

SOLVED EXAMPLES

Ex. 1 Find

- (a) The coefficient of x^7 in the expansion of $\left(ax^2 + \frac{1}{bx}\right)^{11}$
- (b) The coefficient of x^{-7} in the expansion of $\left(ax \frac{1}{bx^2}\right)^{11}$

Also, find the relation between a and b, so that these coefficients are equal.

Sol. (a) In the expansion of $\left(ax^2 + \frac{1}{bx}\right)^{11}$, the general term is :

$$T_{r+1} = {}^{11}C_r(ax^2)^{11-r} \left(\frac{1}{bx}\right)^r = {}^{11}C_r.\frac{a^{11-r}}{b^r}.x^{22-3r}$$

putting
$$22 - 3r = 7$$

$$\therefore 3r = 15 \implies r = 5$$

$$T_6 = {}^{11}C_5 \frac{a^6}{b^5}.x^7$$

Hence the coefficient of x^7 in $\left(ax^2 + \frac{1}{bx}\right)^{11}$ is $^{11}C_5a^6b^{-5}$.

Note that binomial coefficient of sixth term is ¹¹C₅.

(b) In the expansion of $\left(ax - \frac{1}{bx^2}\right)^{11}$, general term is :

$$T_{r+1} = {}^{11}C_r(ax)^{11-r} \left(\frac{-1}{bx^2}\right)^r = (-1)^{r11}C_r \frac{a^{11-r}}{b^r}.x^{11-3r}$$

putting
$$11 - 3r = -7$$

$$\therefore \qquad 3r = 18 \quad \Rightarrow \quad r = 6$$

$$T_7 = (-1)^6 \cdot {}^{11}C_6 \frac{a^5}{b^6} \cdot x^{-7}$$

Hence the coefficient of x^{-7} in $\left(ax - \frac{1}{bx^2}\right)^{11}$ is $^{11}C_6a^5b^{-6}$.

Also given:

Coefficient of x^7 in $\left(ax^2 + \frac{1}{bx}\right)^{11} = \text{coefficient of } x^{-7} \text{ in } \left(ax - \frac{1}{bx^2}\right)^{11}$

$$\Rightarrow \qquad {}^{11}C_5 a^6 b^{-5} = {}^{11}C_6 a^5 b^{-6}$$

$$\Rightarrow$$
 ab = 1 $(: ^{11}C_5 = ^{11}C_6)$

which is the required relation between a and b.

- Ex. 2 Find the numerically greatest term in the expansion of $(3-5x)^{15}$ when $x = \frac{1}{5}$.
- Sol. Let r^{th} and $(r + 1)^{th}$ be two consecutive terms in the expansion of $(3 5x)^{15}$

$$T_{r+1} \ge T_r$$

$${}^{15}C_{r} 3^{15-r} (|-5x|)^{r} \ge {}^{15}C_{r-1} 3^{15-(r-1)} (|-5x|)^{r-1}$$

$$\frac{(15)!}{(15-r)!r!} \mid -5x \mid \ge \frac{3.(15)!}{(16-r)!(r-1)!}$$

$$5. \frac{1}{5} (16-r) \ge 3r$$

$$16-r \ge 3r$$

$$r \le 4$$

Ex.3 Given T_3 in the expansion of $(1-3x)^6$ has maximum numerical value. Find the range of 'x'.

Sol.

Using
$$\frac{n+1}{1+\left|\frac{a}{b}\right|}-1 \le r \le \frac{n+1}{1+\left|\frac{a}{b}\right|}$$

$$\frac{6+1}{1+\left|\frac{1}{-3x}\right|} - 1 \le 2 \le \frac{7}{1+\left|\frac{1}{-3x}\right|}$$

Let
$$|\mathbf{x}| = \mathbf{t}$$

$$\frac{21t}{3t+1} - 1 \le 2 \le \frac{21t}{3t+1}$$

$$\begin{cases} \frac{21t}{3t+1} \le 3 \\ \frac{21t}{3t+1} \ge 2 \end{cases} \Rightarrow \begin{cases} \frac{4t-1}{3t+1} \le 0 \Rightarrow t \in \left[-\frac{1}{3}, \frac{1}{4}\right] \\ \frac{15t-2}{3t+1} \ge 0 \Rightarrow t \in \left(-\infty, -\frac{1}{3}\right] \cup \left[\frac{2}{15}, \infty\right) \end{cases}$$

Common solution

$$t \in \left[\frac{2}{15}, \frac{1}{4}\right]$$
 \Rightarrow $x \in \left[-\frac{1}{4}, -\frac{2}{15}\right] \cup \left[\frac{2}{15}, \frac{1}{4}\right]$

Ex. 4 Find the last two digits of the number $(17)^{10}$.

Sol.
$$(17)^{10} = (289)^5 = (290 - 1)^5$$

=
$${}^{5}C_{0}(290)^{5} - {}^{5}C_{1}(290)^{4} + \dots + {}^{5}C_{4}(290)^{1} - {}^{5}C_{5}(290)^{0}$$

=
$${}^{5}C_{0}(290)^{5} - {}^{5}C_{1}(290)^{4} + \dots {}^{5}C_{3}(290)^{2} + 5 \times 290 - 1$$

= A multiple of 1000 + 1449

Hence, last two digits are 49

MATHS FOR JFF MAINS & ADVANCED

- **Ex.5** Find the number of rational terms in the expansion of $(9^{1/4} + 8^{1/6})^{1000}$.
- **Sol.** The general term in the expansion of $(9^{1/4} + 8^{1/6})^{1000}$ is

$$T_{r+1} = {}^{1000}C_r \left(9^{\frac{1}{4}}\right)^{1000-r} \left(8^{\frac{1}{6}}\right)^r = {}^{1000}C_r \frac{1000-r}{3^{\frac{1000-r}{2}}2^{\frac{r}{2}}}$$

The above term will be rational if exponents of 3 and 2 are integers

It means $\frac{1000-r}{2}$ and $\frac{r}{2}$ must be integers

The possible set of values of r is $\{0, 2, 4, \dots, 1000\}$

Hence, number of rational terms is 501

- **Ex. 6** Show that the integer just above $(\sqrt{3} + 1)^{2n}$ is divisible by 2^{n+1} for all $n \in \mathbb{N}$.
- Sol. Let $(\sqrt{3} + 1)^{2n} = (4 + 2\sqrt{3})^n = 2^n (2 + \sqrt{3})^n = I + f$ (i) where I and f are its integral & fractional parts respectively 0 < f < 1.

Now $0 < \sqrt{3} - 1 < 1$

$$0 < (\sqrt{3} - 1)^{2n} < 1$$

Let
$$(\sqrt{3} - 1)^{2n} = (4 - 2\sqrt{3})^n = 2^n (2 - \sqrt{3})^n = f'.$$
(ii)

0 < f' < 1

adding (i) and (ii)

$$I + f + f' = (\sqrt{3} + 1)^{2n} + (\sqrt{3} - 1)^{2n}$$

$$=2^{n}\left[(2+\sqrt{3}\)^{n}+(2-\sqrt{3}\)^{n}\right]\\ =2.2^{n}\left[{}^{n}C_{_{0}}\,2^{n}+{}^{n}C_{_{2}}\,2^{n-2}\,(\,\sqrt{3}\)^{2}+......\right]$$

$$I + f + f' = 2^{n+1} k$$
 (where k is a positive integer)

$$0 < f + f' < 2 \qquad \Rightarrow \qquad f + f' = 1$$

 $I + 1 = 2^{n+1} k$.

I + 1 is the integer just above $(\sqrt{3} + 1)^{2n}$ and which is divisible by 2^{n+1} .

- Ex.7 If $(1+x)^n = \sum_{r=0}^n {^nC_r}x^r$, then prove that $C_1^2 + 2.C_2^2 + 3.C_3^2 + \dots + n.C_n^2 = \frac{(2n-1)!}{((n-1)!)^2}$
- Sol. $(1+x)^n = C_0 + C_1x + C_2x^2 + C_2x^3 + \dots + C_nx^n$ (i)

Differentiating both the sides, w.r.t. x, we get

$$n(1+x)^{n-1} = C_1 + 2C_2x + 3C_2x^2 + \dots + n.C_nx^{n-1}$$
(ii)

also, we have

$$(x+1)^n = C_0 x^n + C_1 x^{n-1} + C_2 x^{n-2} + \dots + C_n$$
(iii)

Multiplying (ii) & (iii), we get

$$(C_1 + 2C_2x + 3C_3x^2 + \dots + C_nx^{n-1})(C_0x^n + C_1x^{n-1} + C_2x^{n-2} + \dots + C_n) = n(1+x)^{2n-1}$$

Equating the coefficients of x^{n-1} , we get

$$C_1^2 + 2C_2^2 + 3C_3^2 + \dots + n.$$
 $C_n^2 = n.$ $C_{n-1}^2 = \frac{(2n-1)!}{((n-1)!)^2}$

Ex. 8: If $(1+x)^n = C_0 + C_1x + C_2x^2 + \dots + c_nx^n$, then show that

(i)
$$C_0 + 3C_1 + 3^2C_2 + \dots + 3^n C_n = 4^n$$
.

(ii)
$$C_0 + 2C_1 + 3 \cdot C_2 + \dots + (n+1) \cdot C_n = 2^{n-1} (n+2).$$

(iii)
$$C_0 - \frac{C_1}{2} + \frac{C_2}{3} - \frac{C_3}{4} + \dots + (-1)^n \frac{C_n}{n+1} = \frac{1}{n+1}$$

Sol. (i)
$$(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$$

put $x = 3$
 $C_0 + 3 \cdot C_1 + 3^2 \cdot C_2 + \dots + 3^n \cdot C_n = 4n$

(ii) I Method: By Summation

L.H.S. =
$${}^{n}C_{0} + 2 \cdot {}^{n}C_{1} + 3 \cdot {}^{n}C_{2} + \dots + (n+1) \cdot {}^{n}C_{n}$$
.
= $\sum_{r=0}^{n} (r+1) \cdot {}^{n}C_{r} = \sum_{r=0}^{n} r \cdot {}^{n}C_{r} + \sum_{r=0}^{n} {}^{n}C_{r}$
= $n \sum_{r=0}^{n} {}^{n-1}C_{r-1} + \sum_{r=0}^{n} {}^{n}C_{r} = n \cdot 2^{n-1} + 2^{n} = 2^{n-1} (n+2)$. RHS

II Method: By Differentiation

$$(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$$

Multiplying both sides by x,

$$x(1+x)^n = C_0x + C_1x^2 + C_2x^3 + \dots + C_nx^{n+1}$$

Differentiating both sides

$$(1+x)^n + x n (1+x)^{n-1} = C_0 + 2 \cdot C_1 x + 3 \cdot C_2 x^2 + \dots + (n+1)C_n x^n$$

putting x = 1, we get

$$C_0 + 2.C_1 + 3.C_2 + + (n+1)C_n = 2^n + n.2^{n-1}$$

$$C_0 + 2.C_1 + 3.C_2 + + (n+1) C_n = 2^{n-1} (n+2)$$
 Proved

(iii) I Method: By Summation

$$\begin{split} & L.H.S. = C_0 - \frac{C_1}{2} + \frac{C_2}{3} - \frac{C_3}{4} + \dots + (-1)^n \cdot \frac{C_n}{n+1} \\ & = \sum_{r=0}^n (-1)^r \cdot \frac{{}^nC_r}{r+1} = \frac{1}{n+1} \sum_{r=0}^n (-1)^r \cdot {}^{n+1}C_{r+1} \qquad \left\{ \frac{n+1}{r+1} \cdot {}^nC_r = {}^{n+1}C_{r+1} \right\} \\ & = \frac{1}{n+1} \left[{}^{n+1}C_1 - {}^{n+1}C_2 + {}^{n+1}C_3 - \dots + (-1)^n \cdot {}^{n+1}C_{n+1} \right] \\ & = \frac{1}{n+1} \left[{}^{-n+1}C_0 + {}^{n+1}C_1 - {}^{n+1}C_2 + \dots + (-1)^n \cdot {}^{n+1}C_{n+1} + {}^{n+1}C_0 \right] \\ & = \frac{1}{n+1} = R.H.S. \; , \qquad \text{since} \; \left\{ -{}^{n+1}C_0 + {}^{n+1}C_1 - {}^{n+1}C_2 + \dots + (-1)^n \cdot {}^{n+1}C_{n+1} + {}^{n+1}C_n \right] \end{split}$$

II Method: By Integration

$$(1+x)^n = C_0 + C_1x + C_2x^2 + \dots + C_nx^n$$

Integrating both sides, within the limits -1 to 0.

$$\left[\frac{\left(1+x\right)^{n+1}}{n+1}\right]_{-1}^{0} = \left[C_{0}x + C_{1}\frac{x^{2}}{2} + C_{2}\frac{x^{3}}{3} + + C_{n}\frac{x^{n+1}}{n+1}\right]_{-1}^{0}$$

$$\frac{1}{n+1} - 0 = 0 - \left[-C_0 + \frac{C_1}{2} - \frac{C_2}{3} + \dots + (-1)^{n+1} \frac{C_n}{n+1} \right]$$

$$C_0 - \frac{C_1}{2} + \frac{C_2}{3} - \dots + (-1)^n \frac{C_n}{n+1} = \frac{1}{n+1}$$
 Proved

Ex. 9 Prove that $\binom{2n}{n}^2 - \binom{2n}{n}^2 + \binom{2n}{n}^2 - \dots + (-1)^n \binom{2n}{n}^2 = (-1)^n \cdot \binom{2n}{n}^2$

Sol.
$$(1-x)^{2n} = {}^{2n}C_0 - {}^{2n}C_1x + {}^{2n}C_2x^2 - \dots + (-1)^{n}{}^{2n}C_{2n}x^{2n}$$
 ...(i)

and
$$(x+1)^{2n} = {}^{2n}C_0x^{2n} + {}^{2n}C_1x^{2n-1} + {}^{2n}C_2x^{2n-2} + ... + {}^{2n}C_{2n}$$
(ii)

Multiplying (i) and (ii), we get

$$(x^2 - 1)^{2n} = (^{2n}C_0 - ^{2n}C_1x + \dots + (-1)^{n}{}^{2n}C_{2n}x^{2n}) \times (^{2n}C_0x^{2n} + ^{2n}C_1x^{2n-1} + \dots + ^{2n}C_{2n})$$
(iii)

Now, coefficient of x²ⁿ in R.H.S.

$$= (^{2n}C_0)^2 - (^{2n}C_1)^2 + (^{2n}C_2)^2 - \dots + (-1)^n (^{2n}C_{2n})^2$$

General term in L.H.S., $T_{r+1} = {}^{2n}C_r(x^2)^{2n-r}(-1)^r$

Putting 2(2n - r) = 2n

$$\therefore$$
 r = n

$$T_{n+1} = {}^{2n}C_n x^{2n} (-1)^n$$

Hence coefficient of x^{2n} in L.H.S. = $(-1)^n$. 2n C

But (iii) is an identity, therefore coefficient of x^{2n} in R.H.S. = coefficient of x^{2n} in L.H.S.

$$\Rightarrow \qquad (^{2n}C_0)^2 - (^{2n}C_1)^2 + (^{2n}C_2)^2 - \dots + (-1)^n (^{2n}C_{2n})^2 = (-1)^n. \ ^{2n}C_n$$

Ex. 10 In the expansion of $\left(1+x+\frac{7}{x}\right)^{11}$, find the term independent of x.

Sol.
$$\left(1+x+\frac{7}{x}\right)^{11} = \sum_{r_1+r_2+r_3=11} \frac{(11)!}{r_1! r_2! r_3!} (1)^{r_1} (x)^{r_2} \left(\frac{7}{x}\right)^{r_3}$$

The exponent 11 is to be divided among the base variables 1, x and $\frac{7}{x}$ in such a way so that we get x^0 . Therefore, possible set of values of (r_1, r_2, r_3) are (11, 0, 0), (9, 1, 1), (7, 2, 2), (5, 3, 3), (3, 4, 4), (1, 5, 5) Hence the required term is

$$\begin{split} &\frac{(11)!}{(11)!} \ (7^0) + \frac{(11)!}{9!1!1!} \ 7^1 + \frac{(11)!}{7!2!2!} \ 7^2 + \frac{(11)!}{5!3!3!} \ 7^3 + \frac{(11)!}{3!4!4!} \ 7^4 + \frac{(11)!}{1!5!5!} \ 7^5 \\ &= 1 + \frac{(11)!}{9!2!} \cdot \frac{2!}{1!1!} \ 7^1 + \frac{(11)!}{7!4!} \cdot \frac{4!}{2!2!} \ 7^2 + \frac{(11)!}{5!6!} \cdot \frac{6!}{3!3!} \ 7^3 + \frac{(11)!}{3!8!} \cdot \frac{8!}{4!4!} \ 7^4 + \frac{(11)!}{1!10!} \cdot \frac{(10)!}{5!5!} \ 7^5 \\ &= 1 + {}^{11}\mathbf{C}_2 \cdot {}^2\mathbf{C}_1 \cdot 7^1 + {}^{11}\mathbf{C}_4 \cdot {}^4\mathbf{C}_2 \cdot 7^2 + {}^{11}\mathbf{C}_6 \cdot {}^6\mathbf{C}_3 \cdot 7^3 + {}^{11}\mathbf{C}_8 \cdot {}^8\mathbf{C}_4 \cdot 7^4 + {}^{11}\mathbf{C}_{10} \cdot {}^{10}\mathbf{C}_5 \cdot 7^5 \\ &= 1 + \sum_{r=1}^{5} {}^{11}\mathbf{C}_{2r} \cdot {}^{2r}\mathbf{C}_r \cdot 7^r \end{split}$$

- Ex. 11 If $(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$ then show that the sum of the products of the C_i 's taken two at a time represented by : $\sum_{0 \le i \le j \le n} \sum_{j \le n} C_i C_j$ is equal to $2^{2n-1} \frac{2n!}{2 \cdot n! \cdot n!}$
- Sol. Since $(C_0 + C_1 + C_2 + + C_{n-1} + C_n)^2$ $= C_0^2 + C_1^2 + C_2^2 + + C_{n-1}^2 + C_n^2 + 2(C_0C_1 + C_0C_2 + C_0C_3 + ... + C_0C_n + C_1C_2 + C_1C_3 + + C_1C_n + C_2C_3 + C_2C_4 + ... + C_2C_n + + C_{n-1}C_n)$ $= (C_0^n)^2 = C_0^n + C_1^n + C_2^n + C_$

 $(2^n)^2 = {}^{2n}C_n + 2\sum_{0 \le i < j \le n} C_iC_j$

Hence $\sum_{0 \le i < j \le n} C_i C_j = 2^{2n-1} - \frac{2n!}{2 \cdot n! n!}$

- Ex. 12 If $(1+x+x^2)^n = \sum_{r=0}^{2n} a_r x^r$, then prove that (a) $a_r = a_{2n-r}$ (b) $\sum_{r=0}^{n-1} a_r = \frac{1}{2} (3^n a_n)$
- Sol. (a) We have

$$(1+x+x^2)^n = \sum_{r=0}^{2n} a_r x^r$$
(A)

Replace x by $\frac{1}{x}$

$$\therefore \left(1 + \frac{1}{x} + \frac{1}{x^2}\right)^n = \sum_{r=0}^{2n} a_r \left(\frac{1}{x}\right)^r$$

$$\Rightarrow$$
 $(x^2 + x + 1)^n = \sum_{r=0}^{2n} a_r x^{2n-r}$

$$\Rightarrow \sum_{r=0}^{2n} a_r x^r = \sum_{r=0}^{2n} a_r x^{2n-r}$$
 {Using (A)}

Equating the coefficient of x^{2n-r} on both sides, we get

$$a_{2n-r} = a_r$$
 for $0 \le r \le 2n$.

Hence $a_r = a_{2n-r}$.

(b) Putting x=1 in given series, then

$$a_0 + a_1 + a_2 + \dots + a_{2n} = (1+1+1)^n$$

 $a_0 + a_1 + a_2 + \dots + a_{2n} = 3^n$ (1)

But $a_r = a_{2n-r}$ for $0 \le r \le 2n$

:. series (1) reduces to $2(a_0 + a_1 + a_2 + \dots + a_{n-1}) + a_n = 3^n$.

$$a_0 + a_1 + a_2 + \dots + a_{n-1} = \frac{1}{2} (3^n - a_n)$$

MATHS FOR JFF MAINS & ADVANCED

Ex. 13 Find the value of $e^{-1/5}$ correct to four places of decimal.

Sol.
$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + to \infty$$
(i)
putting $x = \left(-\frac{1}{5}\right)$ in (1), we get
$$e^{-1/5} = 1 - \frac{1}{5} + \frac{1}{2!} \left(-\frac{1}{5}\right)^{2} + \frac{1}{3!} \left(-\frac{1}{5}\right)^{3} + \frac{1}{4!} \left(-\frac{1}{5}\right)^{4} + to \infty$$

$$\Rightarrow e^{-1/5} = 1 - \frac{2}{10} + \frac{2^{2}}{2!} \cdot \frac{1}{10^{2}} - \frac{2^{3}}{3!} \cdot \frac{1}{10^{3}} + \frac{2^{4}}{4!} \cdot \frac{1}{10^{4}} +$$

- \Rightarrow $e^{-1/5} = 1 -0.200000 + 0.0200000 0.001333 + 0.000066$
- \Rightarrow e^{-1/5} = 0.8187 (correct to 4 decimal places)

Ex. 14 If $(6\sqrt{6} + 14)^{2n+1} = [N] + F$ and F = N - [N]; where [.] denotes greatest integer function, then find value of NF.

Sol. Since
$$(6\sqrt{6} + 14)^{2n+1} = [N] + F$$

Let us assume that $f = (6\sqrt{6} - 14)^{2n+1}$; where $0 \le f < 1$.

Now, [N] + F - f =
$$(6\sqrt{6} + 14)^{2n+1}$$
 - $(6\sqrt{6} - 14)^{2n+1}$
= $2\left[\frac{2n+1}{6\sqrt{6}}C_1(6\sqrt{6})^{2n}(14) + \frac{2n+1}{6\sqrt{6}}C_3(6\sqrt{6})^{2n-2}(14)^3 + \dots\right]$

- \Rightarrow [N] + F f = even integer.
- Now 0 < F < 1 and 0 < f < 1
- so $-1 \le F f \le 1$ and F f is an integer so it can only be zero

Thus NF =
$$(6\sqrt{6} + 14)^{2n+1} (6\sqrt{6} - 14)^{2n+1} = 20^{2n+1}$$

Ex. 15 If y > 0, then prove that

$$\log_{e} y = 2 \left[\left(\frac{y-1}{y+1} \right) + \frac{1}{3} \left(\frac{y-1}{y+1} \right)^{3} + \frac{1}{5} \left(\frac{y-1}{y+1} \right)^{5} + \dots \right]$$
 and calculate $\log_{e} 2$ to three places of decimal.

Sol. We know
$$\log_{e} \left(\frac{1+x}{1-x} \right) = 2 \left(x + \frac{x^3}{3} + \frac{x^5}{5} + \dots \right)$$

Putting
$$x = \frac{y-1}{y+1}$$
, we get $\log_e \left(\frac{1 + \frac{y-1}{y+1}}{1 - \frac{y-1}{y+1}} \right) = 2 \left[\frac{y-1}{y+1} + \frac{1}{3} \left(\frac{y-1}{y+1} \right)^3 + \frac{1}{5} \left(\frac{y-1}{y+1} \right)^5 + \dots \right]$

$$\log_{e} y = 2 \left[\frac{y-1}{y+1} + \frac{1}{3} \left(\frac{y-1}{y+1} \right)^{3} + \frac{1}{5} \left(\frac{y-1}{y+1} \right)^{5} + \dots \right]$$

putting y = 2, we get
$$\log_e 2 = 2\left[\frac{1}{3} + \frac{1}{3}\left(\frac{1}{3}\right)^3 + \frac{1}{5}\left(\frac{1}{3}\right)^5 + \dots\right] = \frac{2}{3}\left[1 + \left(\frac{1}{3}\right)^3 + \frac{1}{5}\left(\frac{1}{3}\right)^4 + \dots\right] = 0.693$$

Exercise # 1

[Single Correct Choice Type Questions]

1.	The sum of the co-efficients in the expansion of $(1 - 2x + 5x^2)^n$ is 'a' and the sum of the co-efficients in the
	expansion of $(1+x)^{2n}$ is b. Then -

(A) a = b

(B) $a = b^2$

(C) $a^2 = b$

If the coefficients of x^7 & x^8 in the expansion of $\left[2 + \frac{x}{3}\right]^n$ are equal, then the value of n is -2.

(A) 15

(D) 56

The value of the expression ${}^{47}C_4 + \sum_{j=1}^{5} {}^{52-j}C_3$ is equal to: 3.

The last two digits of the number 3400 are -4.

(C) 29

(D) 01

The sum of the binomial coefficients of $\left[2x + \frac{1}{x}\right]^n$ is equal to 256. The constant term in the expansion is -**5.**

(A) 1120

(B) 2110

(C) 1210

(D) none

6. If |x| < 1, then the co-efficient of x^n in the expansion of $(1 + x + x^2 + x^3 +)^2$ is

(B) n-1

(C) n + 2

(D) n + 1

Number of rational terms in the expansion of $(\sqrt{2} + \sqrt[4]{3})^{100}$ is -7.

(B) 26

(D) 28

Sum of the infinite series $\frac{1}{2!} + \frac{1+2}{3!} + \frac{1+2+3}{4!} + \dots$ to ∞ 8.

(A) $\frac{e}{3}$

(B) e

(C) $\frac{e}{2}$

(D) none of these

9. If 'a' be the sum of the odd terms & 'b' be the sum of the even terms in the expansion of $(1+x)^n$, then $(1-x^2)^n$ is equal to -

(A) $a^2 - b^2$

(B) $a^2 + b^2$

(C) $b^2 - a^2$

(D) none

10. The greatest integer less than or equal to $(\sqrt{2} + 1)^6$ is

(C) 198

(D) 199

If $a_n = \sum_{r=0}^n \frac{1}{{}^nC_r}$, then $\sum_{r=0}^n \frac{r}{{}^nC_r}$ equals -11.

(A) $(n-1) a_n$

(B) n a...

(C) $n a_n/2$

(D) none of these

12. $\sum_{r=0}^{n-1} \frac{{}^{n}C_{r}}{{}^{n}C_{r} + {}^{n}C_{r+1}} =$

(B) $\frac{n+1}{2}$

(C) $(n+1) \frac{n}{2}$ (D) $\frac{n(n-1)}{2(n+1)}$

MATHS FOR JEF MAINS & ADVANCED

13.	Let the co-efficients of x^n in $(1+x)^{2n}$ & $(1+x)^{2n-1}$ be P & Q respectively, then	$\left(\frac{P+Q}{Q}\right)$)5 =
-----	---	------------------------------	------

(A) 9

(B) 27

(C) 81

(D) none of these

14.
$$\binom{47}{4} + \sum_{j=1}^{5} \binom{52-j}{3} = \binom{x}{y}$$
, then $\frac{x}{y} = \frac{x}{y}$

(C) 13

(D) 14

15. Find the sum of the series
$$\frac{1}{2} - \frac{1}{2 \times 2^2} + \frac{1}{3 \times 2^3} - \frac{1}{4 \times 2^4} + \dots$$

- (A) $\log_{e}\left(\frac{3}{2}\right)$ (B) $\log_{e}\left(\frac{2}{3}\right)$ (C) $\log_{e}\left(\frac{4}{7}\right)$
- (D) none of these

16.
$$\frac{C_0}{1} + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_{10}}{11}$$
 is equal to (here $C_r = {}^{10}C_r$)

- (A) $\frac{2^{11}}{11}$
- **(B)** $\frac{2^{11}-1}{11}$ **(C)** $\frac{3^{11}}{11}$
- **(D)** $\frac{3^{11}-1}{11}$

17. If
$$(1+x)^{10} = a_0 + a_1 x + a_2 x^2 + \dots + a_{10} x^{10}$$
, then value of $(a_0 - a_2 + a_4 - a_6 + a_8 - a_{10})^2 + (a_1 - a_3 + a_5 - a_7 + a_9)^2$ is **(A)** 2^{10} **(B)** 2 **(C)** 2^{20}

- (D) None of these
- The expression $\frac{1}{\sqrt{4x+1}} \left[\left[\frac{1+\sqrt{4x+1}}{2} \right]^7 \left[\frac{1-\sqrt{4x+1}}{2} \right]^7 \right]$ is a polynomial in x of degree -18. **(A)** 7 **(B)** 5 **(D)** 3
- Find numerically greatest term in the expansion of $(2 + 3x)^9$, when x = 3/2. **19.**
 - (A) ${}^{9}C_{6}$. 2^{9} . $(3/2)^{12}$
- **(B)** ${}^{9}C_{3}$. 2^{9} . $(3/2)^{6}$
- (C) ${}^{9}C_{5}$. 2^{9} . $(3/2)^{10}$
- **(D)** ${}^{9}C_{4}$. 2^{9} . $(3/2)^{8}$

20. The value of
$$\sum_{r=0}^{10} {10 \choose r} {15 \choose 14-r}$$
 is equal to -

- (A) $^{25}C_{12}$
- $(C)^{25}C_{10}$
- **(D)** $^{25}C_{11}$

21. The value of the expression
$$\left(\sum_{r=0}^{10} {}^{10}C_r\right) \left(\sum_{K=0}^{10} (-1)^K \frac{{}^{10}C_K}{2^K}\right)$$
 is :

- (A) 2^{10}

(D) 2^5

22. If
$$k \in R$$
 and the middle term of $\left(\frac{k}{2} + 2\right)^8$ is 1120, then value of k is:

(A) 3

(B) 2

- (C) 3
- (**D**) 4

23. Let
$$R = (5\sqrt{5} + 11)^{31} = I + f$$
, where I is an integer and f is the fractional part of R, then R · f is equal to - (A) 2^{31} (B) 3^{31} (C) 2^{62} (D) 1

- Sum of the infinite series $\frac{1}{2!} + \frac{1+2}{3!} + \frac{1+2+3}{4!} + \dots$ to ∞ 24.
 - (A) $\frac{e}{3}$
- **(B)** e

- (C) $\frac{e}{2}$
- (D) none of these
- The term independent of x in the product $(4+x+7x^2)\left(x-\frac{3}{x}\right)^{11}$ is -**25.**
 - **(A)** $7.^{11}$ C₆
- **(B)** 3^6 . ${}^{11}C_6$ **(C)** 3^5 . ${}^{11}C_5$
- **(D)** -12.2^{11}
- If the second term of the expansion $\left[a^{1/13} + \frac{a}{\sqrt{a^{-1}}}\right]^n$ is $14a^{5/2}$, then the value of $\frac{{}^nC_3}{{}^nC_2}$ is: **26.**
 - (A) 4

(B) 3

- **(C)** 12
- **(D)** 6
- If $n \in \mathbb{N}$ & n is even, then $\frac{1}{1,(n-1)!} + \frac{1}{3!(n-3)!} + \frac{1}{5!(n-5)!} + \dots + \frac{1}{(n-1)!1!} =$ **27.**
 - (A) 2ⁿ
- **(B)** $\frac{2^{n-1}}{n!}$
- $(\mathbb{C}) 2^n n!$
- (D) none of these
- If the 6th term in the expansion of $\left[\frac{1}{x^{8/3}} + x^2 \log_{10} x\right]^8$ is 5600, then x =28.
 - **(A)** 10
- **(B)** 8

- **(C)** 11
- **(D)** 9
- **29.** The greatest terms of the expansion $(2x + 5y)^{13}$ when x = 10, y = 2 is -
 - (A) ${}^{13}C_5 . 20^8 . 10^5$
- **(B)** ${}^{13}C_6 . 20^7 . 10^4$ **(C)** ${}^{13}C_4 . 20^9 . 10^4$
- (D) none of these
- The value of, $\frac{18^3 + 7^3 + 3 \cdot 18 \cdot 7 \cdot 25}{3^6 + 6 \cdot 243 \cdot 2 + 15 \cdot 81 \cdot 4 + 20 \cdot 27 \cdot 8 + 15 \cdot 9 \cdot 16 + 6 \cdot 3 \cdot 32 + 64}$ is: **30.**
 - **(A)** 1

(B) 2

(D) none

Exercise # 2 Part # I Multiple Correct Choice Type Questions

- 1. Let $(1 + x^2)^2 (1 + x)^n = A_0 + A_1 x + A_2 x^2 + \dots$ If A_0, A_1, A_2 are in A.P. then the value of n is -
 - (A) 2

(B) 3

(C) 5

- **(D)** 7
- If the coefficients of three consecutive terms in the expansion of $(1 + x)^n$ are in the ratio of 1:7:42, then n is divisible by -
 - (A) 9

(B) 5

(C) 3

- **(D)** 11
- 3 The sum of the co-efficients in the expansion of $(1 2x + 5x^2)^n$ is a and the sum of the co-efficients in the expansion of $(1 + x)^{2n}$ is b. then:
 - (A) a = b

(B) $(x-a)^2 + (x-b)^2 = 0$, has real roots

(C) $\sin^2 a + \cos^2 b = 1$

- **(D)** ab = 1
- 4. If $(1+2x+3x^2)^{10} = a_0 + a_1x + a_2x^2 + + a_{20}x^{20}$, then:
 - **(A)** $a_1 = 20$
- **(B)** $a_2 = 210$
- (C) $a_A = 8085$
- **(D)** $a_{20} = 2^2$. 3^7 . 7
- 5. Let $n \in N$. If $(1+x)^n = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$ and $a_{n-3}, a_{n-2}, a_{n-1}$ are in AP, then -
 - (A) a_1, a_2, a_3 are in AP
- (B) a_1, a_2, a_3 are in HP
- (C) n = 7
- **(D)** n = 14

- 6. In the expansion of $(x + y + z)^{25}$
 - (A) every term is of the form ${}^{25}C_r$. ${}^{r}C_k$. x^{25-r} . y^{r-k} . z^k
 - (B) the coefficient of $x^8 y^9 z^9$ is 0
 - (C) the number of terms is 325
 - (D) none of these
- 7. In the expansion of $\left(x^{2/3} \frac{1}{\sqrt{x}}\right)^{30}$, a term containing the power x^{13} -
 - (A) does not exist

- (B) exists and the co-efficient is divisible by 29
- (C) exists and the co-efficient is divisible by 63
- (D) exists and the co-efficient is divisible by 65
- 8. The coefficient of x^4 in $\left(\frac{1+x}{1-x}\right)^2$, |x| < 1, is
 - (A) 4

- **(B)** -4
- (C) $10 + {}^{4}C_{2}$
- **(D)** 16
- 9. The value r for which $\binom{30}{r}\binom{15}{r} + \binom{30}{r-1}\binom{15}{1} + \dots + \binom{30}{0}\binom{15}{r}$ is maximum is/are -
 - **(A)** 21

- **(B)** 22
- **(C)** 23
- **(D)** 24

- 10. In the expansion of $\left(\sqrt[3]{4} + \frac{1}{\sqrt[4]{6}}\right)^{20}$
 - (A) the number of irrational terms is 19
- (B) middle term is irrational
- (C) the number of rational terms is 2
- (D) 9th term is rational

11.	The number 101 ¹⁰⁰	The number $101^{100} - 1$ is divisible by -				
	(A) 100	(B) 1000	(C) 10000	(D) 100000		
12.	If the expansion o	$f(3x+2)^{-1/2}$ is valid in ascen	ding powers of x, then x l	lies in the interval.		
	(A) $(0, 2/3)$	(B) (-3/2, 3/2)	(C) (-2/3, 2/3)	$(D) (-\infty, -3/2) \cup (3/2, \infty)$		
13.	$7^9 + 9^7$ is divisible (A) 16	by: (B) 24	(C) 64	(D) 72		
14.	In the expansion of $\left(x^3 + 3.2^{-\log_{\sqrt{2}}\sqrt{x^3}}\right)^{11}$ -					
	(A) there appears a term with the power x^2		(B) there does not ap	(B) there does not appear a term with the power x^2		
(C) there appears a term with the power x^{-3} (D)		(D) the ratio of the co	(D) the ratio of the co-efficient of x^3 to that of x^{-3} is $\frac{1}{3}$			
15.	$If\left(9+\sqrt{80}\right)^n = I -$	If $(9 + \sqrt{80})^n = I + f$, where I, n are integers and $0 < f < 1$, then:				
	(A) I is an odd into	(A) I is an odd integer		(B) I is an even integer		
	(C) $(I + f) (1 - f) = 1$		(D) $1 - f = (9 - \sqrt{80})$	$\mathbf{(D)}\ 1 - \mathbf{f} = \left(9 - \sqrt{80}\right)^{\mathbf{n}}$		
16.	If the co-efficients (A) 5	of rth, $(r + 1)$ th, and $(r + 2)$ th to (B) 12	erms in the expansion of (1 (C) 10	$(D)^{14}$ are in A.P. then r is/are		
17.		omials $P_k(x)$ are defined as P_1 $(2)^2 - 2)^2$ (In general 1)	=	$(-2)^2 - 2)^2$ then the constant term in $P_k(x)$ is		
18.	If $(1 + x + x^2 + x^3)^{100} = a_0 + a_1 x + a_2 x^2 + \dots + a_{300} x^{300}$, then - (A) $a_0 + a_1 + a_2 + a_3 + \dots + a_{300}$ is divisible by 1024 (B) $a_0 + a_2 + a_4 + \dots + a_{300} = a_1 + a_3 + \dots + a_{299}$ (C) coefficients equidistant from beginning and end are equal (D) $a_1 = 100$					
19.	If the 6 th term in the expansion of $\left(\frac{3}{2} + \frac{x}{3}\right)^n$ when $x = 3$ is numerically greatest then the possible integral value(s)					
	of n can be - (A) 11	(B) 12	(C) 13	(D) 14		
20.		fficient in the expansion of (1 a < 1 and n = 2k, k \in N a > 1 and n \in N	, and the second	(B) negative, when $a < 1$ and $n = 2k + 1$, $k \in N$		
21.	The co-efficient of the middle term in the expansion of $(1+x)^{2n}$ is -					
	(A) $\frac{1.3.5.7(2n)}{n!}$	$\frac{n-1}{n-1}$ 2 ⁿ	(B) ²ⁿ C _n			
	(C) $\frac{(n+1)(n+2)}{1.2.3.}$	(n+3) $(2n-1)$ $(2n)$ $(n-1)$ n	(D) $\frac{2.6.10.14(4)}{1.2.3.4}$	$\frac{4n-6)(4n-2)}{(n-1).n}$		

Part # II

[Assertion & Reason Type Questions]

These questions contains, Statement I (assertion) and Statement II (reason).

- (a) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.
- (b) Statement-I is true, Statement-II is true; Statement-II is NOT a correct explanation for statement-I.
- (c) Statement-I is true, Statement-II is false.
- (d) Statement-I is false, Statement-II is true.
- 1. Statement-I: The greatest value of ${}^{40}C_0$. ${}^{60}C_r + {}^{40}C_1$. ${}^{60}C_{r-1}$ ${}^{40}C_{40}$. ${}^{60}C_{r-40}$ is ${}^{100}C_{50}$ Statement-II: The greatest value of ${}^{2n}C_r$, (where r is constant) occurs at r = n.
- 2. Statement I : If n is even, then ${}^{2n}C_1 + {}^{2n}C_3 + {}^{2n}C_5 + \dots + {}^{2n}C_{n-1} = 2^{2n-1}$. Statement - II : ${}^{2n}C_1 + {}^{2n}C_3 + {}^{2n}C_5 + \dots + {}^{2n}C_{2n-1} = 2^{2n-1}$.
- 3. Statement-I: Coefficient of $ab^8c^3d^2$ in the expansion of $(a+b+c+d)^{14}$ is 180180

Statement-II: General term in the expansion of $(a_1 + a_2 + a_3 + + a_m)^n = \sum \frac{n!}{n_1! n_2! n_3! n_m!} a_1^{n_1} a_2^{n_2} ... a_m^{n_m}$, where $n_1 + n_2 + n_3 + + n_m = n$.

4. Statement - I : Any positive integral power of $(\sqrt{2}-1)$ can be expressed as $\sqrt{N} - \sqrt{N-1}$ for some natural number N > 1.

Statement - II: Any positive integral power of $\sqrt{2}$ - 1 can be expressed as A + B $\sqrt{2}$ where A and B are integers.

5. Statement-I: If $x = {}^{n}C_{n-1} + {}^{n+1}C_{n-1} + {}^{n+2}C_{n-1} + \dots + {}^{2n}C_{n-1}$, then $\frac{x+1}{2n+1}$ is integer.

Because

Statement-II: ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$ and ${}^{n}C_{r}$ is divisible by n if n and r are co-prime.

6. Statement - I: The term independent of x in the expansion of $\left(x + \frac{1}{x} + 2\right)^m$ is $\frac{(2m)!}{(m!)^2}$.

Statement - II: The coefficient of x^b in the expansion of $(1 + x)^n$ is nC_b .

7. Statement-I: If $q = \frac{1}{3}$ and p + q = 1, then $\sum_{r=0}^{15} r^{-15} C_r p^r q^{15-r} = 15 \times \frac{1}{3} = 5$

Statement-II: If p + q = 1, $0 , then <math>\sum_{r=0}^{n} r^{-r} C_r p^r q^{n-r} = np$

8. Statement - I: If n is an odd prime then $\left[\left(\sqrt{5}+2\right)^n\right]-2^{n+1}$ is divisible by 20 n, where [.] denotes greatest integer function.

Statement - II: If n is prime then ${}^{n}C_{1}$, ${}^{n}C_{2}$, ${}^{n}C_{n-1}$ must be divisible by n.

Exercise # 3

Part # I

[Matrix Match Type Questions]

Following question contains statements given in two columns, which have to be matched. The statements in Column-I are labelled as A, B, C and D while the statements in Column-II are labelled as p, q, r and s. Any given statement in Column-I can have correct matching with one or more statement(s) in Column-II.

1. column-I

(A)
$$(2n+1)(2n+3)(2n+5)....(4n-1)$$
 is equal to

(B)
$$\frac{C_1}{C_0} + \frac{2 \cdot C_2}{C_1} + \frac{3 \cdot C_3}{C_2} + \dots + \frac{n \cdot C_n}{C_{n-1}}$$
 is equal to

here C_r stand for ⁿC_r.

(C) If
$$(C_0 + C_1)(C_1 + C_2)(C_2 + C_3) \dots (C_{n-1} + C_n)$$
 (r)
$$\frac{(4n)! \ n!}{2^n \cdot (2n)! (2n)!}$$

$$= m \cdot C_1 C_2 C_3 \dots C_{n-1}, \text{ then m is equal to}$$

$$(1+x)^n$$
, the value of $\sum_{i=1}^n \sum_{j=1}^n (i+j) C_i C_j$ is

2. Column-I

- If $(r + 1)^{th}$ term is the first negative term in the expansion (A) of $(1+x)^{7/2}$, then the value of r (where |x| < 1) is
- The coefficient of y in the expansion of $(y^2 + 1/y)^5$ is **(B)**
- ${}^{n}C_{r}$ is divisible by n, $(1 \le r \le n)$ if n is **(C)**
- **(D)** The coefficient of x4 in the expression $(1+2x+3x^2+4x^3+.....up \text{ to } \infty)^{1/2} \text{ is } c, (c \in \mathbb{N}),$ then c + 1 (where |x| < 1) is

Column - I 3.

(D)

(A) If
$$x = (7 + 4\sqrt{3})^{2n} = [x] + f$$
, then $x(1 - f) =$

- **(B)** If second, third and fourth terms in the expansion of $(x + a)^n$ are 240, 720 and 1080 respectively, then n is equal to
- value of ${}^{4}C_{0}{}^{4}C_{4} {}^{4}C_{1}{}^{4}C_{3} + {}^{4}C_{2}{}^{4}C_{2} {}^{4}C_{3}{}^{4}C_{1} + {}^{4}C_{4}{}^{4}C_{0}$ is **(C)**

If x is very large as compare to y, then

the value of k in $\sqrt{\frac{x}{x+v}}$ $\sqrt{\frac{x}{x-v}} = 1 + \frac{y^2}{v^2}$

column-II

$$\frac{(n+1)^n}{n!}$$

(q)
$$n \cdot 2^n \cdot (2^n - 1)$$

(r)
$$\frac{(4n)! \ n!}{2^n \cdot (2n)! (2n)!}$$

(s)
$$\frac{n(n+1)}{2}$$

Column-II

- divisible by 2 **(p)**
- divisible by 5 **(q)**
- divisible by 10 **(r)**
- **(s)** a prime number

Column - II

- 1 **(q)**
- 2 **(r)**
- 5 **(s)**

Part # II

[Comprehension Type Questions]

Comprehension #1

If n is positive integer and if $(1 + 4x + 4x^2)^n = \sum_{r=0}^{2n} a_r x^r$, where a_i 's are (i = 0, 1, 2, 3,, 2n) real numbers.

On the basis of above information, answer the following questions:

1. The value of $2\sum_{r=0}^{n} a_{2r}$ is -

(A) $9^n - 1$

(B) $9^n + 1$

(C) $9^n - 2$

(D) $9^n + 2$

2. The value of $2 \sum_{r=1}^{n} a_{2r-1}$ is -

(A) $9^n - 1$

(B) $9^n + 1$

(C) $9^n - 2$

(D) $9^n + 2$

3. The value of a_{2n-1} is -

(A) 2^{2n}

(B) $(n-1).2^{2n}$

(C) $n.2^{2n}$

(D) $(n + 1).2^{2n}$

4. The value of a_2 is -

(A) 8n

(B) $8n^2 - 4$

(C) $8n^2 - 4n$

(D) 8n - 4

Comprehension #2

Let P be a product given by $P = (x + a_1)(x + a_2) \dots (x + a_n)$

and Let $S_1 = a_1 + a_2 + \dots + a_n = \sum_{i=1}^n a_i$, $S_2 = \sum_{i < j} \sum_{i < j} a_i \cdot a_j$, $S_3 = \sum_{i < j < k} \sum_{i < j < k} a_i \cdot a_j \cdot a_k$ and so on,

then it can be shown that

$$P = x^n + S_1 x^{n-1} + S_2 x^{n-2} + \dots + S_n$$

1. The coefficient of x^8 in the expression $(2+x)^2(3+x)^3(4+x)^4$ must be

(A) 26

(B) 27

(C) 28

(D) 29

2. The coefficient of x^{203} in the expression $(x-1)(x^2-2)(x^3-3)$ $(x^{20}-20)$ must be

(A) 11

(B) 12

(C) 13

(D) 15

3. The coefficient of x^{98} in the expression of (x-1)(x-2)......(x-100) must be

(A) $1^2 + 2^2 + 3^2 + \dots + 100^2$

(B) $(1+2+3+.....+100)^2-(1^2+2^2+3^2+.....+100^2)$

(C) $\frac{1}{2}[(1+2+3+.....+100)^2-(1^2+2^2+3^2+.....+100^2)]$

(D) None of these

Comprehension #3

Consider, sum of the series $\sum_{0 \le i \le n} f(i) f(j)$

In the given summation, i and j are not independent.

In the sum of series $\sum_{i=1}^{n} \sum_{j=1}^{n} f(i) f(j) = \sum_{i=1}^{n} \left[f(i) \left(\sum_{j=1}^{n} f(j) \right) \right]$ i and j are independent. In this summation, three types of

terms occur, those when i < j, i > j and i = j.

Also, sum of terms when i < j is equal to the sum of the terms when i > j if f(i) and f(j) are symmetrical. So, in that case

$$\sum_{i=1}^{n} \sum_{j=1}^{n} f(i) f(j) = \sum_{0 \leq i < j \leq n} f(i) f(j) \ + \ \sum_{0 \leq i < j \leq n} f(i) f(j) \ + \ \sum_{i=j} f(i) f(j) = 2 \ \sum_{0 \leq i < j \leq n} f(i) f(j) \ + \ \sum_{i=j} f(i) f(j)$$

$$\Rightarrow \sum_{\substack{0 \le i < i \le n}} f(i)f(j) = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} f(i)f(j) - \sum_{i=j} \sum_{j=1}^{n} f(i)f(j)}{2}$$

When f(i) and f(j) are not symmetrical, we find the sum by listing all the terms.

1.
$$\sum_{0 \le i < j \le n} {^{n}C_{i}} {^{n}C_{j}} \text{ is equal to}$$

(A)
$$\frac{2^{2n}-{}^{2n}C_n}{2}$$
 (B) $\frac{2^{2n}+{}^{2n}C_n}{2}$ (C) $\frac{2^{2n}-{}^{n}C_n}{2}$ (D) $\frac{2^{2n}+{}^{n}C_n}{2}$

(B)
$$\frac{2^{2n} + {}^{2n}C_n}{2}$$

(C)
$$\frac{2^{2n}-{}^{n}C_{n}}{2}$$

(D)
$$\frac{2^{2n} + {}^{n}C_{n}}{2}$$

$$\sum_{m=0}^{n} \sum_{p=0}^{m} {^{n}C_{m}} \cdot {^{m}C_{p}} \text{ is equal to}$$

(A)
$$2^{n}-1$$

(B)
$$3^{n}$$

(C)
$$3^{n}-1$$

$$(\mathbf{D}) 2^{\mathrm{n}}$$

3.
$$\sum_{0 \le i \le j \le n} {n \choose i} C_i + {n \choose j}$$

$$(A)$$
 n2ⁿ

(B)
$$(n+1)2^n$$

(C)
$$(n-1)2^n$$

(D)
$$(n+1)2^n-1$$

Exercise # 4

[Subjective Type Questions]

- 1. If the coefficients of the r^{th} , $(r+1)^{th}$ & $(r+2)^{th}$ terms in the expansion of $(1+x)^{14}$ are in AP, find r.
- 2. In the binomial expansion of $\left(\sqrt[3]{2} + \frac{1}{\sqrt[3]{3}}\right)^n$, the ratio of the 7th term from the beginning to the 7th term from the end is 1:6; find n.
- 3. If $\sum_{r=0}^{2n} a_r (x-2)^r = \sum_{r=0}^{2n} b_r (x-3)^r$ & $a_k = 1$ for all $k \ge n$, then show that $b_n = {}^{2n+1}C_{n+1}$
- 4. Which is larger: $(99^{50} + 100^{50})$ or $(101)^{50}$.
- 5. Prove that: ${}^{n-1}C_r + {}^{n-2}C_r + {}^{n-3}C_r + \dots + {}^{r}C_r = {}^{n}C_{r+1}$.
- 6. Prove that the co-efficient of the middle term in the expansion of $(1 + x)^{2n}$ is equal to the sum of the co-efficients of middle terms in the expansion of $(1 + x)^{2n-1}$.
- 7. Prove that $:({}^{2n}C_1)^2+2.({}^{2n}C_2)^2+3.({}^{2n}C_3)^2+.....+2n.({}^{2n}C_{2n})^2=\frac{(4n-1)!}{[(2n-1)!]^2}$
- 8. If ${}^{40}C_1 \cdot x(1-x)^{39} + 2 \cdot {}^{40}C_2 x^2(1-x)^{38} + 3 \cdot {}^{40}C_3 x^3(1-x)^{37} + \dots + 40 \cdot {}^{40}C_{40} x^{40} = ax + b$, then find a & b.
- 9. Find the index 'n' of the binomial $\left(\frac{x}{5} + \frac{2}{5}\right)^n$ if the 9th term of the expansion has numerically the greatest coefficient (n \in N).
- 10. Prove that : $\frac{C_0}{2} + \frac{C_1}{3} + \frac{C_2}{4} + \frac{C_3}{5} + \dots + \frac{C_n}{n+2} = \frac{1+n}{(n+1)(n+2)}$
- 11. If $(1+x)^n = \sum_{r=0}^n C_r x^r$ then prove that $\frac{2^2 \cdot C_0}{1 \cdot 2} + \frac{2^3 \cdot C_1}{2 \cdot 3} + \frac{2^4 \cdot C_2}{3 \cdot 4} + \dots + \frac{2^{n+2} \cdot C_n}{(n+1)(n+2)} = \frac{3^{n+2} 2n 5}{(n+1)(n+2)}$
- 12. $(C_0 + C_1)(C_1 + C_2)(C_2 + C_3)(C_3 + C_4)....(C_{n-1} + C_n) = \frac{C_0 C_1 C_2 C_{n-1}(n+1)^n}{n!}$
- 13. Prove that $\sum_{k=0}^{n} {}^{n}C_{k} \sin Kx \cdot \cos (n-K)x = 2^{n-1} \sin nx$.
- 14. $C_0 2C_1 + 3C_2 4C_3 + + (-1)^n (n+1) C_n = 0$

15. If $(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$, prove that

(i)
$$C_0 C_3 + C_1 C_4 + \dots + C_{n-3} C_n = \frac{(2n)!}{(n+3)!(n-3)!}$$

(ii)
$$C_0 C_r + C_1 C_{r+1} + \dots + C_{n-r} C_n = \frac{(2n)!}{(n+r)!(n-r)!}$$

- (iii) $C_0^2 C_1^2 + C_2^2 C_3^2 + \dots + (-1)^n C_n^2 = 0$ or $(-1)^{n/2} C_{n/2}$ according as n is odd or even.
- 16. Prove the identity $\frac{1}{2^{n+1}C_r} + \frac{1}{2^{n+1}C_{r+1}} = \frac{2n+2}{2n+1} \cdot \frac{1}{2^n C_r}$.
- 17. If $y = \left(x \frac{x^2}{2} + \frac{x^3}{3} \frac{x^4}{4} + + to \infty\right)$ and |x| < 1, prove that $x = \left(y + \frac{y^2}{2!} + \frac{y^3}{3!} ... + to \infty\right)$.
- 18. Prove that : $\sum_{r=0}^{n-2} {n-1 \choose r} {n \choose r+2} = {2n-1 \choose n-2}$
- 19. Find the sum of the following infinite series: $\frac{1}{2} \left(\frac{1}{5}\right)^2 + \frac{2}{3} \left(\frac{1}{5}\right)^3 + \frac{3}{4} \left(\frac{1}{5}\right)^4 + \dots$
- 20. Prove that : $\sum_{r=1}^{n} {n-1 \choose n-r} {n \choose r} = {2n-1 \choose n-1}$

Exercise # 5

Part # I > [Previous Year Questions] [AIEEE/JEE-MAIN]

1.	The coefficient of x ³ in ($1 + 2x + 3x^2 + \dots$) ^{-3/2} is:			[AIEEE 2002]
	(A) 21	(B) 25	(C) 26	(D) none of thes	se
2.	The number of integral t	erms in the expansion of ($\sqrt{3} + \sqrt[8]{5}$) ²⁵⁶ is:		[AIEEE 2003]
	(A) 32	(B) 33	(C) 34	(D) 35	
3.	If x is positive, the first (A) 7th term	negative term in the expansi (B) 5th term	on of $(1+x)^{\frac{27}{5}}$ is: (C) 8th term	(D) 6th term.	[AIEEE 2003]
4.	The coefficient of the mi	ddle term in the binomial ex	xpansion in powers of x of (1	$+\alpha x)^4$ and of $(1-\alpha)^4$	$(\alpha x)^6$ is the same,
	if α equals :				[AIEEE 2004]
	(A) $-\frac{5}{3}$	(A) $\frac{10}{3}$	(C) $-\frac{3}{10}$	(D) $\frac{3}{5}$	
5.	The coefficient of x^n in t (A) $(n-1)$	he expansion of $(1+x)(1-x)$ (B) $(-1)^n(1-x)$	$(C)^n$ is- $(C)^{n-1}(n-1)^2$	(D) $(-1)^{n-1}$ n	[AIEEE 2004]
6.	If $s_n = \sum_{r=0}^n \frac{1}{{}^nC_r}$ and t_n	$a_n = \sum_{r=0}^n \frac{r}{{}^nC_r}$, then $\frac{t_n}{s_n}$ is	equal to-		[AIEEE 2004]
	$(\mathbf{A})\frac{\mathrm{n}}{2}$	(B) $\frac{n}{2} - 1$	(C) n-1	(D) $\frac{2n-1}{2}$	
7.		$(r+1)^{th}$ and $(r+2)^{th}$ terms in t	he binomial expansion of (1	+y)m are in AP, then	
	the equation: (A) $m^2 - m(4r-1) + 4r^2 + $		(B) $m^2 - m(4r+1) + 4r^2 -$ (D) $m^2 - m(4r-1) + 4r^2 -$	2 = 0. 2 = 0.	[AIEEE 2005]
8.	The value of ${}^{50}C_4 + \sum_{r=1}^{6}$	56-rC is:			[AIEEE 2005]
0.	(A) ${}^{56}C_4$	(B) ⁵⁶ C,	(C) ⁵⁵ C ₃	(D) ⁵⁵ C ₄	[PHEEE 2003]
	7	3	3	•	
			neglected, then $\frac{(1+x)^{3/2} - \left(1-x\right)^{3/2}}{(1-x)^{3/2}}$	$1+\frac{1}{2}x$	
9.	If x is so small that x^3 and	d higher powers of x may be	neglected, then $\frac{1}{(1-x)^2}$	$\left(\frac{2}{1}\right)^{1/2}$ may be a	approximated as
					[AIEEE 2005]
	(A) $\frac{x}{2} - \frac{3}{8}x^2$	(B) $-\frac{3}{8}x^2$	(C) $3x + \frac{3}{8}x^2$	(D) $1 - \frac{3}{8}x^2$	
10.	If the expansion in power	ers of x of the function $\frac{1}{1-a}$	$\frac{1}{(ax)(1-bx)}$ is $a_0 + a_1x + a_2x^2$	$+ a_3 x^3 + \dots$, then	a _n is:
					[AIEEE 2006]
	$(A) \frac{a^n - b^n}{b - a}$	(B) $\frac{a^{n+1}-b^{n+1}}{b-a}$	(C) $\frac{b^{n+1}-a^{n+1}}{b-a}$	$(D) \frac{b^n - a^n}{b - a}$	
11.	For natural numbers m, I	n if $(1-y)^m (1+y)^n = 1 + a_1 y$	$y + a_2 y^2 + \dots$ and $a_1 = a_2 = 10$, then (m, n) is:	[AIEEE 2006]

(C) (35, 45)

(D) (20, 45)

(A) (35, 20)

(B) (45, 35)

12. The sum of the series
$${}^{20}\text{C}_0 - {}^{20}\text{C}_1 + {}^{20}\text{C}_2 - {}^{20}\text{C}_3 + \dots + {}^{20}\text{C}_{10}$$
 is [AIEEE 2007]

(A) $-{}^{20}\text{C}_{10}$ (B) $\frac{1}{2}$ ${}^{20}\text{C}_{10}$ (C) 0 (D) ${}^{20}\text{C}_{10}$

13. Statement-I: $\sum_{r=0}^{n} (r+1)^n \text{C}_r = (n+2) \, 2^{n-1}$ [AIEEE 2008]

Statement-II: $\sum_{r=0}^{n} (r+1)^n \text{C}_r x^r = (1+x)^n + nx \, (1+x)^{n-1}$

(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (C) Statement-1 is True, Statement-2 is False (D) Statement-1 is False, Statement-2 is True

14. Let
$$S_1 = \sum_{j=1}^{10} j(j-1)^{-10}C_j$$
, $S_2 = \sum_{j=1}^{10} j^{-10}C_j$ and $S_3 = \sum_{j=1}^{10} j^{2-10}C_j$. [AIEEE 2009]

Statement -I: $S_3 = 55 \times 2^9$

Statement-II: $S_1 = 90 \times 2^8$ and $S_2 = 10 \times 2^8$.

- (A) Statement -1 is true, Statement -2 is true; Statement -2 is not a correct explanation for Statement -1.
- (B) Statement-1 is true, Statement-2 is false.
- (C) Statement -1 is false, Statement -2 is true.
- (D) Statement -1 is true, Statement -2 is true; Statement-2 is a correct explanation for Statement-1.

15. The coefficient of
$$x^7$$
 in the expansion of $(1 - x - x^2 + x^3)^6$ is : [AIEEE-2011]
(A) 144 (B) -132 (C) -144 (D) 132

- 16. If n is a positive integer, then $(\sqrt{3} + 1)^{2n} (\sqrt{3} 1)^{2n}$ is:

 (A) an irrational number
 (B) an odd positive integer
 (C) an even positive integer
 (D) a rational number other than positive integers
- 17. The term independent of x in expansion of $\left(\frac{x+1}{x^{2/3}-x^{1/3}+1}-\frac{x-1}{x-x^{1/2}}\right)^{10}$ is : [AIEEE 2013]
 (A) 4 (B) 120 (C) 210 (D) 310
- 18. If the coefficients of x^3 and x^4 in the expansion of $(1 + ax + bx^2)(1 2x)^{18}$ in powers of x are both zero, then (a, b) is equal to : [JEE Main 2014]

 (A) $\left(16, \frac{251}{3}\right)$ (B) $\left(14, \frac{251}{3}\right)$ (C) $\left(14, \frac{272}{3}\right)$ (D) $\left(16, \frac{272}{3}\right)$
- 19. The sum of coefficients of integral powers of x in the binomial expansion of $\left(1 2\sqrt{x}\right)^{50}$ is [JEE Main 2015]

 (A) $\frac{1}{2}\left(3^{50} 1\right)$ (B) $\frac{1}{2}\left(2^{50} + 1\right)$ (C) $\frac{1}{2}\left(3^{50} + 1\right)$ (D) $\frac{1}{2}\left(3^{50}\right)$
- 20. If the number of terms in the expansion of $\left(1 \frac{2}{x} + \frac{4}{x^2}\right)^n$, $x \ne 0$, is 28, then the sum of the coefficients of all the terms in this expansion, is:

 [JEE Main 2016]
 (A) 2187
 (B) 243
 (C) 729
 (D) 64

Part # II

[Previous Year Questions][IIT-JEE ADVANCED]

If in the expansion of $(1+x)^m (1-x)^n$, the coefficients of x and x^2 are 3 and -6 respectively, then m is 1.

[IIT-JEE - 1999]

(A)6

(B) 9

- **(C)** 12
- **(D)** 24.

For $2 \le r \le n$, $\binom{n}{r} + 2 \binom{n}{r-1} + \binom{n}{r-2} =$ 2.

[IIT-JEE-2000]

- (A) $\binom{n+1}{r-1}$ (B) $2 \binom{n+1}{r+1}$ (C) $2 \binom{n+2}{r}$ (D) $\binom{n+2}{r}$
- For any positive integer m, n (with $n \ge m$), let $\binom{n}{m} = {}^{n}C_{m}$. Prove that **3.**
 - $\binom{n}{m} + \binom{n-1}{m} + \binom{n-2}{m} + \dots + \binom{m}{m} = \binom{n+1}{m+1}$. Hence or otherwise, prove that
 - $\binom{n}{m} + 2 \binom{n-1}{m} + 3 \binom{n-2}{m} + \dots + (n-m+1) \binom{m}{m} = \binom{n+2}{m+2}.$

[IIT-JEE 2000]

- In the binomial expansion of $(a b)^n$, $n \ge 5$, the sum of the 5^{th} and 6^{th} terms is zero. Then 4. [HT-JEE-2001] a/b equals:
 - (A) $\frac{n-5}{6}$ (B) $\frac{n-4}{5}$ (C) $\frac{5}{n-4}$
- (D) $\frac{6}{n-5}$
- The sum $\sum_{i=0}^{m} {10 \choose i} {20 \choose m-i}$, (where ${p \choose q} = 0$, if p < q) is maximum when 'm' is: 5.

[IIT-JEE-2002]

(A)5

- **(B)** 10
- **(C)** 15
- **(D)** 20
- Coefficient of t^{24} in $(1+t^2)^{12} (1+t^{12}) (1+t^{24})$ is : (A) $^{12}C_6 + 3$ (B) $^{12}C_6 + 1$ (C) $^{12}C_6$ **6.**

[IIT-JEE-2003]

- (D) ${}^{12}C_6 + 2$
- Prove that $2^{k} \binom{n}{0} \binom{n}{k} 2^{k-1} \binom{n}{1} \binom{n-1}{k-1} + 2^{k-2} \binom{n}{2} \binom{n-2}{k-2} \dots + (-1)^{k} \binom{n}{k} \binom{n-k}{0} = \binom{n}{k}$. 7.

[IIT-JEE-2003]

If ${}^{(n-1)}C_r = (k^2 - 3) {}^nC_{r+1}$, then an interval in which k lies is 8.

[IIT-JEE-2004]

- $(\mathbf{A})(2,\infty)$
- **(B)** $(-\infty, -2)$
- (C) $\left[-\sqrt{3},\sqrt{3}\right]$
- (D) $(\sqrt{3},2]$

9. The value of [IIT-JEE-2005]

$$\begin{pmatrix} 30 \\ 0 \end{pmatrix} \begin{pmatrix} 30 \\ 10 \end{pmatrix} - \begin{pmatrix} 30 \\ 1 \end{pmatrix} \begin{pmatrix} 30 \\ 11 \end{pmatrix} + \begin{pmatrix} 30 \\ 2 \end{pmatrix} \begin{pmatrix} 30 \\ 12 \end{pmatrix} - \dots + \begin{pmatrix} 30 \\ 20 \end{pmatrix} \begin{pmatrix} 30 \\ 30 \end{pmatrix} \text{ is : }$$

- $\mathbf{(A)} \begin{pmatrix} 60 \\ 20 \end{pmatrix}$
- $(B) \begin{pmatrix} 30 \\ 10 \end{pmatrix} \qquad (C) \begin{pmatrix} 30 \\ 15 \end{pmatrix}$
- (D) None of these
- **10.** For r = 0, 1, ..., 10, let A_r , B_r and C_r denote, respectively, the coefficient of x^r in the expansions of

$$(1+x)^{10}\,,(1+x)^{20}\,\text{and}\,(1+x)^{30}\,.\,\text{Then}\ \sum_{r=1}^{10}\,A_r(B_{10}B_r-C_{10}A_r)\ \text{is equal to}$$

[HT-JEE 2010]

- $(A) B_{10} C_{10}$
- **(B)** $A_{10} (B_{10}^2 C_{10} A_{10})$ **(C)** 0
- **(D)** $C_{10} B_{10}$
- Coefficient of x^{11} in the expansion of $(1 + x^2)^4(1 + x^3)^7(1 + x^4)^{12}$ is 11.

[JEE Ad. 2014]

- (A) 1051
- **(B)** 1106
- **(C)** 1113
- **(D)** 1120

12. The coefficient of x^9 in the expansion of [JEE Ad. 2015]

- $(1+x)(1+x^2)(1+x^3)...(1+x^{100})$ is.
- 13. Let m be the smallest positive integer such that the coefficient of x^2 in the expansion [JEE Ad. 2016] $(1+x)^2 + (1+x)^3 + \dots + (1+x)^{40} + (1+mx)^{50}$ is $(3n+1)^{51}$ C₃ for some positive integer n. Then the value of n is

MOCK TEST

SECTION - I : STRAIGHT OBJ

- The expression, $\left(\sqrt{2x^2+1}+\sqrt{2x^2-1}\right)^6+\left(\frac{2}{\sqrt{2x^2+1}+\sqrt{2x^2-1}}\right)^6$ is a polynomial of degree 1.
 - (A) 5

- **(D)** 8
- In the expansion of $\left(\sqrt[3]{\frac{a}{b}} + \sqrt[3]{\frac{b}{\sqrt{a}}}\right)^{21}$ the term containing same powers a and b is 2.
 - (A) 11th
- (B) 13th
- (C) 12^{th}
- (D) 6th

- Co-efficient of x^{15} in $(1 + x + x^3 + x^4)^n$ is: 3.
 - (A) $\sum_{r=0}^{5} {}^{n}C_{15-3r} {}^{n}C_{r}$ (B) $\sum_{r=0}^{5} {}^{n}C_{5r}$

- (C) $\sum_{r=0}^{5} {}^{n}C_{3r}$ (D) $\sum_{r=0}^{3} {}^{n}C_{3-r} {}^{n}C_{5r}$
- The co-efficient of x^{n-2} in the polynomial (x-1)(x-2)(x-3)......(x-n) is 4.
 - (A) $\frac{n(n^2+2)(3n+1)}{24}$

(B) $\frac{n(n^2-1)(3n+2)}{24}$

(C) $\frac{n(n^2+1)(3n+4)}{24}$

- (D) none of these
- The coefficient of x^n in polynomial $(x + {}^{2n+1}C_0)(x + {}^{2n+1}C_1).....(x + {}^{2n+1}C_n)$ is -**5.**
 - (A) 2n+1

- (D) none of these
- If $\sum_{r=0}^{2n} a_r (x-1)^r = \sum_{r=0}^{2n} b_r (x-2)^r$ and $b_r = (-1)^{r-n}$ for all $r \ge n$, then $a_n =$
 - $(A(C)^{+1}C_{n-1}$
- $(\mathbf{B})^{3n}\mathbf{C}_n$
- $(\mathbf{D})0$

- $\sum_{r=1}^{n} \left(\sum_{p=1}^{r-1} {^{n}C_{r}}^{r}C_{p} 2^{p} \right) \text{ is equal to } -$
 - **(A)** $4^{n} 3^{n} + 1$ **(B)** $4^{n} 3^{n} 1$ **(C)** $4^{n} 3^{n} + 2$

- $2(1+x^3)^{100} = \sum_{k=0}^{100} \left(a_k x^k \cos \frac{\pi}{2} (x+k) \right)$ then the value of $a_0 + a_2 + a_4 + \dots + a_{100}$ 8.
 - (A) 2^{99}
- **(B)** 2^{100}
- $(C) 2^{101}$
- (D) None of these
- ${}^{n}C_{0} 2.3 {}^{n}C_{1} + 3.3 {}^{2} {}^{n}C_{2} 4.3 {}^{3} {}^{n}C_{3} + \dots + (-1)^{n} (n+1) {}^{n}C_{n} 3^{n}$ is equal to 9.
 - **(A)** $(-1)^n 2^n \left(\frac{3n}{2} + 1\right)$ **(B)** $2^n \left(n + \frac{3}{2}\right)$
- (C) $2^n + 5n 2^n$
- **(D)** $(-2)^n$.

10. Consider the following statements :

S₁:
$${}^{n}C_{0} \cdot {}^{n}C_{1} + {}^{n}C_{1} \cdot {}^{n}C_{2} + \dots + {}^{n}C_{n-1} \cdot {}^{n}C_{n} = \frac{(2n)!}{(n-1)!(n+1)!}$$

S₂:
$$C_0^2 + C_1^2 + C_2^2 + \dots + C_1^2 = \frac{(2n)!}{(n!)^2}$$

$$S_3:$$
 ${}^{11}C_0{}^{11}C_{11} - {}^{11}C_1{}^{11}C_{10} + \dots + (-1)^{11}{}^{11}C_{11} \cdot {}^{11}C_0 = {}^{22}C_{11}$

$$S_4: \qquad 2^{n}C_0 + \frac{2^{2^{n}}C_1}{2} + \frac{2^{3^{n}}C_2}{3} + \dots + \frac{2^{n+1^{n}}C_n}{n+1} = \frac{3^{n+1}-1}{n+1}$$

State, in order, whether S_1 , S_2 , S_3 , S_4 are true or false

- (A) FTFF
- (B) FTTT
- (C) FFFT
- (D) TTFT

SECTION - II : MULTIPLE CORRECT ANSWER TYPE

11.
$$n^n \left(\frac{n+1}{2}\right)^{2n} is$$

(A) Less than $\left(\frac{n+1}{2}\right)^3$

(B) Greater than or equal to $\left(\frac{n+1}{2}\right)^3$

(C) Less than (n!)³

(D) Greater than or equal to $(n!)^3$.

12. Let
$$a_n = \left(1 + \frac{1}{n}\right)^n$$
. Then for each $n \in N$

- (A) $a_n \ge 2$
- **(B)** $a_n < 3$
- (C) $a_n < 4$
- **(D)** $a_n < 2$

13. Let
$$a_n = \frac{1000^n}{n!}$$
 for $n \in N$, then a_n is greatest, when

- (A) n = 997
- **(B)** n = 998
- (C) n = 999
- **(D)** n = 1000

14. If n is even natural and coefficient of
$$x^r$$
 in the expansion of $\frac{(1+x)^n}{1-x}$ is 2^n , $(|x| < 1)$, then –

- (A) $r \le n/2$
- **(B)** $r \ge (n-2)/2$
- (C) $r \le (n+2)/2$
- (D) $r \ge n$

15. If
$$(4 + \sqrt{15})^n = I + f$$
, where n is an odd natural number, I is an integer and $f < 1$, then

(A) I is natural(d)ber

(B) I is an even integer

(C) (I + f) (1 - f) = 1

(D) $1 - f = (4 - \sqrt{15})^n$

SECTION - III: ASSERTION AND REASON TYPE

- 16. Statement-I: Coefficient of $a^2b^3c^4$ in the expansion of $(a+b+c)^8$ is $\frac{8!}{2!3!4!}$
 - **Statement-II**: Coefficient of $a^{\alpha}b^{\beta}c^{\gamma}$, where $\alpha + \beta + \gamma = n$, in the expansion of $(a + b + c)^{n}$ is $\frac{n!}{\alpha!\beta!\gamma!}$.
 - (A) Statement I is true, statement II is true, statement II is a correct explanation for statement I
 - (B) Statement I is true, statement II is true, statement II is NOT a correct explanation for statement I
 - (C) Statement I is true, statement II is false
 - (D) Statement I is false, statement II is true
- 17. Statement-I: If $q = \frac{1}{3}$ and p + q = 1, then $\sum_{r=0}^{15} r^{15} C_r p^r q^{15-r} = 15 \times \frac{1}{3} = 5$

Statement-II: If
$$p + q = 1$$
, $0 , then $\sum_{r=0}^{n} r^{r} C_{r} p^{r} q^{n-r} = np$$

- (A) Statement I is true, statement II is true, statement II is a correct explanation for statement I
- (B) Statement I is true, statement II is true, statement II is NOT a correct explanation for statement I
- (C) Statement I is true, statement II is false
- (D) Statement I is false, statement II is true
- **18.** Statement-I: Coefficient of x^{51} in the expansion of $(x-1)(x^2-2)(x^3-3)$ $(x^{10}-10)$ is -1

Statement-II: Coefficient of
$$x^{\frac{n(n+1)}{2}-4}$$
, $n \ge 4$, $n \in \mathbb{N}$, in the expansion of $(x-1)(x^2-2)(x^3-3)$ (x^n-n) is $-4+(-1)(-3)=-1$

- (A) Statement I is true, statement II is true, statement II is a correct explanation for statement I
- (B) Statement I is true, statement II is true, statement II is NOT a correct explanation for statement I
- (C) Statement I is true, statement II is false
- (D) Statement I is false, statement II is true
- - (A) Statement I is true, statement II is true, statement II is a correct explanation for statement I
 - (B) Statement I is true, statement II is true, statement II is NOT a correct explanation for statement I
 - (C) Statement I is true, statement II is false
 - (D) Statement I is false, statement II is true
- 20. Statement-I: If $x = {}^{n}C_{n-1} + {}^{n+1}C_{n-1} + {}^{n+2}C_{n-1} + \dots + {}^{2n}C_{n-1}$, then $\frac{x+1}{2n+1}$ is integer.

Statement-II: ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$ and ${}^{n}C_{r}$ is divisible by n if n and r are co-prime.

- (A) Statement I is true, statement II is true, statement II is a correct explanation for statement I
- (B) Statement I is true, statement II is true, statement II is NOT a correct explanation for statement I
- (C) Statement I is true, statement II is false
- (D) Statement I is false, statement II is true

SECTION - IV: MATRIX - MATCH TYPE

21. Match the column

Column - I

(A)
$${}^{m}C_{1}{}^{n}C_{m} - {}^{m}C_{2}{}^{2n}C_{m} + {}^{m}C_{3}{}^{3n}C_{m} - ...$$
 is

(p) the coefficient of
$$x^m$$
 in the expansion of $-(1-(1+x)^n)^m$

(B)
$${}^{n}C_{m} + {}^{n-1}C_{m} + {}^{n-2}C_{m} + \dots + {}^{m}C_{m}$$
 is (q) the coefficient of x^{m} in $\frac{(1+x)^{n+1}}{x}$

(C)
$$C_0 C_n + C_1 C_{n-1} + \dots + C_n C_0$$
 is (r) the coefficient of x^{n+1} in $(1+x)^{2n}$

(D)
$$2^{m} {}^{n}C_{0} \cdot {}^{n}C_{m} - 2^{m-1} {}^{n}C_{1} {}^{n-1}C_{m-1} +$$
 (s) the coefficient of x^{m} in the expansion of $(1+x)^{n}$ (t) the coefficient of x^{n} in $(1+x)^{2n}$

22. Match the column

Column - I

(A) If λ denotes the number of terms in the expansion of $(1+5x+10x^2+10x^3+5x^4+x^5)^{20}$ & If unit's place & ten's place digits in 3^{λ} are O and T, then O + T is

(p)

1

Column - II

(B) The value of
$$8.\left\{\frac{3^{2n}}{8}\right\}$$
 is (Here $\{.\}$ denotes fraction part function) (q) $\frac{(2003)^{1001}}{(2002)!}$

(C) If n be the degree of the polynomial
$$\sqrt{(3x^2+1)} \ \{(x+\sqrt{(3x^2+1)}\)^7 - (x-\sqrt{(3x^2+1)}\)^7\}$$
 then n is divisible by

(D) The value of
$$\left(\frac{1}{1} + \frac{1}{2002}\right) \left(\frac{1}{2} + \frac{1}{2001}\right) \left(\frac{1}{3} + \frac{1}{2000}\right) \dots \left(\frac{1}{1001} + \frac{1}{1002}\right)$$
 (s) 8 is

SECTION - V : COMPREHENSION TYPE

23. Read the following comprehension carefully and answer the questions.

Consider the identity $(1 + x)^{6m} = \sum_{r=0}^{6m} {^{6m}C_r} \cdot x^r$. By putting different values of x on both sides, we can get

summation of several series involving binomial coefficients. For example, by putting $x = \frac{1}{2}$ we get

$$\sum_{r=0}^{6m} {}^{6m}C_r \frac{1}{2^r} = \left(\frac{3}{2}\right)^{6m}.$$

<u>MATHS FOR JEF MAINS & ADVANCED</u>

23.

The value of $\sum_{r=0}^{6m} {^{6m}C_r} 2^{r/2}$ is equal to 1

(A)
$$\frac{3^{6m}}{2}$$

(B)
$$(1 + \sqrt{2})^{3m}$$
 (C) $(3 + 2\sqrt{2})^{3m}$

(C)
$$(3+2\sqrt{2})^{3m}$$

(D) None of these

The value of $\sum_{r=0}^{3m} (-1)^{r} {}^{6m}C_{2r}$ is 2

(A)
$$2^{3m}$$

(C)
$$-2^{3m}$$
 if m is even

(D) None of these

The value of $\sum_{r=1}^{3m} (-3)^{r-1} {}^{6m}C_{2r-1}$ is 3

(A)0

(D) None of these

24. Read the following comprehension carefully and answer the questions.

For $k, n \in \mathbb{N}$, we define

$$B(k, n) = 1.2.3....... k + 2.3.4......(k+1) ++ n(n + 1)......(n + k - 1), S_0(n) = n$$
and $S_1(n) = 1^k + 2^k ++ n^k$.

To obtain value B(k, n), we rewrite B(k, n) as follows

$$B(k,n) = k! \left[{^kC_k} + {^{k+1}C_k} + {^{k+2}C_k} + \dots + {^{n+k-1}C_k} \right] = k! \left({^{n+k}C_{k+1}} \right)$$

$$= \frac{n(n+1).....(n+k)}{k+1} \quad \text{where} \quad {}^{n}C_{k} = \frac{n!}{k! (n-k)!}$$

 $S_2(n) + S_1(n)$ equals 1

(B)
$$\frac{1}{2}$$
B(2,n) **(C)** $\frac{1}{6}$ B(2,n)

(C)
$$\frac{1}{6}$$
B(2,n)

(D) none of these

 $S_3(n) + 3S_2(n)$ equals 2

$$(A)$$
 B $(3, n)$

(B) B
$$(3,n) - 2B(2,n)$$

(C)
$$B(3, n) - 2B(1, n)$$

(D) B(3, n) + 2B(1, n)

3 $If(1+x)^p = 1 + {}^pC_{_1}x + {}^pC_{_2}x^2 + \dots + {}^pC_{_p}x^p, \ p \in N \ , then \ {}^{k+l}C_{_1}S_{_k}(n) + {}^{k+l}C_{_2}S_{_{k-l}}(n) + \dots + {}^{k+l}C_{_k}S_{_l}(n) + {}^{k+l}C_{_{k+l}}S_{_0}(n) + \dots + {}^{k+l}C_{_k}S_{_{k-l}}(n) + \dots + {}^{k+l}C_{_k}S_{_k}(n) + \dots + {}^{k+$ equals

(A)
$$(n+1)^{k+1}$$

(B)
$$(n+1)^{k+1}-1$$

(B)
$$(n+1)^{k+1}-1$$
 (C) $n^{k+1}-(n-1)^{k+1}$ **(D)** $(n+1)^{k+1}-(n-1)^{k+1}$.

(D)
$$(n+1)^{k+1} - (n-1)^{k+1}$$
.

25. Read the following comprehension carefully and answer the questions.

If
$$(1+x)^n = C_0 + C_1x + C_2x^2 + \dots + C_nx^n$$

then sum of the series $C_0 + C(b)C_{2k} + \dots$ can be obtained by putting all the roots of the equation $x^k - 1 = 0$ in (i) and then adding vertically.

For Example: Sum of the series $C_0 + C_2 + C_4 + \dots$ can be obtained by putting roots of the equation $x^2 - 1 = 0$ $x = \pm 1$ in (i)

$$2(C_0 + C_2 + C_4 + \dots) = 2^n$$

$$C_0 + C_2 + C_4 + \dots = 2^{n-1}$$

- Values of x, we should substitute in (i) to get the sum of the series $C_0 + C_3 + C_6 + C_9 \dots$, are
 - (A) $1, -1, \omega$
- (B) ω , ω^2 , ω^3
- (C) ω , ω^2 , -1
- (D) None of these
- If n is a multiple of 3, then $C_0 + C_3 + C_6 + \dots$ is equal to 2
 - (A) $\frac{2^{n}+2}{2}$
- (B) $\frac{2^{n}-2}{3}$ (C) $\frac{2^{n}+2(-1)^{n}}{3}$ (D) $\frac{2^{n}-2(-1)^{n}}{3}$
- Sum of values of x, which we should substitute in (i) to give the sum of the series 3

$$C_0 + C_4 + C_8 + C_{12} + \dots, is$$

(A) 2

- **(B)** 2(1+i)
- (C) 2(1-i)
- $(\mathbf{D})0$

SECTION - VI : INTEGER TYPE

- Let $(1-x^3)^n = \sum_{r=0}^n a_r x^r (1-x)^{3n-2r}$, n > 2, then find the value of n so that a_1, a_2, a_3 are in A.G.P. **26.**
- If $(1-x)^{-n} = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$, find the value of, $a_0 + a_1 + a_2 + \dots + a_n$. 27.
- Find the exponent of three in sum of rational coefficients in expansion of $(\sqrt[3]{5}x + \sqrt{3}y + z)^6$ 28.
- Find the remainder when $32^{32^{32}}$ is divided by 7. 29.
- The value of $\frac{y_1.y_2.y_3}{501(y_1-x_1)(y_2-x_2)(y_2-x_2)}$ when **30.**

$$(x_i, y_i)$$
, $i = 1, 2, 3$ satisfy both $x^3 - 3xy^2 = 2005 & $y^3 - 3x^2y = 2004$ is$

ANSWER KEY

EXERCISE - 1

1. A 2. C 3. C 4. D 5. A 6. D 7. B 8. C 9. A 10. B 11. C 12. A 13. D 14. C 15. A 16. B 17. A 18. D 19. A 20. D 21. C 22. B 23. C 24. C 25. B 26. A 27. B 28. A 29. C 30. A

EXERCISE - 2: PART # I

3. ABC **4.** ABC **5.** AC **6.** AB 7. BCD **8.** CD **9.** BC **1.** AB **2.** BD **17.** AD **10.** ABCD **11.** ABC **12.** AC **13.** AC **14.** BCD **15.** ACD **16.** AB **18.** ABCD **19.** BCD **20.** ABCD **21.** ABCD

PART - II

1. C 2. D 3. C 4. B 5. A 6. A 7. D 8. A

EXERCISE - 3: PART # I

1. $A \rightarrow r \ B \rightarrow s \ C \rightarrow p \ D \rightarrow q$ 2. $A \rightarrow q, s \ B \rightarrow p, q, r \ C \rightarrow s \ D \rightarrow ps$ 3. $A \rightarrow q \ B \rightarrow s \ C \rightarrow p \ D \rightarrow r$

PART - II

Comprehension #1: 1. B 2. A 3. C 4. C Comprehension #2: 1. D 2. C 3. C Comprehension #3: 1. A 2. B 3. A

EXERCISE - 5: PART # I

1. D 2. B 3. C 4. C 5. B 6. A 7. B 8. A 9. B 10. C 11. C 12. B 13. A 14. B 15. C 16. A 17. C 18. D 19. C 20. C

PART - II

1. C 2. D 4. B 5. C 6. D 8. D 9. B 10. D 11. B 12. 8 13. 5

MOCK TEST

1. B 2. B 3. A 4. B 5. C 6. C 7. D 8. B 9. A

10. B **11.** BD **12.** ABC **13.** CD **14.** D **15.** ACD **16.** D **17.** D **18.** A

19. A 20. A 21. $A \rightarrow p B \rightarrow q C \rightarrow t D \rightarrow s$ 22. $A \rightarrow r B \rightarrow p C \rightarrow s D \rightarrow q$

23. 1. C 2. B 3. A 24. 1. A 2. C 3. B 25. 1. B 2. C 3. D

26. 7 **27.** $\frac{(2n)!}{(n!)^2}$ **28.** 1 **29.** 4 **30.** 2