HINTS \& SOLUTIONS

EXERCISE - 1
 Single Choice

1. Since product of any r consecutive integers is divisible by r ! and not divisible by $\mathrm{r}+1$!.
So given product of 4 consecutive integers is divisible by $4!$ or 24 .
2. Let three consecutive natural numbers are $n, n+1, n+2$, $\mathrm{P}(\mathrm{n})=(\mathrm{n})^{3}+(\mathrm{n}+1)^{3}+(\mathrm{n}+2)^{3}$
$P(1)=1^{3}+2^{3}+3^{3}=36$, which is divisible by 2 and 9
$\mathrm{P}(2)=(2)^{3}+(3)^{3}+(4)^{3}=99$, which is divisible by 9 (not by 2).
Hence $\mathrm{P}(\mathrm{n})$ is divisible $9 \forall \mathrm{n} \in \mathrm{N}$.
3. Let $\mathrm{P}(\mathrm{n})=\frac{\mathrm{n}^{7}}{7}+\frac{\mathrm{n}^{5}}{5}+\frac{2 \mathrm{n}^{3}}{3}-\frac{\mathrm{n}}{105}$
$P(1)=\frac{1}{7}+\frac{1}{5}+\frac{2}{3}-\frac{1}{105}=1$ (integer)
$\mathrm{P}(2)=2^{4}\left(\frac{8}{7}+\frac{2}{5}+\frac{1}{3}\right)-\frac{2}{105}=15$ (integer) etc.
Hence $P(n)$ is an integer.
4. Let $\mathrm{P}(\mathrm{n})=10^{\mathrm{n}}+3.4^{\mathrm{n}+2}+\lambda$ is divisible by 9

$$
\begin{gathered}
\forall \mathrm{n} \in \mathrm{~N} \\
\mathrm{P}(1)=10+3.4^{3}+\lambda=202+\lambda=207+(\lambda-5)
\end{gathered}
$$

Which is divisible by 9 if $\lambda=5$
9. Let $\mathrm{p}(\mathrm{n})=\mathrm{n}^{2}+\mathrm{n}=\mathrm{n}(\mathrm{n}+1)$ is an odd integer since the product of two consecutive integers is always even. So hear principle of induction is not applicable.
10. Let $\mathrm{p}(\mathrm{n})=3^{4 \mathrm{n}+2}+5^{2 \mathrm{n}+1}$

Here $\quad P(1)=3^{6}+5^{3}=9^{3}+5^{3}=14 \times 61$
Which is multiple of 14 but not of 16,18 and 20 .
14. $\mathrm{T}_{\mathrm{n}}=1+\mathrm{a}+\mathrm{a}^{2}+\cdots----+\mathrm{a}^{\mathrm{n}-1}=\frac{1-a^{n}}{1-a}$

$$
\begin{aligned}
S_{n}= & \Sigma T_{n}=\frac{1}{(1-a)}\left[\Sigma 1-\Sigma a^{n}\right] \\
& =\frac{1}{(1-a)}\left[n-\left(a+a^{2}+a^{3}+\cdots-a^{n}\right)\right] \\
& =\frac{1}{(1-a)}\left[n-\frac{a\left(1-a^{n}\right)}{(1-a)}\right]=\frac{n}{1-a}-\frac{a\left(1-a^{n}\right)}{(1-a)^{2}}
\end{aligned}
$$

16. Since $x^{n}+y^{n}$ is divisible $(x+y)$ if n is odd.

Here $\quad 2 \mathrm{n}-1$ is odd $\forall \mathrm{n} \in \mathrm{N}$.
18. $\mathrm{n}^{\text {th }}$ term of the given series
$T_{n}=\frac{\frac{n}{2} \cdot \frac{n+1}{2}}{\Sigma n^{3}}=\frac{\frac{1}{4} n(n+1)}{\frac{1}{4} n^{2}(n+1)^{2}}=\frac{1}{n(n+1)}=\left(\frac{1}{n}-\frac{1}{n+1}\right)$
$\therefore \mathrm{S}_{\mathrm{n}}=\left[\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+---+\left(\frac{1}{\mathrm{n}}-\frac{1}{\mathrm{n}+1}\right)\right]$
$=1-\frac{1}{n+1}=\frac{n}{n+1}$
25. Let $P(n)=7^{2 n}-48 n-1$
$P(1)=7^{2}-48.1-1=0$,
which is divisible by for all $\mathrm{n} \in \mathrm{N}$
$P(2)=7^{4}-48.2-1=2304$,
which is divisible by 2304 not by 25,26 and 1234 .
26. By Theorem-II
28. Let n is a positive integer.
$\mathrm{P}(\mathrm{n})=\mathrm{n}^{3}-\mathrm{n}$
$\mathrm{P}(1)=0$, which is divisible by for all $\mathrm{n} \in \mathrm{N}$
$P(2)=6$, which is divisible by 6 (not by 4 and 9)
30. Let $\mathrm{P}(\mathrm{n})$: $\mathrm{n}^{\mathrm{p}}-\mathrm{n}$
when $\mathrm{p}=2$
$\mathrm{P}(\mathrm{n})=\mathrm{n}^{2}-\mathrm{n}$
$P(1)=0 \quad$ which is divisible all $n \in N$
$P(2)=2$ which is divisible by 2
$P(3)=6 \quad$ which is divisible by 2
Hence $\mathrm{P}(\mathrm{n})$ is divisible by 2 when n is greater than 1 .
32. Let $P(n)=\cos \theta \cdot \cos 2 \theta \cdot \cos 4 \theta----\cos 2^{n-1} \theta$
$P(1)=\cos \theta=\frac{2 \sin \theta \cos \theta}{2 \sin \theta}=\frac{\sin 2 \theta}{2 \sin \theta}$
$P(2)=\cos \theta \cos 2 \theta=\frac{2(2 \sin \theta \cos \theta) \cos 2 \theta}{4 \sin \theta}$
$=\frac{2 \sin 2 \theta \cos 2 \theta}{4 \sin \theta}$
$=\frac{\sin 4 \theta}{4 \sin \theta}=\frac{\sin 2^{2} \theta}{2^{2} \sin \theta}$

Clearly, $P(n)=\frac{\sin 2^{n} \theta}{2^{n} \sin \theta}$
34. Here $\mathrm{T}_{\mathrm{n}}=\mathrm{n}(\mathrm{n}+1)^{2}$
$\therefore \quad \mathrm{S}_{\mathrm{n}}=\Sigma \mathrm{T}_{\mathrm{n}}=\Sigma \mathrm{n}^{3}+2 \Sigma \mathrm{n}^{2}+\Sigma \mathrm{n}$
$=\frac{\mathrm{n}^{2}(\mathrm{n}+1)^{2}}{4}+2 \cdot \frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}+\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
$=\frac{1}{12} \mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)(3 \mathrm{n}+5)$
36. Let $\mathrm{n}^{\text {th }}$ term of the series is T_{n} and
$\mathrm{S}_{\mathrm{n}}=4+14+30+52+80+114+\ldots--+\mathrm{T}_{\mathrm{n}} .$. (i)
$\mathrm{S}_{\mathrm{n}}=4+14+30+52+80+\ldots+\mathrm{T}_{\mathrm{n}} . .($ (ii)

Subtract (ii) from (i)
$0=(4+10+16+22+28+34+\cdots--n$ terms $)-T_{n}$
$\mathrm{T}_{\mathrm{n}}=4+10+16+22+---\mathrm{n}$ terms

$$
=\frac{n}{2}[2 \times 4+(n-1) 6]=n(3 n+1)=3 n^{2}+n
$$

38. Let $\mathrm{p}(\mathrm{n})=\mathrm{n}^{3}+(\mathrm{n}+1)^{3}+(\mathrm{n}+2)^{3}$,
$p(A)=36, p(B)=99$ both are divisible by 99
Let it is true for $\mathrm{n}=\mathrm{k}$
$\mathrm{k}^{3}+(\mathrm{k}+1)^{3}+(\mathrm{k}+2)^{3}=9 \mathrm{q} ; \mathrm{q} \in \mathrm{I}$
adding $9 \mathrm{k}^{2}+27 \mathrm{k}+27$ both sides
$\mathrm{k}^{3}+(\mathrm{k}+1)^{3}+(\mathrm{k}+2)^{3}+9 \mathrm{k}^{2}+27 \mathrm{k}+27=9 \mathrm{q}+9 \mathrm{k}^{2}+27 \mathrm{k}+27$
$(\mathrm{k}+1)^{3}+(\mathrm{k}+2)^{3}+(\mathrm{k}+3)^{3}=9 \mathrm{r} ; \mathrm{r} \in \mathrm{I}$
39. $\operatorname{Let} \mathrm{P}(\mathrm{n})=11^{\mathrm{n}+2}+12^{2 \mathrm{n}+1}$
$P(1)=11^{3}+12^{3}=23 \times 133$, which is divisible by 133 but not by 113 and 123 .

EXERCISE - 2

Subjective Type

2. (i) Given statement is true for $\mathrm{n}=1$
(ii) Let us assume that the statement is true for $\mathrm{n}=\mathrm{k}$

$$
\begin{aligned}
& \text { i.e. } 1+2+3+\ldots \ldots \ldots . .+\mathrm{k}<\frac{1}{8}(2 \mathrm{k}+1)^{2} \\
& \Rightarrow 1+2+3+\ldots \ldots \ldots .+\mathrm{k}=\frac{1}{8}(2 \mathrm{k}+1)^{2}-\lambda \text { where } \lambda \in \mathrm{R}^{+}
\end{aligned}
$$

(iii) $\operatorname{For} \mathrm{n}=\mathrm{k}+1$,

$$
\begin{aligned}
& 1+2+\ldots \ldots \ldots . .+\mathrm{k}+\mathrm{k}+1=\frac{(2 \mathrm{k}+1)^{2}}{8}+(\mathrm{k}+1)-\lambda \\
& =\frac{(2 \mathrm{k}+3)^{2}}{8}-\lambda<\frac{(2 \mathrm{k}+3)^{2}}{8}
\end{aligned}
$$

So the result is true for $\mathrm{n}=\mathrm{k}+1$
Hence by principle of mathematical induction the statement is true for all $\mathrm{n} \in \mathrm{N}$
3. $\quad P(1): 1^{3}+1$ is divisible by 3
$\mathrm{P}(4): 4^{3}+4$ is divisible by 3
5.
(i) Given statement is true for $\mathrm{n}=1$
(ii) Let us assume that the statement is true for $\mathrm{n}=\mathrm{k}$

$$
\text { i.e. } k(k+1)(k+2)=6 \lambda
$$

(iii) For $\mathrm{n}=\mathrm{k}+1$,

$$
(\mathrm{k}+1)(\mathrm{k}+2)(\mathrm{k}+3)=\mathrm{k}(\mathrm{k}+1)(\mathrm{k}+2)+3(\mathrm{k}+1)(\mathrm{k}+2)
$$

$=6 \lambda+3(\mathrm{k}+1)(\mathrm{k}+2)=$ multiple of 6 as $(\mathrm{k}+1)(\mathrm{k}+2)$ is even
So the result is true for $\mathrm{n}=\mathrm{k}+1$
Hence by principle of mathematical induction the statement is true for all $\mathrm{n} \in \mathrm{N}$
6. Let $\mathrm{P}(\mathrm{n}) ; \sin \theta+\sin 2 \theta+\ldots \ldots .+\sin \mathrm{n} \theta$

$$
=\sin \left(\frac{\mathrm{n}+1}{2}\right) \theta \sin \frac{\mathrm{n} \theta}{2} \operatorname{cosec} \frac{\theta}{2}
$$

$\mathrm{P}(\mathrm{A})$ is true
Let $\mathrm{P}(\mathrm{k})$ is also true
$\sin \theta+\sin 2 \theta+$ \qquad $+\sin \mathrm{k} \theta$
$=\sin \left(\frac{\mathrm{k}+1}{2}\right) \theta \sin \frac{\mathrm{k} \theta}{2} \operatorname{cosec} \frac{\theta}{2}$
add $\sin (\mathrm{k}+1) \theta$ both sides
$\sin \theta+\sin 2 \theta+\ldots \ldots \ldots \ldots .+\sin k \theta+\sin (\mathrm{k}+1) \theta=\sin \left(\frac{\mathrm{k}+1}{2}\right) \theta$
$\sin \frac{k \theta}{2} \operatorname{cosec} \frac{\theta}{2}+\sin (k+1) \theta$

$$
\begin{aligned}
& =\sin \left(\frac{\mathrm{k}+1}{2}\right) \theta\left[\frac{\sin \frac{\mathrm{k} \theta}{2}+2 \cos \left(\frac{\mathrm{k}+1}{2}\right) \theta \sin \frac{\theta}{2}}{\sin \frac{\theta}{2}}\right] \\
& =\sin \left(\frac{\mathrm{k}+1}{2}\right) \theta\left[\frac{\frac{\sin \mathrm{k} \theta}{2}+\frac{\sin (\mathrm{k}+2) \theta}{2}-\frac{\sin \mathrm{k} \theta}{2}}{\sin \frac{\theta}{2}}\right] \\
& =\sin \left(\frac{\mathrm{k}+1+1}{2}\right) \theta \sin \left(\frac{\mathrm{k}+1}{2}\right) \theta \cdot \operatorname{cosec} \frac{\theta}{2} \\
& \Rightarrow P(\mathrm{k}+1) \text { is true }
\end{aligned}
$$

8.

(i) Given statement is true for $\mathrm{n}=1$
(ii) Let us assume that the statement is true for $\mathrm{n}=\mathrm{k}$
i.e. $1.3+2.3^{2}+3.3^{3}+\ldots \ldots . .+\mathrm{k} .3^{\mathrm{k}}=\frac{(2 \mathrm{k}-1) 3^{\mathrm{k}+1}+3}{4}$
(iii) For $\mathrm{n}=\mathrm{k}+1$,
L.H.S. $=1.3+2.3^{2}+3.3^{3}+\ldots+\mathrm{k} .3^{k}+(k+1) 3^{k+1}$
$=\frac{(2 \mathrm{k}-1) 3^{\mathrm{k}+1}+3}{4}+(\mathrm{k}+1) 3^{\mathrm{k}+1}=\frac{(2 \mathrm{k}+1) 3^{\mathrm{k}+2}+3}{4}$
= R.H.S.
so by principle of mathematical induction the statement is true for all $\mathrm{n} \in \mathrm{N}$
11. (i) Given statement is true for $\mathrm{n}=1$
(ii) Let us assume that the statement is true for $\mathrm{n}=\mathrm{k}$

$$
\text { i.e. } 2 \mathrm{k}+7=(\mathrm{k}+3)^{2}-\lambda \text { where } \lambda \in \mathrm{R}^{+}
$$

(iii) $\operatorname{For} \mathrm{n}=\mathrm{k}+1$,

$$
\begin{aligned}
2(\mathrm{k}+1)+7 & =2 \mathrm{k}+7+2=(\mathrm{k}+3)^{2}-\lambda+2 \\
& =(\mathrm{k}+4)^{2}-2 \mathrm{k}-\lambda-5<(\mathrm{k}+4)^{2}
\end{aligned}
$$

So the result is true for $\mathrm{n}=\mathrm{k}+1$
Hence by principle of mathematical induction the statement is true for all $\mathrm{n} \in \mathrm{N}$

EXERCISE - 3

Part \# I : AIEEE/JEE-MAIN

1. $\mathrm{S}(\mathrm{K})=1+3+5+$ \qquad $+(2 \mathrm{~K}-1)=3+\mathrm{K}^{2}$
$\mathrm{S}(1)$ is not true
let $S(K)$ is true then

$$
\begin{aligned}
& \mathrm{S}(\mathrm{~K}+1)=1+3+5+\ldots .+(2 \mathrm{~K}-1)+(2 \mathrm{~K}+1) \\
& \quad=\mathrm{S}(\mathrm{~K})+(2 \mathrm{~K}+1) \\
& \quad=3+\mathrm{K}^{2}+2 \mathrm{~K}+1=3+(\mathrm{K}+1)^{2}
\end{aligned}
$$

Hence $\mathrm{S}(\mathrm{K}) \Rightarrow \mathrm{S}(\mathrm{K}+1)$
2. Since $1^{2}+2.2^{2}+3^{2}+2.4^{2}+5^{2}+2.6^{2}+---$

$$
\mathrm{n} \text { terms }=\frac{\mathrm{n}(\mathrm{n}+1)^{2}}{2}, \text { when } \mathrm{n} \text { is even }
$$

When n is odd the $\mathrm{n}^{\text {th }}$ term of series will be n^{2} in this case, $(n-1)$ is even
so for finding sum of first $(n-1)$ terms of the series, we replacing n by $(n-1)$ in the given formula.

So sum of first $(\mathrm{n}-1)$ terms $=\frac{(\mathrm{n}-1) \mathrm{n}^{2}}{2}$
Hence sum of n terms of the series
$=\left(\right.$ the sum of $(n-1)$ terms + the $\mathrm{n}^{\text {th }}$ term $)$
$=\frac{(\mathrm{n}-1) \mathrm{n}^{2}}{2}+\mathrm{n}^{2}=\frac{(\mathrm{n}+1) \mathrm{n}^{2}}{2}$
3. $\mathrm{A}^{2}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$
$\mathrm{A}^{3}=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right]$
$\therefore \quad A^{n}=\left[\begin{array}{ll}1 & 0 \\ n & 1\end{array}\right]$
Now $\mathrm{nA}-(\mathrm{n}-1) \mathrm{I}=\left[\begin{array}{ll}\mathrm{n} & 0 \\ \mathrm{n} & \mathrm{n}\end{array}\right]-\left[\begin{array}{cc}\mathrm{n}-1 & 0 \\ 0 & \mathrm{n}-1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ \mathrm{n} & 1\end{array}\right]=\mathrm{A}^{\mathrm{n}}$
4. $\because \sqrt{n(n+1)}<\sqrt{(n+1)(n+1)}$
i.e. $\sqrt{\mathrm{n}(\mathrm{n}+1)}<\mathrm{n}+1 \quad \forall \mathrm{n} \in \mathrm{N}$

Hence statement-2 is true.
For $\mathrm{n}=2$ given result is true.
let it is true for $n=K \in N, K \geq 2$ then
$\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots .+\frac{1}{\sqrt{\mathrm{~K}}}>\sqrt{\mathrm{K}}$
$\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots .+\frac{1}{\sqrt{\mathrm{~K}}}+\frac{1}{\sqrt{\mathrm{~K}+1}}>\sqrt{\mathrm{K}}+\frac{1}{\sqrt{\mathrm{~K}+1}}$

$$
=\frac{\sqrt{\mathrm{K}(\mathrm{~K}+1)}+1}{\sqrt{\mathrm{~K}+1}}>\frac{\sqrt{\mathrm{KK}}+1}{\sqrt{\mathrm{~K}+1}}=\sqrt{\mathrm{K}+1}
$$

$(\because$ by statement $-2 \sqrt{\mathrm{n}(\mathrm{n}+1)}<\mathrm{n}+1 \Rightarrow \sqrt{\mathrm{n}}<\sqrt{\mathrm{n}+1})$
$\Rightarrow \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots .+\frac{1}{\sqrt{\mathrm{~K}+1}}>\sqrt{\mathrm{K}+1}$
Hence statement-1 is true for every natural number $\mathrm{n} \geq 2$.

