HINTS \& SOLUTIONS

EXERCISE - 1

Single Choice

1. $\mathrm{F} \propto \frac{1}{\mathrm{r}^{\mathrm{m}}} ; \mathrm{F}=\frac{\mathrm{C}}{\mathrm{r}^{\mathrm{m}}}$

This force will provide the required centripetal force Therefore
$\mathrm{m} \omega^{2} \mathrm{r}=\frac{\mathrm{C}}{\mathrm{r}^{\mathrm{m}}} ; \omega^{2}=\frac{\mathrm{C}}{\mathrm{m} \mathrm{r}^{\mathrm{m}+1}} \Rightarrow \mathrm{~T}=\frac{2 \pi}{\omega} \Rightarrow \mathrm{~T} \propto \mathrm{r}^{(\mathrm{m}+1) / 2}$
2. $F_{1}=F_{2}=\frac{G(1)(1)}{(.2)^{2}}=\frac{6.67 \times 10^{-11}}{.04}=1.67 \times 10^{-9}$

$\vec{F}_{\text {net }}=F_{1}(\tilde{\mathrm{i}})+\mathrm{F}_{2}(\tilde{\mathrm{j}})=F(\tilde{\mathrm{i}}+\tilde{\mathrm{j}})=1.67 \times 10^{-9}(\tilde{\mathrm{i}}+\tilde{\mathrm{j}})$
3. At $\mathrm{P}: \mathrm{g}=\frac{\mathrm{GM}}{\mathrm{x}^{2}}-\frac{\mathrm{G} 81 \mathrm{M}}{(\mathrm{D}-\mathrm{x})^{2}}=0$
$\Rightarrow \mathrm{D}-\mathrm{x}=9 \mathrm{x} ; 10 \mathrm{x}=\mathrm{D}$

$x=\frac{D}{10}$ from the Moon and $\frac{9 D}{10}$ from the earth
4. $\mathrm{g}^{\prime}=\mathrm{g}\left(1-\frac{2 \mathrm{~h}}{\mathrm{R}}\right) ; \frac{\Delta \mathrm{g}}{\mathrm{g}}=\frac{2 \mathrm{~h}}{\mathrm{R}}$
$1=2 \frac{\mathrm{~h}}{\mathrm{R}} \Rightarrow \frac{\mathrm{h}}{\mathrm{R}}=\frac{1}{2} ; \mathrm{g}^{\prime}=\mathrm{g}\left(1-\frac{\mathrm{d}}{\mathrm{R}}\right)$
$\frac{\Delta g^{\prime}}{g}=\frac{d}{R} \Rightarrow \frac{h}{R} \quad \mathrm{~g}$ decreases by 0.5%
5. $\mathrm{g}=\frac{\mathrm{GM}}{\mathrm{r}^{2}}$
$\Rightarrow R$ is reduced to $R / 2$ and the mass of the mars becomes 10 times
$g_{\text {mars }}=\frac{4}{10} g_{\text {earth }}$ and $\mathrm{W}_{\text {mars }}=\frac{4}{10} \mathrm{~W}_{\text {earth }}=80 \mathrm{~N}$.
6. $\mathrm{t}=\sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}}=1 \mathrm{sec} ; \mathrm{t}^{\prime}=\sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}^{\prime}}}=\sqrt{6} \sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}}=\sqrt{6} \mathrm{sec}$
7. $\mathrm{g}^{\prime}=\frac{\mathrm{GM}}{(\mathrm{R}+\mathrm{h})^{2}}=\frac{\mathrm{g}}{49} ; \mathrm{w}^{\prime}=\frac{\mathrm{mg}}{49}=\frac{10}{49}=0.20 \mathrm{~N}$

Apparent weight of the rotating satellite is zero because satellite is in free fall state.
8. $\mathrm{g}=\frac{\mathrm{GM}}{\mathrm{R}^{2}}=\frac{\mathrm{G} \rho \frac{4}{3} \pi \mathrm{R}^{3}}{\mathrm{R}^{2}} \Rightarrow \mathrm{~g}=\frac{4}{3} \mathrm{G} \rho \pi \mathrm{R}$
$\Rightarrow \mathrm{g} \propto \mathrm{R} \Rightarrow \frac{g}{g^{\prime}}=\frac{R}{3 R} \Rightarrow g^{\prime}=3 g$
9. $g^{\prime}=g-\omega^{2} r \cos 60$
$g^{\prime}=g-\omega^{2} R \cos ^{2} 60$
$g^{\prime}=0, g=\omega^{2} R \cos ^{2} 60$

$\sqrt{\frac{4 \mathrm{~g}}{\mathrm{R}}}=\omega, \mathrm{t}=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{\mathrm{R}}{4 \mathrm{~g}}}=\pi \sqrt{\frac{\mathrm{R}}{\mathrm{g}}}$
10. By applying conservation of energy
$\mathrm{KE}_{\mathrm{i}}+\mathrm{PE}_{\mathrm{i}}=\mathrm{KE}_{\mathrm{f}}+\mathrm{PE}_{\mathrm{f}}$
$\frac{1}{2} m v^{2}-\frac{\mathrm{GM}_{e} \mathrm{~m}}{\mathrm{R}}=0-\frac{\mathrm{GM}_{e} \mathrm{~m}}{2 \mathrm{R}}$
$\frac{1}{2} \mathrm{mv}^{2}=\frac{\mathrm{GM}_{\mathrm{e}} \mathrm{m}}{\mathrm{R}}\left[-\frac{1}{2}+1\right]$
$\frac{1}{2} m v^{2}=\frac{G M_{e} m}{2 R} \Rightarrow u=\sqrt{\frac{G M_{e}}{R}}$
11. Acceleration of small body w.r.t. earth $=\mathrm{g}-(-2 \mathrm{~g})=3 \mathrm{~g}$

Now from second equation of motion
$\mathrm{H}=\frac{1}{2}(3 g) t^{2} \Rightarrow t=\sqrt{\frac{2 H}{3 g}}$
OR
$\bar{X}_{\mathrm{CM}}=\frac{2 \mathrm{mx}_{1}+\mathrm{m}\left(\mathrm{x}_{2}\right)}{2 \mathrm{~m}+\mathrm{m}}=\frac{2 \mathrm{mH}+0}{2 \mathrm{~m}+\mathrm{m}}=\frac{2 \mathrm{H}}{3}$
$\frac{H}{3}=\frac{1}{2} g t^{2} \Rightarrow t=\sqrt{\frac{2 H}{3 g}}$
12. Gravitational field inside the shell is zero. But the force on the man due to the point mass at the centre is
$\mathrm{F}_{\text {New }}=\frac{\mathrm{GMm}}{3 \mathrm{R}^{2}} ; \mathrm{F}_{\text {old }}=\frac{\mathrm{GMm}}{\mathrm{R}^{2}}$
Change in force $=\frac{2 G M m}{3 \mathrm{R}^{2}}$
13. Centre of gravity of the two particles.
$\mathrm{X}_{\mathrm{CG}}=\frac{\mathrm{W}_{1} \mathrm{X}_{1}+\mathrm{W}_{2} \mathrm{X}_{2}}{\mathrm{~W}_{1}+\mathrm{W}_{2}}=\frac{(0)(0)+(\mathrm{mg})(\mathrm{R})}{0+\mathrm{mg}}=\mathrm{R}$
The centre of mass of the two particle system is at
$X_{C M}=\frac{M(R)+m(0)}{2 M}=\frac{R}{2}$
14. $\mathrm{PE}_{\mathrm{i}}=-\frac{\mathrm{GM}_{e} \mathrm{~m}}{\mathrm{R}}=-\mathrm{mgR} ; \mathrm{PE}_{\mathrm{f}}=-\frac{\mathrm{GM}_{e} \mathrm{~m}}{2 \mathrm{R}}=-\frac{\mathrm{mgR}}{2}$

Increase in PE is $\frac{\mathrm{mgR}}{2}$
15. $\int d V=-\int I_{g} \cdot d x ; \int_{v}^{0} d V=-\int_{r}^{\infty} \frac{k}{x^{3}} d x$
$0-\mathrm{V}=\left[-\frac{1}{2 \mathrm{x}^{2}}\right]_{\mathrm{r}}^{\infty} \Rightarrow \mathrm{V}=+\frac{\mathrm{k}}{2 \mathrm{r}^{2}} \Rightarrow \mathrm{~V}=\frac{\mathrm{k}}{2 \mathrm{x}^{2}}$
16. $\mathrm{I}_{\mathrm{g}}=\frac{\mathrm{GM}}{\mathrm{R}^{2}}, \mathrm{~V}=-\frac{\mathrm{GM}}{\mathrm{R}}$,
$\mathrm{V}=\mathrm{I}_{\mathrm{g}} \mathrm{R}=6 \times 8 \times 10^{6}=4.8 \times 10^{7}$
17. Equilibrium position of the neutral point from mass ' m ' is

$$
=\left(\frac{\sqrt{m}}{\sqrt{m}+\sqrt{M}}\right) d
$$

$\mathrm{V}_{1}=\frac{-\mathrm{Gm}_{1}}{\mathrm{r}_{1}} ; \mathrm{V}_{2}=\frac{-\mathrm{Gm}_{2}}{\mathrm{r}_{2}}$
$V_{1}=\frac{-G m}{\sqrt{m d}}(\sqrt{M}+\sqrt{m}) ; V_{2}=\frac{-G M}{\sqrt{M} d}(\sqrt{M}+\sqrt{m})$
$V_{1}=\frac{-G}{d} \sqrt{m}(\sqrt{M}+\sqrt{m}) ; V_{2}=\frac{-G}{d} \sqrt{M}(\sqrt{M}+\sqrt{m})$
$V=\frac{-G}{d}(\sqrt{M}+\sqrt{m})^{2}$
18. $\mathrm{v}_{e}=\sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}}} ; \mathrm{v}_{\mathrm{e}}^{\prime}=\sqrt{\frac{2 \mathrm{G} 2 \mathrm{M}}{\mathrm{R} / 2}}=2 \sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}}}$ $\mathrm{v}_{\mathrm{e}}=2(11.2 \mathrm{~km} / \mathrm{sec})=22.4 \mathrm{~km} / \mathrm{sec}$
19. There will be no buoyant force on the moon.
(Eventually balloon bursts)
20. There is no atmosphere on the moon.
21. To escape from the earth total energy of the body should be zero $\mathrm{KE}+\mathrm{PE}=0$

$$
\frac{1}{2} \mathrm{mv}^{2}-\frac{\mathrm{GMm}}{5 \mathrm{R}}=0 \Rightarrow \mathrm{KEmin}=\frac{\mathrm{mgR}_{e}}{5}
$$

22. Relative angular velocity when the particle are moving in same direction is

$$
\begin{array}{ll}
& \omega_{1}+\omega_{2} \Rightarrow\left(\omega_{1}+\omega_{2}\right) t=2 \pi \\
\therefore & \omega_{2}=\frac{2 \pi}{24} \mathrm{rad} / \mathrm{sec} ; \omega_{1}=\frac{\pi}{6}
\end{array}
$$

When the particles are moving in the same direction then angular velocity becomes

$$
\left(\omega_{1}-\omega_{2}\right) \Rightarrow\left(\omega_{1}-\omega_{2}\right) t=2 \pi
$$

By substituting ω_{1} and ω_{2} in equation we get
23. K.E. $=+\frac{1}{2} \frac{\mathrm{GM}_{1} \mathrm{M}_{2}}{\mathrm{r}}$
$r=2 R$ for the first and $r=8 R$ for the $I I^{\text {nd }}$
$\frac{\mathrm{K} \cdot \mathrm{E}_{1}}{\mathrm{~K} \cdot \mathrm{E}_{2}}=\left(\frac{1}{2 \mathrm{R}} \frac{8 \mathrm{R}}{1}\right)=4: 1$
Similarly P.E. is $\Rightarrow-\frac{\mathrm{GM}_{1} M_{2}}{R}, \frac{P \cdot E_{1}}{\text { P.E }}=4: 1$
Put the ratio of $\frac{K . E}{P . E}=2$
24. At points A, B and C, total energy is negative.

EXERCISE - 2

Part \# I : Multiple Choice

1. $\Delta \mathrm{V}=-\mathrm{E}_{\mathrm{g}} \cdot \mathrm{dr}$

Because field is uniform

$$
\therefore \quad 2=-\mathrm{E}_{\mathrm{g}} \cdot 20 \Rightarrow \mathrm{E}=-\frac{1}{10} ; \Delta \mathrm{V}=+\frac{1}{10}[4]=\frac{2}{5}
$$

work done in taking a 5 kg body to height $4 \mathrm{~m}=\mathrm{m}$ (change in gravitational potential)

$$
=5\left[\frac{2}{5}\right] \Rightarrow 2 \mathrm{~J}
$$

2. Net force towards the centre $\Rightarrow m \omega^{2}(9 R)=\frac{G M m}{(9 R)^{2}}$

$$
\Rightarrow \omega^{2}=\frac{G M}{729 R^{3}} \Rightarrow T=\frac{2 \pi}{\omega} \Rightarrow 27 \times 2 \pi \sqrt{\frac{R}{g}}
$$

3. when $\mathrm{r}<\mathrm{r}_{1}$, gravitational intensity is equal to 0

when $r>r_{1}$, gravitational intensity is equal to $\frac{G M_{1}}{r^{2}}$ when $r>r_{2}$, gravitational intensity is equal to $\frac{G\left(M_{1}+M_{2}\right)}{r^{2}}$
4. $\vec{F}=-\frac{d U}{d r}=\frac{d}{d r}(a x+6 y) ; F_{x}=-a$ and $F_{y}=b$
$\vec{F}=-a \tilde{i}+b \tilde{j} \Rightarrow$ acceleration $=\frac{\sqrt{a^{2}+b^{2}}}{m}$
5. $\int d V=-\int E . d r, \int d V=-\int \frac{k}{r} d r$
$\mathrm{v}=-\mathrm{k} \log \mathrm{r}+\mathrm{c}$ at $\mathrm{r}=\mathrm{r}_{0} ; \mathrm{v}=\mathrm{v}_{0}$
$\Rightarrow v_{0}=-k \log r_{0}+c \Rightarrow c=v_{0}+k \log r_{0}$
By substituting the value c from equation
$\mathrm{v}=\mathrm{k} \log \left(\frac{\mathrm{r}_{0}}{\mathrm{r}}\right)+\mathrm{V}_{0}$
6. Gravitational field and the electrostatic field both are conservation in nature
7. $\mathrm{T} \sin \theta=\frac{\mathrm{Gm}^{2}}{\ell^{2}} ; \mathrm{T} \cos \theta=\mathrm{mg}$
$\tan \theta=\frac{\mathrm{Gm}}{\mathrm{g} \ell^{2}} ; \quad \theta=\tan ^{-1}\left(\frac{\mathrm{Gm}}{\mathrm{g} \ell^{2}}\right)$

8. By applying work energy theorem change in K.E. = work done by all the forces
Δ K.E. $=\mathrm{W}_{\mathrm{g}}-\mathrm{W}_{\mathrm{fr}} ; \mathrm{W}_{\mathrm{g}}>\mathrm{W}_{\mathrm{fr}}$
therefore KE_{f} increases due to the torque of the air resistance its angular momentum decreases therefore A, C
9. Both field and the potential inside the shell is non zero
10. Case I
$\mathrm{U}_{\mathrm{i}}+\mathrm{K}_{\mathrm{i}}=\mathrm{U}_{\mathrm{f}}+\mathrm{K}_{\mathrm{g}}$

$$
\begin{aligned}
& \frac{-\mathrm{GM}_{e} \mathrm{~m}}{\mathrm{R}}+\frac{1}{2} \mathrm{mv}^{2}=-\frac{\mathrm{GM}_{e} \mathrm{~m}}{\mathrm{R}+\mathrm{h}_{1}}+0 \\
& \frac{-\mathrm{GM}_{e} \mathrm{~m}}{\mathrm{R}}+\frac{1}{2} \mathrm{~m} \frac{2 \mathrm{GM}_{e}}{\mathrm{R}^{2}} \frac{\mathrm{R}}{3}=-\frac{\mathrm{GM}_{e} \mathrm{~m}}{\mathrm{R}+\mathrm{h}_{1}} \\
& -\frac{1}{\mathrm{R}}+\frac{1}{3 \mathrm{R}}=-\frac{1}{\mathrm{R}+\mathrm{h}_{1}} \Rightarrow \mathrm{~h}_{1}=\frac{\mathrm{R}}{2}
\end{aligned}
$$

Case II

$$
\begin{aligned}
& \mathrm{U}_{\mathrm{i}}+\mathrm{K}_{\mathrm{i}}=\mathrm{U}_{\mathrm{f}}+\mathrm{K}_{\mathrm{g}} \\
& -\frac{\mathrm{GM}_{\mathrm{e}} \mathrm{~m}}{\mathrm{R}}+\frac{1}{2} \mathrm{mv}^{2}=-\frac{\mathrm{GM}_{e} \mathrm{~m}}{\mathrm{R}+\mathrm{h}_{2}}+0 \\
& \frac{-\mathrm{GM}_{e} \mathrm{~m}}{\mathrm{R}}+\frac{1}{2} \mathrm{~m} \frac{2 \mathrm{GM}_{e}}{\mathrm{R}^{2}} \mathrm{R}=-\frac{\mathrm{GM}_{e} \mathrm{~m}}{\mathrm{R}+\mathrm{h}_{2}} \\
& -\frac{1}{\mathrm{R}}+\frac{1}{2 \mathrm{R}}=-\frac{1}{\mathrm{R}+\mathrm{h}_{2}} \Rightarrow \mathrm{~h}_{2}=\mathrm{R}
\end{aligned}
$$

Case III
$\mathrm{U}_{\mathrm{i}}+\mathrm{K}_{\mathrm{i}}=\mathrm{U}_{\mathrm{f}}+\mathrm{K}_{\mathrm{g}}$

$$
\begin{aligned}
& -\frac{\mathrm{GM}_{\mathrm{e}} \mathrm{~m}}{\mathrm{R}}+\frac{1}{2} \mathrm{~m} \frac{4 \mathrm{GM}_{e}}{\mathrm{R}^{2}} \frac{\mathrm{R}}{3}=-\frac{\mathrm{GM}_{e} \mathrm{~m}}{\mathrm{R}+\mathrm{h}_{3}} \\
& -\frac{1}{\mathrm{R}}+\frac{1}{3 \mathrm{R}}=-\frac{1}{\mathrm{R}+\mathrm{h}_{3}} \Rightarrow \mathrm{~h}_{3}=2 \mathrm{R}
\end{aligned}
$$

13. $\mathrm{F}_{\text {net }}=$ force due for sphere + force due for cavity
$=\frac{\mathrm{GMm}}{\mathrm{R}^{3}}\left(\frac{\mathrm{R}}{2}\right)+0 \Rightarrow \frac{\mathrm{GMm}}{2 \mathrm{R}^{2}}=\frac{\mathrm{mg}}{2}$
14. Motion of m

$$
\begin{aligned}
& {\underset{2 r}{m} \quad{ }_{\mathrm{r} / 3}^{\mathrm{m}} \quad 2 \mathrm{~m}}_{\mathrm{m} / 3 \omega^{2}\left(\frac{2 \mathrm{r}}{3}\right)=\frac{\mathrm{Gm}(2 \mathrm{~m})}{\mathrm{r}^{2}}}^{\Rightarrow \mathrm{T}=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{\mathrm{r}^{3}}{3 \mathrm{Gm}}} \quad \therefore T \propto r^{3 / 2} \text { and } \mathrm{T} \propto \mathrm{~m}^{-1 / 2}}
\end{aligned}
$$

16. Pressing force by the particle on the wall of tunnel is and acceleration is $m g \sin \theta$.

Pressing force $=m g \cos \theta \Rightarrow \frac{G M x}{R^{3}} \times \frac{R}{2 x} \Rightarrow \frac{G M}{2 R^{2}}$
Pressing force is independent from ' x ' thus it is constant $g \sin \theta=\frac{G M x}{R^{3}} \sqrt{\frac{x^{2}-\frac{R^{2}}{4}}{x^{2}}}=\frac{G M}{2 R^{3}} \sqrt{4 x^{2}-R^{2}}$

x is increases from $\frac{R}{2}$ to R, thus acceleration increases
17. Due to symmetry the gravitational field at the origin is zero. The equipotential line will take the shape of a circle in yz plane.
18. Gravitational potential $V=-\frac{G M}{R}$
(B) Gravitational field at the point x from the centre of the $\frac{\mathrm{GMx}}{\left(\mathrm{R}^{2}+\mathrm{x}^{2}\right)^{3 / 2}}$
19. Gravitational field intensity $\mathrm{F}=\frac{\mathrm{GMr}}{\mathrm{R}^{3}}$

Inside the sphere
$\left(\mathrm{F}_{1} \propto \mathrm{r}_{1}, \mathrm{~F}_{2} \propto \mathrm{r}_{2}\right)$
$\frac{F_{1}}{F_{2}}=\frac{r_{1}}{r_{2}}$ of $r_{1}<R \& r_{2}<R$

Gravitational field intensity

$$
\mathrm{I} \propto \frac{1}{\mathrm{r}^{2}} \text { (Out side the sphere) }
$$

$\therefore \frac{\mathrm{F}_{1}}{\mathrm{~F}_{2}}=\frac{\mathrm{r}_{2}^{2}}{\mathrm{r}_{1}^{2}}$ if $\mathrm{r}_{1}>\mathrm{R}$ and $\mathrm{r}_{2}>\mathrm{R}$
20. Acceleration of the particle from the centre of the earth is directly proportional to the distance from the centre $\Rightarrow \mathrm{a}=\frac{\mathrm{GMx}}{\mathrm{R}^{3}} \Rightarrow \mathrm{a} \propto \mathrm{x} \Rightarrow \mathrm{a}=-\omega^{2} \mathrm{x}$

Particle will perform oscillatory motion.
21. Gravitational potential due to hemisphere at the centre is V because distance of each mass particle from the centre O is R . If the distance between the point and mass is changed potential will also change
22. P.E. of the system is equal to $U_{i}=-\frac{3 G M m}{2 R}$ work done $\Rightarrow-\Delta U \Rightarrow-\left[U_{f}-U_{i}\right] \Rightarrow \quad U_{i}$

$$
\Rightarrow-\frac{3 G M m}{2 R}
$$

23. By energy conservation
$\mathrm{K}_{\mathrm{i}}+\mathrm{U}_{\mathrm{i}}=\mathrm{K}_{\mathrm{f}}+\mathrm{U}_{\mathrm{f}}$
$0-\frac{\mathrm{GMm}}{2 \mathrm{R}}=\frac{1}{2} \mathrm{~K}\left(\frac{\mathrm{R}}{2}\right)^{2}-\frac{11 \mathrm{GMm}}{8 \mathrm{R}}$
$\frac{\mathrm{GMm}}{\mathrm{R}}\left[\frac{11}{8}-\frac{1}{2}\right]=\frac{1}{2} \mathrm{~K}\left(\frac{\mathrm{R}^{2}}{4}\right) \Rightarrow \frac{7 \mathrm{GMm}}{8 \mathrm{R}}=\frac{\mathrm{KR}^{2}}{8}$
$\mathrm{K}=\frac{7 \mathrm{GMm}}{\mathrm{R}^{3}}$
24.

Total energy of mass M will become zero, it will be escape $\mathrm{K}+\mathrm{U}=0$
$\frac{1}{2} \mathrm{Mv}^{2}-\frac{\mathrm{Gm}_{1} \mathrm{~m} 2}{\mathrm{~d}}-\frac{\mathrm{Gm}_{2} \mathrm{~m} 2}{\mathrm{~d}}=0$
$\frac{1}{2} M V^{2}=\frac{G M 2}{d}\left(M_{1}+M_{2}\right) \Rightarrow V=\sqrt{\frac{4 G}{d}\left(M_{1}+M_{2}\right)}$

Part \# II : Assertion \& Reason

1. A
2. A 3. A
3. A
4. C
5. C
6. A
7. A 9. B 10. C
8. A

EXERCISE - 3

Part \# I : Matrix Match Type

1.

For (A) : $L^{\prime}=m v^{\prime} r^{\prime}=m\left(\sqrt{\frac{G M}{2 r}}\right)(2 r)=\sqrt{2} m v r=\sqrt{2} L$
For (B) : Area of earth covered by satellite signal increases.
For (C): Potential energy

$$
U^{\prime}=-\frac{G M m}{2 r}=\frac{U}{2} \text { and }-\frac{G M m}{2 r}>-\frac{G M m}{r}
$$

For (D): Kinetic energy

$$
\mathrm{K}^{\prime}=\frac{1}{2} \mathrm{mv}^{\prime 2}=\frac{\mathrm{K}}{2} \Rightarrow \mathrm{~K}^{\prime}<\mathrm{K}
$$

2. COAM : $\mathrm{mv}_{\mathrm{a}} \mathrm{r}_{\mathrm{a}}=\mathrm{mv}_{\mathrm{p}} \mathrm{r}_{\mathrm{p}}$

(A) At perigee $r_{p}<r_{a} \quad \therefore v_{p}>v_{a}(r)$
(B) Distance from sun at the position of perigee decreases (q)
(C) Potential energy at perigee $U_{P}=-\frac{G M m}{r_{P}}$

$$
\mathrm{U}_{\mathrm{P}}=-\frac{\mathrm{GMm}}{\mathrm{r}_{\mathrm{P}}}
$$

(D) Angular momentum remains same (p)
3. (A) Potential at A Potential at B
(B) We can not compare about gravitational field at A and at B
(C) At C and D, gravitational field and potential remains same
(D) As one moves from D to A , field decreases
4. (A) Kinetic energy in gravitational field increases if the total work done by all forces is positive.
(B) Potential energy in gravitational field increases as work done by gravitational force is negative.
(C) For mechanical energy in a gravitational field to increase, work done by external force should be non-zero.

Part \# II : Comprehension

Comprehension \# 1

1. $\mathrm{F}=\frac{\mathrm{G} 2 \mathrm{Mm}^{2}}{\left(\mathrm{R}+\mathrm{R}_{\mathrm{x}}\right)^{2}}$

$$
\Rightarrow \quad \mathrm{a}=\frac{\mathrm{GM}}{2 \mathrm{R}^{2}}
$$

$$
h=\frac{1}{2} a t^{2} \Rightarrow \frac{4 h R^{2}}{G M}=t^{2} \Rightarrow \mathrm{t}=2 \sqrt{\frac{\mathrm{hR}^{2}}{\mathrm{GM}}}
$$

2. V at surface $=\sqrt{2 \mathrm{as}}=\sqrt{2 \frac{\mathrm{GM}}{2 \mathrm{R}^{2}} \mathrm{~h}}=\frac{\sqrt{\mathrm{GMh}}}{\mathrm{R}}$

If $\mathrm{a}=0, \mathrm{t}_{1}=\frac{\mathrm{R}}{\mathrm{v}}=\frac{\mathrm{R}^{2}}{\sqrt{\mathrm{GMh}}} ;$ but $\mathrm{a}>0 ; \mathrm{t}<\frac{\mathrm{R}^{2}}{\sqrt{\mathrm{GMh}}}$
3. $\mathrm{COME} \Rightarrow 0-\frac{\mathrm{G}(2 \mathrm{M}) \mathrm{m}}{(2 \mathrm{R}+\mathrm{h})}=\frac{1}{2} \mathrm{mv}^{2}-\frac{\mathrm{GMm}}{\mathrm{R}}-\frac{\mathrm{GMm}}{2 \mathrm{R}}$

$$
\Rightarrow v \cong \sqrt{\frac{G M}{R}}
$$

Comprehension \# 2

1. By applying conservation of angular momentum
$\mathrm{mv}_{0} \mathrm{R} \cos \theta=\mathrm{mv}(\mathrm{R}+\mathrm{h})$
$v=\frac{v_{0} R \cos \theta}{R+h}\left(\frac{R}{R+h}<1\right) \Rightarrow v_{0} \cos \theta>v$
2. By applying conservation of energy
$\frac{1}{2} \mathrm{mv}_{0}{ }^{2}-\frac{\mathrm{GM}_{e} \mathrm{~m}}{\mathrm{r}}=\frac{1}{2} \mathrm{mv}^{2}-\frac{\mathrm{GM}_{e} \mathrm{~m}}{(\mathrm{R}+\mathrm{h})}$
Solving above equation $\mathrm{h}>\frac{\mathrm{v}_{0}^{2} \sin ^{2} \theta}{2 \mathrm{~g}}$
Alternate : As height increases gravitational force decreases and hence the acceleration. Therefore height will be more than $H=\frac{v_{0}^{2} \sin ^{2} \theta}{2 g}$

Comprehension \# 3

1. As the distance of the star is doubled the potential energy becomes half of the initial and the velocity of the particle will become $\frac{1}{\sqrt{2}}$ times of its initial value because K.E. $=1 / 2$ P.E.
2. Its kinetic energy

EXERCISE - 4

Subjective Type

1. $\mathrm{mg}-\mathrm{T}=\mathrm{ma}$
$\mathrm{T}+\mathrm{mg}^{\prime}=\mathrm{ma}$
By adding (i) and (ii)
$a=\frac{g+g^{\prime}}{2} ; T=\frac{m(g+g)}{2}-\mathrm{mg}^{\prime}$
$T=m\left(\frac{g-g^{\prime}}{2}\right)=\frac{m}{2}\left[g-g\left[1-\frac{2 h}{R}\right]\right]$

$\mathrm{T}=\frac{\mathrm{mg}}{2} \frac{2 \ell}{\mathrm{R}}=\frac{\mathrm{mg} \ell}{\mathrm{R}}=\frac{\mathrm{GMm} \ell}{\mathrm{R}^{3}}$
2. $\mathrm{F}_{1}=\left|\overrightarrow{\mathrm{F}}_{42}+\overrightarrow{\mathrm{F}}_{41}+\overrightarrow{\mathrm{F}}_{41}\right|$

$$
=\frac{\mathrm{G} 8}{4 \mathrm{~L}^{2}}+\frac{\mathrm{G} 4}{2 \mathrm{~L}^{2}}\left(2 \cos 45^{\circ}\right)=\frac{(2+2 \sqrt{2}) \mathrm{G}}{\mathrm{~L}^{2}}
$$

$\mathrm{F}_{2}=\left|\overrightarrow{\mathrm{F}}_{24}+\overrightarrow{\mathrm{F}}_{21}+\overrightarrow{\mathrm{F}}_{21}\right|=\frac{\mathrm{G} 8}{4 \mathrm{~L}^{2}}+\frac{\mathrm{G} 2}{2 \mathrm{~L}^{2}}(2 \cos 45)$

$$
=\frac{\mathrm{G}}{\mathrm{~L}^{2}}(2+\sqrt{2}) \Rightarrow \frac{\mathrm{F}_{1}}{\mathrm{~F}_{2}}=\sqrt{2}
$$

3. $\mathrm{F}_{1}=\frac{\mathrm{GMm}}{4 \mathrm{R}^{2}}$
$\mathrm{F}_{2}=$ force due to whole sphere - force due to cavity

$$
\mathrm{F}_{2}=\frac{G M m}{4 R^{2}}-\frac{G M m}{18 R^{2}} \Rightarrow \frac{7 G M m}{36 R^{2}} \quad \therefore \frac{F_{2}}{F_{1}}=\frac{7}{9}
$$

4. Total mass of earth
$\mathrm{M}=\frac{4}{3} \pi\left(\frac{\mathrm{R}}{2}\right)^{3} \rho_{1}+\frac{4}{3} \pi\left(\mathrm{R}^{3}-\frac{\mathrm{R}^{3}}{8}\right) \rho_{2}$
$M=\frac{4 \pi R^{3}}{24}\left(\rho_{1}+7 \rho_{2}\right)$
Acceleration due to gravity at earth's
surface $=\frac{G M}{R^{2}}=\frac{4 \pi G R}{24}\left(\rho_{1}+7 \rho_{2}\right)$
Acceleration due to gravity at depth $\frac{R}{2}$ from the
surface $=\frac{\mathrm{G}\left[\frac{4}{3} \pi\left(\frac{\mathrm{R}}{2}\right)^{2} \rho_{1}\right]}{\left(\frac{\mathrm{R}}{2}\right)^{2}}=\frac{4 \pi \mathrm{G} \rho_{1} \mathrm{R}}{6}$
Now according to question

$$
\frac{4 \pi G R\left(\rho_{1}+7 \rho_{2}\right)}{24}=\frac{4 \pi G R \rho_{1}}{6} \Rightarrow \frac{\rho_{1}}{\rho_{2}}=\frac{7}{3}
$$

5. For the line $4 y=3 x+9$
$4 d y=3 d x ; 4 d y-3 d x=0$
For work in the region,
$d W=\vec{E} \cdot(d x \tilde{i}+d y \tilde{j})=(3 \tilde{i}-4 \tilde{j}) \cdot(d x \tilde{i}+d y \tilde{j})$ $=3 \mathrm{dx}-4 \mathrm{dy}($ from equation $(\mathrm{i}))=0$
6. Potential at centre
$=\sum \frac{\mathrm{GM}}{\mathrm{r}}=\frac{-4 \mathrm{GM}}{\mathrm{r}}=-\frac{4 \sqrt{2} \mathrm{GM}}{\ell}$
Potential energy of the system

$-\frac{4 \mathrm{GM}^{2}}{\ell}-\frac{2 \mathrm{GM}^{2}}{\sqrt{2} \ell}=-\frac{5.41 \mathrm{GM}^{2}}{\ell}$
7. $\mathrm{V}_{1}=\frac{\mathrm{GM}}{\left(\mathrm{R}^{2}+\mathrm{x}^{2}\right)^{1 / 2}}=\frac{\mathrm{G}(5)}{(16+9)^{1 / 2}}=\mathrm{G}$
$\mathrm{V}_{2}=\frac{\mathrm{GM}}{\left(\mathrm{R}^{2}+\mathrm{x}^{2}\right)^{1 / 2}} \xrightarrow[\int_{4}]{\substack{\text { ? }}} \xrightarrow{3 \sqrt{3}}$
$\Rightarrow \frac{G(5)}{(9+27)^{1 / 2}} \Rightarrow \frac{G 5}{6}$
work done $=m\left[\mathrm{~V}_{2}-\mathrm{V}_{1}\right]=\frac{\mathrm{G}}{6}=1.11 \times 10^{-11}$ Joule
8. \quad Speed at surface $=v$ (let)

$-\frac{\mathrm{GMm}}{2 \mathrm{R}}+0=\frac{-\mathrm{GMm}}{\mathrm{R}}+\frac{1}{2} \mathrm{mv}^{2}$
$\mathrm{v}=\sqrt{\frac{\mathrm{GM}}{\mathrm{R}}}$
Inside the shell $\mathrm{g}=0$

$$
\therefore \quad \mathrm{t}=\frac{\text { distance }}{\text { speed }}=\frac{2 \mathrm{R}}{\mathrm{v}}=2 \sqrt{\frac{\mathrm{R}^{3}}{\mathrm{GM}}}
$$

9. No. of pairs for P.E. can be calculated by using

$$
={ }^{\mathrm{n}} \mathrm{C}_{2}=\frac{\mathrm{n}(\mathrm{n}-1)}{2}=28
$$

where n is the no. of mass particles. out of 28 pairs :-
$12 \rightarrow$ sides of cube
$12 \rightarrow$ face diagonal
$12 \rightarrow$ body diagonal

11.

M	$\stackrel{\square}{\square} \longleftrightarrow a \longrightarrow m$

$\mathrm{U}=\frac{\mathrm{GM}_{1} \mathrm{M}_{2}}{\mathrm{~d}}$ for the point Mass
$\mathrm{d} U=\frac{\mathrm{GmdM}}{\mathrm{x}} \Rightarrow \mathrm{U}=-\int \frac{\mathrm{GMm}}{\ell \mathrm{x}} \mathrm{dx}$
$\mathrm{U}=-\frac{\mathrm{GMm}}{\ell} \int_{\mathrm{a}}^{\ell+\mathrm{a}} \frac{\mathrm{dx}}{\mathrm{x}}=-\frac{\mathrm{GMm}}{\ell} \ln \left(\frac{\ell+\mathrm{a}}{\mathrm{a}}\right)$
12. $\mathrm{U}_{\mathrm{f}}=-\frac{\mathrm{GMm}}{\mathrm{R}(1+\mathrm{n})} \Rightarrow \mathrm{U}_{\mathrm{i}}=-\frac{\mathrm{GMm}}{\mathrm{R}}$
$\Delta \mathrm{U}=\mathrm{U}_{\mathrm{f}}-\mathrm{U}_{\mathrm{i}}=-\frac{\mathrm{GMm}}{\mathrm{R}}\left[\frac{1}{1+\mathrm{n}}-1\right]$

By applying energy conservation
$\frac{1}{2} \mathrm{mv}^{2}=\frac{\mathrm{GMm}}{\mathrm{R}}\left[1-\frac{1}{1+\mathrm{n}}\right] ; v=\sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}}\left[1-\frac{1}{1+\mathrm{n}}\right]}$
13. (i) Orbital velocity $\mathrm{v}_{0}=\sqrt{\frac{\mathrm{GM}}{\mathrm{r}}}=\frac{1}{2} \sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}}}$
$\Rightarrow \mathrm{r}=2 \mathrm{R}=\mathrm{R}+\mathrm{h} \Rightarrow \mathrm{h}=\mathrm{R}=6400 \mathrm{~km}$
(ii) COME : $-\frac{\mathrm{GMm}}{2 \mathrm{R}}+0=-\frac{\mathrm{GMm}}{\mathrm{R}}+\frac{1}{2} \mathrm{mv}^{2}$
$\Rightarrow \mathrm{v}=\sqrt{\frac{\mathrm{GM}}{\mathrm{R}}}=\sqrt{\mathrm{gR}}=7.9184 \mathrm{~m} / \mathrm{s}$
14. Net torque on the comet is zero then the angular momentum is conserved.
15. Let $r=$ distance of apogee

COAM : $\sqrt{\frac{6 \mathrm{GM}}{5 \mathrm{R}}} \mathrm{R}=\mathrm{vr}$
COME : $\quad-\frac{\mathrm{GMm}}{\mathrm{R}}+\frac{1}{2} \mathrm{~m}\left(\frac{6 \mathrm{GM}}{5 \mathrm{R}}\right)$

$$
\begin{equation*}
=-\frac{\mathrm{GMm}}{\mathrm{r}}+\frac{1}{2} \mathrm{mv}^{2} \tag{ii}
\end{equation*}
$$

$\Rightarrow \quad r=\frac{3 R}{2}$ and $v=\sqrt{\frac{8 G M}{15 R}}$
Orbital speed at $\mathrm{r}=\sqrt{\frac{\mathrm{GM}}{\mathrm{r}}}=\sqrt{\frac{2}{3} \frac{\mathrm{GM}}{\mathrm{R}}}$
\therefore Increase in speed

$$
=\sqrt{\frac{\mathrm{GM}}{\mathrm{R}}}\left[\sqrt{\frac{2}{3}}-\sqrt{\frac{8}{15}}\right]
$$

16. Orbital velocity $v_{0}=\sqrt{\frac{G M}{r_{1}}}$

After impulse $\mathrm{v}_{1}=\sqrt{\mathrm{k}} \mathrm{v}_{0}$
COAM : $\quad \operatorname{mv}_{1} \mathrm{r}_{1}=\mathrm{mv}_{2} \mathrm{r}_{2}$
COME : $\frac{-\mathrm{GMm}}{\mathrm{r}_{1}}+\mathrm{k}\left(\frac{1}{2} \mathrm{mv}_{0}^{2}\right)$

$$
\begin{equation*}
=\frac{-\mathrm{GMm}}{\mathrm{r}_{2}}+\left(\frac{1}{2} \mathrm{mv}_{2}^{2}\right) \tag{ii}
\end{equation*}
$$

Solving equation (i) and (ii) $\frac{r_{2}}{r_{1}}=\frac{k}{2-k}$
17. $\mathrm{v}_{1}(\mathrm{H}+\mathrm{R})=\frac{3}{2} \sqrt{\frac{\mathrm{GM}}{2 \mathrm{R}}} \mathrm{R}$

$$
v_{1}=\left(\frac{3 R}{R+H}\right) \sqrt{\frac{G \mathrm{~m}}{8 \mathrm{R}}} \Rightarrow \mathrm{v}_{0}^{2}-\frac{\mathrm{GM}}{2 \mathrm{R}}=\mathrm{v}^{2}-\frac{2 \mathrm{GM}}{(\mathrm{R}+\mathrm{H})}
$$

$$
-\frac{\mathrm{GM}}{2 \mathrm{R}}=\frac{9 \mathrm{R}^{2}}{(\mathrm{R}+\mathrm{H})^{2}} \frac{\mathrm{GM}}{8 \mathrm{R}}-\frac{2 \mathrm{GM}}{\mathrm{R}+\mathrm{h}} \mathrm{R}
$$

$$
-1=\frac{9 R^{2}}{4(R+H)^{2}}-\frac{4 R}{R+H}
$$

$$
\Rightarrow-1=\frac{9 R^{2}-16 R^{2}-16 R H}{4(R+H)^{2}}
$$

$$
4 R^{2}+4 H^{2}+8 R H+9 R^{2}-16 R^{2}-16 R H=0
$$

$$
4 \mathrm{H}^{2}-8 \mathrm{RH}-3 \mathrm{R}^{2}=0
$$

$$
=\frac{8 R \pm \sqrt{64 R^{2}+48 R^{2}}}{8}=R \pm R \sqrt{R^{2}+\frac{3}{4} R^{2}}
$$

$$
\begin{equation*}
=\mathrm{R} \pm \frac{\mathrm{R}}{2} \sqrt{7} \tag{i}
\end{equation*}
$$

18. $\operatorname{COAM}: \mathrm{mv}_{1}(2 \mathrm{R})=\operatorname{mv}_{2}(2 \mathrm{R}) \Rightarrow \mathrm{v}_{1}=2 \mathrm{v}_{2}$

COME : $\frac{-\mathrm{GMm}}{2 \mathrm{R}}+\frac{1}{2} \mathrm{mv}_{1}^{2}=-\frac{\mathrm{GMm}}{4 \mathrm{R}}+\frac{1}{2} \mathrm{mv}_{2}^{2}$
$\Rightarrow \mathrm{v}_{1}=\sqrt{\frac{2 \mathrm{GM}}{3 \mathrm{R}}}$
\therefore Radius of curvature at perigee $=\frac{v_{1}^{2}}{g_{1}}$
$\Rightarrow \mathrm{R}_{\mathrm{P}}=\frac{2 \mathrm{GM}}{3 \mathrm{R}} \times \frac{4 \mathrm{R}^{2}}{\mathrm{GM}}=\frac{8 \mathrm{R}}{3}$
19. Point P, where field is zero

$\Rightarrow \frac{\mathrm{GMm}}{(10 \mathrm{a}-\mathrm{x})^{2}}=\frac{\mathrm{G}(16 \mathrm{M}) \mathrm{m}}{\mathrm{x}^{2}} \Rightarrow \mathrm{x}=8 \mathrm{a}$
COME : $-\frac{\mathrm{G}(16 \mathrm{M}) \mathrm{m}}{2 \mathrm{a}}-\frac{\mathrm{GMm}}{8 \mathrm{a}}+\frac{1}{2} \mathrm{mv}^{2}$
$=-\frac{G(16 M) m}{8 a}-\frac{G M m}{2 a} \Rightarrow v=\frac{3}{2} \sqrt{\frac{5 G M}{a}}$
20. Loss of total energy $=|T E|_{\text {final }}-|T E|_{\text {initial }}=\mathrm{Ct}$
$\Rightarrow \mathrm{Ct}=\frac{\mathrm{GM}_{\mathrm{s}} \mathrm{M}_{e}}{2}\left(\frac{1}{\mathrm{R}_{e}}-\frac{1}{\mathrm{R}_{\mathrm{s}}}\right)$
21. $\mathrm{s}=\frac{1}{2} \mathrm{~g}_{1} \mathrm{t}_{0}{ }^{2}$
$\mathrm{s}=\frac{1}{2} \mathrm{~g}_{2}\left(\mathrm{t}_{0}-\mathrm{n}\right)^{2}$
$\mathrm{u}_{0}=\mathrm{g}_{1} \mathrm{t}_{0}$
$\mathrm{u}_{0}+\mathrm{u}=\mathrm{g}_{2}\left(\mathrm{t}_{0}-\mathrm{n}\right)$

After solving we get $\mathrm{g}_{1} \mathrm{~g}_{2}=\left(\frac{\mathrm{u}}{\mathrm{n}}\right)^{2}$
22.

For satellite : $\frac{G M m_{1}}{R^{2}}-T=m_{1} \omega^{2} R$
For astronaut: $\frac{\mathrm{GMm}_{2}}{(\mathrm{R}+\mathrm{r})^{2}}+\mathrm{T}=\mathrm{m}_{2} \omega^{2}(\mathrm{R}+\mathrm{r})$
Dividing eqn (i) by (ii) $\frac{g m_{1}-T}{\frac{g m_{2} R^{2}}{(R+r)^{2}}+T}=\frac{m_{1} R \omega^{2}}{m_{2}(R+r) \omega^{2}}$
$\Rightarrow \mathrm{gm}_{1} \mathrm{~m}_{2}\left[(\mathrm{R}+\mathrm{r})-\frac{\mathrm{R}^{3}}{(\mathrm{R}+\mathrm{r})^{2}}\right]=\mathrm{T}\left[\mathrm{m}_{1} \mathrm{R}+\mathrm{m}_{2}(\mathrm{R}+\mathrm{r})\right]$
$\Rightarrow T=\frac{m_{2} g}{R}\left[(R+r)-\frac{R^{3}}{(R+r)^{2}}\right]\left(\because \frac{m_{2}}{m_{1}}=0\right)$

$$
\begin{aligned}
& =m_{2} g\left[\left(1+\frac{r}{R}\right)-\left(1-\frac{2 r}{R}\right)\right]=\frac{3 m_{2} g r}{R} \\
& =\frac{3 \times 100 \times 10 \times 64}{6400 \times 1000}=0.03 \mathrm{~N}
\end{aligned}
$$

23. $\mathrm{v} \frac{\mathrm{dv}}{\mathrm{dh}}=-\frac{\mathrm{GM}}{(\mathrm{R}+\mathrm{h})^{2}} ; \int_{\mathrm{v}_{0}}^{\mathrm{v}} \mathrm{vdv}=-\int \frac{\mathrm{g} \mathrm{R}^{2}}{(\mathrm{R}+\mathrm{h})^{2}} \mathrm{dh}$

$$
\begin{aligned}
& \frac{v^{2}-v_{0}^{2}}{2}=\left(-g R^{2}\right)\left[\frac{-1}{R+h}\right]_{0}^{h} \\
& \frac{v-v_{0}^{2}}{2}=+g R^{2}\left[\frac{1}{R+h}-\frac{1}{R}\right] \\
& v_{0}^{2}-v^{2}=\frac{2 g R h}{(R+h)} ; v_{0}^{2}-v^{2}=\frac{2 g h}{\left(1+\frac{h}{R}\right)}
\end{aligned}
$$

24. g below surface $g=\frac{G M}{R^{3}}(R-x)$
g above surface $g=\frac{G M}{(R+x)^{2}}$
$\Rightarrow \frac{\mathrm{GM}}{\mathrm{R}^{3}}(\mathrm{R}-\mathrm{x})=\frac{\mathrm{GM}}{(\mathrm{R}+\mathrm{x})^{2}} \Rightarrow \mathrm{x}=\left(\frac{\sqrt{5}-1}{2}\right) \mathrm{R}$ or 0
25. The area on earth surface in which satellite can not send message $=4 \pi \mathrm{R}^{2}[1-\cos \theta]$

$$
=4 \pi \mathrm{R}^{2}\left[1-\frac{\sqrt{\mathrm{x}^{2}-\mathrm{R}^{2}}}{\mathrm{x}}\right]
$$

26. (i) Orbital velocity of each particle $v_{0}=\sqrt{\frac{G M}{r}}$

(ii) Maximum separation before collision $=\sqrt{2} \mathrm{r}$
(iii) Relative velocity before collision

$$
\mathrm{v}_{\mathrm{Rel}}=\sqrt{\mathrm{v}_{1}^{2}+\mathrm{v}_{2}^{2}}=\sqrt{\frac{2 \mathrm{GM}}{\mathrm{r}}}
$$

27. (i) At equator $m \omega^{2} R=\frac{G M m}{R^{2}}$
$\Rightarrow \frac{2 \pi}{\mathrm{~T}}=\omega=\sqrt{\frac{\mathrm{G} \rho}{\mathrm{R}^{3}} \cdot \frac{4 \pi \mathrm{R}^{3}}{3}} \Rightarrow \mathrm{~T}=\sqrt{\frac{3 \pi}{\mathrm{G} \rho}}$
(ii) $\mathrm{T}=\sqrt{\frac{3 \pi}{6.63 \times 10^{-11} \times 3000}}=1.9 \mathrm{hr}$
28. Average velocity of satellite P,

$$
\mathrm{W}_{\mathrm{P}}=\frac{\mathrm{v}_{\mathrm{P}}}{2 \mathrm{R}}=\frac{1}{2 \mathrm{R}} \sqrt{\frac{\mathrm{GM}}{2 \mathrm{R}}}
$$

Average velocity of satellite Q ,

$$
\mathrm{W}_{\mathrm{Q}}=\frac{\mathrm{v}_{\mathrm{Q}}}{3 \mathrm{R}}=\frac{1}{3 \mathrm{R}} \sqrt{\frac{\mathrm{GM}}{3 \mathrm{R}}}
$$

Least time when P and Q will be in same vertical line

$$
=\frac{2 \pi}{\omega_{1}}+\frac{2 \pi}{\omega_{2}}=\frac{2 \pi \mathrm{R}^{3 / 2} 6 \sqrt{6}}{\sqrt{\mathrm{GM}}(2 \sqrt{2}+3 \sqrt{3})}
$$

29. Let $\mathrm{x}=$ distance of the particle from the surface

Acceleration, $\frac{\mathrm{vdv}}{\mathrm{dx}}=\frac{\mathrm{GM}}{\mathrm{R}^{3}}(\mathrm{R}-\mathrm{x})$
$\Rightarrow \int_{v_{e}}^{v} v d v=\int_{0}^{x} g\left(1-\frac{x}{R}\right) d x$
$\Rightarrow \mathrm{v}=\sqrt{\mathrm{v}_{e}^{2}+2 \mathrm{~g}\left(\mathrm{x}-\frac{\mathrm{x}^{2}}{2 \mathrm{R}}\right)}=\frac{\mathrm{dx}}{\mathrm{dt}}$
$\Rightarrow \int_{0}^{t} d t=\int_{R}^{0} \frac{d x}{\sqrt{2 g\left[R+x-\frac{x^{2}}{2 R}\right]}}$
$\Rightarrow t=\int_{R}^{0} \frac{d x}{\sqrt{\frac{g}{R}\left[3 R^{2}-(x-R)^{2}\right]}}$
Let $x-R=\sqrt{3} R \sin \theta d x=\sqrt{3} R \cos \theta d \theta$
$\therefore t=\sqrt{\frac{R}{g}} \int d \theta=\sqrt{\frac{R}{g}} \sin ^{-1}\left(\frac{x-R}{\sqrt{3} R}\right)_{0}^{R}$
$\Rightarrow \mathrm{t}=\sqrt{\frac{\mathrm{R}}{\mathrm{g}}} \sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
30. (i) Necessary centripetal force $=$ Gravitational force
$\Rightarrow \mathrm{M} \omega^{2} \mathrm{r}=\frac{\mathrm{GM}^{2}}{4 \mathrm{r}^{2}} \quad \Rightarrow \mathrm{~T}=4 \pi \sqrt{\frac{\mathrm{r}^{3}}{\mathrm{GM}}}$
(iii) COME : $\mathrm{KE}+\mathrm{PE}=0$
$\Rightarrow \frac{1}{2} \mathrm{mv}^{2}-\frac{2 \mathrm{GMm}}{\mathrm{r}}=0 \Rightarrow \mathrm{v}=\sqrt{\frac{4 \mathrm{GM}}{\mathrm{r}}} ;\left(\mathrm{r}=\frac{\mathrm{d}}{2}\right)$
31. Relative velocity when satellite revolving anticlockwise
$\left(\omega_{1}+\omega_{2}\right) \mathrm{t}=2 \pi \Rightarrow\left(\frac{4 \pi}{3}+\frac{2 \pi}{24}\right) \mathrm{t}=2 \pi ; \mathrm{t}=\frac{24}{17}$
If it moves in same direction $\left(\frac{4 \pi}{3}-\frac{2 \pi}{24}\right) \mathrm{t}=2 \pi$

$$
\left(\frac{30 \pi}{24}\right) \mathrm{t}=2 \pi \Rightarrow \mathrm{t}=\frac{24}{15}=1.6 \mathrm{hrs} .
$$

32. Range of throw is $=10 \mathrm{~m}$

$$
\begin{aligned}
& \frac{\mathrm{u}^{2}}{\mathrm{~g}}=10 \Rightarrow \mathrm{u}^{2}=100 \Rightarrow \mathrm{u}=10 \mathrm{~m} / \mathrm{s} \\
& \mathrm{v}_{\mathrm{e}}=\sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}}} \Rightarrow \frac{\mathrm{v}_{e}}{\mathrm{v}_{\mathrm{ep}}}=\sqrt{\frac{\mathrm{M}_{e}}{\mathrm{R}_{e}} \times \frac{\mathrm{R}_{\mathrm{p}}}{\mathrm{M}_{\mathrm{p}}}} \\
& \frac{\mathrm{v}_{e}}{\mathrm{v}_{\mathrm{p}}}=\sqrt{\left(\frac{\mathrm{S}_{e}}{\mathrm{~S}_{\mathrm{p}}}\right)\left(\frac{\mathrm{R}_{e}}{\mathrm{R}_{\mathrm{p}}}\right)^{2}}(\mathrm{~S}=\text { density }) \\
& \Rightarrow \frac{11.2}{10}=\frac{\mathrm{R}_{e}}{\mathrm{R}_{\mathrm{p}}} \times \frac{1}{\sqrt{2}} \Rightarrow R_{p}=\frac{10}{11.2 \times \sqrt{2}} \times R_{e} \\
& \Rightarrow \frac{10 \times 6.4 \times 10^{6}}{11.2 \times \sqrt{2}}=40.42 \mathrm{~km}
\end{aligned}
$$

33. $\mathrm{F}=\frac{\mathrm{GMmx}}{\mathrm{R}^{3}}=\mathrm{m} \omega^{2} \mathrm{x}$

Particle will perform a oscillation with angular speed $\omega^{2}=\frac{G M}{R^{3}}$

$$
T_{i}=2 \pi \sqrt{\frac{R^{3}}{G M}} \Rightarrow t_{1}=\frac{\pi}{2} \sqrt{\frac{R^{3}}{G M}}
$$

If acceleration is constant $g=\frac{G M}{R^{2}}$;

$$
\begin{aligned}
S=\frac{1}{2} a t^{2} & \Rightarrow R=\frac{1}{2} \frac{G M}{R^{2}} t^{2} \\
\Rightarrow \quad t^{2} & =\frac{2 R^{3}}{G M} \quad
\end{aligned} \quad \Rightarrow t_{2}=\sqrt{\frac{2 R^{3}}{G M}} ; \frac{\mathrm{t}_{1}}{\mathrm{t}_{2}}=\frac{\pi}{2 \sqrt{2}} . ~ \$
$$

34. By applying conservation of linear momentum
$\mathrm{m}(\mathrm{v})-\mathrm{m}(\mathrm{v})=2 \mathrm{mv}^{\prime} ; \mathrm{v}^{\prime}=0$
Initially, energy of a satellite ' A ' and ' B ' is
$E_{A}=-\frac{\mathrm{GM}_{e} \mathrm{~m}}{2 R} ; E_{B}=-\frac{\mathrm{GM}_{e} \mathrm{~m}}{2 R}$
Total energy : $E_{A}+E_{B}=-\frac{\mathrm{GM}_{e} m}{R}$
After collision velocity of satellite becomes zero then the K.E. $=0$, therefore total mechanical energy becomes
$-\frac{\mathrm{GM}_{e} 2 \mathrm{M}}{\mathrm{R}}$

EXERCISE-5

Part \# I : AIEEE/JEE-MAIN

2. Required $\mathrm{KE}=\frac{\mathrm{GMm}}{\mathrm{R}}=\mathrm{mgR}$
3. Energy required $=\mathrm{U}_{\mathrm{f}}-\mathrm{U}_{\mathrm{i}}$

$$
\begin{aligned}
& =-\frac{\mathrm{GMm}}{3 \mathrm{R}}+\frac{\mathrm{GMm}}{2 \mathrm{R}}=-\frac{\mathrm{GMm}}{\mathrm{R}}\left(-\frac{1}{3}+\frac{1}{2}\right) \\
& =\frac{\mathrm{GMm}}{\mathrm{R}}\left(-\frac{2+3}{6}\right)=\frac{\mathrm{GMm}}{6 \mathrm{R}}
\end{aligned}
$$

4. $\because \quad T \propto R^{3 / 2}$

$$
\therefore \quad T_{2}=T_{1}\left(\frac{R_{2}}{R_{1}}\right)^{3 / 2}=5 h(4)^{3 / 2}=40 h
$$

5. Force on M block $\mathrm{F}=\frac{\mathrm{GM} 5 \mathrm{~m}}{144 \mathrm{R}^{2}}$

$$
\mathrm{a}=\frac{\mathrm{F}}{\mathrm{~m}}=\frac{5 \mathrm{GM}}{144 \mathrm{R}^{2}}
$$

Force on 5 m block

$$
\mathrm{F}=\frac{\mathrm{GM} 5 \mathrm{~m}}{144 \mathrm{R}^{2}} \Rightarrow \mathrm{a}=\frac{\mathrm{GM} 5 \mathrm{~m}}{144 \mathrm{R}^{2} \cdot 5 \mathrm{~m}}=\frac{\mathrm{GM}}{144 \mathrm{R}^{2}}
$$

Relative acceleration
$\mathrm{a}=\frac{5 \mathrm{GM}}{144 \mathrm{R}^{2}}+\frac{\mathrm{GM}}{144 \mathrm{R}^{2}}=\frac{6 \mathrm{GM}}{144 \mathrm{R}^{2}}=\frac{\mathrm{GM}}{24 \mathrm{R}^{2}}$
$9 \mathrm{R}=\frac{1}{2} \times \frac{\mathrm{GM}}{24 \mathrm{R}^{2}} \times \mathrm{t}^{2} \Rightarrow \mathrm{t}^{2}=\frac{18 \mathrm{R} \times 24 \mathrm{R}^{2}}{\mathrm{GM}}$
$\mathrm{s}=\frac{1}{2} \times \frac{5 \mathrm{GM}}{144 \mathrm{R}^{2}} \times \frac{18 \mathrm{R} \times 24 \mathrm{R}^{2}}{\mathrm{GM}}=7.5 \mathrm{R}$
OR

Initial position

Just before collision

$$
\frac{M(0)+5 M(12 R)}{M+5 M}=\frac{M(d)+5 M(d+3 R)}{M+5 M} \Rightarrow d=7.5 R
$$

6. $F=\frac{m v^{2}}{(R+x)}$

$$
\frac{\mathrm{GMm}}{(\mathrm{R}+\mathrm{x})^{2}}=\frac{\mathrm{mv}^{2}}{(\mathrm{R}+\mathrm{x})}
$$

$$
v=\sqrt{\frac{G M}{(R+x)}}=\sqrt{\frac{G M}{R^{2}} \frac{R^{2}}{(R+x)}}=\sqrt{\frac{\mathrm{gR}^{2}}{(\mathrm{R}+\mathrm{x})}}=\left(\frac{g R^{2}}{\mathrm{R}+\mathrm{x}}\right)^{1 / 2}
$$

8. $\Delta \mathrm{U}=\mathrm{U}_{\mathrm{f}}-\mathrm{U}_{\mathrm{i}}=-\frac{\mathrm{GMm}}{2 \mathrm{R}}+\frac{\mathrm{GMm}}{\mathrm{R}}=\frac{\mathrm{GMm}}{2 \mathrm{R}}=\frac{\mathrm{mgR}}{2}$
9. $F=\frac{G M m}{r^{n}}=m \omega^{2} r$

$$
\Rightarrow \omega=\sqrt{\frac{\mathrm{GM}}{\mathrm{r}^{\mathrm{n}+1}}} \quad \Rightarrow \quad \mathrm{~T}=\frac{2 \pi}{\omega}=\left(\mathrm{r}^{\frac{\mathrm{n}+1}{2}}\right)
$$

11. $g_{h}=g\left(\frac{1-2 h}{R}\right) ; g_{d}=g\left(1-\frac{d}{R}\right)$

$$
\Delta \mathrm{g}_{\mathrm{h}}=\Delta \mathrm{g}_{\mathrm{d}} \Rightarrow g\left(\frac{2 h}{R}\right)=g\left(\frac{d}{R}\right) \Rightarrow 2 \mathrm{~h}=\mathrm{d}
$$

12. Work done $=U_{f}-U_{i}=U_{i}=0-(-0)$

$$
\begin{aligned}
& U_{i}=\frac{\mathrm{GM}_{1} \mathrm{~m}_{2}}{R}=\frac{6.67 \times 10^{-4} \times 100 \times 10 \times 10^{-1}}{10 \times 10^{2}} \\
& =\frac{6.67 \times 10^{-11} \times 100 \times 10 \times 10^{-3}}{10 \times 10^{-2}}=6.67 \times 10^{-10}
\end{aligned}
$$

13. Electronic charge is independent from g , then the ratio will be equal for 1 .
14. $\mathrm{v}_{e}=\sqrt{\frac{\mathrm{GM}}{\mathrm{R}}} \mathrm{v}_{e} \propto \sqrt{\frac{\mathrm{M}}{\mathrm{R}}}$
$\frac{v_{e}}{v_{e}^{1}}=\sqrt{\frac{\mathrm{M}_{e}}{R_{e}} \times \frac{R_{p}}{M_{p}}} \Rightarrow \sqrt{\frac{M_{e}}{R_{e}} \times \frac{R_{e} / 10}{10 M e}}$
$\frac{11}{\mathrm{v}_{e}^{1}}=\frac{1}{10} ; \mathrm{v}_{e}^{1}=110 \mathrm{~m} / \mathrm{s}$
15. $g_{h}=\frac{g}{\left(1+\frac{h}{R}\right)^{2}}=\frac{g}{9} \Rightarrow\left(1+\frac{h}{R}\right)^{2}=9$
$\Rightarrow 1+\frac{\mathrm{h}}{\mathrm{R}}=3 \Rightarrow \mathrm{~h}=2 \mathrm{R}$
16.

$\frac{G \times m}{x^{2}}=\frac{G \times 4 m}{(r-x)^{2}} \Rightarrow x=\frac{r}{3}$
Potential at point the gravitational field is zero between the masses.

$$
\begin{aligned}
V & =-\frac{3 G m}{r}-\frac{3 \times G \times 4 m}{2 r} \\
& =-\frac{3 G m}{r}[1+2]=-\frac{9 G M}{r}
\end{aligned}
$$

18. $\frac{\mathrm{Gm}^{2}}{4 \mathrm{R}^{2}}=\frac{\mathrm{mV}}{} \mathrm{R}^{2}=\mathrm{V}=\sqrt{\frac{\mathrm{Gm}}{4 \mathrm{R}}}$

19. $\mathrm{PE}_{\mathrm{i}}+\mathrm{KE}_{\mathrm{i}}=\mathrm{PE}_{\mathrm{f}}+\mathrm{KE}_{\mathrm{f}}$
$\Rightarrow-\mathrm{mgR}+\mathrm{KE}_{\mathrm{i}}=0+0$
$\mathrm{KE}_{\mathrm{i}}=+\mathrm{mgR}=1000 \times 10 \times 6.4 \times 10^{6}$
Work done $=6.4 \times 10^{10} \mathrm{~J}$
20. (B)
21. Solid sphere is of mass M, radius R.

Spherical portion removed have radius
$\mathrm{R} / 2$, therefore its mass is $\mathrm{M} / 8$.
Potential at the centre of cavity $=V_{\text {solid sphere }}+V_{\text {removed part }}$

$=\frac{-G M}{2 R^{3}}\left[3 R^{2}-\left(\frac{R}{2}\right)^{2}\right]+\frac{3 G(M / 8)}{2(R / 2)}=\frac{-G M}{R}$
22. $v_{0}=\sqrt{\frac{G M}{R+h}}=\sqrt{\frac{G M}{R}}=\sqrt{R g} ; h \ll R$
$\mathrm{V}_{\mathrm{e}}=\sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}}}=\sqrt{2 \mathrm{gR}}$
$\frac{v_{e}}{v_{0}}=\sqrt{2}$
Therefore increase in orbital velocity $=(\sqrt{2}-1) \sqrt{\mathrm{Rg}}$

Part \# II : IIT-JEE ADVANCED

1. Force on satellite is always towards earth, therefore, acceleration of satellite S is always directed towards centre of the earth. Net torque of this gravitational force F about centre of earth is zero. Therefore, angular momentum (both in magnitude and direction) of S about centre of earth is constant throughout. Since the force F is conservative in nature, therefore mechanical energy of satellite remains constant. Speed of S is maximum when it is nearest to earth and minimum when it is farthest.
2. $\mathrm{T}^{2} \propto \mathrm{R}^{3}$; with $\mathrm{R}_{\mathrm{e}}=6400 \mathrm{~km}$,
$\frac{\mathrm{T}^{2}}{(24)^{2}}=\left(\frac{6400}{36000}\right)^{3} \Rightarrow \mathrm{~T} \approx 1.7 \mathrm{hr}$
For spy satellite R is slightly greater than
$\mathrm{R}_{\mathrm{e}} \quad \Rightarrow \mathrm{T}_{\mathrm{s}}>\mathrm{T} \quad \therefore \mathrm{T}_{\mathrm{S}}=2 \mathrm{hr}$
3. Figure shows a binary star system.

The gravitational force of attraction between the stars will provide the necessary centripetal forces. In this case angular velocity of both stars is the same. Therefore time period remains the same.

$$
\left(\omega=\frac{2 \pi}{\mathrm{~T}}\right)
$$

4.

Total energy of m is conserved for escape velocity
K. $\mathrm{E}_{\mathrm{f}}+\mathrm{P} . \mathrm{E}_{\mathrm{f}}=\mathrm{K} . \mathrm{E}_{\mathrm{i}}+\mathrm{P} . \mathrm{E}_{\mathrm{i}}$
$0+0=\frac{1}{2} m v^{2}+2\left[\frac{-G M m}{L}\right] \Rightarrow v=\sqrt{\frac{4 G M}{L}}=2 \sqrt{\frac{G M}{L}}$
5. B

Subjective

1. Total energy at $\mathrm{A}=$ Total energy at B

$$
(\mathrm{KE})_{\mathrm{A}}+(\mathrm{PE})_{\mathrm{A}}=(\mathrm{PE})_{\mathrm{B}}
$$

$\frac{1}{2} \mathrm{~m} \times \frac{2 \mathrm{GM}}{\mathrm{R}}+\left[\frac{-\mathrm{GMm}^{3}}{2 \mathrm{R}^{3}}\left\{3 \mathrm{R}^{2}-\left(\frac{99 \mathrm{R}}{100}\right)^{2}\right\}\right]=-\frac{\mathrm{GMm}}{\mathrm{R}+\mathrm{h}}$
On solving we get $\mathrm{h}=99.5 \mathrm{R}$
2. $\frac{\mathrm{g}}{\left(1+\frac{\mathrm{h}}{\mathrm{R}_{\mathrm{e}}}\right)^{2}}=\frac{8}{4} ; 1+\frac{\mathrm{h}}{\mathrm{R}_{\mathrm{e}}}=2 \frac{\mathrm{~h}}{\mathrm{Re}}=1$
$h=\operatorname{Re}$
$\frac{-G M e . m}{R_{e}}+\frac{1}{2} M v^{2}=\frac{-G M_{e} m}{2 R_{e}}$
$\frac{1}{2} m v^{2}=\frac{G M_{e} m}{2 R_{e}} ; v=\sqrt{\frac{\mathrm{GM}_{\mathrm{e}}}{\mathrm{R}_{\mathrm{e}}}}$
$\therefore \mathrm{v}_{\mathrm{e}}=\sqrt{2} \mathrm{v}_{0} \Rightarrow \mathrm{v}_{\mathrm{e}}=\sqrt{2 \mathrm{gR} \mathrm{R}_{\mathrm{e}}}$
$\Rightarrow v_{e}=\sqrt{2} v=\sqrt{N} v$
$v=\sqrt{g R_{e}}$
$\mathrm{N}=2$

Writing the net force on system :

$$
\begin{aligned}
& \frac{\frac{G M m}{(31)^{2}}+\frac{G M m}{(41)^{2}}}{2 m}=\frac{\frac{G M m}{(31)^{2}}-\frac{G m}{(1)^{2}}}{m} \\
& \Rightarrow \frac{G M}{\left.9\right|^{2}}+\frac{M}{\left.16\right|^{2}}=\frac{2 M}{\left.9\right|^{2}}-\frac{2 m}{1^{2}} \\
& \Rightarrow \frac{M}{16}-\frac{M}{9}=-2 m \\
& \Rightarrow \frac{9 M-16 M}{144}=-2 m \\
& \Rightarrow \frac{7 M}{144}=-2 m \\
& \Rightarrow m=\frac{7 M}{288} \\
& \therefore k=7
\end{aligned}
$$

MOCK TEST

1. Let the minimum speed imparted to the particle of mass m so that it just reaches surface of earth is v . Applying conservation of energy
$\frac{1}{2} \mathrm{mv}^{2}+\left(-\frac{3}{2} \frac{G M}{R} m\right)=-\frac{G M}{R} m+0$
Solving we get $v=\sqrt{\frac{G M}{R}}$
2. Gravitation field at mass ' m ' due to full solid sphere

$$
\overrightarrow{\mathrm{E}}_{1}=\frac{\rho \overrightarrow{\mathrm{r}}}{3 \varepsilon_{0}}=\frac{\rho \mathrm{R}}{6 \varepsilon_{0}} \ldots .\left[\varepsilon_{0}=\frac{1}{4 \pi \mathrm{G}}\right]
$$

Gravitational field at mass ' m ' due to cavity ($-\rho$)
$\overrightarrow{\mathrm{E}}_{2}=\frac{(-\rho)(\mathrm{R} / 2)^{3}}{3 \varepsilon_{0} R^{2}} \ldots \ldots \ldots \ldots \ldots . .\left[\frac{\rho \mathrm{a}^{3}}{3 \varepsilon_{0} \mathrm{r}^{2}}\right]$

$$
=\frac{(-\rho) R^{3}}{24 \varepsilon_{0} R^{2}}=\frac{-\rho R}{24 \varepsilon_{0}}
$$

Net gravitational field $\vec{E}=\overrightarrow{\mathrm{E}}_{1}+\overrightarrow{\mathrm{E}}_{2}=\frac{\rho \mathrm{R}}{6 \varepsilon_{0}}-\frac{\rho \mathrm{R}}{24 \varepsilon_{0}}=\frac{\rho R}{8 \varepsilon_{0}}$
Net force on ' m ' $\rightarrow \mathrm{F}=\mathrm{m} \overrightarrow{\mathrm{E}}=\frac{\mathrm{m} \mathrm{\rho R}}{8 \varepsilon_{0}}$
Here $\rho=\frac{M}{4 / 3 \pi R^{3}} \& \varepsilon_{0}=\frac{1}{4 \pi G}$, then $F=\frac{3 m g}{8}$
3. In $\triangle \mathrm{AOB}:-\cos 60^{\circ}=\frac{\mathrm{R}}{\mathrm{OB}} \Rightarrow \mathrm{OB}=2 \mathrm{R}$ (where OB is orbital radius)

Here gravitational force will provide the required centripetal force.
Hence $\frac{G M m}{(O B)^{2}}=m(O B) \omega^{2}$

$$
\Rightarrow \omega=\sqrt{\frac{\mathrm{GM}}{(\mathrm{OB})^{3}}}=\sqrt{\frac{\mathrm{GM}}{(2 \mathrm{R})^{3}}} \Rightarrow \omega=\sqrt{\frac{\mathrm{GM}}{8 \mathrm{R}^{3}}}
$$

4. Given $8=\frac{2 \pi}{\omega_{1}+\omega_{2}}=\frac{2 \pi}{\frac{2 \pi}{\mathrm{~T}_{1}}+\frac{2 \pi}{\mathrm{~T}_{2}}}$,
$\mathrm{T}_{1}=24$ hours for earth.
$\left(\omega_{1}+\omega_{2}\right.$ is the relative angular velocity for opposite direction)
$\Rightarrow \quad \mathrm{T}_{2}=12$ hours (T_{2} being the time period of satellite, it will remain same as the distance from the centre of the earth remains constant).
$\Rightarrow \mathrm{T}=\frac{2 \pi}{\omega_{2}-\omega_{1}}=\frac{2 \pi}{\frac{2 \pi}{\mathrm{~T}_{2}}-\frac{2 \pi}{\mathrm{~T}_{1}}}=24$ hours. $\left(\omega_{2}-\omega_{1}\right.$ is the relative angular velocity for same direction)
5. Centripetal force $=$ net gravitational force

$$
\begin{aligned}
& \frac{\mathrm{mv}_{0}^{2}}{\mathrm{r}}=2 \mathrm{~F} \cos 45^{\circ}+\mathrm{F}_{1}=\frac{2 \mathrm{Gm}^{2}}{(\sqrt{2} \mathrm{r})^{2}} \frac{1}{\sqrt{2}}+\frac{\mathrm{Gm}^{2}}{4 \mathrm{r}^{2}} \\
& \frac{\mathrm{mv}_{0}^{2}}{\mathrm{r}}=\frac{\mathrm{Gm}^{2}}{4 \mathrm{r}^{2}}[2 \sqrt{2}+1] \Rightarrow\left(\frac{G \mathrm{~m}(2 \sqrt{2}+1)}{4 \mathrm{r}}\right)^{1 / 2}
\end{aligned}
$$

6. In horizontal direction

Net force $=\frac{G \sqrt{3} m m}{12 d^{2}} \cos 30^{\circ}-\frac{G m^{2}}{4 d^{2}} \cos 60^{\circ}$

$$
=\frac{G m^{2}}{8 d^{2}}-\frac{G m^{2}}{8 d^{2}}=0
$$

in vertical direction
Net force $=\frac{G \sqrt{3} m^{2}}{12 d^{2}} \cos 60^{\circ}+\frac{G \sqrt{3} m^{2}}{3 d^{2}}+\frac{G m^{2}}{4 d^{2}} \cos 30^{\circ}$

$$
\begin{aligned}
& =\frac{\sqrt{3} G m^{2}}{24 d^{2}}+\frac{\sqrt{3} G m^{2}}{3 d^{2}}+\frac{\sqrt{3} G m^{2}}{8 d^{2}} \\
& =\frac{\sqrt{3} G m^{2}}{d^{2}}\left[\frac{1+8+3}{24}\right]=\frac{\sqrt{3} G m^{2}}{2 d^{2}} \text { along SQ }
\end{aligned}
$$

7. $\mathrm{M}_{\mathrm{A}}=\sigma 4 \pi \mathrm{R}_{\mathrm{A}}{ }^{2}, \mathrm{M}_{\mathrm{B}}=\sigma 4 \pi \mathrm{R}_{\mathrm{B}}{ }^{2}$
where σ is surface density.
$\mathrm{V}_{\mathrm{A}}=\frac{-\mathrm{GM}_{\mathrm{A}}}{\mathrm{R}_{\mathrm{A}}}, \mathrm{V}_{\mathrm{B}}=\frac{-\mathrm{GM}_{\mathrm{B}}}{\mathrm{R}_{\mathrm{B}}}$
$\frac{V_{A}}{V_{B}}=\frac{M_{A}}{M_{B}} \frac{R_{B}}{R_{A}}=\frac{\sigma 4 \pi R_{A}^{2}}{\sigma 4 \pi R_{B}^{2}} \frac{R_{B}}{R_{A}}=\frac{R_{A}}{R_{B}}$
Given $\quad \frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{V}_{\mathrm{B}}}=\frac{\mathrm{R}_{\mathrm{A}}}{\mathrm{R}_{\mathrm{B}}}=\frac{3}{4}$, then $\quad \mathrm{R}_{\mathrm{B}}=\frac{4}{3} \mathrm{R}_{\mathrm{A}}$
for New shell of mass M and radius R -
$\mathrm{M}=\mathrm{M}_{\mathrm{A}}+\mathrm{M}_{\mathrm{B}}=\sigma 4 \pi \mathrm{R}_{\mathrm{A}}{ }^{2}+\sigma 4 \pi \mathrm{R}_{\mathrm{B}}{ }^{2}$
$\sigma 4 \pi \mathrm{R}^{2}=\sigma 4 \pi\left(\mathrm{R}_{\mathrm{A}}{ }^{2}+\mathrm{R}_{\mathrm{B}}{ }^{2}\right)$
then $\frac{V}{V_{A}}=\frac{M}{R} \frac{R_{A}}{M_{A}}=\frac{\sigma 4 \pi\left[R_{A}^{2}+R_{B}^{2}\right]}{\left(R_{A}^{2}+R_{B}^{2}\right)^{1 / 2}} \frac{\mathrm{R}_{\mathrm{A}}}{\sigma 4 \pi R_{A}^{2}}$
$=\frac{\sqrt{R_{A}^{2}+R_{B}^{2}}}{R_{A}}=\frac{5}{3}$
8. Gravitational potential at ' P '

$$
V_{P}=\frac{-G M}{\sqrt{5} R}
$$

Gravitational potential at ' O^{\prime}
M, R

$$
\mathrm{V}_{0}=-\frac{\mathrm{GM}}{\mathrm{R}}
$$

work energy theorem
$\mathrm{W}=\Delta \mathrm{K} \Rightarrow \mathrm{m}\left[\mathrm{V}_{\mathrm{P}}-\mathrm{V}_{\mathrm{o}}\right]=1 / 2 \mathrm{mv}^{2}$
$m\left[\frac{G M}{R}-\frac{G M}{\sqrt{5} R}\right]=\frac{1}{2} m v^{2} \Rightarrow \sqrt{\frac{2 G M}{R}\left[1-\frac{1}{\sqrt{5}}\right]}=v$
9. Let mass per unit length of wire, $\lambda=\frac{\mathrm{m}}{\ell}$
and $\pi \mathrm{r}=\ell, \mathrm{r}=\frac{\ell}{\pi}$
mass of element, $\mathrm{dm}=\lambda \mathrm{rd} \theta$

then $\mathrm{dE}=\frac{\mathrm{Gdm}}{\mathrm{r}^{2}}$
$\int_{0}^{\pi} d E=\int_{0}^{\pi} \frac{G \lambda r d \theta}{r^{2}}(\hat{i} \cos \theta+\hat{j} \sin \theta)$
$E=\frac{G \lambda}{r}\left[\int_{0}^{\pi} \hat{i} \cos \theta d \theta+\int_{0}^{\pi} \hat{j} \sin \theta d \theta\right]=\frac{2 G \lambda}{r} \hat{j}=\frac{2 G m}{\ell r} \hat{j}$
$=\frac{2 G m \pi}{\ell^{2}} \hat{j}$ (along y-axis)
10. During total eclipse-

Total attraction due to sun and moon,

$$
\mathrm{F}_{1}=\frac{\mathrm{GM}_{\mathrm{s}} \mathrm{M}_{\mathrm{e}}}{\mathrm{r}_{1}^{2}}+\frac{\mathrm{GM}_{\mathrm{m}} \mathrm{M}_{\mathrm{e}}}{\mathrm{r}_{2}^{2}}
$$

When moon goes on the opposite side of earth.
Effective force of attraction,
$F_{2}=\frac{\mathrm{GM}_{\mathrm{s}} \mathrm{M}_{\mathrm{e}}}{\mathrm{r}_{1}^{2}}-\frac{\mathrm{GM}_{\mathrm{m}} \mathrm{M}_{\mathrm{e}}}{\mathrm{r}_{2}^{2}}$
Change in force, $\Delta F=F_{1}-F_{2}=\frac{2 G M_{m} M_{e}}{r_{2}^{2}}$
Change in acceleration of earth $\Delta \mathrm{a}=\frac{\Delta \mathrm{F}}{\mathrm{M}_{\mathrm{e}}}=\frac{2 \mathrm{GM}_{\mathrm{m}}}{\mathrm{r}_{2}^{2}}$
Average force on earth, $\mathrm{F}_{\mathrm{av}}=\frac{\mathrm{F}_{1}+\mathrm{F}_{2}}{2}=\frac{\mathrm{GM}_{\mathrm{s}} \mathrm{M}_{\mathrm{e}}}{\mathrm{r}_{1}^{2}}$
Average acceleration of earth, $a_{a v}=\frac{F_{a v}}{M_{e}}=\frac{\mathrm{GM}_{\mathrm{s}}}{\mathrm{r}_{1}^{2}}$
\%age change in acceleration
$=\frac{\Delta \mathrm{a}}{\mathrm{a}_{\mathrm{av}}} \times 100=\frac{2 \mathrm{GM}_{\mathrm{m}}}{\mathrm{r}_{2}^{2}} \times \frac{\mathrm{r}_{1}^{2}}{\mathrm{GM}_{\mathrm{s}}} \times 100=2\left(\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}\right)^{2} \frac{\mathrm{M}_{\mathrm{m}}}{\mathrm{M}_{\mathrm{s}}} \times 100$
11 At centre
$V_{c}=-\frac{G M}{a}-\frac{G M}{2 a} ;$
$\mathrm{E}_{\mathrm{c}}=\frac{\mathrm{GM}}{(2 \mathrm{a})^{2}} ;$ At any point P inside

$V_{P}=-\frac{G M}{a}-\frac{G M}{b}$
$E_{P}=\frac{G M}{b^{2}}\{$ only due to outside mass $M\}$
12. Consider a small area (shaded strip)
here $\mathrm{E}_{\text {self }}=$ Gravitational field due to this strip and $E_{\text {ext }}=$ Gravitational field due to the rest of spherical shell.
$\mathrm{E}_{\text {in }}=$ Gravitational field just inside the strip
$\mathrm{E}_{\text {out }}=$ Gravitational field just outside the strip
$E_{\text {in }}=E_{\text {ext }}-E_{\text {self }}=0 \Rightarrow E_{\text {ext }}=E_{\text {self }}$
$E_{\text {out }}=E_{\text {ext }}+E_{\text {self }}=\frac{G M}{R^{2}} \Rightarrow E_{\text {ext }}=\frac{G M}{2 R^{2}}$

After the shaded area has been removed there is no $\mathrm{E}_{\text {self }}$ and only $\mathrm{E}_{\text {ext }}$.
hence, $E_{\text {net }}=E_{\text {ext }}=\frac{G M}{2 R^{2}}$
13. $F=\int_{R}^{2 R} \frac{G M\left(\frac{m}{R}\right) d x}{x^{2}}=\frac{G M m}{2 R^{2}}$

14. $\mathrm{a}_{1}=\frac{\mathrm{GM}_{1} \mathrm{M}_{2}}{R^{2}} / \mathrm{M}_{1} \quad \mathrm{a}_{2}=\frac{G M_{1} M_{2}}{R^{2}} / M_{2}$

acceleration of M_{1} w.r.t. M_{2}
$a_{\text {rel. }}=a_{1}+a_{2}=\frac{G\left(M_{1}+M_{2}\right)}{R^{2}}=\frac{G M}{R^{2}}$.
15. $\mathrm{v}=\frac{50}{100} \mathrm{~V}_{\mathrm{e}}=\frac{1}{2} \sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}}}$

Applying energy conservation
$\Rightarrow-\frac{\mathrm{GMm}}{\mathrm{R}}+\frac{1}{2} m v^{2}=-\frac{\mathrm{GMm}}{(\mathrm{R}+\mathrm{h})}$
$v^{2}=\frac{2 G M}{R}-\frac{2 G M}{R+h}$
$\Rightarrow \frac{1}{4} \cdot \frac{2 G M}{R}=2 G M\left(\frac{1}{R}-\frac{1}{R+h}\right)$
$\Rightarrow \frac{1}{4 R}=\frac{h}{R(R+h)} \Rightarrow R+h=4 h \Rightarrow h=R / 3$
16. $r_{2}=\frac{2 m r}{m+2 m}=\frac{2 r}{3} \Rightarrow T_{2}^{2}=\frac{4 \pi^{2} r_{2}^{3}}{G m}$

$\mathrm{T}_{2}^{2}=\frac{32 \pi^{2} \mathrm{r}^{3}}{27 \mathrm{Gm}} \Rightarrow \mathrm{T}_{2} \propto \mathrm{r}^{3 / 2} \Rightarrow \mathrm{~T}_{2} \propto \mathrm{~m}^{-1 / 2}$
17. Net force towards centre of earth $=\mathrm{mg}^{\prime}=\frac{m g x}{R}$

Normal force $\mathrm{N}=\mathrm{mg}^{\prime} \sin \theta$

Thus pressing force $N=\frac{m g x}{R} \frac{R}{2 x}$
$\mathrm{N}=\frac{\mathrm{Mg}}{2}$ constant and independent of x .
Hence (B)
tangential force $F=m a=m g^{\prime} \cos \theta$
$Q=g^{\prime} \cos \theta=\frac{g x}{R} \frac{\sqrt{\frac{R^{2}}{4}-x^{2}}}{x}$

$$
a=\frac{g x}{R} \sqrt{R^{2}-4 x^{2}}
$$

Curve is parabolic and at $x=\frac{R}{2}, a=0$. Hence (C)
18. (A) It will fall because mg is acting on it towards the centre of planet and initial velocity is zero. It'll move in straight line.
(C) Time of fall can be found by two methods :

I - Method : By energy conservation
$\frac{1}{2} m v^{2}-\frac{G M m}{r}=0-\frac{G M m}{R}$
using this we get $V=f(r)$. Now use
$V=-\frac{d r}{d t} \Rightarrow f(r)=-\frac{d r}{d t}$
$\Rightarrow \int_{R}^{R^{\prime}} \frac{d r}{f(r)}=-\int_{0}^{t} d t$;
$\mathrm{R}^{\prime}=$ radius of the planet.
In the final expression

(or in the beginning itself) $\mathrm{R}^{\prime} \rightarrow 0 \quad\left\{\because \mathrm{R} \gg \mathrm{R}^{\prime}\right\}$
you will get $t=\frac{T}{4 \sqrt{2}}$
Here $\frac{G M m}{R^{2}}=m\left(\frac{2 \pi}{T}\right)^{2} R$

Note: This method is longer. If a student gets idea of solving the question only by this method then it is better to leave this question because it will consume more time.

III Method: Kepler's Law: $\mathrm{T}^{2} \alpha \mathrm{r}^{3}$.
Assume that the satellite moves in elliptical path with maximum and minimum distances from centre as R and R^{\prime}.
$\because \mathrm{R} \gg \mathrm{R}^{\prime} \therefore$ velocity at R is very small (~ 0). When it reaches R^{\prime} then it touches the surface of the planet. This motion (from R to R^{\prime}) is almost, same as given in the question.

Now $\quad \frac{T_{1}^{2}}{T_{2}^{2}}=\frac{r_{1}^{3}}{r_{2}^{3}}, T_{1}=T, r_{1}=R$

$$
r_{2}=\frac{R+R^{\prime}}{2} \simeq \frac{R}{2} \quad \therefore \quad T_{2}=\frac{T}{4 \sqrt{2}}
$$

19. Till the particle reaches the centre of planet, force on both bodies are in direction of their respective velocities, hence kinetic energies of both keep on increasing. After the particle crosses the centre of planet, forces on both are retarding in nature. Hence as the particle passes through the centre of the planet, sum of kinetic energies of both the bodies is maximum. Therefore statement- 1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
20. The total mechanical energy of the system after firing the rocket will increase by 10%.
Hence (B)
Note: - $0.9 \mathrm{E}_{0}>-\mathrm{E}_{0}$
21. Because the mechanical energy is negative, a decrease in magnitude is increase in energy.

$$
\begin{aligned}
\frac{\mathrm{E}_{\text {ell }}}{\mathrm{E}_{\text {cir. }}} & =\frac{-\frac{\mathrm{GMm}}{2 a}}{-\frac{\mathrm{GMm}}{2 r}}=\frac{r}{a} \Rightarrow 0.9=\frac{(6400+300)}{a} \Rightarrow \mathrm{a} \\
& =\frac{6.7 \times 10^{4}}{9} \mathrm{Km} .
\end{aligned}
$$

22. Maximum distance from the centre of the Earth will occur when the spacecraft is at apogee thus
$r_{\max }=2 \mathrm{a}-\mathrm{h}-\mathrm{r}=2 \times \frac{6.7 \times 10^{4}}{9}-6700$

$$
=\frac{7.37 \times 10^{4}}{9} \mathrm{~km}
$$

$h_{\text {max }}=r_{\text {max }}-R_{E}=\frac{7.37 \times 10^{4}}{9}-6400$

$$
=\frac{1.61 \times 10^{4}}{9} \mathrm{~km} .
$$

23. Angular momentum of particle $=m\left(v_{0}+v\right)$
$a=\sqrt{\frac{5}{4}} \operatorname{mv}_{0} a \quad \ldots v_{0}=\sqrt{\frac{\mathrm{GM}_{e}}{a}}$
Total energy of particle
$=\frac{1}{2} \mathrm{~m}\left(\mathrm{v}_{0}+\mathrm{v}\right)^{2}-\frac{\mathrm{GMem}}{\mathrm{a}}=\frac{1}{2} \times \frac{5}{4} \mathrm{mv}_{0}{ }^{2}-\frac{\mathrm{GM}_{\mathrm{e}} \mathrm{m}}{\mathrm{a}}$
$=\frac{5}{8} \frac{\mathrm{GM}_{\mathrm{e}} \mathrm{m}}{\mathrm{a}}-\frac{\mathrm{GM}_{\mathrm{e}} \mathrm{m}}{\mathrm{a}}=-\frac{3 \mathrm{GM}_{\mathrm{e}} \mathrm{m}}{\mathrm{a}}$
At any distance 'r'
T.E. $=\frac{1}{2} \mathrm{mu}^{2}-\frac{\mathrm{GM}_{\mathrm{e}} \mathrm{m}}{\mathrm{r}}$
but angular momentum conservation
$\operatorname{mur}=m \sqrt{\frac{5 \mathrm{GM}_{\mathrm{e}}}{4 \mathrm{a}}} \mathrm{a} \Rightarrow \mathrm{u}=\sqrt{\frac{5}{4} \frac{\mathrm{GM}_{\mathrm{e}} \mathrm{a}}{\mathrm{r}^{2}}}$
T.E. at any distance ' r '
$=\frac{1}{2} \mathrm{~m} \frac{5}{4} \frac{\mathrm{GM}_{\mathrm{e}} \mathrm{a}}{\mathrm{r}^{2}}-\frac{\mathrm{GM}_{\mathrm{e}} \mathrm{m}}{\mathrm{r}}$
but through conservation of total energy
$=\frac{1}{2} m \frac{5}{4} \frac{\mathrm{GM}_{\mathrm{e}} \mathrm{a}}{\mathrm{r}^{2}}-\frac{\mathrm{GM}_{\mathrm{e}} \mathrm{m}}{\mathrm{r}}=-\frac{3 \mathrm{GM}_{\mathrm{e}} \mathrm{m}}{\mathrm{a}}$
on solving $3 r^{2}-8 a r+5 a^{2}=0$

$$
\begin{aligned}
& (r-a)(3 r-5 a)=0 \\
& r=a, \quad r=5 a / 3
\end{aligned}
$$

minimum distance $=a$
maximum distance $=5 \mathrm{a} / 3$
24. (A) At centre of thin spherical shell $\mathrm{V} \neq 0, \mathrm{E}=0$.
(B) At centre of solid sphere $\mathrm{V} \neq 0, \mathrm{E}=0$.
(C) At centre of spherical cavity inside solid sphere $\mathrm{V} \neq 0, \mathrm{E} \neq 0$.
(D) At centre of two point masses $\mathrm{V} \neq 0, \mathrm{E}=0$.
25. Speed of the ball which can cross 10 m wide river is
$R=\frac{\mathrm{V}^{2} \sin \left(2 \times 45^{\circ}\right)}{\mathrm{g}}=10, \mathrm{v}=\sqrt{10 \mathrm{~g}}$
Let the radius of planet is ' R ', then
Mass of planet $M=\frac{4}{3} \pi R^{3} \times 2 \rho$
$=\frac{4}{3} \pi \mathrm{R}^{3} \times \frac{2 \times \mathrm{M}_{\mathrm{e}}}{4 / 3 \pi \mathrm{R}_{\mathrm{e}}^{3}}=\frac{2 \mathrm{M}_{\mathrm{e}} \mathrm{R}^{3}}{\mathrm{R}_{\mathrm{e}}^{3}}$
Escape velocity on planet
$V=\sqrt{\frac{2 G M}{R}}=\sqrt{10 g}$
$\sqrt{\frac{2 G \times 2 \times M_{e} R^{3}}{R_{e}^{3} R}}=\sqrt{\frac{10 \mathrm{GM}_{\mathrm{e}}}{R_{e}^{2}}} \ldots \ldots .\left[g=\frac{\mathrm{GM}_{\mathrm{e}}}{\mathrm{R}_{\mathrm{e}}^{2}}\right]$
$2 \mathrm{R}=\sqrt{10 \mathrm{R}_{\mathrm{e}}} \quad \Rightarrow 2 \mathrm{R}=\sqrt{10 \times 6.4 \times 10^{6}}$
$\mathrm{R}=\frac{8 \times 10^{3}}{2}=4 \times 10^{3}=4 \mathrm{Km}$.
26. Slope of displacement vector
$\mathrm{m}_{1}=\frac{3}{4}$
Slope of force vector
$m_{2}=-\frac{4}{3}$

$m_{1} \times m_{2}=\frac{3}{4} \times-\frac{4}{3}=-1$
i.e. force and displacement directions are perpendicular. The work done is zero
27. Conserving angular momentum $\mathrm{m} .\left(\mathrm{V}_{1} \cos 60^{\circ}\right)$.
$4 \mathrm{R}=\mathrm{m} . \mathrm{V}_{2} . \mathrm{R} ; \quad \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=2$.
Conserving energy of the system
$-\frac{G M m}{4 R}+\frac{1}{2} m V_{1}^{2}=-\frac{G M m}{R}+\frac{1}{2} m V_{2}^{2}$
$\frac{1}{2} V_{2}^{2}-\frac{1}{2} V_{1}^{2}=\frac{3}{4} \frac{G M}{R}$ or $V_{1}^{2}=\frac{1}{2} \frac{G M}{R}$
$V_{1}=\frac{1}{\sqrt{2}} \sqrt{64 \times 10^{6}}=\frac{8000}{\sqrt{2}} \mathrm{~m} / \mathrm{s}$ Ans. 8000

