positive terminal to negative terminal.
10. $V=E-i r \Rightarrow V=-r i+E$

Slope of graph 'V' and 'i' gives 'r' intercept of graph 'V' and 'i' gives $E \Rightarrow \tan \theta=\frac{y}{x}=r$.
11.

$\mathrm{R}_{\mathrm{AB}}=\frac{11 \mathrm{R}}{18}$
12. If n batteries are in series than the circuit can be made as

13. If n batteries are in parallel than the circuit can be made

i is directly proportional to n .
14. Slope of 'V' vs 'i' graph give internal resistance
$\therefore \mathrm{r}=5 \Omega$
Intercept gives the value of e.m.f. $\mathrm{E}=10$ volt
Maximum current is $i_{\max }=\frac{E}{r} \Rightarrow 2 \mathrm{~A}$
15. In parallel combination current gets divided therefore parallel combination supports $\mathrm{i}=\mathrm{i}_{1}+\mathrm{i}_{2}$ is 20 A in series current remain same therefore the series combination supports $\mathrm{i}=10 \mathrm{~A}$.
16. For Ammeter $I_{g} G=\left(I-I_{g}\right) R$

$50 \times 10^{-6} \times 100=5 \times 10^{-3} \times(\mathrm{R}) \Rightarrow \mathrm{R} \cong 1 \Omega$
For voltmeter $\mathrm{I}_{\mathrm{g}}(\mathrm{R}+\mathrm{G})=\mathrm{V}$
$\Rightarrow 50 \mu \mathrm{~A}(\mathrm{R}+\mathrm{G})=10 \mathrm{~V}$
$\Rightarrow \mathrm{R}+\mathrm{G}=200 \mathrm{k} \Omega$
$\Rightarrow \mathrm{R} \cong 200 \mathrm{k} \Omega$
17. As power in 2Ω is maximum when the current in it is maximum. Current in it will maximum when the value of R_{eq} is minimum. $\quad \therefore \mathrm{R}=0$
Heat $=i^{2} R T \Rightarrow(36)(2)=72 \mathrm{~W}$
18. $\mathrm{i}_{\min }=\frac{20}{\mathrm{R}_{\min }}=\frac{20}{200}=\frac{1}{10} \mathrm{~A}$
$\mathrm{i}_{\max }=\frac{20}{\mathrm{R}_{\max }}=\frac{20}{250}=\frac{2}{25} \mathrm{Amp}$

Potential $=\mathrm{i}_{\text {min }} \mathrm{R}_{\mathrm{PM}}=\frac{1}{10} \times 75=7.5 \mathrm{~V}$
Across potentiometer $\mathrm{V}=\mathrm{i}_{\max } \mathrm{R}_{\mathrm{PM}}=\frac{2}{25} \times 75=6 \mathrm{~V}$
19.

Both 30 V are in parallel

$$
30-\frac{1}{4} i-\frac{3}{4} i=0 \Rightarrow \mathrm{i}=30 \mathrm{~A}
$$

20. If e.m.f of c is greater than the e.m.f. of the 'D'
$\mathrm{I}_{\mathrm{r}}=0$
So r does not play any role of zero deflection in galvanometer.

21.

So current in $\mathrm{FC}=0$
22. Assume $\mathrm{DE} \Rightarrow \mathrm{R}_{1} \Omega$
$\mathrm{EC} \Rightarrow \mathrm{R}_{2} \Omega$
$\mathrm{R}_{1}+\mathrm{R}_{2}=1 \Omega$
$V_{B}=V_{E}$

Means balance wheat stone bridge
$\frac{\mathrm{P}}{\mathrm{Q}}=\frac{\mathrm{R}}{\mathrm{S}} ; \frac{1}{1}=\frac{\frac{\mathrm{R}_{1}+1}{\mathrm{R}_{1}+2}}{\mathrm{R}_{2}}$
$\mathrm{R}_{2}=\frac{\mathrm{R}_{1}+1}{\mathrm{R}_{1}+2}=1-\mathrm{R}_{1}$
$\mathrm{R}_{1}+1=\mathrm{R}_{1}+2-\mathrm{R}_{1}^{2}-2 \mathrm{R}_{1}$

$\mathrm{R}_{1}^{2}+2 \mathrm{R}_{1}-1=0 \Rightarrow \mathrm{R}_{1}=-1+\sqrt{2} \Rightarrow \mathrm{R}_{2}=2-\sqrt{2}$
$\frac{C E}{E D}=\frac{R_{2}}{R_{1}}=\frac{2-\sqrt{2}}{\sqrt{2}-1}=\sqrt{2}$
23. $\frac{E_{1}+E_{2}}{r_{1}+r_{2}+R}<\frac{E_{1}}{r_{1}+R} ;\left(E_{1}+E_{2}\right)\left(r_{1}+R\right)<E_{1}\left(r_{1}+r_{2}+R\right)$
$\mathrm{E}_{1} \mathrm{R}+\mathrm{E}_{2} \mathrm{R}+\mathrm{E}_{1} \mathrm{R}<\mathrm{E}_{1} \mathrm{r}_{2}+\mathrm{E}_{1} \mathrm{R} ; \mathrm{R}\left(\mathrm{E}_{1}+\mathrm{E}_{2}\right)<\mathrm{E}_{1} \mathrm{r}_{2}$ On solving we get $\mathrm{E}_{1} \mathrm{r}_{2}>\mathrm{E}_{2}\left(\mathrm{R}+\mathrm{r}_{1}\right)$
24.

$\frac{12}{X+Y+r}=1 A \Rightarrow V_{x}=1=1 \times X \Rightarrow X=1 \Omega$
When Y shorted $I=\frac{12}{1+r}$
$10=12-\mathrm{Ir} \Rightarrow 10=12-\frac{12}{(1+\mathrm{r})} \mathrm{r}$
$\Rightarrow 10+10 \mathrm{r}=12+12-12 \mathrm{r} \Rightarrow 10 \mathrm{r}=2 \Rightarrow \mathrm{r}=0.2 \Omega$
25.

Between A and B
$(9+0.9) \times 10 \times 10^{-3}=(\mathrm{I}-10 \mathrm{~mA}) \times 0.1$
$\Rightarrow 990 \mathrm{~mA}=\mathrm{I}-10 \mathrm{~mA}$
$\Rightarrow \mathrm{I}=1000 \mathrm{~mA}=1 \mathrm{~A}$
26. If all were in series all of them would have being getting discharged. But since, 2 are in opposite polarity, they will be getting charged.
$\mathrm{V}=\mathrm{E}+\mathrm{iR}$ getting charged $\mathrm{i}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{(\mathrm{nE}-4)}{\mathrm{nR}}$
as $(\mathrm{nE}-4)$ as 4 batteries will be cancelled out
$=\mathrm{E}+\left(\frac{\mathrm{nE}-4}{\mathrm{nR}}\right) \mathrm{R},=\mathrm{E}+\left(\mathrm{E}-\frac{4}{\mathrm{n}}\right)=2\left(1-\frac{2}{\mathrm{n}}\right) \mathrm{E}$
27.
 $\mathrm{R}=\frac{\mathrm{V}}{\mathrm{I}}=$ slope \uparrow

28. When S_{2} open

Assume resistance of $\mathrm{AB}=\mathrm{R}$
Resistance of wire per unit length.
$x=\frac{R}{L} \quad I=\frac{E}{R}$
Now in AC
$\frac{\mathrm{E}}{\mathrm{R}} \times \frac{\mathrm{R}}{\mathrm{L}} \times \frac{\mathrm{L}}{2}=6$
$\mathrm{E}=12 \mathrm{~V}$
When S_{2} closed

$\mathrm{V}_{1}=\frac{\mathrm{E}}{\mathrm{R}} \times \frac{\mathrm{R}}{\mathrm{L}} \times \frac{5 \mathrm{~L}}{12}=\frac{5 \mathrm{E}}{12}=\frac{5 \times 12}{12}=5 \mathrm{~V}$
$\Rightarrow 6-\mathrm{I}_{1} \mathrm{r}=5 \Rightarrow 6-\left(\frac{5}{10}\right) \mathrm{r}=5 \Rightarrow \mathrm{r}=2 \Omega$
29. Rearranged circuit between A \& B is :

(due to symmetry)
Total resistance of circuit
$=\frac{7}{3}+\frac{2}{3}=3 \Omega . \mathrm{i}=\frac{9}{3}=3 \mathrm{~A}$
Heat produced in cell
$=I^{2} r=(3)^{2} \times\left(\frac{2}{3}\right)=6 \mathrm{~W}$
Current in resistance connected directly between
A \& B $=\frac{7}{15} \times 3=\frac{7}{5}=1.4 \mathrm{~A}$

$$
\left.=\frac{7}{15} \times 3=\frac{7}{5}=1.4 \mathrm{~A}\right)
$$

30. $\mathrm{V}_{\mathrm{P}}-\mathrm{V}_{\mathrm{Q}}=2(2 \mathrm{R}) \Rightarrow 4 \mathrm{R}=24-(2 \mathrm{R}) \mathrm{I}_{1}$

$\Rightarrow \mathrm{I}_{1} \mathrm{R}=12-2 \mathrm{R}, \mathrm{E}-\mathrm{I}_{2}(4 \mathrm{R})=4 \mathrm{R}, \mathrm{I}_{1}+\mathrm{I}_{2}=2$
$\Rightarrow \mathrm{E}=20 \mathrm{R}-48$
31.

$r_{x}=r+r x=r(1+x) \Rightarrow d R_{x}=\frac{\rho d x}{\pi r_{x}^{2}}=\frac{\rho d x}{\pi r^{2}(1+x)^{2}}$
$\mathrm{R}_{1}=\int_{0}^{\ell} \frac{\rho \mathrm{dx}}{\pi \mathrm{r}_{\mathrm{x}}^{2}(1+\mathrm{x})^{2}}=\frac{\rho}{\pi \mathrm{r}^{2}}\left[1-\frac{1}{1+\ell}\right]$,
$\mathrm{R}_{2}=\int_{\ell}^{1} \frac{\rho \mathrm{dx}}{\pi \mathrm{r}^{2}(1+\mathrm{x})^{2}}=\frac{\rho}{\pi \mathrm{r}^{2}}\left[\frac{1}{1+\ell}-\frac{1}{1+1}\right]$
For null point
$\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\frac{10}{10} \Rightarrow \mathrm{R}_{1}=\mathrm{R}_{2}$
$\Rightarrow 1-\frac{1}{1+\ell}=\frac{1}{1+\ell}-\frac{1}{2} \Rightarrow \frac{3}{2}=\frac{2}{1+\ell}$
$\Rightarrow 3+3 \ell=4 \Rightarrow \ell=\frac{1}{3} \mathrm{~m}$

Part \# II : Assertion \& Reason

1. C
2. B
3. E
4. A
5. A
6. B
7. A
8. C 10. D

EXERCISE - 3

Part \# I : Matrix Match Type

1. $\mathrm{A} \rightarrow \mathrm{P} ; \mathrm{B} \rightarrow \mathrm{Q}, \mathrm{S} ; \mathrm{C} \rightarrow \mathrm{S} ; \mathrm{D} \rightarrow \mathrm{P}, \mathrm{R}, \mathrm{S}$
2. $\mathrm{A} \rightarrow \mathrm{Q} ; \mathrm{B} \rightarrow \mathrm{P} ; \mathrm{C} \rightarrow \mathrm{P} ; \mathrm{D} \rightarrow \mathrm{Q}$
3. After closing the switch net resistance decreases therefore there will be increases in the current.
After closing the switch V_{2} becomes zero hence $\mathrm{V}=\mathrm{V}_{1}$.

After short circuiting current in the resistance becomes zero therefore power become zero.
4. For potentiometer short circuit $=\mathrm{x} \ell_{1}$ x Depends only on primary circuit
(A) $\mathrm{E}_{1} \uparrow \Rightarrow \mathrm{x} \uparrow \Rightarrow \ell_{1} \downarrow$ if secondary circuit remain same
(B) $\mathrm{R} \uparrow \Rightarrow \mathrm{x} \downarrow \Rightarrow \ell_{1} \uparrow$ if secondary circuit remain same
(C) $\mathrm{S} . \mathrm{C} \uparrow=\ell_{1} \uparrow$ if x remain same

Part \# II : Comprehension

Comprehension-1

1. (A) 2. (D) 3. (D)

Comprehension-2

1. (B) 2 .
(B) 3
(D)

Comprehension-3

1. (C) 2. (B)

Comprehension-4

1. As potential of 1,2 and 3 are same potential difference across them 'zero'.

2. As 1,2 and 3 are having same potential therefore we can draw it.

$\mathrm{R}_{01}=\mathrm{R} / 3 \quad ; \mathrm{R}_{02}=\mathrm{R} / 3 ; \mathrm{R}_{03}=\mathrm{R} / 3$
3. As point $1,2,3$ are equipotential $\Delta \mathrm{V}=\mathrm{I}_{12}$ $\Rightarrow \Delta \mathrm{V}=0$ therefore $\mathrm{I}=0$ for $\mathrm{R}_{12}, \mathrm{R}_{23}, \mathrm{R}_{31}$
Comprehension-5
4. Power through fuse
$\mathrm{P}=\mathrm{I}^{2} \mathrm{R}=\mathrm{h} \times 2 \pi \mathrm{r} \ell$
$\mathrm{h}=$ heat energy lost per unit area per unit time
$\mathrm{I}=$ current .
$I^{2}=\frac{h \times 2 \pi r \ell}{\frac{\rho \ell}{\pi r^{2}}} \propto r^{3} \Rightarrow I \propto r^{3 / 2}$
$\left(\frac{I_{1}}{I_{2}}\right)=\left(\frac{r_{1}}{r_{2}}\right)^{3 / 2}=\left(\frac{4}{1}\right)^{3 / 2}=\frac{8}{1}$
5. $\mathrm{P}=\mathrm{VI} \quad 20 \mathrm{kw} \Rightarrow 2000=\frac{\mathrm{V}^{2}}{20}$
$\Rightarrow \mathrm{V}=200$ volt $\Rightarrow \mathrm{V}<200$ volt
6. At maximum power delivery $R=r$, so $\eta=50 \%$

Comprehension-6

1. In balancing condition, current in the circuit should be zero which happens at $\ell=20 \mathrm{~cm}$ according to graph.
2. At balance point $\varepsilon=\frac{\ell}{100} \mathrm{~V}=\frac{20}{100} \times 6=1.2 \mathrm{~V}$
3. At $\ell=0$, applying kirchhoff's $2^{\text {nd }}$ law in the circuit containing cell, $\varepsilon=\mathrm{IR}$
where I is the current at $\ell=0, \& \varepsilon$ is the emf of the cell.
$\Rightarrow \mathrm{R}=\frac{\varepsilon}{\mathrm{I}}=\frac{1.2}{40 \times 10^{-3}}=30 \Omega$

Comprehension-7

1. Current is maximum when resistance in the circuit is minimum. i.e. when $\mathrm{S}_{1}, \mathrm{~S}_{3}, \mathrm{~S}_{5}$ are closed because then all resistances will be short circuited $I_{\max }=\frac{V_{0}}{R}$.
2. After regular closing of switches, total resistance decreases gradually.
3. $\mathrm{P}_{1}=\frac{\mathrm{V}_{0}^{2}}{\mathrm{R}}, \mathrm{P}_{2}=\frac{\mathrm{V}_{0}^{2}}{\frac{37}{7} \mathrm{R}}$ So $\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\frac{7}{37}$

Comprehension-8

1. $I_{1}=\frac{E_{1}-E_{2}}{R_{1}}, I_{1}+I_{2}=\frac{E_{2}}{R_{2}} \Rightarrow I_{2}=\frac{E_{2}}{R_{2}}-\frac{E_{1}-E_{2}}{R_{1}}$

$\Rightarrow \mathrm{I}_{1}=\left(\frac{-1}{\mathrm{R}_{1}}\right) \mathrm{E}_{2}+\frac{\mathrm{E}_{1}}{\mathrm{R}_{1}} \& \mathrm{I}_{2}=\left(\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}\right) \mathrm{E}_{2}-\frac{\mathrm{E}_{1}}{\mathrm{R}_{1}}$
$\Rightarrow \frac{1}{\mathrm{R}_{1}}=\frac{0.3}{6} \Rightarrow \mathrm{R}_{1}=20 \Omega$
and $\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}=\frac{0.3}{4} \Rightarrow \mathrm{R}_{2}=40 \Omega$

Now as $\frac{E_{1}}{R_{1}}=0.3 \Rightarrow E_{1}=0.3 \times 20=6 V$

Comprehension-9

1. $\mathrm{V}=\mathrm{E}+\mathrm{ir}$
$=12+(0.04)(50)$

2. Loss in power
$=i^{2} \mathrm{r}=(50)^{2}(.04)=100 \mathrm{~W}$
3. Total input

- Loss in power
= Useful power
Input power $=14(50)=700 \mathrm{w}$
Loss in power $=100 \mathrm{w}$,
Rate of conversion $=600$ watt
EXERCISE - 4

Subjective Type

Section (A)

1. $31 \mathrm{C}, \frac{31}{3} \mathrm{~A}$
2. $\frac{1.5 \times 63.5 \times 10^{-3}}{1.6 \times 6 \times 9}=1.1 \times 10^{-3} \mathrm{~ms}^{-1}$
or $1.1 \mathrm{~mm} \mathrm{~s}^{-1}$
3. (i) $\mathrm{Q}=1200 \mathrm{C} \quad$ (ii) $\mathrm{n}=75 \times 10^{20}$

Section (B)
4. (a) $\mathrm{n}=\frac{2}{1.6} \times 10^{17}=1.25 \times 10^{17}$
(b) $\frac{1}{2 \pi} \times 10^{6} \mathrm{~A} / \mathrm{m}^{2}$.
5. 10 A .
6. (i) $41^{\circ} \mathrm{C}$
(ii) $\frac{\ell \mathrm{n} 2}{273}{ }^{\circ} \mathrm{C}^{-1}$.
7. T_{2} 8. 0.2%
9. (i) $\mathrm{R}=\frac{0.35}{2}=0.175 \Omega$
(ii) $\mathrm{R}=7 \times 10^{-5} \Omega$

Section (C)
10. (a) $\mathrm{E}=10 \mathrm{~V}$ each
(b) (A) act as a source and (B) act as load
(c) $\mathrm{V}_{\mathrm{A}}=9 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=11 \mathrm{~V}$
(d) $\mathrm{P}_{\mathrm{A}}=9 \mathrm{~W}, \mathrm{P}_{\mathrm{B}}=11 \mathrm{~W}$
(e) Heat rate $=1 \mathrm{~W}$ each
(f) 10 W each
(g) $9 \mathrm{~V}, 11 \mathrm{~V}$
(h) $-9 \mathrm{~W}, 11 \mathrm{~W}$
11. $\frac{125}{9} \mathrm{~V}$
12. (a) all equal (b) b, then a and c equal
(c) a, c equal, b
13. (a) 7.5 V , (b) 24 mA (c) greater than 12 V .
14.
(a) $\frac{50}{11}=4.55 \mathrm{~A}$
(b) $\frac{22 \times 11}{5}=48.4 \Omega$
(c) 1000 W
(d) $240 \mathrm{cal} \mathrm{s}^{-1}$ (e) $80 / 3 \mathrm{gm}$
15. $\frac{125}{4}=31.25 \mathrm{watt}$
16. $P_{A}=8 \mathrm{~W} \& P_{B}=32 \mathrm{~W}, \mathrm{~A}$ is more likely to fail his examinations
17. (a) $V_{A}=V_{B}=V_{C}=V_{D}=0 \mathrm{~V}$,
$\mathrm{V}_{\mathrm{E}}=\mathrm{V}_{\mathrm{F}}=\mathrm{V}_{\mathrm{G}}=\mathrm{V}_{\mathrm{H}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{J}}=\mathrm{V}_{\mathrm{K}}=15 \mathrm{~V}$
(b) $\mathrm{V}_{1}=15 \mathrm{~V}, \mathrm{~V}_{2}=5 \mathrm{~V}, \mathrm{~V}_{3}=15 \mathrm{~V}$
(c) each act as a source
(d) $17.5 \mathrm{~A}(\uparrow), 15 \mathrm{~A}(\downarrow) 2.5 \mathrm{~A}(\uparrow), 5 \mathrm{~A}(\downarrow)$ from left to right in given circuit.
(e) 1Ω resistance
(f) left most battery.
18. $\frac{25}{9} \mathrm{~V}=2.78 \mathrm{~V}, \frac{5}{18} \mathrm{~A}=0.278 \mathrm{~A}$
19. 19 V
20. (a) 10Ω. (b) 3200 J
21. $5 \mathrm{~A}, 74 \mathrm{~V}, 49 \mathrm{~V}(+\mathrm{ve}$ terminal is connected at point B$)$

Section (D)
22. $\mathrm{R}_{\mathrm{f}}=2 \Omega$.
23. (a) $\mathrm{R}=10 \Omega$ (b) 1 A in each
(c) $\mathrm{V}_{3}=3 \mathrm{~V}, \mathrm{~V}_{2}=2 \mathrm{~V}, \mathrm{~V}_{4}=4 \mathrm{~V}$ (d) 10 W (e) 1 W (f) 9 W (g) 9 V (h) 4Ω resistance (i) 3 W .
24. (a) $\mathrm{R}=3 \Omega$ (b) $\mathrm{i}=2 \mathrm{~A}, \mathrm{i}_{1}=\frac{1}{2} \mathrm{~A}, \mathrm{i}_{2}=1 \mathrm{~A}, \mathrm{i}_{3}=\frac{1}{2} \mathrm{~A}$
(c) $\mathrm{V}=4 \mathrm{~V}$ in each
(d) 12 W
(e) 4 W
(f) 8 W
(g) 4Ω
(h) 4 W
25.
(a) 3.7 V
(b) 3.7 V
26. (i) $\mathrm{R}_{\mathrm{AB}}=5 / 6 \Omega$
(ii) $\mathrm{R}_{\mathrm{CD}}=1.5 \Omega$
(iii) $R_{E F}=1.5 \Omega$
(iv) $\mathrm{R}_{\mathrm{AF}}=5 / 6 \Omega$
(v) $\mathrm{R}_{\mathrm{AC}}=4 / 3 \Omega$
27. (ii) 1.5 A
28. (i) $\frac{150}{7}=21.43 \mathrm{~V}$, (ii) 1600Ω
29. $\mathrm{CE}: \mathrm{ED}=\sqrt{2}: 1$
30. $12.5 \Omega, 170 \Omega$.
31. (a) 1 A (b) $2 / 3 \mathrm{~A}$ (c) $1 / 3 \mathrm{~A}$
32. (a) 0.1 A (b) 0.3 A

Section (E)
33. (i) $\frac{12}{8.59}=1.4 \mathrm{~A}$, (ii) $\frac{12 \times 8.5}{8.59}=11.9 \mathrm{~V}$
34. (i) $\frac{1}{2}=0.5 \mathrm{~A}$ (ii) $\frac{1}{12}=0.0833 \mathrm{~A}$
(iii) $1.5+\frac{1}{2} \times 0.4=1.7 \mathrm{~V}$
35. $\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}=21 / 5=4.2 \mathrm{~V}, \mathrm{I}=35 / 2 \mathrm{~mA}=17.5 \mathrm{~mA}$ (B to A)
36. zero in the upper 4Ω resistor and 0.2 A in the rest two.
37.
(a) $\frac{1.2}{2.1}=0.57$
(b) 1
(c) $\frac{10.5}{6}=1.75$

Section (F)
38.

(a) $\mathrm{S}=\frac{30 \times 2 \times 10^{-3}}{0.3-2 \times 10^{-3}}=0.2013 \Omega$
(b) $\mathrm{R}=70 \Omega$

39. (a) 24 V , (b) 28 V
40. $V=\varepsilon /(\eta+1)=2.0 \mathrm{~V}$.
41. $\frac{20}{3} \mathrm{~V}$
42. (i) $\frac{4}{3} \Omega(A)$

(ii) 200Ω
(iii) $1.1-\frac{4}{3}=-0.23 \mathrm{~V}$
43. $\left(\frac{70}{60}-1\right) \times 9.5=\frac{9.5}{6} \mathrm{ohm}$
44. (a) 1.25 V , (b) saving of galvanometer from damage and to prevent the cell discharging fast
(c) No, (d) Yes, (e) No, (f) No
45. $x=\frac{20}{7} \Omega, Y=\frac{20}{3} \Omega$

EXERCISE-5

Part \# I : AIEEE/JEE-MAIN

1. In order to convert an ammeter into a voltmeter, one has to connect a high resistance in series with it.
2. The emf of the standard cell $\mathrm{E} \propto 100$

The emf of the secondary cell e $\propto 30$
$\frac{E}{e}=\frac{100}{30} \Rightarrow e=\frac{30 E}{100}$
4. $\mathrm{I}_{\mathrm{g}}=1 \mathrm{~A} ; \mathrm{G}=0.81 \Omega ; \mathrm{I}=10 \mathrm{~A}$

$\mathrm{S}=\left(\frac{\mathrm{I}_{\mathrm{g}}}{\mathrm{I}-\mathrm{I}_{\mathrm{g}}}\right) \mathrm{G} ; \mathrm{S}=\frac{1}{9} \times 0.81=0.09 \Omega$
5. On redrawing the circuit between A and B we get

$$
\mathrm{I}=\frac{3 \mathrm{~V}}{2 \Omega}=1.5 \mathrm{~A}
$$

6. For a given volume, the resistance of the wire is expressed as
$\mathrm{R}=\frac{\rho \ell^{2}}{\text { Volume }} \Rightarrow \mathrm{R} \propto \ell^{2}$
$\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}=\left(\frac{2 \ell}{\ell}\right)^{2}=4 \Rightarrow \frac{\mathrm{R}_{2}-\mathrm{R}_{1}}{\mathrm{R}_{1}}=3$
So, the change in resistance of wire will be 300%
7.

On redrawing the diagram, we get $\mathrm{I}=\frac{6}{1.5}=4 \mathrm{~A}$

8. Let resistances be R_{1} and R_{2}
then $\mathrm{S}=\mathrm{R}_{1}+\mathrm{R}_{2}$ and $\mathrm{P}=\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}$
$\mathrm{n}=\frac{\mathrm{S}}{\mathrm{P}}=\frac{\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)^{2}}{\mathrm{R}_{1} \mathrm{R}_{2}}=\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}+\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}+2$
$=\left(\sqrt{\frac{\mathrm{R}_{1}}{\mathrm{R}_{1}}}-\sqrt{\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}}\right)^{2}+4 \Rightarrow \mathrm{n}_{\min }=4$
9. Given that $\frac{\ell_{1}}{\ell_{2}}=\frac{4}{3} \& \frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}=\frac{2}{3} \Rightarrow \frac{\mathrm{~A}_{1}}{\mathrm{~A}_{2}}=\frac{\mathrm{r}_{1}^{2}}{\mathrm{r}_{2}^{2}}=\frac{4}{9}$

In parallel : $\mathrm{I}_{1} \mathrm{R}_{2}=\mathrm{I}_{2} \mathrm{R}_{2}$
hence $\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}=\frac{\ell_{2}}{\mathrm{~A}_{2}} \times \frac{\mathrm{A}_{1}}{\mathrm{l}_{1}}=\frac{3}{4} \times \frac{4}{9}=\frac{1}{3}$
10.

$\frac{x}{20}=\frac{y}{80} \Rightarrow \frac{x}{y}=\frac{1}{4}$

$\frac{4 x}{a}=\frac{y}{100-a} \Rightarrow a=50 \mathrm{~cm}$
12. Voltage across $\mathrm{R}=2 \mathrm{~V}$

Hence, voltage across $500 \Omega=10 \mathrm{~V}$

Current through $500 \Omega=\frac{10}{500}=\frac{1}{50} \mathrm{~A}=\frac{10}{500}=\frac{1}{50} \mathrm{~A}$

As 500Ω and $\mathrm{R} \Omega$ are in series value of
$\mathrm{R}=\frac{\mathrm{V}_{\mathrm{R}}}{\mathrm{I}_{\mathrm{R}}}=\frac{2}{1 / 50}=100 \Omega$
13.

Current in the circuit $=\frac{2 E}{R_{1}+R_{2}+R}$
potential difference across cell with R_{2} resistance
$=\mathrm{E}-\mathrm{IR}_{2}=\mathrm{E}-\frac{2 \mathrm{E}}{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}} \times \mathrm{R}_{2}$
But potential difference $=0$
$\Rightarrow \mathrm{E}=\frac{2 \mathrm{E}}{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}} \times \mathrm{R}_{2} \Rightarrow \mathrm{R}=\mathrm{R}_{2}-\mathrm{R}_{1}$
14. Current supplied by the source to the external resistance
$I=\frac{E}{R+r}$
If $r \gg R ; I=\frac{E}{r}$
which will be constant
15. The internal resistance of a cell
$\mathrm{r}=\left(\frac{\mathrm{e}}{\mathrm{v}_{\mathrm{T}}}-1\right) \mathrm{R}=\left(\frac{\mathrm{l}_{1}}{\mathrm{l}_{2}}-1\right) \mathrm{R}=\left(\frac{240}{120}-1\right) 2=2 \Omega$
16. Kirchoff's first law is based on law of conservation of charge.Kirchoff's second law is based on law of conservation of energy.
17. Specific resistance $\left(\rho_{B}\right)=2 \rho_{A}$; diameter $d_{B}=2 d_{A}$
$\frac{\ell_{B}}{\ell_{A}}=$? for $\frac{(\text { Resistance })_{B}}{(\text { Resistance })_{A}}=1$
$\frac{\rho_{B} \ell_{B}}{A_{B}}=\frac{\rho_{A} \ell_{A}}{A_{A}} \quad \frac{\ell_{B}}{\ell_{A}}=\frac{\rho_{A}}{\rho_{B}} \frac{A_{B}}{A_{A}}$
$\frac{\ell_{B}}{\ell_{A}}=\frac{\rho_{A}}{\rho_{B}} \frac{\left(\operatorname{dia}_{B}\right)^{2}}{\left(\operatorname{dia}_{A}\right)^{2}}=\frac{1}{2} \times 2^{2}=2$
18. Given that
$\mathrm{R}_{100^{\circ} \mathrm{C}}=100 \Omega$
$\mathrm{R}_{\mathrm{T}^{\circ} \mathrm{C}}=200 \Omega$
$\mathrm{T}=$?
$\mathrm{R}_{100}=\mathrm{R}_{0}[1+\alpha(100)]$
$R_{T}=R_{0}[1+\alpha T]$
On dividing eq. (ii) by eq. (i), we get
$\frac{\mathrm{R}_{\mathrm{T}}}{\mathrm{R}_{100}}=\frac{1+\alpha \mathrm{T}}{1+100 \alpha}$
On solving, we get $\mathrm{T}=400^{\circ} \mathrm{C}$
19.

Under balanced condition

$$
\frac{\mathrm{P}}{\mathrm{Q}}=\frac{\mathrm{R}}{\frac{\mathrm{~S}_{1} \mathrm{~S}_{2}}{\mathrm{~S}_{1}+\mathrm{S}_{2}}} \Rightarrow \frac{\mathrm{P}}{\mathrm{Q}}=\frac{\mathrm{R}\left(\mathrm{~S}_{1}+\mathrm{S}_{2}\right)}{\mathrm{S}_{1} \mathrm{~S}_{2}}
$$

20.

On redrawing the circuit, we get

It is a balanced Whetstone bridge having $\mathrm{R}_{\text {eff }}$ as

$$
\mathrm{R}_{\mathrm{eff}}=\frac{30 \times 15}{45}=10 \Omega
$$

The current delivered by the source is

$$
\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{5}{10}=0.5 \mathrm{~A}
$$

21. Let the resistance of the wire at $0^{\circ} \mathrm{C}$ is R_{0} also let the temperature coefficient of resistance is α.
$\mathrm{R}_{50}=\mathrm{R}_{0}[1+\alpha(50-0)]$
Similarly $\mathrm{R}_{100}=\mathrm{R}_{0}[1+\alpha(100-0)]$
On dividing equation (ii) by equation (i), we get
$\frac{\mathrm{R}_{100}}{\mathrm{R}_{50}}=\frac{1+100 \alpha}{1+50 \alpha} ; \frac{6}{5}=\frac{1+100 \alpha}{1+50 \alpha}$
$\Rightarrow 6+300 \alpha=5+500 \alpha \Rightarrow 1=200 \alpha$
$\alpha=\frac{1}{200} /{ }^{\circ} \mathrm{C}$
On replacing $\alpha=\frac{1}{200} /{ }^{\circ} \mathrm{C}$ in equation (i), we get
$5=\mathrm{R}_{0}\left[1+\frac{1}{200} 50\right] \Rightarrow 5=\mathrm{R}_{0}\left[1+\frac{1}{4}\right]$
$\Rightarrow 5=\mathrm{R}_{0}\left[\frac{5}{4}\right] \Rightarrow \mathrm{R}_{0}=4 \Omega$
22. $\frac{55}{20}=\frac{\mathrm{R}}{80} \Rightarrow \mathrm{R}=\frac{55 \times 8}{2}=220 \Omega$
23. Choosing A as origin,
$E=\rho j=\rho \frac{I}{2 \pi r^{2}}$
24. $\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{B}}=-\frac{\rho \mathrm{I}}{2 \pi} \int_{\mathrm{a}}^{(\mathrm{a}+\mathrm{b})} \frac{1}{\mathrm{r}^{2}} \mathrm{dr}=\frac{\rho \mathrm{I}}{2 \pi}\left[\frac{1}{(\mathrm{a}+\mathrm{b})}-\frac{1}{\mathrm{a}}\right]$
$\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{C}}=-\frac{\rho \mathrm{I}}{2 \pi}\left[\frac{1}{\mathrm{a}}-\frac{1}{(\mathrm{a}+\mathrm{b})}\right]$
25. For series combination
$\alpha_{\mathrm{s}}=\frac{\alpha_{1} \mathrm{R}_{01}+\alpha_{2} \mathrm{R}_{02}}{\mathrm{R}_{01}+\mathrm{R}_{02}}$
$\mathrm{R}_{01}=\mathrm{R}_{02}=\mathrm{R}_{0}$ (given)
$\alpha_{\mathrm{s}}=\frac{\alpha_{1}+\alpha_{2}}{2}$
For parallel combination
$\frac{1}{\mathrm{R}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}$
$\Rightarrow \frac{1}{\mathrm{R}_{\text {eq }}}=\frac{1}{\mathrm{R}_{0}\left(1+\alpha_{1} \mathrm{t}\right)}+\frac{1}{\mathrm{R}_{0}\left(1+\alpha_{2} \mathrm{t}\right)}$
$\frac{1}{\frac{R_{0}}{2}\left(1+\alpha_{p} t\right)}=\frac{1}{R_{0}\left(1+\alpha_{1} t\right)}+\frac{1}{R_{0}\left(1+\alpha_{2} t\right)}$
$2\left(1+\alpha_{\mathrm{p}} \mathrm{t}\right)^{-1}=\left(1+\alpha_{1} \mathrm{t}\right)^{-1}+\left(1+\alpha_{2} \mathrm{t}\right)^{-1}$
using binomial expansion
$2-2 \alpha_{\mathrm{p}} \mathrm{t}=1-\alpha_{1} \mathrm{t}+1-\alpha_{2} \mathrm{t} \Rightarrow \alpha_{\mathrm{p}}=\frac{\alpha_{1}+\alpha_{2}}{2}$
26. $\mathrm{R}=\rho \frac{\ell}{\mathrm{A}} \Rightarrow \mathrm{R} \alpha \ell^{2}$
$\frac{\Delta \mathrm{R}}{\mathrm{R}}=\frac{\Delta \mathrm{R}}{\mathrm{R}}=\frac{2 \Delta \ell}{\ell}=2[0.1]=0.2 \%$ increase.
27. $\mathrm{R}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\mathrm{R}_{4} \Rightarrow \Delta \mathrm{R}=\frac{5}{100} \times 100=5 \Omega$
$\Delta \mathrm{R}=\Delta \mathrm{R}_{1}+\Delta \mathrm{R}_{2}+\Delta \mathrm{R}_{3}+\Delta \mathrm{R}_{4}=20$
For combination $\frac{\Delta \mathrm{R}}{\mathrm{R}} \times 100=\frac{20}{400} \times 100=5 \%$
28. $\mathrm{i}=0.2 \mathrm{~A}, \rho=4 \times 10^{-7} \Omega-\mathrm{m}, \mathrm{A}=8 \times 10^{-7} \mathrm{~m}^{2}$ $\mathrm{x}=\frac{\mathrm{i} \rho}{\mathrm{A}}=\frac{0.02 \times 4 \times 10^{-7}}{8 \times 10^{-7}}=0.1 \mathrm{~V} / \mathrm{m}$
29. Due to greater heating as $H=I^{2} R$ 25 W get fused.
30.

$\mathrm{R}_{\text {bulb }}=\frac{(120)^{2}}{60}=240 \Omega$
$\mathrm{V}_{1}=\frac{120}{246} \times 240=117.07$
$\mathrm{R}_{\text {heater }}=\frac{(120)^{2}}{240}=60 \Omega$
$V_{2}=\frac{120}{54} \times 48=106.6$
So change in voltage $=\mathrm{V}_{1}-\mathrm{V}_{2} \approx 10.4$ Volt
33. To increase the range of ammeter, resistance should be decreased (So additional shunt connected in parallel) so total resistance to ammeter decreases.

Part \# II : IIT-JEE ADVANCED
Single Choice

1. Net resistance of the circuit is 9Ω.
\therefore current drawn from the battery,
$\mathrm{i}=\frac{9}{9}=1 \mathrm{~A}=$ current through 3Ω resistor

Potential difference between A and B is
$\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}=9-(3+2)=4 \mathrm{~V}=8 \mathrm{i}_{1}$
$\therefore \mathrm{i}_{1}=0.5 \mathrm{~A} \quad \therefore \mathrm{i}_{2}=1-\mathrm{i}_{1}=0.5 \mathrm{~A}$
Similarly, potential difference between C and D
$V_{C}-V_{D}=\left(V_{A}-V_{B}\right)-i_{2}(2+2)=4-4 i_{2}=4-4(0.5)=2 V=8 i_{3}$
$\therefore \mathrm{i}_{3}=0.25 \mathrm{~A}$
Therefore, $\mathrm{i}_{4}=\mathrm{i}_{2}-\mathrm{i}_{3}=0.5-0.25$
$\Rightarrow \mathrm{i}_{4}=0.25 \mathrm{~A}$
2. As there is no change in the reading of galvanometer with switch S open or closed. It implies that bridge is balanced. Current through S is zero and

$$
\mathrm{I}_{\mathrm{R}}=\mathrm{I}_{\mathrm{G}}, \mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{Q}}
$$

3. Current I can be independent of R_{6} only when R_{1}, R_{2}, R_{3}, R_{4} and R_{6} form a balanced wheatstone's bridge.

Therefore, $\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\frac{\mathrm{R}_{3}}{\mathrm{R}_{4}} \Rightarrow \mathrm{R}_{1} \mathrm{R}_{4}=\mathrm{R}_{2} \mathrm{R}_{3}$
4. In the first case $\frac{(3 E)^{2}}{R} t=\operatorname{ms} \Delta T \quad$..(i) $\left[H=\frac{V^{2}}{R} t\right]$

When length of the wire is doubled, resistance and mass both are doubled. Therefore, in the second case

$$
\begin{equation*}
\frac{(\mathrm{NE})^{2}}{2 \mathrm{R}} \cdot \mathrm{t}=(2 \mathrm{~m}) \mathrm{s} \Delta \mathrm{~T} \tag{ii}
\end{equation*}
$$

Dividing eq. (ii) by (i), we get

$$
\frac{\mathrm{N}^{2}}{18}=2 \Rightarrow \mathrm{~N}^{2}=36 \Rightarrow \mathrm{~N}=6
$$

5. The circuit can be redrawn as follows

6. $\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}}$ so, $\mathrm{R}=\frac{\mathrm{V}^{2}}{\mathrm{P}}$
$\therefore \mathrm{R}_{1}=\frac{\mathrm{V}^{2}}{100} \& \mathrm{R}_{2}=\mathrm{R}_{3}=\frac{\mathrm{V}^{2}}{60}$

Now, $\mathrm{W}_{1}=\frac{(250)^{2}}{\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)^{2}} \cdot \mathrm{R}_{1}$
and $\mathrm{W}_{2}=\frac{(250)^{2}}{\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)^{2}} \cdot \mathrm{R}_{2}$ and $\mathrm{W}_{3}=\frac{(250)^{2}}{\mathrm{R}_{3}}$
$\mathrm{W}_{1}: \mathrm{W}_{2}: \mathrm{W}_{3}=15: 25: 64 \Rightarrow \mathrm{~W}_{1}<\mathrm{W}_{2}<\mathrm{W}_{3}$
7. Ammeter is always connected in series and voltmeter in parallel.
8. The ratio $\frac{A C}{C B}$ will remain unchanged.
9. $\mathrm{P}=\mathrm{i}^{2} \mathrm{R}$ Current is same, so $\mathrm{P} \propto \mathrm{R}$.

In the first case it is 3 r , in second case it is $(2 / 3) \mathrm{r}$, in III case it is $\frac{r}{3} \&$ in IV case the net resistance is $\frac{3 r}{2}$
$\mathrm{R}_{\text {III }}<\mathrm{R}_{\text {II }}<\mathrm{R}_{\text {IV }}<\mathrm{R}_{1} \quad \therefore \mathrm{P}_{\text {III }}<\mathrm{P}_{\text {II }}<\mathrm{P}_{\text {IV }}<\mathrm{P}_{1}$
10. $\mathrm{R}_{\mathrm{PQ}}=\frac{5}{11} \mathrm{r}, \mathrm{R}_{\mathrm{QR}}=\frac{4}{11} \mathrm{r}$ and $\mathrm{R}_{\mathrm{PR}}=\frac{3}{11} \mathrm{r}$
$\therefore \mathrm{R}_{\mathrm{PQ}}$ is maximum
11. BC, CD and BA are known resistance. The unknown resistance is connected between A and D .
12. $V_{a b}=i_{g} . G=\left(i-i_{g}\right) S \quad \therefore i=\left(1+\frac{G}{S}\right) i_{g}$

Substituting the values, we get $\mathrm{i}=100.1 \mathrm{~mA}$
13. $\mathrm{W}=0$. Therefore, from first law of thermodynamics, $\Delta \mathrm{U}=\Delta \mathrm{Q}=\mathrm{i}^{2} \mathrm{Rt}=(1)^{2}(100)(5 \times 60) \mathrm{J}=30 \mathrm{~kJ}$
14. Current in the respective loop will remain confined in the loop itself. Therefore, current through 2Ω resistance $=0$. Current always flow in closed path.
15. $\mathrm{H}=\mathrm{I}^{2} \mathrm{Rt} \quad \mathrm{I} \rightarrow$ same

So $H \propto R \quad R=\frac{\rho \ell}{\pi r^{2}} \rho, \ell$ same.
So $\mathrm{H} \propto \mathrm{R} \propto \frac{1}{\mathrm{r}^{2}} \quad \mathrm{H}_{\mathrm{BC}}=4 \mathrm{H}_{\mathrm{AB}}$
16.

$\mathrm{R}>2 \Omega \quad \therefore 100-\mathrm{x}>\mathrm{x}$
Applying $\frac{P}{Q}=\frac{R}{S}$
We have $\frac{2}{R}=\frac{x}{100-x}$..(i) $\frac{R}{2}=\frac{x+20}{80-x}$...
Solving eq. (i) and (ii) we get $\mathrm{R}=3 \Omega$
17. Given circuits can be reduced to

18. $\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}}$ and $100 \mathrm{~W}>60 \mathrm{~W}>40 \mathrm{~W}$
$\Rightarrow \frac{\mathrm{V}^{2}}{\mathrm{R}_{100}}>\frac{\mathrm{V}^{2}}{\mathrm{R}_{60}}>\frac{\mathrm{V}^{2}}{\mathrm{R}_{40}} \Rightarrow \frac{1}{\mathrm{R}_{100}}>\frac{1}{\mathrm{R}_{60}}>\frac{1}{\mathrm{R}_{40}}$
[Note: Although $100=60+40$ so at room tempeature

$$
\frac{\mathrm{V}^{2}}{\mathrm{R}_{100}}=\frac{\mathrm{V}^{2}}{\mathrm{R}_{60}}+\frac{\mathrm{V}^{2}}{\mathrm{R}_{40}} \Rightarrow \frac{1}{\mathrm{R}_{100}}=\frac{1}{\mathrm{R}_{60}}+\frac{1}{\mathrm{R}_{40}}
$$

(Applicable Only at room temperature)]
19.

20. $\mathrm{R}=\frac{\rho \mathrm{L}}{\mathrm{A}}=\frac{\rho \mathrm{L}}{\mathrm{Lt}}=\frac{\rho}{\mathrm{t}} \Rightarrow$ independent of L

Multiple Choice

1. $\mathrm{I}=\frac{\mathrm{v}}{\mathrm{R}_{\text {eq }}} 24 \mathrm{~V} \underset{\sim}{\frac{\mathrm{v}}{2}}$
$\mathrm{I}=\frac{240}{32} \Rightarrow \frac{60}{8}=7.5 \mathrm{~mA}$
(A) Current I is 7.5 mA
(B) Voltage drop across R_{L} is 9 volt
(C) $\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\frac{\mathrm{V}_{1}^{2}}{\mathrm{R}_{1}} \times \frac{\mathrm{R}_{2}}{\mathrm{v}_{2}^{2}}=\frac{225 \times 1.2}{2 \times 81} \Rightarrow 1.6$
(D) After interchanging the two resistor R_{1} and R_{2}

$$
\begin{aligned}
& \mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}_{\text {eq }}}=\frac{2.4}{(48)} \times 7=3.5 \mathrm{~mA} \\
& \frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\frac{\mathrm{V}_{1}^{2}}{\mathrm{R}_{\mathrm{L}}} \frac{\mathrm{R}_{\mathrm{L}}}{\left(\mathrm{v}_{2}\right)^{2}} \Rightarrow\left(\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}\right)^{2}
\end{aligned}
$$

$$
\Rightarrow\left[\frac{9}{3}\right]^{2}=9
$$

Assertion-Reason

1. Ans. D

Subjective Problems

1. (i) There are no positive and negative terminals on the galvanometer because only zero deflection is needed.
(ii)

(iii) $\mathrm{AJ}=60 \mathrm{~cm} \quad \therefore \mathrm{BJ}=40 \mathrm{~cm}$

If no deflection is taking place. Then, the Wheatstone's bridge is said to be balanced,

$$
\text { Hence, } \frac{\mathrm{X}}{12}=\frac{\mathrm{R}_{\text {BJ }}}{\mathrm{R}_{\mathrm{AJ}}} \Rightarrow \frac{\mathrm{X}}{12}=\frac{40}{60}=\frac{2}{3}
$$

$\Rightarrow \mathrm{x}=8 \Omega$
2. The rheostat is as shown in figure. Battery should be connected between A and B and the load between C and B

3.

4. Slide wire bridge is most sensitive when the resistance of all the four arms of bridge is same. Hence, B is the most accurate answer.
5.

$J_{1}=\left(\frac{2 \varepsilon}{R+2}\right)^{2} R$
and $\mathrm{J}_{2}=\left(\frac{\varepsilon}{\mathrm{R}+1 / 2}\right)^{2} \mathrm{R}$ as $\frac{\mathrm{J}_{1}}{\mathrm{~J}_{2}}=2.25$
So $\frac{4 \varepsilon^{2}}{(\mathrm{R}+2)}=2.25 \frac{4 \varepsilon^{2}}{(1+2 \mathrm{R})^{2}} \Rightarrow \mathrm{R}=4 \Omega$

MOCK TEST

1. $\mathrm{i}=\frac{7 \mathrm{~V}}{7 \Omega}=1 \mathrm{~A}$.

Current flows in anticolockwise direction in the loop.
Therefore $0-1 \times 2-1 \times 2-5=V_{1}$

$$
\mathrm{V}_{1}=-9 \mathrm{~V} .
$$

2. $i=\frac{50}{20+\mathrm{R}}$

Potential drop across $\mathrm{R}=$ Potential drop across AB

$$
\Rightarrow \frac{50}{20+\mathrm{R}} \cdot \mathrm{R}=30 \Rightarrow \mathrm{R}=30 \Omega
$$

3. $\mathrm{I}_{\mathrm{G}}=10 \mathrm{~mA} \Rightarrow \mathrm{G}=10 \Omega$
$S\left(I-I_{G}\right)=I_{G} G \quad$ where S is shunt is parallel $\mathrm{S}=0.1 \Omega$
4. Case I

$$
\mathrm{R}_{\mathrm{g}} \times \frac{\mathrm{I}}{5}=\left(\mathrm{I}-\frac{\mathrm{I}}{5}\right) \times 4 \quad \Rightarrow \mathrm{R}_{\mathrm{g}}=16 \Omega
$$

Case II

$$
16 \mathrm{I}_{1}=\frac{4 \times 2}{6}\left(\mathrm{I}-\mathrm{I}_{1}\right) \Rightarrow \mathrm{I}_{1}=\mathrm{I} / 13
$$

so decrease in current to previous current
$=\frac{\mathrm{I} / 5-\mathrm{I} / 13}{\mathrm{I} / 5}=\frac{8}{13}$ Ans.

PHYSICS FOR JEE MAINS \& ADVANCED

5. In figure all resistance are connected in parallel.

So $R_{e q}=\frac{2 R \times R / 2}{2 R+R / 2}$ and current in all resistance flow from positive terminal of battery (means A end) to negative terminal of battery (means B end).
6. \because wheat stone bridge is in balanced condition

So $\frac{100}{\ell_{1}}=\frac{\frac{100 \mathrm{x}}{100+\mathrm{x}}}{\ell_{2}}$

$\because \frac{\ell_{1}}{\ell_{2}}=2 \Rightarrow \mathrm{x}=100 \Omega$
7.

Power maximum when $r=R$.
So, power consumed by it will decrease. for $\mathrm{R}>\mathrm{r}$.
8. $\mathrm{V}=\mathrm{E}-\mathrm{ir}=-\frac{\mathrm{Er}}{\mathrm{R}+\mathrm{r}}=\mathrm{E}\left[\frac{\mathrm{R}+\mathrm{r}-\mathrm{r}}{\mathrm{R}+\mathrm{r}}\right]$
$\mathrm{V}=\frac{\mathrm{ER}}{(\mathrm{R}+\mathrm{r})} \Rightarrow \mathrm{V}=0$ at $\mathrm{R}=0$
$\mathrm{V}=\mathrm{E}$ at $\mathrm{R}=\infty$
So (B) is correct option.
9. Voltage across each bulb will be
$\mathrm{V}_{1}=\mathrm{iR}=\frac{\mathrm{V}}{\mathrm{nR}} . \mathrm{R}=(\mathrm{V} / \mathrm{n})$
so power developed by each bulb $=$

$$
\mathrm{iV}_{1}=\frac{\mathrm{V}}{\mathrm{nR}} \cdot \frac{\mathrm{~V}}{\mathrm{n}}=\frac{\mathrm{V}^{2}}{\mathrm{n}^{2} \mathrm{R}} \& \mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}}
$$

So power consumed by one bulb $=\frac{\mathrm{P}}{\mathrm{n}^{2}}$
10. For maximum current, net resistance of cells must be equal to 2.5Ω
i.e. $\frac{n(0.5)}{m}=2.5$
\& $\mathrm{m} \times \mathrm{n}=45$
solving, we get $\mathrm{n}=15, \mathrm{~m}=3$
11. From the figure.
$\mathrm{AC}_{1}=\mathrm{AC}_{2}=\mathrm{C}_{1} \mathrm{C}_{2}=$ radius
$\therefore \quad \angle \mathrm{AC}_{1} \mathrm{~B}=120^{\circ}$
Hence the resistance of four sections are
Hence equivalent resistance R across $A B$ is

$\frac{1}{\mathrm{R}}=\frac{1}{24}+\frac{1}{12}+\frac{1}{12}+\frac{1}{24} \quad$ or $\quad \mathrm{R}=4 \Omega$
\therefore Power $=\frac{\mathrm{V}^{2}}{\mathrm{R}}=\frac{(20)^{2}}{4}=100$ watt.
12. In potentiometer wire potential difference is directly proportional to length
Let potential drop per unit length a potentiometer wire be K.

For zero deflection the current will flow independently in two closed circuits
$\mathrm{IR}=\mathrm{K} \times 10$
$I R+I X=K \times 30$
(2) $-(1)$
$\Rightarrow \quad \mathrm{IX}=\mathrm{k} \times 20$
Divide (1) \& (3)
$\frac{\mathrm{R}}{\mathrm{X}}=\frac{1}{2} \Rightarrow \mathrm{x}=2 \mathrm{R}$

13. $\mathrm{E}=\frac{\lambda}{2 \pi \varepsilon_{0} r}$,
where λ is the linear charge density on the inner cylinder.
and $\mathrm{V}=\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{E} \cdot \mathrm{d} \ell=\frac{\lambda}{2 \pi \varepsilon_{0}} \ln \left(\frac{\mathrm{~b}}{\mathrm{a}}\right)$

Now; $I=\int \vec{J} \cdot \overrightarrow{d A}=\sigma \int \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{dA}}=\sigma \frac{\lambda}{2 \pi \varepsilon_{0} \mathrm{r}} \cdot 2 \pi \mathrm{r} \ell$
Current per unti length will be :

$$
\begin{equation*}
\mathrm{I}=\frac{\sigma \lambda}{\varepsilon_{0}} \tag{2}
\end{equation*}
$$

From(1)

$$
\begin{aligned}
\mathrm{I} & =\frac{2 \sigma \pi \varepsilon_{0}}{\varepsilon_{0} \ell \mathrm{n}(\mathrm{~b} / \mathrm{a})} \mathrm{V} \\
& =\frac{2 \pi \sigma}{\ln (\mathrm{~b} / \mathrm{a})} \mathrm{V}
\end{aligned}
$$

Alternate
$I_{b}=\frac{V}{R}$

$$
\mathrm{R}=\int_{\mathrm{x}=\mathrm{a}}^{\mathrm{b}} \frac{1}{\sigma} \frac{\mathrm{dx}}{2 \pi \mathrm{x} .1}=\frac{1}{2 \pi \sigma} \ln \left(\frac{\mathrm{~b}}{\mathrm{a}}\right) \quad \therefore \mathrm{I}=\frac{2 \pi \sigma \mathrm{~V}}{\ell \mathrm{n}(\mathrm{~b} / \mathrm{a})}
$$

14. $50=10[\mathrm{R}+\mathrm{r}]$
$\mathrm{R}+\mathrm{r}=5 \Omega$
$\eta=\frac{R}{R+r} \Rightarrow 0.25=\frac{R}{R+r}$

$$
\mathrm{R}+\mathrm{r}=4 \mathrm{R}
$$

$$
\mathrm{r}=3 \mathrm{R}
$$

then $\quad \mathrm{R}=\frac{5}{4}=1.25 \Omega$, and $\mathrm{r}=3.75 \Omega$.
15. $\mathrm{P}=\mathrm{VI}$,

$$
\begin{aligned}
& 50=5 \times I \\
& I=10 \mathrm{~A}
\end{aligned}
$$

Power lost in cable $=\mathrm{I}^{2} \mathrm{R}=10 \times 10 \times 0.02=2 \mathrm{~W}$
Power supplied to T.R. $=50 \mathrm{~W}-2 \mathrm{~W}=48 \mathrm{~W}$
16. The circuit can be folded about B and redrawn as

Hence equivalent resistance between A and B is $2 R$.
17. $\mathrm{R}=\frac{1}{\sigma} \times \frac{\mathrm{t}}{4 \pi \mathrm{r}^{2}}$

Using values $\mathrm{R}=5 \times 10^{-11} \Omega$
$\mathrm{R}=5 \times 10^{-11} \Omega$
18. Since current $I=n e A v_{d}$ through both rods is same

$$
2(\mathrm{n}) \mathrm{e} \mathrm{~A}_{\mathrm{L}}=\mathrm{ne}(2 \mathrm{~A}) \mathrm{v}_{\mathrm{R}} \quad \text { or } \quad \frac{\mathrm{v}_{\mathrm{L}}}{\mathrm{v}_{\mathrm{R}}}=1
$$

19. $\mathrm{i}=\frac{\mathrm{dq}}{\mathrm{dt}}=$ slope of $\mathrm{q}-\mathrm{t}$ graph

$$
=-5(\text { which is constant })
$$

Amount of heat generated in time t

$$
\begin{aligned}
& \mathrm{H}=\mathrm{i}^{2} \mathrm{RT} \\
& \mathrm{H} \propto \mathrm{t} .
\end{aligned}
$$

20. From relation $E=\rho J$, the magnitude of electric field is greater in right rod as compared to left rod. There fore magnitude of potential gradient in the right rod is greater. (remember potential is continuous).

Therefore the variation is shown by figure.
21. The arrangement is shown in figure. Consider the hemispherical shell of radius r and thickness $d r$ as shown. Resistance of this shell is :

$\mathrm{dR}=\frac{\mathrm{dr}}{\sigma \times 2 \pi \mathrm{r}^{2}}$
$\mathrm{R}=\frac{1}{2 \pi \sigma} \times \int_{\mathrm{r}=5 \mathrm{~cm}}^{\mathrm{r}=10 \mathrm{~cm}} \frac{\mathrm{dr}}{\mathrm{r}^{2}}=1591.6 \Omega$.
22. Redrawing the given circuit diagram as shown below:

Using point potential theory,
$\frac{V-E}{r}+\frac{V-E}{r}+\frac{V-E}{R}=0$
$\Rightarrow(\mathrm{V}-\mathrm{E})\left(\frac{2}{\mathrm{r}}+\frac{1}{\mathrm{R}}\right)=0$
As $\frac{2}{\mathrm{r}}+\frac{1}{\mathrm{R}} \neq 0$

So $\quad V-E=0$
So, current through $R, i=\frac{V-E}{R}=0$
whatever be the value of R.
23. Consider an elemental part of solid at a distance x from left end of width dx.
Resistance of this elemental part is,
$d R=\frac{\rho d x}{\pi \mathrm{a}^{2}}=\frac{\rho_{0} x d x}{\pi \mathrm{a}^{2}} \Rightarrow \mathrm{R}=\int \mathrm{dR}=\int_{0}^{\mathrm{L}} \frac{\rho_{0} \mathrm{xdx}}{\pi \mathrm{a}^{2}}=\frac{\rho_{0} \mathrm{~L}^{2}}{2 \pi \mathrm{a}^{2}}$

Current through cylinder is, $I=\frac{V}{R}=\frac{V \times 2 \pi \mathrm{a}^{2}}{\rho_{0} \mathrm{~L}^{2}}$

Potential drop across element is, $\mathrm{dV}=\mathrm{IdR}=\frac{2 \mathrm{~V}}{\mathrm{~L}^{2}} \mathrm{xdx}$
$\mathrm{E}(\mathrm{x})=\frac{\mathrm{dV}}{\mathrm{dx}}=\frac{2 \mathrm{~V}}{\mathrm{~L}^{2}} \mathrm{x}$.
24. (A) p.d. across each cell $=\mathrm{V}_{\mathrm{P}}-\mathrm{V}_{\mathrm{Q}}$
(B) If i is clockwise then E_{2} is source and for anticlockwise current E_{1} is source.
(C) P.D. $=\mathrm{E}-\mathrm{ir}$ (when battery supplies energy) $=$ $\mathrm{E}+\mathrm{ir}$ (when battery consumes energy).
ByKVL $i=\frac{E_{1}-E_{2}}{r_{1}+r_{2}} \quad$ (Anticlockwise)
$\therefore V_{P}-V_{Q}=E_{1}-i r_{1}=\frac{E_{1} r_{2}+E_{2} r_{1}}{r_{1}+r_{2}}$
25. there is zero potential difference across 4Ω and 6Ω resistance.

$\mathrm{i}=\frac{20}{2}=10 \mathrm{~A} \quad$ power by battery
$\mathrm{p}_{\mathrm{b}}=\varepsilon \mathrm{i}=20 \times 10=200$ W Ans.
26. The area of cross-section of conductor at point A is less than that at point B. So current density at A is higher. Hence, the electric field at A is more than at B and the thermal power generated at A is more than at B in an element of small same width. since resistance at A is greater
27.

Power supplied by 20 V cell $=(-1)(20)=-20 \mathrm{~W}$ as the cell is not supplying the power, it is eating the power (getting charged)
28. As the length is doubled, the cross section area of the wire becomes half. Thus the resistance of the wire $R=\rho \frac{L}{A}$ becomes four times the previous value. Hence after the wire is elongated the current becomes one fourth. Electric field is potential difference per unit length and hence becomes half the initial value.
The power delivered to resistance is $\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}}$ and hence becomes one fourth.
29. Total charge $=\int I d t=$ Area under the curve

$$
=10 \mathrm{C}
$$

Average current $=\frac{\int I d t}{\int d t}=5 \mathrm{~A}$
Total heat produced $=\int \mathrm{I}^{2} \mathrm{Rdt}=\int_{0}^{2}(-5 \mathrm{t}+10)^{2} .1$
$\mathrm{dt}=\frac{200}{3} \mathrm{~J}$
Maximum Power $=I^{2} \mathrm{R}$ when I is maximum current.
$=100 \times 1=100 \mathrm{~W}$
30. Let a be the radius of left end side cross-section, then radius of cross-section at distance x from left end is a + bx where b is a constant.

From $\mathrm{J}=\sigma \mathrm{E} \Rightarrow \frac{\mathrm{i}}{\mathrm{A}}=\sigma \mathrm{E} \Rightarrow \mathrm{E}=\frac{\mathrm{i}}{\mathrm{A}} \times \frac{1}{\sigma}$ as i and σ are same for all cross-section

$$
\mathrm{E} \propto \frac{1}{\mathrm{~A}}=\frac{1}{\pi(\mathrm{a}+\mathrm{bx})^{2}}
$$

Rate of heat generation per unit length, $H=\frac{i^{2} \rho}{A}$,
So $H \propto \frac{1}{A} \Rightarrow \frac{H}{E}=\frac{i^{2} \rho}{A} \times \frac{A}{i \rho}=i=$ constant
$d V=-\vec{E} \cdot d \vec{x} \Rightarrow \int_{\varepsilon}^{V} d V=\int_{0}^{X} \frac{\rho i d x}{\pi(a+b x)^{2}}$
$\Rightarrow \mathrm{V}=\varepsilon+\frac{\rho \mathrm{i}}{\pi \mathrm{b}}\left[\frac{1}{\mathrm{a}+\mathrm{bx}}-\frac{1}{\mathrm{a}}\right]=\varepsilon-\frac{\rho \mathrm{i}}{\pi \mathrm{ab}}\left(\frac{\mathrm{bx}}{\mathrm{a}+\mathrm{bx}}\right)$.
31. Resistance absorbs energy at the rate of 2 W .

Potential difference across $A B \Rightarrow V_{A B} \cdot I=50 \mathrm{~W}$

$$
\mathrm{V}_{\mathrm{AB}}=50 \mathrm{~V}
$$

Drop across resistor is 2 V , therefore EMF of E is 48 V . As AB is absorbing energy at the rate of $50 \mathrm{~W}, 48 \mathrm{~W}$ is being absorbed by E . Thus E is on charging mode i.e. current is entering from + ve terminal of E.
32. Let the currents be as shown in the figure KVL along ABCDA

$\Rightarrow-10 \mathrm{i}-2+(2-\mathrm{i}) 1=0$

$$
\therefore \mathrm{i}=0
$$

Potential difference across $S=(2-i) 1=2 \times 1=2 \mathrm{~V}$.
33. Both statements 1 and 2 are true. In statement- 1 R is varied while in statement-2 R is kept constant. Hence both statements are independent.
34. From relation $\vec{J}=\sigma \vec{E}$, the current density \vec{J} at any point in ohmic resistor is in direction of electric field \vec{E} at that point. In space having non-uniform electric field, charges released from rest may not move along ELOF. Hence statement 1 is true while statement 2 is false.
35. As the length of wire is doubled, the cross-section area of wire becomes half. Therefore resistance of wire becomes four times and current becomes $\frac{1}{4}$ th of the initial value.
also $v_{d}=\frac{I}{\text { neA }}$

Since current becomes one fourth and cross-section area of wire becomes half, therefore from above equation the drift velocity of electron becomes half. Hence statement I is false.
36. The potential difference across the resistance is always $\left|E_{1}-E_{2}\right|$ in magnitude. Hence statement 1 and 2 are true and statement 2 is correct explanation of statement 1 .
37. Just after switching ON the bulb, the filament of bulb is cold and its resistance is low. But after some time as filament gets hot, its resistance increases and hence withdraws less power from the source as compared to initial duration.
38. The points A and B are at same potential, then under given conditions points A and B on the circuit can be connected by a conducting wire. Hence the circuit can be redrawn as shown in figure 2 .

Therefore statement 1 is true. Statement 2 is obviously false.
39. $\mathrm{R}_{\mathrm{A}}=\frac{\mathrm{R} \cdot \mathrm{R}_{\mathrm{V}}}{\mathrm{R}+\mathrm{R}_{\mathrm{V}}}<\mathrm{R}$
40. $\mathrm{R}_{\mathrm{B}}=\mathrm{R}+\mathrm{R}_{\mathrm{G}}>\mathrm{R}$
41. \% error in case A.
$\frac{\mathrm{R}_{\mathrm{A}}-\mathrm{R}}{\mathrm{R}} \times 100=\left(\frac{\mathrm{R}_{\mathrm{V}}}{\mathrm{R}+\mathrm{R}_{\mathrm{V}}}-1\right) \times 100$
$=\frac{-\mathrm{R}}{\mathrm{R}+\mathrm{R}_{\mathrm{V}}} \times 100 \approx-1 \%$
\% error in case B
$\frac{\mathrm{R}_{\mathrm{B}}-\mathrm{R}}{\mathrm{R}} \times 100=\frac{\mathrm{R}_{\mathrm{G}}}{\mathrm{R}} \times 100 \approx 10 \%$
Hence percentage error in circuit B is more than that in A .
42. (C)
43. Case-I S_{2} is open

$$
\begin{aligned}
& \text { Potential gradient } \\
& \text { So } \quad 6=\frac{E}{L} \quad \frac{L}{2} \\
& E=12 \mathrm{~V}
\end{aligned}
$$

Case-II $\quad \mathrm{S}_{2}$ is closed
$i=\frac{6}{10+r}$
$6-\mathrm{ir}=\frac{\mathrm{E}}{\mathrm{L}} \frac{5 \mathrm{~L}}{12}$
$6-\frac{6}{10+r} r=5$
$\frac{6 r}{r+10}=1$
$6 \mathrm{r}=\mathrm{r}+10$
$r=2 \Omega$
44.

Current in 4Ω resistance $=4 \mathrm{~A}$
Total current $=4+2=6 \mathrm{~A}$
45. The equivalent circuit can be redrawn as shown in figure1. From figure 1 it is obivious that power dissipated by R_{1} is maximum.

Potential difference across R_{2} is $=\frac{25}{25+50} \times 3$ volt $=1$ volt Therefore potential difference across R_{3} or R_{4} $=\frac{20}{20+30} \times 1$ volt $=0.4$ volt

The equivalent resistance of circuit across the cell is $50+25=75$ ohms
Therefore current drawn through cell is $\frac{3}{75} \times 1000 \mathrm{~mA}=40 \mathrm{~mA}$.
48. (A) Since current in both rods is same.
$\therefore \quad \mathrm{n}_{1} \mathrm{ev}_{1} \mathrm{~A}_{1}=\mathrm{n}_{2} \mathrm{ev}_{2} \mathrm{~A}_{2}$
$\therefore \quad \frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}=\frac{\mathrm{n}_{2} \mathrm{~A}_{2}}{\mathrm{n}_{1} \mathrm{~A}_{1}}=\frac{1}{2} \times \frac{2}{1}=1$
(B) $\because \quad E=\rho J=\rho \frac{I}{A}$
$\therefore \quad \frac{E_{1}}{E_{2}}=\frac{\rho_{1}}{\rho_{2}} \times \frac{A_{2}}{A_{1}}=\frac{2}{1} \times \frac{2}{1}=4$
(C) $\frac{\text { p.d. across rod I }}{\text { p.d. across rod II }}=\frac{E_{1} \times A B}{E_{2} \times B C}=4$
(D) $\frac{\text { Average time taken by free electron to move from } \mathrm{A} \text { to } \mathrm{B}}{\text { Average time taken by free electron to move from } \mathrm{B} \text { to } \mathrm{C}}$
$=\frac{\mathrm{AB}}{\mathrm{v}_{1}} \times \frac{\mathrm{v}_{2}}{\mathrm{BC}}=1$
49. When switch S is opened then right side resistance R which was short circuited earlier contributes to equivalent resistance. Hence, equivalent resistance across the battery increases, power dissipated by left resistance R decreases, voltmeter reading decreases and ammeter reading decreases.
50. When switch S_{1} is closed

When switch S_{2} is closed

When switch S_{3} is closed

When switch S_{4} is closed
51.

$\Rightarrow \mathrm{R}_{\mathrm{eq}}=3 / 2 \mathrm{i}=\frac{30}{3 / 2}=20 \mathrm{Amp}$.
From figure current through $\mathrm{B} \rightarrow \mathrm{D}$ branch $=5 \mathrm{Amp}$.

52. Applying KVL in loop ABCD

$\mathrm{E}_{1}=(\mathrm{I}+0.05) \mathrm{R}_{1}+\mathrm{IR}_{2}$
$\Rightarrow \mathrm{I}=-20 \mathrm{~mA}$
\therefore Current through $\mathrm{R}_{1}=30 \mathrm{~mA}$ towards right

Current through $\mathrm{R}_{2}=20 \mathrm{~mA}$ towards left
Applying KVL in loop BGFE
$\mathrm{E}_{2}=(\mathrm{I}+0.05) 100+(0.05) 20=4$ volts
53. The simplified circuit is.

We have to find I.

Let potential of point ' P ' be ' 0 '. Potential at other points are shown in the figure apply kirchoff's current law at point x .
$\frac{x-10}{4}+\frac{x-10}{2}+\frac{x-20}{4}+\frac{(x-10)-0}{2}=0$
$\Rightarrow \mathrm{x}-10+2 \mathrm{x}-20+\mathrm{x}-20+2 \mathrm{x}-20=0$
$\therefore 6 x=70 \Rightarrow x=\frac{35}{3}$ volt.

$\therefore I=\frac{20-\frac{35}{3}}{4}=\frac{25}{12}$ A.
54. $\frac{5}{2} \mathrm{~A}$

$\frac{\mathrm{v}-20}{2}+\frac{\mathrm{v}}{2}+\mathrm{v}-5=0 ; \mathrm{v}-20+\mathrm{v}+2(\mathrm{v}-5)=0$
$\Rightarrow 4 \mathrm{v}-20-10=0$
$\mathrm{v}=\frac{30}{4}=\frac{15}{2} ; \quad \mathrm{v}-5=\frac{15}{2}-5=\frac{15-10}{2}=\frac{5}{2}$
$\Rightarrow \mathrm{i}=\frac{5 / 2}{1}=\frac{5}{2} \mathrm{amp}$. Ans.
55. Efficiency $=\eta=\frac{\text { out put power }}{\text { input power }}$
$\Rightarrow \eta=\frac{\mathrm{i}^{2} \mathrm{R}}{\varepsilon \mathrm{i}} \quad \because \mathrm{i}=\frac{\varepsilon}{\mathrm{R}+\mathrm{r}}$
$\eta=\frac{R}{R+r}$
$0.6=\frac{R}{R+r}$

$\Rightarrow 3 \mathrm{R}+3 \mathrm{r}=5 \mathrm{R}$ or $2 \mathrm{R}=3 \mathrm{r}$
\therefore new efficiency $\eta=\frac{6 R}{6 R+r}=0.9=90 \% \quad$ Ans.
56. $\mathrm{V}=$ Potential difference across the cell $=$ Electric field \times width of the cell
$=8 \times 0.1=0.8$ voltAns.
$\varepsilon=\mathrm{emf}$ of the cell $=10 \times 0.1=1.0$ volt \qquad Ans.
Also r is the internal resistance and i is the current drawn from the cell
$\mathrm{V}=\varepsilon-\mathrm{ir}$ or $0.8=1-1 \mathrm{r} \Rightarrow \mathrm{r}=0.2 \Omega$Ans.
57. (a) When Jockey is not connected.
$I=\frac{E}{13 r}$
Resistance per unit length
$\lambda=\frac{12 \mathrm{r}}{300} \Omega / \mathrm{cm}$
\therefore Let ℓ be the length when we get zero deflection.
$\therefore\left(\frac{\mathrm{E}}{2}\right)=(\lambda \ell) \Rightarrow \frac{\mathrm{E}}{2}=\frac{\mathrm{E}}{13 \mathrm{r}} \times \frac{12 \mathrm{r}}{300} \times \ell$
$\therefore \ell=157.5 \mathrm{~cm}$
(b) Let potential at C is zero

Then apply Kirchoff's Ist law

$$
\frac{x-0}{11 r}+\frac{x-\frac{E}{2}-0}{2 r}+\frac{(x-E-0)}{2 r}=0
$$

$\Rightarrow \quad \mathrm{x}=\frac{11 \mathrm{E}}{16}$

$I_{g}=\frac{x-\frac{E}{2}}{2 r}=\frac{\left(\frac{11 \varepsilon}{16}\right)-\frac{E}{2}}{2 r}=\frac{3 E}{32 r}$

Alternate method
$\ell=300 \mathrm{~cm} \quad \therefore \mathrm{r}^{\prime}=(275) \times \frac{12 \mathrm{r}}{300}$
$\mathrm{r}^{\prime}=11 \mathrm{r}$
Using KVL in loop (i)
$\mathrm{E}-\mathrm{I}_{1} .11 \mathrm{r}-\mathrm{Ir}-\mathrm{Ir}=0$
and in loop (ii)
$-I_{1} 11 r+\left(I-I_{1}\right) 2 r+\frac{E}{2}=0$

Solving equation (i) and (ii) we have
$I_{1}=\frac{E}{16 r} \quad$ and $\quad I=\frac{5 E}{32 r}$
So current in galvanometer
Branch $=\left(I-I_{1}\right)=\frac{5 E}{32 r}-\frac{E}{16 r}=\frac{3 E}{32 r}$
$\Rightarrow \mathrm{I}_{\mathrm{g}}=\frac{3 \mathrm{E}}{32 \mathrm{r}}$
(a) 157.5 cm
(b) $\frac{3 \mathrm{E}}{32 \mathrm{r}}$
58. $\mathrm{R}=100 \Omega, \quad \varepsilon=3 \mathrm{~V}$

In open circuit
$\mathrm{i}=\frac{3+3-3}{5 \times 200}$ So $\mathrm{V}_{\mathrm{AB}}=\varepsilon+\mathrm{ir}$

$=3+\frac{3}{5 \times 200} \times 400$
$\mathrm{V}_{\mathrm{AB}}=4.2 \mathrm{~V}$ Ans. In short circuit

