HINTS \& SOLUTIONS

EXERCISE - 1

Single Choice

1. Radius of $\mathrm{Os}^{189}=\mathrm{r}_{0} \mathrm{~A}_{\mathrm{Os}}^{1 / 3}$
$\mathrm{O}_{\mathrm{s}}^{189}=\mathrm{r}_{0} \mathrm{~A}_{\mathrm{Os}}^{1 / 3}$
Radius of that nucleus $=\frac{1}{3} \times \mathrm{r}_{0}\left(\mathrm{~A}_{\mathrm{O}_{5}}\right)^{\frac{1}{3}}$
$=\mathrm{r}_{0}\left(\frac{189}{27}\right)^{\frac{1}{3}}=\mathrm{r}_{0} 7^{1 / 3}$
\therefore A for that nucleus $=7 \Rightarrow A=7$
2. (D)
3. The binding energy per nucleon in a nucleus varies in a way that depends on the actual value of A .
4. The energy of the reaction $\mathrm{Li}^{7}+\mathrm{p} \longrightarrow 2 \mathrm{He}^{4}$ is (the binding energy per nucleon in Li^{7} and He^{4}
$\mathrm{Q}=\left(2 \mathrm{BE}_{\mathrm{He}}-\mathrm{BE}_{\mathrm{L}}\right)$
$=(2 \times 7.06 \times 4-5.60 \times 7) \mathrm{Mev}=17.28 \mathrm{Mev}$.
5. (D)
6. (B)
7. ${ }_{2}^{4} \mathrm{He}+{ }_{7}^{14} \mathrm{~N} \rightarrow{ }_{8}^{17} \mathrm{O}+{ }_{1}^{1} \mathrm{H}$
8. (A)
9. Energy of γ photon
$=$ Difference in energies of α particles $=0.4 \mathrm{MeV}$
10. No. of nucleus of $\mathrm{P}, \mathrm{N}_{\mathrm{P}}=\frac{\mathrm{m}}{10} \times \mathrm{N}_{\mathrm{A}}$

No. of nucleus of $\mathrm{Q}, \mathrm{N}_{\mathrm{Q}}=\frac{\mathrm{m}}{20} \times \mathrm{N}_{\mathrm{A}}$
No. of Isotope P after 20 days, $N_{p}{ }^{\prime}=\frac{N_{p}}{4}$
Let no. of Isotope Q after 20 days be $\mathrm{N}_{\mathrm{Q}}{ }^{\prime}$
$\mathrm{N}_{\mathrm{Q}}{ }^{\prime}=2 \times \mathrm{N}_{\mathrm{p}}{ }^{\prime}=\frac{\mathrm{N}_{\mathrm{p}}}{2}=\mathrm{NQ}$
Thus no change in number of Q . Hence its half life is infinity.
11. $\mathrm{T}_{\text {avg. }}=\frac{1}{\lambda} \Rightarrow \mathrm{~T}_{1 / 2}=\frac{\ln 2}{\lambda}<\mathrm{T}_{\text {avg. }}$
12. (B)
13. $\frac{d N_{2}}{d t}=\lambda N_{1}-2 \lambda N_{2}$
for N_{2} to be maximum, N_{2}

$$
\frac{\mathrm{d} \mathrm{~N}_{2}}{\mathrm{dt}}=0 \Rightarrow \lambda \mathrm{~N}_{1}=2 \lambda \mathrm{~N}_{2} \text { or } \frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}=2
$$

14. (A)
15. ${ }_{92} \mathrm{U}^{235}+\mathrm{n} \longrightarrow{ }_{54} \mathrm{Xe}^{139}+{ }_{38} \mathrm{Y}^{94}+3 \mathrm{n}$
16. (D)
17. (D)
18. (C)
19. No. of nuclear spliting per second is

$$
\mathrm{N}=\frac{100 \mathrm{MW}}{200 \mathrm{MeV}}=\frac{100}{200 \times 1.6 \times 10^{-19}} \mathrm{~S}^{-1}
$$

No. of neutrons Liberated $=\frac{100}{200} \times \frac{1}{1.6 \times 10^{-19}} \times 2.5 \mathrm{~S}^{-1}$

$$
=\frac{125}{16} \times 1018 \mathrm{~S}^{-1}
$$

20. (C)
21. Fusion reaction is possible at high temperature because kinetic energy is high enough to overcome repulsion between nuclei.
22. (A)
23. Energy released $=[(80 \times 7)+(120 \times 8)]-[200 \times 6.5]$

$$
=220 \mathrm{MeV} \text { Ans. }
$$

24. (B)
25. $\mathrm{R}=\mathrm{R}_{0} \mathrm{~A}^{1 / 3}$

In $\frac{\mathrm{R}}{\mathrm{R}_{0}}=\frac{1}{3} \ln \mathrm{~A}$
It is similar to $\mathrm{y}=\mathrm{mx}$.
26. $\mathrm{R}=\frac{\mathrm{mv}}{2 \mathrm{~B}} \Rightarrow \mathrm{R}_{\mathrm{P}}=\frac{\mathrm{m}_{\mathrm{P}} \mathrm{v}}{\mathrm{eb}} \Rightarrow \mathrm{R}_{235_{\mathrm{u}}}=\frac{\mathrm{m}_{235_{\mathrm{u}} \cdot v}}{\mathrm{eB}}$
$\Delta \mathrm{x}=2 \times \frac{3 \mathrm{M}_{\mathrm{p}} \mathrm{v}}{2 \mathrm{~B}}=6 \times 10 \mathrm{~mm}=60 \mathrm{~mm}$.
27. $A=A_{01} e^{-\lambda t}$
$\ln \mathrm{A}=\ln \mathrm{A}_{0}-\lambda \mathrm{t}$
$\ell n A$ versus t is a linearly decreasing graph with slope depending to λ. As λ does not change, slope remains same.
28. (A)
29. Initial activity $=\left|\frac{\mathrm{dN}}{\mathrm{dt}}\right|=\lambda \mathrm{N}_{0}=\lambda \cdot \frac{\mathrm{m}}{\mathrm{M}}$.NA
30. (A)
31. (D)
32. (C)
33. As a proton is lighter than a neutron, proton can not be converted into neutron without providing energy from outside. Reverse is possible. The weak interaction force is responsible in both the processes (i) conversion of p to n and (ii) conversion of n to p .
34. (B)
35. $A_{P}=A_{Q} e^{-\lambda t}=A_{Q} e^{-\frac{1}{T} t} \quad \therefore t=T \ln \frac{A_{Q}}{A_{P}}$
36. (B)
37. $\mathrm{n}=\lambda \mathrm{N}=\lambda=\frac{\mathrm{n}}{\mathrm{N}} \quad \therefore \mathrm{t}_{1 / 2}=\frac{0.69}{\lambda}=\frac{0.69 \mathrm{~N}}{\mathrm{n}}$
38. (D)

EXERCISE - 2

Part \# I : Multiple Choice

1. (C, D)
2. The total number of nucleons will be $A-4$ and the number of neutrons will be $\mathrm{A}-\mathrm{Z}-3$.
3. $\left|\frac{\mathrm{dN}}{\mathrm{dt}}\right|=\lambda \mathrm{N}=\frac{\ln 2}{\mathrm{~T}_{1 / 2}} \times \frac{1 \times 6.02 \times 10^{23}}{238} \Rightarrow \frac{\mathrm{~T}_{1}}{2}$
$=\frac{\ln 2 \times 6.023 \times 10^{23}}{238 \times 1.24 \times 10^{4}}=4.5 \times 109 \mathrm{yrs}$.
The activity $=$ number of disintegration per second $=$ $1.24 \times 10^{4} \mathrm{dps}$
4. Given $\lambda=0.173 \Rightarrow \mathrm{~T}_{1 / 2}=\frac{\ln 2}{\lambda}=\frac{0.693}{0.173} \cong 4$

Also $\mathrm{N}_{0}-\mathrm{N}=\mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}}$
For $\mathrm{t}=\frac{1}{0.173}$ year $: \Rightarrow \mathrm{N}_{0}-\mathrm{N}=\frac{\mathrm{N}_{0}}{\mathrm{e}}=0.37 \mathrm{~N}_{0}$
5. (A,C,D)
6. (C,D)

Part \# II : Assertion \& Reason

1. (D)
2. Statement-2 is true by definition and correctly explains the staement-1, namely, z^{A} undergoes 2α decays, 2β decays (negative β) and 2γ decays. As a result the daughter product is ${ }_{\mathrm{Z}-2} \mathrm{Y}^{\mathrm{A}-8}$.
3. In spontaneous reaction, binding energy increases.

EXERCISE-3

Part \# I : Matrix Match Type

1. $\mathrm{A} \rightarrow \mathrm{Q}, \mathrm{R}, \mathrm{S} ; \mathrm{B} \rightarrow \mathrm{Q}, \mathrm{R}, \mathrm{S} ; \mathrm{C} \rightarrow \mathrm{Q}, \mathrm{R}, \mathrm{S} ; \mathrm{D} \rightarrow \mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$
2. (A) Energy is released in all the four processes.

Hence mass will decrease
(B) Since energy is released, Binding energy per nucleon will increase.
(C) Mass number conserves in all the processes.
(D) Total charge also conserves in all the processes
3. (A)

Part \# II : Comprehension

Comprehension \# 1

1. (B) 2 .
(D) 3
(D)

Comprehension \# 2

1. In equilibrium, rate of decay $=$ rate of production
2. As Rate of decay = Rate of production

$$
\Rightarrow \mathrm{P}=\lambda \mathrm{N} \Rightarrow \mathrm{~N}=\frac{\mathrm{P}}{\lambda}=\frac{\mathrm{Pt}_{1 / 2}}{\ell \mathrm{n} 2} \quad=1.8 \times 10^{15}
$$

3. $\mathrm{As} \mathrm{N}=\frac{\mathrm{Pt}_{1 / 2}}{\ell \mathrm{n} 2}$
it is dependent upon P and $\mathrm{t}_{1 / 2}$. Initial no. of ${ }^{56} \mathrm{Mn}$ nuclei will make no difference as in equilibrium rate of production equals rate of decay. Large initial no. will only make equilibrium come sooner.

EXERCISE - 4

Subjective Type

1. B.E. $=\left[3 \mathrm{M}_{{ }_{1} \mathrm{H}^{1}}+4 \mathrm{~m}_{\mathrm{on}^{1}}-\mathrm{M}_{3 \mathrm{Li}^{7}}\right] 931 \mathrm{MeV}=39.22$
$\mathrm{MeV}, \frac{\text { B.E. }}{\mathrm{A}}=\frac{39.22}{7}=5.6 \mathrm{MeV}$
2 (i) $r_{1}=\left[\frac{4 \times 10^{30}}{3 \times 10^{17}} \times \frac{3}{4 \pi}\right]^{1 / 3}=14.71 \mathrm{~km}$
(ii) $\mathrm{r}_{2}=\left[\frac{6 \times 10^{24}}{3 \times 10^{17}} \times \frac{3}{4 \pi}\right]^{1 / 3}=168.4 \mathrm{~m}$
2. $\mathrm{E}=20 \times(8.03)-2 \times 4(7.07)-12(7.68)=11.9 \mathrm{MeV}$
3. (a) $(0.680-0.180) \mathrm{MeV}=500 \mathrm{keV}$
(b) $\frac{500 \times 10^{3} \mathrm{e}}{\mathrm{C}}=2.67 \times 10^{-22} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
4. When α-particle will escape, the daughter nucleus will recoil back with same momentum. Applying momentum conservation $\mathrm{p}_{\alpha}=\mathrm{p}_{\mathrm{d}}$

Total energy released
$\mathrm{TE}=\mathrm{KE}$ of $\alpha+\mathrm{KE}$ of daughter nucleus
$=\frac{\mathrm{p}_{\alpha}{ }^{2}}{2 \mathrm{~m}_{\alpha}}+\frac{\mathrm{p}_{\mathrm{d}}^{2}}{2 \mathrm{~m}_{\mathrm{d}}}=\frac{\mathrm{p}_{\alpha}^{2}}{2}\left(\frac{1}{\mathrm{~m}_{\alpha}}+\frac{1}{\mathrm{~m}_{\mathrm{d}}}\right)$
$=\mathrm{m}_{\alpha} \cdot \mathrm{E}_{\alpha}\left(\frac{1}{\mathrm{~m}_{\alpha}}+\frac{1}{\mathrm{~m}_{\mathrm{d}}}\right)=\mathrm{E}_{\alpha}\left(1+\frac{\mathrm{m}_{\alpha}}{\mathrm{m}_{\mathrm{d}}}\right)$
$=4.78\left(1+\frac{4}{222}\right)=4.87 \mathrm{Mev} .=2.67 \times 10^{-22} \mathrm{Kg}-\mathrm{m} / \mathrm{s}$.
6. \quad Specific activity $=$ No. of particles emitted per second by 1 g of the substance
specific activity $=\frac{\mathrm{N}_{\mathrm{A}}}{24} \times \frac{0.693}{\mathrm{~T}_{\frac{1}{2}}}=\mathbf{3 . 2} \times \mathbf{1 0}^{17} \mathbf{~ d p s} / \mathbf{g}$
For U^{235}
specific activity $=\frac{\mathrm{N}_{\mathrm{A}}}{235} \times \frac{0.693}{\mathrm{~T}_{\frac{1}{2}}}=0.8 \times 10^{5} \mathrm{dps} / \mathrm{g}$
7. $\frac{6 \times 10^{23} \times 10^{-6}}{24}\left[1-\mathrm{e}^{-0.693 / 15}\right]=1.125 \times 10^{15}$
8. (a) $\lambda=\frac{\ln 2}{\mathrm{~T}_{1 / 2}}=\frac{0.693}{14 \times 60} \mathrm{~S}^{-1}=8.25 \times 10^{-4} \mathrm{~S}^{-1}$
(b) $\mathrm{n}=\mathrm{p}+\mathrm{e}^{-}+\overline{\mathrm{v}}+\mathrm{Q}$
$\mathrm{Q}=\left(\mathrm{m}_{\mathrm{n}}-\mathrm{m}_{\mathrm{p}}-\mathrm{m}_{\mathrm{e}^{-}}\right) . \mathrm{C}^{2}$
$=(1.008665-1.007276-0.0005486) \times 931 \mathrm{Mev}=782 \mathrm{Kev}$.
9. $\mathrm{U}^{235}+\mathrm{n} \longrightarrow \mathrm{M}_{0}^{95}+\mathrm{La}^{139}+2 \mathrm{n}+\mathrm{Q}$
$\mathrm{Q}=\left(\mathrm{m}_{\mathrm{u}}+\mathrm{m}_{\mathrm{n}}-\mathrm{m}_{\mathrm{M}_{0}}-\mathrm{m}_{\mathrm{La}}-2 \mathrm{~m}_{\mathrm{n}}\right) \cdot \mathrm{C}^{2}$
$=(235.0439+1.0087-94.9058-138.9061$
$-2 \times 1.0087) \times 931 \mathrm{Mev} .=207.9 \mathrm{MeV}$.
10. Let $\lambda=$ decay constant
$\mathrm{N}_{0}=$ number of active nuclei $=3.0 \times 10^{16}$
number of α-particles emitted per second $=\lambda \mathrm{N}_{0}$ number of α-particle falling on the window
$=\frac{\lambda \mathrm{N}_{0} \mathrm{a}}{4 \pi \mathrm{R}^{2}}=\frac{4 \pi \mathrm{R}^{2} \mathrm{~A}}{\mathrm{~N}_{0} \mathrm{a}}$
$=\frac{4 \pi \times 5 \times 10^{4}}{3.0 \times 10^{16} \times 10^{-4}}=2.1 \times 10^{-7} \mathrm{~s}^{-1}$.
11. $\frac{2}{\mathrm{Q}} \times \frac{100}{30} \times \frac{50}{1.6 \times 10^{-19}} \times \frac{2}{\mathrm{~N}_{\mathrm{A}}} \times 10^{-3} \mathrm{Kg}=2.9 \times 10^{-7} \mathrm{~kg}$ where $\mathrm{Q}=\left(2 \mathrm{M}_{1 \mathrm{H}^{2}}-\mathrm{M}_{2} \mathrm{He}^{4}\right) \times 931=23.834531 \mathrm{MeV}$
12. Each deuterium nucleus produces 17.6 MeV .

1 kg of deuterium $=\frac{1 \times 10^{3}}{2} \mathrm{~N}_{\mathrm{A}}$ no. of deuterium $\equiv 17.6 \times \frac{10^{3}}{2} \mathrm{~N}_{\mathrm{A}} \mathrm{MeV}$ energy produced.
\therefore To produce 1 MW , amount of deuterium in kg required per second.
$=\frac{1 \times 10^{6}}{17.6 \times \frac{10^{3}}{2} \times \mathrm{N}_{\mathrm{A}} \times \mathrm{e} \times 10^{6}} \mathrm{~kg} / \mathrm{s}=1.179 \times 10^{-9} \mathrm{~kg} / \mathrm{s}$
similarly for tritium. $\frac{1 \times 10^{6}}{17.6 \times \frac{10^{3}}{2} \times \mathrm{N}_{\mathrm{A}} \times \mathrm{e} \times 10^{6}} \mathrm{~kg} / \mathrm{s}$
$=1.769 \times 10^{-9} \mathrm{~kg} / \mathrm{s}$
13. Let $\mathrm{N}=$ no. of isotope at any instant
$\frac{\mathrm{dN}}{\mathrm{dt}}=\mathrm{R}-\lambda \mathrm{N} \Rightarrow \frac{\mathrm{dN}}{\mathrm{R}-\lambda \mathrm{N}}=\mathrm{dt}$
On integrating with initial condition $\mathrm{t}=0$,
$\mathrm{N}=0$, we get

$$
\begin{aligned}
& \int_{0}^{N} \frac{d N}{R-\lambda N}=\int_{0}^{t} d t \Rightarrow \frac{1}{-\lambda} \ln \frac{\mathrm{R}-\lambda \mathrm{N}}{\mathrm{R}}=\mathrm{t} \\
& \Rightarrow \mathrm{~N}=\frac{\mathrm{R}}{\lambda}\left(\mathrm{I}-\mathrm{e}^{-\lambda \mathrm{t}}\right) \Rightarrow \text { when } \mathrm{t}>\mathrm{t}_{1 / 2} \\
& \quad \mathrm{~N} \approx \frac{\mathrm{R}}{\lambda}=\frac{\mathrm{Rt}_{1 / 2}}{\ell \ln 2}
\end{aligned}
$$

14. $\frac{\mathrm{CTM} \times 100}{\mathrm{~m} \mathrm{~N}_{\mathrm{A}} \ell \mathrm{n} 2}$

$$
=\frac{480 \times 75.5 \times 1.3 \times 10^{9} \times 365 \times 86400 \times 100}{0.693 \times \mathrm{N}_{\mathrm{A}}}=0.36 \%
$$

15. Activity of the sample after time t_{1}

$$
A=N \lambda=N_{0} \lambda e^{-\frac{t}{\tau}}
$$

Enrgy stored in the compaciter
$\mathrm{E}=\frac{1}{2} \frac{\mathrm{Q}^{2}}{\mathrm{C}}=\frac{1}{2} \frac{\left(\mathrm{Q}_{0} \mathrm{e}^{-\frac{\mathrm{t}}{\mathrm{RC}}}\right)^{2}}{\mathrm{C}}=\frac{1}{2} \frac{\mathrm{Q}_{0}{ }^{2}}{\mathrm{C}} \mathrm{e}^{-2 \frac{\mathrm{t}}{\mathrm{RC}}}$
$\frac{\mathrm{A}}{\mathrm{E}}=\frac{\mathrm{N}_{0} \lambda}{\mathrm{Q}_{0}{ }^{2} / 2 \mathrm{C}} \cdot \mathrm{e}^{\left(-\frac{\mathrm{t}}{\tau}+\frac{2 \mathrm{t}}{\mathrm{RC}}\right)}$
For the ratio to remain constant
$-\frac{1}{\tau}+\frac{2}{\mathrm{RC}}=0 \Rightarrow \mathrm{R}=\frac{2 \tau}{\mathrm{C}}$
16. $A_{\beta}=N_{0} \lambda_{1} \exp .\left(-\lambda_{1} t\right)=0.72 \times 10^{11} \mathrm{part} / \mathrm{s}$,
$\mathrm{A}_{\alpha}=\frac{\mathrm{N}_{0} \lambda_{1} \lambda_{2}}{\lambda_{2}-\lambda_{1}}\left[\mathrm{e}^{-\lambda_{1} \mathrm{t}}-\mathrm{e}^{-\lambda_{2} \mathrm{t}}\right] \approx \lambda_{2} \mathrm{~N}_{0} 2^{-\frac{1}{4.6}}$
$=1.4 \times 10^{11} \mathrm{~s}^{-1}$
17. $\mathrm{P}=1-\mathrm{e}^{-\lambda \mathrm{t}}$
18. $\frac{1850}{235} \mathrm{eN}_{\mathrm{A}}$ sec. $=8.781$ days
19. ${ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}={ }^{8} \mathrm{Be}+\mathrm{Q}$
(1) $\Delta \mathrm{m}=2 \times 4.0026-8.0053$

$$
=8.0052-8.0053=-0.0001 \mathrm{amu} \text { Ans }
$$

(2) $\mathrm{Q}=\left(2 \mathrm{~m}_{\mathrm{He}}-\mathrm{m}_{\mathrm{Be}}\right) \cdot \mathrm{C}^{2}$
$=(2 \times 4.0026-8.0053) \times 931 \mathrm{MeV}$

$$
=-93.1 \mathrm{KeV}
$$

Since Q is negative the fusion is not energetically favorable.
20. $79 \mathrm{gm}, \frac{\mathrm{N}_{\mathrm{A}}}{4}$
21. (i) $\mathrm{E}=\left[\mathrm{M}_{\mathrm{U}}+\mathrm{m}_{\mathrm{n}}-\mathrm{M}_{\mathrm{Ba}}-\mathrm{M}_{\mathrm{Kr}}-3 \mathrm{~m}_{\mathrm{n}}\right] 931$

$$
=200.57 \mathrm{MeV}
$$

(ii) $\frac{\mathrm{N}_{\mathrm{A}}}{235} \times \mathrm{E}=22.84 \mathrm{MWh}$
22. $\mathrm{Q}=-\frac{11}{12} \mathrm{~T}_{\mathrm{th}}=-3.7 \mathrm{MeV}$
23. Applying conservation of energy
$m_{A} c^{2}+K_{A}+m_{B} c^{2}+K_{B}=m_{c} c^{2}+K_{C}+$ excitation energy Z
$\left(m_{A}+m_{B}-m_{C}\right) c^{2}+K_{A}+K_{B}=K_{C}+$ excitation energy
$4.65+5+3=\mathrm{K}_{\mathrm{c}}+10$
or $\mathrm{K}_{\mathrm{c}}=2.65 \mathrm{MeV} \quad$ Ans. 2.65 MeV
24. 6000
25. $\mathrm{N}^{14}+\alpha \rightarrow \mathrm{O}^{17}+$ proton

Q value $\mathrm{Q}=(14.00307+4.00260-1.00783-16.99913)$ $931.5=-1.20 \mathrm{MeV}$
Let m and M be mass of α particle and nitrogen nucleus respectively and let minimum KE of α particle be $\frac{1}{2} \mathrm{mu}^{2}$.

From energy equation $\frac{1}{2} \mathrm{mu}^{2}=|\mathrm{Q}|+$ minimum KE of system
$=|\mathrm{Q}|+\frac{1}{2}(\mathrm{~m}+\mathrm{M})\left[\frac{\mathrm{mu}}{(\mathrm{m}+\mathrm{M})}\right]^{2}$
$\therefore \frac{1}{2} \mathrm{mu}^{2}\left(\frac{\mathrm{M}}{\mathrm{m}+\mathrm{M}}\right)=|\mathrm{Q}|=1.2 \times \frac{4}{14}=0.34 \mathrm{MeV}$ Ans.
26. $3.32 \times 10^{-5} \mathrm{Js}^{-1}$
27. $2 \times 10^{11} \mathrm{~kg} / \mathrm{cm}^{3}, 1 \times 10^{38}$ nucl. $/ \mathrm{cm}^{3}$
28. $\mathrm{BE}=$ Original Binding energy + Binding energy due to additional mass defect
$=70+\frac{1}{100}(930)=79.3 \mathrm{MeV} .$.

EXERCISE-5

Part \# I : AIEEE/JEE-MAIN

1. N_{0} is the initial amount of substance and N is the amount left after decay.

Thus, $\quad \mathrm{N}=\mathrm{N}_{0}\left(\frac{1}{2}\right)^{\mathrm{n}}$
$\mathrm{n}=$ no. of half lives $=\frac{1}{\mathrm{t}_{1} / 2}=\frac{15}{5}=3$
Therefore, $\mathrm{N}=\mathrm{N}_{0}\left(\frac{1}{2}\right)^{3}=\frac{\mathrm{N}_{0}}{8}$
2. (1)
3. By conservation of linear momentum
$0=234 \vec{v}+4 \vec{u}$

$\vec{v}=\frac{-4 \vec{u}}{234} \Rightarrow$ speed $v=\frac{4 u}{234}$
4. Given: $\mathrm{N}_{0} \lambda=5000, \mathrm{~N} \lambda=1250$
$\mathrm{N}=\mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}}=\mathrm{N}_{0} \mathrm{e}^{-5 \lambda}$
$1250=\mathrm{N}_{0} \lambda \mathrm{e}^{-5 \lambda}$
$\therefore \frac{\mathrm{N}_{0} \lambda}{\mathrm{~N}_{0} \lambda \mathrm{e}^{-5 \lambda}}=\frac{5000}{1250}=4$
$\mathrm{e}^{5 \lambda}=4 \Rightarrow 5 \lambda=2 \log _{\mathrm{e}} 2 \Rightarrow \lambda=0.4 \operatorname{In} 2$
5. Since, 8α-particles and 2β-particles are emitted so, new atomic number
$\mathrm{Z}^{\prime}=\mathrm{Z}-8 \times 2+2 \times 1$
$=92-16+2=78$
6. Protons cannot be emitted by radioactive substances during decay, because proton remains inside nucleous.
7. $\frac{3}{2} \mathrm{kT}=7.7 \times 10^{-14} \mathrm{~J}$
$\mathrm{T}=\frac{2 \times 7.7 \times 10^{-14}}{3 \times 1.38 \times 10^{-23}}=3.7 \times 10^{9} \mathrm{~K}$
8. Law of conservation of momentum gives
$m_{1} v_{1}=m_{2} v_{2} \Rightarrow \frac{m_{1}}{m_{2}}=\frac{v_{2}}{v_{1}}$
But $\mathrm{m}=\frac{4}{3} \pi \mathrm{r}^{3} \rho \quad$ or $\mathrm{m} \propto \mathrm{r}^{3}$
$\therefore \frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}}=\frac{\mathrm{r}_{1}^{3}}{\mathrm{r}_{2}^{3}}=\frac{\mathrm{v}_{2}}{\mathrm{v}_{1}} \Rightarrow \frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}=\left(\frac{1}{2}\right)^{1 / 3} \quad \therefore \mathrm{r}^{1}: \mathrm{r}^{2}=1: 2^{1 / 3}$
9. As given
${ }_{1} \mathrm{H}^{2}+{ }_{1} \mathrm{H}^{2} \longrightarrow{ }_{2} \mathrm{He}^{4}+$ energy
The binding energy per nucleon of deuteron $\left({ }_{1} \mathrm{H}^{2}\right)$

$$
=1.1 \mathrm{MeV}
$$

\therefore Total binding energy

$$
=2 \times 1.1=2.2 \mathrm{MeV}
$$

The binding energy per nucleon of helium

$$
\left({ }_{2} \mathrm{He}^{4}\right)=7 \mathrm{MeV}
$$

\therefore Total binding energy

$$
=4 \times 7=28 \mathrm{MeV}
$$

Hence, energy released in above process

$$
=28-2 \times 2.2=28-4.4=23.6 \mathrm{MeV}
$$

10. According to law of conservation of energy, kinetic energy of α - particle
$=$ the potential energy of $\alpha-$ particle at distance of closest approach.
i.e $\frac{1}{2} \mathrm{mv}^{2}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{r}}$
$\therefore 5 \mathrm{MeV}=\frac{9 \times 10^{9} \times(2 \mathrm{e}) \times(92 \mathrm{e})}{\mathrm{r}}$
$\left(\because \frac{1}{2} \mathrm{mv}^{2}=5 \mathrm{MeV}\right)$
$\Rightarrow \mathrm{r}=\frac{9 \times 10^{9} \times 2 \times 92 \times\left(1.6 \times 10^{-19}\right)^{2}}{5 \times 10^{6} \times 1.6 \times 10^{-19}}$
$\therefore \mathrm{r}=5.3 \times 10^{-14} \mathrm{~m} \approx 10^{-12} \mathrm{~cm}$
11. $\mathrm{N}=\mathrm{N}_{0}\left(1-\mathrm{e}^{-\lambda t}\right) \Rightarrow \frac{\mathrm{N}_{0}-\mathrm{N}}{\mathrm{N}_{0}}=\mathrm{e}^{-\lambda \mathrm{t}}$
$\therefore \frac{1}{8}=\mathrm{e}^{-\lambda \mathrm{t}} \Rightarrow 8=\mathrm{e}^{\lambda \mathrm{t}} \quad \Rightarrow 3 \ln 2=\lambda \mathrm{t}$
$\Rightarrow \lambda=\frac{3 \times 0.693}{15}$
$t_{1 / 2}=\frac{0.693}{3 \times 0.693} \times 15 \quad t_{1 / 2}=5 \mathrm{~min}$
12. $\mathrm{R}_{0}(\mathrm{~A})^{1 / 3} \Rightarrow \frac{\mathrm{R}_{\mathrm{AI}}}{\mathrm{R}_{\mathrm{Te}}}=\frac{\mathrm{R}_{0}\left(\mathrm{~A}_{\mathrm{AI}}\right)^{1 / 3}}{\mathrm{R}_{0}\left(\mathrm{~A}_{\mathrm{Te}}\right)^{1 / 3}}=\frac{3}{5}$
$\therefore \mathrm{R}_{\mathrm{Te}}=\frac{5}{3} \times 3.6 \Rightarrow \mathrm{R}_{\mathrm{Te}}=6$ Fermi
13. ${ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X}+{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{3}^{7} \mathrm{Li}+{ }_{2}^{4} \mathrm{He}$

It implies that
$\mathrm{A}+1=7+4 \Rightarrow \mathrm{~A}=10$
and $Z+0=3+2 \Rightarrow Z=5$
Thus, it is Boron ${ }_{5}^{10} B$
14. (4)
15. Gamma-photon.
16. (4)
17. $\mathrm{EP}=(8 \times 7.06-7 \times 5.60) \mathrm{MeV}=17.28 \mathrm{MeV}$
18. Nuclear binding energy $=$ [mass of nucleus - mass of nucleons $] C^{2}=\left(M_{o}-8 M_{p}-9 M_{N}\right) C^{2}$
19. Gamma ray is electromagnetic radiation which does not involve any change in proton number or neutron number
20. $\frac{\ln 2}{\lambda_{\mathrm{x}}}=\frac{1}{\lambda_{\mathrm{Y}}}=\lambda_{\mathrm{Y}}=1.4 \lambda_{\mathrm{X}}, \lambda_{\mathrm{Y}}>\lambda_{\mathrm{X}}$, Y will decay faster than X .
21. (3)
22. If binding energy of product nuclei is greater then energy is released.
23. Energy is released
\therefore (B.E. $)_{\text {product }}>(\text { B.E. })_{\text {Reactant }}$
24. $\mathrm{Q}=\Delta \mathrm{mc}^{2}=\frac{1}{2} \times\left(\frac{\mathrm{M}}{2}\right) \mathrm{v}^{2}+\frac{1}{2} \times\left(\frac{\mathrm{M}}{2}\right) \mathrm{v}^{2}$
$\Delta \mathrm{mc}^{2}=\frac{1}{2} \times \mathrm{Mv}^{2} \Rightarrow \mathrm{v}=\mathrm{c} \sqrt{\frac{2 \Delta \mathrm{~m}}{\mathrm{M}}}$
25. ${ }_{\mathrm{Z}} \mathrm{X}^{\mathrm{A}} \longrightarrow 3{ }_{2} \mathrm{He}^{4}+{ }_{\mathrm{Z}-8} \mathrm{Y}^{\mathrm{A}-12}+2_{+1} \mathrm{e}^{0}+2 v$
number of proton $=Z-8$
number of neutron $=(\mathrm{A}-12)-(\mathrm{Z}-8)=\mathrm{A}-\mathrm{Z}-4$
ratio is $\frac{A-Z-4}{Z-8}$
26. $\frac{2}{3} \mathrm{~N}_{0}=\mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}_{1}} \Rightarrow \frac{1}{3} \mathrm{~N}_{0}=\mathrm{N}_{0} \mathrm{e}^{-\lambda t_{2}}$
$2=\mathrm{e}^{\lambda\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)} \Rightarrow \lambda\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)=\ln 2$
$\Rightarrow\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)=\frac{\ell \mathrm{n} 2}{\lambda}=20 \mathrm{~min} . A n s$.
27. Statement-1: Energy of β^{-}particle from 0 to maximum so $E_{1}-E_{2}$ is the continuous energy spectrum.
Statement-2 : For energy conservation and momentum at least three particles daughter nucleus $+\beta^{-1}$ and antineutron.
28. ${ }_{0} \mathrm{n}^{1} \rightarrow{ }_{1} \mathrm{H}^{1}+{ }_{-1} \mathrm{e}^{0}+\bar{v}+\mathrm{Q}$
$\Delta \mathrm{m}=\mathrm{m}_{\mathrm{n}}-\mathrm{m}_{\alpha}-\mathrm{m}_{\mathrm{e}}$
$=\left(1.6725 \times 10^{-27}-1.6725 \times 10^{-27}-9 \times 10^{-31}\right) \mathrm{kg}$
$=-9 \times 10^{-31} \mathrm{~kg}$
Energy $=9 \times 10^{-31} \times\left(3 \times 10^{8}\right)^{2}=0.511 \mathrm{MeV}$
Which is nearly equal to 0.73 Mev
but as energy will be required.
since mass is increasing
so answer $=-0.511 \mathrm{Mev}$
either (1) or bonus.
29. $\Delta \mathrm{E}=\mathrm{h} v$

$$
v=\frac{\Delta \mathrm{E}}{\mathrm{~h}}=\mathrm{k}\left[\frac{1}{(\mathrm{n}-1)^{2}}-\frac{1}{\mathrm{n}^{2}}\right]=\frac{\mathrm{k} 2 \mathrm{n}}{\mathrm{n}^{2}(\mathrm{n}-1)^{2}} \approx \frac{2 \mathrm{k}}{\mathrm{n}^{3}} \propto \frac{1}{\mathrm{n}^{3}}
$$

Part \# II : IIT-JEE ADVANCED

1. (i) During γ-decay atomic number (Z) and mass number (A) does not change. So the correct option is (C) because in all other options either Z, A or both is/are changing.
(ii) $\mathrm{R}=\mathrm{R}_{0}\left(\frac{1}{2}\right)^{\mathrm{n}}$

Here $\mathrm{R}=$ activity of radioactive substance after n half lives
$=\frac{\mathrm{R}_{0}}{16} \quad$ (given)
Substituting in equation (1), we get $\mathrm{n}=4$
$\therefore \quad \mathrm{t}=(\mathrm{n}) \mathrm{t}_{1 / 2}=(4)(100 \mu \mathrm{~s})=400 \mu \mathrm{~s}$
$\mathrm{R}=\mathrm{R}_{0}\left(\frac{1}{2}\right)^{\mathrm{n}}$
2. The magnitude of momentum of the daughter nucleus and α-particles will be equal
$\mathrm{Q}=\mathrm{KE}$ of daughter nucleus +KE of α-particle
$=\frac{\mathrm{p}^{2}}{2 \mathrm{~m}_{\mathrm{d}}}+\frac{\mathrm{p}^{2}}{2 \mathrm{~m}_{\alpha}}$
KE of α-particle $=\frac{\mathrm{p}^{2}}{2 \mathrm{~m}_{\alpha}}=\frac{1}{\mathrm{~m}_{\alpha}} \times \frac{\mathrm{m}_{\alpha} \cdot \mathrm{m}_{\mathrm{d}}}{\mathrm{m}_{\alpha}+\mathrm{m}_{\mathrm{d}}} . \alpha$
$=\frac{216}{220} \times 5.5 \mathrm{Mev} .=5.4 \mathrm{Mev}$.
3. Nuclear density is constant hence, mass \propto volume or $m \propto V$
4. Let n_{0} be the number of radioactive nuclei at time $\mathrm{t}=0$. Number of nuclei decayed in time t are given $n_{0}\left(1-e^{-2 \lambda}\right)$, which is also equal to the number of beta particles emitted the same interval of time. For the given condition,

$$
\begin{align*}
& \mathrm{n}=\mathrm{n}_{0}\left(1-\mathrm{e}^{-2 \lambda}\right) \tag{i}\\
& (\mathrm{n}+0.75 \mathrm{n})=\mathrm{n}_{0}\left(1-\mathrm{e}^{-4 \lambda}\right) \tag{ii}
\end{align*}
$$

Dividing (ii) by (i) we get
$1.75=\frac{1-\mathrm{e}^{-4 \lambda}}{1-\mathrm{e}^{-2 \lambda}}$ or $1.75-1.75 \mathrm{e}^{-2 \lambda}=1-\mathrm{e}^{-4 \lambda}$
$\therefore 1.75 \mathrm{e}^{-2 \lambda}-\mathrm{e}^{-4 \lambda}=\frac{3}{4}$
Let us take $\mathrm{e}^{-2 \lambda}=\mathrm{x}$
Then the above equation is,
$x^{2}-1.75 x+0.75=0$
or $\mathrm{x}=\frac{1 / 75 \sqrt{(1.75)^{2}-(4)(0.75)}}{2}$
or $\mathrm{x}=1$ and $\frac{3}{4}$
\therefore From equation (iiii) either $\mathrm{e}^{-2 \lambda}=1$ or $\mathrm{e}^{-2 \lambda}=\frac{3}{4}$
but $\mathrm{e}^{-2 \lambda}=1$ is not accepted because which means $\lambda=0$.
Hence
$\mathrm{e}^{-2 \lambda}=\frac{3}{4}$ or $-2 \lambda \ln (\mathrm{e})=\ln (3)-\ln (4)=\ln (3)-2 \ln (2)$
$\therefore \lambda=\ln (2)-\frac{1}{2} \ln (3)$
Substituting the given values,
$\lambda=0.6931-\frac{1}{2} \times(1.0986)=0.14395 \mathrm{~s}^{-1}$
\therefore Mean life $\mathrm{t}_{\text {means }}=\frac{1}{\lambda}=6.947 \mathrm{sec}$
5. Activity reduces from 6000 dps to 3000 dps in 140 days. It implies that half-life of the radioactive sample is 140 days. In 280 days (or two half-lives) activity will remain 1/4th of the initial activity. Hence the initial activity of the sample is $-4 \times 6000 \mathrm{dps}=24000 \mathrm{dps}$
Therefore, the correct option is (D)
6. Let N_{0} be the initial number of nuclei of ${ }^{238} \mathrm{U}$.

After time $\mathrm{t}, \mathrm{N}_{\mathrm{U}}=\mathrm{N}_{0}\left(\frac{1}{2}\right)^{\mathrm{n}}$
Here $\mathrm{n}=$ number of half-lives $=\frac{\mathrm{t}}{\mathrm{t}_{1 / 2}}=\frac{1.5 \times 10^{9}}{4.5 \times 10^{9}}=\frac{1}{3}$
$\mathrm{N}_{\mathrm{U}}=\mathrm{N}_{0}\left(\frac{1}{2}\right)^{\frac{1}{3}} \quad$ and $\mathrm{N}_{\mathrm{Pb}}=\mathrm{N}_{0}-\mathrm{N}_{\mathrm{U}}=\mathrm{N}_{0}\left[1-\left(\frac{1}{2}\right)^{\frac{1}{3}}\right]$
$\therefore \frac{\mathrm{N}_{\mathrm{U}}}{\mathrm{N}_{\mathrm{Pb}}}=\frac{\left(\frac{1}{2}\right)^{\frac{1}{3}}}{1-\left(\frac{1}{2}\right)^{3}}=3.861$
7. $\Delta \mathrm{m}=4 \mathrm{~m}_{\mathrm{He}}-\mathrm{m}_{0}$
$\Delta \mathrm{m}=.0 .011 \mathrm{amu} \Delta \mathrm{E}=\Delta \mathrm{MC}^{2}=0$
binding energy per/Nucleon $=.176 / 16 \mathrm{amu}=10.24 \mathrm{meV}$
8. Number of nuclei left after 2 half lives $=\frac{N_{0}}{4}$
probability of a nucleus decaying = no. of nuclei decayed total no.
$=\frac{3 \mathrm{~N}_{0} / 4}{\mathrm{~N}_{0}}=\frac{3}{4}$
9. Fission is the process which involves conversion of some matter into energy and shown by atoms of high atomic number such as ${ }_{92} \mathrm{U}^{235}$.
Fusion also converts some matter into energy but shown by atoms of low atomic number such as ${ }_{1} \mathrm{H}^{1},{ }_{1} \mathrm{H}^{2}$.
β-decay essentially carried out by weak nuclear forces and also converts matter into energy for example
${ }_{0} \mathrm{n}^{1} \rightarrow{ }_{1} \mathrm{H}^{1}+{ }_{-1} \mathrm{e}^{0}\left(\beta^{-}\right)+\bar{v}+$ energy
${ }_{1} \mathrm{H}^{1} \rightarrow{ }_{0} \mathrm{n}^{1}+{ }_{+1} \mathrm{e}^{0}\left(\beta^{+}\right)+v+$ energy
Exothermic nuclear reactions also converts matter into energy and all spontaneous nuclear reaction are exothermic.
10. Since energy is released in a fission process, the rest mass energy must decrease.
11. Different related laws / processes.
12. (A) For $1<A<50$, on fusion mass number for compound nucleus is less than 100 . B / A remains same. Hence no energy is released
(B) For $51<\mathrm{A}<100$, on fusion mass no. of compound nucleus is between 100 and 200. B/A increases. Hence energy is released.
(C) On fission for $100<\mathrm{A}<200$, the mass no. for fission nuclei will be between 50 to 100 . B/A decreases. Hence no energy is released.
(D) On fission for $200<\mathrm{A}<260$, the mass no. for fission nuclei will be between 100 to 130 , B / A will increase. Hence energy is released.

13. Given that $\lambda_{1} N_{1}=5 \mu \mathrm{Ci}$

$$
\lambda_{2} \mathrm{~N}_{2}=10 \mu \mathrm{Ci}
$$

$\lambda_{2} \mathrm{~N}_{2}=2 \lambda_{1} \mathrm{~N}_{1}$
Also $\quad \mathrm{N}_{1}=2 \mathrm{~N}_{2}$
Then $\quad \lambda_{2} \mathrm{~N}_{2}=2 \lambda_{1}\left(2 \mathrm{~N}_{2}\right)$
$\lambda_{2}=4 \lambda_{1}$
15. From energy conservation

$$
\begin{aligned}
& 2\left(\frac{3}{2} \mathrm{kT}\right)=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{e}^{2}}{\mathrm{r}} \\
\Rightarrow & \mathrm{~T}=\frac{\left(1.44 \times 10^{-9}\right)}{\left(8.6 \times 10^{-5}\right)} \times \frac{1}{3 \times 4 \times 10^{-15}}=1.39 \times 10^{9} \mathrm{~K}
\end{aligned}
$$

16. $\mathrm{nt}_{0}>5 \times 10^{14} \mathrm{~s} / \mathrm{cm}^{3}$
for deuteron density $=8.0 \times 10^{14} \mathrm{~cm}^{-3}$, confinement time $=9.0 \times 10^{-1} \mathrm{~s}$
$\mathrm{nt}_{0}=7.2 \times 10^{14} \mathrm{~s} / \mathrm{cm}^{3}$
17. (A)
(P) : Capacitor is charged, hence its energy is increased
(Q) : The temperature is increased, hence its energy is increased or as the external positive work is done, hence energy increases
(R) : The temperature decreases, its energy is decreased
(S) : All natural process, energy of the system decreases
(T) : The current is produced. Hence energy of the system increases
(B)
(P), (R), (S) no mechanical energy is provided to the system
(Q) the mechanical energy is provided which increases the temperature and hence random motion of molecules
(T) Mechanical work is done to change the magnetic field, which increases the mechanical energy of electron and these electrons strike with stationary positive charge and energy is converted in random motion.
(C)
(S) Internal binding energy is converted into mechanical energy
(D)
(S) Mass changes only in nuclear process.
18. $-\frac{\mathrm{dN}}{\mathrm{dt}}=\lambda \mathrm{N} \Rightarrow-\frac{\mathrm{dN}}{\mathrm{dt}}=\lambda \mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}}$
$\ln \left|\frac{\mathrm{dN}}{\mathrm{dt}}\right|=-\lambda t+\ln \left(\lambda \mathrm{N}_{0}\right) \quad \Rightarrow \mathrm{y}=\mathrm{mx}+\mathrm{c}$
$\mathrm{m}=-\lambda \Rightarrow \lambda=\frac{1}{2}\left[\right.$ slope by graph $=\frac{1}{2}$]
$\mathrm{T}=\frac{\ln 2}{\lambda}=2 \times 0.693=\frac{4.16}{\mathrm{n}}$
$\mathrm{n}=3=$ no. of half life. $\Rightarrow \mathrm{p}=\mathrm{z}^{3}=8$.
19. $\mathrm{N}=\mathrm{N}_{0} \mathrm{e}^{-\lambda t}$
$\frac{\mathrm{dN}}{\mathrm{dt}}=10^{10}=\mathrm{N}_{0}(\lambda) \mathrm{e}^{-10^{-9} \mathrm{t}}$
at $(\mathrm{t}=0)$
$10^{10}=\mathrm{N}_{0} 10^{-9}$
$\mathrm{N}_{0}=10^{19}$
mass of sample $=\mathrm{N}_{0} 10^{-25}$
$=\mathrm{N}_{0}($ mass of the atom $)$
$=10^{-6} \mathrm{kgm}$
$=10^{-6} \times 10^{3} \mathrm{gm}$
$=10^{-3} \mathrm{gm}$
$=1 \mathrm{mg}$
20. $+120 \mathrm{e} \quad \mathrm{r}=10 \mathrm{fm}+\mathrm{e}$
$\frac{\left(9 \times 10^{9}\right)(120 \mathrm{e})(\mathrm{e})}{10 \times 10^{-15}}=\frac{\mathrm{p}^{2}}{2 \mathrm{~m}} \quad \lambda=\frac{\mathrm{h}}{\mathrm{p}} \quad \therefore \mathrm{p}^{2}=\frac{\mathrm{h}^{2}}{\lambda^{2}}$
$2\left(\frac{5}{3} \times 10^{-27}\right) 10^{15}\left(9 \times 10^{9}\right)(12) \mathrm{e}^{2}=\frac{\mathrm{h}^{2}}{2 \mathrm{~m} \lambda^{2}}$
(120) (3) $10^{-27+15+9} \lambda^{2}=(4.2)^{2} \times 10^{-30}$
$\lambda^{2}=\frac{4.2 \times 4.2 \times 10^{-30}}{360 \times 10^{-3}}=\frac{42 \times 42}{360} \times 10^{-29}$
$=7^{2} \times 10^{-30} \quad \lambda=7 \times 10^{-15} \mathrm{~m}=7 \mathrm{fm}$
21. $\mathrm{KE}_{\max }$ of $\beta^{-} \Rightarrow \quad \mathrm{Q}=0.8 \times 10^{6} \mathrm{eV}$
$\mathrm{KE}_{\mathrm{P}}+\mathrm{KE}_{\beta^{-}}+\mathrm{KE}_{\bar{v}}=\mathrm{Q} \Rightarrow \mathrm{KE}_{\mathrm{P}}$ is almost zero
When $\mathrm{KE}_{\beta^{-}}=0 \Rightarrow$ then $\mathrm{KE}_{\bar{v}^{\prime}}=\mathrm{Q}-\mathrm{KE}_{\mathrm{p}} \cong \mathrm{Q}$
22. $0 \leq \mathrm{KE}_{\beta^{-}} \leq \mathrm{Q}-\mathrm{KE}_{\mathrm{P}}-\mathrm{KE}_{\overline{\mathrm{v}}}$
$0 \leq \mathrm{KE}_{\beta^{-}}<\mathrm{Q}$
