HINTS \& SOLUTIONS

EXERCISE - 1

Single Choice

3. $\phi=\frac{\mathrm{r} \theta}{\ell}=\frac{1 \times 10^{-2}}{2} \times 0.8=0.004 \mathrm{radian}$
4. \quad Stress $=\frac{F}{A}$
for breaking the copper stress should be same i.e.

$$
\frac{F_{1}}{A_{1}}=\frac{F_{2}}{A_{2}} \Rightarrow \frac{F}{A R^{2}}=\frac{F_{2}}{\pi 4 R^{2}} \Rightarrow F_{2}=4 F
$$

6. Volume $=$ constant $\Rightarrow \mathrm{A} \times \mathrm{L}=$ constant

$$
\Rightarrow \mathrm{A} \propto \frac{1}{\mathrm{~L}} ; \Delta \ell=\frac{\mathrm{FL}}{\mathrm{AY}} \Rightarrow \Delta \ell \propto \frac{\mathrm{~L}}{\mathrm{~A}} \propto \mathrm{~L}^{2}
$$

8. $\Delta \ell=\frac{\mathrm{FL}}{\mathrm{AY}} \Rightarrow \Delta \ell \propto \frac{\mathrm{L}}{\mathrm{r}^{2}}$
9. $\Delta \ell=\frac{F L}{A Y} \Rightarrow \frac{\Delta \ell_{1}}{\Delta \ell_{2}}=\frac{L_{1}}{L_{2}} \times \frac{r_{2}^{2}}{r_{1}^{2}}=\frac{1}{2} \times\left(\frac{\sqrt{2}}{1}\right)^{2}=1$
10. $-\frac{\Delta \mathrm{V}}{\mathrm{V}}=\frac{0.004}{100} \because \mathrm{~B}=\frac{\Delta \mathrm{P}}{\left(-\frac{\Delta \mathrm{V}}{\mathrm{V}}\right)} \Rightarrow \Delta \mathrm{P}=\mathrm{B}\left(-\frac{\Delta \mathrm{V}}{\mathrm{V}}\right)$
$=2100 \times 10^{6} \times\left(\frac{0.004}{100}\right)=84 \mathrm{kpa}$
11. $\Delta \ell=\frac{\mathrm{FL}}{\mathrm{AY}}=\frac{(1 \times 10) \times 1.1}{1 \times 10^{-6} \times 1.1 \times 10^{11}}=0.1 \mathrm{~mm}$
12. Increment in length due to own weight

$$
\begin{aligned}
& \Delta \ell=\frac{\mathrm{mgL}}{2 \mathrm{AY}}=\frac{\rho g \mathrm{~L}^{2}}{2 \mathrm{Y}}=\frac{1.5 \times 9.8 \times\left(8 \times 10^{-2}\right)^{2}}{2 \times 5 \times 10^{8}} \\
& =9.6 \times 10^{-11} \mathrm{~m}
\end{aligned}
$$

13. $\mathrm{W}=\frac{1}{2} \mathrm{~F} \Delta \ell=\frac{1}{2} \frac{\mathrm{~F}^{2} \mathrm{~L}}{\mathrm{AY}} \Rightarrow \mathrm{W} \propto \mathrm{L} ; \frac{\mathrm{W}_{1}}{\mathrm{~W}_{2}}=\frac{\ell_{1}}{\ell_{2}}=\frac{1}{2}$
14. $\mathrm{K}=\frac{\Delta \mathrm{P}}{\left(-\frac{\Delta \mathrm{V}}{\mathrm{V}}\right)}=\frac{\mathrm{h} \rho \mathrm{g}}{\left(-\frac{\Delta \mathrm{V}}{\mathrm{V}}\right)}=\frac{200 \times 10^{3} \times 9.8}{\left(\frac{0.1}{100}\right)}$
$=19.6 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}$
15. Increase in energy

$$
=\frac{1}{2} \frac{\mathrm{~F}^{2} \mathrm{~L}}{\mathrm{AY}}=\frac{(5 \times 10)^{2} \times 0.2}{2 \times 10^{-4} \times 10^{11}}=2.5 \times 10^{-5} \mathrm{~J}
$$

17. $\mathrm{F}_{\text {ex }}=2 \mathrm{~T} \ell=2 \times 7.5 \times 1.5=22.5 \mathrm{~N}$
18. Initial surface energy $=2 \times T \times 4 \pi r^{2}=8 \pi r^{2} T$

Final surface energy $=2 \times \mathrm{T} \times 4 \pi(2 \mathrm{r})^{2}=32 \pi \mathrm{r}^{2} \mathrm{~T}$
So energy neeeded $=32 \pi r^{2} \mathrm{~T}-8 \pi r^{2} \mathrm{~T}=24 \pi r^{2} \mathrm{~T}$
19. $\mathrm{F}_{\mathrm{ex}}=4 \pi \mathrm{rT} \Rightarrow \mathrm{T}=\frac{\mathrm{F}_{e \mathrm{x}}}{4 \pi \mathrm{r}}=\frac{4}{4 \pi \times 1}=\frac{1}{\pi} \mathrm{~N} / \mathrm{m}$
21. $\Delta \mathrm{SE}=4 \pi \mathrm{R}^{2} \mathrm{~T}\left(\mathrm{n}^{1 / 3}-1\right)$

$$
=4 \pi \frac{\mathrm{D}^{2}}{4} \mathrm{~T}\left[(27)^{1 / 3}-1\right]=2 \pi \mathrm{D}^{2} \mathrm{~T}
$$

22. $P_{\text {in }}=P_{\text {atm }}+\frac{2 T}{r}$

$$
=1.013 \times 10^{5}+\frac{2 \times 70 \times 10^{-3}}{10^{-3}}=1.0144 \times 10^{5} \mathrm{~Pa}
$$

23. $\mathrm{P}_{\text {excess }_{1}}=\frac{4 \mathrm{~T}}{\mathrm{R}_{1}} ; \mathrm{P}_{\text {exces }_{2}}=\frac{4 \mathrm{~T}}{\mathrm{R}_{2}}$

$$
\Rightarrow \frac{\left(P_{\text {exeess }}\right)_{1}}{\left(P_{\text {excess }}\right)_{2}}=\frac{R_{2}}{R_{1}} \Rightarrow \frac{R_{2}}{R_{1}}=\frac{1.01}{1.02}=\frac{1}{2}
$$

So ratio of volume $\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}=\frac{\mathrm{R}_{1}^{3}}{\mathrm{R}_{2}^{3}}=\frac{8}{1}$
24. $\mathrm{r}_{\text {new }}=\sqrt{\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}}=\sqrt{3^{2}+4^{2}}=5 \mathrm{~cm}$
25. $r_{\text {common }}=\frac{r_{1} r_{2}}{r_{2}-r_{1}}\left[r_{2}>r_{1}\right]$ here $r_{1}=r_{2}$, so $r_{\text {common }}=\infty$
29. $\mathrm{h}=\frac{2 \mathrm{~T} \cos \theta}{\mathrm{rd} g} \Rightarrow \frac{\mathrm{~h}_{1}}{\mathrm{~h}_{2}}=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}} \times \frac{\mathrm{d}_{2}}{\mathrm{~d}_{1}}=\frac{60}{50} \times \frac{0.6}{0.8}=\frac{9}{10}$
30. at moon $\mathrm{g}^{\prime}=\frac{\mathrm{g}}{6}$, height $\mathrm{h} \propto \frac{1}{\mathrm{~g}}$
31. Density of water at $4^{\circ} \mathrm{C}$ is maximum so water rises in capillary is minimum by $\mathrm{h}=\frac{2 \mathrm{~T} \cos \theta}{\mathrm{rdg}}$
32. $\mathrm{g}_{\text {eff }}=0, \mathrm{~h}=\frac{2 \mathrm{~T} \cos \theta}{\mathrm{rdg}}$
so water rises maximum height i.e. length of the capillary $=30 \mathrm{~cm}$
34. Mass of water $\mathrm{M}=$ volume \times density $=\pi r^{2} \mathrm{~h} \rho$

$$
\because \mathrm{hr}=\text { constant } \Rightarrow \mathrm{M} \propto \mathrm{r} \Rightarrow \frac{\mathrm{M}_{2}}{\mathrm{M}_{1}}=\frac{2 \mathrm{r}}{\mathrm{r}}=2
$$

35. $\ell=\frac{\mathrm{h}}{\cos \phi}=\frac{\mathrm{h}}{\cos 45^{\circ}}=\sqrt{2} \mathrm{~h}$
36. $\mathrm{h} \rho \mathrm{g}=\frac{2 \mathrm{~T}}{\mathrm{r}} \Rightarrow \mathrm{h}=\frac{2 \mathrm{~T}}{\mathrm{r} \rho \mathrm{g}}=\frac{2 \times 75}{0.05 \times 10^{-1} \times 1 \times 1000}=30 \mathrm{~cm}$
37. $\mathrm{F}=\frac{2 \mathrm{AT}}{\mathrm{t}}=\frac{2 \times 10^{-2} \times 70 \times 10^{-3}}{0.05 \times 10^{-3}}=28 \mathrm{~N}$
38. Force on bottom $=$ Pressure \times area

$$
\begin{equation*}
=\operatorname{h\rho g} \times\left(\frac{\pi \mathrm{d}^{2}}{4}\right) \tag{i}
\end{equation*}
$$

force on vertical surface $=$ Pressure \times area

$$
\begin{equation*}
=\left(\frac{\mathrm{h} \rho \mathrm{~g}}{2}\right) \times\left(\frac{2 \pi \mathrm{dh}}{2}\right)=\frac{\mathrm{h}^{2} \rho \mathrm{~g} \times \pi \mathrm{d}}{2} \tag{ii}
\end{equation*}
$$

\because according to question $\Rightarrow \mathrm{h} \rho \mathrm{g} \times \frac{\pi \mathrm{d}^{2}}{4}=\frac{\mathrm{h}^{2} \rho \mathrm{~g} \times \pi \mathrm{d}}{2}$
$\Rightarrow h=\frac{d}{2}$
39. Let mass of gold is m then mass of copper $=210-m$ upthrust $=$ loss of weight
$=210 \mathrm{~g}-198 \mathrm{~g} \Rightarrow \mathrm{~V}_{\mathrm{in}} \rho_{\mathrm{w}} \mathrm{g}=12 \mathrm{~g} \Rightarrow \mathrm{~V}_{\mathrm{in}}=12 \mathrm{~cm}^{3}$
Total volume
$=\frac{m}{\rho_{\text {gold }}}+\frac{210-m}{\rho_{c u}}=12 \Rightarrow \frac{m}{19.3}+\frac{210-m}{8.5}=12$
$\Rightarrow \mathrm{m}=193$.
So weight of gold $=193 \mathrm{~g}$
40. Pressure on the wall $=\frac{h \rho g}{2}$

Net horizontal force $=\mathrm{P} \times$ area $=\frac{\mathrm{h} \rho g}{2} \times(\mathrm{h} \sigma)=\frac{\mathrm{h}^{2} \rho g \sigma}{2}$
42. Total force $=\mathrm{P} \times \mathrm{A}=\frac{\mathrm{h} \rho \mathrm{g}}{2} \times(\mathrm{h} \times \mathrm{L})$
$=\frac{1 \times 10^{3} \times 9.8}{2} \times(1 \times 2)=9.8 \times 10^{3} \mathrm{~N}$
43. Pressure at point $\mathrm{A}=$ Pressure at point B
$\Rightarrow \mathrm{h} \rho_{\text {oil }} \mathrm{g}=25 \mathrm{~cm} \rho_{\text {water }} \mathrm{g}$
$\Rightarrow \mathrm{h}=\frac{25 \times 1}{0.8}=31.25 \mathrm{~cm}$
\Rightarrow height difference
$=31.25-25=6.25 \mathrm{~cm}$

44. Barometer read atmospheric pressure.
45. Work $=\Delta \mathrm{PV}=\left(3 \times 10^{5}-1 \times 10^{5}\right) \times 50000=10^{10} \mathrm{~J}$
47. $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} \Rightarrow\left(\mathrm{P}_{\mathrm{atm}}+\mathrm{h} \rho_{\mathrm{w}} \mathrm{g}\right) \frac{4}{3} \pi \mathrm{r}^{3}=\mathrm{P}_{\mathrm{atm}} \times \frac{4}{3} \pi(2 \mathrm{r})^{3}$
$\Rightarrow \mathrm{h} \rho_{\mathrm{w}} \mathrm{g}=7 \mathrm{P}_{\mathrm{atm}}$
$\because \mathrm{P}_{\mathrm{atm}}=\mathrm{H} \rho_{\mathrm{w}} \mathrm{g} \Rightarrow \mathrm{h} \rho_{\mathrm{w}} \mathrm{g}=7 \mathrm{H} \rho_{\mathrm{w}} \mathrm{g} \Rightarrow \mathrm{h}=7 \mathrm{H}$
48. Upthrust $=\mathrm{V}_{\mathrm{in}} \rho_{\mathrm{w}} \mathrm{g}=100 \mathrm{~g}-\mathrm{wt}$
weight of water and jar= weight +Th
$=700+100=800 \mathrm{~g}-\mathrm{wt}$
49. Weight $=$ upthrust $\Rightarrow \mathrm{mg}=\left(3 \times 2 \times 10^{-2}\right) \times 10^{3} \times \mathrm{g}$
$\Rightarrow \mathrm{m}=60 \mathrm{~kg}$
50. Density of metal $=\frac{w_{A}}{w_{A}-w_{w}}=\frac{210}{210-180}=7 \mathrm{~g} / \mathrm{cm}^{3}$ density of liquid
$=\frac{\mathrm{w}_{\mathrm{A}}-\mathrm{w}_{\mathrm{L}}}{\mathrm{w}_{\mathrm{A}}-\mathrm{w}_{\mathrm{w}}}=\frac{210-120}{210-180}=\frac{90}{30}=3 \mathrm{~g} / \mathrm{cm}^{3}$
51. In balanced condition $\mathrm{Mg}=\mathrm{Th} \Rightarrow 6 \mathrm{~g}=\frac{\mathrm{V}}{3} \rho_{\mathrm{w}} \mathrm{g}$
and $(6+\mathrm{m}) \mathrm{g}=\mathrm{V} \rho_{\mathrm{w}} \mathrm{g}$
from equation (i) and (ii) $18=6+\mathrm{m} \Rightarrow \mathrm{m}=12 \mathrm{~kg}$
53. Let mass of cube is m and side is a then
$(m+200) g=a^{3} \rho_{w} g$
$m g=a^{2}(a-2) \rho_{w} g$
$\Rightarrow \mathrm{a}^{2}(\mathrm{a}-2) \rho_{\mathrm{w}}+200=\mathrm{a}^{3} \rho_{\mathrm{w}}$
$\Rightarrow \mathrm{a}^{2}=100 \Rightarrow \mathrm{a}=10 \mathrm{~cm}$
54. Reading of spring
$=\mathrm{Mg}-\mathrm{Th}=\mathrm{Mg}-\mathrm{V}_{\mathrm{in}} \rho_{\mathrm{w}} \mathrm{g}$
$=12-\frac{1000 \times 10^{-6}}{2} \times 10^{3} \times 10=7 \mathrm{~N}$
58. For horizontal motion
$P_{1}+\frac{1}{2} \rho V_{1}{ }^{2}=P_{2}+\frac{1}{2} \rho V_{2}{ }^{2}$
$\Rightarrow 3 \times 10^{5}=10^{5}+\frac{1}{2} \times 10^{3} V_{2}^{2}$
$\Rightarrow \mathrm{V}_{2}{ }^{2}=4 \times 10^{2} \Rightarrow \mathrm{~V}_{2}=20 \mathrm{~m} / \mathrm{s}$
59. Force due to pressure difference $=\Delta \mathrm{P} \times \mathrm{A}$

In balanced condition $=m g=\Delta \mathrm{P} \times \mathrm{A}$
$\Rightarrow \Delta \mathrm{P}=\frac{\mathrm{mg}}{\mathrm{A}}=\frac{3 \times 10^{4} \times 10}{120}=2.5 \mathrm{kPa}$
60. $\frac{d V}{d t}=\frac{\pi \rho r^{4}}{8 \eta \ell}$
62. Velocity of efflux $=\sqrt{2 \mathrm{gh}}=\sqrt{2 \times 10 \times 5}=10 \mathrm{~m} / \mathrm{s}$ rate of flow $=\mathrm{Av}=\left(1 \times 10^{-4}\right) \times 10=10^{-3} \mathrm{~m}^{3} / \mathrm{s}$
63. Rate of flow $=\mathrm{Av}=\pi \mathrm{r}^{2} \times \sqrt{2 \mathrm{gh}}$

$$
=3.14 \times 1 \times \sqrt{2 \times 1000 \times 10}=444 \mathrm{~cm}^{3} / \mathrm{s}
$$

64. $\mathrm{V}_{2}{ }^{2}=\mathrm{V}_{1}{ }^{2}+2 \mathrm{gh}=(2)^{2}+2 \times 1000 \times 5.1 \times 10^{-1}=1024$
$\mathrm{V}_{2}=32 \mathrm{~cm} / \mathrm{s}$
65. $\mathrm{m}_{1}=\mathrm{m}_{2} \Rightarrow \mathrm{~V}_{1} \mathrm{~d}_{1}=\mathrm{V}_{2} \mathrm{~d}_{2}$

Rate of flow $\frac{d V_{1}}{d t}=\frac{\pi \rho r^{4}}{8 \eta \ell} \Rightarrow \frac{n_{1}}{n_{2}}=\frac{V_{2} t_{1}}{V_{1} t_{2}}=\frac{d_{1} t_{1}}{d_{2} t_{2}}$
68. Viscous force $=6 \pi \eta r v$
$=6 \times 3.14 \times 18 \times 10^{-5} \times 0.3 \times 10^{-1} \times 10^{2}$
$=101.73 \times 10^{-4}$ dyne
71. Radius of big drop $\Rightarrow R=(n)^{1 / 3} r=(2)^{1 / 3} r$

$$
\begin{aligned}
\mathrm{v}_{\mathrm{T}} \propto \mathrm{r}^{2} & \Rightarrow \frac{\mathrm{v}_{\mathrm{T}}^{\prime}}{\mathrm{v}_{\mathrm{T}}}=\frac{\mathrm{R}^{2}}{\mathrm{r}^{2}}=(2)^{2 / 3}=4^{1 / 3} \\
& \Rightarrow \mathrm{v}_{\mathrm{T}}^{\prime}=4^{1 / 3} \times 5 \mathrm{~cm} / \mathrm{s}
\end{aligned}
$$

EXERCISE - 2

Part \# I : Multiple Choice

1 Tension in wire at lowest position
$\mathrm{T}=\mathrm{mg}+\mathrm{m} \omega^{2} \mathrm{r}$
So elongation $\Delta \ell=\frac{\mathrm{FL}}{\mathrm{AY}}=\frac{\left(m g+m \omega^{2} \mathrm{~L}\right) \mathrm{L}}{\pi \mathrm{r}^{2} \mathrm{Y}}$
2. Stress $=\frac{F}{A}=\frac{\left(W_{1}+\frac{W}{4}\right)}{S}$

3. Tension in wire $=m g=10 \mathrm{~N}$
so elongation $=\frac{\mathrm{F} . \mathrm{L}}{\mathrm{AY}}=\frac{10 \times 3}{10^{-6} \times 10 \times 10^{10}}=0.3 \mathrm{~mm}$
4. $\Delta \ell=\frac{F L}{A Y} \Rightarrow \frac{\Delta \ell}{F / A}=\frac{L}{Y}=$ Slope of curve
$\Rightarrow \frac{L}{Y}=\frac{(4-2) \times 10^{-3}}{(8000-4000) \times 10^{3}}=\frac{1}{2} \times 10^{-9}$
$\because \mathrm{L}=1 \quad \therefore \mathrm{Y}=2 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
5. Spring constant of wire $=\frac{Y A}{L}$

So effective spring constant
$=\frac{k_{1} k_{2}}{k_{1}+k_{2}}=\frac{k \frac{Y A}{L}}{k+\frac{Y A}{L}}=\frac{k Y A}{k L+Y A}$
Time period $=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}_{\text {eff }}}}=2 \pi \sqrt{\frac{\mathrm{~m}(\mathrm{~kL}+\mathrm{YA})}{\mathrm{kYA}}}$
6. Surface tension does not depend on surface area.
7. $\because \Delta \ell_{1}=\Delta \ell_{2} \Rightarrow \frac{F_{1} L_{1}}{\mathrm{~A}_{1} \mathrm{Y}_{1}}=\frac{\mathrm{F}_{2} \mathrm{~L}_{2}}{\mathrm{~A}_{2} \mathrm{Y}_{2}}$
$\Rightarrow \frac{F_{1} \times 30 \times 10^{-2}}{16 \times 2 \times 10^{6}}=\frac{F_{2} \times 20 \times 10^{-2}}{10 \times 10^{6}} \Rightarrow F_{1}=\frac{32}{15} F_{2}$
in balanced condition $\mathrm{F}_{1}+2 \mathrm{~F}_{2}=5000 \mathrm{~g}$

$\Rightarrow F_{1}+\frac{2 \times 15}{32} F_{1}=5000 g \Rightarrow F_{1}=2580 g$
So stress in steel rod $=\frac{\mathrm{F}_{1}}{\mathrm{~A}_{1}}=\frac{2580 \mathrm{~g}}{16 \mathrm{~cm}^{2}}=161.2 \mathrm{~kg} / \mathrm{cm}^{2}$
8. \quad Acceleration $\mathrm{a}=\frac{\mathrm{F}}{\mathrm{m}}$

then tension in $\mathrm{dx}=\frac{\mathrm{mx}}{\ell} \times \frac{\mathrm{F}}{\mathrm{m}}=\frac{\mathrm{Fx}}{\ell}$
Extension in dx element $=\frac{T d x}{A Y}=\frac{F x d x}{A Y \ell}$
total extension $\Delta \ell=\int_{0}^{\ell} \frac{F x d x}{A Y \ell}=\frac{F \ell}{2 A Y}$
9. In balanced condition $\mathrm{mg}=2 \pi \mathrm{r} \mathrm{T}$

$$
\therefore \quad 2 \pi \mathrm{r}=\frac{\mathrm{mg}}{\mathrm{~T}}=\frac{75 \times 10^{-4}}{6 \times 10^{-2}}=12.5 \times 10^{-2} \mathrm{~m}
$$

11. $\Delta \mathrm{h}=\mathrm{h}_{1}-\mathrm{h}_{2}=\frac{2 \mathrm{~T}}{\mathrm{r}_{1} \mathrm{dg}}-\frac{2 \mathrm{~T}}{\mathrm{r}_{2} \mathrm{dg}}=\frac{2 \mathrm{~T}}{\mathrm{dg}}\left(\frac{1}{\mathrm{r}_{1}}-\frac{1}{\mathrm{r}_{2}}\right)$

$$
=\frac{2 \times 72}{1 \times 980}\left(\frac{2}{0.5}-\frac{2}{1}\right)=0.293 \mathrm{~cm}
$$

12. Potential energy
$=m g \frac{\mathrm{H}}{2}=\left(\pi \mathrm{r}^{2} \mathrm{~h} \rho\right) \mathrm{g} \frac{\mathrm{H}}{2}=\frac{\pi \rho g}{2}(\mathrm{rh})^{2}$
according to Zurin law $\mathrm{rH}=$ constant $\Rightarrow \mathrm{u}_{1}=\mathrm{u}_{2}$
13. For spring balance $\mathrm{A}=\mathrm{Mg}-\mathrm{Th}=2 \mathrm{~g}-\mathrm{Th}$ for balance $\mathrm{B}=\mathrm{Mg}+\mathrm{Th}=5 \mathrm{~g}+\mathrm{Th}$
14. For uniform radius tube in balanced condition

$$
\stackrel{\mid}{\mathrm{r}}{ }^{-}{ }^{h_{1}} h_{1}=\frac{2 T}{r \rho g}
$$

but weight of liquid in tapered tube is more than uniform tube of radius r then for balanced condition
$\mathrm{h}<\mathrm{h}_{1} \Rightarrow \mathrm{~h}<\frac{2 \mathrm{~T}}{\mathrm{r} \rho \mathrm{g}}$
16. Due to extra water, extra upthrust act on the steel ball so ball move up.
17. Acceleration of ball in water
$=\frac{\text { net force }}{m}=\frac{T h-m g}{m}=\frac{V(d-D) g}{V D}=\frac{(d-D) g}{D}$
Velocity at the surface $\mathrm{v}=\sqrt{2 \mathrm{ah}}=\sqrt{2 \frac{(\mathrm{~d}-\mathrm{D})}{\mathrm{D}} \mathrm{gh}}$
When ball come out from water then g act on the ball so height in air

$$
\mathrm{h}^{\prime}=\frac{\mathrm{v}^{2}}{2 \mathrm{~g}}=\frac{2(\mathrm{~d}-\mathrm{D}) \mathrm{gh}}{\mathrm{D} \times 2 \mathrm{~g}}=\left(\frac{\mathrm{d}}{\mathrm{D}}-1\right) \mathrm{h}
$$

18. When the ball is pushed down, the water gains potential energy, whereas the ball loses potential energy. Hence, gain in potential energy of water
$=(\mathrm{V} \rho) \mathrm{rg}-\left(\frac{\mathrm{V}}{2} \rho\right)\left(\frac{3}{8} \mathrm{r}\right) \mathrm{g}$
(When half of the spherical ball is immersed in water, rise of c.g. of displaced water $=\frac{3 r}{8}$)
$=\operatorname{V\rho rg}\left(1-\frac{3}{16}\right)=\frac{4}{3} \pi r^{3} \rho \operatorname{rg} \times \frac{13}{16}=\frac{13}{12} \pi r^{4} \rho g$
Loss in PE of ball $=\mathrm{V} \rho^{\prime} \mathrm{rg}=\frac{4}{3} \pi \mathrm{r}^{4} \rho^{\prime} \mathrm{g}$
Work done $=\frac{13}{12} \pi r^{4} \rho g-\frac{4}{3} \pi r^{4} \rho^{\prime} g$
$=\pi r^{4} \rho g\left[\frac{13}{12}-\frac{4}{3} \frac{\rho^{\prime}}{\rho}\right]$
$=\pi r^{4} \rho g\left[\frac{13}{12}-\frac{4}{3} \times 0.5\right]=\frac{5}{12} \pi r^{4} \rho g$
19. Let V_{1} volume of the ball in the lower liquid then
$\mathrm{V} \rho \mathrm{g}=\mathrm{V}_{1} \rho_{2} \mathrm{~g}+\left(\mathrm{V}-\mathrm{V}_{1}\right) \rho_{1} \mathrm{~g}$
$\Rightarrow \operatorname{Vg}\left(\rho-\rho_{1}\right)=\mathrm{V}_{1} g\left(\rho_{2}-\rho_{1}\right) \Rightarrow \frac{\mathrm{V}_{1}}{\mathrm{~V}}=\frac{\rho-\rho_{1}}{\rho_{2}-\rho_{1}}=\frac{\rho_{1}-\rho}{\rho_{1}-\rho_{2}}$
20. $\Delta \mathrm{P}=\rho(\mathrm{g} \sin \theta-\mu \mathrm{g} \cos \theta) \ell$.....(i)
$\Delta \mathrm{P}=\rho \mathrm{g} \cos \theta \mathrm{h}$
Both should be same
$\frac{\mathrm{h}}{\ell}=\tan \theta-\mu$

$\Rightarrow \tan \phi=\tan \theta-\mu$
21. According to equation's of continuity $A_{1} v_{1}=A_{2} v_{2}$ $\left(\pi R^{2}\right) v=n\left(\pi r^{2}\right) v^{\prime} \Rightarrow v^{\prime}=\frac{v}{n}\left(\frac{R}{r}\right)^{2}$
22. Given $\angle \mathrm{COD}=\mathrm{Q}$

$\mathrm{G}_{1} \& \mathrm{G}_{2}$ be the center of gravities of two liquids, then
$\angle \mathrm{AOC}=90^{\circ}=\angle \mathrm{COB} \Rightarrow \angle \mathrm{AOG}_{1}=45^{\circ}$
$\angle \mathrm{G}_{1} \mathrm{OD}=45^{\circ}-\theta \quad \Rightarrow \angle \mathrm{COG}_{2}=45^{\circ}$
$\angle \mathrm{G}_{2} \mathrm{OD}=45+\theta$
Net torque about point O is zero
$\Rightarrow \mathrm{rm}_{1} \mathrm{~g} \sin \left(45^{\circ}-\theta\right)=\mathrm{rm}_{2} \mathrm{~g} \sin (45+\theta)$
$\operatorname{svsin}(45-\theta)=\sigma v \sin (45+\theta)$

$$
\begin{aligned}
& \frac{s}{\sigma}=\frac{\sin (45+\theta)}{\sin (45-\theta)} \\
& \frac{s}{\sigma}=\frac{\sin 45 \cos \theta+\cos 45 \sin \theta}{\sin 45 \cos \theta-\cos 45 \sin \theta} \\
& \frac{s-\sigma}{s+\sigma}=\frac{\cos \theta+\sin \theta-\cos \theta+\sin \theta}{\cos \theta+\sin \theta+\cos \theta-\sin \theta} \\
& \frac{s-\sigma}{s+\sigma}=\tan \theta \Rightarrow \theta=\tan ^{-1}\left(\frac{s-\sigma}{s+\sigma}\right)
\end{aligned}
$$

23. Velocity of efflux of water $=\sqrt{2 g\left(\frac{h}{2}\right)}=\sqrt{g h}$

Force due to ejected water
$=\frac{\mathrm{dp}}{\mathrm{dt}}=\frac{\mathrm{dm}}{\mathrm{dt}} \mathrm{v}=\rho(\mathrm{av}) \mathrm{v}=\rho \mathrm{av}^{2}$
Torque of these forces about central line
$=\mathrm{F} \times 2 \mathrm{R}+\mathrm{F} \times 2 \mathrm{R}=4 \rho \mathrm{av}^{2} \times \mathrm{R}=4 \rho$ aghR
24. In pure rolling acceleration of the tube $=2 a$
$P_{A}=P_{a t m}+\rho(2 a) L$ (from horizontal)
$\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{atm}}+\rho \mathrm{gH} \quad$ (from vertical)

$\Rightarrow \mathrm{a}=\frac{\mathrm{gH}}{2 \mathrm{~L}}$
25. From right Limb
$\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{atm}}+\mathrm{h} \rho \mathrm{g}$
$\mathrm{P}_{\mathrm{C}}=\mathrm{P}_{\mathrm{A}}+\rho \mathrm{a}\left(\frac{\ell}{2}\right)+(2 \rho) \mathrm{a} \frac{\ell}{2}$

$=\mathrm{P}_{\mathrm{A}}+\frac{3}{2} \rho \mathrm{a} \ell=\mathrm{P}_{\mathrm{atm}}+\mathrm{h} \rho \mathrm{g}+\frac{3}{2} \rho \mathrm{a} \ell$
From left limb $\mathrm{P}_{\mathrm{C}}=\mathrm{P}_{\mathrm{atm}}+2 \rho g h$
$\Rightarrow \mathrm{P}_{\mathrm{atm}}+\mathrm{h} \rho \mathrm{g}+\frac{3}{2} \rho \ell \mathrm{a}=\mathrm{P}_{\mathrm{atm}}+2 \rho \mathrm{gh} \Rightarrow \mathrm{h}=\frac{3 \mathrm{a}}{2 \mathrm{~g}} \ell$
26. Torque about $\mathrm{CM}_{\mathrm{b}} \times \frac{\ell}{4}=\mathrm{I} \alpha$
$\Rightarrow \alpha=\frac{\mathrm{F}_{\mathrm{b}} \ell}{4 \mathrm{I}}=\frac{\left(\pi \mathrm{r}^{2} \ell \rho \mathrm{~g}\right) \ell}{4 \mathrm{I}}=\frac{\pi \mathrm{r}^{2} \ell^{2} \rho \mathrm{~g}}{4 \mathrm{I}}$

27. Rate of flow $=\mathrm{Av}$

Volume of water filled in tank in 15 s
$V=\int_{0}^{15} \mathrm{~A} \times 10\left[1-\sin \frac{\pi}{30} \mathrm{t}\right] \mathrm{dt}$
$=10 \mathrm{~A}\left[\mathrm{t}+\frac{\cos \pi / \mathrm{t}}{\pi / \mathrm{t}}\right]_{0}^{15}=10 \mathrm{~A}\left[15-\frac{30}{\pi}\right]$
height of water level $=\frac{\mathrm{V}}{10 \mathrm{~A}}=\left[15-\frac{30}{\pi}\right] \mathrm{m}$
28. $v_{0}=\sqrt{2 g h}, v=\sqrt{2 g \frac{h}{\sqrt{2}}}=\frac{v_{0}}{\sqrt[4]{2}}$
29. As the cork moves up, the force due to buoyancy remains constant. As its speed increases, retarding force due to viscosity increase. The acceleration is variable, and hence the relation between velocity and time is not linear.
30. The free liquid surface between the plates is cylindrical and curved along one axis only so radius of curvature
$\mathrm{r}=\frac{\mathrm{d}}{2}$ and $\mathrm{P}_{0}-\mathrm{P}=\frac{\mathrm{s}}{\mathrm{r}}=\frac{2 \mathrm{~s}}{\mathrm{~d}}$
$\Rightarrow \mathrm{P}=\mathrm{P}_{0}-\frac{2 \mathrm{~s}}{\mathrm{~d}}$
32. $P_{C}-P_{A}=\ell \rho$ a and $P_{B}=P_{C}+h \rho g$
$P_{B}-P_{A}=h \rho g+\ell \rho a$
33. When the levels equalize then the height of the liquid in each $\operatorname{arm}=\frac{h_{1}+h_{2}}{2}$
Transferred length of liquid

$$
=\mathrm{h}_{1}-\frac{\mathrm{h}_{1}+\mathrm{h}_{2}}{2}=\frac{\mathrm{h}_{1}-\mathrm{h}_{2}}{2}
$$

Transferred mass $=\left(\frac{h_{1}-h_{2}}{2}\right)$ A ρ.
Loss in gravitational potential energy
$=m g h=\left(\frac{h_{1}-h_{2}}{2}\right)^{2} A \rho g$
Mass of the entire liquid $=\left(h_{1}+h_{2}+h\right) A \rho$
If this liquid moves with a velocity v then its
$K E=\frac{1}{2}\left(h_{1}+h_{2}+h\right) A \rho v^{2}$
$\Rightarrow\left(\frac{h_{1}-h_{2}}{2}\right)^{2} A \rho g=\frac{1}{2}\left(\mathrm{~h}_{1}+\mathrm{h}_{2}+\mathrm{h}\right) \mathrm{A} \rho \mathrm{v}^{2}$
$\Rightarrow v=\sqrt{\frac{g}{2\left(h_{1}+h_{2}+h\right)}}\left(\mathrm{h}_{1}-\mathrm{h}_{2}\right)$
35. $v_{1}=\sqrt{2 g \mathrm{gx}}$ and $\mathrm{v}_{2}=\sqrt{2 \mathrm{~g}(\mathrm{x}+\mathrm{h})}$.

Let cross section area of hole is a then rate of flow $=a v$
force $=v(a v \rho)=a \rho v^{2}$

Net force
$=\left(F_{2}-F_{1}\right)=a \rho\left(v_{2}{ }^{2}-v_{1}{ }^{2}\right)$

$=a \rho(2 g(x+h)-2 g x)$
$=2 \mathrm{a} \rho \mathrm{gh}$
37. In floating condition
weight $=$ upthrust
$\Rightarrow\left(\frac{A}{5} L\right) D g=\left(\frac{A}{5} \frac{L}{4}\right) 2 d g+\left(\frac{A}{5} \frac{3 L}{4}\right) d g$
$\Rightarrow D=\frac{d}{2}+\frac{3 d}{4}=\frac{5 d}{4}$
40. Net viscous force
$=2 \mathrm{~F}_{\mathrm{v}}=2 \eta \mathrm{~A} \frac{\mathrm{dv}}{\mathrm{dx}}$

$\because \mathrm{F}=1 \mathrm{~N} \Rightarrow 1=2 \eta \times(0.5) \times \frac{0.5}{1.25 \times 10^{-2}}$
$\Rightarrow \eta=2.5 \times 10^{-2} \mathrm{~kg}-\mathrm{s} / \mathrm{m}^{2}$
41. Viscous force $=$ weight
$\eta A \frac{v}{t}=m g \sin \theta \Rightarrow \eta a^{2} \frac{v}{t}=a^{3} \rho g \sin \theta$
$\Rightarrow \eta=\frac{a \rho g t \sin \theta}{v}$
42. $\mathrm{v}_{\mathrm{T}} \propto\left(\rho_{\mathrm{B}}-\rho_{\mathrm{L}}\right)$
$\Rightarrow \frac{v_{T}^{\prime}}{v_{T}}=\frac{(10.5-1.5)}{(19.5-1.5)}=\frac{9}{18}=\frac{1}{2}$
$\Rightarrow \mathrm{v}_{\mathrm{T}}^{\prime}=\frac{\mathrm{v}_{\mathrm{T}}}{2}=\frac{0.2}{2}=0.1 \mathrm{~m} / \mathrm{s}$
46. The angle of contact at the free liquid surface inside the capillary tube will change such that the vertical component of the surface tension forces just balance the weight of the liquid column.
47. Tension in $B=T_{B}=\frac{m g}{3}$

Tension $\operatorname{in} \mathrm{A}=\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{B}}+\mathrm{mg}=\frac{4 \mathrm{mg}}{3}$
$\therefore \mathrm{T}_{\mathrm{A}}=4 \mathrm{~T}_{\mathrm{B}}$
Stress $=\frac{\mathrm{F}}{\mathrm{A}}=\frac{\mathrm{T}}{\pi \mathrm{r}^{2}}$
Wire breaks when stress
$=$ Breaking stress for $r_{A}=r_{B} \Rightarrow S_{A}=4 s_{B}$
\therefore A breaks before B
for $r_{A}=2 r_{B} \Rightarrow s_{B}=\frac{T_{B}}{\pi r_{B}^{2}}$

$$
\mathrm{s}_{\mathrm{A}}=\frac{\mathrm{T}_{\mathrm{A}}}{\pi \mathrm{r}_{\mathrm{A}}^{2}}=\frac{4 \mathrm{~T}_{\mathrm{B}}}{\pi\left(2 \mathrm{r}_{\mathrm{B}}\right)^{2}}
$$

\therefore stresses are equal so either A or B may break
50. If one surface is pushed down by x the other surface moves up by x.
Net unbalanced force on the liquid column $=2 x A \rho g$
mass of the liquid column $=\ell \mathrm{A} \rho$

$$
\begin{aligned}
& \Rightarrow-2 \mathrm{xA} \rho g=(\ell A \rho) \mathrm{a} \Rightarrow \mathrm{a}=\left(-\frac{2 \mathrm{~g}}{\ell}\right) \mathrm{x} \\
& \because \mathrm{a}=-\omega^{2} \mathrm{x} \Rightarrow \omega=\sqrt{\frac{2 g}{\ell}} \Rightarrow \mathrm{~T}=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{\ell}{2 g}}
\end{aligned}
$$

Part \# II : Assertion \& Reason

1. A
2. D
3. A
4. B
5. A
6. A
7. A
8. A
9. A
10. C
11. A
12. C
13. D
14. A
15. A
16. A
17. A
18. A
19. C
20. A
21. A
22. D
23. A
24. A
25. A
26. A
27. B
28. A
29. A
30. C
31. C
32. A

EXERCISE - 3

Part \# I : Matrix Match Type

1. $\mathrm{A} \rightarrow \mathrm{Q} ; \mathrm{B} \rightarrow \mathrm{R} ; \mathrm{C} \rightarrow \mathrm{R}$
2. $\mathrm{A} \rightarrow \mathrm{Q} ; \mathrm{B} \rightarrow \mathrm{P} ; \mathrm{C} \rightarrow \mathrm{Q}$
3. $\mathrm{A} \rightarrow \mathrm{P} ; \mathrm{B} \rightarrow \mathrm{Q} ; \mathrm{C} \rightarrow \mathrm{Q}$
4. $\mathrm{A} \rightarrow \mathrm{P} ; \mathrm{B} \rightarrow \mathrm{P}, \mathrm{C} \rightarrow \mathrm{R}$

Part \# II : Comprehension

Comprehension \# 1

1. $\mathrm{F}=\rho \mathrm{A}\left(\mathrm{V}_{0}-0\right)^{2}\left[1-\cos 180^{\circ}\right]$
$=2 \rho A v^{2}=2 \times 1000 \times 2 \times 10^{-4} \times 10 \times 10=40 \mathrm{~N}$
2. $\mathrm{F}=2 \rho \mathrm{~A}\left(\mathrm{~V}_{0}-\mathrm{u}\right)^{2} \quad \mathrm{u}=$ speed of cart
$m \frac{d u}{d t}=2 \rho A\left(v_{0}-u\right)^{2} ; \quad \int_{0}^{u} \frac{d u}{\left(V_{0}-u\right)^{2}}=\frac{2 \rho A}{m} \int_{0}^{t} d t$
$\left[\frac{2 \rho \mathrm{~A}}{\mathrm{~m}}=\frac{2 \times 10^{3} \times 2 \times 10^{-4}}{10}=\frac{4}{100}\right]$
$\left[\frac{1}{\mathrm{~V}_{0}-\mathrm{u}}\right]_{0}^{u}=\frac{2 \rho \mathrm{At}}{\mathrm{m}}$
$\frac{1}{V_{0}-u}-\frac{1}{V_{0}}=\frac{2 \rho A t}{m}=\frac{4 t}{100}$
at $\mathrm{t}=10 \mathrm{sec} \rightarrow \frac{1}{\mathrm{~V}_{0}-\mathrm{u}}=\frac{4}{10}+\frac{1}{10}=\frac{1}{2}$
$\mathrm{V}_{0}-\mathrm{u}=2 \quad \mathrm{u}=8 \mathrm{~m} / \mathrm{sec}$.
3. $\mathrm{F}=2 \rho \mathrm{~A}\left(\mathrm{~V}_{0}-\mathrm{u}\right)^{2}$
$=2 \times 10^{3} \times 2 \times 10^{-4}(10-8)^{2}=2 \times 10^{3} \times 2 \times 10^{-4} \times 4$
$\mathrm{a}=\frac{\mathrm{F}}{\mathrm{M}}=0.16 \mathrm{~m} / \mathrm{sec}^{2}$
4. $\frac{1}{V_{0}-u}-\frac{1}{V_{0}}=\frac{4 t}{100} \Rightarrow \frac{1}{8}-\frac{1}{10}=\frac{4 t}{100}$
$\Rightarrow \frac{2}{80}=\frac{4 t}{100}, \mathrm{t}=1.6 \mathrm{sec}$.
5. $\mathrm{F}=2 \rho \mathrm{~A}\left(\mathrm{~V}_{0}-\mathrm{u}\right)^{2}$
$=2 \times 10^{3} \times 2 \times 10^{-4} \times 25=10 \mathrm{~N}$
$\mathrm{P}=\mathrm{F} . \mathrm{u}=10 \times 5=50 \mathrm{~W}$.

Comprehension \# 2

1. $\frac{d y}{d x}=\frac{a_{x}}{a_{y}+g}=\frac{g / 2}{-g / 2+g}=1$
$\ldots .($ effective g will be $g-a=g / 2) \theta=45^{\circ}$
2. As the slope of free surface is 45°.

Thus free surface passes through centre of box and having co-ordinates $(2,2)$ at top of box.
Length of exposed top part $=6-2=4 \mathrm{~m}$.
3. $\mathrm{P}=\mathrm{P}_{\mathrm{a}}+\rho \mathrm{gh}=10^{5}+1000 \times 10 \times 1$
$=\left(10^{5}+10^{4}\right) \mathrm{N} / \mathrm{m}^{2}=0.11 \mathrm{MPa}$
4. $\mathrm{p}=\left(10^{5}+10^{3} \times 10 \times 4\right) \mathrm{N} / \mathrm{m}^{2}$
$=[0.1+0.04] \mathrm{MPa}=0.14 \mathrm{MPa}$
5. As maximum slope of free surface is $1 / 3$ for the condition of non-exposure of bottom of box, then
$\frac{a_{x}}{a_{y}+g}=\frac{1}{3}$ as $a_{x}=g / 2,3 a_{x}=a_{y}+g$
$\mathrm{a}_{\mathrm{y}}=\mathrm{g} / 2$, thus $\mathrm{g} / 2$ upward.

Comprehension \# 3

1. Equating the pressures at the same level of third liquid at the boundary of first and third liquids on left hand side.
Pressure on left hand side $=$ pressure on right hand side $\therefore P_{0}+\rho(20) g=P_{0}+10(1.5) g+h(2 \rho) g$.
Solving this equation, we get $\mathrm{h}=2.5 \mathrm{~cm}$
2. Rewriting the equation as
$P_{0}+\rho(20) g=P_{0}+10(1.5) g+h(2 \rho) g$.
From here we can see that h will decrease.

Comprehension\#4

1. When the muscles of the heart relax, as they do during diastole, the heart is not exerting any force on the blood.
2. Volume flow rate
\propto Pressure difference
$\propto\left(\right.$ Radius of vessel) ${ }^{4}$
If radius is increased by 10% volume flow rate would be increased by a factor $(1.1)^{4} \approx 1.44$.
3. Gravitational potential energy

$$
=\left(\frac{\text { energy }}{\text { volume }}\right) \times \text { volume }=(\rho g h)(\text { volume })
$$

$\therefore \mathrm{PE}=1050 \times 9.8 \times 0.3 \times 8.0 \times 10^{-6}=2.46 \times 10^{-2} \mathrm{~J}$
4. $\mathrm{W}=\mathrm{mgh}=\left(200 \times 10^{-6} \times 1050\right)(9.8)(0.5) \approx 1.0 \mathrm{~J}$
5. \quad Power $=\frac{\text { blood pressure } \times \text { volume of blood pumped }}{\text { time }- \text { (which blood is pumped) }}$

Factor by which power increased $=7 \times 1.2=8.4,20 \%$ increases means increase by a factor of 1.2 .

Comprehension \# 5

1. When the string is cut, tension becomes zero i.e., net upward force on the block becomes $\mathrm{W} / 2$ or net upward acceleration of the block will become $\mathrm{g} / 2$ or $5 \mathrm{~m} / \mathrm{s}^{2}$.

Now, $\quad \mathrm{t}=\sqrt{\frac{2 \mathrm{~s}}{\mathrm{a}}}=\sqrt{\frac{2 \times 2}{5}}=\frac{2}{\sqrt{5}} \mathrm{~s}$
2. If weight is doubled then obviously upthrust will also become two times, because weight can be increased only by increasing the volume by two times. When two out of three forces acting on the block have doubled then tension will also become two times to keep the block in equilibrium.

Before $\mathrm{F}=\mathrm{W}+\frac{\mathrm{W}}{2}=\frac{3 \mathrm{~W}}{2}$
After $3 \mathrm{~W}=2 \mathrm{~W}+\mathrm{T}^{\prime} \quad \therefore \mathrm{T}^{\prime}=\mathrm{W}=2 \mathrm{~T}$
When string is cut in second case, net upward acceleration will be $\frac{3 \mathrm{~W}-2 \mathrm{~W}}{(2 \mathrm{~W} / \mathrm{g})}=\frac{\mathrm{g}}{2}$,

So time taken will not change.

Comprehension \# 6

1. $\mathrm{Q} \propto \frac{1}{\eta}$ when volume flow rate is multiplied by density, it becomes mass flow rate. Both rates are inversely proportional to η.
2. $\operatorname{From} \mathrm{Q}=\frac{\pi \mathrm{R}^{4}\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right)}{8 \eta \mathrm{~L}}$
we have, $\eta=\frac{\pi \mathrm{R}^{4}\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right)}{8 \mathrm{LQ}}$
Substituting the value we get $\eta \approx 4 \times 10^{-3} \mathrm{~Pa}-s$
3. $\operatorname{From} \mathrm{R}_{\mathrm{e}}=\frac{2 \overline{\mathrm{v}} \rho \mathrm{R}}{\eta} ; \overline{\mathrm{v}}=\frac{\eta \mathrm{R}_{e}}{2 \rho \mathrm{R}}$

Flow remains laminar till $\mathrm{R}_{\mathrm{e}}=2000$
$\therefore \bar{v}=\frac{4 \times 10^{-3} \times 2000}{2 \times 1000 \times 8 \times 10^{-3}}=0.5 \mathrm{~m} / \mathrm{s}$
4. $\mathrm{F}=6 \pi \eta r \mathrm{v}=6 \pi \times 10^{-3} \times 10^{-3} \times 3=5.65 \times 10^{-5} \mathrm{~N}$
5. $6 \pi \eta \mathrm{rv}_{\mathrm{T}}=\mathrm{mg}$
$\therefore \mathrm{v}_{\mathrm{T}}=\frac{\mathrm{mg}}{6 \pi \eta \mathrm{r}}=\frac{10^{-5} \times 9.8}{6 \pi \times 10^{-3} \times 10^{-3}}=5.2 \mathrm{~m} / \mathrm{s}$

EXERCISE - 4

Subjective Type

1. (i) The area of the hysteresis loop is proportional to the energy dissipated by the material as heat when the material undergoes loading and unloding. A material for which the hysteresis loop has larger area would absrob more energy when subjected to vibrations. Therefore to absorb vibrations one would prefer rubber B.
(ii) Rubber A , to avoid excessive heating of the car tire.
2. (i) Material A has greater value of Young's modulus. Because slope of A is greater than B.
(ii) A material is more ductile because there is a large plastic deformation range between the elastic limit and the breaking point.
(iii) B material is more brittle because the plastic region between the elastic limit and breaking point is small.
(iv) Strength of a material is determined by the amount of stress required to cause fracture. Material A is stronger than material B.
3. Maximum stress $=\frac{F}{\text { Area }}=\frac{m(g+a)}{\pi r_{\text {min }}^{2}}$
$\Rightarrow \frac{3}{\pi} \times 10^{8}=\frac{900(9.8+2.2)}{\pi r_{\min }^{2}}$
$\Rightarrow r_{\text {min }}=\sqrt{\frac{900 \times 12}{3 \times 10^{8}}}=6 \mathrm{~mm}$
4. (a) $F^{\prime}=m^{\prime} a=\left(A \frac{L}{2} d\right)\left(\frac{F}{m}\right)$
$=\left(A \frac{L}{2} d\right)\left(\frac{\mathrm{dALg}}{2 \times \mathrm{ALd}}\right)=\frac{\mathrm{ALdg}}{4}$

Stress $=\frac{F^{\prime}}{A}=\frac{L d g}{4}$

$\because Y=\frac{\text { stress }}{\text { strain }} \Rightarrow$ strain $=\frac{\text { stress }}{Y}=\frac{L d g}{4 Y}$
5. $(\Delta \ell)_{\text {steel }}=\frac{\mathrm{FL}}{\mathrm{AY}}=\frac{(4+6) \times 10 \times 1.5}{\pi\left(0.125 \times 10^{-2}\right)^{2} \times 2 \times 10^{11}}$

$$
=1.49 \times 10^{-4} \mathrm{~m}
$$

$$
(\Delta \ell)_{\text {brass }}=\frac{\mathrm{FL}}{\mathrm{AY}}=\frac{6 \times 10 \times 1}{\pi\left(0.125 \times 10^{-2}\right)^{2} \times 0.91 \times 10^{11}}
$$

$$
=1.31 \times 10^{-4} \mathrm{~m}
$$

6. In equilibrium $\mathrm{mg}=2 \mathrm{~T} \ell \Rightarrow \pi \mathrm{r}^{2} \ell \rho \mathrm{~g}=2 \mathrm{~T} \ell$
$\Rightarrow r=\sqrt{\frac{2 \mathrm{~T}}{\pi \rho g}}=\sqrt{\frac{2 \times 0.045}{3.14 \times 8.96 \times 10^{3} \times 9.8}}=5.7 \mathrm{~mm}$
\therefore diameter $=2 r=1.14 \mathrm{~mm}$
7. For translatery equilibrium
$\mathrm{T}_{1}+\mathrm{T}_{2}=\mathrm{W}$
for equal stress $\frac{T_{1}}{A_{1}}=\frac{T_{2}}{A_{2}}$

$\Rightarrow \frac{T_{1}}{T_{2}}=\frac{A_{1}}{A_{2}}=\frac{0.1 \times 10^{-4}}{0.2 \times 10^{-4}}=\frac{1}{2}$
$\Rightarrow \mathrm{T}_{2}=2 \mathrm{~T}_{1}$
from equation (i) $\mathrm{T}_{1}+2 \mathrm{~T}_{1}=\mathrm{W} \Rightarrow \mathrm{T}_{1}=\frac{\mathrm{W}}{3}, \mathrm{~T}_{2}=\frac{2 \mathrm{~W}}{3}$ for rotational equilibrium
$\mathrm{T}_{1} \mathrm{x}=\mathrm{T}_{2}(2-\mathrm{x}) \Rightarrow \frac{\mathrm{W}}{3} \mathrm{x}=\frac{2 \mathrm{~W}}{3}(2-\mathrm{x})$
$\Rightarrow \mathrm{x}=\frac{4}{3} \mathrm{~m}$ from steel wire
8. Compressive strength $=\frac{F_{\max }}{\text { Area }}$
$\Rightarrow \mathrm{F}_{\max }=7.7 \times 10^{8} \times 3.6 \times 10^{-4}=2.772 \times 10^{5} \mathrm{~N}$
\because a pplied force $<\mathrm{F}_{\max } \quad \therefore$ bone will not break.
(ii) $\Delta \ell=\frac{\mathrm{FL}}{\mathrm{AY}}=\frac{3 \times 10^{4} \times 20 \times 10^{-2}}{3.6 \times 10^{-4} \times 1.5 \times 10^{10}}$ $=11.11 \times 10^{-4}=1.11 \mathrm{~mm}$
9. $\frac{4 \mathrm{~T}}{\mathrm{r}}=\mathrm{h} \rho_{\text {water }} \mathrm{g} \Rightarrow \mathrm{T}=\frac{\mathrm{h} \rho_{\text {water }} \mathrm{r}}{4}$
$=\frac{8 \times 10^{-1} \times 1 \times 980 \times 0.35}{4}=68.6 \mathrm{dyne} / \mathrm{cm}$
10. $P_{1} V_{1}+P_{2} V_{2}=P V$
$\Rightarrow\left(P+\frac{4 T}{R_{1}}\right) \frac{4}{3} \pi R_{1}^{3}+\left(P+\frac{4 T}{R_{2}}\right) \frac{4}{3} \pi R_{2}^{3}$
$=\left(\mathrm{P}+\frac{4 \mathrm{~T}}{\mathrm{R}}\right) \frac{4}{3} \pi \mathrm{R}^{3} \Rightarrow P\left(\frac{4}{3} \pi R_{1}^{3}+\frac{4}{3} \pi R_{2}^{3}-\frac{4}{3} \pi R^{3}\right)$
$=\frac{4 \mathrm{~T}}{3}\left(\frac{4}{3} \pi \mathrm{R}^{2}-\frac{4}{3} \pi \mathrm{R}_{1}^{2}-\frac{4}{3} \pi \mathrm{R}_{2}^{2}\right)$
$\because \mathrm{V}=\frac{4}{3} \pi \mathrm{R}^{3}-\frac{4}{3} \pi \mathrm{R}_{1}{ }^{3}-\frac{4}{3} \pi \mathrm{R}_{2}{ }^{3}$ and
$\mathrm{S}=4 \pi \mathrm{R}^{2}-4 \pi \mathrm{R}_{1}{ }^{2}-4 \pi \mathrm{R}_{2}{ }^{2}$
$\therefore \mathrm{P}[-\mathrm{V}]=\frac{4 \mathrm{~T}}{3}[\mathrm{~S}] \Rightarrow 3 \mathrm{PV}+4 \mathrm{ST}=0$
11. When the tube is taken out, a convex meniscus is formed at the bottom then. The total upward force due to surface tension is

$$
\mathrm{F}=2 \pi \mathrm{rT}+2 \pi \mathrm{rT}=4 \pi \mathrm{rT}
$$

This balances the weight of water column of length H
$\Rightarrow 4 \pi \mathrm{rT}=\left(\pi \mathrm{r}^{2} \mathrm{H}\right) \rho \mathrm{g} \Rightarrow \mathrm{H}=\frac{4 \mathrm{~T}}{\mathrm{r} \rho \mathrm{g}}$
but $\mathrm{h}=\frac{2 \mathrm{~T}}{\mathrm{r} \rho \mathrm{g}}$ therefore $\mathrm{H}=2 \mathrm{~h}$
The length of the liquid column remaining $=2 \mathrm{~h}$
14. Pressure $=\frac{\mathrm{F}}{\mathrm{A}}=\frac{3000 \times 10}{425 \times 10^{-4}}=7.06 \times 10^{5} \mathrm{~Pa}$
13. In equilibrium $\frac{600 \times 10}{800 \times 10^{-4}}=\frac{\mathrm{F}}{25 \times 10^{-4}}+\mathrm{h} \rho \mathrm{g}$
$\Rightarrow \frac{F}{25 \times 10^{-4}}=\frac{60}{8} \times 10^{4}-8 \times\left(0.75 \times 10^{3}\right) \times 10$
$\frac{F}{25 \times 10^{-4}}=1.5 \times 10^{4} \Rightarrow F=37.5 \mathrm{~N}$
15. $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} \Rightarrow\left(\mathrm{P}_{\mathrm{atm}}+\mathrm{H}_{\mathrm{w}} \mathrm{g}\right) \mathrm{V}=\mathrm{P}_{\mathrm{atm}} \times 2 \mathrm{~V}$
$\Rightarrow H \rho_{\omega} g=P_{\text {atm }}=76 \mathrm{~cm} \times \rho_{\mathrm{Hg}_{\mathrm{g}}} \times \mathrm{g}=76 \mathrm{~cm} \times 13.6 \rho_{\mathrm{w}} \mathrm{g}$
$\Rightarrow \mathrm{H}=1033.6 \mathrm{~cm}=10.34 \mathrm{~m}$
16. Pressure an the water surface

$$
\begin{aligned}
=\frac{\mathrm{Mg}}{\mathrm{~A}} & =\frac{3 \times 10}{\pi\left[16 \times 10^{-4}-1 \times 10^{-4}\right]} \\
& =\frac{30 \times 10^{4}}{\pi \times 15}=\frac{2}{\pi} \times 10^{4} \mathrm{~Pa}
\end{aligned}
$$

According to Pascal law $=\operatorname{Pr}=\mathrm{h} \rho \mathrm{g}$
$\Rightarrow h=\frac{\operatorname{Pr}}{\rho g}=\frac{\frac{2}{\pi} \times 10^{4}}{10^{3} \times 10}=\frac{2}{\pi} \mathrm{~m}$
Mass of water in the pipe

$$
=\left(\pi \mathrm{r}^{2} \mathrm{~h}\right) \rho=\pi \times 10^{-4} \times \frac{2}{\pi} \times 10^{-3}=0.2 \mathrm{~kg}
$$

mass of water in cylinder $=750-200=550 \mathrm{~g}=0.55$
$\Rightarrow 0.55=\left(\pi R^{2} H\right) \rho$
$\Rightarrow \mathrm{H}=\frac{0.55}{\pi \times 16 \times 10^{-4} \times 10^{3}}=\frac{11}{32 \pi} \mathrm{~m}$
17. Initial potential energy $=m_{1} g \frac{h_{1}}{2}+m_{2} g \frac{h_{2}}{2}$

$$
=A \rho g \frac{h_{1}^{2}}{2}+A \rho g \frac{h_{2}^{2}}{2}=A \rho g\left[\frac{h_{1}^{2}+h_{2}^{2}}{2}\right]
$$

Final height $=\frac{h_{1}+h_{2}}{2}$
Final potential energy
$=\operatorname{mg}\left(\frac{h_{1}+h_{2}}{4}\right)=\operatorname{A\rho g}\left(\frac{h_{1}+h_{2}}{2}\right)^{2}$
Work done by $=$ Initial PE - Final PE
$=A \rho g\left(\frac{h_{1}^{2}+h_{2}^{2}}{2}\right)-\operatorname{A\rho g}\left(\frac{h_{1}+h_{2}}{2}\right)^{2}$
$=\frac{A \rho g}{4}\left(h_{1}-h_{2}\right)^{2}$
19. $\because \mathrm{h}_{\mathrm{w}}+8 \mathrm{~cm}+\mathrm{h}_{\mathrm{o}}=22 \mathrm{~cm}+22 \mathrm{~cm}$
$\Rightarrow \mathrm{h}_{\mathrm{w}}+\mathrm{h}_{\mathrm{o}}=36 \mathrm{~cm}$
$\mathrm{P}_{\mathrm{C}}=\mathrm{P}_{\mathrm{B}} \Rightarrow \mathrm{h}_{\mathrm{o}} \rho_{\mathrm{o}} \mathrm{g}=\mathrm{h}_{\mathrm{w}} \rho_{\mathrm{w}} \mathrm{g} \Rightarrow \mathrm{h}_{\mathrm{o}} \times 0.8=\mathrm{h}_{\mathrm{w}} \times 1$
$\Rightarrow \mathrm{h}_{\mathrm{o}}=\frac{\mathrm{h}_{\mathrm{w}}}{0.8}=1.25 \mathrm{~h}_{\mathrm{w}} \Rightarrow \mathrm{h}_{\mathrm{w}}+1.25 \mathrm{~h}_{\mathrm{w}}=36$
$\Rightarrow \mathrm{h}_{\mathrm{w}}=\frac{36}{2.25}=16 \mathrm{~cm} \mathrm{so} \mathrm{BE}=22-16=6 \mathrm{~cm}$
20. $\Rightarrow A\left(\frac{1}{\sin \theta}\right) \rho_{w} g \times\left(\frac{1}{2 \sin \theta}\right) \cos \theta=\operatorname{mg}(2 \cos \theta)$

$$
\Rightarrow \frac{25 \times 10^{-4} \times 10^{3}}{2 \sin ^{2} \theta}=2.5 \times 2
$$

$\Rightarrow \sin ^{2} \theta=\frac{1}{4} \Rightarrow \sin \theta=\frac{1}{2}$

$\Rightarrow \theta=30^{\circ}$
For minimum depth of water let water height is h
$\Rightarrow A\left(\frac{h}{\sin 90^{\circ}}\right) \rho_{w} g \times\left(\frac{h}{2}\right)=m g \times 2$
$\Rightarrow h^{2}=\frac{2.5 \times 2}{25 \times 10^{-4} \times 10^{3} \times\left(\frac{1}{2}\right)} \Rightarrow \mathrm{h}=2 \mathrm{~m}$
21. $\mathrm{P}_{\mathrm{P}}=\mathrm{P}_{\mathrm{atm}}+\mathrm{h} \rho \mathrm{g}$
$=1.013 \times 10^{5}+3 \times 800 \times 9.8=124.9 \mathrm{KN} / \mathrm{m}^{2}$
$\mathrm{P}_{\mathrm{p}}=\mathrm{P}_{\mathrm{Q}}+(1.5+3) \rho \mathrm{g}$
$\Rightarrow \quad \mathrm{P}_{\mathrm{Q}}=124.9 \times 10^{3}-4.5 \times 800 \times 9.8=89.5 \mathrm{KN} / \mathrm{m}^{2}$
$\mathrm{P}_{\mathrm{R}}=\mathrm{P}_{\mathrm{Q}}=89.5 \mathrm{KN} / \mathrm{m}^{2}$
$P_{s}=P_{R}-(3+2.5) \rho g=89.5 \times 10^{3}-5.5 \times 800 \times 9.8$
$=46.4 \mathrm{KN} / \mathrm{m}^{2}$
22. Specific gravity of block $=\frac{\mathrm{W}_{\mathrm{A}}}{\mathrm{W}_{\mathrm{A}}-\mathrm{W}_{\mathrm{W}}}=\frac{15 \mathrm{~N}}{15-12}=5$
24. When beaker half full with water then it float with completely immersed.
So weight = upthrust
$\Rightarrow\left(390 \mathrm{~g}+\frac{500}{2} \times 1 \times \mathrm{g}\right)=\mathrm{V}_{\text {in }} \times 1 \times \mathrm{g}=640 \mathrm{~cm}^{3}$
So volume of glass beaker $=640-500=140 \mathrm{~cm}^{3}$
density of beaker $=\frac{390}{140}=2.78 \mathrm{~g} / \mathrm{cm}^{3}$
25. Let cross-section area of the plank is A then weight of plank $\mathrm{W}=(1 \times \mathrm{A}) 0.5 \times \mathrm{g}$ length of plank inside the water

$$
=\frac{0.5}{\cos \theta}
$$

So upthrust on the plank $=\left(\frac{0.5}{\cos \theta}\right) \mathrm{A} \times 1 \times \mathrm{g}$
torque about point A
$\mathrm{W} \times \mathrm{AC} \sin \theta=\mathrm{Th} \times \mathrm{AD} \sin \theta$
$(1 \times A) \times 0.5 \times g \times 0.5 \sin \theta$
$=\left(\frac{0.5}{\cos \theta}\right) \mathrm{A} \times 1 \times \mathrm{g} \times\left[\left(\frac{1}{2}\right) \times \frac{0.5}{\cos \theta}\right] \sin \theta$
$\Rightarrow 1=\frac{1}{2 \cos ^{2} \theta} \Rightarrow \cos \theta=\frac{1}{\sqrt{2}} \Rightarrow \theta=45^{\circ}$
26. Work done per unit volume by pressure
$=$ change in energy
$=\frac{1}{2} \rho\left(\mathrm{v}_{2}{ }^{2}-\mathrm{v}_{1}{ }^{2}\right)+\rho g\left(\mathrm{~h}_{2}-\mathrm{h}_{1}\right)$
$=\frac{1}{2} \times 10^{3}\left[(0.5)^{2}-(1)^{2}\right]+10^{3} \times 10(5-2)$
$=-\frac{3}{8} \times 10^{3}+30 \times 10^{3}=29.625 \times 10^{3} \mathrm{~J} / \mathrm{m}^{3}$
work done per unit volume by gravity froce $=\rho g\left(\mathrm{~h}_{1}-\mathrm{h}_{2}\right)=10^{3} \times 10(2-5)=-30 \times 10^{3} \mathrm{~J} / \mathrm{m}^{3}$
27. $P_{1}+\frac{1}{2} \rho v_{1}{ }^{2}=P_{2}+\frac{1}{2} \rho v_{2}{ }^{2}$
$\Rightarrow \frac{1}{2} \rho\left(\mathrm{v}_{2}{ }^{2}-\mathrm{v}_{1}{ }^{2}\right)=\mathrm{P}_{1}-\mathrm{P}_{2}=\mathrm{h} \rho \mathrm{g}$
$\mathrm{v}_{2}{ }^{2}=\mathrm{v}_{1}{ }^{2}+2 \mathrm{gh}$

$$
\mathrm{v}_{2}=\sqrt{(2)^{2}+2 \times 1000 \times 0.51}=32 \mathrm{~cm} / \mathrm{s}
$$

28. (i) Reaction force
$=\frac{v d m}{d t}=v^{2} \frac{A}{100} \rho \Rightarrow \mathrm{~m}_{\mathrm{o}} \mathrm{a}=2 \mathrm{gh} \times \frac{\mathrm{A}}{100} \rho$
$\Rightarrow(\mathrm{~A} \times \mathrm{h} \times \rho) \mathrm{a}=\frac{2 \mathrm{ghA} \rho}{100} \Rightarrow a=\frac{2 g}{100}=0.2 \mathrm{~m} / \mathrm{s}^{2}$
(ii) $\frac{\mathrm{m}_{0}}{4}=A h^{\prime} \rho \Rightarrow \mathrm{h}^{\prime}=\frac{\mathrm{m}_{0}}{4 \mathrm{~A} \rho}$
$\mathrm{v}=\sqrt{2 \mathrm{gh}^{\prime}}=\sqrt{2 \mathrm{~g} \times \frac{\mathrm{m}_{0}}{4 \mathrm{~A} \rho}}=\sqrt{\frac{\mathrm{m}_{0} g}{2 \mathrm{~A} \rho}}$
29. Let v^{\prime} be the horizontal speed of water when it emerges from the nozzle then from equation of continuity

$$
\mathrm{Av}=\mathrm{av}^{\prime} \Rightarrow \mathrm{v}^{\prime}=\frac{\mathrm{Av}}{\mathrm{a}}
$$

Let t be the time taken by the stream of water to strike the ground then vertical distance

$$
\mathrm{h}=\frac{1}{2} \mathrm{gt}^{2} \Rightarrow \mathrm{t}=\sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}}
$$

\Rightarrow horizontal distance

$$
R=v^{\prime} \sqrt{\frac{2 h}{g}}=\frac{A v}{a} \sqrt{\frac{2 h}{g}}
$$

30. (i) Velocity of flow

$$
=\sqrt{2 \mathrm{gh}}=\sqrt{2 \times 10 \times 3.6}=6 \sqrt{2} \mathrm{~m} / \mathrm{s}
$$

(ii) Rate of flow

$$
\begin{aligned}
=A v & =\pi\left(\frac{4 \times 10^{-2}}{\sqrt{\pi}}\right)^{2} \times 6 \sqrt{2} \\
& =9.6 \times \sqrt{2} \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

(iii) Bernoulli's theorem between surface and A

$$
\begin{aligned}
& P_{\text {atm }}=P+\frac{1}{2} \rho v^{2}+\rho g h \\
\Rightarrow & P=P_{\text {atm }}-\frac{1}{2} \rho v^{2}-\rho g h \\
& =10^{5}-\frac{1}{2} \times 10^{3}(6 \sqrt{2})^{2}-10^{3} \times 10 \times 1.8 \\
= & 4.6 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

32. (i) $v=\sqrt{2 \mathrm{gh}}$ (Acc. to Torricellis law of efflux)
(ii) Reaction of out flowing liquid (F) = Mass coming out per second \times velocity
$\mathrm{F}=\mathrm{v}\left(\frac{\mathrm{dm}}{\mathrm{dt}}\right) \Rightarrow \mathrm{Ma}=\mathrm{v} \frac{\mathrm{dm}}{\mathrm{dt}} \Rightarrow\left(\rho \mathrm{A}_{2} \mathrm{~h}\right) \mathrm{a}=\mathrm{v} \mathrm{\rho A}_{1} \mathrm{v}$
$\left.\because \frac{\mathrm{dm}}{\mathrm{dt}}=\frac{\mathrm{d}\left(\rho \mathrm{A}_{1} \mathrm{x}\right)}{\mathrm{dt}}=\rho \mathrm{A}_{1} \frac{\mathrm{dx}}{\mathrm{dt}}=\rho \mathrm{A}_{1} \mathrm{v}\right]$
$\Rightarrow \mathrm{A}_{2} \mathrm{ha}=\mathrm{v}^{2} \mathrm{~A}_{1} \Rightarrow \mathrm{~A}_{2} \mathrm{ha}=2 \mathrm{ghA}_{1}$
$[\because \mathrm{v}=\sqrt{2 \mathrm{gh}}] \quad \Rightarrow \mathrm{a}=\frac{2 \mathrm{gA}_{1}}{\mathrm{~A}_{2}}$
33. $\mathrm{v}_{\mathrm{A}}=\sqrt{2 \mathrm{~g} \times \frac{\mathrm{h}}{4}}=\sqrt{\frac{\mathrm{gh}}{2}}$
$(\text { Range })_{A}=v_{A} \times t=\sqrt{\frac{g h}{2}} \times \sqrt{2 \times \frac{3 h}{4 g}}$
Bernoulli's theorem between surface and B
$2 \sigma g \frac{\mathrm{~h}}{2}+\sigma \mathrm{g} \frac{\mathrm{h}}{2}=\frac{1}{2}(2 \sigma) \mathrm{v}^{2}+\left(2 \sigma g \frac{h}{4}\right) \Rightarrow v=\sqrt{g h}$
$(\text { Range })_{\mathrm{B}}=\sqrt{\mathrm{gh}} \times \sqrt{\frac{2 \times \mathrm{h}}{4 \mathrm{~g}}} \Rightarrow \frac{\mathrm{R}_{\mathrm{A}}}{\mathrm{R}_{\mathrm{B}}}=\frac{\sqrt{3}}{\sqrt{2}}$
34. Velocity at surface $=$ terminal velocity
$\Rightarrow \sqrt{2 g h}=\frac{2}{9} \frac{r^{2}(\rho-\sigma) g}{\eta}$
$\sqrt{2 g h}=\frac{2}{9} \times \frac{\left(3 \times 10^{-4}\right)^{2} \times\left(10^{4}-10^{3}\right) \times 9.8}{9.8 \times 10^{-6}}=180$
$\Rightarrow h=\frac{(180)^{2}}{2 g}=\frac{180 \times 180}{2 \times 9.8}=1.65 \times 10^{3} \mathrm{~m}$
35. $\mathrm{F}=\eta \mathrm{A} \frac{\mathrm{dv}}{\mathrm{dx}}=1 \times 100 \times 10^{-4} \times \frac{7 \times 10^{-2}}{10^{-3}}=0.7 \mathrm{~N}$
36. $\mathrm{V}=\mathrm{A}(\mathrm{a}-\mathrm{x})$

Final pressure, $P=\frac{P_{0} V_{0}}{V}=\frac{P_{0} a}{a-x}$ or pressure at B, P_{2}
$=P+x \rho g=\frac{P_{0} a}{a-x}+x \rho g$
force exerted by pressure difference is
$f_{1}=\left(P_{B}-P_{A}\right) s=\left(P_{2}-P_{0}\right) s=\left(\frac{P_{0} x}{a-x}+x \rho g\right) s$
Mass of horizontal arm $A(B)$ of liquid is $\mathrm{m}=\mathrm{A}(\ell-\mathrm{x}) \rho$
$\mathrm{r}=\mathrm{x}+\frac{\ell-\mathrm{x}}{2}=\frac{\ell+\mathrm{x}}{2}$
$\{A \rho(\ell-x)\}\left(\frac{\ell+x}{2}\right) \omega_{0}^{2}=\left(\frac{P_{0} x}{a-x}+x \rho g\right) A$
$\mathrm{x}=0.01 \mathrm{~m} \Rightarrow \mathrm{x}=1 \mathrm{~cm}$
length of air column in sealed $\operatorname{arm}(a-x)=6-1=5 \mathrm{~cm}$
38. Upthrust on the block
$=\frac{2}{5} \mathrm{~V} \times 1500\left(\mathrm{~g}+\frac{\mathrm{g}}{2}\right)+\frac{3}{5} \mathrm{~V} \times 1000 \times\left(\mathrm{g}+\frac{\mathrm{g}}{2}\right)$
$=1800 \times 10^{-3} \times 10=18 \mathrm{~N}$
Weight of the block $=10^{-3} \times 800 \times\left(g+\frac{g}{2}\right)=12 \mathrm{~N}$
So Tension in the string $=\mathrm{Th}-\mathrm{mg}=18-12=6 \mathrm{~N}$
39. (i) As for floating $\mathrm{W}=\mathrm{Th}$
$\mathrm{V} \rho \mathrm{g}=\mathrm{V}_{1} \mathrm{~d}_{1} \mathrm{~g}+\mathrm{V}_{2} \mathrm{~d}_{2} \mathrm{~g}$
or $\quad L\left(\frac{A}{5}\right) \rho=\left(\frac{3}{4} L\right)\left(\frac{A}{5}\right) d+\left(\frac{1}{4} L\right)\left(\frac{A}{5}\right) 2 d$
i.e., $\rho=\frac{3}{4} d+\frac{2}{4} d=\frac{5}{4} d$
(ii) Total pressure $=\mathrm{p}_{0}+$ (weight of liquid + weight of solid) A i.e.,

$$
\mathrm{P}=\mathrm{P}_{0}+\frac{\mathrm{H}}{2} \mathrm{dg}+\frac{\mathrm{H}}{2} 2 \mathrm{dg}+\frac{5}{4} \mathrm{~d} \times\left(\frac{\mathrm{A}}{5} \times \mathrm{L}\right) \times \mathrm{g} \times \frac{1}{\mathrm{~A}}
$$

i.e. $P=P_{0}+\frac{3}{2} \mathrm{Hdg}+\frac{1}{4} \mathrm{Ldg}=\mathrm{P}_{0}+\frac{1}{4}(6 \mathrm{H}+\mathrm{L}) \mathrm{dg}$
(b) (i) By Bernoulli theorem for a point just inside and outside the hole

$$
\begin{aligned}
& P_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g h_{1}=P_{2}+\frac{1}{2} \rho v_{2}^{2} \\
& \text { i.e., } P_{0}+\frac{H}{2} d g+\left(\frac{H}{2}-h\right) 2 d g=P_{0}+\frac{1}{2}(2 d) v^{2} \\
& \text { or } g(3 H-4 h)=2 v^{2} \text { or } v=\sqrt{\frac{g}{2}(3 H-4 h)}
\end{aligned}
$$

(ii) As at the hole vertical velocity of liquid is zero so time taken by it to reach the ground,

$$
t=\sqrt{(2 h / g)} \text { So that }
$$

$x=v t \sqrt{\frac{g}{2}(3 H-4 h)} \times \sqrt{\frac{2 h}{g}}=\sqrt{h(3 H-4 h)}$
(iii) For x to be maximum x^{2} must be maximum,
i.e., $\frac{d}{d h}\left(x^{2}\right)=0 \quad$ or $\quad \frac{d}{d h}\left(3 H h-4 h^{2}\right)=0$
or $3 \mathrm{H}-8 \mathrm{~h}=0$, i.e., $\mathrm{h}=(3 / 8) \mathrm{H}$
and $X_{\max }=\sqrt{\frac{3 H}{8}\left(3 H-\frac{3}{2} H\right)}=\frac{3}{4} H$
41. (i) $\tan \theta=\frac{\mathrm{a}}{\mathrm{g}}$
$\mathrm{a}=4 \mathrm{~m} / \mathrm{s}^{2}$
(ii) $\mathrm{New} \mathrm{a}=4.8$

$\tan \theta=\frac{4.8}{10} \Rightarrow \frac{P}{5 m} \Rightarrow 2.4$
$=$ volume of water left
$\Rightarrow \frac{1}{2} \times(2.4)(5) \times 4+0.6 \times 20$

$\Rightarrow 24+12=36 \mathrm{~m}^{3}$
$\mathrm{V}_{\mathrm{f}}=36 \mathrm{~m}^{3} ; \mathrm{V}_{\mathrm{i}}=5 \times 4 \times 2 \Rightarrow 40 \mathrm{~m}^{3}$
$\left(\frac{V_{f}-V_{i}}{V_{1}}\right) \times 100=10 \%$
(iii) $\tan \theta=\frac{9}{10}=\frac{x}{4}=\frac{9}{10}$
$60-\frac{20 \mathrm{x}^{2}}{9}=40$
forces on front wall is 0
$\Rightarrow \int_{0}^{3} \rho\left[\frac{5}{3}+x \tan \theta\right] 9(4 \mathrm{dx})$

$\Rightarrow 36 \times 10^{3}\left[\left[\frac{5}{3} \mathrm{x}\right]+\frac{9 \mathrm{x}^{2}}{20}\right] \Rightarrow 36 \times 10^{3}+\left[\frac{15}{3}+\frac{81}{2}\right]$
$\Rightarrow\left(\rho \times 9 \times \frac{5}{3}+\rho g \frac{\mathrm{~h}}{2}\right) 12 \Rightarrow(\rho 15+15 \rho)=360 \rho$
42. Pressure at $A, P_{A}=P_{0}+h \rho_{2} g+(h-y) \rho_{1} g$

Pressure at $B, P_{B}=P_{0}$
According to Bernoulli's theorem,
pressure energy at $\mathrm{A}=$ pressure energy at $\mathrm{B}+$ kinetic energy at B
$\therefore \mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{B}}+\frac{1}{2} \rho_{1} \mathrm{v}^{2}$
$\therefore \mathrm{v}=4 \mathrm{~ms}^{-1}$
$\therefore F=(A v \rho)(v-0)=A \rho v^{2}$
or $\mathrm{F}=7.2 \mathrm{~N}$

Total mass of the liquid in the cylinder is
$\mathrm{m}=\mathrm{Ah} \rho_{1}+\mathrm{Ah} \rho_{2}=450 \mathrm{~kg}$
Limiting friction $=\mu \mathrm{mg}=45 \mathrm{~N}$
$\therefore \mathrm{F}<$ Limiting friction, therefore, minimum force required is zero.
Consider free body diagram for maximum value of force.
Considering vertical forces, $\mathrm{N}=\mathrm{mg}$
Now considering horizontal forces,
$\mathrm{F}_{\text {max }}=\mathrm{F}+\mu \mathrm{N}$ orF $_{\max }=52.2 \mathrm{~N}$
43. $\mathrm{W}+\mathrm{N}_{\mathrm{v}}=\rho g h \pi \mathrm{R}^{2}$

$$
\begin{aligned}
& \mathrm{W}=\int \rho g \mathrm{x}(2 \pi \mathrm{r}) \frac{\mathrm{dx}}{\cos \alpha} \sin \alpha \\
& \int_{0}^{\mathrm{h}} \rho g \mathrm{x} 2 \mathrm{~h}-(9+\mathrm{x} \tan \alpha) \frac{\mathrm{dy}}{\cos \alpha} \\
\Rightarrow & \rho g 2 \pi \int_{0}^{\mathrm{h}} \mathrm{ax} \frac{\mathrm{dx}}{\cos \alpha}+\int_{0}^{\mathrm{h}} \mathrm{x}^{2} \tan \alpha \mathrm{dx} \\
\Rightarrow & \rho g 2 \pi\left[\frac{\mathrm{ah}^{2}}{2 \cos \alpha}+\frac{\mathrm{h}^{3}}{3} \tan \alpha\right] \\
\Rightarrow & \rho g 2 \pi \mathrm{~h}^{2}\left[\frac{9 \mathrm{R}-\mathrm{h} \sin \alpha}{2 \cos \alpha}+\frac{\mathrm{h}}{3} \tan \alpha\right] \\
\Rightarrow & \mathrm{W}= \\
& \rho g 2 \pi \mathrm{~h}^{2}\left[\frac{\mathrm{R}}{2 \cos \alpha}-\frac{\mathrm{h}}{6} \tan \alpha\right] \\
& =\rho g \pi \mathrm{~h}^{2}\left[\frac{\mathrm{R}}{\cos \alpha}-\frac{h}{3} \tan \alpha\right] \\
\Rightarrow & \rho=\frac{\mathrm{W}}{\mathrm{~g} \pi \mathrm{~h}^{2}\left[\frac{\mathrm{R}}{\cos \alpha}-\frac{\mathrm{h}}{3} \tan \alpha\right]}
\end{aligned}
$$

44. Initially : $\mathrm{mg}=\mathrm{f}_{\mathrm{B}} \Rightarrow \mathrm{mg}=\mathrm{Vd}_{\mathrm{L}} \mathrm{g}=\operatorname{Ahd}_{\mathrm{L}} \mathrm{g}$ when pulled slightly up by x then

$$
\begin{aligned}
\mathrm{f}_{\text {net }} & =\mathrm{mg}-\mathrm{f}_{\mathrm{B}}=\mathrm{mg}-\mathrm{A}(\mathrm{~h}-\mathrm{x}) \mathrm{d}_{\mathrm{L}} \mathrm{~g} \\
& =\mathrm{mg}-\operatorname{Ahd}_{\mathrm{L}} \mathrm{~g}+\operatorname{Axd}_{\mathrm{L}} \mathrm{~g} \Rightarrow \mathrm{f}_{\text {net }}=\operatorname{Axd}_{\mathrm{L}} \mathrm{~g}
\end{aligned}
$$

force directly proportional to x therefore if will perform S.H.M.
(ii) $\mathrm{ma}=\left(\mathrm{mg}-\mathrm{Vd}_{\mathrm{L}}(\mathrm{g})\right)$

$\frac{d^{2} \mathrm{x}}{\mathrm{dt}^{2}}+\mathrm{gx}+\mathrm{g}$ can be compared with
$\frac{d^{2} x}{d t^{2}}+\omega^{2} x+g=0 \Rightarrow w=\sqrt{g}$
$\mathrm{T}=\frac{2 \pi}{\omega} \Rightarrow$ and time required is $=\mathrm{T} / 2, \mathrm{t}=1 \mathrm{sec}$
45. (i) $A H d_{m} g=A h d_{L} g$
$h=H \frac{d_{m}}{d_{L}} ; f_{\text {net }}=m g-f_{B}$
$\mathrm{f}_{\text {net }}=\mathrm{AHd}_{\mathrm{m}} \mathrm{g}-\operatorname{Axgd}_{\mathrm{L}}$
If will perform SHM about its position

$\mathrm{x}=\frac{\mathrm{d}_{\mathrm{M}}}{\mathrm{d}_{\mathrm{L}}} \mathrm{H}$, with $\omega=\frac{\mathrm{d}_{\mathrm{L}} \mathrm{g}}{\mathrm{d}_{\mathrm{M}}}$
$f_{\text {net }}=(A g) d_{L}\left[\frac{H d_{m}}{d_{L}}-x\right] d x$
$d \omega=\int_{0}^{0.8 \mathrm{H}} \mathrm{f}_{\text {net }} d x=\operatorname{Agd}_{\mathrm{L}}\left[\frac{H d_{m}}{d_{L}} x-\frac{x^{2}}{2}\right]_{0}^{0.8 \mathrm{H}}$
$=A g\left[H(0.8) x-\frac{x^{2}}{2}\right]_{0}^{0.8}$
$=\mathrm{Ag}\left[\mathrm{H}(0.8)(0.8) \mathrm{H}-\frac{(0.8)^{2} \mathrm{H}^{2}}{2}\right]_{0}^{0.8}=\frac{\mathrm{AgH}^{2} \mathrm{dm}^{2}}{2}$
$\mathrm{A}=4000 \times 10^{-4} ; \mathrm{g}=10, \mathrm{H}=50 \times 10^{-2}$;
$\mathrm{d}_{\mathrm{m}}=8 \times 10^{+2}$
$\omega=\frac{4000 \times 10^{-4} \times 10 \times 2.500 \times 10^{-4} \times .64}{2}$
$\omega=.32 \times 10^{4} \Rightarrow 32 \mathrm{kgC}$
(ii) Particle starts oscillating in the fluid
\therefore Work done by person
$=$ Total energy of oscillation work $=\frac{1}{2} \mathrm{M} \omega^{2} \mathrm{~A}^{2}$
$\Rightarrow \frac{1}{2}(A H) d_{m} \frac{d_{L}}{d_{m}} g H\left(1-\frac{d_{m}}{L}\right)^{2}$

$$
\text { work }=\frac{1}{2} \mathrm{AH}^{2}\left(1-\frac{\mathrm{d}_{\mathrm{m}}}{\mathrm{~d}_{\mathrm{L}}}\right)^{2} \mathrm{~g}=2 \mathrm{~kg} \mathrm{f}-\mathrm{m}
$$

46. $f_{\text {net }}=f_{2}-f_{1}$
$\mathrm{f}_{2}=\frac{\mathrm{dp}}{\mathrm{dt}}=\mathrm{v}_{2} \frac{\mathrm{dm}}{\mathrm{dt}}=\rho \mathrm{Sv}_{2}{ }^{2}$
$\mathrm{f}_{1}=\frac{\mathrm{dp}}{\mathrm{dt}}=\mathrm{v}_{1} \frac{\mathrm{dm}}{\mathrm{dt}}=\rho \mathrm{sv}_{1}^{2}$

$\mathrm{f}_{\text {net }}=\rho \mathrm{s}\left(\mathrm{v}_{2}{ }^{2}-\mathrm{v}_{1}{ }^{2}\right)=\rho \mathrm{s} 2 \mathrm{~g}\left(\mathrm{~h}_{2}-\mathrm{h}_{1}\right)$
$\mathrm{f}_{\text {net }} \Rightarrow 0.51$ Newton
47. $\mathrm{mg} \frac{\mathrm{b}}{2} \sin \theta=\mathrm{f}_{\mathrm{B}}\left(\mathrm{b}-\frac{\mathrm{x}}{2}\right) \sin \theta$
(Ab) $d_{m} g \frac{b}{2}=(A x) d_{L} g\left(\frac{b x}{2}\right) ; \frac{5}{9} \frac{b^{2}}{2}=b x-\frac{x^{2}}{2}$
By solving It $x=\frac{b}{3}$
48. $\overrightarrow{\mathrm{f}}_{\mathrm{g}}+\overrightarrow{\mathrm{f}}_{\mathrm{S}, \mathrm{T}}=\rho_{\omega} \mathrm{ghA}$
$m g+S(4 a)=\rho_{\omega} g h a^{2}$
$h=\frac{m g+4 a S}{\rho_{\omega} g a^{2}}$

49. We consider a ring element of radius r and thickness $d r$ whose centre is at the centre of disc. The velocity of fluid at distance r from axis is $v=r \omega$
$\therefore \quad \frac{\mathrm{dv}}{\mathrm{dx}}=\omega \frac{\mathrm{dr}}{\mathrm{dx}}$
Where $d x$ is the thickness of layer of liquid.
The area of the considered element is $\mathrm{dA}=(2 \pi \mathrm{rdr})$
\therefore the viscous force on the considered element is

$$
\mathrm{dF}=\eta(2 \pi \mathrm{rdr}) \frac{\mathrm{dv}}{\mathrm{dx}}
$$

Here, velocity gradient is

$$
\begin{aligned}
\frac{d v}{d x} & =\frac{v}{h}=\frac{r \omega}{h} \\
\therefore \quad d F & =\eta(2 \pi r d r) \frac{r \omega}{h}=\frac{2 \pi \eta \omega}{h} r^{2} d r
\end{aligned}
$$

The power developed on the considered element by viscous force is
$\mathrm{dP}=\mathrm{vdF}=(\mathrm{r} \omega) \frac{2 \pi \eta \omega}{\mathrm{~h}} \mathrm{r}^{2} \mathrm{dr}=\frac{2 \pi \eta \omega^{2}}{\mathrm{~h}} \mathrm{r}^{3} \mathrm{dr}$
\therefore Total power developed due to viscous force is

$$
\begin{aligned}
P & =2 \int_{r=0}^{r=R} d P(\text { on both sides }) \\
& =2 \int_{0}^{R} \frac{2 \pi \eta \omega^{2}}{h} r^{3} d r=\frac{\pi \eta \omega^{2} \mathrm{R}^{4}}{h} \\
& =\frac{3.14 \times 0.08 \times 10^{-1} \times(60)^{2} \times\left(10^{-1}\right)^{4}}{1 \times 10^{-3}}=9 \mathrm{~W}
\end{aligned}
$$

50. From diagram $r \cos \theta=\frac{d}{2} \Rightarrow r=\frac{d}{2 \cos \theta}$ $\mathrm{P}_{0} \ell \mathrm{~A}=\mathrm{P}_{\mathrm{T}}(\mathrm{A})(\ell-\mathrm{h})$
$\mathrm{P}_{\mathrm{T}}=\frac{\mathrm{P}_{0} \ell}{\ell-\mathrm{h}} ; \mathrm{P}_{\mathrm{A}}=\left(\frac{\mathrm{P}_{0} \ell}{\ell-\mathrm{h}}-\frac{2 \mathrm{~T}}{\mathrm{r}}\right)$
$P_{B}=\frac{P_{0} \ell}{\ell-h}-\frac{2 T}{r}+\rho g h=P_{0}$

$=\left(\frac{P_{0} h}{\ell-h}+\rho g h\right)=\frac{2 T}{d}(2 \cos \theta)$
$T=\left(\frac{P_{0} h}{\ell-h}+\rho g h\right) \frac{d}{4 \cos \theta}$

EXERCISE - 5

Part \# I : AIEEE/JED-MAIN

1. Elastic energy $=\frac{1}{2} \times F \times \mathrm{x}$
$\mathrm{F}=200 \mathrm{~N}, \mathrm{x}=1 \mathrm{~mm}=10^{-3} \mathrm{~m}$
$\therefore E=\frac{1}{2} \times 200 \times 1 \times 10^{-3}=0.1 \mathrm{~J}$
2. Work done $\frac{1}{2} \mathrm{kx}^{2}=\frac{1}{2} \mathrm{k} \ell^{2}$ where ℓ is the total extensions. $=\frac{1}{2}(\mathrm{k} \ell) \ell=\frac{1}{2} \mathrm{~F} \ell$
3. Energy density
$=\frac{\text { Energy }}{\text { Volume }}=\frac{1}{2} \times$ Stress \times Strain
$=\frac{1}{2} \operatorname{Stress} \times \frac{\text { Stress }}{\mathrm{Y}}=\frac{1}{2} \frac{\mathrm{~S}^{2}}{\mathrm{Y}}$
Energy density $=\frac{1}{2} \frac{\mathrm{~S}^{2}}{\mathrm{Y}}$
4. Velocity of efflux through a small hole $=\sqrt{2 g h}$ where h is the position of the small hole from the top of the vessel.

$\mathrm{v}_{\text {efflux }}=\sqrt{2 \times 10 \times 20}=20 \mathrm{~m} / \mathrm{s}$
5. The viscous force experienced by the spherical ball is expressed as
$F=6 \pi \eta r v \Rightarrow f \propto r \Rightarrow F \propto v$
6. Excess pressure inside a soap bubble is $\mathrm{P}=\frac{4 \mathrm{~T}}{\mathrm{r}}$ Air will flow from the bubble at high pressure to the bubble at lower pressure as $\mathrm{P} \propto \frac{1}{\mathrm{r}}$, hence bubble of smaller radius will be at higher pressure, hence air will flow from smaller to the bigger sphere.
7. Water will rise to the full length of capillary tube
8. $\frac{v_{s}}{v_{g}}=\frac{\left(\rho_{s}-\rho_{\ell}\right)}{\left(\rho_{g}-\rho_{\ell}\right)} \Rightarrow \mathrm{vs}=0.1 \mathrm{~m} / \mathrm{s}$
9. $\rho_{1} V g-\rho_{2} V g=k v_{T}^{2} \Rightarrow v_{T}=\sqrt{\frac{V g\left(\rho_{1}-\rho_{2}\right)}{k}}$
10. As liquid 1 floats above liquid $2, \rho_{1}<\rho_{2}$ The ball is unable to sink into liquid $2, \rho_{3}<\rho_{2}$ The ball is unable to rise over liquid $1, \rho_{1}<\rho_{3}$ Thus $\rho_{1}<\rho_{3}<\rho_{2}$
11. Capillary rise $\frac{2 \mathrm{~T} \cos \theta}{\rho g r}$.

As soap solution has lower T , h will be low
14. $\therefore Y=\frac{F / A}{\Delta \ell / \ell} \quad \therefore F=\frac{Y A^{2} \Delta \ell}{\ell A}$
$F=\frac{\mathrm{YA}^{2} \Delta \ell}{v}$ here $\mathrm{v}=$ volume of wire
$F \propto A^{2} \Rightarrow \frac{F_{2}}{F_{1}}=\left(\frac{A_{2}}{A_{1}}\right)^{2}=\left(\frac{3 A}{A}\right)^{2}=9 \Rightarrow F_{2}=9 F$
15. In equilibrium ball will remain at the interface of water and oil.
16. According to equation of continuity
$A_{1} V_{1}=A_{2} V_{2} \quad$ or $\quad r_{2}=\sqrt{\frac{r_{1}^{2} v_{1}}{v_{2}}}$
Velocity of stream at 0.2 m below tap.
$\mathrm{V}_{2}^{2}=\mathrm{V}_{1}^{2}+2 \mathrm{as}=0.16+2 \times 10 \times 0.2=4.16 \mathrm{~m} / \mathrm{s}$
$r_{2}=\sqrt{\frac{r_{1}{ }^{2} v_{1}}{v_{2}}}=\sqrt{\frac{16 \times 10^{-6} \times 0.4}{2}}=\sqrt{3.2} \times 10^{-3} \mathrm{~m}$
So diameter $=2 \times \sqrt{3.2} \times 10^{-3} \mathrm{~m}$
$=2 \times 1.8 \times 10^{-3}=3.6 \times 10^{-3} \mathrm{~m}$
17. $\mathrm{W}=8 \pi \mathrm{~T}\left[\left(\mathrm{r}_{2}^{2}\right)-\left(\mathrm{r}_{1}^{2}\right)\right]$

$$
\begin{aligned}
& =8 \times \pi \times 0.03[25-9] \times 10^{-4}=\pi \times 0.24 \times 16 \times 10^{-4} \\
& =3.8 \times 10^{-4} \pi=0.384 \pi \mathrm{~mJ} \approx 0.4 \pi \mathrm{~mJ}
\end{aligned}
$$

18. By volume conservation
$\frac{4}{3} \pi R^{3}=2\left(\frac{4}{3} \pi r^{3}\right) \Rightarrow R=2^{1 / 3} r$
Surface energy E $=T(A)$
$=T\left(4 \pi R^{2}\right)=T\left(4 \pi 2^{2 / 3} r^{2}\right)=2^{8 / 3} \pi r^{2} T$
19. Terminal velocity $\mathrm{V} \propto \frac{\mathrm{d}_{\mathrm{b}}-\mathrm{d}_{\ell}}{\eta}$
$\frac{V_{1}}{V_{2}}=\frac{7.8-1}{8.5 \times 10^{-4}} \times \frac{13.2}{7.8-1.2}$
$\frac{10}{V_{2}}=1.6 \times 10^{4}$
$V_{2}=\frac{10}{1.6 \times 10^{4}}=6.25 \times 10^{-4}$
20. weight $=\mathrm{mg}=1.5 \times 10^{-2} \mathrm{~N}$ (given)

$$
\begin{aligned}
\text { length }=\ell & =30 \mathrm{~cm} \text { (given) } \\
& =0.3 \mathrm{~m}
\end{aligned}
$$

$2 \mathrm{~T} \ell=\mathrm{mg}$
$\mathrm{T}=\frac{\mathrm{mg}}{2 \ell}=\frac{1.5 \times 10^{-2}}{2 \times 0.3}=0.025 \mathrm{~N} / \mathrm{m}$.
21.1 22.1 23. 1
24. $\mathrm{T}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}}} ; \mathrm{T}_{\mathrm{M}}=2 \pi \sqrt{\frac{\ell^{\prime}}{\mathrm{g}}}$
$\gamma=\frac{\mathrm{Mg} / \mathrm{A}}{\Delta \ell / \ell} \Rightarrow \frac{\ell^{\prime}-\ell}{\ell}=\frac{\mathrm{Mg}}{\gamma \mathrm{A}}=\frac{\ell^{\prime}}{\ell}=1+\frac{\mathrm{Mg}}{\gamma \mathrm{A}}$
Also:

$$
\begin{aligned}
& \frac{T_{M}}{T}=\sqrt{\frac{\ell^{\prime}}{\ell}} \therefore T_{M}=T\left[1+\frac{M g}{\gamma A}\right]^{1 / 2} \\
& \Rightarrow \frac{T_{M}^{2}}{T^{2}}=1+\frac{M g}{\gamma A} \Rightarrow\left[\frac{T_{M}^{2}}{T^{2}}-1\right]=\frac{M g}{\gamma A} \\
& \Rightarrow \frac{1}{\gamma}=\frac{A}{M g}\left[\left(\frac{T_{M}}{T}\right)^{2}-1\right]
\end{aligned}
$$

Part \# II : IIT-JEE ADVANCED

1. From equation of continuity $\mathrm{v}_{1} \mathrm{~A}_{1}=\mathrm{v}_{2} \mathrm{~A}_{2}$ and
$\mathrm{v}_{2}^{2}-\mathrm{u}^{2}=2 \mathrm{gs} ; \mathrm{v}_{2}^{2}-1=2 \times 10 \times 0.15 \Rightarrow \mathrm{v}_{2}=2 \mathrm{~m} / \mathrm{s}$
Hence $A_{2}=\frac{v_{1} \mathrm{~A}_{1}}{\mathrm{v}_{2}}=\frac{1 \times 10^{-4}}{2}=5 \times 10^{-5} \mathrm{~m}^{2}$
2. If we apply Newton's law to find the force exerted by the molecules on the walls of the container, we will have to apply a pseudo force (the frame of molecules is an accelerated frame). This pseudo force acting on gas molecules will act in opposite to the direction of motion of closed compartment. The result will be more pressure on the rear side and less pressure on the front side.
3. Equating the rate of flow

$$
\begin{aligned}
& \sqrt{(2 g y)} \times \mathrm{L}^{2}=\sqrt{(2 \mathrm{~g} \times 4 \mathrm{y})} \pi \mathrm{R}^{2} \\
& \Rightarrow \mathrm{~L}^{2}=2 \pi \mathrm{R}^{2} \Rightarrow \mathrm{R}=\frac{\mathrm{L}}{\sqrt{2 \pi}}
\end{aligned}
$$

5. According to Archimedes principle
Upthrust $=\mathrm{Wt}$. of fluid displaced.

$$
\begin{aligned}
\therefore \mathrm{F}_{\text {bottom }} & =\mathrm{F}_{\text {top }}+\mathrm{V} \rho \mathrm{~g} \\
& =\mathrm{P}_{1} \times \mathrm{A}+\mathrm{V} \rho \mathrm{~g} \\
& =(\mathrm{h} \rho \mathrm{~g}) \times\left(\pi \mathrm{R}^{2}\right)+\mathrm{V} \rho \mathrm{~g} \\
& =\rho \mathrm{g}\left[\pi \mathrm{R}^{2} \mathrm{~h}+\mathrm{V}\right]
\end{aligned}
$$

6. $\quad \ell$ decreases as the block moves up. h will also decreases because when the coin is in the water it will displace equal volume of water, whereas when it is on the block an equal weight of water is displaced.
7. $Y=\frac{F}{A} / \frac{\Delta \ell}{\ell}=\frac{20 \times 1}{10^{-6} \times 10^{-4}}=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$.
8. $\mathrm{K}=\frac{\Delta \mathrm{P}}{\left(-\frac{\Delta \mathrm{v}}{\mathrm{v}}\right)}=\frac{(1.165-1.01) \times 10^{5}}{10^{-3}}=1.55 \times 10^{5} \mathrm{~Pa}$
9. The square of the velocity of flux

$$
\mathrm{v}^{2}=\frac{2 \mathrm{gh}}{\sqrt{1-\left(\frac{\mathrm{A}_{0}}{\mathrm{~A}}\right)^{2}}}=\frac{2 \times 10 \times 2.475}{\sqrt{1-(0.1)^{2}}}=50 \mathrm{~m}^{2} / \mathrm{s}^{2}
$$

11. $\mathrm{P}_{2}-\mathrm{P}_{\mathrm{atm}}=\frac{4 \mathrm{~T}}{\mathrm{R}_{2}}, \mathrm{P}_{1}-\mathrm{P}_{\mathrm{atm}}=\frac{4 \mathrm{~T}}{\mathrm{R}_{1}}$

Here $\quad R_{2}>R_{1}$. So $P_{2}<P_{1}$
$\Rightarrow \quad$ Air will flow from end 1 to end 2 .

Comprehension

1. (a) Consider the equilibrium of wooden block. Forces acting in the downward direction are Weight of wooden cylinder

$=\pi(4 \mathrm{r})^{2} \times \mathrm{h} \times \frac{\rho}{3} \times \mathrm{g}=\pi \times 16 \mathrm{r}^{2} \frac{\mathrm{~h} \rho}{3} \mathrm{~g}$
(b) Force due to pressure $\left(\mathrm{P}_{1}\right)$ created by liquid of height h_{1} above the wooden block is

$$
\begin{aligned}
=\mathrm{P}_{1} \times \pi\left(4 \mathrm{r}^{2}\right) & =\left[\mathrm{P}_{0}+\mathrm{h}_{1} \rho \mathrm{~g}\right] \times \pi(4 \mathrm{r})^{2} \\
& =\left[\mathrm{P}_{0}+\mathrm{h}_{1} \rho \mathrm{~g}\right] \pi \times 16 \mathrm{r}^{2}
\end{aligned}
$$

Force acting on the upward direction due to pressure P_{2} exerted from below the wooden block and atmospheric pressure is

$$
\begin{aligned}
& =\mathrm{P}_{2} \times \pi\left[(4 \mathrm{r})^{2}-(2 \mathrm{r})^{2}\right]+\mathrm{P}_{0} \times(2 \mathrm{r})^{2} \\
& =\left[\mathrm{P}_{0}+\left(\mathrm{h}_{1}+\mathrm{h}\right) \rho \mathrm{g}\right] \times \pi \times 12 \mathrm{r}^{2}+4 \mathrm{r}^{2} \mathrm{P}_{0}
\end{aligned}
$$

At the verge of rising
$\left[\mathrm{P}_{0}+\left(\mathrm{h}_{1}+\mathrm{h}\right) \rho \mathrm{g}\right] \pi \times 12 \mathrm{r}^{2}+4 \mathrm{r}^{2} \mathrm{P}_{0}$
$=\pi \times 10 \mathrm{r}^{2} \mathrm{~h} \times \frac{\rho}{3} \mathrm{~g}+\left[\mathrm{P}_{0}+\mathrm{h}_{1} \rho \mathrm{~g}\right] \times \pi \times 16 \mathrm{r}^{2}$
$\Rightarrow 12 h_{1}+12 \mathrm{~h}=\frac{16 \mathrm{~h}}{3}+16 \mathrm{~h}_{1} \Rightarrow \frac{5 \mathrm{~h}}{3}=\mathrm{h}_{1}$
2. (b) Again considering equilibrium of wooden block.

Total Downward force $=$ Total force upwards
Wt. of block + force due to atmospheric pressure $=$ Force due to pressure of liquid + Force due to atmospheric pressure
$\pi\left(16 r^{2}\right) \frac{\rho}{3}+g+P_{0} \pi \times 16 r^{2}$
$=\left[\mathrm{h}_{2} \mathrm{\rho g}+\mathrm{P}_{0}\right] \pi\left[16-4 \mathrm{r}^{2}\right]+\mathrm{P}_{0} \times 4 \mathrm{r}^{2}$
$\pi\left(16 r^{2}\right) \mathrm{h} \frac{\rho}{\mathrm{g}} \mathrm{g}=\mathrm{h}_{2} \rho \mathrm{~g} \times \pi \times 12 \mathrm{r}^{2}$
$\Rightarrow 16 \frac{\mathrm{~h}}{3}=12 \mathrm{~h}_{2} \Rightarrow \frac{4}{9} \mathrm{~h}=\mathrm{h}_{2}$
3. (a) When the height h_{2} of water level is further decreased, then the upward force acting on the wooden block decreases. The total force downward remains the same. This difference will be compensated by the normal reaction by the tank wall on the wooden block. Thus the block does not moves up and remains at its original position.

Subjective

1. For the wooden stick-mass system to be in stable equilibrium the center of gravity of stick-mass system should be lower than the center of buoyancy. Also in equilibrium the centre of gravity (G) and the center of buoyancy (B) lie in the same vertical axis.
The above condition 1 will be satisfied if the mass is towards the lower side of the stick as shown in the figure. The two forces will create a torque which will
 bring the stick-
mass system in the vertical position of the stable equilibrium. Let ℓ be the length of the stick immersed in the liquid.
$\mathrm{OB}=\frac{\ell}{2}$. Let $\mathrm{OG}=\mathrm{y}$
For vertical equilibrium $\mathrm{F}_{\mathrm{G}}=\mathrm{F}_{\mathrm{B}} \Rightarrow(\mathrm{M}+\mathrm{m}) \mathrm{g}=\mathrm{F}_{\mathrm{B}}$
$\Rightarrow \pi \mathrm{R}^{2} \mathrm{~L} \rho \mathrm{~g}+\mathrm{mg}=\pi \mathrm{R}^{2} \ell \sigma \mathrm{~g}$

$$
\begin{equation*}
\ell=\frac{\pi \mathrm{R}^{2} \mathrm{~L} \rho+\mathrm{m}}{\pi \mathrm{R}^{2} \sigma} \tag{i}
\end{equation*}
$$

Now using the concept of centre of mass to find y.
Then $y=\frac{M y_{1}+m y_{2}}{M+m}$
Since mass m is at O the origin $\quad \therefore \mathrm{y}_{2}=0$

$$
\begin{align*}
\therefore y= & \frac{M(L / 2)+m \times O}{M+m}=\frac{M L}{2(M+m)} \\
& =\frac{\left(\pi R^{2} L \rho\right) L}{2\left(\pi R^{2} L \rho+m\right)} \tag{ii}
\end{align*}
$$

Therefore for stable equilibrium $\frac{\ell}{2}>y$

$$
\begin{aligned}
& \therefore \frac{\pi R^{2} L \rho+m}{2 \pi R^{2} \sigma}>\frac{\left(\pi R^{2} L \rho\right) L}{2\left(\pi R^{2} L \rho+m\right)} \\
& \Rightarrow m \geq \pi R^{2} L(\sqrt{\rho \sigma}-\rho)
\end{aligned}
$$

\therefore Minimum value of m is $\pi R^{2} \mathrm{~L}(\sqrt{\rho \sigma}-\rho)$
2. (i) As the pressure exerted by liquid A on the cylinder is radial and symmetric. The force due to this pressure cancels out and the net value is zero.
(ii) For equilibrium

Buoyant force $=$ weight of the body
$\Rightarrow h_{A} \rho_{A} A g+h_{B} \rho_{B} A g=\left(h_{A}+h+h_{B}\right) A \rho_{C} g$
(where $\rho_{c}=$ density of cylinder)
$\mathrm{h}=\left(\frac{\mathrm{h}_{\mathrm{A}} \rho_{\mathrm{A}}+\mathrm{h}_{\mathrm{B}} \rho_{\mathrm{B}}}{\rho_{\mathrm{c}}}\right)-\left(\mathrm{h}_{\mathrm{A}}+\mathrm{h}_{\mathrm{B}}\right)=0.25 \mathrm{~cm}$
(iii) $\mathrm{a}=\frac{\mathrm{F}_{\text {Buoyant }}-\mathrm{Mg}_{\mathrm{g}}}{\mathrm{M}}$
$=\left[\frac{h_{A} \rho_{A}+\rho_{B}\left(h+h_{B}\right)-\left(h+h_{A}+h_{B}\right) \rho_{C}}{\rho_{C}\left(h+h_{A}+h_{C}\right)}\right] g=\frac{g}{6}$ upwards
3. When the force due to excess pressure in the bubble equals the force of air striking at the bubble, the bubble will detach from the ring
$\therefore \rho A v^{2}=\frac{4 T}{r} \times A \Rightarrow r=\frac{4 T}{\rho v^{2}}$
4. When the tube is not there, using Bernoulli's theorem

$$
\begin{aligned}
& \mathrm{P}+\mathrm{P}_{0}+\frac{1}{2} \rho \mathrm{v}_{1}^{2}+\rho \mathrm{gH}=\frac{1}{2} \rho \mathrm{v}_{0}^{2}+\mathrm{P}_{0} \\
& \Rightarrow \quad P+\rho g H=\frac{1}{2} \rho\left(v_{0}^{2}-v_{1}^{2}\right)
\end{aligned}
$$

But according to equation of continuity

$$
\begin{aligned}
& \mathrm{A}_{1} \mathrm{v}_{1}=\mathrm{A}_{2} \mathrm{v}_{2} \text { or } \mathrm{v}_{1}=\frac{\mathrm{A}_{2} \mathrm{v}_{0}}{\mathrm{~A}_{1}} \\
& \therefore \quad P+\rho g H=\frac{1}{2} \rho\left[v_{0}^{2}-\left(\frac{A_{2}}{A_{1}} v_{0}\right)^{2}\right] \\
& \mathrm{P}+\rho \mathrm{gH}=\frac{1}{2} \rho \mathrm{v}_{0}^{2}\left[1-\left(\frac{\mathrm{A}_{2}}{\mathrm{~A}_{1}}\right)^{2}\right]
\end{aligned}
$$

Here $P+\rho g H=\Delta P$
According to Poisseuille's equation
$\mathrm{Q}=\frac{\pi(\Delta \mathrm{P}) \mathrm{a}^{4}}{8 \eta \ell} \quad \therefore \eta=\frac{\pi(\Delta P) a^{4}}{8 Q \ell}$
$\therefore \eta=\frac{\pi(P+\rho g H) a^{4}}{8 Q \ell}=\frac{\pi}{8 Q \ell} \times \frac{1}{2} \rho v_{0}^{2}\left[1-\left(\frac{\mathrm{A}_{2}}{\mathrm{~A}_{1}}\right)^{2}\right] \times \mathrm{a}^{4}$
where $\frac{A_{2}}{A_{1}}=\frac{b^{2}}{D^{2}}$
5. The free body diagram of wire is given below.

If ℓ is the length of wire, then for equilibrium $2 \mathrm{~F} \sin \theta=\mathrm{W}$.
$\mathrm{F}=\mathrm{S} \times \ell \Rightarrow 2 \mathrm{~S} \times \ell \times \sin \theta=\lambda \times \ell \times \mathrm{g}$

$$
\text { or } S=\frac{\lambda g}{2 \sin \theta} \text { also } \sin \theta=y / a
$$

$\therefore \quad S=\frac{\lambda g}{2 y / a}=\frac{a \lambda g}{2 y} \Rightarrow$ Surface tension $S=\frac{a+g}{2 y}$
6. From law of continuous $A_{1} v_{1}=A_{2} \mathrm{v}_{2}$
$\Rightarrow \quad \mathrm{v}_{2}=\frac{\pi \times\left(4 \times 10^{-3}\right)^{2} \times 0.25}{\pi \times\left(1 \times 10^{-3}\right)^{2}}=4 \mathrm{~m} / \mathrm{s}$
and $\quad \mathrm{x}=\mathrm{v} \times \mathrm{t}=\mathrm{v} \times \sqrt{\frac{2 h}{\mathrm{~g}}}=2 \mathrm{~m}$
7. Weight of liquid of height H
$=\frac{\pi \mathrm{d}^{2}}{4} \times \mathrm{H} \times \rho \times \mathrm{g}$
Let us consider a mass dm situated at a distance x from A as shown in the figure.

The centripetal force required for the mass to rotate $=(\mathrm{dm}) \times \omega^{2}$
\therefore The total centripetal force required for the mass of length
L to rotate $=\int_{0}^{L}(\mathrm{dm}) \mathrm{x} \omega^{2}$
Here, $\quad d m=\rho \times \frac{\pi d^{2}}{4} \times \mathrm{dx}$
\therefore Total centripetal force

$$
\begin{align*}
= & \int_{0}^{L}\left(\rho \times \frac{\pi d^{2}}{4} \times d x\right) \times x \omega^{2} \\
= & \rho \times \frac{\pi d^{2}}{4} \times \omega^{2} \int_{0}^{L} x d x=\rho \times \frac{\pi d^{2}}{4} \times \omega^{2} \times \frac{L^{2}}{2} \tag{ii}
\end{align*}
$$

This centripetal force is provided by the weight of liquid of height H .
From (i) and (ii)
$\frac{\pi \mathrm{d}^{2}}{4} \times \mathrm{H} \times \rho \times \mathrm{g}=\rho \times \frac{\pi \mathrm{d}^{2}}{4} \times \frac{\omega^{2} \times \mathrm{L}^{2}}{\mathrm{~L}} ; \mathrm{H}=\frac{\omega^{2} \mathrm{~L}^{2}}{2 \mathrm{~g}}$

Integer Type

1. $\left(P_{i n}\right)_{A}=\frac{4 \mathrm{~S}}{\mathrm{r}_{\mathrm{A}}}+\mathrm{P}_{0}=\frac{4 \times .04}{0.02}+8=16 \mathrm{~N} / \mathrm{m}^{2}$
$\left(\mathrm{P}_{\text {in }}\right)_{\mathrm{B}}=\frac{4 \mathrm{~S}}{\mathrm{r}_{\mathrm{B}}}+\mathrm{P}_{0}=\frac{4 \times .04}{.04}+8=12 \mathrm{~N} / \mathrm{m}^{2}$
$\mathrm{n}_{\mathrm{A}}=\frac{\left(P_{\text {in }}\right)_{A} V_{A}}{R T} ; \frac{\mathrm{n}_{\mathrm{B}}}{\mathrm{n}_{\mathrm{A}}}=\frac{\left(\mathrm{P}_{\text {in }}\right)_{\mathrm{B}}}{\left(\mathrm{P}_{\text {in }}\right)_{\mathrm{A}}} \times\left(\frac{\mathrm{r}_{\mathrm{B}}}{\mathrm{r}_{\mathrm{A}}}\right)^{3}=6$
2. $(500-H) \mathrm{P}_{0}=300\left(\mathrm{P}_{0}-\mathrm{rg} \times 0.2\right)$
$(0.5-H) \times 10^{5}=0.3\left[10^{5}-10^{4} \times 0.2\right)$
$0.5-H=0.294$
$\mathrm{H}=206 \mathrm{~mm}$

Multiple Choice Questions

1. The maximum stress is called the breaking strength (stress) or tensile strength.
The materials of the wire which break as soon as stress is increased beyond elastic limit are called brittle. While the materials of the wire, which have a good plastic range are called ductile.

2. $(\mathrm{dm}) \mathrm{g}=\mathrm{dP} . \mathrm{dA}$
($\rho . \mathrm{dA}) \mathrm{dr} \cdot \frac{\rho \mathrm{r}(4 \pi \mathrm{G})}{3}=\mathrm{dp} . \mathrm{dA}$
$\int_{p}^{0} d P=\frac{4 \pi G \rho^{2}}{3} \int_{r}^{R} r d r$
$\mathrm{p}=\frac{4 \pi \mathrm{G} \rho^{2}}{3} \cdot\left[\frac{\rho^{2}}{2}\right]_{r}^{R} \Rightarrow \mathrm{p} \propto\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right)$
$3 \quad \sigma_{1} \frac{4}{3} \pi R^{3} g+T=\rho_{1} \frac{4}{3} \pi R^{3} g$
$\Rightarrow\left(\sigma_{1}-\rho_{1}\right) \frac{4}{3} \pi R^{3} g=T$
$\sigma_{2} \frac{4}{3} \pi R^{3} g+T=\rho_{2} \frac{4}{3} \pi R^{3} g$
$\Rightarrow\left(\sigma_{2}-\rho_{2}\right) \frac{4}{3} \pi \mathrm{R}^{3} \mathrm{~g}=\mathrm{T}$
$\sigma_{1}-\rho_{1}=\rho_{2}-\sigma_{2}$
$\sigma_{2}-\rho_{1}=\rho_{2}-\sigma_{1}$
$\sigma_{1}-\rho_{2}=\rho_{1}-\sigma_{2}$

$\sigma_{2} \frac{4}{3} \pi R^{3} g=\rho_{1} \frac{4}{3} \pi R^{3} g+\sigma \pi \eta_{2} R v_{P}$
$\frac{\mathrm{V}_{\mathrm{P}}}{\mathrm{V}_{\mathrm{Q}}}=\frac{\sigma_{2}-\rho_{1}}{\sigma_{1}-\rho_{2}}$
$V_{T}=\frac{2}{9} r^{2} \frac{(\rho-\sigma) g}{\eta}$

$\sigma=$ density of fluid
$\rho=$ density of object
$\frac{\mathrm{V}_{\mathrm{P}}}{\mathrm{V}_{\mathrm{Q}}}=\frac{\left(\rho_{1}-\rho_{2}\right)}{\eta_{2}} \frac{\eta_{1}}{\left(\rho_{2}-\sigma_{1}\right)}=\frac{\eta_{1}}{\eta_{2}}$
$\because \quad \sigma_{2}-\rho_{1}=\rho_{2}-\sigma_{1}$

MOCK TEST

1. figure shows forces acting on a 'particle' on the surface, with respect to vessel.

(mg $\sin \theta \& \mu \mathrm{mg} \cos \theta$ are pseudo forces).

$$
\tan \phi=\mu \therefore \phi=\tan ^{-1} \mu .
$$

ϕ is angle between normal to the inclined surface and the resultant force. The same angle will be formed between the surface of water \& the inclined surface.
$\{\because$ free surface is \perp to the resultant force acting on it. $\}$
2. Velocity of efflux of water $(v)=\sqrt{2 g\left(\frac{h}{2}\right)}=\sqrt{g h}$
force on ejected water $=$ Rate of change of momentum of ejected water.
$=\rho(\mathrm{av})(\mathrm{v})=\rho \mathrm{av}^{2}$
Torque of these forces about central line
$=\left(\rho a v^{2}\right) 2 R .2=4 \rho a v^{2} R=4 \rho$ agh R
3. Let $\rho_{\mathrm{S}}, \rho_{\mathrm{L}}$ be the density of silver and liquid. Also m and V be the mass and volume of silver block.
\therefore Tension in string $=m g-$ bouyant force

$$
\mathrm{T}=\rho_{\mathrm{S}} \mathrm{Vg}-\rho_{\mathrm{L}} \mathrm{Vg}=\left(\rho_{\mathrm{S}}-\rho_{\mathrm{L}}\right) \mathrm{Vg}
$$

Also $\mathrm{V}=\frac{\mathrm{m}}{\rho_{\mathrm{s}}}$

$$
\begin{aligned}
\therefore \quad \mathrm{T} & =\left(\frac{\rho_{\mathrm{S}}-\rho_{\mathrm{L}}}{\rho_{\mathrm{S}}}\right) \mathrm{mg}=\frac{(10-0.72) \times 10^{3}}{10 \times 10^{3}} \times 4 \times 10 \\
& =37.12 \mathrm{~N} .
\end{aligned}
$$

4. Weight $=$ Buoyant force
$\mathrm{V} \rho_{\mathrm{m}} \mathrm{g}=\frac{\mathrm{V}}{2} \rho_{\mathrm{Hg}} \mathrm{g}+\frac{\mathrm{V}}{2} \rho_{\text {oil }} \mathrm{g}$

$$
\rho_{\mathrm{m}}=\frac{\rho_{\mathrm{Hg}}+\rho_{\mathrm{oil}}}{2}=\frac{13.6+0.8}{2}=\frac{14.4}{2}=7.2
$$

5 Pressure at 'A' from both side must balance. Figure is self-explanatory.

$\sigma h_{2} g=\rho h_{1} g$
$\sigma \sqrt{2} R \sin \left(45^{\circ}+\theta\right)=$
$\rho R[\cos \theta-\sin \theta]$
$\sigma[\cos \theta+\sin \theta]=\rho[\cos \theta-\sin \theta]$
$\tan \theta=\frac{\rho-\sigma}{\rho+\sigma}$
h_{2}
6. The four piston are initially in equilibrium. As additional force F is applied to each piston, the pressure in fluid at each point must be increased by $\frac{F}{A}$ so that each piston retains state of equilibrium.

Thus the increment in pressure at each point is
$\Delta \mathrm{P}=\frac{\mathrm{F}}{\mathrm{A}}$ (by Pascal's law)
7. Increasing the temperature of water from $2^{\circ} \mathrm{C}$ to $3^{\circ} \mathrm{C}$ increases its density while decreases the density of iron.
Hence the bouyant force increases.
8. $v=u+a_{x} t, a_{x}=\frac{v}{t}$
$\tan \theta=\frac{\mathrm{a}_{\mathrm{x}}}{\mathrm{g}}=\frac{\mathrm{v}}{\mathrm{tg}}=\frac{0.5}{5}$
(in triangle ABC)

$\Rightarrow \mathrm{t}=\frac{10 \times 20}{10}=20 \mathrm{sec}$.
9. For the given situation, liquid of density 2ρ should be behind that of ρ.
From right limb:
$\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{atm}}+\rho \mathrm{gh}$
$\mathrm{P}_{\mathrm{B}}=\mathrm{P}_{\mathrm{A}}+\rho \mathrm{a} \frac{\ell}{2}=\mathrm{P}_{\mathrm{atm}}+\rho \mathrm{gh}+\rho \mathrm{a} \frac{\ell}{2}$
$\mathrm{P}_{\mathrm{C}}=\mathrm{P}_{\mathrm{B}}+(2 \rho) \mathrm{a} \frac{\ell}{2}=\mathrm{P}_{\mathrm{atm}}+\rho \mathrm{gh}+\frac{3}{2} \rho \mathrm{a} \ell$
But from left limb :
$\mathrm{P}_{\mathrm{C}}=\mathrm{P}_{\mathrm{atm}}+(2 \rho) \mathrm{gh}$

From (1) and (2) :
$\mathrm{P}_{\mathrm{atm}}+\rho \mathrm{gh}+\frac{3}{2} \rho \mathrm{a} \ell$
$=\mathrm{P}_{\mathrm{atm}}+2 \rho \mathrm{gh}$
$\Rightarrow \quad \mathrm{h}=\frac{3 \mathrm{a}}{2 \mathrm{~g}} \ell \quad$ Ans.

10. No sliding \Rightarrow pure rolling

Therefore, acceleration of the tube $=2 \mathrm{a}$ (since COM of cylinders are moving at ' a ') $P_{A}=P_{a t m}+\rho(2 a) L$
(From horizontal limb)
Also ; $\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{atm}}+\rho \mathrm{gH}$
(From vertical limb)
$\Rightarrow \mathrm{a}=\frac{\mathrm{gH}}{2 \mathrm{~L}}$ Ans.

11. Pressure at (1):
$P_{1}=P_{\text {atm }}+\rho g(2 h)$
Applying Bernoulli's theorum between points (1) and (2)

$$
\left[\mathrm{P}_{\mathrm{atm}}+2 \rho \mathrm{gh}\right]+2 \rho g(\mathrm{~h})+\frac{1}{2}(2 \rho)(0)^{2}
$$

$=\mathrm{P}_{\mathrm{atm}}+(2 \rho) \mathrm{g}(0)+\frac{1}{2}(2 \rho) \mathrm{v}^{2}$
$\Rightarrow \mathrm{v}=2 \sqrt{\mathrm{gh}} \quad$ Ans.

12. Torque about CM :
$\mathrm{F}_{\mathrm{b}} \cdot \frac{\ell}{4}=\mathrm{I} \alpha$
$\Rightarrow \alpha=\frac{1}{\mathrm{I}}\left(\pi \mathrm{r}^{2}\right)(\ell)(\rho)(\mathrm{g}) \cdot \frac{\ell}{4}$

$\alpha=\frac{\pi r^{2} \ell^{2} \mathrm{~g} \rho}{4 \mathrm{I}}$ ' α ' will be same for all points.
Hence (B).
13. by dimensional analysis, (c) is the only correct answer.
14. $V_{0}=\sqrt{2 g h} \quad V_{2}=\sqrt{2 g \frac{h}{\sqrt{2}}}=\frac{V_{0}}{\sqrt[4]{2}}$
15. Pressure at all points in stream will be atmospheric.
16. Volume of water filled in tank in

$$
\begin{gathered}
t=15 \mathrm{sec} . \\
V=\int_{0}^{15} \mathrm{~A} \times 10\left[1-\sin \frac{\pi}{30} \mathrm{t}\right] \mathrm{dt} \\
\mathrm{~V}=10 \mathrm{~A}\left[\mathrm{t}+\left[\frac{\cos \pi / 30 \mathrm{t}}{\pi / 30}\right]_{0}^{15}\right. \\
\mathrm{V}=10\left[15-\frac{30}{\pi}\right] \mathrm{A} \\
\mathrm{~h}=\frac{\mathrm{V}}{10 \mathrm{~A}}=\left[15-\frac{30}{\pi}\right] \mathrm{m}
\end{gathered}
$$

17. Figure shows one of the legs of the mosquito landing upon the water surface.

Therefore, T. $2 \pi \mathrm{a} \times 8=\mathrm{W}=$ weight of the mosquito.
18. Inside pressure must be $\frac{4 T}{r}$ greater than outside pressure in bubble. This excess pressure is provided by charge on bubble.
$\begin{aligned} \frac{4 T}{r} & =\frac{\sigma^{2}}{2 \varepsilon_{0}} \\ \frac{4 T}{r} & =\frac{Q^{2}}{16 \pi^{2} r^{4} \times 2 \varepsilon_{0}} \ldots \ldots .\left[\sigma=\frac{Q}{4 \pi r^{2}}\right]\end{aligned}$
$\mathrm{Q}=8 \pi \mathrm{r} \sqrt{2 \mathrm{rT} \varepsilon_{0}}$
19. The force exerted by film on wire or thread depends only on the nature of material of the film and not on its surface area. Hence the radius of circle formed by elastic thread does not change.
20. As weight of liquid in capillary is balanced by surface tension,
then $T \times 2 \pi r=\pi r^{2} h_{1} \rho g$ (for uniform r radius tube)
$h_{1}=\frac{2 T}{r \rho g}$

but weight of liquid in tapered tube is more than uniform tube of radius r, then in order to balance $\mathrm{h}<\mathrm{h}_{1}$

$$
\mathrm{h}<\frac{2 \mathrm{~T}}{\mathrm{r} \rho \mathrm{~g}}
$$

21. For hemispherical shape - For flat surface -

22. Balancing the force :
T. $4 \mathrm{a} \cos 120^{\circ}+\ell \rho \mathrm{a}^{2} \mathrm{~g}=\mathrm{a}^{2} \mathrm{~h} \rho \mathrm{~g}$
T. $2 \mathrm{a}=\mathrm{a}^{2} \rho \mathrm{~g}(\ell-\mathrm{h})$
$(\ell-h)=\frac{2 T}{a \rho g}$

23. Viscous force $=m g \sin \theta$

$$
\begin{aligned}
\therefore & \eta \mathrm{A} \frac{\mathrm{v}}{\mathrm{t}}=m g \sin \theta \text { or } \eta \mathrm{a}^{2} \frac{\mathrm{v}}{\mathrm{t}}=\mathrm{a}^{3} \rho g \sin \theta \\
& \eta=\frac{\mathrm{t} \rho \mathrm{~g} \sin \theta \mathrm{a}}{\mathrm{v}}
\end{aligned}
$$

24.

When the ball is just released, the net force on ball is $\mathrm{W}_{\text {eff }}$ (= mg - buoyant force)
The terminal velocity ' v_{f} ' of the ball is attained when net force on the ball is zero.
\therefore Viscous force $6 \pi \eta r \mathrm{v}_{\mathrm{f}}=\mathrm{W}_{\mathrm{eff}}$
When the ball acquires $\frac{2}{3}$ rd of its maximum velocity v_{f} the viscous force is $=\frac{2}{3} \mathrm{~W}_{\text {eff }}$.

Hence net force is $\mathrm{W}_{\text {eff }}-\frac{2}{3} \mathrm{~W}_{\text {eff }}=\frac{1}{3} \mathrm{~W}_{\text {eff }}$
\therefore required acceleration is $=\frac{\mathrm{a}}{3}$
25. Velocity gradient $=\frac{0.5 \times 2}{2.5 \times 10^{-2}}$

Also, $F=2 \eta \mathrm{~A} \frac{\mathrm{dv}}{\mathrm{dz}}=2 \times \eta \times(0.5) \frac{0.5}{1.25 \times 10^{-2}}$

$\Rightarrow \quad \eta=2.5 \times 10^{-2} \mathrm{~kg}-\mathrm{sec} / \mathrm{m}^{2}$
26. From continuity equation, velocity at cross-section (1) is more than that at cross-section (2).

Hence ; $\mathrm{P}_{1}<\mathrm{P}_{2} \quad$ Hence (A)
27. $\Delta \mathrm{I}=\frac{\mathrm{F} \ell}{\mathrm{AY}} \Rightarrow \frac{\Delta \ell}{(\mathrm{F} / \mathrm{A})}=\frac{\ell}{\mathrm{Y}}=$ slope of curve

$$
\frac{\ell}{Y}=\frac{(4-2) \times 10^{-3}}{4000 \times 10^{3}}
$$

Given $\mathrm{l}=1 \mathrm{~m} \rightarrow \mathrm{Y}=\frac{4000 \times 10^{3}}{2 \times 10^{-3}}=2 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
28.

Acceleration $\mathrm{a}=\mathrm{F} / \mathrm{m}$
then $\quad \mathrm{T}=\frac{\mathrm{mx}}{\ell} \times \frac{\mathrm{F}}{\mathrm{m}}=\frac{\mathrm{Fx}}{\ell}$
Extension in 'dx' element $-\mathrm{d} \delta=\frac{T d x}{A Y}=\frac{F x d x}{\ell A Y}$
Total extension $\delta=\int_{0}^{\ell} \frac{\mathrm{Fxdx}}{\ell \mathrm{AY}}=\frac{\mathrm{F} \ell}{2 \mathrm{AY}}$
29. $\mathrm{dT}=\operatorname{dm}(\ell-\mathrm{x}) \omega^{2} \quad \mathrm{dT}=\frac{\mathrm{m}}{\ell} \cdot \mathrm{dx}(\ell-\mathrm{x}) \omega^{2}$

$$
\begin{aligned}
\Rightarrow \int_{0}^{T} \mathrm{dT} & =\int_{0}^{\ell / 2} \frac{\mathrm{~m} \omega^{2}}{\ell}(\ell-\mathrm{x}) \mathrm{dx} \\
& =\frac{\mathrm{m} \omega^{2}}{\ell}\left[\ell \mathrm{x}-\frac{\mathrm{x}^{2}}{2}\right]_{0}^{\ell / 2} \\
& =\frac{\mathrm{m} \omega^{2}}{\ell}\left[\frac{\ell^{2}}{2}-\frac{\ell^{2}}{8}\right]
\end{aligned}
$$

\therefore Tension at mid point is:

$$
\begin{aligned}
\mathrm{T}=\frac{3}{8} \mathrm{~m} \ell \omega^{2} & \Rightarrow \text { stress }=\frac{3 \mathrm{~m} \ell \omega^{2}}{8 \mathrm{~A}} \\
& \Rightarrow \text { strain }=\frac{3 \mathrm{~m} \ell \omega^{2}}{8 \mathrm{AY}}
\end{aligned}
$$

Alternatively

Tension at mid point can be found by using $\mathrm{F}_{\mathrm{ext}}=\mathrm{ma}_{\mathrm{cm}}$

$\mathrm{T}=\frac{\mathrm{m}}{2} .\left(\omega^{2} \frac{3 \ell}{4}\right)=\frac{3}{8} \mathrm{~m} \omega^{2} \ell$
30. $\rho g h \pi r^{2}=2 \pi r S \cos \theta$
$\Rightarrow r=\frac{2 S \cos \theta}{\rho g h}=\frac{2 \times 1 \times 0.5}{10^{3} \times 10 \times 10}=10^{-6} \mathrm{~m}$
31. The free body diagram of the capillary tube is as shown in the figure. Net force F required to hold tube is
$F=$ force due to surface
tension at cross-section
$\left(\mathrm{S}_{1}+\mathrm{S}_{2}\right)+$ weight of tube.
$=(2 \pi \mathrm{RT}+2 \pi \mathrm{RT})+\mathrm{mg}=4 \pi \mathrm{RT}+\mathrm{mg}$

Free body daigram of capillary tube
32. $-\int_{\mathrm{T}}^{0} \Delta \mathrm{~T}=\int_{0}^{\ell} \frac{\mathrm{m}}{\ell} \mathrm{d} x \omega^{2} x \Rightarrow \mathrm{~T}=\frac{\mathrm{m}}{\ell} \omega^{2} \frac{\mathrm{x}^{2}}{2}$
$\Rightarrow \mathrm{Y}=\frac{\mathrm{F} \ell}{\mathrm{A} \Delta \ell} \Delta \ell=\frac{\mathrm{F} \ell}{\mathrm{Ay}}$

$\Delta \ell=\frac{\frac{m}{\ell} \frac{\omega^{2} x^{2}}{2} d x}{A Y} \Rightarrow \Delta \ell=\frac{m}{\ell} \frac{\omega^{2} \ell^{3}}{6 A Y}$

$$
\Rightarrow \Delta \ell=\frac{\rho \omega^{2} \ell^{3}}{6 y}
$$

$\Delta \ell \propto \omega^{2} \Rightarrow \omega_{2}=2 \omega_{1}$
33. The change in length of rod due to increase in temperature in absence of walls is
$\Delta \ell=\ell \alpha \Delta \mathrm{T}=1000 \times 10^{-4} \times 20 \mathrm{~mm}=2 \mathrm{~mm}$
But the rod can expand upto 1001 mm only.
At that temperature its natural length is $=1002 \mathrm{~mm}$.
\therefore compression $=1 \mathrm{~mm}$
\therefore mechanical stress $=\mathrm{Y} \frac{\Delta \ell}{\ell}=10^{11} \times \frac{1}{1000}=10^{8} \mathrm{~N} / \mathrm{m}^{2}$
34. The force F_{1} causes extension in rod.

F_{2} causes compression in left half of rod and an equal extension in right half of rod. Hence F_{2} does not effectively change length of the rod.

35. The maximum horizontal distance from the vessel comes from hole number 3 and 4
$\mathrm{v}=\sqrt{2 \mathrm{gh}} \rightarrow \mathrm{h}$ is height of hole from top.
horizontal distance $x=v t=\sqrt{2 g h} \sqrt{\frac{2(H-h)}{g}} x$

$$
=2 \sqrt{h(H-h)}
$$

36. The pressure at any point can never have different values. Hence (A) \& (D) are not possible. (Calculate the pressures at points A \& D from both their left and right)

In case of insufficient length of capillary tube the shape of meniscus is as below :

37. Since the net bouyant force on the brick completely submerged in water is independent of its depth below the water surface, the man will have to exert same force on both the bricks. Hence Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
38. Tension at a point on rod of (length L) at a distance x from point of application of force is

$$
\mathrm{T}=\mathrm{F}\left(1-\frac{\mathrm{x}}{\mathrm{~L}}\right) \text { in both cases. }
$$

Hence weight has no effect on tension in situation of figure (ii).

Extension in rod occurs due to force acting at any point on the rod. In certain cases when net force acts at the centre of rod like weight, extension due to this force may not occur like the given case.
39. $\frac{d y}{d x}=\frac{a_{x}}{a_{y}+g}=\frac{g / 2}{-g / 2+g}=1$
\qquad (effective g will be $\mathrm{g}-\mathrm{a}=\mathrm{g} / 2$] $\theta=45^{\circ}$
40. As the slope of free surface is 45°. Thus free surface passes through centre of box and having co-ordinates $(2,2)$ at top of box. Thus length of exposed top part- $=6$ $-2=4 \mathrm{~m}$.

41. $\mathrm{P}=\mathrm{P}_{\mathrm{A}}+\rho \mathrm{g}_{\text {eff }} \mathrm{h}=10^{5}+1000 \times(10 / 2) \times 1=0.105 \mathrm{MPa}$
42. $\mathrm{p}=\left(10^{5}+10^{3} \times 10 / 2 \times 4\right) \mathrm{N} / \mathrm{m}^{2}=[0.1+0.02]$
$\mathrm{MPa}=0.12 \mathrm{MPa}$
43. As maximum slope of free surface is $\frac{1}{3}$ for the condition of non-exposure of bottom of box, then
$\frac{a_{x}}{a_{y}+g}=\frac{1}{3}$

as $a_{x}=g / 2 \Rightarrow 3 a_{x}=a_{y}+g$
$a_{y}=g / 2$, thus $g / 2$ upward.
44. $\mathrm{F}=\rho \mathrm{A}\left(\mathrm{V}_{0}-0\right)^{2}\left[1-\cos 180^{\circ}\right]$
$=2 \rho A v^{2}=2 \times 1000 \times 2 \times 10^{-4} \times 10 \times 10=40 \mathrm{~N}$
45. $\mathrm{F}=2 \rho \mathrm{~A}\left(\mathrm{~V}_{0}-\mathrm{u}\right)^{2} \quad \mathrm{u}=$ speed of cart
$m \frac{d u}{d t}=2 \rho A\left(v_{0}-u\right)^{2} \Rightarrow \int_{0}^{u} \frac{d u}{\left(V_{0}-u\right)^{2}}=\frac{2 \rho A}{m} \int_{0}^{t} d t$
$\left[\frac{2 \rho A}{m}=\frac{2 \times 10^{3} \times 2 \times 10^{-4}}{10}=\frac{4}{100}\right]$
$\left[\frac{1}{V_{0}-u}\right]_{0}^{u}=\frac{2 \rho A t}{m}$
$\frac{1}{V_{0}-u}-\frac{1}{V_{0}}=\frac{2 \rho A t}{m}=\frac{4 t}{100}$
at $\mathrm{t}=10 \mathrm{sec} . \rightarrow \frac{1}{\mathrm{~V}_{0}-\mathrm{u}}=\frac{4}{10}+\frac{1}{10}=\frac{1}{2}$
$\mathrm{V}_{0}-\mathrm{u}=2 \quad \mathrm{u}=8 \mathrm{~m} / \mathrm{sec}$.
46. $\mathrm{F}=2 \rho \mathrm{~A}\left(\mathrm{~V}_{0}-\mathrm{u}\right)^{2}=2 \times 10^{3} \times 2 \times 10^{-4}(10-8)^{2}$
$=2 \times 10^{3} \times 2 \times 10^{-4} \times 4=1.6 \mathrm{~N}$
$\mathrm{a}=\frac{\mathrm{F}}{\mathrm{M}}=0.16 \mathrm{~m} / \mathrm{sec}^{2}$
47. From equation (1)
$\frac{1}{V_{0}-u}-\frac{1}{V_{0}}=\frac{4 t}{100}$
$\frac{1}{8}-\frac{1}{10}=\frac{4 \mathrm{t}}{100} \Rightarrow \frac{2}{80}=\frac{4 \mathrm{t}}{100}, \mathrm{t}=\frac{10}{16} \mathrm{sec}$.
48. $\mathrm{F}=2 \rho \mathrm{~A}\left(\mathrm{~V}_{0}-\mathrm{u}\right)^{2}=2 \times 10^{3} \times 2 \times 10^{-4} \times 25=10 \mathrm{~N}$
$\mathrm{P}=\mathrm{F} . \mathrm{u}=10 \times 5=50 \mathrm{~W}$.
49. Pressure varies with height $\Rightarrow P=\rho g h$
and is horizontal with acceleration $\Rightarrow P=\rho \ell a$
so on (A) $\rho g h$ part is zero while average of $\rho a x$ is
$\left[\frac{0+\rho \ell \mathrm{a}}{2}\right]\left[\ell^{2}\right]=\frac{\ell \rho \mathrm{a}}{2}\left(\ell^{2}\right)=\frac{\left(\rho \ell^{3}\right)}{2} \mathrm{a}=\frac{\mathrm{ma}}{2}$
In (B) $\rho \ell$ a part is zero while average of $\rho g x$ is
$\left[\frac{0+\rho \mathrm{g} \ell}{2}\right]\left[\ell^{2}\right]=\frac{\rho \mathrm{g}}{2}\left(\ell^{3}\right)=\frac{\rho\left(\ell^{3}\right)}{2}(\mathrm{~g})=\frac{\mathrm{mg}}{2}$
Similarly for other part.
50 (A) On ABCD avg pressure $=\left[\frac{0+\rho_{1} g h}{2}\right]$
So $\mathrm{F}=\left[\frac{\rho_{1} g h}{2}\right][\ell \mathrm{h}]=\frac{\rho_{1} \mathrm{gh}^{2} \ell}{2}$
(B) No contact of ρ_{2} and not any pressure on ABCD due to ρ_{2}
(C) On CDEF due to ρ_{1}, at every point pres sure is ρ_{1} gh so average is also ρ_{1} gh, so $F=\left(\rho_{1} g h\right)(h \ell)=\rho_{1}$ gh $^{2} \ell$
(D) On CDEF due to ρ_{1} constant but ρ_{1} is variable so average is ρ_{1} will be taken.
$\left[\rho_{1} g h+\left\{\frac{0+\rho_{2} g h}{2}\right\}\right][h \ell]$
51. Downward force $=$ Buoyant force
$\mathrm{Mg}+4 \mathrm{Ta}=\mathrm{a}^{2} \mathrm{x} \rho \mathrm{g}$
$x=\frac{M g+4 T a}{a^{2} \rho g}$

$=\frac{20 \times 10^{-3} \times 10+4 \times 70 \times 10^{-3} \times 30 \times 10^{-2}}{9 \times 10^{-4} \times 10^{3} \times 10}$

Ans. $\left[x=\frac{m g+4 a T}{a^{2} \rho g}\right]=23 \mathrm{~cm}$
52. Thickness of annular space $=\frac{20.0628-20}{2}$
$=.0314 \mathrm{~cm}$
In steady state, gravitational force $=$ viscous force
$m g=\eta A \frac{v}{y}$
$1 \times 10=10 \times 10^{-1} \times 2 \pi \mathrm{rl} \frac{\mathrm{v}}{\mathrm{y}}$
$1 \times 10=10 \times 10^{-1} \times 2 \times 3.14 \times 10$
$\times 10^{-2} \times 20 \times 10^{-2} \frac{v}{.0314 \times 10^{-2}}$
$1=40 \mathrm{v}$

$\mathrm{v}=\frac{1}{40}=0.025 \mathrm{~m} / \mathrm{sec} .=2.5 \mathrm{~cm} / \mathrm{sec}$.
53. Due to rotation, Let the shift of liquid is $x \mathrm{~cm}$.

Let cross-section area of tube $=\mathrm{A}$
In the right limb for compressed air -
$\mathrm{p}_{1} \mathrm{v}_{1}=\mathrm{p}_{2} \mathrm{v}_{2}$
$p_{0} \mathrm{~A} \times 6=\mathrm{p}_{2} \mathrm{~A}(6-\mathrm{x})$
$\mathrm{p}_{2}=\frac{6 \mathrm{p}_{0}}{6-\mathrm{x}}$

$\mathrm{F}_{1}=\left[\frac{6 p_{0}}{6-x}+x \rho g\right] A$

Mass of the liquid in horizontal arm
$\mathrm{m}=\rho(\mathrm{I}-\mathrm{x}) \mathrm{A}$

It is rotated about left limb, then centripeted force
$\mathrm{F}_{2}=\mathrm{m} \omega_{0}{ }^{2} \mathrm{r}$
$=\rho(I-x) A \omega_{0}{ }^{2} \frac{\ell+\mathrm{x}}{2}=\frac{\rho \mathrm{A} \omega_{0}{ }^{2}}{2}\left(I^{2}-\mathrm{x}^{2}\right)$
But $\mathrm{F}_{1}=\mathrm{F}_{2}$
$\frac{\rho \mathrm{A} \omega_{0}{ }^{2}\left(\ell^{2}-\mathrm{x}^{2}\right)}{2}=\left[\frac{6 p_{0}}{6-x}+x \rho g\right] A$
$=\frac{10^{3} \times 100 \times\left(21^{2}-x^{2}\right) \times 10^{-4}}{2}$
$=\left[\frac{6 \times 10500}{(6-x)}+x \times 10^{3} \times 10 \times 10^{-2}\right]$
On solving $\mathrm{x}=1 \mathrm{~cm}$
then length of air column $=6-1=5 \mathrm{~cm}$
54. Maximum stress lies in stepped bar in the portion of lesser area ($5 \mathrm{~cm}^{2}$)
For the stress σ in lesser area, the stress in larger
cross-section $=\frac{\sigma \mathrm{A} / 2}{\mathrm{~A}}=\frac{\sigma}{2}$
Strain energy of stepped bar -

$$
\begin{aligned}
& =\frac{\sigma^{2}}{2 y} \times 5 \times(100-x)+\left(\frac{\sigma}{2}\right)^{2} \frac{1}{2 y} \times 10 \times x \\
& =\frac{\sigma^{2}}{2 y}[500-5 x+2.5 x]=\frac{\sigma^{2}}{2 y}[500-2.5 x]
\end{aligned}
$$

Strain energy of uniform bar $=\frac{\sigma^{2}}{2 y} \times 10 \times 100$ As per given condition
$\frac{\sigma^{2}}{2 y}[500-2.5 x]=\frac{40}{100} \times \frac{\sigma^{2}}{2 y} \times 10 \times 100$
$500-2.5 x=400$
$2.5 \mathrm{x}=100$
$\mathrm{x}=40 \mathrm{~cm}$ Ans.

