SOLVED EXAMPLES

Ex. 1 If $49^{n}+16 n+\lambda$ is divisible by 64 for all $n \in N$, then find the least negative integral value of λ.
Sol. For $\mathrm{n}=1$, we have
$49^{n}+16 n+\lambda=49+16+\lambda=65+\lambda$

$$
=64+(\lambda+1), \text { which is divisible by } 64 \text { if } \lambda=-1
$$

For $\mathrm{n}=2$, we have

$$
\begin{aligned}
49^{\mathrm{n}}+16 \mathrm{n}+\lambda & =49^{2}+16 \times 2+\lambda=2433+\lambda \\
& =(64 \times 38)+(\lambda+1), \text { which is divisible by } 64 \text { if } \lambda=-1
\end{aligned}
$$

Hence, $\boldsymbol{\lambda}=-1$

Ex. 2 Prove that $\mathrm{n}^{2}+\mathrm{n}$ is even for all natural numbers n .
Sol. Let $\mathrm{P}(\mathrm{n})$ be $\mathrm{n}^{2}+\mathrm{n}$ is even
$\mathrm{P}(1)$ is true as $1^{2}+1=2$ is an even number.
Let $\quad \mathrm{P}(\mathrm{k})$ be true.
To Prove: $\mathrm{P}(\mathrm{k}+1)$ is true.
$\mathrm{P}(\mathrm{k}+1)$ states that $(\mathrm{k}+1)^{2}+(\mathrm{k}+1)$ is even.
Now $\quad(\mathrm{k}+1)^{2}+(\mathrm{k}+1)$
$=\mathrm{k}^{2}+2 \mathrm{k}+1+\mathrm{k}+1$
$=\mathrm{k}^{2}+\mathrm{k}+2 \mathrm{k}+2 \quad$ (rearranging terms)
$=2 \lambda+2 \mathrm{k}+2\left(\right.$ Since $\mathrm{P}(\mathrm{k})$ is true, $\mathrm{k}^{2}+\mathrm{k}$ is an even number, or can be written as 2λ,
where λ is some natural number)
$=2(\lambda+\mathrm{k}+1)$
$=$ a multiple of 2 .
thus, $(\mathrm{k}+1)^{2}+(\mathrm{k}+1)$ is an even number, or $\mathrm{P}(\mathrm{k}+1)$ is true when $\mathrm{P}(\mathrm{k})$ is true.
Hence, by PMI, $\mathrm{P}(\mathrm{n})$ is true for all n , where n is a natural number.

Ex. 3 Prove that $x^{2 n-1}+y^{2 n-1}$ is divisible by $x+y$ for all $n \varepsilon N$.
Sol. Let $\mathrm{P}(\mathrm{n})$ be the given statement.
$P(1)$ is clearly true, as $x+y$ is divisible by $x+y$.
Let $\quad \mathrm{P}(\mathrm{k})$ be true. Thus, $\mathrm{x}^{2 \mathrm{k}-1}+\mathrm{y}^{2 \mathrm{k}-1}=(\mathrm{x}+\mathrm{y}) \lambda$
Consider $\mathrm{x}^{2(\mathrm{k}+1)-1}+\mathrm{y}^{2(\mathrm{k}+1)-1}$
$=\mathrm{x}^{2 \mathrm{k}-1} \cdot \mathrm{x}^{2}+\mathrm{y}^{2 \mathrm{k}-1} \cdot \mathrm{y}^{2}$
$=\left((x+y) \lambda-y^{2 k-1}\right) x^{2}+y^{2 k-1} \cdot y^{2} \quad$ (Since $P(k)$ is true)
$=(x+y) \lambda x^{2}+y^{2 k-1}\left(y^{2}-x^{2}\right) \quad \Rightarrow(x+y) \lambda x^{2}+y^{2 k-1}(y-x)(y+x)$
$=(x+y)\left(\lambda x^{2}+y^{2 k-1}(y-x)\right) \quad \Rightarrow$ divisible $(x+y)$
Hence, $P(k+1)$ is true when $P(k)$ is true. Thus, $P(n)$ is true for all n e N by PMI.

Ex. 4 Prove that : $1+2+3+\ldots+\mathrm{n}<\frac{(2 \mathrm{n}+1)^{2}}{8}$ for all $\mathrm{n} \in \mathrm{N}$.
Sol. Let $\mathrm{P}(\mathrm{n})$ be the statement given by
$\mathrm{P}(\mathrm{n}): 1+2+3+\ldots+\mathrm{n}<\frac{(2 \mathrm{n}+1)^{2}}{8}$
Step-I We have
$\mathrm{P}(1): 1<\frac{(2 \times 1+1)^{2}}{8} \quad \because 1<\frac{(2 \times 1+1)^{2}}{8}=\frac{9}{8} \quad \therefore \mathrm{P}(1)$ is true
Step-III Let $\mathrm{P}(\mathrm{m})$ be true, then

$$
\begin{equation*}
1+2+3+\ldots+\mathrm{m}<\frac{(2 \mathrm{~m}+1)^{2}}{8} \tag{i}
\end{equation*}
$$

We shall now show that $\mathrm{P}(\mathrm{m}+1)$ is true i.e.

$$
1+2+3+\ldots+\mathrm{m}+(\mathrm{m}+1)<\frac{[2(\mathrm{~m}+1)+1]^{2}}{8}
$$

Now $\quad P(m)$ is true
$\Rightarrow \quad 1+2+3+\ldots+\mathrm{m}<\frac{(2 \mathrm{~m}+1)^{2}}{8}$
$\Rightarrow \quad 1+2+3+\ldots+\mathrm{m}+(\mathrm{m}+1)<\frac{(2 \mathrm{~m}+1)^{2}}{8}+(\mathrm{m}+1)$
$\Rightarrow \quad 1+2+3+\ldots+\mathrm{m}+(\mathrm{m}+1)<\frac{(2 \mathrm{~m}+1)^{2}+8(\mathrm{~m}+1)}{8}$
$\Rightarrow \quad 1+2+3+\ldots+\mathrm{m}+(\mathrm{m}+1)<\frac{\left(4 \mathrm{~m}^{2}+12 \mathrm{~m}+9\right)}{8}$
$\Rightarrow \quad 1+2+3+\ldots+\mathrm{m}+(\mathrm{m}+1)<\frac{(2 \mathrm{~m}+3)^{2}}{8}=\frac{[2(\mathrm{~m}+1)+1]^{2}}{8}$
$\therefore \quad \mathrm{P}(\mathrm{m}+1)$ is true
thus $\quad P(m)$ is true $\Rightarrow P(m+1)$ is true
Hence by the principle of mathematical induction $P(n)$ is true for all $n \in N$
Ex. 5 Prove that $\cos \alpha \cos 2 \alpha \cos 4 \alpha \ldots . \cos \left(2^{n-1} \alpha\right)=\frac{\sin 2^{n} \alpha}{2^{n} \sin \alpha}$
Sol. Let $\quad \mathrm{P}(\mathrm{n})$ be the given statement.
Clearly, $\mathrm{P}(1)$ is true. (Expand $\sin 2 \alpha$ on RHS to verify this)
Let $\quad \mathrm{P}(\mathrm{k})$ be true.
Consider $\cos \alpha \cos 2 \alpha \cos 4 \alpha \ldots . \cos \left(2^{k-1} \alpha\right) \cos \left(2^{k+1-1} \alpha\right)$

$$
\begin{aligned}
& \quad=\frac{\sin 2^{\mathrm{k}} \alpha}{2^{\mathrm{k}} \sin \alpha} \cos 2^{\mathrm{k}} \alpha \Rightarrow \frac{2 \sin 2^{\mathrm{k}} \alpha \cos 2^{\mathrm{k}} \alpha}{2.2^{\mathrm{k}} \sin \alpha} \\
& =\frac{\sin 2^{\mathrm{k}+1} \alpha}{2^{\mathrm{k}+1} \sin \alpha} \quad(\text { Using } \sin 2 \theta=2 \sin \theta \cos \theta)
\end{aligned}
$$

Hence, $\mathrm{P}(\mathrm{k}+1)$ is true when $\mathrm{P}(\mathrm{k})$ is true. By PMI, for all natural numbers $\mathrm{n}, \mathrm{P}(\mathrm{n})$ is true.

Ex. $6 \frac{3}{4}+\frac{15}{16}+\frac{63}{64}+\ldots$. to n terms $=$
(1) $\mathrm{n}-\frac{4^{\mathrm{n}}}{3}-\frac{1}{3}$
(2) $\mathrm{n}+\frac{4^{-\mathrm{n}}}{3}-\frac{1}{3}$
(3) $\mathrm{n}+\frac{4^{\mathrm{n}}}{3}-\frac{1}{3}$
(4) $\mathrm{n}-\frac{4^{-\mathrm{n}}}{3}+\frac{1}{3}$

Sol. For $\mathrm{n}=1$, we have
$\mathrm{n}-\frac{4^{\mathrm{n}}}{3}-\frac{1}{3}=1-\frac{4}{3}-\frac{1}{3}=-\frac{2}{3} \quad \mathrm{n}+\frac{4^{-\mathrm{n}}}{3}-\frac{1}{3}=1+\frac{4^{-1}}{3}-\frac{1}{3}=\frac{3}{4}$
$\mathrm{n}+\frac{4^{\mathrm{n}}}{3}-\frac{1}{3}=1+\frac{4}{3}-\frac{1}{3}=2 \quad \mathrm{n}-\frac{4^{-\mathrm{n}}}{3}+\frac{1}{3}=1-\frac{4^{-1}}{3}+\frac{1}{3}=\frac{5}{4}$
Also, for $\mathrm{n}=2$, we have

$$
n+\frac{4^{-n}}{3}-\frac{1}{3}=2+\frac{1}{48}-\frac{1}{3}=\frac{27}{16} \text { and } \frac{3}{4}+\frac{15}{16}=\frac{27}{16}
$$

Hence, option (2) is correct

Ex. 7 Prove that
$7+77+777+7777+777 \ldots 7(n$ digits $)=7\left(10^{n+1}-9 n-10\right) / 81$
Sol. Let $\mathrm{P}(\mathrm{n})$ be the given statement.
Clearly, $\mathrm{P}(1)$ is true.
Let $\quad \mathrm{P}(\mathrm{k})$ be true.
To Prove: $\mathrm{P}(\mathrm{k}+1)$ is true.
Consider the LHS of $\mathrm{P}(\mathrm{k}+1)$
$7+77+777+7777+\ldots+777 \ldots 7(\mathrm{k}$ digits $)+777 \ldots 7 \quad(\mathrm{k}+1$ digits $)$
$=7\left(10^{\mathrm{k}+1}-9 \mathrm{k}-10\right) / 81+777 \ldots 7(\mathrm{k}+1$ digits $)$
$=7\left(10^{\mathrm{k}+1}-9 \mathrm{k}-10+81 \mathrm{x} 111 \ldots 1(\mathrm{k}+1\right.$ digits $\left.)\right) / 81$
Now, $111 \ldots 1=1+10+100+1000+\ldots($ upto $\mathrm{k}+1$ terms). This is a Geometric Progression with $\mathrm{a}=1$,
$\mathrm{r}=10$. Hence $111 \ldots 1(\mathrm{k}+1$ digits $)=\frac{1\left(10^{\mathrm{k}+1}-1\right)}{10-1}=\frac{\left(10^{\mathrm{k}+1}-1\right)}{9}$
Thus, LHS becomes

$$
\begin{aligned}
& =7\left(10^{\mathrm{k}+1}-9 \mathrm{k}-10+9\left(10^{\mathrm{k}+1}-1\right)\right) / 81 \\
& =7\left(10^{\mathrm{k}+1}(1+9)-9 \mathrm{k}-9-10\right) / 81 \\
& =7\left(10^{\mathrm{k}+2}-9(\mathrm{k}+1)-10\right) / 81
\end{aligned}
$$

Hence, $\mathrm{P}(\mathrm{k}+1)$ is true when $\mathrm{P}(\mathrm{k})$ is true. Thus, by PMI, $\mathrm{P}(\mathrm{n})$ is true for all n , where n is a Natural Number.

Ex. 8 If $\mathrm{P}(\mathrm{n})$ is the statement " $2^{3 \mathrm{n}}-1$ is an integral multiple of 7 ", and if $\mathrm{P}(\mathrm{r})$ is true, prove that $\mathrm{P}(\mathrm{r}+1)$ is true.
Sol. Let $\mathrm{P}(\mathrm{r})$ be true. Then $2^{3 \mathrm{r}}-1$ is an integral multiple of 7 .
We wish to prove that $\mathrm{P}(\mathrm{r}+1)$ is true i.e. $2^{3(\mathrm{r}+1)}-1$ is an integral multiple of 7 .
Now $\quad \mathrm{P}(\mathrm{r})$ is true
$\Rightarrow \quad 2^{3 \mathrm{r}}-1$ is an integral multiple of $7 \quad \Rightarrow \quad 2^{3 \mathrm{r}}-1=7 \lambda$ for some $\lambda \in \mathrm{N}$
$\Rightarrow \quad 2^{3 r}=7 \lambda+1$
Now $\quad 2^{3(r+1)}-1=2^{3 \mathrm{r}} \cdot 2^{3}-1=(7 \lambda+1) \times 8-1$
$\Rightarrow \quad 2^{3(r+1)}-1=56 \lambda+8-1=56 \lambda+7=7(8 \lambda+1) \quad \Rightarrow \quad 2^{3(r+1)}-1==7 \mu$, where $\mu=8 \lambda+1 \in \mathrm{~N}$
$\Rightarrow \quad 2^{3(\mathrm{r}+1)}-1$ is an integral multiple of $7 \quad \Rightarrow \quad \mathrm{P}(\mathrm{r}+1)$ is true

Ex. 9 Consider the sequence of real numbers defined by the relations

$$
\mathrm{x}_{1}=1 \text { and } \mathrm{x}_{\mathrm{n}+1}=\sqrt{1+2 \mathrm{x}_{\mathrm{n}}} \text { for } \mathrm{n} \geq 1
$$

Use the Principle of Mathematical Induction to show that $\mathrm{x}_{\mathrm{n}}<4$ for all $\mathrm{n} \geq 1$.
Sol. For any $\mathrm{n} \geq 1$, let P_{n} be the statement that $\mathrm{x}_{\mathrm{n}}<4$.
Base Case \quad The statement P_{1} says that $x_{1}=1<4$, which is true.
Inductive Step $F i x \mathrm{k} \geq 1$, and suppose that P_{k} holds, that is, $\mathrm{x}_{\mathrm{k}}<4$.
It remains to show that $\mathrm{P}_{\mathrm{k}+1}$ holds, that is, that $\mathrm{x}_{\mathrm{k}+1}<4$.

$$
\begin{aligned}
\mathrm{x}_{\mathrm{k}+1} & =\sqrt{1+2 \mathrm{x}_{\mathrm{k}}} \\
& <\sqrt{1+2(4)} \\
& =\sqrt{9} \\
& =3 \\
& <4 .
\end{aligned}
$$

Therefore, P_{k+1} holds.
Thus by the principle of mathematical induction, for all $\mathrm{n} \geq 1, \mathrm{P}_{\mathrm{n}}$ holds.
Ex. 10 For $\mathrm{n} \in \mathrm{N}, \mathrm{x}^{\mathrm{n}+1}+(\mathrm{x}+1)^{2 \mathrm{n}-1}$ is divisible by -
(1) X
(2) $x+1$
(3) $x^{2}+x+1$
(4) $x^{2}-x+1$

Sol. For $\mathrm{n}=1$, we have
$\mathrm{x}^{\mathrm{n}+1}+(\mathrm{x}+1)^{2 \mathrm{n}-1}=\mathrm{x}^{2}+(\mathrm{x}+1)=\mathrm{x}^{2}+\mathrm{x}+1$, which is divisible by $\mathrm{x}^{2}+\mathrm{x}+1$.
For $\quad \mathrm{n}=2$, we have
$\mathrm{x}^{\mathrm{n}+1}+(\mathrm{x}+1)^{2 \mathrm{n}-1}=\mathrm{x}^{3}+(\mathrm{x}+1)^{3}=(2 \mathrm{x}+1)\left(\mathrm{x}^{2}+\mathrm{x}+1\right)$, which is divisible by $\mathrm{x}^{2}+\mathrm{x}+1$
Hence, option (3) is true.

Ex. 11 Let $p_{0}=1, p_{1}=\cos \theta$ (for θ some fixed constant) and $p_{n+1}=2 p_{1} p_{n}-p_{n-1}$ for $n \geq 1$. Use an extended Principle of Mathematical Induction to prove that $p_{n}=\cos (n \theta)$ for $n \geq 0$.
Sol. For any $n \geq 0$, let P_{n} be the statement that $p_{n}=\cos (n \theta)$.
Base Cases The statement P_{0} says that $\mathrm{p}_{0}=1=\cos (0 \theta)=1$, which is true. The statement P_{1} says that $p_{1}=\cos \theta=\cos (1 \theta)$, which is true.

Inductive Step Fix $k \geq 0$, and suppose that both P_{k} and P_{k+1} hold, that is, $p_{k}=\cos (k \theta)$, and $p_{k+1}=\cos ((k+1) \theta)$.
It remains to show that P_{k+2} holds, that is, that $p_{k+2}=\cos ((k+2) \theta)$.
We have the following identities:

$$
\begin{aligned}
& \cos (a+b)=\cos a \cos b-\sin a \sin b \\
& \cos (a-b)=\cos a \cos b+\sin a \sin b
\end{aligned}
$$

Therefore, using the first identity when $\mathrm{a}=\theta$ and $\mathrm{b}=(\mathrm{k}+1) \theta$, we have

$$
\cos (\theta+(k+1) \theta)=\cos \theta \cos (k+1) \theta-\sin \theta \sin (k+1) \theta
$$

and using the second identity when $a=(k+1) \theta$ and $b=\theta$, we have

$$
\cos ((\mathrm{k}+1) \theta-\theta)=\cos (\mathrm{k}+1) \theta \cos \theta+\sin (\mathrm{k}+1) \theta \sin \theta
$$

Therefore,

$$
\begin{aligned}
& p_{k+2}=2 p_{1} p_{k+1}-p_{k} \\
& =2(\cos \theta)(\cos ((\mathrm{k}+1) \theta))-\cos (\mathrm{k} \theta) \\
& =(\cos \theta)(\cos ((\mathrm{k}+1) \theta))+(\cos \theta)(\cos ((\mathrm{k}+1) \theta))-\cos (\mathrm{k} \theta) \\
& =\cos (\theta+(\mathrm{k}+1) \theta)+\sin \theta \sin (\mathrm{k}+1) \theta+(\cos \theta)(\cos ((\mathrm{k}+1) \theta))-\cos (\mathrm{k} \theta) \\
& =\cos ((\mathrm{k}+2) \theta)+\sin \theta \sin (\mathrm{k}+1) \theta+(\cos \theta)(\cos ((\mathrm{k}+1) \theta))-\cos (\mathrm{k} \theta) \\
& =\cos ((\mathrm{k}+2) \theta)+\sin \theta \sin (\mathrm{k}+1) \theta+\cos ((\mathrm{k}+1) \theta-\theta)-\sin (\mathrm{k}+1) \theta \sin \theta-\cos (\mathrm{k} \theta) \\
& =\cos ((\mathrm{k}+2) \theta)+\cos (\mathrm{k} \theta)-\cos (\mathrm{k} \theta) \\
& =\cos ((\mathrm{k}+2) \theta) .
\end{aligned}
$$

Therefore $\mathrm{P}_{\mathrm{k}+2}$ holds.
Thus by the principle of mathematical induction, for all $\mathrm{n} \geq 1, \mathrm{P}_{\mathrm{n}}$ holds.
Ex. 12 Prove that for any positive integer number $n, n^{3}+2 n$ is divisible by 3
Sol. Statement $P(n)$ is defined by
$\mathrm{n}^{3}+2 \mathrm{n}$ is divisible by 3
STEP 1: We first show that $p(1)$ is true. Let $n=1$ and calculate $n^{3}+2 n$
$1^{3}+2(1)=3$
3 is divisible by 3
Hence p(1) is true.
STEP 2: We now assume that $p(k)$ is true
$\mathrm{k}^{3}+2 \mathrm{k}$ is divisible by 3
is equivalent to
$k^{3}+2 k=3 M$, where M is a positive integer.
We now consider the algebraic expression $(\mathrm{k}+1)^{3}+2(\mathrm{k}+1)$; expand it and group like terms

$$
\begin{aligned}
&(k+1)^{3}+2(k+1)=k^{3}+3 k^{2}+5 k+3 \\
& \\
&=\left[k^{3}+2 k\right]+\left[3 k^{2}+3 k+3\right] \quad \Rightarrow 3 M+3\left[k^{2}+k+1\right]=3\left[M+k^{2}+k+1\right]
\end{aligned}
$$

Hence $(k+1)^{3}+2(k+1)$ is also divisible by 3 and therefore statement $P(k+1)$ is true.

Ex. 13 Prove by the principle of mathematical induction that for all $n \in N$:

$$
1+4+7+\ldots+(3 n-2)=\frac{1}{2} n(3 n-1)
$$

Sol. Let $\quad \mathrm{P}(\mathrm{n})$ be the statement given by

$$
\mathrm{P}(\mathrm{n}): 1+4+7+\ldots+(3 n-2)=\frac{1}{2} n(3 n-1)
$$

Step-I We have $\mathrm{P}(1): 1=\frac{1}{2} \times(1) \times(3 \times 1-1)$
$\because 1=\frac{1}{2} \times(1) \times(3 \times 1-1)$
So, $\mathrm{P}(1)$ is true
Step-III Let $\mathrm{P}(\mathrm{m})$ be true, then
$1+4+7+\ldots+(3 \mathrm{~m}-2)=\frac{1}{2} \mathrm{~m}(3 \mathrm{~m}-1)$
We wish to show that $\mathrm{P}(\mathrm{m}+1)$ is true. For this we have to show that
$1+4+7+\ldots+(3 m-2)+[3(m+1)-2]=\frac{1}{2}(m+1)(3(m+1)-1)$
Now $1+4+7+\ldots+(3 m-2)+[3(m+1)-2]$
$=\frac{1}{2} \mathrm{~m}(3 \mathrm{~m}-1)+[3(\mathrm{~m}+1)-2]$
[Using (i)]
$=\frac{1}{2} \mathrm{~m}(3 \mathrm{~m}-1)+(3 \mathrm{~m}+1)=\frac{1}{2}\left[3 \mathrm{~m}^{2}-\mathrm{m}+6 \mathrm{~m}+2\right]$
$=\frac{1}{2}\left[3 \mathrm{~m}^{2}+5 \mathrm{~m}+2\right]=\frac{1}{2}(\mathrm{~m}+1)(3 \mathrm{~m}+2)=\frac{1}{2}(\mathrm{~m}+1)[3(\mathrm{~m}+1)-1]$
$\therefore \quad \mathrm{P}(\mathrm{m}+1)$ is true
Thus $\mathrm{P}(\mathrm{m})$ is true $\Rightarrow \mathrm{P}(\mathrm{m}+1)$ is true
Hence by the principle of mathematical induction the given result is true for all $\mathrm{n} \in \mathrm{N}$.

Ex. 14 Prove that $\mathrm{n}!>2^{\mathrm{n}}$ for n a positive integer greater than or equal to 4 . (Note: $\mathrm{n}!$ is n factorial and is given by 1 * 2 * ...* $(\mathrm{n}-1) * \mathrm{n}$.)
Sol. Statement $P(n)$ is defined by $n!>2^{n}$
STEP 1: We first show that $\mathrm{p}(4)$ is true. Let $\mathrm{n}=4$ and calculate $4!$ and 2^{n} and compare them

$$
4!=24
$$

$$
2^{4}=16
$$

24 is greater than 16 and hence $p(4)$ is true.
STEP 2: We now assume that $\mathrm{p}(\mathrm{k})$ is true

$$
\mathrm{k}!>2^{\mathrm{k}}
$$

Multiply both sides of the above inequality by $k+1$
$\mathrm{k}!(\mathrm{k}+1)>2^{\mathrm{k}}(\mathrm{k}+1)$

The left side is equal to $(k+1)$!. For $k>, 4$, we can write

$$
\mathrm{k}+1>2
$$

Multiply both sides of the above inequality by 2^{k} to obtain

$$
2^{\mathrm{k}}(\mathrm{k}+1)>2 * 2^{\mathrm{k}}
$$

The above inequality may be written
$2^{k}(k+1)>2^{k+1}$
We have proved that $(\mathrm{k}+1)!>2^{\mathrm{k}}(\mathrm{k}+1)$ and $2^{\mathrm{k}}(\mathrm{k}+1)>2$
${ }^{k+1}$ we can now write

$$
(\mathrm{k}+1)!>2^{\mathrm{k}+1}
$$

We have assumed that statement $P(k)$ is true and proved that statement $P(k+1)$ is also true.
Ex. 15 Prove by the principle of mathematical induction that for all $\mathrm{n} \in \mathrm{N}$,
$\sin \theta+\sin 2 \theta+\sin 3 \theta+\ldots+\sin n \theta=\frac{\sin \left(\frac{n+1}{2}\right) \theta \sin \frac{n \theta}{2}}{\sin \frac{\theta}{2}}$
Sol. Let $\quad \mathrm{P}(\mathrm{n})$ be the statement given by
$P(n): \sin \theta+\sin 2 \theta+\sin 3 \theta+\ldots+\sin n \theta=\frac{\sin \left(\frac{n+1}{2}\right) \theta \sin \frac{n \theta}{2}}{\sin \frac{\theta}{2}}$
Step-II We have $\mathrm{P}(1): \sin \theta=\frac{\sin \left(\frac{1+1}{2}\right) \theta \sin \left(\frac{1 \times \theta}{2}\right)}{\sin \frac{\theta}{2}}$
$\because \sin \theta=\frac{\sin \left(\frac{1+1}{2}\right) \theta \cdot \sin \left(\frac{1 \times \theta}{2}\right)}{\sin \frac{\theta}{2}}$
$\therefore \quad \mathrm{P}(1)$ is true
Step-III Let $\mathrm{P}(\mathrm{m})$ be true, then
$\sin \theta+\sin 2 \theta+\ldots+\sin m \theta=\frac{\sin \left(\frac{m+1}{2}\right) \theta \sin \frac{m \theta}{2}}{\sin \frac{\theta}{2}}$
We shall now show that $\mathrm{P}(\mathrm{m}+1)$ is true
i.e. $\sin \theta+\sin 2 \theta+\ldots+\sin m \theta+\sin (m+1) \theta=\frac{\sin \left(\frac{(m+1)+1}{2}\right) \theta \sin \left(\frac{m+1}{2}\right) \theta}{\sin \frac{\theta}{2}}$

We have $\sin \theta+\sin 2 \theta+\ldots+\sin m \theta+\sin (m+1) \theta$

$$
=\frac{\sin \left(\frac{m+1}{2}\right) \theta \sin \frac{m \theta}{2}}{\sin \frac{\theta}{2}}+\sin (m+1) \theta
$$

$$
=\frac{\sin \left(\frac{m+1}{2}\right) \theta \sin \frac{m \theta}{2}}{\sin \frac{\theta}{2}}+2 \sin \left(\frac{m+1}{2}\right) \theta \cos \left(\frac{m+1}{2}\right) \theta
$$

$$
=\sin \left(\frac{m+1}{2}\right) \theta\left\{\frac{\sin \left(\frac{\mathrm{m} \theta}{2}\right)}{\sin \frac{\theta}{2}}+2 \cos \left(\frac{\mathrm{~m}+1}{2}\right) \theta\right\}
$$

$$
=\sin \left(\frac{\mathrm{m}+1}{2}\right) \theta\left\{\frac{\sin \left(\frac{\mathrm{m} \theta}{2}\right)+2 \sin \frac{\theta}{2} \cos \left(\frac{\mathrm{~m}+1}{2}\right) \theta}{\sin \frac{\theta}{2}}\right\}
$$

$$
=\sin \left(\frac{m+1}{2}\right) \theta\left\{\frac{\sin \left(\frac{m \theta}{2}\right)+\sin \left(\frac{m+2}{2}\right) \theta-\sin \frac{m \theta}{2}}{\sin \frac{\theta}{2}}\right\}
$$

$$
=\frac{\sin \left(\frac{m+1}{2}\right) \theta \sin \left(\frac{m+2}{2}\right) \theta}{\sin \frac{\theta}{2}}=\frac{\sin \left\{\frac{(m+1)+1}{2}\right\} \theta \sin \left(\frac{m+1}{2}\right) \theta}{\sin \frac{\theta}{2}}
$$

$\therefore \quad \mathrm{P}(\mathrm{m}+1)$ is true

Thus, $\quad P(m)$ is true $\Rightarrow P(m+1)$ is true
Hence by principle mathematical induction $P(n)$ is true for all $n \in N$

Ex. 16 If $n \in N$ and $n>1$, then
(1) $\mathrm{n}!>\left(\frac{\mathrm{n}+1}{2}\right)^{\mathrm{n}}$
(2) $\mathrm{n}!\geq\left(\frac{\mathrm{n}+1}{2}\right)^{\mathrm{n}}$
(3) $\mathrm{n}!<\left(\frac{\mathrm{n}+1}{2}\right)^{\mathrm{n}}$
(4) None of these

Sol. When $\mathrm{n}=2$ then

$$
\mathrm{n}=2,\left(\frac{\mathrm{n}+1}{2}\right)^{\mathrm{n}}=\frac{9}{4} \quad \Rightarrow \quad \mathrm{n}!<\left(\frac{\mathrm{n}+1}{2}\right)^{\mathrm{n}}
$$

When $n=3$, then $n!=6,\left(\frac{n+1}{2}\right)^{n}=8$
$\Rightarrow \quad \mathrm{n}!<\left(\frac{\mathrm{n}+1}{2}\right)^{\mathrm{n}}$
When $n=4$, then $n!=24,\left(\frac{n+1}{2}\right)^{n}=\frac{625}{16}$
$\Rightarrow \quad \mathrm{n}!<\left(\frac{\mathrm{n}+1}{2}\right)^{\mathrm{n}}$
$\therefore \quad$ it is seen that $\quad \Rightarrow \quad n!<\left(\frac{\mathrm{n}+1}{2}\right)^{\mathrm{n}}$

Ex. 17 Use mathematical induction to prove De Moivre's theorem

$$
[R(\cos t+i \sin t)]^{n}=R^{n}(\cos n t+i \sin n t)
$$

for n a positive integer.
Sol. STEP 1: For $\mathrm{n}=1$

$$
[R(\cos t+i \sin t)]^{1}=R^{1}\left(\cos 1 * t+i \sin 1^{*} t\right)
$$

It can easily be seen that the two sides are equal.
STEP 2: We now assume that the theorem is true for $n=k$,
Hence

$$
[R(\cos t+i \sin t)]^{k}=R^{k}(\cos k t+i \sin k t)
$$

Multiply both sides of the above equation by $R(\cos t+i \sin t)$
$[R(\cos t+i \sin t)]^{k} R(\cos t+i \sin t)=R^{k}(\cos k t+i \sin k t)$
$R(\cos t+i \sin t)$
Rewrite the above as follows
$[R(\cos t+i \sin t)]^{k+1}=R^{k+1}[(\cos k t \cos t-\sin k t \sin t)+i(\sin k t \cos t+\cos k t \sin t)]$
Trigonometric identities can be used to write the trigonometric expressions ($\cos k t \cos t-\sin k t \sin t)$ and $(\sin k t \cos t+\cos k t \sin t)$ as follows
$(\cos k t \cos t-\sin k t \sin t)=\cos (k t+t)=\cos (k+1) t$
$(\sin k t \cos t+\cos k t \sin t)=\sin (k t+t)=\sin (k+1) t$
Substitute the above into the last equation to obtain
$[R(\cos t+i \sin t)]^{k+1}=R^{k+1}[\cos (k+1) t+\sin (k+1) t]$
It has been established that the theorem is true for $n=1$ and that if it assumed true for $n=k$ it is true for $n=k+1$.

Ex. 18 Prove by the principle of mathematical induction that for all $n \in N, 3^{2 n}$ when divided by 8 the remainder is always 1 .

Sol.
Let $\mathrm{P}(\mathrm{n})$ be the statement given by
$\mathrm{P}(\mathrm{n}): 3^{2 \mathrm{n}}$ when divided by 8 the remainder is 1
or
$\mathrm{P}(\mathrm{n}): 3^{2 \mathrm{n}}=8 \lambda+1$ for some $\lambda \in \mathrm{N}$

Step-I $P(1): 3^{2}=8 \lambda+1$ for some $\lambda \in N$
$\because 3^{2}=8 \times 1+1=8 \lambda+1$ where $\lambda=1$
$\therefore \mathrm{P}(1)$ is true
Step-II Let $\mathrm{P}(\mathrm{m})$ be true then
$3^{2 \mathrm{~m}}=8 \lambda+1$ for some $\lambda \in \mathrm{N}$
We shall now show that $P(m+1)$ is true for which we have to show that $3^{2(m+1)}$ when divided by 8 the remainder is 1 i.e. $3^{2(m+1)}=8 \mu+1$ for some $\mu \in \mathrm{N}$
Now $\quad 3^{2(m+1)}=3^{2 m} \cdot 3^{2}=(8 \lambda+1) \times 9$
[Using (i)]
$\Rightarrow \quad P(m+1)$ is true
thus $\quad P(m)$ is true $\Rightarrow P(m+1)$ is true
Hence by the principle of mathematical induction $\mathrm{P}(\mathrm{n})$ is true for all $\mathrm{n} \in \mathrm{N}$ i.e. $3^{2 \mathrm{n}}$ when divided by 8 the remainder is always 1 .

Ex. 19 Using the principle of mathematical induction, prove that
$1^{2}+2^{2}+3^{2}+\ldots . .+n^{2}=(1 / 6)\{n(n+1)(2 n+1\}$ for all $n \in N$.
Sol. Let the given statement be $\mathrm{P}(\mathrm{n})$. Then,

$$
\mathrm{P}(\mathrm{n}): 1^{2}+2^{2}+3^{2}+\ldots . .+\mathrm{n}^{2}=(1 / 6)\{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)\} .
$$

Putting $\mathrm{n}=1$ in the given statement, we get

$$
\text { LHS }=1^{2}=1 \text { and } \mathrm{RHS}=(1 / 6) \times 1 \times 2 \times(2 \times 1+1)=1 .
$$

Therefore LHS = RHS.
Thus, $\mathrm{P}(1)$ is true.
Let $\quad \mathrm{P}(\mathrm{k})$ be true. Then,
$\mathrm{P}(\mathrm{k}): \quad 1^{2}+2^{2}+3^{2}+\ldots . .+\mathrm{k}^{2}=(1 / 6)\{\mathrm{k}(\mathrm{k}+1)(2 \mathrm{k}+1)\}$.
Now, $\quad 1^{2}+2^{2}+3^{2}+\ldots \ldots . .+k^{2}+(k+1)^{2}$
$=(1 / 6)\left\{\mathrm{k}(\mathrm{k}+1)(2 \mathrm{k}+1)+(\mathrm{k}+1)^{2}\right.$
$=(1 / 6)\{(\mathrm{k}+1) \cdot(\mathrm{k}(2 \mathrm{k}+1)+6(\mathrm{k}+1))\}$
$=(1 / 6)\left\{(\mathrm{k}+1)\left(2 \mathrm{k}^{2}+7 \mathrm{k}+6\right\}\right)$
$=(1 / 6)\{(\mathrm{k}+1)(\mathrm{k}+2)(2 \mathrm{k}+3)\}$
$=1 / 6\{(\mathrm{k}+1)(\mathrm{k}+1+1)[2(\mathrm{k}+1)+1]\}$
$\Rightarrow \quad \mathrm{P}(\mathrm{k}+1): 1^{2}+2^{2}+3^{2}+\ldots . .+\mathrm{k}^{2}+(\mathrm{k}+1)^{2}$
$=(1 / 6)\{(\mathrm{k}+1)(\mathrm{k}+1+1)[2(\mathrm{k}+1)+1]\}$
$\Rightarrow \quad \mathrm{P}(\mathrm{k}+1)$ is true, whenever $\mathrm{P}(\mathrm{k})$ is true.
Thus, $\mathrm{P}(1)$ is true and $\mathrm{P}(\mathrm{k}+1)$ is true, whenever $\mathrm{P}(\mathrm{k})$ is true.
Hence, by the principle of mathematical induction, $P(n)$ is true for all $n \in N$.

Ex. 20 Using the principle of mathematical induction, prove that
$1 \cdot 2+2 \cdot 3+3 \cdot 4+\ldots . .+\mathrm{n}(\mathrm{n}+1)=(1 / 3)\{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)\}$.
Sol. Let the given statement be $\mathrm{P}(\mathrm{n})$. Then,
$\mathrm{P}(\mathrm{n}): 1 \cdot 2+2 \cdot 3+3 \cdot 4+\ldots . .+\mathrm{n}(\mathrm{n}+1)=(1 / 3)\{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)\}$.
Thus, the given statement is true for $\mathrm{n}=1$, i.e., $\mathrm{P}(1)$ is true.
Let $P(k)$ be true. Then,
$\mathrm{P}(\mathrm{k}): 1 \cdot 2+2 \cdot 3+3 \cdot 4+\ldots .+\mathrm{k}(\mathrm{k}+1)=(1 / 3)\{\mathrm{k}(\mathrm{k}+1)(\mathrm{k}+2)\}$.
Now, $1 \cdot 2+2 \cdot 3+3 \cdot 4+\ldots+k(k+1)+(k+1)(k+2)$

$$
=(1 \cdot 2+2 \cdot 3+3 \cdot 4+\ldots \ldots .+k(k+1))+(k+1)(k+2)
$$

$$
=(1 / 3) \mathrm{k}(\mathrm{k}+1)(\mathrm{k}+2)+(\mathrm{k}+1)(\mathrm{k}+2) \quad[\text { using }(\mathrm{i})]
$$

$$
=(1 / 3)[k(k+1)(k+2)+3(k+1)(k+2)
$$

$$
=(1 / 3)\{(\mathrm{k}+1)(\mathrm{k}+2)(\mathrm{k}+3)\}
$$

$\Rightarrow \quad \mathrm{P}(\mathrm{k}+1): 1 \cdot 2+2 \cdot 3+3 \cdot 4+\ldots \ldots+(\mathrm{k}+1)(\mathrm{k}+2)$
$=(1 / 3)\{\mathrm{k}+1)(\mathrm{k}+2)(\mathrm{k}+3)\}$
$\Rightarrow \quad \mathrm{P}(\mathrm{k}+1)$ is true, whenever $\mathrm{P}(\mathrm{k})$ is true.
Thus, $\mathrm{P}(1)$ is true and $\mathrm{P}(\mathrm{k}+1)$ is true, whenever $\mathrm{P}(\mathrm{k})$ is true.
Hence, by the principle of mathematical induction, $P(n)$ is true for all values of $\in N$.

Ex. 21 Using the principle of mathematical induction, prove that
$1 \cdot 3+3 \cdot 5+5 \cdot 7+\ldots . .+(2 n-1)(2 n+1)=(1 / 3)\left\{n\left(4 n^{2}+6 n-1\right)\right.$.
Sol. Let the given statement be $\mathrm{P}(\mathrm{n})$. Then,
$P(n): 1 \cdot 3+3 \cdot 5+5 \cdot 7+\ldots \ldots+(2 n-1)(2 n+1)=(1 / 3) n\left(4 n^{2}+6 n-1\right)$.
When $\mathrm{n}=1$, LHS $=1 \cdot 3=3$ and RHS $=(1 / 3) \times 1 \times\left(4 \times 1^{2}+6 \times 1-1\right)$

$$
=\{(1 / 3) \times 1 \times 9\}=3 .
$$

LHS $=$ RHS.
Thus, $\mathrm{P}(1)$ is true.
Let $P(k)$ be true. Then,
$\mathrm{P}(\mathrm{k}): 1 \cdot 3+3 \cdot 5+5 \cdot 7+\ldots . .+(2 \mathrm{k}-1)(2 \mathrm{k}+1)=(1 / 3)\left\{\mathrm{k}\left(4 \mathrm{k}^{2}+6 \mathrm{k}-1\right)\right.$
Now,

$$
\begin{aligned}
1 \cdot 3+3 \cdot & 5+5 \cdot 7+\ldots \ldots . .+(2 \mathrm{k}-1)(2 \mathrm{k}+1)+\{2 \mathrm{k}(\mathrm{k}+1)-1\}\{2(\mathrm{k}+1)+1\} \\
& =\{1 \cdot 3+3 \cdot 5+5 \cdot 7+\ldots \ldots \ldots \ldots+(2 \mathrm{k}-1)(2 \mathrm{k}+1)\}+(2 \mathrm{k}+1)(2 \mathrm{k}+3) \\
& =(1 / 3) \mathrm{k}\left(4 \mathrm{k}^{2}+6 \mathrm{k}-1\right)+(2 \mathrm{k}+1)(2 \mathrm{k}+3) \quad[\text { using }(\mathrm{i})] \\
& =(1 / 3)\left[\left(4 \mathrm{k}^{3}+6 \mathrm{k}^{2}-\mathrm{k}\right)+3\left(4 \mathrm{k}^{2}+8 \mathrm{k}+3\right)\right] \\
& =(1 / 3)\left(4 \mathrm{k}^{3}+18 \mathrm{k}^{2}+23 \mathrm{k}+9\right) \\
& =(1 / 3)\left\{(\mathrm{k}+1)\left(4 \mathrm{k}^{2}+14 \mathrm{k}+9\right)\right\} \\
& \left.=(1 / 3)[\mathrm{k}+1)\left\{4 \mathrm{k}(\mathrm{k}+1)^{2}+6(\mathrm{k}+1)-1\right\}\right]
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \quad & \mathrm{P}(\mathrm{k}+1): 1 \cdot 3+3 \cdot 5+5 \cdot 7+\ldots . .+(2 \mathrm{k}+1)(2 \mathrm{k}+3) \\
& \left.=(1 / 3)\left[(\mathrm{k}+1)\left\{4(\mathrm{k}+1)^{2}+6(\mathrm{k}+1)-1\right)\right\}\right]
\end{aligned}
$$

$\Rightarrow \quad \mathrm{P}(\mathrm{k}+1)$ is true, whenever $\mathrm{P}(\mathrm{k})$ is true.
Thus, $\mathrm{P}(1)$ is true and $\mathrm{P}(\mathrm{k}+1)$ is true, whenever $\mathrm{P}(\mathrm{k})$ is true.
Hence, by the principle of mathematical induction, $\mathrm{P}(\mathrm{n})$ is true for all $\mathrm{n} \in \mathrm{N}$.
Ex. 22 Using the principle of mathematical induction, prove that
$1 /(1 \cdot 2)+1 /(2 \cdot 3)+1 /(3 \cdot 4)+\ldots . .+1 /\{n(n+1)\}=n /(n+1)$
Sol. Let the given statement be $\mathrm{P}(\mathrm{n})$. Then,
$\mathrm{P}(\mathrm{n}): 1 /(1 \cdot 2)+1 /(2 \cdot 3)+1 /(3 \cdot 4)+\ldots . .+1 /\{\mathrm{n}(\mathrm{n}+1)\}=\mathrm{n} /(\mathrm{n}+1)$.
Putting $\mathrm{n}=1$ in the given statement, we get
LHS $=1 /(1 \cdot 2)=$ and RHS $=1 /(1+1)=1 / 2$.
LHS $=$ RHS .
Thus, $\mathrm{P}(1)$ is true.
Let $\mathrm{P}(\mathrm{k})$ be true. Then,
$\mathrm{P}(\mathrm{k}): 1 /(1 \cdot 2)+1 /(2 \cdot 3)+1 /(3 \cdot 4)+\ldots . .+1 /\{\mathrm{k}(\mathrm{k}+1)\}=\mathrm{k} /(\mathrm{k}+1)$
Now $1 /(1 \cdot 2)+1 /(2 \cdot 3)+1 /(3 \cdot 4)+\ldots . .+1 /\{\mathrm{k}(\mathrm{k}+1)\}+1 /\{(\mathrm{k}+1)(\mathrm{k}+2)\}$
$[1 /(1 \cdot 2)+1 /(2 \cdot 3)+1 /(3 \cdot 4)+\ldots . .+1 /\{\mathrm{k}(\mathrm{k}+1)\}]+1 /\{(\mathrm{k}+1)(\mathrm{k}+2)\}$
$=\mathrm{k} /(\mathrm{k}+1)+1 /\{(\mathrm{k}+1)(\mathrm{k}+2)\}$.
$\{\mathrm{k}(\mathrm{k}+2)+1\} /\{(\mathrm{k}+1) 2 /[(\mathrm{k}+1) \mathrm{k}+2)]$
[using (i)]
$=\{\mathrm{k}(\mathrm{k}+2)+1\} /\{(\mathrm{k}+1)(\mathrm{k}+2\}$
$=\left\{(\mathrm{k}+1)^{2}\right\} /\{(\mathrm{k}+1)(\mathrm{k}+2)\}$
$=(\mathrm{k}+1) /(\mathrm{k}+2)=(\mathrm{k}+1) /(\mathrm{k}+1+1)$
$\Rightarrow \quad \mathrm{P}(\mathrm{k}+1): 1 /(1 \cdot 2)+1 /(2 \cdot 3)+1 /(3 \cdot 4)+\ldots \ldots \ldots+1 /\{\mathrm{k}(\mathrm{k}+1)\}+1 /\{(\mathrm{k}+1)(\mathrm{k}+2)\}$
$=(\mathrm{k}+1) /(\mathrm{k}+1+1)$
$\Rightarrow \quad \mathrm{P}(\mathrm{k}+1)$ is true, whenever $\mathrm{P}(\mathrm{k})$ is true.
Thus, $\mathrm{P}(1)$ is true and $\mathrm{P}(\mathrm{k}+1)$ is true, whenever $\mathrm{P}(\mathrm{k})$ is true.
Hence, by the principle of mathematical induction, $\mathrm{P}(\mathrm{n})$ is true for all $\mathrm{n} \in \mathrm{N}$.
Ex. 23 Using the principle of mathematical induction, prove that
$\{1 /(3 \cdot 5)\}+\{1 /(5 \cdot 7)\}+\{1 /(7 \cdot 9)\}+\ldots \ldots .+1 /\{(2 n+1)(2 n+3)\}=n /\{3(2 n+3)\}$.
Sol. Let the given statement be $\mathrm{P}(\mathrm{n})$. Then,
$\mathrm{P}(\mathrm{n}):\{1 /(3 \cdot 5)+1 /(5 \cdot 7)+1 /(7 \cdot 9)+\ldots \ldots .+1 /\{(2 n+1)(2 n+3)\}=n /\{3(2 n+3)$.
Putting $\mathrm{n}=1$ in the given statement, we get and LHS $=1 /(3 \cdot 5)=1 / 15$ and RHS $=1 /\{3(2 \times 1+3)\}=1 / 15$.
LHS $=$ RHS
Thus, $\mathrm{P}(1)$ is true.
Let $\mathrm{P}(\mathrm{k})$ be true. Then,
$\mathrm{P}(\mathrm{k}):\{1 /(3 \cdot 5)+1 /(5 \cdot 7)+1 /(7 \cdot 9)+$ \qquad $+1 /\{(2 \mathrm{k}+1)(2 \mathrm{k}+3)\}=\mathrm{k} /\{3(2 \mathrm{k}+3)\}$
Now, $1 /(3 \cdot 5)+1 /(5 \cdot 7)+$ \qquad $+1 /[(2 \mathrm{k}+1)(2 \mathrm{k}+3)]+1 /[\{2(\mathrm{k}+1)+1\} 2(\mathrm{k}+1)+3$
$=\{1 /(3 \cdot 5)+1 /(5 \cdot 7)+\ldots \ldots .+[1 /(2 \mathrm{k}+1)(2 \mathrm{k}+3)]\}+1 /\{(2 \mathrm{k}+3)(2 \mathrm{k}+5)\}$
$=\mathrm{k} /[3(2 \mathrm{k}+3)]+1 /[2 \mathrm{k}+3)(2 \mathrm{k}+5)] \quad[$ using $(\mathrm{i})]$
$=\{\mathrm{k}(2 \mathrm{k}+5)+3\} /\{3(2 \mathrm{k}+3)(2 \mathrm{k}+5)\}$
$=\left(2 \mathrm{k}^{2}+5 \mathrm{k}+3\right) /[3(2 \mathrm{k}+3)(2 \mathrm{k}+5)]$
$=\{(\mathrm{k}+1)(2 \mathrm{k}+3)\} /\{3(2 \mathrm{k}+3)(2 \mathrm{k}+5)\}$
$=(\mathrm{k}+1) /\{3(2 \mathrm{k}+5)\}$
$=(\mathrm{k}+1) /[3\{2(\mathrm{k}+1)+3\}]$
$=\mathrm{P}(\mathrm{k}+1): 1 /(3 \cdot 5)+1 /(5 \cdot 7)+\ldots \ldots .+1 /[2 \mathrm{k}+1)(2 \mathrm{k}+3)]+1 /[\{2(\mathrm{k}+1)+1\}\{2(\mathrm{k}+1)+3\}]$
$=(\mathrm{k}+1) /\{3\{2(\mathrm{k}+1)+3\}]$
$\Rightarrow \quad \mathrm{P}(\mathrm{k}+1)$ is true, whenever $\mathrm{P}(\mathrm{k})$ is true.
Thus, $\mathrm{P}(1)$ is true and $\mathrm{P}(\mathrm{k}+1)$ is true, whenever $\mathrm{P}(\mathrm{k})$ is true.
Hence, by the principle of mathematical induction, $P(n)$ is true for $n \in N$.
Ex. 24 Using the principle of mathematical induction, prove that
$1 /(1 \cdot 2 \cdot 3)+1 /(2 \cdot 3 \cdot 4)+$ \qquad $+1 /\{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)\}=\{\mathrm{n}(\mathrm{n}+3)\} /\{4(\mathrm{n}+1)(\mathrm{n}+2)\}$ for all $\mathrm{n} \in \mathrm{N}$.

Sol. Let $\mathrm{P}(\mathrm{n}): 1 /(1 \cdot 2 \cdot 3)+1 /(2 \cdot 3 \cdot 4)+\ldots \ldots .+1 /\{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)\}=\{\mathrm{n}(\mathrm{n}+3)\} /\{4(\mathrm{n}+1)(\mathrm{n}+2)\}$.
Putting $\mathrm{n}=1$ in the given statement, we get
LHS $=1 /(1 \cdot 2 \cdot 3)=1 / 6$ and RHS $=\{1 \times(1+3)\} /[4 \times(1+1)(1+2)]=(1 \times 4) /(4 \times 2 \times 3)=1 / 6$.
Therefore \quad LHS $=$ RHS .
Thus, the given statement is true for $n=1$, i.e., $P(1)$ is true.
Let $\mathrm{P}(\mathrm{k})$ be true. Then,
$\mathrm{P}(\mathrm{k}): 1 /(1 \cdot 2 \cdot 3)+1 /(2 \cdot 3 \cdot 4)+$ \qquad $+1 /\{\mathrm{k}(\mathrm{k}+1)(\mathrm{k}+2)\}=\{\mathrm{k}(\mathrm{k}+3)\} /\{4(\mathrm{k}+1)(\mathrm{k}+2)\}$

Now, $1 /(1 \cdot 2 \cdot 3)+1 /(2 \cdot 3 \cdot 4)+$ \qquad $+1 /\{\mathrm{k}(\mathrm{k}+1)(\mathrm{k}+2)\}+1 /\{(\mathrm{k}+1)(\mathrm{k}+2)(\mathrm{k}+3)\}$

$$
=[1 /(1 \cdot 2 \cdot 3)+1 /(2 \cdot 3 \cdot 4)+\ldots \ldots \ldots \ldots \ldots+1 /\{\mathrm{k}(\mathrm{k}+1)(\mathrm{k}+2\}]+1 /\{(\mathrm{k}+1)(\mathrm{k}+2)(\mathrm{k}+3)\}
$$

$$
=[\{\mathrm{k}(\mathrm{k}+3)\} /\{4(\mathrm{k}+1)(\mathrm{k}+2)\}+1 /\{(\mathrm{k}+1)(\mathrm{k}+2)(\mathrm{k}+3)\}] \quad[\operatorname{using}(\mathrm{i})]
$$

$$
=\left\{\mathrm{k}(\mathrm{k}+3)^{2}+4\right\} /\{4(\mathrm{k}+1)(\mathrm{k}+2)(\mathrm{k}+3)\}
$$

$$
=\left(\mathrm{k}^{3}+6 \mathrm{k}^{2}+9 \mathrm{k}+4\right) /\{4(\mathrm{k}+1)(\mathrm{k}+2)(\mathrm{k}+3)\}
$$

$$
=\{(\mathrm{k}+1)(\mathrm{k}+1)(\mathrm{k}+4)\} /\{4(\mathrm{k}+1)(\mathrm{k}+2)(\mathrm{k}+3)\}
$$

$$
=\{(\mathrm{k}+1)(\mathrm{k}+4)\} /\{4(\mathrm{k}+2)(\mathrm{k}+3)
$$

$\Rightarrow \quad \mathrm{P}(\mathrm{k}+1): 1 /(1 \cdot 2 \cdot 3)+1 /(2 \cdot 3 \cdot 4)+$ \qquad $+1 /\{(\mathrm{k}+1)(\mathrm{k}+2)(\mathrm{k}+3)\}$

$$
=\{(\mathrm{k}+1)(\mathrm{k}+2)\} /\{4(\mathrm{k}+2)(\mathrm{k}+3)\}
$$

$\Rightarrow \quad \mathrm{P}(\mathrm{k}+1)$ is true, whenever $\mathrm{P}(\mathrm{k})$ is true.
Thus, $\mathrm{P}(1)$ is true and $\mathrm{P}(\mathrm{k}+1)$ is true, whenever $\mathrm{P}(\mathrm{k})$ is true.
Hence, by the principle of mathematical induction, $\mathrm{P}(\mathrm{n})$ is true for all $\mathrm{n} \in \mathrm{N}$.

Ex. 25 Using the Principle of mathematical induction, prove that
$\{1-(1 / 2)\}\{1-(1 / 3)\}\{1-(1 / 4)\} \ldots \ldots . .\{1-1 /(\mathrm{n}+1)\}=1 /(\mathrm{n}+1)$ for all $\mathrm{n} \in \mathrm{N}$.
Sol. Let the given statement be $\mathrm{P}(\mathrm{n})$. Then,
$\mathrm{P}(\mathrm{n}):\{1-(1 / 2)\}\{1-(1 / 3)\}\{1-(1 / 4)\} \ldots \ldots . .\{1-1 /(\mathrm{n}+1)\}=1 /(\mathrm{n}+1)$.
When $n=1$, LHS $=\{1-(1 / 2)\}=1 / 2$ and RHS $=1 /(1+1)=1 / 2$.
Therefore \quad LHS $=$ RHS .
Thus, $\mathrm{P}(1)$ is true.
Let $\mathrm{P}(\mathrm{k})$ be true. Then,

$$
\begin{aligned}
& \mathrm{P}(\mathrm{k}):\{1-(1 / 2)\}\{1-(1 / 3)\}\{1-(1 / 4)\} \ldots \ldots . .[1-\{1 /(\mathrm{k}+1)\}]=1 /(\mathrm{k}+1) \\
& \text { Now, }[\{1-(1 / 2)\}\{1-(1 / 3)\}\{1-(1 / 4)\} \ldots \ldots .[1-\{1 /(\mathrm{k}+1)\}] \cdot[1-\{1 /(\mathrm{k}+2)\}] \\
& = \\
& =[1 /(\mathrm{k}+1)] \cdot[\{(\mathrm{k}+2)-1\} /(\mathrm{k}+2)\}] \\
& = \\
& =[1 /(\mathrm{k}+1)] \cdot[(\mathrm{k}+1) /(\mathrm{k}+2)] \\
& \quad=1 /(\mathrm{k}+2)
\end{aligned}
$$

Therefore $\mathrm{p}(\mathrm{k}+1):[\{1-(1 / 2)\}\{1-(1 / 3)\}\{1-(1 / 4)\} \ldots \ldots . .[1-\{1 /(\mathrm{k}+1)\}]=1 /(\mathrm{k}+2)$
$\Rightarrow \quad \mathrm{P}(\mathrm{k}+1)$ is true, whenever $\mathrm{P}(\mathrm{k})$ is true.
Thus, $\mathrm{P}(1)$ is true and $\mathrm{P}(\mathrm{k}+1)$ is true, whenever $\mathrm{P}(\mathrm{k})$ is true.
Hence, by the principle of mathematical induction, $P(n)$ is true for all $n \in N$.

Exercise \# 1

[Single Correct Choice Type Questions]

1. The greatest positive integer. which divides $(n+16)(n+17)(n+18)(n+19)$, for all $n \in N$, is-
(A) 2
(B) 4
(C) 24
(D) 120
2. The sum of the cubes of three consecutive natural numbers is divisible by-
(A) 2
(B) 5
(C) 7
(D) 9
3. For every positive integer
$\mathrm{n}, \frac{\mathrm{n}^{7}}{7}+\frac{\mathrm{n}^{5}}{5}+\frac{2 \mathrm{n}^{3}}{3}-\frac{\mathrm{n}}{105}$ is-
(A) an integer
(B) a rational number
(C) a negative real number
(D) an odd integer
4. If $10^{n}+3.4^{n+2}+\lambda$ is exactly divisible by 9 for all $n \in N$, then the least positive integral value of λ is-
(A) 5
(B) 3
(C) 7
(D) 1
5. The sum of n terms of $1^{2}+\left(1^{2}+2^{2}\right)+\left(1^{2}+2^{2}+3^{2}\right)+\ldots$ is-
(A) $\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}$
(B) $\frac{n(n+1)(2 n-1)}{6}$
(C) $\frac{1}{12} \mathrm{n}(\mathrm{n}+1)^{2}(\mathrm{n}+2)$
(D) $\frac{1}{12} n^{2}(n+1)^{2}$
6. For positive integer $n, 3^{\mathrm{n}}<\mathrm{n}$! when-
(A) $n \geq 6$
(B) $n>7$
(C) $\mathrm{n} \geq 7$
(D) $\mathrm{n} \leq 7$
7. For all positive integral values of $n, 3^{2 n}-2 n+1$ is divisible by-
(A) 2
(B) 4
(C) 8
(D) 12
8. $\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots \ldots . .+\frac{1}{n(n+1)}=\frac{n}{n+1}, n \in N$, is true for
(A) $n \geq 3$
(B) $\mathrm{n} \geq 2$
(C) $\mathrm{n} \geq 4$
(D) all n
9. Let $P(n): n^{2}+n$ is an odd integer. It is seen that truth of $P(n) \Rightarrow$ the truth of $P(n+1)$. Therefore, $P(n)$ is true for all-
(A) $n>1$
(B) n
(C) $n>2$
(D) None of these
10. If $n \in N$, then $3^{4 n+2}+5^{2 n+1}$ is a multiple of-
(A) 14
(B) 16
(C) 18
(D) 20
11. If $\mathrm{A}=\left(\begin{array}{ll}a & 1 \\ 0 & a\end{array}\right)$, then for any $\mathrm{n} \in \mathrm{N}, \mathrm{A}^{\mathrm{n}}$ equals-
(A) $\left(\begin{array}{cc}\mathrm{na} & \mathrm{n} \\ 0 & \mathrm{na}\end{array}\right)$
(B) $\left(\begin{array}{cc}a^{n} & n a^{n-1} \\ 0 & a^{n}\end{array}\right)$
(C) $\left(\begin{array}{cc}\text { na } & 1 \\ 0 & \mathrm{na}\end{array}\right)$
(D) $\left(\begin{array}{cc}a^{n} & n \\ 0 & a^{n}\end{array}\right)$
12. For every natural number $\mathrm{n}, \mathrm{n}(\mathrm{n}+3)$ is always-
(A) multiple of 4
(B) multiple of 5
(C) even
(D) odd
13. $\frac{1^{2}}{1}+\frac{1^{2}+2^{2}}{1+2}+\frac{1^{2}+2^{2}+3^{2}}{1+2+3}+\ldots$ upto n terms is-
(A) $\frac{1}{3}(2 n+1)$
(B) $\frac{1}{3} n^{2}$
(C) $\frac{1}{3}(\mathrm{n}+2)$
(D) $\frac{1}{3} n(n+2)$
14. The sum of n terms of the series
$1+(1+a)+\left(1+a+a^{2}\right)+\left(1+a+a^{2}+a^{3}\right)+\ldots .$, is-
(A) $\frac{n}{1-a}-\frac{a\left(1-a^{n}\right)}{(1-a)^{2}}$
(B) $\frac{n}{1-a}+\frac{a\left(1-a^{n}\right)}{(1-a)^{2}}$
(C) $\frac{n}{1-a}+\frac{a\left(1+a^{n}\right)}{(1-a)^{2}}$
(D) $-\frac{\mathrm{n}}{1-\mathrm{a}}+\frac{\mathrm{a}\left(1-\mathrm{a}^{\mathrm{n}}\right)}{(1-\mathrm{a})^{2}}$
15. If $p(n): n^{2}>100$ then
(A) $\mathrm{p}(1)$ is true
(B) $\mathrm{p}(4)$ is true
(C) $\mathrm{p}(\mathrm{k})$ is true $\forall \mathrm{k} \geq 5, \mathrm{k} \in \mathrm{N}$
(D) $\mathrm{p}(\mathrm{k}+1)$ is true whenever $\mathrm{p}(\mathrm{k})$ is true where $\mathrm{k} \in \mathrm{N}$
16. If $n \in N$, then $x^{2 n-1}+y^{2 n-1}$ is divisible by-
(A) $x+y$
(B) $x-y$
(C) $x^{2}+y^{2}$
(D) $x^{2}+x y$
17. For each $\mathrm{n} \in \mathrm{N}, 10^{2 \mathrm{n}+1}+1$ is divisible by-
(A) 11
(B) 13
(C) 27
(D) None of these
18. The sum of n terms of the series $\frac{\frac{1}{2} \cdot \frac{2}{2}}{1^{3}}+\frac{\frac{2}{2} \cdot \frac{3}{2}}{1^{3}+2^{3}}+\frac{\frac{3}{2} \cdot \frac{4}{2}}{1^{3}+2^{3}+3^{3}}+\ldots \ldots .$. is-
(A) $\frac{1}{\mathrm{n}(\mathrm{n}+1)}$
(B) $\frac{\mathrm{n}}{\mathrm{n}+1}$
(C) $\frac{n+1}{n}$
(D) $\frac{n+1}{n+2}$
19. For all $\mathrm{n} \in \mathrm{N}, \mathrm{n}^{4}$ is less than-
(A) 10^{n}
(B) 4^{n}
(C) 10^{10}
(D) None of these
20. For positive integer $\mathrm{n}, 10^{\mathrm{n}-2}>81 \mathrm{n}$ when-
(A) $\mathrm{n}<5$
(B) $n>5$
(C) $n \geq 5$
(D) $\mathrm{n}>6$
21. $1+3+6+10+\ldots .$. upto n terms is equal to-
(A) $\frac{1}{3} n(n+1)(n+2)$
(B) $\frac{1}{6} n(n+1)(n+2)$
(C) $\frac{1}{12} n(n+2)(n+3)$
(D) $\frac{1}{12} \mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)$
22. Sum of n terms of the series $\frac{1}{1}+\frac{1}{1+2}+\frac{1}{1+2+3}+\ldots \ldots$. is-
(A) $\frac{\mathrm{n}}{\mathrm{n}+1}$
(B) $\frac{2}{\mathrm{n}(\mathrm{n}+1)}$
(C) $\frac{2 n}{n+1}$
(D) $\frac{2(\mathrm{n}+1)}{\mathrm{n}+2}$
23. The inequality $\mathrm{n}!>2^{\mathrm{n}-1}$ is true-
(A) for all $\mathrm{n}>1$
(B) for all $\mathrm{n}>2$
(C) for all $\mathrm{n} \in \mathrm{N}$
(D) None of these
24. $1+2+3+\ldots \ldots \ldots .+\mathrm{n}<\frac{(\mathrm{n}+2)^{2}}{8}, \mathrm{n} \in \mathrm{N}$, is true for
(A) $n \geq 1$
(B) $\mathrm{n} \geq 2$
(C) all n
(D) none of these
25. For all $n \in N, 7^{2 n}-48 n-1$ is divisible by-
(A) 25
(B) 26
(C) 1234
(D) 2304
26. A student was asked to prove a statement by induction. He proved
(i) $\mathrm{P}(5)$ is true and
(ii) Truth of $\mathrm{P}(\mathrm{n}) \Rightarrow$ truth of $\mathrm{p}(\mathrm{n}+1), \mathrm{n} \in \mathrm{N}$

On the basis of this, he could conclude that $\mathrm{P}(\mathrm{n})$ is true for
(A) no $n \in N$
(B) all $\mathrm{n} \in \mathrm{N}$
(C) all $n \geq 5$
(D) None of these
27. $\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots$. upto n terms is-
(A) $\frac{1}{2 n+1}$
(B) $\frac{n}{2 n+1}$
(C) $\frac{1}{2 n-1}$
(D) $\frac{2 \mathrm{n}}{3(\mathrm{n}+1)}$
28. The difference between an +ve integer and its cube is divisible by-
(A) 4
(B) 6
(C) 9
(D) None of these
29. For all $\mathrm{n} \in \mathrm{N}, \Sigma \mathrm{n}$
$(A)<\frac{(2 n+1)^{2}}{8}$
(B) $>\frac{(2 \mathrm{n}+1)^{2}}{8}$
$(C)=\frac{(2 n+1)^{2}}{8}$
(D) None of these
30. If P is a prime number then $\mathrm{n}^{\mathrm{p}}-\mathrm{n}$ is divisible by p when n is a
(A) natural number greater than 1
(B) odd number
(C) even number
(D) None of these
31. For natural number $\mathrm{n}, 2^{\mathrm{n}}(\mathrm{n}-1)!<\mathrm{n}^{\mathrm{n}}$, if-
(A) $\mathrm{n}<2$
(B) $\mathrm{n}>2$
(C) $\mathrm{n} \geq 2$
(D) never
32. For all $n \in N, \cos \theta \cos 2 \theta \cos 4 \theta \ldots \ldots . \cos 2^{n-1} \theta$ equals to-
(A) $\frac{\sin 2^{n} \theta}{2^{n} \sin \theta}$
(B) $\frac{\sin 2^{n} \theta}{\sin \theta}$
(C) $\frac{\cos 2^{n} \theta}{2^{n} \cos 2 \theta}$
(D) $\frac{\cos 2^{n} \theta}{2^{n} \sin \theta}$
33. If $x \neq y$, then for every natural number $n, x^{n}-y^{n}$ is divisible by
(A) $x-y$
(B) $x+y$
(C) $x^{2}-y^{2}$
(D) all of these
34. $1.2^{2}+2.3^{2}+3.4^{2}+\ldots$. upto n terms, is equal to-
(A) $\frac{1}{12} \mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}+3)$
(B) $\frac{1}{12} n(n+1)(n+2)(n+5)$
(C) $\frac{1}{12} \mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)(3 \mathrm{n}+5)$
(D) None of these
35. If n is a natural number then $\left(\frac{\mathrm{n}+1}{2}\right)^{\mathrm{n}} \geq \mathrm{n}$! is true when-
(A) $n>1$
(B) $\mathrm{n} \geq 1$
(C) $n>2$
(D) Never
36. The $\mathrm{n}^{\text {th }}$ term of the series $4+14+30+52+80+114+\ldots .$. is-
(A) $5 \mathrm{n}-1$
(B) $2 n^{2}+2 n$
(C) $3 n^{2}+n$
(D) $2 n^{2}+2$
37. The sum of the series
$\frac{3}{1^{2}}+\frac{5}{1^{2}+2^{2}}+\frac{7}{1^{2}+2^{2}+3^{2}}+\ldots .$. upto n terms
(A) $\frac{2 n}{n+1}$
(B) $\frac{3 n}{n+1}$
(C) $\frac{3 n}{2(n+1)}$
(D) $\frac{6 \mathrm{n}}{\mathrm{n}+1}$
35. $n^{3}+(n+1)^{3}+(n+2)^{3}$ is divisible for all $n \in N$ by
(A) 3
(B) 9
(C) 27
(D) 81
39. If $\mathrm{n} \in \mathrm{N}$, then $11^{\mathrm{n}+2}+12^{2 \mathrm{n}+1}$ is divisible by-
(A) 113
(B) 123
(C) 133
(D) None of these
40. $\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{16}+\ldots$ upto n terms equal to-
(A) $n+\frac{1}{2^{n}}$
(B) $2 \mathrm{n}+\frac{1}{2^{\mathrm{n}}}$
(C) $\mathrm{n}-1+\frac{1}{2^{\mathrm{n}}}$
(D) $\mathrm{n}+1+\frac{1}{2^{\mathrm{n}}}$

Exercise \# 2

[Subjective Type Questions]

1. By using PMI, prove that $2+4+6+\ldots \ldots+2 n=n(n+1), n \in N$
2. Prove that $1+2+3+\ldots \ldots \ldots .+n<\frac{1}{8}(2 \mathrm{n}+1)^{2}, \mathrm{n} \in \mathrm{N}$.
3. Let $\mathrm{P}(\mathrm{n})$ be the statement $\mathrm{n}^{3}+\mathrm{n}$ is divisible by 3 ". Write $\mathrm{P}(1), \mathrm{P}(4)$
4. Prove that $2^{n}>n, n \in N$.
5. Use the principle of mathematical induction to prove that $n(n+1)(n+2)$ is a multiple of 6 for all natural numbers n.
6. Prove that $\sin \theta+\sin 2 \theta+\ldots \ldots . .+\sin \left(\frac{n+1}{2}\right) n \theta=\sin \frac{n \theta}{2} \theta \sin \frac{\theta}{2} \operatorname{cosec}$ for all $n \in N$.
7. Prove that $\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\ldots \ldots .+\frac{1}{2^{\mathrm{n}}}=1-\frac{1}{2^{\mathrm{n}}}, \mathrm{n} \in \mathrm{N}$.
8. By using PMI, prove that $1.3+2.3^{2}+3.3^{3}+\ldots \ldots+n .3^{n}=\frac{(2 n-1) 3^{n+1}+3}{4}, n \in N$
9. If $3^{2 \mathrm{n}}$, where n is a natural number, is divided by 8 , prove that the remainder is always 1 .
10. Prove that $1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\ldots \ldots . .+\frac{1}{\mathrm{n}^{2}}<2-\frac{1}{\mathrm{n}}$ where $\mathrm{n}(>1) \in \mathrm{N}$, by using P.M.I
11. Prove that $2 \mathrm{n}+7<(\mathrm{n}+3)^{2}, \mathrm{n} \in \mathrm{N}$. Using this, prove that $(\mathrm{n}+3)^{2} \leq 2^{\mathrm{n}+3}, \mathrm{n} \in \mathrm{N}$.

Exercise \# 3

[Previous Year Questions] [AIEEE/JEE-MAIN]

1. Let $\mathrm{S}(\mathrm{k})=1+3+5+\ldots \ldots+(2 \mathrm{k}-1)=3+\mathrm{k}^{2}$, then which of the following is true ?
[AIEEE-2004]
(1) $S(1)$ is true
(2) $\mathrm{S}(\mathrm{k}) \Rightarrow \mathrm{S}(\mathrm{k}+1)$
(3) $\mathrm{S}(\mathrm{k}) \nRightarrow \mathrm{S}(\mathrm{k}+1)$
(4) Principle of mathematical Induction can be used to prove that formula
2. The sum of first n terms of the given series
$1^{2}+2.2^{2}+3^{2}+2.4^{2}+5^{2}+2.6^{2}+\ldots$. is $\frac{\mathrm{n}(\mathrm{n}+1)^{2}}{2}$, when n is even. When n is odd, then sum will be-
[AIEEE-2004]
(1) $\frac{\mathrm{n}(\mathrm{n}+1)^{2}}{2}$
(2) $\frac{1}{2} n^{2}(n+1)$
(3) $n(n+1)^{2}$
(4) None of these
3. If $\mathrm{A}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ and $\mathrm{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then which one of the following holds for all $\mathrm{n} \geq 1$, (by the principal of mathematical induction)
[AIEEE-2005]
(1) $\mathrm{A}^{\mathrm{n}}=\mathrm{nA}+(\mathrm{n}-1) \mathrm{I}$
(2) $\mathrm{A}^{\mathrm{n}}=2^{\mathrm{n}-1} \mathrm{~A}+(\mathrm{n}+1) \mathrm{I}$
(3) $\mathrm{A}^{\mathrm{n}}=\mathrm{nA}-(\mathrm{n}-1) \mathrm{I}$
(4) $\mathrm{A}^{\mathrm{n}}=2^{\mathrm{n}-1} \mathrm{~A}-(\mathrm{n}-1) \mathrm{I}$
4. Statement -1 : For every natural number $n \geq 2$ $\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}}>\sqrt{\mathrm{n}}$

Statement -2 : For every natural number $n \geq 2, \sqrt{n(n+1)}<n+1$.
[AIEEE-2008]
(1) Statement -1 is false, Statement -2 is true
(2) Statement-1 is true, Statement-2 is false
(3) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1
(4) Statement-1 is true, Statement-2 is true;Statement-2 is not a correct explanation for Statement-1
5. Statement - 1: For each natural number n, $(n+1)^{7}-n^{7}-1$ is divisible by 7 .

Statement - 2: For each natural number $n, n^{7}-\mathrm{n}$ is divisible by 7 .
[AIEEE-2011]
(1) Statement -1 is false, Statement -2 is true
(2) Statement -1 is true, Statement -2 is false
(3) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1
(4) Statement-1 is true, Statement-2 is true;Statement-2 is not a correct explanation for Statement-1

ANSWER KEY

EXERCISE - 1

1. C 2. D 3. A 4. A 5. C 6. C 7. A 8. D 9. D 10. A 11. B
2. C 13. D
3. A
4. D 16. A
5. A
6. B
7. A
8. C 21. B
9. C 23. B
10. D
11. D
12. C
13. B
14. B
15. A
16. A
17. B
18. A
19. A
20. C
21. B
22. C
23. D
24. B
25. C

EXERCISE - 3
$\begin{array}{lllllllll}\text { 1. } & 2 & 2 . & 2 & 3 . & 3 & 4 . & 3 & 5 .\end{array}$

