

SOLVED EXAMPLES

- Ex. 1 The values of x and y satisfying the equation $\frac{(1+i)x-2i}{3+i} + \frac{(2-3i)y+i}{3-i} = i$ are
- Sol. $\frac{(1+i)x-2i}{3+i} + \frac{(2-3i)y+i}{3-i} = i$ \Rightarrow (4+2i)x+(9-7i)y-3i-3=10i

Equating real and imaginary parts, we get 2x - 7y = 13 and 4x + 9y = 3.

Hence x = 3 and y = -1.

- Ex. 2 Find the square root of 7 + 24i.
- **Sol.** Let $\sqrt{7 + 24i} = a + ib$

Squaring
$$a^2 - b^2 + 2iab = 7 + 24i$$

Compare real & imaginary parts $a^2 - b^2 = 7$ & 2ab = 24

By solving these two equations

We get
$$a = \pm 4$$
, $b = \pm 3$

$$\sqrt{7+24i} = \pm (4+3i)$$

- **Ex.3** Find the value of expression $x^4 4x^3 + 3x^2 2x + 1$ when x = 1 + i is a factor of expression.
- **Sol.** x = 1 + i

$$\Rightarrow$$
 $x-1=i$

$$\Rightarrow$$
 $(x-1)^2 = -1$

$$\Rightarrow x^2 - 2x + 2 = 0$$

Now
$$x^4 - 4x^3 + 3x^2 - 2x + 1$$

= $(x^2 - 2x + 2)(x^2 - 3x - 3) - 4x + 7$

.. when
$$x = 1 + i$$
 i.e. $x^2 - 2x + 2 = 0$
 $x^4 - 4x^3 + 3x^2 - 2x + 1 = 0 - 4(1 + i) + 7 = -4 + 7 - 4i = 3 - 4i$

- **Ex.4** Find modulus and argument for $z = 1 \sin \alpha + i \cos \alpha$, $\alpha \in (0, 2\pi)$
- Sol. $|z| = \sqrt{(1-\sin\alpha)^2 + (\cos\alpha)^2} = \sqrt{2-2\sin\alpha} = \sqrt{2} \left|\cos\frac{\alpha}{2} \sin\frac{\alpha}{2}\right|$

Case I For $\alpha \in \left(0, \frac{\pi}{2}\right)$, z will lie in I quadrant.

$$amp(z) = \tan^{-1} \frac{\cos \alpha}{1 - \sin \alpha} \Rightarrow amp(z) = \tan^{-1} \frac{\cos^2 \frac{\alpha}{2} - \sin^2 \frac{\alpha}{2}}{\left(\cos \frac{\alpha}{2} - \sin \frac{\alpha}{2}\right)^2} = \tan^{-1} \frac{\cos \frac{\alpha}{2} + \sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2} - \sin \frac{\alpha}{2}}$$

$$\Rightarrow \qquad \text{arg } z = \tan^{-1} \tan \left(\frac{\pi}{4} + \frac{\alpha}{2} \right)$$

Since
$$\frac{\pi}{4} + \frac{\alpha}{2} \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$$

$$\therefore \qquad \operatorname{amp}(z) = \left(\frac{\pi}{4} + \frac{\alpha}{2}\right), \mid z \mid = \sqrt{2} \left(\cos \frac{\alpha}{2} - \sin \frac{\alpha}{2}\right)$$

Case II at
$$\alpha = \frac{\pi}{2}$$
: $z = 0 + 0i$
 $|z| = 0$

amp (z) is not defined.

Case III For $\alpha \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$, z will lie in IV quadrant

So
$$\operatorname{amp}(z) = -\tan^{-1} \tan \left(\frac{\alpha}{2} + \frac{\pi}{4} \right)$$

Since
$$\frac{\alpha}{2} + \frac{\pi}{4} \in \left(\frac{\pi}{2}, \pi\right)$$

$$\therefore \qquad amp(z) = -\left(\frac{\alpha}{2} + \frac{\pi}{4} - \pi\right) = \frac{3\pi}{4} - \frac{\alpha}{2}, |z| = \sqrt{2}\left(\sin\frac{\alpha}{2} - \cos\frac{\alpha}{2}\right)$$

Case IV at
$$\alpha = \frac{3\pi}{2}$$
: $z = 2 + 0i$

$$|z|=2$$

$$amp(z) = 0$$

Case V For
$$\alpha \in \left(\frac{3\pi}{2}, 2\pi\right)$$
, z will lie in I quadrant

$$arg(z) = tan^{-1}tan\left(\frac{\alpha}{2} + \frac{\pi}{4}\right)$$

Since
$$\frac{\alpha}{2} + \frac{\pi}{4} \in \left(\pi, \frac{5\pi}{4}\right)$$

$$\therefore \qquad \text{arg } z = \frac{\alpha}{2} + \frac{\pi}{4} - \pi = \frac{\alpha}{2} - \frac{3\pi}{4} \ , |z| = \sqrt{2} \left(\sin \frac{\alpha}{2} - \cos \frac{\alpha}{2} \right)$$

Ex. 5 If
$$x_n = \cos\left(\frac{\pi}{2^n}\right) + i\sin\left(\frac{\pi}{2^n}\right)$$
 then $x_1 x_2 x_3 \dots \infty$ is equal to -

Sol.
$$x_n = \cos\left(\frac{\pi}{2^n}\right) + i\sin\left(\frac{\pi}{2^n}\right) = 1 \times e^{i\frac{\pi}{2^n}}$$

$$x_1 x_2 x_3 \dots \infty$$

$$=e^{i\frac{\pi}{2^{1}}}.e^{i\frac{\pi}{2^{2}}}---e^{i\frac{\pi}{2^{n}}}=e^{i\left(\frac{\pi}{2}+\frac{\pi}{2^{2}}+--+\frac{\pi}{2^{n}}\right)}$$

$$=\cos\left(\frac{\pi}{2} + \frac{\pi}{2^2} + \frac{\pi}{2^3} + \dots\right) + i\sin\left(\frac{\pi}{2} + \frac{\pi}{2^2} + \frac{\pi}{2^3} + \dots\right) = -1$$

$$\left(as \ \frac{\pi}{2} + \frac{\pi}{2^2} + \frac{\pi}{2^3} + \dots = \frac{\pi/2}{1 - 1/2} = \pi\right)$$

Ex. 6 If
$$\left| \frac{z-i}{z+i} \right| = 1$$
, then locus of z is -

Sol. We have,
$$\left| \frac{z-i}{z+i} \right| = 1 \implies \left| \frac{x+i(y-1)}{x+i(y+1)} \right| = 1$$

$$\Rightarrow \frac{\left|x+i\left(y-1\right)\right|^2}{\left|x+i\left(y+1\right)\right|^2} = 1 \Rightarrow x^2 + \left(y-1\right)^2 = x^2 + \left(y+1\right)^2 \Rightarrow 4y = 0; y = 0, \text{ which is x-axis}$$

Ex. 7 Solve for z if
$$z^2 + |z| = 0$$

Sol. Let
$$z = x + iy$$

$$\Rightarrow$$
 $(x + iy)^2 + \sqrt{x^2 + y^2} = 0$

$$\Rightarrow$$
 $x^2 - y^2 + \sqrt{x^2 + y^2} = 0$ and $2xy = 0$

$$\Rightarrow$$
 $x = 0$ or $y = 0$

when
$$x = 0$$
 $-y^2 + |y| = 0$

$$\Rightarrow$$
 $y = 0, 1, -1$ \Rightarrow $z = 0, i, -i$

when
$$y = 0$$
 $x^2 + |x| = 0$

$$\Rightarrow$$
 $x=0$

$$\Rightarrow$$
 z=0

$$z = 0, z = i, z = -i$$

Ex. 8 If
$$|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2$$
 then $\left(\frac{z_1}{z_2}\right)$ is -

Sol. Here let
$$z_1 = r_1 (\cos \theta_1 + i \sin \theta_1), |z_1| = r_1$$

$$z_2 = r_2 (\cos \theta_2 + i \sin \theta_2), |z_2| = r_2$$

$$\begin{aligned} & \therefore \qquad |(z_1 + z_2)|^2 = \left| \left(r_1 \cos \theta_1 + r_2 \cos \theta_2 \right) + i \left(r_1 \sin \theta_1 + r_2 \sin \theta_2 \right) \right|^2 \\ & = r_1^2 + r_2^2 + 2r_1r_2 \cos(\theta_1 - \theta_2) = |z_1|^2 + |z_2|^2 \text{ if } \cos(\theta_1 - \theta_2) = 0 \end{aligned}$$

$$\therefore \qquad \theta_1 - \theta_2 = \pm \frac{\pi}{2}$$

$$\Rightarrow$$
 amp (z_1) - amp (z_2) = $\pm \frac{\pi}{2}$

$$\Rightarrow$$
 amp $\left(\frac{z_1}{z_2}\right) = \pm \frac{\pi}{2} \Rightarrow \frac{z_1}{z_2}$ is purely imaginary

Ex. 9 The locus of the complex number z in argand plane satisfying the inequality

$$\log_{1/2}\!\left(\frac{\mid z-1\mid +\!4}{3\mid z-1\mid -\!2}\right) \;>\; 1\; \left(\text{where}\; \mid z-1\mid \neq \frac{2}{3}\right) \; \text{is -}$$

Sol. We have, $\log_{1/2} \left(\frac{|z-1|+4}{3|z-1|-2} \right) > 1 = \log_{1/2} \left(\frac{1}{2} \right)$

$$\Rightarrow \frac{|z-1|+4}{3|z-1|-2} < \frac{1}{2}$$
 [: log_a x is a decreasing function if a < 1]

$$\Rightarrow 2|z-1|+8<3|z-1|-2 \text{ as } |z-1|>2/3$$

$$\Rightarrow |z-1| > 10$$

which is exterior of a circle.

Ex. 10 Sketch the region given by

(i) Arg
$$(z-1-i) \ge \pi/3$$

(ii) $|z| \le 5 \& Arg(z-i-1) > \pi/6$

Sol.

Ex. 11 Shaded region is given by -

(A)
$$|z+2| \ge 6, 0 \le \arg(z) \le \frac{\pi}{6}$$

(B)
$$|z+2| \ge 6, 0 \le \arg(z) \le \frac{\pi}{3}$$

(C)
$$|z+2| \le 6, 0 \le \arg(z) \le \frac{\pi}{2}$$

(D) None of these

Sol. Note that AB = 6 and 1 + $3\sqrt{3}i = -2 + 3 + 3\sqrt{3}i = -2 + 6\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = -2 + 6\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$

$$\therefore$$
 \angle BAC = $\frac{\pi}{3}$

Thus, shaded region is given by $|z+2| \ge 6$ and $0 \le \arg(z+2) \le \frac{\pi}{3}$

Ex. 12 Two different non parallel lines cut the circle |z| = r in point a, b, c, d respectively. Prove that these lines meet in the point z given by $z = \frac{a^{-1} + b^{-1} - c^{-1} - d^{-1}}{a^{-1}b^{-1} - c^{-1}d^{-1}}$

Sol. Since point P, A, B are collinear

Similarly, points P, C, D are collinear, so

$$z(\overline{c} - \overline{d}) - \overline{z}(c - d) + (c\overline{d} - \overline{c}d) = 0 \qquad(ii)$$

On applying (i) \times (c - d) - (ii) (a - b), we get

$$\mathbf{z}\overline{\mathbf{z}} = \mathbf{r}^2 = \mathbf{k} \text{ (say)} \therefore \qquad \overline{\mathbf{a}} = \frac{\mathbf{k}}{\mathbf{a}}, \ \overline{\mathbf{b}} = \frac{\mathbf{k}}{\mathbf{b}}, \ \overline{\mathbf{c}} = \frac{\mathbf{k}}{\mathbf{c}} \text{ etc.}$$

From equation (iii) we get

$$z\left(\frac{k}{a}-\frac{k}{b}\right)\left(c-d\right)-z\left(\frac{k}{c}-\frac{k}{d}\right)\left(a-b\right)=\left(\frac{ck}{d}-\frac{kd}{c}\right)\left(a-b\right)-\left(\frac{ak}{b}-\frac{bk}{a}\right)\left(c-d\right)$$

$$\therefore z = \frac{a^{-1} + b^{-1} - c^{-1} - d^{-1}}{a^{-1}b^{-1} - c^{-1}d^{-1}}$$

Ex. 13 If the vertices of a square ABCD are z_1 , z_2 , z_3 & z_4 then find z_3 & z_4 in terms of z_1 & z_2 .

Sol. Using vector rotation at angle A

$$\frac{z_3 - z_1}{z_2 - z_1} = \frac{\left|z_3 - z_1\right|}{\left|z_2 - z_1\right|} e^{i\frac{\pi}{4}}$$

$$|z_3 - z_1| = AC$$
 and $|z_2 - z_1| = AB$

Also $AC = \sqrt{2} AB$

$$|z_3 - z_1| = \sqrt{2} |z_2 - z_1|$$

$$\Rightarrow \frac{z_3 - z_1}{z_2 - z_1} = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$$

$$\Rightarrow$$
 $z_3 - z_1 = (z_2 - z_1)(1 + i)$

$$\Rightarrow$$
 $z_3 = z_1 + (z_2 - z_1)(1 + i)$

Similarly $z_4 = z_2 + (1+i)(z_1 - z_2)$

- Ex. 14 If A(2+3i) and B(3+4i) are two vertices of a square ABCD (take in anticlock wise order) then find C and D.
- **Sol.** Let affix of C and D are z_3 and z_4 respectively.

Considering $\angle DAB = 90^{\circ}$ and AD = AB

we get
$$\frac{z_4 - (2+3i)}{(3+4i) - (2+3i)} = \frac{AD}{AB} e^{\frac{i\pi}{2}}$$

$$\Rightarrow z_4 - (2+3i) = (1+i)i \Rightarrow z_4 = 2+3i+i-1 = 1+4i$$
and $\frac{z_3 - (3+4i)}{(2+3i) - (3+4i)} = \frac{CB}{AB} e^{-\frac{i\pi}{2}}$

Ex. 15 Plot the region represented by $\frac{\pi}{3} \le \arg\left(\frac{z+1}{z-1}\right) \le \frac{2\pi}{3}$ in the Argand plane.

 \Rightarrow $z_3 = 3 + 4i - (1 + i)(-i) \Rightarrow z_3 = 3 + 4i + i - 1 = 2 + 5i$

Sol. Let us take $\arg\left(\frac{z+1}{z-1}\right)=\frac{2\pi}{3}$, clearly z lies on the minor arc of the circle passing through (1,0) and (-1,0). Similarly, $\arg\left(\frac{z+1}{z-1}\right)=\frac{\pi}{3}$ means that 'z' is lying on the major arc of the circle passing through (1,0) and (-1,0). Now if we take any point in the region included between two arcs say $P_1(z_1)$ we get $\frac{\pi}{3} \leq \arg\left(\frac{z+1}{z-1}\right) \leq \frac{2\pi}{3}$

Thus $\frac{\pi}{3} \le \arg\left(\frac{z+1}{z-1}\right) \le \frac{2\pi}{3}$ represents the shaded region (excluding points (1,0) and (-1,0)).

- Ex. 16 If z_1 , z_2 & z_3 are the affixes of three points A, B & C respectively and satisfy the condition $|z_1 z_2| = |z_1| + |z_2|$ and $|(2 i)z_1 + iz_3| = |z_1| + |(1 i)z_1 + iz_3|$ then prove that \triangle ABC in a right angled.
- **Sol.** $|z_1 z_2| = |z_1| + |z_2|$
 - \Rightarrow z_1, z_2 and origin will be collinear and z_1, z_2 will be opposite side of origin Similarly $|(2-i)z_1 + iz_3| = |z_1| + |(1-i)z_1 + iz_3|$
 - $z_1 \text{ and } (1-i) z_1 + i z_3 = z_4 \text{ say, are collinear with origin and lies on same side of origin.}$ Let $z_4 = \lambda z_1$, λ real
 then $(1-i) z_1 + i z_3 = \lambda z_1$
 - $\Rightarrow i(z_3 z_1) = (\lambda 1) z_1 \qquad \Rightarrow \frac{(z_3 z_1)}{-z_1} = (\lambda 1) i$
 - $\Rightarrow \frac{z_3 z_1}{0 z_1} = me^{i\pi/2}, m = \lambda 1 \Rightarrow z_3 z_1 \text{ is perpendicular to the vector } 0 z_1.$
 - i.e. also z_2 is on line joining origin and z_1 so we can say the triangle formed by z_1 , z_2 and z_3 is right angled.

Ex.17 If α , β , γ are roots of $x^3 - 3x^2 + 3x + 7 = 0$ (and ω is imaginary cube root of unity), then find the value of

$$\frac{\alpha-1}{\beta-1} + \frac{\beta-1}{\gamma-1} + \frac{\gamma-1}{\alpha-1} \, .$$

- **Sol.** We have $x^3 3x^2 + 3x + 7 = 0$
 - $(x-1)^3 + 8 = 0$
 - $(x-1)^3 = (-2)^3$

$$\Rightarrow \left(\frac{x-1}{-2}\right)^3 = 1 \Rightarrow \frac{x-1}{-2} = (1)^{1/3} = 1, \, \omega, \, \omega^2 \quad \text{(cube roots of unity)}$$

- \therefore $x = -1, 1 2\omega, 1 2\omega^2$
- Here $\alpha = -1$, $\beta = 1 2\omega$, $\gamma = 1 2\omega^2$
- $\alpha 1 = -2, \beta 1 = -2\omega, \gamma 1 = -2\omega^2$

Then
$$\frac{\alpha-1}{\beta-1} + \frac{\beta-1}{\gamma-1} + \frac{\gamma-1}{\alpha-1} = \left(\frac{-2}{-2\omega}\right) + \left(\frac{-2\omega}{-2\omega^2}\right) + \left(\frac{-2\omega^2}{-2}\right) = \frac{1}{\omega} + \frac{1}{\omega} + \omega^2 = \omega^2 + \omega^2 + \omega^2$$

Therefore $\frac{\alpha-1}{\beta-1} + \frac{\beta-1}{\gamma-1} + \frac{\gamma-1}{\alpha-1} = 3\omega^2$.

- Ex. 18 If z is a point on the Argand plane such that |z-1|=1, then $\frac{z-2}{z}$ is equal to -
- **Sol.** Since |z-1| = 1,
 - \therefore let $z 1 = \cos \theta + i \sin \theta$

Then, $z-2 = \cos \theta + i \sin \theta - 1$

$$= -2\sin^2\frac{\theta}{2} + 2i\sin\frac{\theta}{2}\cos\frac{\theta}{2} = 2i\sin\frac{\theta}{2}\left(\cos\frac{\theta}{2} + i\sin\frac{\theta}{2}\right) \qquad(i)$$

and $z = 1 + \cos \theta + i \sin \theta$

$$=2\cos^2\frac{\theta}{2}+2i\sin\frac{\theta}{2}\cos\frac{\theta}{2}=2\cos\frac{\theta}{2}\left(\cos\frac{\theta}{2}+i\sin\frac{\theta}{2}\right) \qquad(ii)$$

From (i) and (ii), we get $\frac{z-2}{z} = i \tan \frac{\theta}{2} = i \tan (\arg z) \left(\because \arg z = \frac{\theta}{2} \text{ from (ii)} \right)$

Ex. 19 Let a be a complex number such that |a| < 1 and z_1, z_2, \dots, z_n be the vertices of a polygon such that

 $z_k = 1 + a + a^2 + \dots a^k$, then show that vertices of the polygon lie within the circle $\left|z - \frac{1}{1 - a}\right| = \frac{1}{\left|1 - a\right|}$.

Sol. We have, $z_k = 1 + a + a^2 + \dots + a^k = \frac{1 - a^{k+1}}{1 - a}$

$$\Rightarrow z_k - \frac{1}{1-a} = \frac{-a^{k+1}}{1-a} \Rightarrow \left| z_k - \frac{1}{1-a} \right| = \frac{\left| a \right|^{k+1}}{\left| 1-a \right|} < \frac{1}{\left| 1-a \right|} \qquad \left(\because \left| a \right| < 1 \right)$$

... Vertices of the polygon z_1, z_2, \dots, z_n lie within the circle $\left| z - \frac{1}{1 - a} \right| = \frac{1}{|1 - a|}$

- If $z_1 = a + ib$ and $z_2 = c + id$ are complex number such that $|z_1| = |z_2| = 1$ and Re $(z_1\overline{z}_2) = 0$, then show that the pair of complex numbers $w_1 = a + ic$ and $w_2 = b + id$ satisfies the following
 - $|w_1| = 1$
- (ii) $|w_2| = 1$
- (iii) Re $(\mathbf{w}_1 \overline{\mathbf{w}}_2) = 0$

- Sol. $a = \cos \theta$, $b = \sin \theta$ $c = \cos \phi$, $d = \sin \phi$
 - Re $(z_1\overline{z}_2) = 0$ \Rightarrow $\theta \phi = \frac{n\pi}{2}$ $n = \pm 1$

- $c = \sin \theta$, $d = -\cos \theta$

- $w_1 = \cos \theta + i \sin \theta$
 - $w_2 = \sin \theta i \cos \theta$
- \Rightarrow $|\mathbf{w}_1| = 1, |\mathbf{w}_2| = 1$
 - $w_1 \overline{w}_2 = \cos\theta \sin\theta \sin\theta \cos\theta + i(\sin^2\theta \cos^2\theta) = -i \cos 2\theta$
- Re $(\mathbf{w}_1 \overline{\mathbf{w}}_2) = 0$
- If $\theta \in [\pi/6, \pi/3]$, i = 1, 2, 3, 4, 5 and $z^4 \cos\theta_1 + z^3 \cos\theta_2 + z^2 \cos\theta_3 + z \cos\theta_4 + \cos\theta_5 = 2\sqrt{3}$, then show that $|z| > \frac{3}{4}$
- Given that $\cos \theta_1 \cdot z^4 + \cos \theta_2 \cdot z^3 + \cos \theta_3 \cdot z^2 + \cos \theta_4 \cdot z + \cos \theta_5 = 2\sqrt{3}$ Sol.
 - $|\cos \theta_1 \cdot z^4 + \cos \theta_2 \cdot z^3 + \cos \theta_3 \cdot z^2 + \cos \theta_4 \cdot z + \cos \theta_5| = 2\sqrt{3}$
 - $2\sqrt{3} \le |\cos\theta_1, z^4| + |\cos\theta_2, z^3| + |\cos\theta_2, z^2| + |\cos\theta_4, z| + |\cos\theta_5|$
 - $\theta_i \in [\pi/6, \pi/3]$
 - $\therefore \frac{1}{2} \le \cos \theta_{i} \le \frac{\sqrt{3}}{2}$
 - $2\sqrt{3} \le \frac{\sqrt{3}}{2}|z|^4 + \frac{\sqrt{3}}{2}|z|^3 + \frac{\sqrt{3}}{2}|z|^2 + \frac{\sqrt{3}}{2}|z| + \frac{\sqrt{3}}{2}$
 - - $3 \le |z|^4 + |z|^3 + |z|^2 + |z|$ \Rightarrow $3 < |z| + |z|^2 + |z|^3 + |z|^4 + |z|^5 + \dots \infty$
 - $\Rightarrow \qquad 3 < \frac{|z|}{1 |z|} \qquad \Rightarrow \qquad 3 3|z| < |z|$

- $|z| > \frac{3}{4}$
- If z_1 and z_2 are two complex numbers and C > 0, then prove that $|z_1 + z_2|^2 \le (1 + C)|z_1|^2 + (1 + C^{-1})|z_2|^2$
- We have to prove that : $|z_1 + z_2|^2 \le (1 + C) |z_1|^2 + (1 + C^{-1})|z_2|^2$ Sol.
 - $|z_1|^2 + |z_2|^2 + |z_1|^2 + |z_2|^2 + |z_1|^2 + |z_2|^2 \le (1 + C) |z_1|^2 + (1 + C^{-1})|z_2|^2$
 - $z_1\overline{z}_2 + \overline{z}_1z_2 \le C |z_1|^2 + C^{-1}|z_2|^2$
 - $C|z_1|^2 + \frac{1}{C}|z_2|^2 z_1\overline{z}_2 \overline{z}_1z_2 \ge 0$
- (using Re $(z_1\overline{z}_2) \le |z_1\overline{z}_2|$)
- or $\left(\sqrt{C}|z_1| \frac{1}{\sqrt{C}}|z_2|\right)^2 \ge 0$

which is always true.

Ex. 23 Let z_1 and z_2 be complex numbers such that $z_1 \neq z_2$ and $|z_1| = |z_2|$. If z_1 has positive real part and z_2 has negative imaginary part, then show that $\frac{z_1 + z_2}{z_1 - z_2}$ is purely imaginary.

Sol.
$$z_1 = r(\cos\theta + i\sin\theta), \quad -\frac{\pi}{2} < \theta < \frac{\pi}{2}$$

$$z_2 = r(\cos\phi + i\sin\phi), \quad -\pi < \phi < 0$$

$$\Rightarrow \frac{z_1 + z_2}{z_1 - z_2} = -i \cot \left(\frac{\theta - \varphi}{2}\right), \qquad -\frac{\pi}{4} < \frac{\theta - \varphi}{2} < \frac{3\pi}{4}$$

Hence purely imaginary

Ex. 24 Two given points P & Q are the reflection points w.r.t. a given straight line if the given line is the right bisector of the segment PQ. Prove that the two points denoted by the complex numbers z_1 & z_2 will be the reflection points for the straight line $\overline{\alpha}z + \alpha \overline{z} + r = 0$ if and only if; $\overline{\alpha}z_1 + \alpha \overline{z}_2 + r = 0$, where r is real and α is non zero complex constant.

Sol. Let $P(z_1)$ is the reflection point of $Q(z_2)$ then the perpendicular bisector of $z_1 & z_2$ must be the line

$$\overline{\alpha}z + \alpha \overline{z} + r = 0$$
(i)

Now perpendicular bisector of z_1 & z_2 is, $|z - z_1| = |z - z_2|$

or
$$(z-z_1)(\overline{z}-\overline{z}_1) = (z-z_2)(\overline{z}-\overline{z}_2)$$

 $-z\overline{z}_1 - z_1\overline{z} + z_1\overline{z}_1 = -z\overline{z}_2 - z_2\overline{z} + z_2\overline{z}_2$ ($z\overline{z}$ cancels on either side)

or
$$(\overline{z}_2 - \overline{z}_1)z + (z_2 - z_1)\overline{z} + z_1\overline{z}_1 - z_2\overline{z}_2 = 0$$
(ii)

Comparing (i) & (ii)
$$\frac{\overline{\alpha}}{\overline{z}_2 - \overline{z}_1} = \frac{\alpha}{z_2 - z_1} = \frac{r}{z_1 \overline{z}_1 - z_2 \overline{z}_2} = \lambda$$

$$\therefore \qquad \overline{\alpha} = \lambda \left(\overline{z}_2 - \overline{z}_1 \right) \qquad \qquad \dots \dots (iii)$$

$$\alpha = \lambda \left(z_2 - z_1 \right) \qquad \qquad(iv)$$

$$r = \lambda \left(z_1 \overline{z}_1 - z_2 \overline{z}_2 \right) \qquad \qquad(v)$$

Multiplying (iii) by z_1 ; (iv) by \overline{z}_2 and adding

$$\overline{\alpha}z_1 + \alpha \overline{z}_2 + r = 0$$

Note that we could also multiply (iii) by z_2 & (iv) by \overline{z}_1 & add to get the same result.

Ex. 25 If z_1 , z_2 , z_3 are complex numbers such that $\frac{2}{z_1} = \frac{1}{z_2} + \frac{1}{z_3}$, show that the points represented by z_1 , z_2 , z_3 lie on a circle passing through the origin.

Sol. We have,
$$\frac{2}{z_1} = \frac{1}{z_2} + \frac{1}{z_3}$$

$$\Rightarrow \frac{1}{z_1} - \frac{1}{z_2} = \frac{1}{z_3} - \frac{1}{z_1} \Rightarrow \frac{z_2 - z_1}{z_1 z_2} = \frac{z_1 - z_3}{z_1 z_3}$$

$$\Rightarrow \frac{z_2 - z_1}{z_3 - z_1} = \frac{-z_2}{z_3} \Rightarrow \arg\left(\frac{z_2 - z_1}{z_3 - z_1}\right) = \arg\left(\frac{-z_2}{z_3}\right)$$

$$\arg\left(\frac{\mathbf{z}_2 - \mathbf{z}_1}{\mathbf{z}_3 - \mathbf{z}_1}\right) = \pi + \arg\left(\frac{\mathbf{z}_2}{\mathbf{z}_3}\right)$$

$$\Rightarrow \frac{1}{z_1} - \frac{1}{z_2} = \frac{1}{z_3} - \frac{1}{z_1} \qquad \Rightarrow \qquad \frac{z_2 - z_1}{z_1 z_2} = \frac{z_1 - z_3}{z_1 z_3}$$

$$\Rightarrow \frac{z_2 - z_1}{z_3 - z_1} = \frac{-z_2}{z_3} \qquad \Rightarrow \qquad \arg\left(\frac{z_2 - z_1}{z_3 - z_1}\right) = \arg\left(\frac{-z_2}{z_3}\right)$$

$$\arg\left(\frac{z_2 - z_1}{z_3 - z_1}\right) = \pi + \arg\left(\frac{z_2}{z_3}\right)$$

$$\Rightarrow$$
 or $\beta = \pi - \arg \frac{z_3}{z_2} = \pi - \alpha = \alpha + \beta = \pi$

Thus the sum of a pair of opposite angle of a quadrilateral is 180° . Hence, the points 0, z_1 , z_2 and z_3 are the vertices of a cyclic quadrilateral i.e. lie on a circle.

Exercise # 1

[Single Correct Choice Type Questions]

The argument of the complex number $\sin \frac{6\pi}{5} + i \left(1 + \cos \frac{6\pi}{5}\right)$ is 1.

(A)
$$\frac{6\pi}{5}$$

(B)
$$\frac{5\pi}{6}$$

(C)
$$\frac{9\pi}{10}$$
 (D) $\frac{2\pi}{5}$

(D)
$$\frac{2\pi}{5}$$

The principal value of the arg(z) and |z| of the complex number $z = 1 + cos\left(\frac{11\pi}{9}\right) + i sin\left(\frac{11\pi}{9}\right)$ are 2. respectively

(A)
$$\frac{11\pi}{18}$$
, $2\cos\frac{\pi}{18}$

(A)
$$\frac{11\pi}{18}$$
, $2\cos\frac{\pi}{18}$ (B) $-\frac{7\pi}{18}$, $2\cos\frac{7\pi}{18}$ (C) $\frac{2\pi}{9}$, $2\cos\frac{7\pi}{18}$ (D) $-\frac{\pi}{9}$, $-2\cos\frac{\pi}{18}$

(C)
$$\frac{2\pi}{9}$$
, $2\cos\frac{7\pi}{18}$

(D)
$$-\frac{\pi}{9}$$
, $-2\cos\frac{\pi}{18}$

The inequality |z-4| < |z-2| represents: 3.

$$(A) \operatorname{Re}(z) > 0$$

(B)
$$Re(z) < 0$$

(C) Re
$$(z) > 2$$

(D)
$$Re(z) > 3$$

The sequence $S = i + 2i^2 + 3i^3 + \dots$ upto 100 terms simplifies to where $i = \sqrt{-1}$ 4.

(A)
$$50(1-i)$$

(C)
$$25(1+i)$$

(D) 100(1-i)

The region of Argand diagram defined by $|z-1|+|z+1| \le 4$ is: 5.

(A) interior of an ellipse

(B) exterior of a circle

(C) interior and boundary of an ellipse

(D) none of these

The system of equations $\begin{vmatrix} |z+1-i|| = 2 \\ \text{Re } z \ge 1 \end{vmatrix}$, where z is a complex number has: 6.

(A) no solution

(B) exactly one solution

(C) two distinct solutions

(D) infinite solution

 $\text{If } z_1, z_2, z_3 \text{ are 3 distinct complex numbers such that } \frac{3}{|z_2 - z_2|} = \frac{4}{|z_2 - z_1|} = \frac{5}{|z_1 - z_2|},$ 7.

then the value of $\frac{9}{z_2 - z_3} + \frac{16}{z_3 - z_1} + \frac{25}{z_1 - z_2}$ equals

(D) 5

8. The complex numbers $\sin x + i \cos 2x$ and $\cos x - i \sin 2x$ are conjugate to each other, for

(A)
$$x = n\pi$$

(B)
$$x = 0$$

(C)
$$x = \frac{n\pi}{2}$$

(D) no value of x

Real part of $e^{e^{i\theta}}$ is -9.

(A) $e^{\cos\theta} [\cos(\sin\theta)]$

(B) $e^{\cos \theta} [\cos (\cos \theta)]$ (C) $e^{\sin \theta} [\sin (\cos \theta)]$ (D) $e^{\sin \theta} [\sin (\sin \theta)]$

If $z \neq -1$ is a complex number such that $\frac{z-1}{z+1}$ is purely imaginary, then |z| is equal to **10.**

(A) 1

(B) 2

(C) 3

(D) 5

11.	Let A, B, C represent the complex numbers z_1 , z_2 , z_3 respectively on the complex plane. If the circumcentre of the triangle ABC lies at the origin, then the orthocentre is represented by the complex number:							
	(A) $z_1 + z_2 - z_3$	(B) $z_2 + z_3 - z_1$	(C) $z_3 + z_1 - z_2$	(D) $z_1 + z_2 + z_3$				
12.	If $(1+i)(1+2i)(1+3i)(1+ni) = \alpha + i\beta$ then 2.5.10 $(1+n^2) =$							
	$(\mathbf{A}) \alpha - \mathrm{i}\beta$		(C) $\alpha^2 + \beta^2$	(D) none of these				
13.	$\sin^{-1}\left\{\frac{1}{i}(z-1)\right\}$, where z is nonreal, can be the angle of a triangle if							
	(A) $Re(z) = 1$, $Im(z) = 2$		(B) $\operatorname{Re}(z) = 1, 0 < \operatorname{Im}(z) \le 1$					
	$(C) \operatorname{Re}(z) + \operatorname{Im}(z) = 0$		(D) none of these					
14.	If $z = \frac{\pi}{4} (1+i)^4 \left(\frac{1-\sqrt{\pi}}{\sqrt{\pi}+i} \right)^4$	$\left(\frac{i}{i} + \frac{\sqrt{\pi} - i}{1 + \sqrt{\pi} i}\right)$, then $\left(\frac{ z }{amp}\right)$	$\overline{z)}$ equals					
	(A) 1	(B) π	(C) 3π	(D) 4				
			2008					
15.	If $1, \alpha_1, \alpha_2, \ldots, \alpha_{2008}$ a	re (2009) th roots of unity, t	then the value of $\sum_{r=1}^{2008} r(\alpha_r +$	α_{2009-r}) equals				
	(A) 2009	(B) 2008	(C) 0	(D) – 2009				
16.	If $x^2 + x + 1 = 0$, then the numerical value of							
	$\left(x + \frac{1}{x}\right)^2 + \left(x^2 + \frac{1}{x^2}\right)^2 + \left(x^3 + \frac{1}{x^3}\right)^2 + \left(x^4 + \frac{1}{x^4}\right)^2 + \dots + \left(x^{27} + \frac{1}{x^{27}}\right)^2$ is equal to							
	(A) 54	(B) 36	(C) 27	(D) 18				
17.	Let $i = \sqrt{-1}$. Define a sefar from the origin is z_{111}		r by $z_1 = 0$, $z_{n+1} = z_n^2 + i$ for	$n \ge 1$. In the complex plane, how				
	(A) 1	(B) $\sqrt{2}$	(C) $\sqrt{3}$	(D) $\sqrt{100}$				
18.	· ·	eal or complex) simultaneous $z^{17} = 0$ and $1 + z + z^2 + z^3 + z^4 $	usly satisfying the system of $+ z^{13} = 0$ is -	equations				
	(A) 1	(B) 2	(C) 3	(D) 4				
19.	Let z_1 and z_2 be two non r z_1 , z_2 as ends of a diameter		unity and $ z - z_1 ^2 + z - z_2 ^2 =$	λ be the equation of a circle with				
	(A) 4	(B) 3	(C) 2	(D) $\sqrt{2}$				
20.	In G.P. the first term & c	common ratio are both $\frac{1}{2}$ ($\sqrt{3}+i$), then the absolute v	value of its nth term is:				
	(A) 1	(B) 2 ⁿ	(C) 4 ⁿ	(D) none				

- If P and Q are represented by the complex numbers z_1 and z_2 such that $\left| \frac{1}{z_1} + \frac{1}{z_2} \right| = \left| \frac{1}{z_1} \frac{1}{z_2} \right|$, then the 21. circumcentre of ΔOPQ (where O is the origin) is
- **(B)** $\frac{z_1 + z_2}{2}$
- (C) $\frac{z_1 + z_2}{2}$

If Arg $(z-2-3i) = \frac{\pi}{4}$, then the locus of z is 22.

- 23. The points z_1 , z_2 , z_3 , z_4 in the complex plane are the vertices of a parallelogram taken in order if and only if:
 - (A) $z_1 + z_4 = z_2 + z_3$
- **(B)** $z_1 + z_3 = z_2 + z_4$ **(C)** $z_1 + z_2 = z_3 + z_4$
- The set of points on the complex plane such that $z^2 + z + 1$ is real and positive (where z = x + iy, $x, y \in R$) is-24.
 - (A) Complete real axis only
 - (B) Complete real axis or all points on the line 2x + 1 = 0
 - (C) Complete real axis or a line segment joining points $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ & $\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$ excluding both.
 - (D) Complete real axis or set of points lying inside the rectangle formed by the lines.

$$2x + 1 = 0$$
; $2x - 1 = 0$; $2y - \sqrt{3} = 0$ & $2y + \sqrt{3} = 0$

- If z_1 , z_2 , z_3 are vertices of an equilateral triangle inscribed in the circle |z|=2 and if $z_1=1+i\sqrt{3}$, then **25.**
 - (A) $z_2 = -2$, $z_3 = 1 + i\sqrt{3}$

(B) $z_2 = 2$, $z_2 = 1 - i\sqrt{3}$

(C) $z_2 = -2$, $z_2 = 1 - i\sqrt{3}$

- **(D)** $z_2 = 1 i\sqrt{3}$, $z_2 = -1 i\sqrt{3}$
- **26.** The vector z = -4 + 5i is turned counter clockwise through an angle of 180° & stretched 1.5 times. The complex number corresponding to the newly obtained vector is:

 - (A) $6 \frac{15}{2}i$ (B) $-6 + \frac{15}{2}i$ (C) $6 + \frac{15}{2}i$
- (D) none of these

27.	If $ z = 1$ and $ \omega - 1 = 1$ (A) [1,9]	where $z, \omega \in C$, then the (B) [2, 6]	largest set of values of (C) [2, 12]	$2z-1 \mid^2 + \mid 2\omega - 1 \mid^2$ equals (D) [2, 18]				
28.	If $(\cos\theta + i\sin\theta)$ $(\cos 2\theta + i\sin 2\theta)$ $(\cos n\theta + i\sin n\theta) = 1$, then the value of θ is							
	$(A) \frac{3m\pi}{n(n+1)}, m \in Z$	(B) $\frac{2m\pi}{n(n+1)}$, $m \in Z$	(C) $\frac{4m\pi}{n(n+1)}$, $m \in Z$	(D) $\frac{m\pi}{n(n+1)}$, $m \in Z$				
29.	Points $z_1 \& z_2$ are adjacent vertices of a regular octagon. The vertex z_3 adjacent to $z_2 (z_3 \neq z_1)$ can be rep by -							
	(A) $z_2 + \frac{1}{\sqrt{2}} (1 \pm i)(z_1 + z_2)$		(B) $z_2 + \frac{1}{\sqrt{2}}(-1 \pm i)(z_1 - z_2)$	C_2)				
	(C) $z_2 + \frac{1}{\sqrt{2}}(-1 \pm i)(z_2 - z_1)$	_i)	(D) none of these					
30.	If $\log_{1/2} \left(\frac{ z-1 + 4}{3 z-1 - 2} \right)$	> 1, then find locus of z						
	 (A) Exterior to circle with center 1 + i0 and radius 10 (B) Interior to circle with center 1 + i0 and radius 10 (C) Circle with center 1 + i0 and radius 10 (D) None of these 							
31.	If A_1, A_2, \dots, A_n be the vertices of an n-sided regular polygon such that $\frac{1}{A_1 A_2} = \frac{1}{A_1 A_3} + \frac{1}{A_1 A_4}$,							
	then find the value of n							
	(A) 5	(B) 7	(C) 8	(D) 9				
32.	If $x = a + b + c$, $y = a\alpha +$	$b\beta + c$ and $z = a\beta + b\alpha + c$, where α and β are imagi	nary cube roots of unity, then				
	$xyz =$ (A) $2(a^3 + b^3 + c^3)$	(B) $2(a^3-b^3-c^3)$	(C) $a^3 + b^3 + c^3 - 3abc$	(D) $a^3 - b^3 - c^3$				
33.	If z and ω are two non-zero	o complex numbers such that	at $ z\omega = 1$, and $Arg(z) - Arg$	$g(\omega) = \pi/2$, then \overline{z} ω is equal to -				
	(A) 1	(B) -1	(C) i	(D) –i				
34.	The expression $\left(\frac{1+i\tan\alpha}{1-i\tan\alpha}\right)^n - \frac{1+i\tan n\alpha}{1-i\tan\alpha}$ when simplified reduces to:							
	(A) zero	(B) $2 \sin n \alpha$	(C) $2\cos n\alpha$	(D) none				
35.	If 1, α_1 , α_2 , α_3 , α_4 be the	roots of $x^5 - 1 = 0$, then f	$\text{ find the value of } \frac{\omega - \alpha_1}{\omega^2 - \alpha_1}$	$\cdot \frac{\omega - \alpha_2}{\omega^2 - \alpha_2} \cdot \frac{\omega - \alpha_3}{\omega^2 - \alpha_3} \cdot \frac{\omega - \alpha_4}{\omega^2 - \alpha_4}$				
	(where ω is imaginary cu	be root of unity.)						
	(A) ω	$(\mathbf{B}) \omega^2$	(C) 1	(D) – 1				

Exercise # 2

Part # I | Multiple Correct Choice Type Questions

Which of the following complex numbers lies along the angle bisectors of the line -1.

 $L_1: z = (1+3\lambda) + i(1+4\lambda)$

$$L_2: z = (1 + 3\mu) + i(1 - 4\mu)$$

(A) $\frac{11}{5} + i$

(B) 11 + 5i

(C) $1 - \frac{3i}{E}$

(D) 5-3i

- On the argand plane, let $\alpha = -2 + 3z$, $\beta = -2 3z$ & |z| = 1. Then the correct statement is -2.
 - (A) α moves on the circle, centre at (-2, 0) and radius 3
 - (B) $\alpha \& \beta$ describe the same locus
 - (C) $\alpha \& \beta$ move on different circles
 - (D) $\alpha \beta$ moves on a circle concentric with |z| = 1
- POQ is a straight line through the origin O. P and Q represent the complex number a + i b and c + i d3. respectively and OP = OQ. Then

(A) |a + ib| = |c + id|

(B) a + c = b + d

(C) arg(a+ib) = arg(c+id)

(D) none of these

The common roots of the equations $z^3 + (1+i)z^2 + (1+i)z + i = 0$, (where $i = \sqrt{-1}$) and $z^{1993} + z^{1994} + 1 = 0$ are -4. (where ω denotes the complex cube root of unity)

(A) 1

(B) ω

(C) ω^2

(D) ω^{981}

If g(x) and h(x) are two polynomials such that the polynomial $P(x) = g(x^3) + xh(x^3)$ is divisible by $x^2 + x + 1$, then -5.

(A) g(1) = h(1) = 0

(B) $g(1) = h(1) \neq 0$

(C) g(1) = -h(1)

(D) g(1) + h(1) = 0

The value of $i^n + i^{-n}$, for $i = \sqrt{-1}$ and $n \in I$ is -6.

(A) $\frac{2^n}{(1-i)^{2n}} + \frac{(1+i)^{2n}}{2^n}$ (B) $\frac{(1+i)^{2n}}{2^n} + \frac{(1-i)^{2n}}{2^n}$ (C) $\frac{(1+i)^{2n}}{2^n} - \frac{2^n}{(1-i)^{2n}}$ (D) $\frac{2^n}{(1+i)^{2n}} + \frac{2^n}{(1-i)^{2n}}$

The equation |z - i| + |z + i| = k, k > 0, can represent 7.

(A) an ellipse if k > 2

(B) line segment if k = 2

(C) an ellipse if k = 5

(D) line segment if k = 1

8. If the equation $|z|(z+1)^8 = z^8|z+1|$ where $z \in C$ and $z(z+1) \neq 0$ has distinct roots $z_1, z_2, z_3, \dots, z_n$ (where $n \in N$) then which of the following is/are true?

(A) $z_1, z_2, z_3, \dots, z_n$ are concyclic points.

(B) $z_1, z_2, z_3, \dots, z_n$ are collinear points

(C) $\sum_{r=1}^{n} \text{Re}(z_r) = \frac{-7}{2}$

(D) = 0

If $x_r = \text{CiS}\left(\frac{\pi}{2^r}\right)$ for $1 \le r \le n$; $r, n \in \mathbb{N}$ then-9.

(A) $\lim_{n\to\infty} \operatorname{Re}\left(\prod_{r=1}^{n} x_{r}\right) = -1$ (B) $\lim_{n\to\infty} \operatorname{Re}\left(\prod_{r=1}^{n} x_{r}\right) = 0$ (C) $\lim_{n\to\infty} \operatorname{Im}\left(\prod_{r=1}^{n} x_{r}\right) = 1$ (D) $\lim_{n\to\infty} \operatorname{Im}\left(\prod_{r=1}^{n} x_{r}\right) = 0$

- 10. If $|z_1| = |z_2| = |z_3| = 1$ and z_1, z_2, z_3 are represented by the vertices of an equilateral triangle then
 - (A) $z_1 + z_2 + z_3 = 0$

(B) $z_1 z_2 z_3 = 1$

(C) $Z_1Z_2 + Z_2Z_3 + Z_3Z_1 = 0$

- (D) none of these
- If S be the set of real values of x satisfying the inequality $1 \log_2 \frac{|x+1+2i|-2}{\sqrt{2}-1} \ge 0$, then S contains -11.
 - **(A)** [-3, -1)
- **(B)** (-1, 1]
- (C)[-2,2]
- **(D)** [-3, 1]
- 12. Let z_1 , z_2 be two complex numbers represented by points on the circle $|z_1| = 1$ and $|z_2| = 2$ respectively, then -
 - (A) $\max |2z_1 + z_2| = 4$
- **(B)** min $|z_1 z_2| = 1$
- (C) $|z_2 + \frac{1}{z_1}| \le 3$
- (D) none of these
- If z is a complex number then the equation $z^2 + z |z| + |z^2| = 0$ is satisfied by (ω and ω^2 are imaginary cube 13. roots of unity)
 - (A) $z = k \omega$ where $k \in R$

- **(B)** $z = k \omega^2$ where k is non negative real
- (C) $z = k \omega$ where k is positive real
- **(D)** $z = k \omega^2$ where $k \in R$.
- 14. If the complex numbers z_1 , z_2 , z_3 represents vertices of an equilateral triangle such that $|z_1|=|z_2|=|z_3|$, then which of following is correct?
 - (A) $z_1 + z_2 + z_3 \neq 0$
- (B) $\operatorname{Re}(z_1 + z_2 + z_3) = 0$ (C) $\operatorname{Im}(z_1 + z_2 + z_3) = 0$ (D) $z_1 + z_2 + z_3 = 0$

- If $2\cos\theta = x + \frac{1}{x}$ and $2\cos\varphi = y + \frac{1}{y}$, then 15.
 - $(\mathbf{A}) \mathbf{x}^{\mathbf{n}} + \frac{1}{\mathbf{x}^{\mathbf{n}}} = 2 \cos (\mathbf{n}\theta)$

(B) $\frac{x}{y} + \frac{y}{x} = 2 \cos (\theta - \phi)$

(C) $xy + \frac{1}{xy} = 2\cos(\theta + \varphi)$

(D) none of these

- **16.** Value(s) of $(-i)^{1/3}$ is/are -
 - (A) $\frac{\sqrt{3} i}{2}$
- **(B)** $\frac{\sqrt{3} + i}{2}$ **(C)** $\frac{-\sqrt{3} i}{2}$
- **(D)** $\frac{-\sqrt{3} + i}{2}$
- **17.** If z be a non-real complex number satisfying |z| = 2, then which of the following is/are true?
 - (A) $\arg\left(\frac{z-2}{z+2}\right) = \pm \frac{\pi}{2}$

(B) $\arg \left(\frac{z+1+i\sqrt{3}}{z-1+i\sqrt{3}} \right) = \frac{\pi}{6}$

(C) $|z^2-1| \ge 3$

- **(D)** $|z^2 1| \le 5$
- If α, β be any two complex numbers such that $\left| \frac{\alpha \beta}{1 \overline{\alpha} \beta} \right| = 1$, then which of the following may be true -18.
 - (A) $|\alpha| = 1$
- **(B)** $|\beta| = 1$
- (C) $\alpha = e^{i\theta}, \ \theta \in \mathbb{R}$ (D) $\beta = e^{i\theta}, \ \theta \in \mathbb{R}$

- 19. The equation ||z + i| |z i|| = k represents
 - (A) a hyperbola if 0 < k < 2

(B) a pair of ray if k > 2

(C) a straight line if k = 0

- (D) a pair of ray if k = 2
- **20.** If amp $(z_1z_2) = 0$ and $|z_1| = |z_2| = 1$, then :-
 - $(A) z_1 + z_2 = 0$
- **(B)** $z_1 z_2 = 1$
- $(\mathbf{C}) \mathbf{z}_1 = \overline{\mathbf{z}}_2$
- (D) none of these
- 21. If centre of square ABCD is at z=0. If affix of vertex A is z₁, centroid of triangle ABC is/are -
 - (A) $\frac{z_1}{3}(\cos \pi + i \sin \pi)$

(B) $4\left[\left(\cos\frac{\pi}{2}\right) - i\left(\sin\frac{\pi}{2}\right)\right]$

(C) $\frac{z_1}{3} \left[\left(\cos \frac{\pi}{2} \right) + i \left(\sin \frac{\pi}{2} \right) \right]$

- $\textbf{(D)} \ \frac{z_1}{3} \Bigg[\left(\cos \frac{\pi}{2} \right) i \left(\sin \frac{\pi}{2} \right) \Bigg]$
- Let z_1, z_2, z_3 be non-zero complex numbers satisfying the equation $z^4 = iz$. Which of the following statement(s) is/ are correct?
 - (A) The complex number having least positive argument is $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$.
 - **(B)** $\sum_{k=1}^{3} Amp(z_k) = \frac{\pi}{2}$
 - (C) Centroid of the triangle formed by z_1 , z_2 and z_3 is $\left(\frac{1}{\sqrt{3}}, \frac{-1}{3}\right)$
 - **(D)** Area of triangle formed by z_1 , z_2 and z_3 is $\frac{3\sqrt{3}}{2}$
- 23. If the vertices of an equilateral triangle are situated at z = 0, $z = z_1$, $z = z_2$, then which of the following is/are true -
 - $(A)|z_1| = |z_2|$

(B) $|z_1 - z_2| = |z_1|$

(C) $|z_1 + z_2| = |z_1| + |z_2|$

- **(D)** $|\arg z_1 \arg z_2| = \pi/3$
- 24. If z satisfies the inequality $|z-1-2i| \le 1$, then
 - (A) min (arg (z)) = $\tan^{-1} \left(\frac{3}{4}\right)$

(B) max (arg(z)) = $\frac{\pi}{2}$

(C) min (|z|) = $\sqrt{5} - 1$

- **(D)** max (|z|) = $\sqrt{5} + 1$
- 25. Let z, ωz and z + ωz represent three vertices of ΔABC, where ω is cube root unity, then -
 - (A) centroid of $\triangle ABC$ is $\frac{2}{3}(z + \omega z)$
- (B) orthocenter of $\triangle ABC$ is $\frac{2}{3}(z+\omega z)$
- (C) ABC is an obtuse angled triangle
- (D) ABC is an acute angled triangle

Part # II

[Assertion & Reason Type Questions]

These questions contains, Statement I (assertion) and Statement II (reason).

- (A) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.
- (B) Statement-I is true, Statement-II is true; Statement-II is NOT a correct explanation for statement-I.
- (C) Statement-I is true, Statement-II is false.
- (D) Statement-I is false, Statement-II is true.
- 1. Statement-I: There are exactly two complex numbers which satisfy the complex equations |z 4 5i| = 4 and Arg $(z 3 4i) = \frac{\pi}{4}$ simultaneously.

Statement-II: A line cuts the circle in atmost two points.

2. Let z_1 , z_2 , z_3 represent vertices of a triangle.

Statement - I: $\frac{1}{z_1-z_2} + \frac{1}{z_2-z_3} + \frac{1}{z_3-z_1} = 0$, when triangle is equilateral.

Statement - II : $|z_1|^2 - z_1 \overline{z_0} - \overline{z_1} z_0 = |z_2|^2 - z_2 \overline{z_0} - \overline{z_2} z_0 = |z_3|^2 - z_3 \overline{z_0} - \overline{z_3} z_0$, where z_0 is circumcentre of triangle.

- 3. Statement-I: If $z = i + 2i^2 + 3i^3 + \dots + 32i^{32}$, then $z, \overline{z}, -z \& -\overline{z}$ forms the vertices of square on argand plane. Statement-II: $z, \overline{z}, -z, -\overline{z}$ are situated at the same distance from the origin on argand plane.
- 4. Statement 1: Roots of the equation $(1 + z)^6 + z^6 = 0$ are collinear. Statement - II: If z_1 , z_2 , z_3 are in A.P. then points represented by z_1 , z_2 , z_3 are collinear
- 5. Let z_1, z_2, z_3 satisfy $\left| \frac{z+2}{z-1} \right| = 2$ and $z_0 = 2$. Consider least positive arguments wherever required.

Statement – I: $2 \arg \left(\frac{z_1 - z_3}{z_2 - z_3} \right) = \arg \left(\frac{z_1 - z_0}{z_2 - z_0} \right)$.

Statement – **II**: z_1, z_2, z_3 satisfy $|z - z_0| = 2$.

6. Let 1, α_1 , α_2 , α_3 ,....., α_{n-1} be the n, nth roots of unity,

Statement - I: $\sin \frac{\pi}{n} \cdot \sin \frac{2\pi}{n} \cdot \sin \frac{3\pi}{n} \dots \sin \frac{(n-1)\pi}{n} = \frac{n}{2^{n-1}}$

Statement - II : $(1 - \alpha_1)(1 - \alpha_2)(1 - \alpha_3)...(1 - \alpha_{n-1}) = n$.

7. **Statement-I**: If $z_1 = 9 + 5i$ and $z_2 = 3 + 5i$ and if $\arg\left(\frac{z - z_1}{z - z_2}\right) = \frac{\pi}{4}$ then $|z - 6 - 8i| = 3\sqrt{2}$

Statement-II: If z lies on circle having $z_1 & z_2$ as diameter then arg $\left(\frac{z-z_1}{z-z_2}\right) = \frac{\pi}{4}$.

8. Statement-I: Let z_1 , z_2 , z_3 be three complex numbers such that $|3z_1 + 1| = |3z_2 + 1| = |3z_3 + 1|$ and $1+z_1+z_2+z_3=0$, then z_1 , z_2 , z_3 will represent vertices of an equilateral triangle on the complex plane.

Statement-II: z_1, z_2, z_3 represent vertices of an equilateral triangle if $z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1$

Exercise #3

(D)

Part # I

[Matrix Match Type Questions]

Following question contains statements given in two columns, which have to be matched. The statements in Column-II are labelled as A, B, C and D while the statements in Column-II are labelled as p, q, r and s. Any given statement in Column-I can have correct matching with ONE OR MORE statement(s) in Column-II.

1. Column - I

- (A) If z be the complex number such that $\left|z + \frac{1}{z}\right| = 2$
 - plex number such that $\left| z + \frac{1}{z} \right| = 2$ (p)

then minimum value of $\frac{|z|}{\tan \frac{\pi}{8}}$ is

- (B) $|z| = 1 \& z^{2n} + 1 \neq 0 \text{ then } \frac{z^n}{z^{2n} + 1} \frac{\overline{z}^n}{\overline{z}^{2n} + 1} \text{ is equal to}$
- (r) 11

(q)

3

(C) If $8iz^3 + 12z^2 - 18z + 27i = 0$ then 2|z| =

- (s) 1
- $z^4 + z^3 + z^2 + z + 1 = 0$, then $\prod_{i=1}^{4} (z_i + 2)$ is

If z_1, z_2, z_3, z_4 are the roots of equation

2. Let z_1 lies on |z| = 1 and z_2 lies on |z| = 2.

Column – II Column – II

- (A) Maximum value of $|z_1 + z_2|$ (p) 3
- (B) Minimum value of $|z_1 z_2|$ (q) 1
- (C) Minimum value of $|2z_1 + 3z_2|$ (r) 4
- (D) Maximum value of $|z_1 2z_2|$ (s) 5

3. Column-II Column-II

- (A) Let $f(x) = x^4 + ax^3 + bx^2 + cx + d$ has 4 real roots $(a, b, c, d \in R)$. (p) 0 If |f(-i)| = 1 (where $i = \sqrt{-1}$), then the value of $a^2 + b^2 + c^2 + d^2$ equals (q) 1
- (B) If $\arg(z+3) = \frac{\pi}{6}$ and $\arg(z-3) = \frac{2\pi}{3}$, then
 - $\tan^2(\arg z) 2\cos(\arg z)$, is $\sum_{r=1}^n Im(z_r)$ (s) 3
- (C) If the points A(z), B(-z) and C(z+1) are vertices of an equilateral triangle, then $5+4\,\mathrm{Re}\,(z)$ equals
- (D) If $z_1 = 1 + i\sqrt{3}$, $z_2 = 1 i\sqrt{3}$ and $z_3 = 2$, then value of x satisfying $z_1^x + z_2^x = 2^x$ can be

4. Match the figure in column-I with corresponding expression -

Column - I

(A)
$$\begin{array}{c|c} & \xrightarrow{Z_1} & \xrightarrow{Z_2} \\ & & \downarrow \\ \end{array}$$
 two parallel lines
$$\begin{array}{c|c} & z_4-z_3\\\hline z_2-z_1\\\hline \end{array} + \frac{\overline{z}_4-\overline{z}_3}{\overline{z}_2-\overline{z}_1} = 0$$

(B)
$$\leftarrow \frac{1}{z_1}$$
 two perpendicular lines (q) $\frac{z_2 - z_1}{z_4 - z_3} = \frac{\overline{z}_2 - \overline{z}_1}{\overline{z}_4 - \overline{z}_3}$

(C)
$$\frac{\overline{z}_4 - \overline{z}_1}{\overline{z}_2 - \overline{z}_1} \cdot \frac{\overline{z}_2 - \overline{z}_3}{\overline{z}_4 - \overline{z}_3} = \frac{\overline{z}_4 - \overline{z}_1}{\overline{z}_2 - \overline{z}_1} \cdot \frac{\overline{z}_2 - \overline{z}_3}{\overline{z}_4 - \overline{z}_3}$$

Part # II

[Comprehension Type Questions]

Comprehension # 1

Let z be any complex number. To factorise the expression of the form z^n-1 , we consider the equation $z^n=1$. This equation is solved using De moiver's theorem. Let 1, α_1 , α_2 ,........ α_{n-1} be the roots of this equation, then $z^n-1=(z-1)(z-\alpha_1)(z-\alpha_2)$ $(z-\alpha_{n-1})$ This method can be generalised to factorize any expression of the form z^n-k^n .

for example,
$$z^7 + 1 = \prod_{m=0}^{6} \left(z - C i S \left(\frac{2m\pi}{7} + \frac{\pi}{7} \right) \right)$$

This can be further simplified as

$$z^{7} + 1 = (z+1)\left(z^{2} - 2z\cos\frac{\pi}{7} + 1\right)\left(z^{2} - 2z\cos\frac{3\pi}{7} + 1\right)\left(z^{2} - 2z\cos\frac{5\pi}{7} + 1\right) \qquad \qquad \dots (i)$$

These factorisations are useful in proving different trigonometric identities e.g. in equation (i) if we put z = i, then equation (i) becomes

$$(1-i) = (i+1)\left(-2i\cos\frac{\pi}{7}\right)\left(-2i\cos\frac{3\pi}{7}\right)\left(-2i\cos\frac{5\pi}{7}\right)$$

i.e.
$$\cos \frac{\pi}{7} \cos \frac{3\pi}{7} \cos \frac{5\pi}{7} = -\frac{1}{8}$$

1. If the expression $z^5 - 32$ can be factorised into linear and quadratic factors over real coefficients as $(z^5 - 32) = (z - 2)(z^2 - pz + 4)(z^2 - qz + 4)$, where p > q, then the value of $p^2 - 2q$.

(A) 8

(B) 4

(C) -

(D) -8

2. By using the factorisation for $z^5 + 1$, the value of $4\sin\frac{\pi}{10}\cos\frac{\pi}{5}$ comes out to be -

(A) 4

(B) 1/4

(C) 1

 $(\mathbf{D}) - \mathbf{I}$

3. If $(z^{2n+1}-1)=(z-1)(z^2-p_1z+1)$ (z^2-p_nz+1) where $n \in \mathbb{N}$ & p_1 , p_2 p_n are real numbers then $p_1+p_2+\dots+p_n=$ (A) -1 (B) 0 (C) $\tan(\pi/2n)$ (D) none of these

Comprehension # 2

 $\text{Let } z_1, z_2, z_3, z_4 \text{ are three distinct complex numbers such that } |z_1| = |z_2| = |z_3| = |z_4|, \text{ satisfying.} \\ |(1-d)z_1 + z_2 + z_3 + z_4| = |z_1 + (1-d)z_2 + z_3 + z_4| = |z_1 + z_2 + (1-d)z_3 + z_4| \text{ where } d \in R - \{0\}. \\ \end{aligned}$

1. $Arg(z_1+z_2+z_3+z_4)$ is

(A) $\frac{\pi}{6}$

(B) $\frac{\pi}{2}$

(C) π

(D) Not defined.

2. $|z_1+z_2+z_3+z_4|$ is

(A) 1

(B) 2

(C) 0

 $(\mathbb{D}) \ge 4$

3. The point d z_1 , d z_2 , d z_3 lie on a circle with

(A) centre (1, 0), radius | d |

(B) centre (0, 0), radius $|d z_1|$

(C) centre (0, 1), radius $|dz_2|$

(D) None of these

Comprehension #3

ABCD is a rhombus. Its diagonals AC and BD intersect at the point M and satisfy BD = 2AC. Let the points D and M represent complex numbers 1 + i and 2 - i respectively.

If θ is arbitary real, then $z = re^{i\theta}$, $R_1 \le r \le R_2$ lies in annular region formed by concentric circles $|z| = R_1$, $|z| = R_2$.

1. A possible representation of point A is

(A) $3 - \frac{1}{2}$

(B) $3 + \frac{i}{2}$

(C) $1 + \frac{3}{2}i$

(D) $3 - \frac{3}{2}i$

 $e^{iz} =$

(A) $e^{-r\cos\theta}(\cos(r\cos\theta) + i\sin(r\sin\theta))$

(B) $e^{-r\cos\theta}$ (sin (r cos θ) + i cos (r cos θ))

(C) $e^{-r \sin \theta} (\cos (r \cos \theta) + i \sin (r \cos \theta))$

(D) $e^{-r \sin \theta} (\sin (r \cos \theta) + i \cos (r \sin \theta))$

3. If z is any point on segment DM then $w = e^{iz}$ lies in annular region formed by concentric circles.

(A) $|w|_{min} = 1$, $|w|_{max} = 2$

(B) $| \mathbf{w} |_{\min} = \frac{1}{e}, | \mathbf{w} |_{\max} = e$

(C) $|w|_{min} = \frac{1}{e^2}, |w|_{max} = e^2$

(D) $|\mathbf{w}|_{\min} = \frac{1}{2}, |\mathbf{w}|_{\max} = 1$

Comprehension # 4

Let A, B, C be three sets of complex numbers as defined below.

$$A = \{z : |z+1| \le 2 + Re(z)\}, B = \{z : |z-1| \ge 1\} \text{ and } C = \left\{z : \left|\frac{z-1}{z+1}\right| \ge 1\right\}$$

The number of point(s) having integral coordinates in the region $\,A \cap B \cap C\,$ is 1.

(A) 4

(B) 5

(C) 6

(D) 10

The area of region bounded by $A \cap B \cap C$ is 2.

(A) $2\sqrt{3}$

- **(B)** $\sqrt{3}$
- (C) $4\sqrt{3}$
- **(D)** 2
- The real part of the complex number in the region $A \cap B \cap C$ and having maximum amplitude is 3.

(A)-1

- **(B)** $\frac{-3}{2}$
- (C) $\frac{-1}{2}$
- **(D)**-2

Comprehension # 5

In the figure |z| = r is circumcircle of $\triangle ABC.D,E$ & F are the middle points of the sides BC, CA & AB respectively, AD produced to meet the circle at L. If $\angle CAD = \theta$, AD = x, BD = y and altitude of $\triangle ABC$ from A meet the circle |z|= r at M, z_a , z_b & z_c are affixes of vertices A, B & C respectively.

Area of the $\triangle ABC$ is equal to -1.

(A) xy cos $(\theta + C)$

(B) $(x + y) \sin \theta$

(C) xy sin $(\theta + C)$

(D) $\frac{1}{2}$ xy sin $(\theta + C)$

2. Affix of M is -

 $(A) 2z_b e^{i2B}$

- (B) $z_b e^{i(\pi-2B)}$
- (C) $z_b e^{iB}$
- (D) $2z_be^{iB}$

Affix of L is -3.

(A) $z_b e^{i(2A - 2\theta)}$

(B) $2z_b e^{i(2A-2\theta)}$ (C) $z_b e^{i(A-\theta)}$

(D) $2z_b e^{i(A-\theta)}$

Exercise # 4

[Subjective Type Questions]

If $x = 1 + i\sqrt{3}$; $y = 1 - i\sqrt{3}$ & z = 2, then prove that $x^p + y^p = z^p$ for every prime p > 3. 1.

Interpret the following locii in $z \in C$. 2.

(A)
$$1 < |z-2i| < 3$$

(B) Re
$$\left(\frac{z+2i}{iz+2}\right) \le 4$$
 $(z \ne 2i)$

(C) Arg
$$(z+i)$$
 - Arg $(z-i) = \pi/2$

(D) Arg
$$(z-a) = \pi/3$$
 where $a = 3 + 4i$.

3. Find the modulus, argument and the principal argument of the complex numbers.

(A)
$$z = 1 + \cos \frac{18\pi}{25} + i \sin \frac{18\pi}{25}$$

(B)
$$z = -2 (\cos 30^\circ + i \sin 30^\circ)$$

(C)
$$(\tan 1 - i)^2$$

(D)
$$\frac{i-1}{i\left(1-\cos\frac{2\pi}{5}\right)+\sin\frac{2\pi}{5}}$$

4. If $a_1, a_2, a_3, \dots, a_n, A_1, A_2, A_3, \dots, A_n$ k are all real numbers, then prove that

$$\frac{{A_1}^2}{x-a_1} + \frac{{A_2}^2}{x-a_2} + \dots + \frac{{A_n}^2}{x-a_n} = k$$
 has no imaginary roots.

For complex numbers $z \& \omega$, prove that, $|z|^2 \omega - |\omega|^2 z = z - \omega$ if and only if, $z = \omega$ or $z\overline{\omega} = 1$ 5.

If $|z_1| = |z_2| = \dots = |z_n| = 1$ then show that **6.**

(i)
$$\overline{z}_1 = \frac{1}{z_1}$$

(i)
$$\overline{z}_1 = \frac{1}{z_1}$$
 (ii) $|z_1 + z_2 + \dots + z_n| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \dots + \frac{1}{z_n} \right|$.

And hence interpret that the centroid of polygon with 2n vertices $z_1, z_2, \dots, z_n, \frac{1}{z_1}, \frac{1}{z_2}, \dots, \frac{1}{z_n}$ (need not be in order) lies on real axis.

Let z = x + iy be a complex number, where x and y are real numbers. Let A and B be the sets defined by 7. (A) $A = \{z | |z| \le 2\}$ and $B = \{z | (1-i)z + (1+i)\overline{z} \ge 4\}$. Find the area of the region $A \cap B$.

For all real numbers x, let the mapping $f(x) = \frac{1}{x-i}$, where $i = \sqrt{-1}$. If there exist real numbers a, b, c and d for which **(B)** f(a), f(b), f(c) and f(d) form a square on the complex plane. Find the area of the square.

Let circles C_1 and C_2 on Argand plane be given by |z+1|=3 and |z-2|=7 respectively. If a variable circle $|z-z_0|=r$ be inside circle C_2 such that it touches C_1 externally and C_2 internally then locus 8. of z_0 describes a conic E. If eccentricity of E can be written in simplest form as $\frac{p}{q}$ where $p, q \in N$, then find the value of (p+q).

- If z_1 , z_2 are the roots of the equation $az^2 + bz + c = 0$, with a, b, c > 0; $2b^2 > 4ac > b^2$; $z_1 \in \text{third quadrant}$; $z_2 \in \text{second}$ quadrant in the argand's plane then, show that $arg\left(\frac{z_1}{z_2}\right) = 2\cos^{-1}\left(\frac{b^2}{4ac}\right)^{1/2}$
- 10. For any two complex numbers z_1 , z_2 and any two real numbers a, b show that $|az_1 bz_2|^2 + |bz_1 + az_2|^2 = (a^2 + b^2)(|z_1|^2 + |z_2|^2)$
- 11. If the biquadratic $x^4 + ax^3 + bx^2 + cx + d = 0$ (a, b, c, $d \in R$) has 4 non real roots, two with sum 3 + 4i and the other two with product 13 + i. Find the value of 'b'.
- 12. If A, B and C are the angle of a triangle $D = \begin{vmatrix} e^{-2iA} & e^{iC} & e^{iB} \\ e^{iC} & e^{-2iB} & e^{iA} \\ e^{iB} & e^{iA} & e^{-2iC} \end{vmatrix}$ where $i = \sqrt{-1}$, then find the value of D.
- 13. If α is imaginary n^{th} $(n \ge 3)$ root of unity then show that $\sum_{r=1}^{n-1} (n-r) \alpha^r = \frac{n\alpha}{1-\alpha}$. Hence deduce that $\sum_{r=1}^{n-1} (n-r) \sin \frac{2r\pi}{n} = \frac{n}{2} \cot \frac{\pi}{n}$.
- 14. Let $A = \{a \in R | \text{ the equation } (1+2i)x^3 2(3+i)x^2 + (5-4i)x + 2a^2 = 0\}$ has at least one real root. Find the value of $\sum_{a \in A} a^2$.
- Consider two concentric circles $S_1: |z| = 1$ and $S_2: |z| = 2$ on the Argand plane. A parabola is drawn through the points where $|S_1|$ meets the real axis and having arbitrary tangent of $|S_2|$ as its directrix. If the locus of the focus of drawn parabola is a conic C then find the area of the quadrilateral formed by the tangents at the ends of the latusrectum of conic C.
- 16. Let z_1 and z_2 be two complex numbers such that $\left| \frac{z_1 2z_2}{2 z_1 \overline{z}_2} \right| = 1$ and $|z_2| \neq 1$, find $|z_1|$.
- 17. If O is origin and affixes of P, Q, R are respectively z, iz, z + iz. Locate the points on complex plane. If $\Delta PQR = 200$ then find

 (i) |z|(ii) sides of quadrilateral OPRQ
- 18. If Z_r , r = 1, 2, 3,.... 2m, $m \in N$ are the roots of the equation $Z^{2m} + Z^{2m-1} + Z^{2m-2} + + Z + 1 = 0$ then prove that $\sum_{r=1}^{2m} \frac{1}{Z_r - 1} = -m$
- 19. ABCD is a rhombus in the Argand plane. If the affixes of the vertices be z_1, z_2, z_3, z_4 and taken in anti-clockwise sense and $\angle CBA = \pi/3$, show that
 - (A) $2z_2 = z_1(1+i\sqrt{3}) + z_3(1-i\sqrt{3})$ & (B) $2z_4 = z_1(1-i\sqrt{3}) + z_3(1+i\sqrt{3})$
- Find the locus of mid-point of line segment intercepted between real and imaginary axes, by the line $a\overline{z} + \overline{a}z + b = 0$, where 'b' is real parameter and 'a' is a fixed complex number such that Re(a) $\neq 0$, Im(a) $\neq 0$.

- P is a point on the Argand plane. On the circle with OP as diameter two points Q & R are taken such that $\angle POQ = \angle QOR = \theta$. If 'O' is the origin & P, Q & R are represented by the complex numbers $Z_1, Z_2 & Z_3$ respectively, show that : $Z_2^2 \cos 2\theta = Z_1, Z_3 \cos^2 \theta$.
- A polynomial f(z) when divided by (z w) leaves remainder $2 + i\sqrt{3}$ and when divided by $(z w^2)$ leaves remainder $2 i\sqrt{3}$. If the remainder obtained when f(z) is divided by $z^2 + z + 1$ is az + b (where w is a non-real cube root of unity and $a, b \in \mathbb{R}^+$), then find the value of (a + b).
- 23. The points A, B, C depict the complex numbers z_1 , z_2 , z_3 respectively on a complex plane & the angle B & C of the triangle ABC are each equal to $\frac{1}{2}(\pi \alpha)$. Show that : $(z_2 z_3)^2 = 4(z_3 z_1)(z_1 z_2)\sin^2\frac{\alpha}{2}$
- Let z_1 , z_2 , z_3 are three pair wise distinct complex numbers and t_1 , t_2 , t_3 are non-negative real numbers such that $t_1 + t_2 + t_3 = 1$. Prove that the complex number $z = t_1 z_1 + t_2 z_2 + t_3 z_3$ lies inside a triangle with vertices z_1 , z_2 , z_3 or on its boundary.
- 25. Let $A \equiv z_1$; $B \equiv z_2$; $C \equiv z_3$ are three complex numbers denoting the vertices of an acute angled triangle. If the origin 'O' is the orthocentre of the triangle, then prove that $z_1\overline{z}_2 + \overline{z}_1z_2 = z_2\overline{z}_3 + \overline{z}_2z_3 = z_3\overline{z}_1 + \overline{z}_3z_1$.
- 26. If $a = e^{i\alpha}$, $b = e^{i\beta}$, $c = e^{i\gamma}$ and $\cos \alpha + \cos \beta + \cos \gamma = 0 = \sin \alpha + \sin \beta + \sin \gamma$, then prove the following
 - (i) a + b + c = 0

- (ii) ab + bc + ca = 0
- (iii) $a^2 + b^2 + c^2 = 0$
- (iv) $\Sigma \cos 2\alpha = 0 = \Sigma \sin 2\alpha$
- (v) $\Sigma \sin^2 \alpha = \Sigma \cos^2 \alpha = 3/2$
- 27. (A) If ω is an imaginary cube root of unity then prove that : $(1 \omega + \omega^2) (1 \omega^2 + \omega^4) (1 \omega^4 + \omega^8) \dots \text{ to 2n factors} = 2^{2n}$
 - (B) If ω is a complex cube root of unity, find the value of; $(1+\omega)\,(1+\omega^2)\,(1+\omega^4)\,(1+\omega^8)..... \text{ to n factors.}$
- Let z_i (i = 1, 2, 3, 4) represent the vertices of a square all of which lie on the sides of the triangle with vertices (0,0), (2,1) and (3,0). If z_1 and z_2 are purely real, then area of triangle formed by z_3 , z_4 and origin is $\frac{m}{n}$ (where m and n are in their lowest form). Find the value of (m + n).
- The points A, B, C represent the complex numbers z_1, z_2, z_3 respectively on a complex plane & the angle B & C of the triangle ABC are each equal to $\frac{1}{2}(\pi \alpha)$. Show that $(z_2 z_3)^2 = 4(z_3 z_1)(z_1 z_2)\sin^2\frac{\alpha}{2}$.
- 30. Evaluate: $\sum_{p=1}^{32} (3p+2) \left(\sum_{q=1}^{10} \left(\sin \frac{2q\pi}{11} i \cos \frac{2q\pi}{11} \right) \right)^{p}.$

Exercise # 5 Part # I Previous Year Questions [AIEEE/JEE-MAIN]

1.	The inequality $ z-4 < z-2 $ represents the following region [AIEEE-2]					
	(1) $Re(z) > 0$	(2) $Re(z) < 0$	(3) $Re(z) > 2$	(4) none of thes	e	
2.	Let z and ω are two non-	-zero complex numbers suc	th that $ z = \omega $ and arg $z + i$	$arg \omega = \pi$, then z ea	qual to [AIEEE-2002]	
	(1) ω	$(2) - \omega$	(3) ω	$(4) - \overline{\omega}$		
3.	Let z_1 and z_2 be two root and z_2 form an equilatera	as of the equation $z^2 + az +$ al triangle, then-	b = 0, z being complex, Fu	rther, assume that t	he origin z_3 , z_1	
	(1) $a^2 = b$	(2) $a^2 = 2b$	(3) $a^2 = 3b$	(4) $a^2 = 4b$		
4.	If z and ω are two non-z to	zero complex numbers suc	h that $ z\omega = 1$, and $Arg(z)$	$-Arg(\omega) = \pi/2$, the	en zω is equal [AIEEE-2003]	
	(1) 1	(2) –1	(3) i	(4) –i		
5.	If $\left(\frac{1+i}{1-i}\right)^x = 1$, then				[AIEEE-2003]	
	(1) $x = 4n$, where n is an	• •	(2) $x = 2n$, where n is any positive integer			
	(3) $x = 4n + 1$, where n		(4) $x = 2n + 1$, where n is any positive integer			
6.		mbers such that $\overline{z} + i \overline{w} = 0$			[AIEEE-2004]	
	(1) $\pi/4$	(2) $\pi/2$	(3) $3\pi/4$	(4) $5\pi/4$		
7.	If $ z^2 - 1 = z ^2 + 1$, then 2 (1) the real axis	z lies on (2) the imaginary axis	(3) a circle	(4) an ellipse	[AIEEE-2004]	
8.	If $z = x - iy$ and $z^{1/3} = p$	+ iq, then $\frac{\left(\frac{x}{p} + \frac{y}{q}\right)}{\left(p^2 + q^2\right)}$ is equal	al to-		[AIEEE-2004]	
	(1) 1	(2) –1	(3) 2	(4) –2		
9.	If z_1 and z_2 are two non z_2	zero complex numbers such	that $ z_1 + z_2 = z_1 + z_2 $ then	$\arg z_1 - \arg z_2$ is eq	ual to- [AIEEE-2005]	
	(1) –π	$(2) \frac{\pi}{2}$	$(3) -\frac{\pi}{2}$	(4) 0		
10.	If $w = \frac{z}{z - \frac{1}{3}i}$ and $ w = 1$	then z lies on			[AIEEE-2005]	
	(1) a circle	(2) an ellipse	(3) a parabola	(4) a straight line	e	
11.	If $ z+4 \le 3$, then the max	imum value of z + 1 is-			[AIEEE-2007]	
	(1) 4	(2) 10	(3) 6	(4) 0		

12.

12.	The conjugate of a complex number is $\frac{1}{i-1}$, then that complex number is-							
	(1) $\frac{-1}{i-1}$	(2) $\frac{1}{i+1}$	(3) $\frac{-1}{i+1}$	(4) $\frac{1}{i-1}$				
13.	If $\left Z - \frac{4}{Z} \right = 2$, then the	maximum value of Z is eq	ual to :-		[AIEEE-2009]			
	(1) 2	(2) $2 + \sqrt{2}$	(3) $\sqrt{3} + 1$	(4) $\sqrt{5}$ +1				
14.	The number of complex	numbers z such that $ z - 1 $	= z + 1 = z - i equals :-		[AIEEE-2010]			
	(1) 0	(2) 1	(3) 2	(4) ∞				
15.	Let α , β be real and z be is necessary that :-	a complex number. If z^2 +	$\alpha z + \beta = 0$ has two distinct	roots on the lin	ne Re $z = 1$, then it [AIEEE-2011]			
	$(1) \beta = 1$	(2) $\beta \in (1, \infty)$	(3) $\beta \in (0,1)$	(4) $\beta \in (-1, 0]$)			
16.	If $\omega(\neq 1)$ is a cube root o (1)(1,0)	f unity, and $(1 + \omega)^7 = A +$ (2) (-1, 1)	Bω. Then (A, B) equals :- (3) (0, 1)	(4) (1, 1)	[AIEEE-2011]			
17.	If $z \ne 1$ and $\frac{z^2}{z-1}$ is real, then the point represented by the complex number z lies: [AIEEE-2012] (1) on the imaginary axis. (2) either on the real axis or on a circle passing through the origin. (3) on a circle with centre at the origin. (4) either on the real axis or on a circle not passing through the origin.							
18.	If z is a complex number of unit modulus and argument θ , then $arg\left(\frac{1+z}{1+\overline{z}}\right)$ equals							
	(1) −θ	$(2) \frac{\pi}{2} - \theta$	(3) θ	(4) $\pi - \theta$				
19.	_	such that $ z \ge 2$, then the m	inimum value of $\left z + \frac{1}{2}\right $:	[JEE (Main)-2014]			
	(1) is equal to $\frac{5}{2}$		(2) lies in the interval (1, 2)					
	(3) is strictly greater than	2	(4) is strictly greater than	2	2			
20.	A complex number z is sa	and to be unimodular if $ z = 1$	1. Suppose z_1 and z_2 are com	plex number su	ch that $\frac{z_1 - 2z_2}{2 - z_1 z_2}$ is			
	unimodular and z_2 is not (1) circle of radius 2. (3) straight line parallel to	unimodular. Then the point ox-axis	z_1 lies on a: (2) circle of radius $\sqrt{2}$ (4) straight line parallel t	•	JEE (Main)-2015]			
21.	A value of θ for which $\frac{2}{1}$	$\frac{+3i\sin\theta}{-2i\sin\theta}$ is purely imagina	ry is :	[JEE (Main)-2016]			
	$(1) \frac{\pi}{6}$	$(2) \sin^{-1}\left(\frac{\sqrt{3}}{4}\right)$	$(3) \sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$	$(4) \frac{\pi}{3}$				

Part # II

[Previous Year Questions][IIT-JEE ADVANCED

1.	(A) If z_1, z_2, z_3 are complex numbers such that $ z_1 = z_2 = z_3 =$	$\frac{1}{2}$	$+\frac{1}{7}$ +	$\frac{1}{2}$	$= 1$ then $ z_1 + z_2 + z_3 $ is
		z_1	L ₂	z_3	

- (A) equal to 1
- (B) less than 1
- (C) greater than 3
- (D) equal to 3

(B) If
$$arg(z) < 0$$
, then $arg(-z) - arg(z) =$

[JEE 2000]

- **(A)** π
- (B) $-\pi$
- (C) $-\frac{\pi}{2}$

2. (A) The complex numbers
$$z_1$$
, z_2 and z_3 satisfying $\frac{z_1 - z_3}{z_2 - z_3} = \frac{1 - i\sqrt{3}}{2}$ are the vertices of a triangle which is -

- (A) of area zero
- (B) right-angled isosceles (C) equilateral
- (D) obtuse-angled isosceles
- (B) Let z₁ and z₂ be nth roots of unity which subtend a right angle at the origin. Then n must be of the form
- (A) 4k+1
- **(B)** 4k + 2
- (C) 4k+3

[JEE 2001]

3. (A) Let
$$\omega = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$$
. Then the value of the determinant $\begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 - \omega^2 & \omega^2 \\ 1 & \omega^2 & \omega^4 \end{vmatrix}$ is - [JEE 2002]

- (A) 3ω
- (B) $3\omega(\omega-1)$
- (D) $3\omega(1-\omega)$
- (B) For all complex numbers z_1 , z_2 satisfying $|z_1| = 12$ and $|z_2 3 4i| = 5$, the minimum value of $|z_1 z_2|$ is

(A) 0

(B) 2

(C) 7

(D) 17

(C) Let a complex number
$$\alpha$$
, $\alpha \neq 1$, be a root of the equation $z^{p+q}-z^p-z^q+1=0$ where p,q are distinct primes. Show that either $1+\alpha+\alpha^2+...+\alpha^{p-1}=0$ or $1+\alpha+\alpha^2+...+\alpha^{q-1}=0$, but not both together.

[JEE 2002]

4. If
$$|z| = 1$$
 and $\omega = \frac{z-1}{z+1}$ (where $z \neq -1$), then Re (w) equals –

[JEE 2003]

(A) 0

- (B) $-\frac{1}{|z+1|^2}$ (C) $\left|\frac{z}{z+1}\right| \cdot \frac{1}{|z+1|^2}$ (D) $\frac{\sqrt{2}}{|z+1|^2}$

(D)
$$\frac{\sqrt{2}}{|z+1|^2}$$

5. If
$$z_1$$
 and z_2 are two complex numbers such that $|z_1| < 1$ and $|z_2| > 1$ then show that $\left| \frac{1 - z_1 - \overline{z_2}}{z_1 - z_2} \right| < 1$

[JEE 2003]

Show that there exists no complex number z such that $|z| < \frac{1}{3}$ and $\sum_{r=1}^{n} a_r z^r = 1$ **6.** where |a| < 2 for i = 1, 2,n.

IJEE 20031

- The least positive value of 'n' for which $(1 + \omega^2)^n = (1 + \omega^4)^n$, where ω is a non real cube root of unity is -7.
- **(B)** 3

[JEE 2004]

Find the centre and radius formed by all the points represented by z = x + i y satisfying the relation 8. $\frac{|z-\alpha|}{|z-\beta|} = K$ $(K \neq 1)$ where $\alpha \& \beta$ are constant complex numbers, given by $\alpha = \alpha_1 + i\alpha_2 \& \beta = \beta_1 + i\beta_2$

[JEE 2004]

9. If a, b, c are integers not all equal and ω is cube root of unity ($\omega \neq 1$) then the minimum value of $|a + b\omega + c\omega^2|$ is -

[JEE 2005]

(A) 0

(B) 1

(C) $\frac{\sqrt{3}}{2}$

(D) $\frac{1}{2}$

10. Area of shaded region belongs to - [JEE 2005]

(B)
$$z: |z-1| > 2$$
, $|arg(z-1)| < \pi/4$

(C)
$$z:|z+1|<2$$
, $|arg(z+1)|<\pi/2$

(D)
$$z: |z-1| < 2$$
, $|arg(z-1)| < \pi/2$

- If one of the vertices of the square circumscribing the circle $|z 1| = \sqrt{2}$ is $2 + \sqrt{3}i$. Find the other vertices of square. [JEE 2005]
- 12. If $w = \alpha + i\beta$ where $\beta \neq 0$ and $z \neq 1$, satisfies the condition that $\frac{w \overline{w}z}{1 z}$ is purely real, then the set of values of z is -
 - (A) $\{z : |z|=1\}$
- **(B)** $\{z: z = \overline{z}\}$
- (C) $\{z: z \neq 1\}$
- **(D)** $\{z : |z| = 1, z \neq 1\}$
- A man walks a distance of 3 units from the origin towards the north-east (N 45° E) direction. From there, he walks a distance of 4 units towards the north-west (N 45° W) direction to reach a point P. Then the position of P in the Argand plane is:

 [JEE 2007]
 - (A) $3e^{i\pi/4} + 4i$
- **(B)** $(3-4i)e^{i\pi/4}$
- (C) $(4+3i)e^{i\pi/4}$
- **(D)** $(3+4i)e^{i\pi/4}$
- 14. If |z| = 1 and $z \neq \pm 1$, then all the values of $\frac{z}{1 z^2}$ lie on :

[JEE 2007]

- (A) a line not passing through the origin
- **(B)** $|z| = \sqrt{2}$

(C) the x-axis

(D) the y-axis

Comprehension (for 15 to 17)

Let A, B, C be three sets of complex numbers as defined below

[JEE 2008]

$$A = \{z : \operatorname{Im} z \ge 1\}$$

$$B = \{z : |z-2-i|=3\}$$

$$C = \{z : Re((1-i)z) = \sqrt{2}\}$$

- 15. The number of elements in the set $A \cap B \cap C$ is -
 - (A)0

(B) 1

(C) 2

- **(D)** ∞
- 16. Let z be any point in $A \cap B \cap C$. Then $|z + 1 i|^2 + |z 5 i|^2$ lies between -
 - (A) 25 and 29
- **(B)** 30 and 34
- (C) 35 and 39
- (D) 40 and 44
- 17. Let z be any point in $A \cap B \cap C$ and let ω be any point satisfying $|\omega 2 i| < 3$. Then, $|z| |\omega| + 3$ lies between -
 - (A) -6 and 3
- **(B)** -3 and 6
- (C) -6 and 6
- **(D)** -3 and 9

- A particle P starts from the point $z_0 = 1 + 2i$, where $i = \sqrt{-1}$. It moves first horizontally away from origin by 18. 5 units and then vertically away from origin by 3 units to reach a point z_1 . From z_1 the particle moves $\sqrt{2}$ units in the direction of the vector $\tilde{i} + \tilde{j}$ and then it moves through an angle $\frac{\pi}{2}$ in anticlockwise direction on a circle with centre at origin, to reach a point z₂. The point z₂ is given by -[JEE 2008]
 - **(A)** 6 + 7i

- Let $z = \cos \theta + i \sin \theta$. Then the value of $\sum_{m=1}^{15} Im(z^{2m-1})$ at $\theta = 2^{\circ}$ is -19.

[JEE 2009]

- (A) $\frac{1}{\sin 2^{\circ}}$
- (B) $\frac{1}{3 \sin 2^{\circ}}$ (C) $\frac{1}{2 \sin 2^{\circ}}$
- 20. Let z = x + iy be a complex number where x and y are integers. Then the area of the rectangle whose vertices are the roots of the equation $z\overline{z}^3 + \overline{z}z^3 = 350$ is -[JEE 2009]
 - (A) 48

(A)

(B) 32

(C)40

- **(D)** 80
- 21. Match the conics in Column I with the statements/ expressions in Column II.

[JEE 2009]

Column I

- Circle
 - **(p)**
- Parabola **(B)**
- hx + ky = 1 touches the circle $x^2 + y^2 = 4$

Column II

- Ellipse **(C)**
- Points z in the complex plane satisfying $|z+2|-|z-2|=\pm 3$ **(q)**

The locus of the point (h, k) for which the line

- Hyperbola **(D)**
- Points of the conic have parametric representation **(r)**

$$x = \sqrt{3} \left(\frac{1 - t^2}{1 + t^2} \right), y = \frac{2t}{1 + t^2}$$

- The eccentricity of the conic lies in the interval $1 \le x < \infty$ **(s)**
- Points z in the complex plane satisfying Re $(z + 1)^2 = |z|^2 + 1$ **(t)**
- 22. Let z_1 and z_2 be two distinct complex numbers and let $z = (1 - t)z_1 + tz_2$ for some real number t with $0 \le t \le 1$. If Arg(w) denotes the principal argument of a nonzero complex number w, then

(A)
$$|z-z_1|+|z-z_2|=|z_1-z_2|$$

(B)
$$\operatorname{Arg}(z - z_1) = \operatorname{Arg}(z - z_2)$$

$$(C)\begin{vmatrix} z-z_1 & \overline{z}-\overline{z}_1 \\ z_2-z_1 & \overline{z}_2-\overline{z}_1 \end{vmatrix} = 0$$

(D)
$$Arg(z - z_1) = Arg(z_2 - z_1)$$

Let ω be the complex number $\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}$. Then the number of distinct complex numbers z satisfying 23.

$$\begin{vmatrix} z+1 & \omega & \omega^2 \\ \omega & z+\omega^2 & 1 \\ \omega^2 & 1 & z+\omega \end{vmatrix} = 0 \text{ is equal to}$$
 [JEE 2010]

24. Match the statements in Column-I with those in Column-II.

[JEE 2010]

[Note: Here z takes values in the complex plane and Im z and Re z denote, respectively, the imaginary part and the real part of z.]

Column I Column II

- (A) The set of points z satisfying |z-i|z| = |z+i|z| (p) an ellipse with eccentricity $\frac{4}{5}$ is contained in or equal to
- (B) The set of points z satisfying |z + 4| + |z 4| = 10 is contained in or equal to
- (C) If |w|=2, then the set of points (t) the set of points z satisfying $|\text{Im }z|\leq 1$ $z=w-\frac{1}{w}$ is contained in or equal to
- (D) If |w| = 1, then the set of points (s) the set of points z satisfying $|\text{Re } z| \le 2$ $z = w + \frac{1}{w} \text{ is contained in or equal to}$ (t) the set of points z satisfying $|z| \le 3$

25. Comprehension (3 questions together)

Let a,b and c be three real numbers satisfying

$$\begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} 1 & 9 & 7 \\ 8 & 2 & 7 \\ 7 & 3 & 7 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \qquad ...(E)$$

- (i) If the point P(a,b,c), with reference to (E), lies on the plane 2x + y + z = 1, then the value of 7a+b+c is
- (ii) (B) 12 (C) 7 (D) 6 Let ω be a solution of $x^3 - 1 = 0$ with $Im(\omega) > 0$. If a = 2 with b and c satisfying (E), then the value of $\frac{3}{\omega^a} + \frac{1}{\omega^b} + \frac{3}{\omega^c}$ is equal to -
- (iii) Let b=6, with a and c satisfying (E). If α and β are the roots of the quadratic equation $ax^2+bx+c=0, \text{ then } \sum_{n=0}^{\infty} \left(\frac{1}{\alpha}+\frac{1}{\beta}\right)^n \text{ is -}$ (A) 6 (B) 7 (C) $\frac{6}{7}$ (D) ∞ [JEE 2011]
- 26. If z is any complex number satisfying $|z 3 2i| \le 2$, then the minimum value of |2z 6 + 5i| is [JEE 2011]
- 27. Let $\omega = e^{i\pi/3}$, and a, b, c, x, y, z be non-zero complex numbers such that a+b+c=x $a+b\omega+c\omega^2=y$ $a+b\omega^2+c\omega=z.$ Then the value of $\frac{|x|^2+|y|^2+|z|^2}{|a|^2+|b|^2+|c|^2}$ is [JEE 2011]

Column II

If $\vec{a} = \vec{i} + \sqrt{3}\vec{k}$, $\vec{b} = -\vec{i} + \sqrt{3}\vec{k}$ and $\vec{c} = 2\sqrt{3}\vec{k}$ form a triangle, **(A) (p)** then the internal angle of the triangle between \vec{a} and \vec{b} is If $\int_{a}^{b} (f(x) - 3x) dx = a^2 - b^2$, then the value of $f\left(\frac{\pi}{6}\right)$ is **(B) (q)** The value of $\frac{\pi^2}{\ln 3} \int_{-\pi}^{5/6} \sec(\pi x) dx$ is **(C) (r)** The maximum value of $\left| Arg \left(\frac{1}{1-z} \right) \right|$ for **(D) (s)** |z| = 1, $z \ne 1$ is given by **(t)** [JEE 2011] Match the statements given in Column I with the intervals/union of intervals given in Column II 29. The set $\left\{ \text{Re}\left(\frac{2iz}{1-z^2}\right) : z \text{ is a complex number, } |z| = 1, z \neq \pm 1 \right\}$ (A) The domain of the function $f(x) = \sin^{-1}\left(\frac{8(3)^{x-2}}{1-3^{2(x-1)}}\right)$ is **(B)** If $f(\theta) = \begin{vmatrix} 1 & \tan \theta & 1 \\ -\tan \theta & 1 & \tan \theta \\ -1 & -\tan \theta & 1 \end{vmatrix}$, then the set $\left\{ f(\theta) : 0 \le \theta < \frac{\pi}{2} \right\}$ is If $f(x) = x^{3/2}(3x-10)$, $x \ge 0$, then f(x) is increasing in $(-\infty, -1] \cup [1, \infty)$ **(D)** $(-\infty,0]\cup[2,\infty)$ Let z be a complex number such that the imaginary part of z is nonzero and $a = z^2 + z + 1$ is real. Then a cannot **30.** take the value -[JEE 2012] **(D)** $\frac{3}{4}$ **(B)** $\frac{1}{2}$ (C) $\frac{1}{9}$ (A) - 1Let complex numbers α and $\frac{1}{\overline{\alpha}}$ lie on circles $(x - x_0)^2 + (y - y_0)^2 = r^2$ and $(x - x_0)^2 + (y - y_0)^2 = 4r^2$ respectively. 31. If $z_0 = x_0 + iy_0$ satisfies the equation $2|z_0|^2 = r^2 + 2$, then $|\alpha| =$ (B) $\frac{1}{2}$ Let ω be a complex cube root of unity with $\omega \neq 1$ and $P = [p_{ij}]$ be a $n \times n$ matrix with $p_{ij} = \omega^{i+j}$. Then P^2 **32.** \neq 0, when n = (A) 57 **(B)** 55 **(C)** 58 **(D)** 56

Match the statements given in Column I with the values given in Column II

28.

Column I

33. Let $w = \frac{\sqrt{3} + i}{2}$ and $P = \{w^n : n = 1, 2, 3,\}$. Further $H_1 = \{z \in C : Rez > \frac{1}{2}\}$ and $H_2 = \{z \in C : Rez < \frac{-1}{2}\}$,

where C is the set of all complex numbers. If $z_1 \in P \cap H_1$, $z_2 \in P \cap H_2$ and O represents the origin, then $\angle z_1 O z_2 =$ [JEE-Ad. 2013]

- (A) $\frac{\pi}{2}$
- (B) $\frac{\pi}{6}$
- (C) $\frac{2\pi}{3}$
- **(D)** $\frac{5\pi}{6}$

Paragraph for Question 34 and 35

 $\text{Let } S \ = \ S_1 \ \cap \ S_2 \ \cap \ S_3, \ \text{ where } \ S_1^{=} \ \left\{z \ \in \ C \ : \ |z| \ < \ 4\right\}, \ \ S_2 = \left\{z \in C : \text{Im} \left[\frac{z-1+\sqrt{3}i}{1-\sqrt{3}i}\right] > 0\right\} \quad \text{and} \quad \left\{z \in C : \left[\frac{z-1+\sqrt{3}i}{1-\sqrt{3}i}\right] > 0\right\}$

 $S_3 = \{z \in C : Re \ z > 0\}.$

- 34. $\min_{z \in S} |1 3i z| =$ [JEE Ad. 2013]
 - (A) $\frac{2-\sqrt{3}}{2}$ (B) $\frac{2+\sqrt{3}}{2}$ (C) $\frac{3-\sqrt{3}}{2}$
- 35. Area of S = [JEE Ad. 2013]
 - (A) $\frac{10\pi}{3}$ (B) $\frac{20\pi}{3}$ (C) $\frac{16\pi}{3}$ (D) $\frac{32\pi}{3}$
- 36. Let $z_k = \cos\left(\frac{2k\pi}{10}\right) + i\sin\left(\frac{2k\pi}{10}\right)$; $k = 1, 2, \dots, 9$. [JEE Ad. 2014]

List-II List-II

- (p) For each z_k there exists a z_i such z_k . $z_i = 1$ (1) True
- (q) There exists a $k \in \{1, 2,, 9\}$ such that $z_1 \cdot z = z_k$ (2) False has no solution z in the set of complex numbers
- (r) $\frac{|1-z_1||1-z_2|.....|1-z_9|}{10}$ equals (3) 1
- (s) $1 \sum_{k=1}^{9} \cos\left(\frac{2k\pi}{10}\right) \text{ equals}$ (4) 2

Codes:

- (A) 1 2 4 3
- **(B)** 2 1 3 4
- (C) 1 2 3 4
- **(D)** 2 1 4 3

37. For any integer k, let $\alpha_k = \left(\frac{k\pi}{7}\right) + i\sin\left(\frac{k\pi}{7}\right)$, where $i = \sqrt{-1}$. The value of the expression

$$\frac{\sum\limits_{k=1}^{12} \! \left| \alpha_{k+1} - \! \alpha_k \right|}{\sum\limits_{k=1}^{3} \! \left| \alpha_{4k-1} - \! \alpha_{4k-2} \right|} \ is$$

[JEE Ad. 2015]

38. Let $z = \frac{-1 + \sqrt{3}i}{2}$, where $i = \sqrt{-1}$, and $r, s \in \{1, 2, 3\}$. Let $P = \begin{bmatrix} (-z)^r & z^{2s} \\ z^{2s} & z^r \end{bmatrix}$ and I be the identity matrix of order 2.

Then the total number of ordered pairs (r, s) for which $P^2 = -1$ is

[JEE Ad. 2016]

39. Let $a, b \in R$ and $a^2 + b^2 \neq 0$. Suppose $S = \left\{ z \in C : z = \frac{1}{a + ibt'} t \in R, t \neq 0 \right\}$, where

 $i = \sqrt{-1}$. if z = x + iy and $z \in S$, then (x,y) lies on

- (A) the circle with radius $\frac{1}{2a}$ and centre $\left(\frac{1}{2a},0\right)$ for $a < 0, b \ne 0$
- **(B)** the circle with radius $-\frac{1}{2a}$ and centre $\left(-\frac{1}{2a},0\right)$ for $a < 0, b \ne 0$
- (C) the x-axis for $a \neq 0$, b = 0
- (D) the y-axis for a = 0, $b \ne 0$

[JEE Ad. 2016]

roots of unity are -

1.

MOCK TEST

SECTION - I : STRAIGHT OBJECTIVE TYPE

If 'p' and 'q' are distinct prime numbers, than the number of distinct imaginary numbers which are pth as well as qth

	$(A) \min^m(p,q)$	$(\mathbf{B}) \max^{m} (\mathbf{p}, \mathbf{q})$	(C) 1	(D) zero			
2.	Number of solution of	ber of solution of the equation $z^3 + \frac{3(\overline{z})^2}{ z } = 0$ where z is a complex number is					
	(A) 2	(B) 3	(C) 6	(D) 5			
3.	If 1, α_1 , α_2 , α_3 and α_8 are nine, ninth roots of unity (taken in counter-clockwise sequence) $ (2-\alpha_1)(2-\alpha_3)(2-\alpha_5)(2-\alpha_7) $ is equal to						
	(A) $\sqrt{255}$	(B) $\sqrt{511}$	(C) $\sqrt{1023}$	(D) 15			
4.	The point of intersec	tion the curves arg $(z-i+2)$	$=\frac{\pi}{6} \& \arg(z+4-3i)$	$=-\frac{\pi}{4}$ is given by			
	$(\mathbf{A})(-2+\mathrm{i})$	(B) $2 - i$	(C) $2 + i$	(D) none of these			
5.	If $ z_2 + iz_1 = z_1 + z_2 $ respectively, is	$ z_1 = 3 \& z_2 = 4 \text{ then}$	area of Δ ABC, if affix	of A, B & C are (z_1) , (z_2) and $\left(\frac{z_2 - iz_1}{1 - i}\right)$			
	(A) $\frac{5}{2}$	(B) 0	(C) $\frac{25}{2}$	(D) $\frac{25}{4}$			
6.	The principal argument of the complex number $\frac{(1+i)^5(1+\sqrt{3}i)^2}{-2i(-\sqrt{3}+i)}$ is						
	(A) $\frac{19\pi}{12}$	$\mathbf{(B)} - \frac{7\pi}{12}$	$(\mathbf{C}) - \frac{5\pi}{12}$	(D) $\frac{5\pi}{12}$			
7.	Image of the point,	whose affix is $\frac{2-i}{3+i}$, in the	line $(1 + i) z + (1 - i) \bar{z}$	$\overline{z} = 0$ is the point whose affix is			
	$(\mathbf{A}) \; \frac{1+\mathrm{i}}{2}$	$(B) \frac{1-i}{2}$	(C) $\frac{-1+i}{2}$	(D) $-\frac{1+i}{2}$			
8.	If a complex numbe	r z satisfies $ 2z+10+10i $	$\leq 5\sqrt{3} - 5$, then the le	east principal argument of z is			
	$(\mathbf{A}) - \frac{11\pi}{12}$	$\mathbf{(B)} - \frac{2\pi}{3}$	$(\mathbf{C}) - \frac{5\pi}{6}$	$(\mathbf{D}) - \frac{3\pi}{4}$			
9.	If t and c are two con	mplex numbers such that t	$ \neq c , t = 1 \text{ and } z = \frac{at}{t}$	$\frac{+b}{-c}$, $z = x + iy$. Locus of z is (where a, b			
	are complex number	rs)					

(C) circle

(D) none

(B) straight line

(A) line segment

- Let z_k (k = 0, 1, 2, 3, 4, 5, 6) be the roots of the equation $(z + 1)^7 + (z)^7 = 0$ then $\sum_{k=0}^{\infty} Re(z_k)$ 10. **S**₁: is equal to $-\frac{7}{2}$
 - If α , β , γ and α , β , c are complex numbers such that $\frac{\alpha}{a} + \frac{\beta}{b} + \frac{\gamma}{c} = 1 + i$ and $\frac{\alpha}{\alpha} + \frac{b}{\beta} + \frac{c}{\gamma} = 0$, then S_2 : the value of $\frac{\alpha^2}{\alpha^2} + \frac{\beta^2}{\beta^2} + \frac{\gamma^2}{\alpha^2}$ is equal to -1
 - If z_1 , z_2 , z_6 are six roots of the equation $z^6 z^5 + z^4 z^3 + z^2 z + 1 = 0$ then the value of $\prod_{i=1}^{6} (z_i + 1)$ is equal to 4
 - Number of solutions of the equation $z^3 = \overline{z} i |z|$ are 5 S_{4} :
 - (A) TTFT
- (B) TFFT
- (C) FFTF
- (D) TTFF

SECTION - II : MULTIPLE CORRECT ANSWER TYPE

- 11. If n is the smallest positive integer for which $(a + ib)^n = (a - ib)^n$ where a > 0 & b > 0 then the numerical value of b/a is:
 - (A) $\tan \frac{\pi}{3}$
- **(B)** $\sqrt{3}$
- **(C)** 3

- **(D)** $\frac{1}{\sqrt{3}}$
- 12. If z is a complex number satisfying $|z - i \operatorname{Re}(z)| = |z - \operatorname{Im}(z)|$ then z lies on
 - (A) y = x
- **(B)** v = -x
- (C) y = x + 1
- **(D)** y = -x + 1

- If $z_1 = 5 + 12i$ and $|z_2| = 4$ then 13.
 - (A) maximum $(|z_1 + iz_2|) = 17$

(B) minimum $(|z_1 + (1+i)z_2|) = 13 - 9\sqrt{2}$

(C) minimum $\left| \frac{z_1}{z_2 + \frac{4}{z_1}} \right| = \frac{13}{4}$

- (D) maximum $\left| \frac{z_1}{z_2 + \frac{4}{3}} \right| = \frac{13}{3}$
- If α , β be the roots of the equation $\mu^2 2\mu + 2 = 0$ and if $\cot \theta = x + 1$, then $\frac{(x + \alpha)^n (x + \beta)^n}{\alpha \beta}$ is equal to 14.
 - (A) $\frac{\sin n\theta}{\sin^n \theta}$
- (B) $\frac{\cos n\theta}{\cos^n \theta}$
- (C) $\frac{\sin n\theta}{\cos^n \theta}$
- (D) $\frac{\cos ec^n \theta}{\cos ecn \theta}$

- If z_1 lies on |z| = 1 and z_2 lies on |z| = 2, then 15.
 - **(A)** $3 \le |z_1 2z_2| \le 5$ **(B)** $1 \le |z_1 + z_2| \le 3$
- (C) $|z_1 3z_2| \ge 5$
- **(D)** $|z_1 z_2| \ge 1$

SECTION - III: ASSERTION AND REASON TYPE

- 16. Statement I: If A(z₁), B(z₂), C(z₃) are the vertices of an equilateral triangle ABC, then $\arg\left(\frac{z_2 + z_3 2z_1}{z_3 z_2}\right) = \frac{\pi}{4}$
 - Statement II: If $\angle B = \alpha$, then $\frac{z_1 z_2}{z_3 z_2} = \frac{AB}{BC} e^{i\alpha}$ or $arg\left(\frac{z_1 z_2}{z_3 z_2}\right) = \alpha$

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I.
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True
- 17. Statement I: If $x + \frac{1}{x} = 1$ and $p = x^{4000} + \frac{1}{x^{4000}}$ and q be the digit at unit place in the

number $2^{2^n} + 1$, $n \in \mathbb{N}$ and n > 1, then the value of p + q = 8.

Statement - II: ω , ω^2 are the roots of $x + \frac{1}{x} = -1$, then $x^2 + \frac{1}{x^2} = -1$, $x^3 + \frac{1}{x^3} = 2$

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I.
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True
- 18. Statement I: If z_1 , z_2 , z_3 are complex number representing the points A, B, C such that $\frac{2}{z_1} = \frac{1}{z_2} + \frac{1}{z_3}$.

 Then circle through A, B, C passes through origin.

Statement - II : If $2z_2 = z_1 + z_3$ then z_1, z_2, z_3 are collinear.

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I.
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True
- 19. Statement I: $3 + ix^2y$ and $x^2 + y + 4i$ are complex conjugate numbers, then $x^2 + y^2 = 4$.

Statement - II: If sum and product of two complex numbers is real then they are conjugate complex number.

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I.
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True
- **20.** Statement I : If $|z| < \sqrt{2} 1$, then $|z^2 + 2z \cos \alpha| < 1$

Statement - II : $|z_1 + z_2| \le |z_1| + |z_2|$ also $|\cos \alpha| \le 1$.

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I.
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True

SECTION - IV : MATRIX - MATCH TYPE

21. Column - I

- Column II
- Locus of the point z satisfying the equation **(A)** $Re(z^2) = Re(z + \overline{z})$
- A parabola **(p)**

- A straight line **(q)**
- **(B)** Locus of the point z satisfying the equation $|z-z_1|+|z-z_2|=\lambda, \lambda \in R^+ \text{ and } \lambda \not |z_1-z_2|$
- **(C)** Locus of the point z satisfying the equation
 - $\left| \frac{2z i}{z + 1} \right| = m \text{ where } i = \sqrt{-1} \text{ and } m \in \mathbb{R}^+$

- **(r)** An ellipse
- **(D)** If $|\overline{z}| = 25$ then the points representing the complex number $-1 + 75 \overline{z}$ will be on a
- A rectangular hyperbola **(s)**
- **(t)** A circle
- If z_1 , z_2 , z_3 , z_4 are the roots of the equation $z^4 + z^3 + z^2 + z + 1 = 0$ then 22.
 - Column-I

Column - II

 $\left|\sum_{i=1}^{4} z_{i}^{4}\right|$ is equal to

0 **(p)**

 $\sum_{i=1}^{4} Z_i^5$ is equal to **(B)**

(q) 4

 $\prod_{i=1}^{4} (z_i + 2)$ is equal to

- 1 (r)
- **(D)** least value of $[|z_1 + z_2|]$ is (Where [] represents greatest integer function)
- 11 **(s)**
- $4\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$

SECTION - V: COMPREHENSION TYPE

23. Read the following comprehension carefully and answer the questions.

The complex slope of a line passing through two points represented by complex numbers z_1 and z_2 is defined by

 $\frac{z_2-z_1}{\overline{z}_1-\overline{z}_1}$ and we shall denote by ω . If z_0 is complex number and c is a real number, then \overline{z}_0 $z+z_0$ $\overline{z}_0+c=0$ represents

a straight line. Its complex slope is $-\frac{Z_0}{\overline{Z}_0}$. Now consider two lines

$$\alpha \overline{z} + \overline{\alpha} z + i\beta = 0$$
...(i) and $a \overline{z} + \overline{a} z + b = 0$...(ii)

where α , β and α , b are complex constants and let their complex slopes be denoted by ω_1 and ω_2 , respectively

- 1. If the lines are inclined at an angle of 120° to each other, then
 - (A) $\omega_2 \overline{\omega}_1 = \omega_1 \overline{\omega}_1$
- **(B)** $\omega_2 \overline{\omega}_1^2 = \omega_1 \overline{\omega}_2^2$ **(C)** $\omega_1^2 = \omega_2^2$
- **(D)** $\omega_1 + 2\omega_2 = 0$

- Which of the following must be true 2.
 - (A) a must be pure imaginary

(B) β must be pure imaginary

(C) a must be real

- (D) b must be imaginary
- If line (i) makes an angle of 45° with real axis, then $(1+i)\left(-\frac{2\alpha}{\overline{\alpha}}\right)$ is 3.
 - (A) $2\sqrt{2}$
- **(B)** $2\sqrt{2}i$
- (C) 2 (1-i)
- **(D)** -2(1+i)
- Read the following comprehension carefully and answer the questions. 24.

Let $(1+x)^n = C_0 + C_1x + C_2x^2 + \dots + C_nx^n$. For sum of series $C_0 + C_1 + C_2 + \dots$, put x = 1. For sum of series $C_0 + C_2 + \dots$ $C_4 + C_6 + \dots$, or $C_1 + C_3 + C_5 + \dots$ add or substract equations obtained by putting x = 1 and x = -1.

For sum of series $C_0 + C_3 + C_6 + \dots$ or $C_1 + C_4 + C_7 + \dots$ or $C_2 + C_5 + C_8 + \dots$ we substitute x = 1, $x = \omega$, $x = \omega^2$ and add or manupulate results.

Similarly, if suffixes differe by 'p' then we substitute pth roots of unity and add.

- $C_0 + C_3 + C_6 + C_9 + \dots =$ 1.
 - (A) $\frac{1}{3} \left[2^n 2\cos\frac{n\pi}{3} \right]$ (B) $\frac{1}{3} \left[2^n + 2\cos\frac{n\pi}{3} \right]$ (C) $\frac{1}{3} \left[2^n 2\sin\frac{n\pi}{3} \right]$ (D) $\frac{1}{3} \left[2^n + 2\sin\frac{n\pi}{3} \right]$

- $C_1 + C_5 + C_0 + \dots =$ 2.
 - (A) $\frac{1}{4} \left[2^n 2^{n/2} 2 \cos \frac{n \pi}{4} \right]$

(B) $\frac{1}{4} \left| 2^n + 2^{n/2} 2 \cos \frac{n \pi}{4} \right|$

(C) $\frac{1}{4} \left[2^n - 2^{n/2} 2 \sin \frac{n \pi}{4} \right]$

(D) $\frac{1}{4} \left[2^n + 2^{n/2} 2 \sin \frac{n \pi}{4} \right]$

- $C_2 + C_6 + C_{10} + \dots =$ 3.
 - (A) $\frac{1}{4} \left[2^n 2^{n/2} 2 \cdot \cos \frac{n \pi}{4} \right]$

(B) $\frac{1}{4} \left| 2^n + 2^{n/2} 2 \cdot \cos \frac{n \pi}{4} \right|$

(C) $\frac{1}{4} \left[2^n - 2^{n/2} 2 \cdot \sin \frac{n \pi}{4} \right]$

- (D) $\frac{1}{4} \left[2^n + 2^{n/2} 2 \cdot \sin \frac{n \pi}{4} \right]$
- 25. Read the following comprehension carefully and answer the questions.

Consider \triangle ABC in Argand plane. Let A(0), B(1) and C(1+i) be its vertices and M be the mid point of CA. Let z be a variable complex number in the plane. Let u be another variable complex number defined as $u = z^2 + 1$

- Locus of u, when z is on BM, is 1.
 - (A) Circle
- (B) Parabola
- (C) Ellipse
- (D) Hyperbola

- 2. Axis of locus of u, when z is on BM, is
 - (A) real axis
- (B) Imaginary axis
- (C) $z + \overline{z} = 2$
- (D) $z \overline{z} = 2i$

- 3. Directrix of locus of u, when z is on BM, is
 - (A) real—axis
- (B) imaginary axis
- (C) $z + \overline{z} = 2$
- (D) $z \overline{z} = 2i$

SECTION - VI : INTEGER TYPE

- 26. If $\left(\frac{1+i}{1-i}\right)^n = \frac{2}{\pi} \left(\sec^{-1}\frac{1}{x} + \sin^{-1}x\right) x \neq 0, -1 \leq x \leq 1$, then find the number of positive integers less than 20 satisfying above equation.
- $\text{27.} \qquad \text{Let } f_p(\alpha) = e^{\frac{i\alpha}{p^2}}, e^{\frac{2i\alpha}{p^2}}.....e^{\frac{i\alpha}{p}} \ p \in N \ (\text{where } i = \sqrt{-1} \ , \text{ then find the value of } \left| \lim_{n \to \infty} f_n(\pi) \right|$
- 28. If $|z| = \min(|z-1|, |z+1|)$, then find the value of $|z+\overline{z}|$.
- 29. If z is a complex number and the minimum value of |z| + |z 1| + |2z 3| is λ and if $y = 2[x] + 3 = 3[x \lambda]$, then find the value of [x + y] (where $[\cdot]$ denotes the greatest integer function)

ANSWER KEY

EXERCISE - 1

1. C 2. B 3. D 4. A 5. C 6. B 7. A 8. D 9. A 10. A 11. D 12. C 13. B 14. D 15. D 16. A 17. B 18. A 19. B 20. A 21. B 22. A 23. B 24. B 25. C 26. A 27. D 28. C 29. B 30. A 31. B 32. C 33. D 34. A 35. A

EXERCISE - 2: PART # I

1. AC **2.** ABD **3.** AB **4.** BC **5.** ACD **6.** BD **7.** ABC **8.** BCD 9. AD **10.** AC **11.** AB **12.** ABC **13.** BC **14.** BCD **15.** ABC **16.** AC 17. ACD **18.** ABCD **19.** ACD **20.** BC **21.** CD **22.** AB **23.** ABD **24.** ABCD **25.** AC

PART - II

1. D 2. B 3. B 4. B 5. A 6. A 7. C 8. B

EXERCISE - 3: PART # I

- 1. $A \rightarrow s B \rightarrow p C \rightarrow q D \rightarrow r$ 2. $A \rightarrow p B \rightarrow q C \rightarrow$, $D \rightarrow s$ 3. $A \rightarrow p B \rightarrow r C \rightarrow t D \rightarrow q, s$ 4. $A \rightarrow q B \rightarrow p C \rightarrow q, s D \rightarrow r$
- 4. $A \rightarrow Q B \rightarrow P C \rightarrow Q,SD \rightarrow I$

PART - II

Comprehension #1: 1. A 2. C 3. A Comprehension #2: 1. D 2. C 3. B Comprehension #3: 1. A 2. C 3. B Comprehension #4: 1. C 2. A 3. B Comprehension #5: 1. C 2. B 3. A

EXERCISE - 5: PART # I

1. 4 2. 4 3. 3 4. 4 5. 1 6. 3 7. 2 8. 4 9. 4 10. 4 11. 3 12. 3 13. 4 14. 2 15. B 16. 4 17. 2 18. 3 19. 2 20. 1 21. 3

PART - II

- 1. (A) A (B) A 2. (A) C, (B) D 3. (A) B (B) B 4. A 7. B
- 8. $\frac{\alpha k^2 \beta}{1 k^2}$ & $\left| \frac{1}{k^2 1} \right| \sqrt{|\alpha k^2 \beta|^2 (k^2 |\beta|^2 |\alpha|^2)(k^2 1)}$ 9. B 10. A
- 11. $(-\sqrt{3} \text{ i})$, $(1-\sqrt{3})+\text{i}$ and $(1+\sqrt{3})-\text{i}$ 12. D 13. D 14. D 15. B 16. C 17. D 18. D 19. D
- **20.** A **21.** $A \rightarrow p B \rightarrow s, t C \rightarrow r D \rightarrow q, s$
- **22.** A, C, D **23.** 1
- **24.** (A) \rightarrow q,r (B) \rightarrow p (C) \rightarrow p,s,t (D) \rightarrow q,r,s,t **25.** (i) D, (ii) A, (iii) B **26.** 5 **27.** 3
- 28. (A) \rightarrow q (B) \rightarrow p (C) \rightarrow s (D) \rightarrow t 29. (A) \rightarrow s (B) \rightarrow t (C) \rightarrow r (D) \rightarrow r 30. D
- 31. C 32. BCD 33. CD 34. C 35. B 36. C 37. 4 38. 1 39. ACD

MOCK TEST

1. D	2. D	3. B	4. D	5. D	6. C	7. C	8. C	9. C
10. B	11. AB	12. AB	13. AD	14. AD	15. ABCD	16. D	17. D	18. B
19. D	20. A	21. $A \rightarrow s$	$B \rightarrow q, r C \rightarrow$	\rightarrow a,t D \rightarrow t	22. $A \rightarrow r$	$B \rightarrow q, t C$	\rightarrow s D \rightarrow p	
23. 1. B	2. B	3. C	24. 1. B	2. D	3. A	25. 1. B	2. C	3. D
26 4	27 1	28 1	29 30	30 7				