HINTS \& SOLUTIONS

EXERCISE - 1

Single Choice

1. $\mathrm{R}=\mathrm{R}_{0} \mathrm{~A}^{1 / 3}=1.3 \times 64^{1 / 3}=5.2 \mathrm{fm}$
2. Hydrogen atom contains 1 proton, 1 electron and no neutrons.
3. $\frac{(\mathrm{e} / \mathrm{m})_{e}}{(\mathrm{e} / \mathrm{m})_{\alpha}}=\frac{\mathrm{e} / \mathrm{m}_{\mathrm{e}}}{2 \mathrm{e} / 4 \times 1836 \mathrm{~m}_{\mathrm{e}}}=\frac{3672}{1}$
4. Volume fraction $=\frac{\text { Volume of nucleus }}{\text { Total vol. of atom }}$

$$
=\frac{(4 / 3) \pi\left(10^{-13}\right)^{3}}{(4 / 3) \pi\left(10^{-8}\right)^{3}}=10^{-15}
$$

5. Ne contains 10 electrons
$\mathrm{O}^{2}-$ and F^{-}contain 10 electrons
6. I.E. of one sodium atom $=\frac{h C}{\lambda}$
$\&$ I.E. of one mole Na atom $=\frac{\mathrm{hC}}{\lambda} \mathrm{N}_{\mathrm{A}}$
$=\frac{6.62 \times 10^{34} \times 3 \times 10^{8} \times 6.02 \times 10^{23}}{242 \times 10^{-9}}=494.65 \mathrm{~kJ} . \mathrm{mol}$.
7. Violet colour has minimum wavelength so maximum energy.
8. $\lambda=\frac{c}{v}=\frac{3 \times 10^{8}}{400 \times 10^{6}}=0.75 \mathrm{~m}$
9. $\lambda=\frac{\mathrm{c}}{v}=\frac{3 \times 10^{8}}{8 \times 10^{15}}=3.75 \times 10^{-8} \mathrm{~m}$
10. Photoelectric effect is a random phenomena. So, electron It may come out with a kinetic energy less than ($\mathrm{h} v-\mathrm{w}$) as some energy is lost while escaping out.
11. For photoelectric effect to take place, $\mathrm{E}_{\text {light }} \geq \mathrm{W}$ $\therefore \frac{\mathrm{hc}}{\lambda} \geq \frac{\mathrm{hc}}{\lambda_{0}}$ or $\lambda \leq \lambda_{0}$.
12. Power $=\frac{n h C}{\lambda \times t} \Rightarrow 40 \times \frac{80}{100}$

$$
=\frac{\mathrm{n} \times 6.62 \times 10^{-34} \times 3 \times 10^{8}}{620 \times 10^{-9} \times 20} \Rightarrow \mathrm{n}=2 \times 10^{21}
$$

13. $\mathrm{E}_{\mathrm{n}}=-78.4 \mathrm{kcal} / \mathrm{mole}=-78.4 \times 4.2=-329.28 \mathrm{~kJ} / \mathrm{mole}$

$$
=-\frac{329.28}{96.5} \mathrm{eV} \quad=-3.4 \mathrm{eV}
$$

(energy of II orbit of H atom).
14. $r \alpha\left(\frac{n^{2}}{Z}\right)$ As Z increases, radius of I orbit decreases.
15. Radius $=0.529 \frac{\mathrm{n}^{2}}{\mathrm{Z}} \AA=10 \times 10^{-9} \mathrm{~m}$

So, $\mathrm{n}^{2}=189$ or, $\mathrm{n} \approx 14$ Ans.
16. $E_{1}(H)=-13.6 \times \frac{1^{2}}{1^{2}}=-13.6 \mathrm{eV}$
$\mathrm{E}_{2}\left(\mathrm{He}^{+}\right)=-13.6 \times \frac{2^{2}}{2^{2}}=-13.6 \mathrm{eV}$
$\mathrm{E}_{3}\left(\mathrm{Li}^{2+}\right)=-13.6 \times \frac{3^{2}}{3^{2}}=-13.6 \mathrm{eV} \quad ;$
$\mathrm{E}_{4}\left(\mathrm{Be}^{3+}\right)=-13.6 \times \frac{4^{2}}{4^{2}}=-13.6 \mathrm{eV}$
$\therefore \quad \mathrm{E}_{1}(\mathrm{H})=\mathrm{E}_{2}\left(\mathrm{He}^{+}\right)=\mathrm{E}_{3}\left(\mathrm{Li}^{2+}\right)=\mathrm{E}_{4}\left(\mathrm{Be}^{3+}\right)$
17. $\mathrm{V}=2.188 \times 10^{6} \frac{\mathrm{Z}}{\mathrm{n}} \mathrm{m} / \mathrm{s}$

Now, $\quad V \propto \frac{Z}{n} \quad$ so, $\frac{V_{L^{2+}}}{V_{H}}=-\frac{Z_{1} / n_{1}}{Z_{2} / n_{2}}=\frac{3 / 3}{1 / 1}=1$ or, $\quad V_{\mathrm{Li}^{2+}}=\mathrm{V}_{\mathrm{H}}$
18. $\mathrm{r}_{1}-\mathrm{r}_{2}=24 \times\left(\mathrm{r}_{1}\right)_{\mathrm{H}}$
$\frac{0.529 \times \mathrm{n}_{1}^{2}}{1}-\frac{0.529 \times \mathrm{n}_{2}^{2}}{1}=24 \times 0.529$
$\therefore \quad\left(n_{1}^{2}-n_{2}^{2}\right)=24$
So, $\mathrm{n}_{1}=5$ and $\mathrm{n}_{2}=1$
19. I.P. $=340 \mathrm{~V}$ so, I.E. $=340 \mathrm{eV}=13.6 \frac{\mathrm{Z}^{2}}{(1)^{2}}$
so, $Z^{2}=25$ so, $Z=5$ Therefore, (B) is correct option.
20. Velocity $\propto \frac{Z}{n} ; \quad$ Frequency $\propto \frac{Z^{2}}{n^{3}}$;

Radius $\propto \frac{\mathrm{n}^{2}}{\mathrm{Z}} ; \quad$ Force $\propto \frac{\mathrm{Z}^{2}}{\mathrm{n}^{4}}$.
21. S1: Potential energy of the two opposite charge system decreases with decrease in distance,
S4: The energy of $\mathrm{I}^{\text {st }}$ excited state of He^{+}ion

$$
\begin{aligned}
= & -3.4 \mathrm{Z}^{2}=-3.4 \times 2^{2} \\
& -13.6 \mathrm{eV} .
\end{aligned}
$$

S_{2} and S_{3} are correct statement.
22. $\mathrm{S} 1: \mathrm{Be}^{2+}$ ion has 2 electron so Bohr model is not applicable.
$\mathrm{S}_{2}, \mathrm{~S}_{3}$ and S_{4} are correct statement.
23. (a) Energy of ground $=-13.6 \times 2^{2}=-54.4 \mathrm{eV}$
state of He^{+}
(b) Potential energy $=-27.2 \times 1^{2}=-27.2 \mathrm{eV}$
of I orbit of H -atom
(c) Kinetic energy $\quad=13.6 \times \frac{2^{2}}{3^{2}}=6.04 \mathrm{eV}$
of II excited state of He^{+}
(d) Ionisation $=13.6 \times 2^{2}=54.4 \mathrm{~V}$ potential of He^{+}
24. $\lambda=\frac{\mathrm{hc}}{\Delta \mathrm{E}} \therefore \lambda \alpha \frac{1}{\Delta \mathrm{E}}$
25. When electron falls from n to 1 , total possible number of lines $=n-1$.
26. $\mathrm{E}_{\mathrm{n}}=\mathrm{E}_{1} \frac{\mathrm{z}^{2}}{\mathrm{n}^{2}}$
$E_{5}=-13.6 \times \frac{(1)^{2}}{(5)^{2}}=-0.54 \mathrm{eV}$
27. According to energy, $\mathrm{E}_{4 \rightarrow 1}>\mathrm{E}_{3 \rightarrow 1}>\mathrm{E}_{2 \rightarrow 1}>\mathrm{E}_{3 \rightarrow 2}$. According to energy, Violet $>$ Blue $>$ Green $>$ Red.
\therefore Red line $\Rightarrow 3 \rightarrow 2$ transition.
28. For $1^{\text {st }}$ line of Balmer series

$$
\overline{\mathrm{V}}_{1}=\mathrm{R}_{\mathrm{H}}(3)^{2}\left[\frac{1}{(2)^{2}}-\frac{1}{(3)^{2}}\right]=9 \mathrm{R}\left(\frac{5}{36}\right)=\frac{5}{4} \mathrm{R}
$$

For last line of Pachen series

$$
\overline{\mathrm{V}}_{2}=\mathrm{R}_{\mathrm{H}}(3)^{2}\left[\frac{1}{(3)^{2}}-\frac{1}{(\infty)^{2}}\right]=\mathrm{R}
$$

so, $\overline{\mathrm{v}}_{1}-\overline{\mathrm{v}}_{2}=\frac{5}{4} \mathrm{R}-\mathrm{R}=\frac{\mathrm{R}}{4}$.
29. $\mathrm{Li}^{2+}, \mathrm{H}$ and He^{+}are single electron species.
30. Visible lines \Rightarrow Balmer series $(5 \rightarrow 2,4 \rightarrow 2,3 \rightarrow 2)$. So, 3 lines.
31. Infrared lines $=$ total lines - visible lines $-U V$ lines
$=\frac{6(6-1)}{2}-4-5=15-9=6$.
(visible lines $=4 \quad 6 \rightarrow 2,5 \rightarrow 2,4 \rightarrow 2,3 \rightarrow 2)$
(UV lines $=5 \quad 6 \rightarrow 1,5 \rightarrow 1,4 \rightarrow 1,3 \rightarrow 1,2 \rightarrow 1$)
32. $r_{1}=0.529 \AA$
$\mathrm{r}_{3}=0.529 \times(3)^{2} \AA=9 \mathrm{x}$
so, $\lambda=\frac{2 \pi r}{\mathrm{n}}=\frac{2 \pi(9 \mathrm{x})}{3}=6 \pi \mathrm{x}$.
33. $\frac{\lambda_{1}}{\lambda_{2}}=\sqrt{\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}}=\sqrt{\frac{200}{50}}=\frac{2}{1}$.
34. $\lambda=\frac{\mathrm{h}}{\mathrm{mv}}=\frac{6.625 \times 10^{-34}}{0.2 \times 5} \times 3600 \approx 10^{-30} \mathrm{~m}$.
35. For a charged particle $\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mqV}}}, \therefore \quad \lambda \propto \frac{1}{\sqrt{\mathrm{~V}}}$.
36. $\Delta \mathrm{p} \cdot \Delta \mathrm{x}=\frac{\mathrm{h}}{4 \pi} \Rightarrow \Delta \mathrm{x}=\frac{6.62 \times 10^{-34}}{4 \times 3.14 \times 1 \times 10^{-5}}$
$=5.27 \times 10^{-30} \mathrm{~m}$.
37. For an α particle, $\lambda=\frac{0.101}{\sqrt{V}} \AA$.
38. $\lambda \propto \frac{\mathrm{n}}{\mathrm{Z}} \therefore \frac{\mathrm{n}_{1}}{\mathrm{Z}_{1}}=\frac{\mathrm{n}_{2}}{\mathrm{Z}_{2}}$ or $\frac{2}{3}=\frac{4}{6}\left(\mathrm{n}=4\right.$ of C^{5+} ion $)$
39. $d^{7}: 3$ unpaired electrons. $\quad \therefore \quad$ Total spin $= \pm \frac{n}{2}= \pm \frac{3}{2}$.
40. $\mathrm{Zn}^{2+}: \quad[\mathrm{Ar}] 3 \mathrm{~d}^{10}$ (0 unpaired electrons).
$\mathrm{Fe}^{2+}: \quad[\mathrm{Ar}] 3 \mathrm{~d}^{6}$ (4 unpaired electrons) maximum.
$\mathrm{Ni}^{3+}: \quad[\mathrm{Ar}] 3 \mathrm{~d}^{7}$ (3 unpaired electrons).
$\mathrm{Cu}^{+}: \quad[\mathrm{Ar}] 3 \mathrm{~d}^{10}$ (0 unpaired electrons).
41. Orbital angular momentum $=\sqrt{\ell(\ell+1)} \frac{\mathrm{h}}{2 \pi}=0$.

$$
\therefore \quad \ell=0 \text { (s orbital). }
$$

42. $\quad \mathrm{Cu}: 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 p^{6} 3 \mathrm{~s}^{2} 3 p^{6} 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{1}$.
$\therefore \quad \mathrm{Cu}^{2+}: 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{9}$ or $[\mathrm{Ar}] 3 \mathrm{~d}^{9}$.
43. Magnetic moment $=\sqrt{n(n+2)}=\sqrt{24}$ B.M.
$\therefore \quad$ No. of unpaired electron $=4$. $X_{26}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6} 4 s^{2}$.
To get 4 unpaired electrons, outermost configuration will be $3 \mathrm{~d}^{6}$.
\therefore No. of electrons lost $=2\left(\right.$ from $\left.4 \mathrm{~s}^{2}\right)$.
$\therefore \mathrm{n}=2$.
44. $\mathrm{Cr}(\mathrm{Zn}=24)$
electronic configuration is: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{5}$ so, no of electron in $\ell=1$ i.e. p subshell is 12 and no of electron in $\ell=2$ i.e. d subshell is 5 .
45. $X_{23}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{3} 4 s^{2}$.

No. of electron with $\ell=2$ are $3\left(3 \mathrm{~d}^{3}\right)$.
46. Orbital angular momentum $=\sqrt{\ell(\ell+1)} \frac{\mathrm{h}}{2 \pi}=0$
(since $\ell=0$ for s orbital).
47. $\mathrm{Cl}_{17}^{-}:[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6}$.

Last electron enters 3p orbital.
$\therefore \quad \ell=1$ and $\mathrm{m}=1,0,-1$.
48. Number of radial nodes $=\mathrm{n}-\ell-1=1, \mathrm{n}=3 . \quad \therefore \quad \ell=1$.

Orbital angular momentum $=\sqrt{\ell(\ell+1)} \frac{\mathrm{h}}{2 \pi}=\sqrt{2} \frac{\mathrm{~h}}{2 \pi}$.
49. $\mathrm{Cl}_{17}:[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{5}$.

Unpaired electron is in 3 p orbital.
$\therefore \mathrm{n}=3, \ell=1, \mathrm{~m}=1,0,-1$.
50. (A) ${ }_{24} \mathrm{Cr}:[\mathrm{Ar}] 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{1}$
(B) $\mathrm{m}=-\ell$ to $+\ell$ through zero.
(C) ${ }_{47} \mathrm{Ag}: 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10} 4 \mathrm{p}^{6} 5 \mathrm{~s}^{1} 4 \mathrm{~d}^{10}$.

Since only one unpaired electron is present.
62. ${ }_{6}^{11} \mathrm{C} \longrightarrow{ }_{5}^{11} \mathrm{~B}+{ }_{+1}^{0} \mathrm{e}$
64. $\frac{\mathrm{n}}{\mathrm{p}}>1$
65. $\frac{\mathrm{n}}{\mathrm{p}}$ is minimum for this isotope.
66. It is the order of penetrating power.
67. Nucleides having $\frac{n}{p}>1$ undergoes β-emission to decrease $\frac{n}{p}$ ratio in order to attain belt of stability.
68.
${ }_{Z}^{A} X \longrightarrow{ }_{Z}^{A-1} X+{ }_{0}^{1} n$
69.
${ }_{92}^{238} \mathrm{U} \longrightarrow{ }_{82}^{214} \mathrm{~Pb}+\mathrm{m}_{2}^{4} \mathrm{He}+\mathrm{n}_{-1}^{0} \mathrm{e}$
$\therefore \quad \mathrm{m}=6$ and $\mathrm{m}=2$. Total $=8$.
70. $\lambda=\mathrm{v}$

$$
\text { then } \quad \lambda=\frac{\mathrm{h}}{\mathrm{mV}} \quad \text { or } \quad \lambda^{2}=\frac{\mathrm{h}}{\mathrm{~m}} \quad \text { So, } \lambda=\sqrt{\frac{\mathrm{h}}{\mathrm{~m}}} \text {. }
$$

71. s orbital is spherical so non-directional.
72. Total number of electrons in an orbital $=2(2 \ell+1)$.

The value of ℓ varies from 0 to $\mathrm{n}-1 . \quad \therefore \mathrm{Tot}$ a 1
numbers of electrons in any orbit $=\sum_{\ell=0}^{\ell=n-1} 2(2 \ell+1)$.
73. $\Delta \mathrm{x}=2 \Delta \mathrm{p}$

$$
\begin{aligned}
& \Delta \mathrm{x} \cdot \Delta \mathrm{p}=\frac{\hbar}{2}=\frac{\mathrm{h}}{4 \pi} \Rightarrow 2 \Delta \mathrm{p} \cdot \Delta \mathrm{p}=\frac{\hbar}{2} \\
\Rightarrow & 2(\mathrm{~m} \Delta \mathrm{~V})^{2}=\frac{\hbar}{2} \quad ;(\Delta \mathrm{V})^{2}=\frac{\hbar}{4 \mathrm{~m}^{2}} \\
\Rightarrow & \Delta \mathrm{~V}=\frac{\sqrt{\hbar}}{2 \mathrm{~m}}
\end{aligned}
$$

74. The lobes of d_{xy} orbital are at an angle of 45° with X and Y axis. So along the lobes, angular probability distribution is maximum.
75. $\left.\begin{array}{l}\mathrm{n}_{1}+\mathrm{n}_{2}=4 \\ \mathrm{n}_{1}-\mathrm{n}_{2}=2\end{array}\right\}$ so $\mathrm{n}_{1}=3$ and $\mathrm{n}_{2}=1$.
$\overline{\mathrm{v}}=\mathrm{R}(3)^{2}\left\{\frac{1}{(1)^{2}}-\frac{1}{(3)^{2}}\right\}=8 \mathrm{R}$.
76. $2 \pi \mathrm{r}=\mathrm{n} \lambda=$ circumference
77. Spin quantum number does not comes from Schrodinger equation.
$\mathrm{s}=+\frac{1}{2}$ and $-\frac{1}{2}$ have been assigned arbitrarily.
78. $\frac{\lambda_{\mathrm{y}}}{\lambda_{\mathrm{x}}}=\frac{\mathrm{m}_{\mathrm{x}} \mathrm{v}_{\mathrm{x}}}{\mathrm{m}_{\mathrm{y}} \mathrm{v}_{\mathrm{y}}} . \Rightarrow \frac{\lambda_{\mathrm{y}}}{1}=\frac{\mathrm{m}_{\mathrm{x}} \mathrm{v}_{\mathrm{x}}}{\left(0.25 \mathrm{~m}_{\mathrm{x}}\right)\left(0.75 \mathrm{v}_{\mathrm{x}}\right)}=\frac{16}{3}$.
$\therefore \lambda_{y}=5.33 \AA$.
79. For an electron accelerated with potential difference V volt, $\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mqV}}}=\frac{12.3}{\sqrt{\mathrm{~V}}} \AA$.
80. $v=\operatorname{RCZ}^{2}\left(\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right)$.
$v_{1}=R C Z^{2}\left(\frac{1}{1^{2}}-\frac{1}{\infty^{2}}\right)=R C Z^{2}$,
$v_{2}=R C Z^{2}\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right)=\frac{3}{4} R C Z^{2}$
$v_{3}=R C Z^{2}\left(\frac{1}{2^{2}}-\frac{1}{\infty^{2}}\right)=\frac{1}{4} R C Z^{2} . \therefore \quad v_{1}-v_{2}=v_{3}$.

EXERCISE - 2

Part \# I : Multiple Choice

1. Ground state binding energy $=13.6 Z^{2}=122.4 \mathrm{eV}$.
$\therefore \quad Z=3$.
$1^{\text {st }}$ excitation energy $=10.2 Z^{2}=91.8 \mathrm{eV}$.
$\therefore \quad$ an 80 eV electron cannot excite it to a higher state.
2. $v=\frac{c}{\lambda}=\frac{3 \times 10^{8}}{600 \times 10^{-9}}=5 \times 10^{14} \sec ^{-1}$
$\mathrm{E}=\frac{12400}{6000}=2.07 \mathrm{eV}$.
3. $\lambda=\frac{h}{m v}=\frac{h}{\sqrt{2 m K E}}=\frac{h}{\sqrt{2 m q V}}$.

When v, KE and V are same, as m increasing, λ decreases. $\lambda_{\mathrm{e}}>\lambda_{\mathrm{p}}>\lambda_{\alpha}$ (ifv, KE and V are same).
4. Max. number of different photons emitted is $4[(4 \rightarrow 3 \rightarrow 1$ and $4 \rightarrow 2 \rightarrow 1)$ or $(4 \rightarrow 3 \rightarrow 2 \rightarrow 1$ and $4 \rightarrow 1)$].
Minimum number of different photons emitted is $1(4 \rightarrow 1$ and $4 \rightarrow 1$).
5. $\mathrm{n}=4, \mathrm{~m}=2$

Value of $\ell=0$ to $(\mathrm{n}-1)$ but $\mathrm{m}=2 . \quad \therefore \quad \ell=2$ or 3 only Value of s may be $+1 / 2$ or $-1 / 2$
6. $\mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}=9.1 \times 10^{-28} \mathrm{~g}$.
$\mathrm{m}=\frac{\mathrm{m}_{0}}{\sqrt{1-\frac{\mathrm{v}^{2}}{\mathrm{c}^{2}}}} \quad\left(\mathrm{~m}_{0}:\right.$ rest mass $; \mathrm{m}:$ dynamic mass $)$
$\operatorname{As~v} \uparrow,\left(1-\frac{\mathrm{v}^{2}}{\mathrm{c}^{2}}\right) \downarrow \quad \therefore \quad \mathrm{m} \uparrow$
Molar mass of $\mathrm{e}=9.1 \times 10^{-28} \times 6.023 \times 10^{23}$ $=5.48 \times 10^{-4} \mathrm{~g} / \mathrm{mole}$.

For electron, $\frac{\mathrm{e}}{\mathrm{m}}=\frac{1.6 \times 10^{-19}}{9.1 \times 10^{-28}}=1.7 \times 10^{8} \mathrm{c} / \mathrm{g}$.
7. From α particle scattering experiment, distance of closest approach of α particle with nucleus came out to be of the order of $10^{-14} \mathrm{~m}$.
8. (A) Since the number of photons is not specified (it may or may not be equal to $4 \mathrm{~N}_{\mathrm{A}}$). So, this statement is not always true.
(B) No.of photon emitted per day \times Energy of one photon $=$ Energy emitted per day.
For bulb A, $\mathrm{n}_{\mathrm{e}_{\mathrm{A}}} \times \frac{12400}{2000} \times 1.6 \times 10^{-19}=40 \times 24 \times 3600$.
For bulb B, $\mathrm{n}_{\mathrm{e}_{\mathrm{B}}} \times \frac{12400}{3000} \times 1.6 \times 10^{-19}=30 \times 24 \times 3600$.
$\therefore \quad \mathrm{n}_{\mathrm{e}_{\mathrm{A}}}: \mathrm{n}_{\mathrm{e}_{\mathrm{B}}}=8: 9$.
(C) When an electron make transition from lower to higher orbit, a photon is absorbed.
9. Transition is taking place from $5 \rightarrow 2 \Rightarrow \Delta n=3$

Hence maximum number of spectral line observed
$=\frac{3(3+1)}{2}=6$.

(C) number of lines belonging to the Balmer series
$=3(5 \rightarrow 2,4 \rightarrow 2,3 \rightarrow 2)$
as shown in figure.

Number of lines belonging to Paschen series $=2(5 \rightarrow 3,4 \rightarrow 3)$.
10. (A) λ can be calculated as : $\lambda=\frac{\mathrm{h}}{\mathrm{mv}}=\frac{6.626 \times 10^{-34}}{1 \times 100}$
$=6.626 \times 10^{-36} \mathrm{~m}$. (very small).
(B) de-Broglie wavelength associated with macroscopic particles is extremely small and so, difficult to observe.
(C) de-Broglie wavelength associated with electron can be calculated by using $\lambda=\frac{\mathrm{h}}{\mathrm{mv}}$.
(D) $\mathrm{KE}_{\mathrm{f}}=5+20=25 \mathrm{eV}$.
$\therefore \lambda=\sqrt{\frac{150}{\mathrm{KE}_{\mathrm{f}}}}=\sqrt{\frac{150}{25}}=\sqrt{6} \AA$.
11. 1st excitation potential $=10.2 \mathrm{Z}^{2}=24 \mathrm{~V}$
$\therefore \quad Z^{2}=24 / 10.2$
$\therefore \quad \mathrm{IE}=13.6 \mathrm{Z}^{2}=\frac{13.6 \times 24}{10.2}=32 \mathrm{eV}$.
Binding energy of $3^{\text {rd }}$ excited state $=0.85 \mathrm{Z}^{2}$
$=\frac{0.85 \times 24}{10.2}=2 \mathrm{eV}$.
$2^{\text {nd }}$ excitation potential of sample $=12.09 \mathrm{Z}^{2}=\frac{12.09 \times 24}{10.2}$
$=\frac{32 \times 8}{9} \mathrm{~V}$.
12. $\sqrt{n(n+2)}=1.732$

Number of unpaired electrons, $\mathrm{n}=1$.
${ }_{25} \mathrm{X}:[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{5}$
For having one unpaired electron, 6 electrons are to be removed (2 from $4 \mathrm{~s} \& 4$ from 3 d).
$\therefore \quad Y=6$.
13. No. of neutrons in ${ }_{32}^{76} \mathrm{Ge}=\mathrm{A}-\mathrm{Z}=76-32=44$.

No. of neutrons in ${ }_{33}^{77} \mathrm{As}=77-33=44$.
No. of neutrons in ${ }_{34}^{78} \mathrm{Se}=78-34=44$.
14. Since most part of atom is empty space, so, when α particles are sent towards a thin metal foil, most of them go straight through the foil.
15. $\mathrm{Zn}^{2+}: 0$ unpaired electron ; $\mathrm{Cu}^{+}: 0$ unpaired electron $\mathrm{Co}^{2+}: 3$ unpaired electron; $\mathrm{Ni}^{2+}: 2$ unpaired electron $\mathrm{Mn}^{4+}: 3$ unpaired electron ; $\mathrm{Mg}^{2+}: 0$ unpaired electron $\mathrm{Sc}^{+}: 2$ unpaired electron.
16. If photon A has more energy than photon B, then λ of photon A must be less than λ of photon B. If λ of photon B is in IR region, λ of photon A can be in Infrared region or visible region or ultra violet region.
17. Non integral atomic masses of elements are due to existence of isotopes of that element which have different masses.
18. Bohr model is only valid for single electron species i.e., Total no. of electrons in the species should be 1 .
19. In all the given cases, only one quantum of energy is emitted since only one electronic transition occurs.
20. Spin angular momentum $S=\sqrt{s(s+1)} \frac{h}{2 \pi}$.
$s=\frac{1}{2} \quad \therefore \quad S=\frac{\sqrt{3}}{2} \times \frac{h}{2 \pi}$.
21. Change in angular momentum for $3 \rightarrow 2$ transition
$=(3-2) \frac{h}{2 \pi}=\frac{h}{2 \pi}$.
Change in angular momentum for $4 \rightarrow 2$ transition
$=(4-2) \frac{\mathrm{h}}{2 \pi}=\frac{\mathrm{h}}{\pi}$.
22. ${ }_{24} \mathrm{Cr}:[\mathrm{Ar}] 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{1} \quad ; \quad{ }_{29} \mathrm{Cu}:[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{1}$
${ }_{46} \mathrm{Pd}:[\mathrm{Kr}] 4 \mathrm{~d}^{10} 5 \mathrm{~s}^{0} \quad ; \quad{ }_{78} \mathrm{Pt}:[\mathrm{Xe}] 5 \mathrm{~d}^{9} 6 \mathrm{~s}^{1}$
23. ${ }_{8} \mathrm{O}:[\mathrm{He}] 2 \mathrm{~s}^{2} 2 \mathrm{p}^{4} \quad ; \quad{ }_{16} \mathrm{~S}:[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{4}$
24. For $1 \mathrm{~s}, 3 \mathrm{~s}, 3 \mathrm{~d}$ and 2 p orbital, $\ell=0,0,2,1$ respectively. Orbital angular momentum $=\sqrt{\ell(\ell+1)} \hbar$.
25. Magnetic moment $=2.83$ so, no. of unpaired electrons $=2$ so, Ni^{2+} is the answer.
26. $\frac{r_{1}}{r_{2}}=\frac{n_{1}^{2}}{n_{2}^{2}}=\frac{R}{4 R} \quad \Rightarrow \frac{n_{1}}{n_{2}}=\frac{1}{2}$
$\therefore \quad \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{\mathrm{n}_{1}^{3}}{\mathrm{n}_{2}^{3}}=\frac{1}{8}$.
27. After $n p$ orbital, $(n+1) s$ orbital is filled.
28. $\quad \frac{T_{1}}{T_{2}}=\frac{n_{1}^{3}}{n_{2}^{3}}=\frac{1^{3}}{2^{3}}=\frac{1}{8}$.
$\because\left(\mathrm{T}=\frac{2 \pi \mathrm{r}}{\mathrm{V}}\right) \quad$ so, $\mathrm{T} \propto \frac{\mathrm{n}^{3}}{\mathrm{Z}^{2}}$
29. $\mathrm{Cr}: 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{5}$
$\mathrm{n}+\ell=3$
so the combinations are $2 \mathrm{p}, 3 \mathrm{~s}$. So 8 electrons.
30. Angular momentum $\mathrm{J}=\mathrm{mvr}$

$$
\mathrm{J}^{2}=\mathrm{m}^{2} \mathrm{v}^{2} \mathrm{r}^{2}
$$

or $\frac{\mathrm{J}^{2}}{2}=\left(\frac{1}{2} m v^{2}\right) m r^{2}$ or K.E. $=\frac{\mathrm{J}^{2}}{2 m r^{2}}$
31. $I_{n}=\frac{e V_{n}}{2 \pi r_{n}}=\frac{e \times\left(\frac{2 \pi K e^{2}}{n h}\right)}{2 \pi \times\left(\frac{n^{2} h^{2}}{4 \pi^{2} m e^{2} K}\right)}=\frac{4 \pi^{2} m^{2} e^{5}}{n^{3} h^{3}}$.
32. $\mathrm{Rb}_{37}:[\mathrm{Kr}] 5 \mathrm{~s}^{2} . \quad \therefore \quad \mathrm{n}=5, \ell=0, \mathrm{~m}=0, \mathrm{~s}= \pm \frac{1}{2}$.
33. Visible lines \Rightarrow Balmer series
$\Rightarrow 3$ lines. $(5 \rightarrow 2,4 \rightarrow 2,3 \rightarrow 2)$.
34. Shortest wave length of Lyman series of H -atom

$$
\frac{1}{\lambda}=\frac{1}{x}=R\left[\frac{1}{(1)^{2}}-\frac{1}{(\infty)^{2}}\right] \quad \text { so, } x=\frac{1}{R}
$$

For Balmes series

$$
\begin{aligned}
& \frac{1}{\lambda}=\mathrm{R}(1)^{2}\left\{\frac{1}{(2)^{2}}-\frac{1}{(3)^{2}}\right\} \\
& \frac{1}{\lambda}=\frac{1}{\mathrm{x}} \times \frac{5}{36} \quad \text { so, } \lambda=\frac{36 \mathrm{x}}{5}
\end{aligned}
$$

35. $\mathrm{I}:$ For $\mathrm{n}=5,1_{\min }=0 . \quad \therefore$ Orbital angular momentum

$$
=\sqrt{\ell(\ell+1)} \hbar=0 .(\text { False })
$$

II : Outermost electronic \therefore possible atomic number configuration $=3 \mathrm{~s}^{1}$ or $3 \mathrm{~s}^{2} .=11$ or 12 (False).
III : $\mathrm{Mn}_{25}=[\mathrm{Ar}] 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{2} . \quad \therefore 5$ unpaired electrons.
\therefore Total spin $= \pm \frac{5}{2}$ (False).
IV : Inert gases have no unpaired electrons.
$\therefore \quad$ spin magnetic moment $=0$ (True).
36. $\frac{h c}{\lambda}=E_{1}-E_{2}=\mathrm{KE}_{2}-\mathrm{KE}_{1}$

$$
\begin{aligned}
& \therefore \quad \lambda=\frac{\mathrm{h}}{\mathrm{mV}}(\mathrm{mV})^{2}=\left(\frac{\mathrm{h}}{\lambda}\right)^{2} \quad ; \quad \frac{1}{2} \mathrm{mV}^{2}=\frac{1}{2 \mathrm{~m}} \frac{\mathrm{~h}^{2}}{\lambda^{2}} \\
& \therefore \quad \frac{\mathrm{hc}}{\lambda}=\frac{\mathrm{h}^{2}}{2 \mathrm{~m} \lambda_{2}^{2}}-\frac{\mathrm{h}^{2}}{2 \mathrm{~m} \lambda_{1}^{2}} . \\
& \therefore \quad \lambda=\frac{2 \mathrm{mc}}{\mathrm{~h}}\left\{\frac{\lambda_{1}^{2} \lambda_{2}^{2}}{\lambda_{1}^{2}-\lambda_{2}^{2}}\right\} .
\end{aligned}
$$

37. $\mathrm{IP}=13.6 \mathrm{Z}^{2}=16$ (given).
$1^{\text {st }}$ excitation potential $=13.6 \times \frac{3}{4} \times Z^{2}=16 \times \frac{3}{4}=12 \mathrm{~V}$.
38. Change is angular momentum $=\frac{\Delta \mathrm{nh}}{2 \pi}=(5-2) \frac{\mathrm{h}}{2 \pi}$
$=\frac{3 \mathrm{~h}}{2 \pi}$.
39. $\frac{\lambda_{p}}{\lambda_{\alpha}}=\sqrt{\frac{m_{\alpha} K E_{\alpha}}{m_{p} K E_{p}}}=\sqrt{\frac{4 m_{p} \times 325}{m_{p} \times 50}}=\sqrt{26} \approx 5$.
40. Total energy $=\frac{13.6 Z^{2}}{n^{2}}=\frac{13.6(Z)^{2}}{(4)^{2}}=3.4 \mathrm{eV}$

Now K.E. $=3.4-1.4=2 \mathrm{eV}$
Now, Total energy $=2+4=6 \mathrm{eV} \quad$ i.e. potential $=6 \mathrm{~V}$
For electron $\lambda=\sqrt{\frac{150}{\mathrm{~V}}}$ so $\lambda=5 \AA$.
41. Number of lines in Balmer series $=2$.
$\therefore \quad \mathrm{n}=4$ (lines will be $4 \rightarrow 2,3 \rightarrow 2$).
KE of ejected photoelectrons $=\mathrm{E}_{\text {photon }}-\mathrm{BE}_{\mathrm{n}}=13-\frac{13.6}{4^{2}}$
$=13-0.85=12.15 \mathrm{eV}$.
42. The lobes of $d_{x^{2}-y^{2}}$ orbital are alligned along X and Y axis. Therefore the probability of finding the electron is maximum along x and y -axis.
43. Number of values of $\ell=$ total number of subshells $=n$.

Value of $\ell=0,1,2 \ldots \ldots . .(\mathrm{n}-1)$.
$\ell=2 \Rightarrow \mathrm{~m}=-2,-1,0,+1,+2(5$ values $)$
$\mathrm{m}=-\ell$ to $+\ell$ through zero.
44. $\mathrm{E}_{\mathrm{n}} \propto \mathrm{Z}^{2} \quad \therefore \quad \mathrm{Z}$ doubled $\Rightarrow \mathrm{E}_{\mathrm{n}}$ becomes four times.
$R_{n} \propto 1 / Z \quad \therefore \quad Z$ doubled $\Rightarrow R_{n}$ becomes half.
$\mathrm{v}_{\mathrm{n}} \propto \mathrm{Z} \quad \therefore \quad \mathrm{Z}$ doubled $\Rightarrow \mathrm{v}_{\mathrm{n}}$ becomes two times.
45. $\mathrm{E}_{\text {absorbed }}=\mathrm{E}_{\text {emitted }}$
$\therefore \quad \frac{\mathrm{hc}}{300}=\frac{\mathrm{hc}}{496}+\frac{\mathrm{hc}}{\lambda}$.
$\therefore \lambda=759 \mathrm{~nm}$.
46. $\mathrm{KE}=-\mathrm{TE}=3.4 \mathrm{eV} . \quad \therefore \quad \lambda=\sqrt{\frac{150}{\mathrm{KE}}}=\sqrt{\frac{150}{3.4}} \AA$.
47. $\lambda_{\mathrm{e}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{~m}_{\mathrm{e}} \mathrm{KE}_{\mathrm{e}}}}=\frac{\mathrm{h}}{\sqrt{2 \times 1 / 1837 \mathrm{~m}_{\mathrm{p}} \times 16 \mathrm{E}}}$,
$\lambda_{p}=\frac{h}{\sqrt{2 m_{p} K E_{p}}}=\frac{h}{\sqrt{2 m_{p} \times 4 E}}$.
$\lambda_{\alpha}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{~m}_{\alpha} \mathrm{KE}_{\alpha}}}=\frac{\mathrm{h}}{\sqrt{2 \times 4 \mathrm{~m}_{\mathrm{p}} \times \mathrm{E}}} \therefore \quad \lambda_{\mathrm{e}}>\lambda_{\mathrm{p}}=\lambda_{\alpha}$.
48. P.E. $=\frac{K q_{1} q_{2}}{r}=\frac{K(-e)(+4 e)}{r}=\frac{1}{4 \pi \varepsilon_{0}} \times-\frac{4 e^{2}}{r}$
$=\frac{-\mathrm{e}^{2}}{\pi \varepsilon_{0} \mathrm{r}}$.
49. $\sqrt{n(n+2)}=4.9$
$\therefore \quad$ No. of unpaired electrons, $n=4$.

$$
{ }_{25} \mathrm{Mn}:[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{5}
$$

For having 4 unpaired electrons, a Mn atom should lose 3 electrons (2 from 4 s and 1 from 3 d).
$\therefore \mathrm{a}=+3$.
50. $d_{z^{2}}$ orbital has two lobes along Z axis and a ring along XY plane.
51. Energy of one photon $=\frac{12400}{3100}=4 \mathrm{ev}=4 \times 96$
$=384 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\therefore \%$ of energy converted to K.E. $=\frac{384-288}{384}$
$=\frac{96}{384} \times 100=25 \%$
52. $1^{\text {st }}$ line from red end in Balmer series.
\Rightarrow Line of minimum energy in Balmer series.
\therefore Transition $=(3 \rightarrow 2)$.
53. Since some visible quanta were observed along with other quanta, electrons must have made transition from some higher state to $\mathrm{n}=2$ and then from $\mathrm{n}=2$ to $\mathrm{n}=1$.
\therefore Transition from $2 \rightarrow 1$ is compulsory, because electron from $\mathrm{n}=2$ will finally fall into $\mathrm{n}=1$.
54. $\frac{\mathrm{R}_{\mathrm{n}_{1}}}{\mathrm{R}_{\mathrm{n}_{2}}}=\frac{\mathrm{n}_{1}^{2}}{\mathrm{n}_{2}^{2}}=\frac{1}{4} \therefore \frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=\frac{1}{2}$.

Among the first four orbits n_{1} and n_{2} can be 1 and 2 or 2 and 4.
$\therefore \quad$ Energy difference can be :

$$
\mathrm{E}_{2 \rightarrow 1}=10.2 \mathrm{eV} \quad \text { or } \quad \mathrm{E}_{4 \rightarrow 2}=2.55 \mathrm{eV}
$$

55. $\lambda_{p}=\frac{h}{\sqrt{2 m_{p} q_{p} V}} \quad \lambda_{a}=\frac{h}{\sqrt{2 m_{\alpha} q_{\alpha} V}}$
$\lambda_{a}=\frac{h}{\sqrt{2 \times 4 m_{p} \times 2 q_{p} \times V}}$
$\frac{\lambda_{\mathrm{p}}}{\lambda_{\alpha}}=\frac{\sqrt{8}}{1}=\frac{2 \sqrt{2}}{1}$.
56. $\mathrm{IE}_{\mathrm{A}}>\mathrm{IE}_{\mathrm{B}}$
$\therefore \mathrm{Z}_{\mathrm{A}}>\mathrm{Z}_{\mathrm{B}}$.
$r \propto 1 / Z . \quad \therefore \quad r_{A}<r_{B}$.
$\mathrm{u} \propto \mathrm{Z} \quad \therefore \mathrm{u}_{\mathrm{A}}>\mathrm{u}_{\mathrm{B}}$.
$\mathrm{E} \propto \mathrm{Z}^{2}$ (But it is negative). $\quad \therefore \quad \mathrm{E}_{\mathrm{A}}<\mathrm{E}_{\mathrm{B}}$.
L does not depends on Z .
\therefore For same $\mathrm{n}, \mathrm{L}_{\mathrm{A}}=\mathrm{L}_{\mathrm{B}}$.
57. In H -atom, 4 lines are observed in Balmer series. So, electron is in $\mathrm{n}=6(6 \rightarrow 2,5 \rightarrow 2,4 \rightarrow 2,3 \rightarrow 2)$. In He^{+}ion, one line is observed in Paschen series. So electron is in $n=4(4 \rightarrow 3)$.
$(\mathrm{H})_{6 \rightarrow 2}=\left(\mathrm{He}^{+}\right)_{12 \rightarrow 4}$
$\therefore \quad$ electron in He^{+}will jump from $\mathrm{n}=4$ to $\mathrm{n}=12$.
58. $\left(\mathrm{He}^{+}\right)_{2 \rightarrow 4}=\left(\mathrm{Li}^{2+}\right)_{\mathrm{n}_{4} \rightarrow \mathrm{n}_{3}}$
$\therefore \quad \frac{\mathrm{Z}_{1}}{\mathrm{Z}_{2}}=\frac{\mathrm{n}_{2}}{\mathrm{n}_{4}}=\frac{\mathrm{n}_{1}}{\mathrm{n}_{3}}$ or $\quad \frac{2}{3}=\frac{2}{\mathrm{n}_{4}}=\frac{4}{\mathrm{n}_{3}}$
$\therefore \quad \mathrm{n}_{4}=3$ and $\mathrm{n}_{3}=6$.
\therefore Transition in Li^{2+} ion $=3 \rightarrow 6$
59. $\mathrm{KE}_{1}=\mathrm{E}_{\text {photon }}-\mathrm{BE}_{\mathrm{n}=1}$
$\mathrm{KE}_{2}=\mathrm{E}_{\text {photon }}-\mathrm{BE}_{\mathrm{n}=\mathrm{n}}$
$\mathrm{KE}_{2}-\mathrm{KE}_{1}=\mathrm{BE}_{\mathrm{n}=1}-\mathrm{BE}_{\mathrm{n}=\mathrm{n}}=13.6 \mathrm{Z}^{2}\left[\frac{1}{1^{2}}-\frac{1}{\mathrm{n}^{2}}\right]$
$=12.75$ (given).
$\therefore \quad \mathrm{n}^{2}=16$ or $\mathrm{n}=4$.
BE : Binding energy.
60. Number of lines of Paschen series

$$
=5(8 \rightarrow 3,7 \rightarrow 3,6 \rightarrow 3,5 \rightarrow 3,4 \rightarrow 3) .
$$

61. $\mathrm{E}_{\mathrm{A} \rightarrow \mathrm{C}}=\mathrm{E}_{\mathrm{A} \rightarrow \mathrm{B}}+\mathrm{E}_{\mathrm{B} \rightarrow \mathrm{C}}$

$$
\frac{12400}{3000}=\frac{12400}{\lambda(\AA)}+\frac{12400}{6000} \Rightarrow \lambda=6000 \AA .
$$

62. $\mathrm{E}_{\text {emitted }}=\frac{50}{100} \times \mathrm{E}_{\text {absorbed }}$

No. of emitted photons \times Energy of emitted photon $=\frac{50}{100} \times$ No. of absorbed photon \times Energy of absorbed photon.
$\therefore \quad \mathrm{n}_{\mathrm{e}} \times \frac{12400}{5000}=\frac{50}{100} \times \mathrm{n}_{\mathrm{a}} \times \frac{12400}{4000}$.
$\therefore \quad \frac{\mathrm{n}_{\mathrm{e}}}{\mathrm{n}_{\mathrm{a}}}=\frac{5}{8}$.
63. $\frac{(e / m)_{p}}{(e / m)_{\alpha}}=\frac{e_{p} / m_{p}}{2 e_{p} / 4 m_{p}}=\frac{2}{1}$.
64. $\Delta \mathrm{x}=0.1 \times 10^{-9} \mathrm{~m}$.

$$
\Delta \mathrm{V}=5.27 \times 10^{-27} \mathrm{~ms}^{-1}
$$

$\therefore \Delta \mathrm{x} \times \mathrm{m} \Delta \mathrm{V}=\frac{\mathrm{h}}{4 \pi}$
$\therefore \quad 0.1 \times 10^{-9} \times \mathrm{m} \times 5.27 \times 10^{-27}=0.527 \times 10^{-34}$.
$\therefore \quad \mathrm{m}=0.1 \mathrm{~kg} .=100 \mathrm{gm}$.
65. $\frac{1}{\lambda_{1}}=\mathrm{R}(1)^{2}\left[\frac{1}{1^{2}}-\frac{1}{\infty^{2}}\right]$ and $\frac{1}{\lambda_{2}}$
$=R(1)^{2}\left[\frac{1}{2^{2}}-\frac{1}{4^{2}}\right]$
$\therefore \quad \lambda_{1}=\frac{1}{R} \quad$ and $\lambda_{2}=\frac{16}{3 R}$.
$\therefore \quad \frac{16}{\lambda_{2}}=\frac{3}{\lambda_{1}}$.
66. $\mathrm{KE}=\frac{1}{2} \frac{\mathrm{KZe}^{2}}{r}=\frac{3 \mathrm{e}^{2}}{8 \pi \varepsilon_{0} r}$.
67. $v_{1}=\operatorname{Rc}(1)^{2}\left[\frac{1}{1^{2}}-\frac{1}{\infty^{2}}\right]=\operatorname{Rc}$.

$$
v_{2}=\operatorname{Rc}(2)^{2}\left[\frac{1}{1^{2}}-\frac{1}{\infty^{2}}\right]=4 \operatorname{Rc}
$$

$$
v_{3}=\operatorname{Rc}(2)^{2}\left[\frac{1}{2^{2}}-\frac{1}{\infty^{2}}\right]=\operatorname{Rc}
$$

$\therefore \quad 2\left(v_{1}+v_{3}\right)=v_{2} \quad$ and $v_{1}=v_{3} \quad$ and $\quad 4 v_{1}=v_{2}$.

Part \# II : Assertion \& Reason

1. $\mathrm{q}_{\alpha}=2 \mathrm{q}_{\mathrm{p}} \quad$ and $\mathrm{m}_{\alpha}=4 \mathrm{~m}_{\mathrm{p}}$
2. For principle quantum number n
$\ell=0$ to $(\mathrm{n}-1)$ and $\mathrm{m}=-\ell$ to ℓ including zero.
3. $\lambda=\sqrt{\frac{150}{\mathrm{~V}}} \AA$
4. Statement-1: Correct statement.

Statement-2 $: \frac{1}{\lambda}=R_{H} Z^{2}\left[\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right]$.
6. For Humphry series, $\left(n_{2}=7,8,9 \ldots \ldots.\right)$ and $n_{1}=6$.
7. Since interaction between a photon and a molecule is always one to one, so a photon of energy 12 eV can break only one molecule of A_{2} into atoms and remaining 8 eV energy becomes kinetic energy of atoms.
8. e / m ratio for particles in cathode rays comes out to be same for all gases.
$\mathrm{e} / \mathrm{m}=1.76 \times 10^{11} \mathrm{C} / \mathrm{kg}$.
This led to the conclusion that electrons were fundamental particles.
9. e / m ratio for particles in anode rays is different for different gases as different gases produce different positively charged particles upon ionisation.

EXERCISE - 3

Part \# I : Matrix Match Type

2. $f_{n}=\frac{v_{n}}{2 \pi r_{n}}, f_{n} \propto \frac{\mathrm{z}^{2}}{n^{3}}, T_{n}=\frac{2 \pi r_{n}}{v_{n}}, T_{n} \propto \frac{n^{3}}{z^{2}}$.
$E_{n}=-13.6 \frac{z^{2}}{n^{2}}, E_{n} \propto \frac{z^{2}}{n^{2}}, r_{n} \propto \frac{n^{2}}{Z}$.
3. i : For Lyman series, \bar{v} for second line $(3 \rightarrow 1)$

$$
=R(1)^{2}\left[\frac{1}{1^{2}}-\frac{1}{3^{2}}\right]=\frac{8 \mathrm{R}}{9}(\mathrm{c})
$$

ii : For Balmer series, \bar{v} for second line $(4 \rightarrow 2)$

$$
=R(1)^{2}\left[\frac{1}{2^{2}}-\frac{1}{4^{2}}\right]=\frac{3 R}{16}(\mathrm{~d})
$$

iii : In a sample of H -atom for $5 \rightarrow 2$ transition, maximum number of spectral lines observed

$$
=\frac{(5-2)(5-2+1)}{2}=6(\mathrm{a}) .
$$

iv : In a single isolated H -atom for $3 \rightarrow 1$ transition, maximum number of spectral lines observed $=2(3 \rightarrow 2,2 \rightarrow 1)(\mathrm{b})$.

Part \# II : Comprehension

Comprehension \#1 :

1. Last line of Bracket series for H -atom

$$
\frac{1}{\lambda_{1}}=\mathrm{R}\left[\frac{1}{(4)^{2}}-\frac{1}{(\infty)^{2}}\right] \quad \text { so, } \lambda_{1}=\frac{16}{\mathrm{R}}
$$

$2^{\text {nd }}$ line of Lyman series

$$
\begin{aligned}
\frac{1}{\lambda_{2}} & =\mathrm{R}\left[\frac{1}{(1)^{2}}-\frac{1}{(3)^{2}}\right] \quad \text { so, } \lambda_{2}=\frac{9}{8 \mathrm{R}} \\
\text { or, } \frac{128}{\lambda_{1}} & =\frac{9}{\lambda_{2}}
\end{aligned}
$$

2. 3. Spectral lines of H atom only belonging to Balmer series are in visible range.
1. In the Balmer series of H -atom, first 4 lines are in visible region and rest all are in ultra violet region.
2. $2^{\text {nd }}$ line of Lyman series of He^{+}ion has energy $=\left(\mathrm{E}_{3 \rightarrow 1}\right) \times 2^{2}=12.1 \times 4=48.4 \mathrm{eV}$.
3. $\overline{\mathrm{v}}=\mathrm{R}(4)^{2}\left[\frac{1}{(3)^{2}}-\frac{1}{(4)^{2}}\right]=\frac{7 \mathrm{R}}{9}$.

Comprehension \#2 :

1. As the frequency of incident radiations increases, the kinetic energy of emitted photoelectrons increases.
Decreasing order of $v \Rightarrow$ Violet $>$ Blue $>$ Orange $>$ Red
\therefore Decreasing order of KE of photoelectrons \Rightarrow Violet $>$ Blue $>$ Orange $>$ Red
2. The interaction between photon and electron is always one to one for ejection of photoelectrons, Frequency of incident radiations $>$ threshold frequency $\therefore 5.16 \times 10^{15}>6.15 \times 10^{14}$
3. The number of photoelectrons emitted depend on the intensity or brightness of incident radiation.
Comprehension \# 3 :
4. Multiply Angular part and Radial part of 1s orbital and square this.
5. $\Psi_{2 \mathrm{~s}}=\frac{1}{\sqrt{32 \pi}}\left[\frac{1}{a_{0}}\right]^{3 / 2}\left[2-\frac{r}{a_{0}}\right] e^{-r / 2 a_{0}}$

For radial node at $r=r_{0}, \Psi_{2 s}^{2}=0$. This is possible only when

$$
\begin{array}{ll}
& {\left[2-\frac{\mathrm{r}_{0}}{\mathrm{a}_{0}}\right]=0} \\
\therefore \quad & \mathrm{r}_{0}=2 \mathrm{a}_{0} .
\end{array}
$$

3. For s-orbital probability of finding an electron is same at all angles at specific radius.
Comprehension \# 4 :
4. Two unpaired electrons present in carbon atom are in different orbitals. So they have different magnetic quantum number.
5. Electronic configuration of Zn^{2+} ion is $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ $3 \mathrm{~d}^{10}$ so no electron in 4 s orbital.
6. $\sqrt{s(s+1)} \frac{h}{2 \pi}=\sqrt{\frac{1}{2}\left(\frac{1}{2}+1\right)} \frac{h}{2 \pi}=\frac{\sqrt{3}}{2} \frac{h}{2 \pi}=0.866 \frac{h}{2 \pi}$

Comprehension \# 5 :

1. $\Delta \mathrm{x}=\frac{\mathrm{h}}{4 \pi \mathrm{Me}} \times \frac{1}{\Delta \mathrm{~V}} \quad \Delta \mathrm{~V}=\mathrm{V}^{\prime} \frac{0.001}{100}=300 \times 10^{-5} \mathrm{~m} / \mathrm{s}$

$$
\Delta x=5.8 \times 10^{-5} \times \frac{1}{300 \times 10^{-5}}=1.92 \times 10^{-2} \mathrm{~m}
$$

2. The maximum KE of potoelectron is corresponding to maximum stopping $=22 \mathrm{eV}$

$$
\therefore \quad \mathrm{E}_{\text {incident }}=\mathrm{E}_{\text {thresold }}+\mathrm{KE}_{\text {maxi }}=40 \mathrm{eV}+22 \mathrm{eV}=62 \mathrm{eV}
$$

$$
\lambda_{\text {incident }}=\frac{12400 \AA}{62}=200 \AA
$$

3. Circumference $=2 \pi r=n \lambda$

$$
\text { de-broglie }-\lambda=\frac{2 \pi \mathrm{r}}{\mathrm{n}}=\frac{3 \mathrm{~nm}}{3}=1 \mathrm{~nm}=10 \AA
$$

$\therefore \lambda=\frac{12.3}{\sqrt{V}} \AA$
$\Rightarrow \mathrm{KE}=\left(\frac{12.3}{10}\right)^{2}=1.51 \mathrm{eV}$.
\therefore KE of electron in third orbit $=1.51 \mathrm{eV} \equiv$ binding energy of third orbit in this atom
$\lambda=$ of photon required to ionise $=\frac{1240 \mathrm{eV} \AA}{1.51 \mathrm{eV}}=821 \mathrm{~nm}$

CHEMISTRY

Comprehension \#6:

1. $\mathrm{Cr}=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{1}$
$\mathrm{Mn}^{+}=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{1}$
$\mathrm{Fe}^{2+}=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{6}$
$\mathrm{Co}^{3+}=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{5}$
2. $\sqrt{n(n+2)}=1.73$
$n(n+2)=3$
$\mathrm{n}+2 \mathrm{n}=3$
$\mathrm{n}^{2}+2 \mathrm{n}-3=0$
$(\mathrm{n}+3)(\mathrm{n}-1)=0$
$\mathrm{n}=1$
Number of unpaired electron $=1$
$\mathrm{V}^{4+} \Rightarrow[\mathrm{Ar}] 3 \mathrm{~s}^{1} 4 \mathrm{~s}^{0}$
3. $\mathrm{Fe}^{3+}=[\mathrm{Ar}] 3 \mathrm{~d}^{5}$
$\mathrm{Ti}^{3+}=[\mathrm{Ar}] 3 \mathrm{~d}^{1}$
$\mathrm{Co}^{3+}=[\mathrm{Ar}] 3 \mathrm{~d}^{6}$
all are having unpaired electron hence paramagnetic \& coloured.
4. $\mathrm{Fe}=[\mathrm{Ar}] 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{2}$

Hund's and Pauli's principle is voileted.
5. Spin quantum number $\left(\mathrm{m}_{\mathrm{s}}\right)=-\frac{1}{2}, 0,+\frac{1}{2}$ that is one orbital accomodate maximum $3 \mathrm{e}^{-}$
Number of element in any period $=3 \mathrm{r}^{2}$
$\mathrm{n}=\frac{\mathrm{p}+2}{2}$ (for even period no.)
$\mathrm{n}=\frac{2+2}{2}=2$
number of element $\Rightarrow 3 \times 4 \Rightarrow 12$
6. for g - sub-shell
$\mathrm{n}=5$
$\ell=0,1,2,3,4$
$\ell=4\{\mathrm{~g}-$ subshell $\}$
number of electron $=2(2 \ell+1)$

$$
=2 \times 9 \Rightarrow 18
$$

number of orbital $=(2 \ell+1) \Rightarrow 9$
any orbital can have more two electron

EXERCISE - 4

Subjective Type

1. Distance to be travelled from mars to earth $=8 \times 10^{7} \mathrm{~km}$
\because Velocity $=3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$
\therefore Time $=\mathrm{D} / \mathrm{V}=\frac{8 \times 10^{10}}{3 \times 10^{8}}=2.66 \times 10^{2} \mathrm{sec}$.
2. (a) I.P. $=\underset{1=\infty}{\Delta E}=E_{\infty}-E_{1}=0-(-15.6)=15.6$ l.v.
(b) $\mathrm{n}=\infty \quad \mathrm{n}=2$
$\Delta \mathrm{E}=[0-(-5.3)]=5.31 . \mathrm{v}$.
$\Delta \mathrm{E}=\frac{1240}{\lambda(\mathrm{~nm})} \quad \lambda=\frac{1240}{5.3}=233.9 \mathrm{~nm}$
(c) $\left|\Delta \mathrm{E}_{3 \rightarrow 1}\right|=|-3.08-(-15.6)|=15.6-3.08=12.521 . \mathrm{v}$.
$=\frac{1240}{\lambda}=\frac{12.52}{1240}=\frac{1}{\lambda}(\mathrm{n} . \mathrm{m})$
$\lambda=1.808 \times 10^{7} \mathrm{~m}^{-1}$
(d) (I) $\mathrm{E}=-15.6-(-6)=-15.6+6=-9.6$
(III) $\mathrm{E}=-15.6-(-11)=-15.6+11=-4.6$
3. $1.6 \times 10^{-19} \mathrm{~J}=1 \mathrm{eV}$
$10^{-17}=\frac{10^{-17}}{1.6 \times 10^{-19}} \mathrm{eV}=0.655 \times 10^{2}$
$\mathrm{E}=\frac{\mathrm{nhc}}{\lambda} \quad 0.625 \times 10^{2}=\mathrm{n} \frac{1240}{550}$
$2.77 \times 10=\mathrm{n}$
4. $\quad 330 \mathrm{~J}=\mathrm{n}(\mathrm{h} v)$
$330 \mathrm{~J}=\mathrm{n}\left[6.62 \times 10^{-34} \times 5 \times 10^{13}\right]$
$\frac{330}{6.62 \times 10^{34} \times 5 \times 10^{13}}=\mathrm{n} \quad 10^{22}=\mathrm{n}$
5. $\mathrm{E}=\frac{\mathrm{hL}}{\lambda} \quad \mathrm{n}=\frac{3.15 \times 10^{-14} \times 850 \times 10^{-9}}{6.62 \times 10^{-34} \times 3 \times 10^{8}}$
$\mathrm{n}=134.8 \times 10^{3} \quad \mathrm{n}=1.35 \times 10^{5}$
6. $\lambda=1093.6 \mathrm{~nm} \quad \mathrm{R}_{\mathrm{H}}=1.09 \times 10^{7} \mathrm{~m}^{-1}$
$=1093.6 \times 10^{-9} \mathrm{~m} . \mathrm{n}_{2}=? \quad \mathrm{n}_{1}=3$
$\frac{10^{9}}{1093.6 \times 10^{7} \times 1.09}=\frac{1}{9}-\frac{1}{\mathrm{n}_{2}^{2}}$
$\frac{1}{\mathrm{n}_{2}^{2}}=\frac{1}{9}=-0.83 \quad \frac{1}{\mathrm{n}_{2}^{2}}=\frac{9}{0.253}$
$\mathrm{n}_{2}^{2}=36 \quad \mathrm{n}_{2}=6$
7. $\mathrm{n}_{2}=3 \quad \mathrm{n}_{1}=2$ [first line]
$\mathrm{n}_{2}=4 \quad \mathrm{n}_{1}=2 \quad$ [second line]
$\frac{1}{\lambda}=\mathrm{R}_{\mathrm{H}}\left[\frac{1}{4}-\frac{1}{9}\right]$
$\frac{1}{6565} \AA=R_{H}\left[\frac{1}{4}-\frac{1}{9}\right] \ldots .(\mathrm{i})$
$\frac{1}{\lambda}=\mathrm{R}_{\mathrm{H}}\left[\frac{1}{4}-\frac{1}{16}\right] \ldots$
.(ii)
$\frac{\text { (i) }}{\text { (ii) }}$
$\frac{\lambda}{6565}=\frac{\frac{5}{36}}{\frac{3}{16}}=\frac{5 \times 16}{36 \times 3} \quad \lambda=4863 \AA$
8. $3 \rightarrow 2$
$\frac{1}{\lambda_{1}}=\mathrm{R}_{\mathrm{H}} \times \mathrm{Z}^{2}\left[\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right]=\mathrm{R}_{\mathrm{H}} \times 4\left[\frac{1}{4}-\frac{1}{9}\right]$
$2 \rightarrow 1 \frac{1}{\lambda_{2}}=\mathrm{R}_{\mathrm{H}} \times 4\left[\frac{1}{1}-\frac{1}{4}\right]$
$\left(\lambda_{1}-\lambda_{2}\right)=133.7 \mathrm{~nm}$
we will solve the three equation and we will get $\mathrm{R}=1.096 \times 10^{7} \mathrm{~m}^{-1}$
9. $\Delta \mathrm{E}=13.6\left[\frac{1}{9}-\frac{1}{4}\right] \times 96.3368 \mathrm{~kJ} / \mathrm{mole}$
$=13.6\left[\frac{4-9}{36}\right] \times 96.368=182.074$
$=1.827 \times 10^{5} \mathrm{~J} / \mathrm{mole}$
10. $\mathrm{IE}=\frac{\mathrm{hc}}{\lambda}=\frac{1240}{85.4}$
$=\frac{1240}{85.4} \times 96.368 \mathrm{~kJ} /$ mole $\approx 1399.25 \mathrm{~kJ} / \mathrm{mol}$
11. Radius $=16(\mathrm{RH})=16 \times 0.0529$
$16 \times 0529=0.0529 \times \frac{\mathrm{n}^{2}}{Z}$
$16=\frac{\mathrm{n}^{2}}{1} \quad \mathrm{n}=4$
T.E. $=-13.6 \times \frac{\mathrm{n}^{2}}{\mathrm{Z}^{2}}$ l.v. $=0.85$ l.v. $=-1.36 \times 10^{-19} \mathrm{~J}$
12. $\mathrm{E}_{\mathrm{n}}=\frac{-21.7 \times 10^{-12}}{\mathrm{n}^{2}} \quad 1 \mathrm{erg}=10^{-7}$ Joule

$$
\mathrm{E}_{\mathrm{n}}=\frac{-21.7 \times 10^{-12}}{4}
$$

J.E. $=0-\left[\frac{-21.7 \times 10^{-12}}{4}\right]=\frac{21.7 \times 10^{-12}}{4}$
$=5.425 \times 10^{-12} \mathrm{ergs}$
(b) $5.425 \times 10^{-12}=\frac{6.624 \times 10^{-34} \times 10^{8}}{\lambda}$
$\lambda=\frac{6.624 \times 3 \times 10^{8} \times 10^{12}}{5.425 \times 10^{34}}=3.7 \times 10^{-14}(\mathrm{~nm})$
$=3.7 \times 10^{-14} \times 10^{9} \mathrm{~cm}=3.7 \times 10^{-5} \mathrm{~cm}$
13. $\underset{2 \rightarrow 1}{\Delta \mathrm{E}}=$ I.E. $\left[\frac{1}{4}-\frac{1}{1}\right]$
$2.17 \times 10^{-11} \mathrm{erg} /$ atom $\left[\frac{1}{4}-\frac{1}{1}\right]=\frac{\mathrm{hc}}{\lambda(\mathrm{m})}$
$2.17 \times 10^{-11} \times 10^{-7} \mathrm{~J}\left[\frac{1}{4}-\frac{1}{1}\right]=\frac{6.626 \times 10^{-34} \times 3 \times 10^{8}}{\lambda}$
$\lambda=\frac{6.626 \times 10^{34} \times 3 \times 10^{8} \times 4}{2.17 \times 10^{-18} \times 3}=\frac{6.626 \times 4 \times 10^{8}}{2.17}$
$=12.20 \times 10^{-8} \mathrm{~m}$
$1 \mathrm{~m} \rightarrow 10^{10} \AA$
$6.10 \times 10^{-8} \mathrm{~m} \rightarrow \frac{12.2 \times 10^{10}}{10^{8}}=1220 \AA$
14. $\mathrm{V}_{\mathrm{n}}=2.18 \times 10^{6} \times \frac{\mathrm{Z}}{\mathrm{n}}=\frac{2.18 \times 10^{6}}{\mathrm{n}}$
$\frac{2.18 \times 10^{6}}{\mathrm{n}}=\frac{1}{275}$
$\frac{2.18 \times 10^{6}}{\mathrm{n}}=\frac{1}{3 \times 10^{8}}=\frac{1}{275}$
$\frac{2.18}{n(300)}=\frac{1}{275} \quad \frac{1}{n}=\frac{300}{599.5}$
$\mathrm{n}=\frac{599.5}{300}=\frac{1}{275} \quad \frac{1}{\mathrm{n}}=\frac{300}{599.5}$
$\mathrm{n}=1.99 \simeq 2$
15. $\mathrm{Z}=3, \mathrm{n}_{1}=1, \mathrm{n}_{2}=3$
$\mathrm{E}_{\mathrm{n}}=13.6 \times\left(\mathrm{Z}^{2}\right)\left[\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right]=13.6 \times 9\left[\frac{1}{1}-\frac{1}{9}\right]$
$=13.6 \times 9 \times \frac{8}{9}=108.8 \mathrm{eV}$
16.(i)

$$
\mathrm{E}_{\mathrm{n}_{2} \rightarrow \mathrm{n}_{1}}=13.6 \times \mathrm{Z}^{2}\left[\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right]=13.6[1]^{2}\left[\frac{1}{1}-\frac{1}{4}\right]
$$

$$
=13.1 \times 1 \times \frac{3}{4}=10.22 \mathrm{eV}
$$

(ii) $\frac{1}{\lambda}=\mathrm{R}_{\mathrm{H}} \mathrm{Z}^{2}\left[\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right]$
$\frac{1}{3 \times 10^{-8}}=1.09 \times 10^{7} \times \mathrm{Z}^{2}\left[\frac{1}{4}-\frac{1}{1}\right]$
$\frac{10^{8}}{3 \times 10^{7} \times 1.09}=Z^{2} \times \frac{x-3}{4}$
$\frac{10 \times 4}{3 \times 1.09 x-3}=Z^{2} \quad Z^{2}=-4 \quad Z=2$
17. 1.8 mole $=(1.8 \mathrm{Na})$ atoms
$27 \%=$ IIIrd energy level $=1.8 \times \mathrm{Na} \times 0.27$
$15 \%=$ IInd energy level $=1.8 \times \mathrm{Na} \times 0.15$
$\Delta \mathrm{E}=\underset{3 \rightarrow 1}{\Delta \mathrm{E}_{1}}+\underset{2 \rightarrow 1}{\Delta \mathrm{E}_{2}}=1.8 \times \mathrm{N}_{\mathrm{A}} \times 0.27 \times \operatorname{IE}\left[\frac{1}{9}-\frac{1}{1}\right]+1.8 \times$
$\mathrm{N}_{\mathrm{A}} \times 0.15 \times \mathrm{IE}\left[\frac{1}{4}-\frac{1}{1}\right]=292.68 \times 10^{21}$ atom
18. Number of atom in $3^{\text {rd }}$ orbit $=0.5 \mathrm{~N}_{\mathrm{A}}$

Number of atom in $2^{\text {nd }}$ orbit $=0.25 \mathrm{~N}_{\mathrm{A}}$
Total energy evolve $=0.5 \mathrm{~N}_{\mathrm{A}}\left(\mathrm{E}_{3}-\mathrm{E}_{1}\right)+0.25 \mathrm{~N}_{\mathrm{A}}\left(\mathrm{E}_{2}-\mathrm{E}_{1}\right)$
19. Angular momentum $=n\left(\frac{h}{2 \pi}\right)$

$$
\begin{array}{ll}
\left(\frac{\mathrm{hc}}{\lambda}\right)=-3.4 \mathrm{eV} & -3.4=-13.6 \times \frac{(1)^{2}}{\mathrm{n}^{2}} \\
\frac{-3.4}{-13.6}=\frac{1}{\mathrm{n}^{2}} & \mathrm{n}^{2}=\frac{3.4}{3.4} \\
\mathrm{n}^{2}=4 \Rightarrow \mathrm{n}=2 & \\
=2\left(\frac{6.626 \times 10^{-34} \times 7}{2 \times 22}\right)=\frac{\mathrm{h}}{\pi} \text { or } \frac{6.62 \times 10^{-39} \times 7}{2}
\end{array}
$$

20. $4.5 \mathrm{eV}=\frac{1240}{\lambda(\mathrm{~nm})} \quad \frac{1}{\lambda}=\frac{4.5}{1240}$
$\frac{1}{\lambda}=0.0036 \mathrm{~nm}^{-1} \quad 1 \mathrm{~nm} \rightarrow 10^{-9} \mathrm{~m}^{-1}$ $0.0036 \mathrm{~nm}^{-1} \rightarrow 3.6 \times 10^{6} \mathrm{~m}^{-1}$
21. $\frac{\mathrm{n}(\mathrm{n}-1)}{2}=15 \quad \mathrm{n}^{2}-\mathrm{n}=30$
$\mathrm{n}^{2}-\mathrm{n}-30=0 \quad \mathrm{n}=6$
$\frac{1}{\lambda \AA}=R_{H}\left[\frac{1}{1}-\frac{1}{36}\right]$
$\frac{1}{x}=\frac{1}{912} \times \frac{35}{36}=\frac{35 \times 2496}{32832}$
$\lambda=932 \AA$
22. $\mathrm{V}_{2}=\mathrm{V}_{0} \times \frac{1}{2}=\frac{\mathrm{V}_{0}}{2}$
$\mathrm{x}=\mathrm{v} \times \mathrm{t}$
$\mathrm{x}=\frac{\mathrm{V}_{0}}{2} \times 10^{-8} \sec =\left(\frac{\mathrm{V}_{0} \times 10^{-8}}{2}\right) \mathrm{m}$
$2 \pi r \rightarrow 1$ round
$\frac{\mathrm{V}_{0} \times 10^{-8}}{2}=\frac{\mathrm{V}_{0} \times 10^{-8}}{2} \times \frac{1}{2 \pi \mathrm{r}}$
$\mathrm{r}_{2}=\mathrm{r}_{0} \times \mathrm{n}^{2}=4 \mathrm{r}_{0}$
so, no. of revolutions $=\frac{\mathrm{V}_{0} / 2 \times 10^{-8}}{2 \pi \times 4 \mathrm{r}_{0}}=\frac{\mathrm{V}_{0} \times 10^{-8} \times 1}{2 \times 2 \pi \times 4 \mathrm{r}_{0}}$
$=\frac{2.18 \times 10^{6} \times 10^{-18}}{2 \times 2 \times 3.14 \times 4 \times 0.529}$
$=\frac{2.18 \times 10^{-12}}{2.6 \times 10^{-21}}=0.838 \times 10^{9}=8 \times 10^{6}$
23. $\mathrm{V}=\frac{v}{\lambda}$

E of Ist Bohr orbit $=-13.6$
$-13.6=\frac{6.626 \times 10^{-34} \times 3 \times 10^{8}}{\lambda}$
or $-13.6=\frac{1240}{\lambda(\text { in nm })}$

$$
\begin{array}{l|l}
\lambda=\frac{1240}{136} \times 10 & \mathrm{~V}=\frac{3 \times 10^{8}}{912 \times 10^{10}} \\
\lambda=91.17(\mathrm{~nm}) & \\
& =912 \AA
\end{array} \quad \begin{array}{ll}
& =\frac{3}{912} \times 10^{+\mathrm{R}} \\
& =6530 \times 10^{12} \mathrm{~Hz}
\end{array}
$$

24.

$\Delta \mathrm{E}_{2 \rightarrow \mathrm{n}}-(10.2+17)=13.6 \times 2^{2}\left[\frac{1}{4}-\frac{1}{\mathrm{n}^{2}}\right]$
$\Delta \mathrm{E}_{3 \rightarrow \mathrm{n}}=4.25+5.95=13.6 \times \mathrm{Z}^{2}\left[\frac{1}{9}-\frac{1}{\mathrm{n}^{2}}\right]$
25. $\mathrm{E}=-2.18 \times 10^{-18} \frac{Z}{\mathrm{n}^{2}} \mathrm{~g} /$ atom
$\Delta \mathrm{E}=\left(\mathrm{E}_{2}-\mathrm{E}_{1}\right)=\frac{1}{2} \mathrm{~m} v^{2}$
$v=1.89 \times 10^{6} \mathrm{~m} / \mathrm{sec}$
$v=1.89 \times 10^{8} \mathrm{~cm} / \mathrm{sec}$
26. $\mathrm{V}_{2}=\mathrm{V}_{0} \times \frac{1}{2}=\frac{\mathrm{V}_{0}}{2}$
$r=r_{0} \times 4$
$\mathrm{N}=\frac{\left(\mathrm{V}_{0} / 2\right) \times 10^{-8}}{2 \pi \times 4 \mathrm{r}_{0}}$
$\lambda_{\mathrm{p}}=\frac{0.286}{\sqrt{\mathrm{~V}}} \AA$
$\lambda_{\infty}=\frac{101}{\sqrt{V}} \AA$
27. (a) $\frac{1}{\lambda}=\left(\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}\right)=\mathrm{r} \times 4\left[\frac{1}{1^{2}}-\frac{1}{\mathrm{n}^{2}}\right]$
(b) $\Delta \mathrm{E}_{2 \rightarrow 4}=2.7=\mathrm{IE}\left[\frac{1}{4}-\frac{1}{16}\right]$
$\mathrm{IE}=2.7 \times \frac{16}{3} \mathrm{eV}$
(c) $\Delta \mathrm{E}_{4 \rightarrow 1}^{\max }=\operatorname{IE}\left[\frac{1}{\mathrm{k}}-\frac{1}{1}\right]$
$\Delta \mathrm{E}_{4 \rightarrow 3}=\mathrm{IE}\left[\frac{1}{16}-\frac{1}{9}\right]$
29. B.E. $=180.69 \mathrm{~kJ} /$ mole $\quad \Rightarrow \mathrm{w}=\mathrm{hv}_{0}$
$\frac{180.69}{96.368} \mathrm{eV} /$ atom $=\mathrm{hv}_{0}$
$\frac{180.69}{96.368} \times 1.6 \times 10^{-19}=6.6 \times 10^{-34} \times \mathrm{v}_{0}$
$\mathrm{v}_{0}=6.626 \times 10^{-34}$
30. $\mathrm{E}=\frac{1240}{240} \mathrm{eV} \quad \mathrm{E}=5.167 \mathrm{eV}$
$\mathrm{E}=497.9 \mathrm{~kJ} / \mathrm{mol}$
31. $\mathrm{h} v_{1}=\mathrm{h} v_{0}+2 \mathrm{E}_{1} \quad \mathrm{~h} v_{2}=\mathrm{h} v_{0}+\mathrm{E}_{1}$
$\mathrm{h} v_{1}-\mathrm{w}_{0}+2 \mathrm{E}_{1} \quad \mathrm{~h} \nu_{2}-\mathrm{w}_{0}+\mathrm{E}_{1}$
$2=\frac{\mathrm{h} \nu_{1}-\mathrm{w}_{0}}{\mathrm{~h} \nu_{2}-\mathrm{w}_{0}} \quad 2 \mathrm{~h} \nu_{2}-2 \mathrm{w}_{0}=\mathrm{h} \nu_{1}-\mathrm{w}_{0}$
$\mathrm{h}\left[2 \mathrm{v}_{2}-\mathrm{v}_{1}\right]=\mathrm{w}_{0}$
$\mathrm{w}_{0}=6.62 \times 10^{-34}\left(2 \times 10^{15}-3.2 \times 10^{15}\right)$
$\mathrm{w}_{0}=6.62 \times 10^{-34} \times 0.8 \times 10^{15}$
$\mathrm{w}_{0}=5.29 \times 10^{-19} \quad \mathrm{w}_{0}=318.9 \mathrm{~kJ} / \mathrm{mol}$
32. $\frac{\mathrm{hc}}{\lambda_{1}}=\mathrm{w}_{0}+\mathrm{E}_{1} \quad \frac{\mathrm{hc}}{\lambda_{2}}=\mathrm{w}_{0}+\mathrm{E}_{2}$
$\frac{\mathrm{hc}}{\lambda_{1}}-\mathrm{E}_{1}=\mathrm{w}_{0}$
$\frac{\mathrm{hc}}{\lambda_{2}}-\mathrm{E}_{2}=\mathrm{w}_{0}$
$\frac{\mathrm{hc}}{\lambda_{1}}-\mathrm{E}_{1}=\frac{\mathrm{hc}}{\lambda_{2}}-\mathrm{E}_{2}$
33. $2000 \mathrm{eV}=\frac{\mathrm{hc}}{\lambda}=\frac{1240}{\lambda(\mathrm{~nm})}$
$\lambda=\frac{1240}{20000}=62 \times 10^{-3} \mathrm{~nm}=0.62 \AA$
34. (KE) max $=$ stopping potential
\therefore stopping potential $=3.06 \mathrm{~V}$
35. $\mathrm{U}_{\text {avg. }}=\sqrt{\frac{8 \mathrm{~kJ}}{\pi \mathrm{~m}}}$
$\mathrm{U}_{\text {avg. }}=\sqrt{\frac{8 \times 1.38 \times 10^{-23} \times 298}{3.14 \times 4 \times 1.67 \times 10^{-27}}}$
$\mathrm{U}_{\text {avg. }}=1.25 \times 10^{3}$
$\lambda=\frac{\mathrm{h}}{\mathrm{mV}} \Rightarrow \frac{6.62 \times 10^{-34}}{4 \times 1.67 \times 10^{-27} \times 1.25 \times 10^{3}}$
$\lambda=0.79 \AA$
36. $500=\sqrt{\frac{150}{\mathrm{~V}}}$
$\therefore \frac{150}{250000}=\mathrm{V} \quad \therefore \mathrm{V}=6 \times 10^{-4}$ volt
37. $\frac{1}{10} \times 3 \times 10^{8}=\Delta \mathrm{V}=3 \times 10^{7}$
$\Delta x \times \Delta m \times \Delta v=\frac{h}{4 \pi}$
$\Delta \mathrm{x} \times 1.672 \times 10^{-27} \mathrm{~kg} \times 3 \times 10^{7}=\frac{6.626 \times 10^{-34}}{4 \times 3.14}$
$\Rightarrow \Delta \mathrm{x}=\frac{6.626 \times 10^{-34} \times 100}{1.672 \times 10^{-27} \times 3 \times 10^{7} \times 4 \times 314}$
$\Delta \mathrm{x}=1.05 \times 10^{-13} \mathrm{~m}$
38. $1 \times 10^{-10}=6.6 \times 10^{-34}$
$=\sqrt{2 \times 1.67 \times 10^{-27} \times 1.6 \times 10^{-19} \times \mathrm{V}}$
$\therefore 1=6.6 \times 10^{-24}=\sqrt{5.344 \times 10^{-8}} \mathrm{eV}$
$\therefore 1=6.6 \times 10^{-20}=\sqrt{5.344 \times \mathrm{V}}$
$\therefore \sqrt{5.344 \times \mathrm{V}}=6.6 \times 10^{-20}$
39. $\mathrm{Cu}=[\mathrm{Ar}] .4 \mathrm{~s}, 3 \mathrm{~d}^{9}$
or

11

no. of ex change pair $=\frac{n(n+1)}{2}=\frac{5 \times 4}{2}=10$

$$
\frac{4 \times 3}{2}=6
$$

Total exchanges $=10+6=16$
41. E of light absorbed in one photon $=\frac{h c}{\lambda_{\text {absorbed }}}$

Let n_{1} photons are absorbed, therefore,
Total energy absorbed $=\frac{\mathrm{n}_{1} \mathrm{hc}}{\lambda_{\text {absorbed }}}$
Now, E of light re-emitted out in one photon $=\frac{h c}{\lambda_{\text {emitted }}}$

Let n_{2} photons are re-emitted then
Total energy re-emitted out $=\mathrm{n}_{2} \times \frac{\mathrm{hc}}{\lambda_{\text {emitted }}}$
As given $\quad \mathrm{E}_{\text {absorbed }} \times \frac{47}{100}=\mathrm{E}_{\text {re-emitted out }}$
$\frac{\mathrm{hc}}{\lambda_{\text {absorbed }}} \times \mathrm{n}_{1} \times \frac{47}{100}=\mathrm{n}_{2} \times \frac{\mathrm{hc}}{\lambda_{\text {emitted }}}$
$\therefore \frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=\frac{47}{100} \times \frac{\lambda_{\text {emitted }}}{\lambda_{\text {absorbed }}}=\frac{47}{100} \times \frac{5080}{4530}$
$\therefore \frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=0.527$
42. $\mathrm{H}_{2}+\mathrm{Br}_{2} \xrightarrow{\mathrm{hv}} 2 \mathrm{HBr}$
$\mathrm{Br}_{2} \xrightarrow{\mathrm{~h} v} 2 \mathrm{Br}$
$\mathrm{BE}=192 \mathrm{~kJ} / \mathrm{mole}$
$\frac{192}{93.368} \mathrm{eV} / \mathrm{mole}=\frac{\mathrm{hv}}{\lambda}$ or $\frac{192}{96.368}=\frac{1240}{\lambda(\mathrm{~nm})}$
$\lambda=6235 \AA$
43. $\frac{0.2 \mathrm{n}}{\mathrm{Na}}=0.01$ mole $\quad \frac{0.2 \times \mathrm{n}}{1+128}=0.01$
$\frac{0.2 \times \mathrm{n}}{10 \times 127}=\frac{1}{100} \quad 2 \times \mathrm{n}=\frac{127}{10}$
$\mathrm{n}=\frac{127}{10 \times 2}=\frac{12.7}{2}=6$
No. of protons $=\frac{6 \times 10^{22}}{2}=3 \times 10^{22}$
44. $\frac{243}{96.368}=\frac{1240}{\lambda(\mathrm{~nm})}$

$$
\lambda=\frac{1240 \times 96.368}{243}=491.75 \times 10^{-9} \mathrm{~m} \approx 4.9 \times 10^{-7} \mathrm{~m}
$$

45. Energy required to break $\mathrm{H}-\mathrm{H}$ bond

$$
=\frac{430.53 \times 10^{3}}{6.023 \times 10^{23}} \mathrm{~J} / \text { molecule }=7.15 \times 10^{-19} \mathrm{~J}
$$

Energy of photon used for this purpose $=\frac{h c}{\lambda}$

$$
=\frac{6.625 \times 10^{-34} \times 3.0 \times 10^{8}}{253.7 \times 10^{-9}}=7.83 \times 10^{-19} \mathrm{~J}
$$

\therefore Energy left after dissociation of bond
$=(7.83-7.15) \times 10^{-19}$
or \quad Energy converted into K.E. $=0.68 \times 10^{-19} \mathrm{~J}$
$\therefore \%$ of energy used in kinetic energy $=$
$\frac{0.68 \times 10^{-19}}{7.83 \times 10^{-19}} \times 100=8.68 \%$
46. Energy given to I_{2} molecule
$=\frac{\mathrm{hc}}{\lambda}=\frac{6.626 \times 10^{-34} \times 3 \times 10^{8}}{4500 \times 10^{-10}}=4.417 \times 10^{-19} \mathrm{~J}$
Also energy used for breaking up of I_{2} molecule $=\frac{240 \times 10^{3}}{6.023 \times 10^{23}}=3.984 \times 10^{-19} \mathrm{~J}$
$\therefore \quad$ Energy used in imparting kinetic energy to two I atoms $=[4.417-3.984] \times 10^{-19} \mathrm{~J}$
$\therefore \quad$ K.E. $/$ iodine atom $=[(4.417-3.984) / 2] \times 10^{-19}$ $=0.216 \times 10^{-19} \mathrm{~J}$
48. $\lambda=\sqrt{\frac{150}{10^{3} \times 100}}=3.88 \times 10^{-2} \AA=3.88 \mathrm{pm}$
49. $\lambda=\frac{6.6 \times 10^{-34}}{6 \times 10^{24} \times 3 \times 10^{6}}=\frac{1 \times 1}{3} \times 10^{-65}=3.68 \times 10^{-65} \mathrm{~m}$
50. $\Delta \mathrm{V}=30 \times 10^{2} \mathrm{~cm} / \mathrm{sec}$
$\lambda=5000 \AA \quad \mathrm{~m}=200 \mathrm{~g}$
$\lambda=\frac{\mathrm{h}}{\mathrm{mV}} \quad 500=\frac{\mathrm{h}}{\mathrm{m} \times \mathrm{V}}$
$\mathrm{P}=\mathrm{mV}=\frac{500}{6.626 \times 10^{-26}}=30 \times 10^{2} \times 200$
$=1.75 \times 10^{-29}$
51. $\mathrm{v}=40 \mathrm{~m} / \mathrm{sec} \quad \Delta \mathrm{v}=0.01$

$$
\begin{aligned}
& \therefore \Delta \mathrm{x}=\frac{\mathrm{h}}{4 \pi \times 9.1 \times 10^{-37} \times 99.99 \times 40} \\
& =\frac{0.53 \times 100 \times 10^{-54}}{40 \times 99.99 \times 9.1 \times 10^{-37}} \\
& =\frac{0.53 \times 10^{-3} \times 100}{40 \times 9.1 \times 99.99} \mathrm{~m} . \Delta \mathrm{x} . \Delta \mathrm{x}=\frac{\mathrm{h}}{4 \pi}
\end{aligned}
$$

$$
\Delta x=\frac{5.27 \times 10^{-34}}{9.1 \times 10^{-31} \times 40 \times 0.04 \times \frac{1}{100}}=1.447 \times 10^{-3} \times 100
$$

52. Given that $\lambda_{1}=486.1 \times 10^{-9} \mathrm{~m}$
$=486.1 \times 10^{-7} \mathrm{~cm}$
$\lambda_{2}=410.2 \times 10^{-9} \mathrm{~m}=410.2 \times 10^{-7} \mathrm{~cm}$
and $\overline{\mathrm{v}}=\overline{\mathrm{v}}_{2}-\overline{\mathrm{v}}_{1}=\left[\frac{1}{\lambda_{2}}-\frac{1}{\lambda_{1}}\right]$
$=\mathrm{R}_{\mathrm{H}}=\left[\frac{1}{2^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right]-\mathrm{R}_{\mathrm{H}}\left[\frac{1}{2^{2}}-\frac{1}{\mathrm{n}_{1}^{2}}\right]$
$\mathrm{v}=\mathrm{R}_{\mathrm{H}}\left[\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right]$
For line I of Balmer series
$\frac{1}{\lambda_{1}}=\mathrm{R}_{\mathrm{H}}\left[\frac{1}{2^{2}}-\frac{1}{\mathrm{n}_{1}^{2}}\right]=109678\left[\frac{1}{2^{2}}-\frac{1}{\mathrm{n}_{1}^{2}}\right]$
or $\frac{1}{456.1 \times 10^{-7}}=109678\left[\frac{1}{2^{2}}-\frac{1}{\mathrm{n}_{1}^{2}}\right]$
$\therefore \mathrm{n}_{1}=4$
For line II of Balmer series ;
$\frac{1}{\lambda_{1}}=\mathrm{R}_{\mathrm{H}}\left[\frac{1}{2^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right]=109678\left[\frac{1}{2^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right]$
or $\frac{1}{410.2 \times 10^{-7}}=109678\left[\frac{1}{2^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right]$
$\therefore \mathrm{n}_{2}=6$
Thus given electronic transition occurs from $6^{\text {th }}$ to $4^{\text {th }}$ shell.
Also by eq. (I)
$\overline{\mathrm{v}}=\frac{1}{\lambda}=109678\left[\frac{1}{4^{2}}-\frac{1}{6^{2}}\right]$
$\therefore \lambda=2.63 \times 10^{-4} \mathrm{~cm}$
53. $\mathrm{E}_{\text {ext }}=2.18 \times 10^{-19}\left(1-\frac{1}{9}\right) \times 6.023 \times 10^{23}=116.71 \mathrm{~kJ} / \mathrm{mol} \mathrm{H}$
D.E. $=116.71 \times 2.67=311.62 \mathrm{~kJ} / \mathrm{mol} \mathrm{H}_{2}$
$\mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{1}{0.082 \times 300}=0.04$
\Rightarrow T.E. $=0.04 \times 311.62+0.08 \times 116.71=21.8 \mathrm{~kJ}$
54. $\mathrm{E}(\mathrm{ev})=\frac{1240}{\lambda(\mathrm{~nm})}$

Energy of 1st photon $=\frac{1240}{108.5}=11.428 \mathrm{eV}$

Energy of 2st photon $=\frac{1240}{30.4}=40.79 \mathrm{eV}$
$\mathrm{En}=52.217-54.4=-2.182 \mathrm{eV}\left(\mathrm{E}_{1}=-54.4 \mathrm{eV}\right)$
$-2.182=-\frac{13.6 \times 4}{n^{2}} \Rightarrow \mathrm{n}=5$
55. Since we obtain 6 emission lines, it means electron comes from 4th orbit energy emitted is equal to, less than and more than 2.7 eV . So it can be like this :
$\mathrm{E}_{4}-\mathrm{E}_{2}=2.7 \mathrm{eV}, \quad \mathrm{E}_{4}-\mathrm{E}_{3}<2.7 \mathrm{eV}$,
$\mathrm{E}_{4}-\mathrm{E}_{1}>2.7 \mathrm{eV}$
(a) $\mathrm{n}=2$,
$\left(\mathrm{E}_{4}-\mathrm{E}_{2}\right)^{\text {atom }}=\left(\mathrm{E}_{4}-\mathrm{E}_{2}\right)^{\mathrm{H}} \times \mathrm{Z}^{2}$
$2.7=2.55 \times Z^{2}=1.029$
(b) IP $=13.6 \mathrm{Z}^{2}=13.6 \times(1.029)^{2}=14.4 \mathrm{eV}$
(c) Maximum energy emitted $=E_{4}-E_{1}=\left(E_{4}-E_{1}\right)^{H} \times Z^{2}$
$=12.75 \times(1.029)^{2}$
$=13.5 \mathrm{eV}$
Minimum energy emitted $=\mathrm{E}_{4}-\mathrm{E}_{3}=\left(\mathrm{E}_{4}-\mathrm{E}_{3}\right)^{\mathrm{H}} \times \mathrm{Z}^{2}$
$=.66 \times(1.029)^{2}=0.7 \mathrm{eV}$
56. $\mathrm{n} \rightarrow 2 \Delta \mathrm{E}=27.2 \mathrm{eV}(17+10.2)$
$\mathrm{n} \rightarrow 3 \Delta \mathrm{E}=10.2 \mathrm{eV}(4.25+5.95 .2)\} \mathrm{E}_{3}-\mathrm{E}_{2}=17 \mathrm{eV}$
$17 \mathrm{eV}=1.89 \times \mathrm{Z}^{2} \Rightarrow \mathrm{Z}=3$
$\mathrm{E}_{2}=-3.4 \times 9=-30.6 \mathrm{eV}$
$\mathrm{E}_{\mathrm{n}}-\mathrm{E}_{2}=27.2 \mathrm{eV}$
$\mathrm{E}_{\mathrm{n}}=27.2+\mathrm{E}_{2}=-3.4 \mathrm{eV}$
$E_{n}=-3.4=-\frac{13.6 \times 3^{2}}{n^{2}} \Rightarrow n^{2}=36 \Rightarrow n=6$
57. $\lambda=975 \AA$
$\mathrm{E}=\frac{\lambda c}{\lambda}=\frac{6.626 \times 10^{-34} \times 3 \times 10^{8}}{975 \times 10^{10}}=2.03 \times 10^{-18} \mathrm{~J}=12.75 \mathrm{eV}$
So electron will excite to 4th energy level and when comeback number of emission line will be 6 .
minimum energy emitted $=E_{4}-E_{3}=0.66 \mathrm{eV}$
$\lambda=\frac{\mathrm{hc}}{\mathrm{E}}=\frac{1.9878 \times 10^{-25}}{.66 \times 1.6 \times 10^{-19}}=1.882 \times 10^{-6} \mathrm{~m}=18820 \AA$
58. (a) $\mathrm{kE}=\mathrm{qV}=2 \times 1.6^{-19} \times 2 \times 10^{6}=6.4 \times 10^{-13} \mathrm{~J}$
(b) At distance $\mathrm{d}=5 \times 10^{-14} \mathrm{~m}$ let K.E. is x J and
$\mathrm{PE}=\frac{\mathrm{kq}_{1} \mathrm{q}_{2}}{\mathrm{~d}}=\frac{9 \times 10^{9} \times 2 \times 1.6 \times 10^{-19} \times 47 \times 1.6 \times 10^{-19}}{5 \times 10^{-14}}$

$$
\mathrm{PE}=4.33 \times 10^{-13} \mathrm{~J}
$$

By energy conservation :
$6.4 \times 10^{-13}=x+4.33 \times 10^{-13}$
$\mathrm{x}=2.06 \times 10^{-13} \mathrm{~J}, \quad \mathrm{kE}=\mathrm{PE}$
$6.4 \times 10^{-13}=\frac{9 \times 10^{9} \times 2 \times 47 \times\left(1.6 \times 10^{-19}\right)^{2}}{\mathrm{~d}}$
$\Rightarrow \mathrm{d}=3.384 \times 10^{-14} \mathrm{~m}$
59. $\mathrm{pE}=\frac{-\mathrm{ke} e^{2}}{3 \mathrm{r}^{3}}$, since $\mathrm{F}=-\frac{\mathrm{du}}{\mathrm{dr}}=-\frac{\mathrm{ke} e^{2}}{\mathrm{r}^{4}}$

For stable atom $\mathrm{F}=\frac{\mathrm{mv}^{2}}{\mathrm{r}}$ so $\frac{\mathrm{ke}}{} \mathrm{r}^{4}{ }^{4}=\frac{\mathrm{mv}}{}{ }^{2}$
$m v^{2}=\frac{k e^{2}}{\mathrm{r}^{3}}$
$\mathrm{kE}=\frac{1}{2} \mathrm{mv}^{2}=\frac{\mathrm{ke}^{2}}{2 \mathrm{r}^{3}}, \mathrm{PE}=\frac{-\mathrm{ke}^{2}}{3 \mathrm{r}^{3}}$
$\mathrm{T} . \mathrm{E}=\frac{\mathrm{ke}^{2}}{2 \mathrm{r}^{3}}-\frac{\mathrm{ke}{ }^{2}}{3 \mathrm{r}^{3}}=+\frac{\mathrm{k} e^{2}}{6 \mathrm{r}^{3}}$
Form bohr's postulate $\mathrm{mvr}=\frac{\mathrm{nh}}{2 \pi} \Rightarrow \mathrm{~V}=\frac{\mathrm{nh}}{2 \pi \mathrm{mr}}$ putting this in equation (2)
$m\left(\frac{n h}{2 \pi m r}\right)^{2}=\frac{k e^{2}}{r^{3}} \Rightarrow m\left\{\frac{n^{2} h^{2}}{4 \pi^{2} m^{2} r^{2}}\right\}=\frac{k e^{2}}{r^{3}}$
$\mathrm{r}=\frac{4 \pi^{2} \mathrm{mke} e^{2}}{\mathrm{n}^{2} \mathrm{~h}^{2}}$
putting this in equation (3)
T.E. $=\frac{k e^{2}}{6\left\{\frac{4 \pi^{2} m^{2} k e^{2}}{n^{2} h^{2}}\right\}^{3}}=\frac{k e^{2}}{6\left\{\frac{64 \pi^{6} m^{3} k^{3} e^{6}}{n^{6} h^{6}}\right\}}$
$\mathrm{E}=\frac{\mathrm{n}^{6} h^{6}}{384 \mathrm{~m}^{3} \pi^{6} \mathrm{k}^{2} e^{4}}$
60. (a) $\left(\mathrm{E}_{3}-\mathrm{E}_{2}\right)=68 \mathrm{eV}=\left(\mathrm{E}_{3}-\mathrm{E}_{2}\right)^{\mathrm{H}} \times \mathrm{Z}^{2}$ $68=1.89 \times Z^{2}$ $\mathrm{z}=6$
(b) $(\mathrm{kE})_{1}=-\mathrm{E}_{1}=13.6 \times 36=489.6 \mathrm{eV}$
(c) Energy required $=-\mathrm{E}_{1}=489.6 \mathrm{eV}$

$$
\lambda=\frac{1240}{489.6}=2.53 \mathrm{~nm}
$$

61. $\mathrm{E}_{1}=I P$
$=-4 \mathrm{R}=-4 \times 2.18 \times 10^{-18} \mathrm{~J}$
$=-8.72 \times 10^{-18} \mathrm{~J}$
$E_{2}=\frac{E_{1}}{4}=-2.18 \times 10^{-18} \mathrm{~J}$
$\Delta \mathrm{E}=\mathrm{E}_{2}-\mathrm{E}_{1}=6.54 \times 10^{-18} \mathrm{~J}=\frac{\lambda \mathrm{c}}{\lambda}$
$\lambda=\frac{1.9878 \times 10^{-25}}{6.54 \times 10^{-18}}=0.3039 \times 10^{-7} \mathrm{~m}=303.9 \AA$
$\mathrm{E}_{1}=-8.72 \times 10^{-18}=-21.79 \times 10^{-19} \times \mathrm{Z}^{2} \Rightarrow \mathrm{Z}=2$
(III) $\mathrm{r}_{1}=\frac{0.529 \times 1}{2} \mathrm{~A}^{\circ}=0.2645 \mathrm{~A}^{\circ}=2.645 \times 10^{-11} \mathrm{~m}$
62. (a) $\lambda=12.4 \mathrm{~nm}, \mathrm{E}(\mathrm{ev})=\frac{1240}{12.4}=100 \mathrm{eV}$
$\mathrm{W}_{0}=25 \mathrm{eV}$
$\mathrm{kE}=\mathrm{E}-\mathrm{W}_{0}=75 \mathrm{eV} \Rightarrow \mathrm{V}=75$ volt
(b) $\lambda=\sqrt{\frac{150}{V}} \mathrm{~A}^{\circ}=\sqrt{2} \mathrm{~A}^{\circ}=1.414 \mathrm{~A}^{\circ}$
(c) since $\mathrm{p}=\frac{\mathrm{h}}{\lambda} \Rightarrow \mathrm{dp}=\frac{\mathrm{h}}{\lambda^{2}} \mathrm{~d} \lambda$
$\mathrm{d} \lambda=\frac{\lambda^{2} \mathrm{dp}}{\mathrm{h}}=\frac{\left(1.414 \times 10^{-10}\right)^{2} \times 6.62 \times 10^{-28}}{6.626 \times 10^{-34}}$
$\mathrm{d} \lambda=2 \times 10^{-14} \mathrm{~m}$
63. Since electron is in some exited state of He^{+}so it's energy $\leq 13.6 \mathrm{eV}$ so energy need to exitation is also $<13.6 \mathrm{eV}$ \& only for hydrogen $E_{3}-E_{1}<13.6 \mathrm{eV}$. So $Z=1$. Now for He^{+}this energy is equal to the energy gap of 2 nd and 6th orbit so initial state is 2 and final state is 6 .
64. $\mathrm{mvr}=\frac{\mathrm{nh}}{2 \pi} \Rightarrow 3.1652 \times 10^{-34}=\mathrm{n}\left\{\frac{6.626 \times 10^{-34}}{2 \times 3.14}\right\}$
$\mathrm{n}=3$
$\bar{v}=\mathrm{R}\left[\frac{1}{1}-\frac{1}{3^{2}}\right]=\left(\frac{8 \mathrm{R}}{9}\right)$
EXERCISE - 5

Part \# I : AIEEE/JEE-MAIN

1. $\frac{1}{\lambda}=\mathrm{R}\left(\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right) \frac{1}{\lambda}=1.097 \times 10^{7} \mathrm{~m}^{-1}\left(\frac{1}{1^{2}}-\frac{1}{\infty^{2}}\right)$
$\therefore \quad \lambda=91 \times 10^{-9} \mathrm{~m}=91 \mathrm{~m}$.
2. For $4 f$ orbital electrons, $\mathrm{n}=4$
$\ell=3$ (because $\begin{array}{lll}\mathrm{s} p & \mathrm{~d} f \\ \mathrm{o} & 1 & 2\end{array}$) $\mathrm{m}=+3,+2,+1,0,-1,-2$, $-3 \mathrm{~s}=+1 / 2$.
3. ${ }_{24} \mathrm{Cr} \rightarrow 1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}, 2 \mathrm{p}^{6}, 3 \mathrm{~s}^{2}, 3 \mathrm{p}^{6}, 3 \mathrm{~d}^{5}, 4 \mathrm{~s}^{1} \quad \ell=1, \ell=1, \ell=2$
(we know for $\mathrm{p}, \ell=1$ and for $\mathrm{d}, \ell=2$).

For $\ell=1$, total number of electrons $=12$

For $\ell=2$, total number of electron $=5$.
4. For hydrogen the energy order of orbital is $1 \mathrm{~s}<2 \mathrm{~s}=$ $2 \mathrm{p}<3 \mathrm{~s}=3 \mathrm{p}=3 \mathrm{~d}<4 \mathrm{~s}=4 \mathrm{p}=4 \mathrm{~d}=4 f$.
5. The electron having same principle quantum number and azimuthal quantum number will be the same energy in absence of magnetic and electric field.
(IV) $\mathrm{n}=3, \mathrm{l}=2, \mathrm{~m}=1$
(V) $\mathrm{n}=3, \mathrm{l}=2, \mathrm{~m}=0$
have same n and l value.
6. According to Heisenberg's uncertainity principle

$$
\Delta x \times \Delta p=\frac{h}{4 \pi}
$$

$$
\Delta \mathrm{x} \times(\mathrm{m} \cdot \Delta \mathrm{v})=\frac{\mathrm{h}}{4 \pi} \Rightarrow \Delta \mathrm{x}=\frac{\mathrm{h}}{4 \pi \mathrm{~m} \cdot \Delta \mathrm{v}}
$$

here $\Delta \mathrm{v}=\frac{0.001}{100} \times 300=3 \times 10^{-3} \mathrm{~ms}^{-1}$
$\therefore \quad \Delta \mathrm{x}=\frac{6.63 \times 10^{-34}}{4 \times 3.14 \times 9.1 \times 10^{-31} \times 3 \times 10^{-3}}=1.29 \times 10^{-2} \mathrm{~m}$.
7. Angular momentum of the electron, $\mathrm{mvr}=\frac{\mathrm{nh}}{2 \pi}$
where $\mathrm{n}=5$ (given)
\therefore Angular momentum $=\frac{5 \mathrm{~h}}{2 \pi}=2.5 \frac{\mathrm{~h}}{\pi}$
8. ${ }_{28} \mathrm{Ni} \rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{8} 4 \mathrm{~s}^{2}$

Number of unpaired electrons (n) $=2$
$\mu=\sqrt{n(n+2)}=\sqrt{2(2+2)}=\sqrt{8} \approx 2.84$
9. The atoms of the some elements having same atomic number but different mass numbers are called isotopes.
(A) $\mathrm{Z}_{\mathrm{A}} \mathrm{X} \xrightarrow{-\alpha} \stackrel{\mathrm{A}-4}{\mathrm{Z}-2} \mathrm{Y}$
(B)

(C) ${ }_{Z}^{A} X \xrightarrow{-1}{ }_{0}^{1}{ }_{Z}^{A-1} Y X$
(D) ${\underset{Z}{A}}_{A} \xrightarrow{-\beta+} \stackrel{A}{Z-1} \mathrm{Y}$

CHEMISTRY

10. I.E. $=1.312 \times 10^{6} \mathrm{~J} \mathrm{~mol}^{-1}$

The energy required to excite the electron in the atom from $n_{1}=1$ to $n=2$.

$$
\begin{aligned}
& =1.312 \times 10^{6}\left[1-\frac{1}{4}\right] \\
& =1.312 \times 10^{6} \times \frac{3}{4} \\
& =9.84 \times 10^{5} \mathrm{~J} \mathrm{~mol}^{-1}
\end{aligned}
$$

11. The electron have $\mathrm{n}+1$ higher value have hegher energy.
$\mathrm{n}+\mathrm{l}=3+0=3$
$\mathrm{n}+1=3+1=4$
$\mathrm{n}+\mathrm{l}=3+2=5 \quad$ (highest energy)
$\mathrm{n}+\mathrm{l}=4+0=4$
12. $\mathrm{Cl}-\mathrm{Cl}(\mathrm{g}) \longrightarrow 2 \mathrm{Cl}(\mathrm{g}) ; \quad \Delta \mathrm{H}=242 \mathrm{KJ} \mathrm{mol}$
$=\frac{242 \times 10^{3}}{6.02 \times 10^{23}} \mathrm{~J}$ molecule ${ }^{-1}$
$\mathrm{E}=\frac{\mathrm{hc}}{\lambda}$
$\frac{242 \times 10^{-23} \times 10^{3}}{6.02}=\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{\lambda}$
$\lambda=\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{242 \times 10^{-23} \times 10^{3}}=\frac{6.6 \times 3 \times 6.02}{242} \times 10^{-6}$
$=0.494 \times 10^{-6}$
$=494 \times 10^{-9} \mathrm{~m}=494 \mathrm{~nm}$
13. I.E. of $\mathrm{He}^{+}=19.6 \times 10^{-18} \mathrm{~J}$ atom $^{-1}$
I.E. $=-\mathrm{E}_{1}$
E_{1} for He^{+}is $=-19.6 \times 10^{-18} \mathrm{~J}$ atom ${ }^{-1}$
$\frac{\left(\mathrm{E}_{1}\right)_{\mathrm{He}^{+}}}{\left(\mathrm{E}_{1}\right)_{\mathrm{Li}^{3+}}}=\frac{\left(\mathrm{Z}_{\mathrm{He}^{+}}\right)^{2}}{\left(\mathrm{Z}_{\mathrm{Li}^{2+}}\right)^{2}}$
$\frac{-19.6 \times 10^{-18}}{\left(\mathrm{E}_{1}\right)_{\mathrm{LI}}{ }^{2+}}=\frac{4}{9}$
$\mathrm{E}_{1}\left(\mathrm{Li}^{2+}\right)=\frac{-19.6 \times 9 \times 10^{-18}}{4}=-44.1 \times 10^{-18}$
$=-4.41 \times 10^{-17} \mathrm{~J}$ atom $^{-1}$
14. $\mathrm{E}=\mathrm{E}_{1}+\mathrm{E}_{2}$
$\frac{\mathrm{hc}}{\lambda}=\frac{\mathrm{hc}}{\lambda_{1}}+\frac{\mathrm{hc}}{\lambda_{2}}$
$\frac{1}{\lambda}=\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}$
$\frac{1}{355}=\frac{1}{680}+\frac{1}{\lambda_{2}}$
$\lambda_{2}=742.76 \mathrm{~nm}$.
15. $\mathrm{h} v=\Delta \mathrm{E}=13.6 \mathrm{z}^{2}\left(\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right)$

$$
\begin{aligned}
v_{\mathrm{He}+} & =v_{\mathrm{H}} \times \mathrm{z}^{2}\left(\frac{1}{\left(\frac{n_{1}}{2}\right)^{2}}-\frac{1}{\left(\frac{n_{2}}{2}\right)^{2}}\right) \\
& =v_{\mathrm{H}}\left(\frac{1}{\left(\frac{2}{2}\right)^{2}}-\frac{1}{\left(\frac{4}{2}\right)^{2}}\right)
\end{aligned}
$$

For H -atom

$$
\mathrm{n}_{1}=1, \quad \mathrm{n}_{2}=2
$$

16. (a) 4 p
(b) 4 s
(c) 3 d
(d) 3 p

Acc. to ($\mathrm{n}+\ell$) rule, increasing order of energy (d) $<$ (b) $<$ (c) $<$ (a)
17. ${ }_{37} \mathrm{Rb}=[\mathrm{Kr}] 5 \mathrm{~s}^{1}$
$\mathrm{n}=5, l=0, \mathrm{~m}=0, \mathrm{~s}=+\frac{1}{2}$
18. $-\frac{13.6 z^{2}}{n^{2}} \Rightarrow$ for hydrogen $; z=1 \Rightarrow-\frac{13.6}{n^{2}}$

Possible is $-13.6,-3.4,-1.5$ etc.
19. $\Delta K E=-q \cdot \Delta v=e . v$
$\therefore \quad \frac{\ln }{\lambda}=\sqrt{2 . m}(\Delta K E)$
$=\sqrt{2 \mathrm{mev}}$
21. Radius of $\mathrm{n}^{\text {th }}$ Bohr orbit in H -atom $=0.53 \mathrm{n}^{2} \AA$ Radius of II Bohr orbit $=0.53 \times(2)^{2}=2.12 \AA$

Part \# II : IIT-JEE ADVANCED

1. $\mathrm{r}_{\mathrm{n}}=0.529 \frac{\mathrm{n}^{2}}{\mathrm{Z}} \mathrm{A}$

For hydrogen, $\mathrm{n}=1$ and $\mathrm{Z}=1 ; \quad \therefore \quad \mathrm{r}_{\mathrm{H}}=0.529$
For $\mathrm{Be}^{3+}, \mathrm{n}=2$ and $\mathrm{Z}=4$;
$\therefore \quad \mathrm{re}^{3+}=\frac{0.529 \times 2^{2}}{4}=0.529$
Therefore, (D) is correct option.
2. $\psi_{2 \mathrm{~s}}^{2}=$ probability of finding electron with in 2 s orbital $\Psi_{\text {at node }}^{2}=0$ (probability of finding an electron is zero at node)

For node at $r=r_{0}, \quad \psi^{2}=0$
So, $\psi^{2}=0=\frac{1}{4 \sqrt{2 \pi}}\left[\frac{1}{a_{0}}\right]^{3}\left[2-\frac{r_{0}}{a_{0}}\right] \times e^{r_{0} / 2 a_{0}}$

$$
\begin{aligned}
& \Rightarrow\left[2-\frac{r_{0}}{a_{0}}\right]=0 \text { or } 2=\frac{r}{a_{0}} \\
& \Rightarrow r=2 a_{0}
\end{aligned}
$$

(b) The wavelength can be calculated with the help of de-Broglie's formula i.e.,

$$
\begin{aligned}
\lambda=\frac{\mathrm{h}}{\mathrm{mv}} & =\frac{6.626 \times 10^{-34}}{100 \times 100 \times 10^{-3}}=\frac{6.626 \times 10^{-34}}{10,000 \times 10^{-3}} \\
& =6.626 \times 10^{-35} \mathrm{~m} \text { or } 6.626 \times 10^{-25} \AA
\end{aligned}
$$

(c) (I) The atomic mass of an element reduces by 4 and atomic number by 2 on emission of an α-particle.
(III) The atomic mass of an element remains unchanged and atomic number increses by 1 on emission of a β-particle.
Thus change in atomic mass on emission of $8 \alpha-$ particles will be $8 \times 4=32$
New atomic mass $=$ old atomic mass $-32=238-32=206$
Similarly change in atomic number on emission of $8 \alpha-$ particle will be : $8 \times 2=16$
i.e., New atomic number $=$ old atomic number $-16=92-16=76$
On emission of 6β-particles the atomic mass remains unchanged thus, atomic mass of the new element will be 206.

The atomic number increases by 6 unit thus new atomic nubmer will be $76+6=82$
Thus, the equation looks like :

$$
92 X^{238} \xrightarrow[-6 \beta]{-8 \alpha} 82 Y^{206}
$$

3. (a) For hydrogen atom, $\mathrm{Z}=1, \mathrm{n}=1$

$$
\begin{aligned}
& \mathrm{v}=2.18 \times 10^{6} \times \frac{\mathrm{Z}}{\mathrm{n}} \mathrm{~ms}^{-1}=2.18 \times 10^{6} \mathrm{~ms}^{-1} \\
& \text { de Broglie wavelength, } \lambda=\frac{\mathrm{h}}{\mathrm{mv}} \\
& =\frac{6.626 \times 10^{-34}}{9.1 \times 10^{-31} \times 2.18 \times 10^{6}}=\mathbf{3 . 3 2} \times \mathbf{1 0}-\mathbf{1 0} \mathbf{~ m}=3.3 \AA
\end{aligned}
$$

(b) For $2 \mathrm{p}, \ell=1$
\therefore Orbital angular momentum $=\sqrt{\ell(\ell+1)} \frac{\mathrm{h}}{2 \pi}$
$=\sqrt{2} \cdot \frac{\mathrm{~h}}{2 \pi}$.
$K_{n}=\frac{K Z e^{2}}{2 r}$
4. $\left.\mathrm{V}_{\mathrm{n}}=-\frac{\mathrm{KZ} \mathrm{e}^{2}}{\mathrm{r}}\right\}$ so, $\frac{\mathrm{V}_{\mathrm{n}}}{\mathrm{K}_{\mathrm{n}}}=-2$ and $\mathrm{E}_{\mathrm{n}} \propto \frac{1}{\mathrm{r}}$.
$E_{n}=-\frac{K Z e^{2}}{2 r}$
5. For lower state $\left(\mathrm{S}_{1}\right)$

No. of radial node $=1=\mathrm{n}-\ell-1$
Put $\mathrm{n}=2$ and $\ell=0\left(\right.$ as higher state S_{2} has $\left.\mathrm{n}=3\right)$
So, it would be 2 s (for S_{1} state)
6. Energy of state $S_{1}=-13.6\left(\frac{3^{2}}{2^{2}}\right) \mathrm{eV} /$ atom
$=\frac{9}{4}$ (energy of H -atom in ground state)
$=2.25$ (energy of H -atom in ground state $)$.
7. For state S_{2}

No. of radial node $=1=n-\ell-1$
Energy of S_{2} state $=$ energy of e^{-}in lowest state of $\mathrm{H}-$ atom

$$
=-13.6 \mathrm{eV} / \text { atom }
$$

$$
=-13.6\left(\frac{3^{2}}{n^{2}}\right) \mathrm{eV} / \mathrm{atom}
$$

$\mathrm{n}=3$.
put in equation (1) $\quad \ell=1$
so, orbital $\quad \Rightarrow 3 p \quad$ (for S_{2} state $)$.
8. $\mathrm{E}_{\text {photon }}=\frac{12400}{3000}=4.13 \mathrm{ev}$

Photoelectric effect can take place only if $\mathrm{E}_{\text {photon }} \geq \phi$ Thus,
$\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Mg}$ can show photoectric effect.
9. $\frac{3 s}{11}$

So, electrons with spin quantum number $=-\frac{1}{2}$ will be $1+3+5=9$.
10. $\operatorname{mv}\left(4 a_{0}\right)=\frac{h}{\pi}$

$$
\text { so, } \mathrm{v}=\frac{\mathrm{h}}{4 \mathrm{~m} \pi \mathrm{a}_{0}}
$$

so $\mathrm{KE}=\frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2} \mathrm{~m} \cdot \frac{\mathrm{~h}^{2}}{16 \mathrm{~m}^{2} \pi^{2} \mathrm{a}_{0}^{2}}=\frac{\mathrm{h}^{2}}{32{\mathrm{~m} \pi^{2} \mathrm{a}_{0}^{2}}^{2}}$
11. ${ }_{13}^{27} \mathrm{Al} \xrightarrow{\text { (ii) } \rightarrow{ }_{2} \mathrm{He}^{4}}{ }_{15}^{30} \mathrm{P}+{ }_{0}^{1} \mathrm{n}$

12. ${ }_{29}^{63} \mathrm{Cu}+{ }_{1}^{1} \mathrm{H} \rightarrow 6{ }_{0}^{1} \mathrm{n}+{ }_{2}^{4} \alpha+2{ }_{1}^{1} \mathrm{H}+\mathrm{X}$
$64=6+4+2+A \quad \Rightarrow A=52$
$29+1=30=0+2+2+z \Rightarrow z=26$
Element X should be iron in group 8 .
13. $\mathrm{n}=4$,

$$
\mathrm{m}_{\ell}=1,-1
$$

Hence ℓ can be

$$
=3,2,1
$$

i.e. H_{f}; 2 orbitals
$\mathrm{H}_{\mathrm{d}} ; 2$ orbitals
$\mathrm{H}_{\mathrm{p}} ; 2$ orbitals

Hence total of 6 orbitals, and we want $m_{s}=-\frac{1}{2}$, that is only one kind of spin. So, 6 electrons.
14. For multielectron system $(\mathrm{n}+1)$ rule is valid energy
$3 \mathrm{~s}<3 \mathrm{p}<3 \mathrm{~d}$.
Maximum degenerating in d orbital and hence $=5$
15. C
16. A

$$
\begin{aligned}
& \frac{27}{3} \times 13.6 \times 2^{2}\left\{\frac{1}{4}-\frac{1}{36}\right\}=13.6 \times\left\{\frac{1}{4}-\frac{1}{16}\right\} \\
& \frac{27}{32} \times \frac{8}{36}=\frac{3}{16}
\end{aligned}
$$

17. D

MOCK TEST

1. In the given figure if line ' E ' is in visible region then line belongig to ultraviolet region will have moe energy than ' E 'i.e. line A
2. Let n be the number of Photons emitted

$$
\begin{aligned}
& \Rightarrow \frac{12400}{6000} \times 1.6 \times 10^{-19} \times \mathrm{n}=60 \times 10 \times 60 \times 60 \\
& \Rightarrow \mathrm{n}=6.5 \times 10^{24}
\end{aligned}
$$

3. $\frac{\mathrm{f}_{1}}{\mathrm{f}_{2}}=\frac{\mathrm{z}_{1}^{2}}{\mathrm{n}_{1}^{3}} \times \frac{\mathrm{n}_{2}^{3}}{\mathrm{z}_{2}^{2}}$
$\Rightarrow \mathrm{n}_{1}=3, \mathrm{n}_{2}=3, \mathrm{z}_{1}=2, \mathrm{z}_{2}=1$
\therefore putting these values in the equation we get
$\frac{2^{2}}{3^{3}} \times \frac{2^{3}}{1}=\frac{32}{27}$
4. $\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{~m}_{\mathrm{p}} \mathrm{eV}}} \quad \lambda_{\alpha}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{~m}_{\alpha}(2 \mathrm{e}) \mathrm{V} \mathrm{\alpha}}}=2 \mathrm{~m}_{\mathrm{p}} \mathrm{eV}$
$=2 \times 4 \times \mathrm{m}_{\mathrm{p}} \times 2 \mathrm{eV} \alpha$
$\Rightarrow \mathrm{V}_{\alpha}=\frac{\mathrm{V}}{8}$
5. $\bar{v}=\mathrm{RZ}^{2}\left(\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right)$
$\mathrm{x}=\mathrm{R}\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)=\frac{5 \mathrm{R}}{36}$
$\bar{v}_{1}=R \times 2^{2}\left(1-\frac{1}{2^{2}}\right)=3 R=\frac{36}{5} x \times 3=\frac{108 x}{5}$
6. $\quad \ell=1$ for p and $\ell=2$ for d .

Now ${ }_{24} \mathrm{Cr}$ hs configuration
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5} 4 s^{1}$
Hence there are 12 , p -electrons and 5, d-electrons.
7. Energy of one photon $=\frac{12400}{4000}$

$$
=3.1 \mathrm{ev}
$$

Energy supplied by one mole photon in $\mathrm{KJ} / \mathrm{mole}$ $=3.1 \times 1.6 \times 10^{-19} \times 6 \times 10^{23} \times 10^{-3} \approx 297 \mathrm{kJmol}^{-1}$
$\therefore \%$ of energy converted to K.E. $=\frac{297-246.5}{297} \simeq 17 \%$
8. $r_{3}=r_{1} \frac{3^{2}}{3}$
$\Rightarrow \quad \mathrm{r}_{1}=\frac{\mathrm{r}_{3}}{3}=\frac{\mathrm{x}}{3} \mathrm{~cm}$
\therefore De-broglies wavelength $=\frac{2 \pi \mathrm{x}}{3}$
9. $v \propto \frac{1}{\mathrm{n}^{2}}-\frac{1}{(\mathrm{n}+1)^{2}}$
$\propto \frac{(\mathrm{n}+1)^{2}-\mathrm{n}^{2}}{(\mathrm{n}+1)^{2} \mathrm{n}^{2}} \quad \propto \frac{\mathrm{n}}{\mathrm{n}^{4}} \propto \mathrm{n}^{-3}$
10. $\Delta \mathrm{P} . \Delta \mathrm{x} \geq \frac{\mathrm{h}}{4 \pi}$
$\because \quad 2 \Delta x=\Delta P$ (given)
$\therefore \quad \frac{\Delta \mathrm{P}^{2}}{2} \geq \frac{\mathrm{h}}{4 \pi}$
$\therefore \mathrm{m}^{2}(\Delta \mathrm{~V})^{2} \geq \frac{\mathrm{h}}{2 \pi} \quad\{\because \Delta \mathrm{P}=\mathrm{m} \Delta \mathrm{V}\}$
$\Delta \mathrm{V} \geq \sqrt{\frac{\mathrm{h}}{2 \mathrm{~m}^{2} \pi}}$
$\therefore \quad \Delta \mathrm{V} \geq \frac{1}{\mathrm{~m}} \sqrt{\frac{\mathrm{~h}}{2 \pi}} \quad$ or $\quad \Delta \mathrm{V} \geq \frac{1}{\mathrm{~m}} \sqrt{\hbar}$
11. $\bar{v}=R Z^{2}\left(\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right)$
$x=R\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)=\frac{5 R}{36}$
$\bar{v}_{1}=\mathrm{R} \times 2^{2}\left(1-\frac{1}{2^{2}}\right)=3 \mathrm{R}=\frac{36}{5} \mathrm{x} \times 3=\frac{108 \mathrm{x}}{5}$
12. 3 s orbital has two radial node at the values of radius given by solutions of $\left(6-\frac{4 Z r}{a_{0}}+\frac{4}{9} \cdot \frac{Z^{2} r^{2}}{a_{0}^{2}}\right)=0$
$3 p_{z}$ orbital has on radial nodal surface at $\left(4-\frac{2 \mathrm{Zr}}{3 \mathrm{a}_{0}}\right)=0$
$\&$ one angular node at $\theta=\pi / 2$

$$
\begin{aligned}
& \text { for } 3 p_{z} \text {, at } \mathrm{r}=0 \\
& 3 \mathrm{~s} \text { at } \mathrm{r}=0 \begin{array}{c}
\psi=0 \text { while for } \\
\psi \\
\end{array} \\
& \\
& \text { penetrating power than } 3 p_{z} \text { orbital }
\end{aligned}
$$

13. Since it absorbes ' n ' photons and it also emits exctly n photns therefore transition must have taken place from 1 to 2 .
$\therefore \quad$ Energy of photon $=10.2 \mathrm{Z}^{2}$

$$
\text { where } Z=1,2,3,4
$$

14. 'He' has highest first ionisation energy therefore assertion is wrong and also additio of extra electron to the outer most shell of fully filed orbitals absorbes energy. Hence reason is also wrong.
15. $m \Delta V \Delta x=\frac{h}{4 \pi}$

$$
\begin{aligned}
& \Rightarrow \Delta \mathrm{v}=\frac{6.62 \times 10^{-34}}{9.1 \times 10^{-31} \times 4 \times 3.14 \times 10^{-11}} \\
& \simeq 6 \times 10^{6} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

as uncertainty in velocity is very high so we cannot define the trajectroy of an electron.
16. 2nd excitation energy $=108.9 \mathrm{eV}$

$$
\Rightarrow \quad 108.9=12.1 \mathrm{Z}^{2} \Rightarrow \mathrm{Z}=3
$$

Sample is Li^{++}

\therefore Series limit of paschen is last lineof paschen series

$$
=\frac{\mathrm{RZ}}{} \mathrm{n}^{2}=\mathrm{R} \times \frac{3^{2}}{3^{2}}
$$

17. Since if is a single isolated atom therefore maximum number of spectral line observed will be

18. $\frac{1}{\lambda}=\mathrm{R}\left(1-\frac{1}{3^{2}}\right)=\frac{8}{9} \mathrm{R} \quad \Rightarrow \lambda=\frac{9}{8} \mathrm{R}$

Last line of Brackett series
$\frac{1}{\lambda}=\mathrm{R}\left(\frac{1}{4^{2}}\right) \Rightarrow \lambda=\frac{16}{\mathrm{R}} \quad \Rightarrow \frac{16}{\mathrm{R}}-\frac{9}{8 \mathrm{R}}=\frac{119}{8 \mathrm{R}}$
19. Let n_{1} and n_{2} are the two states
$\mathrm{n}_{1}+\mathrm{n}_{2}=4$ and $\mathrm{n}_{1}-\mathrm{n}_{2}=2$
$\Rightarrow n_{1}=3$ and $n_{2}=1 \quad \Rightarrow$ wave number
$=\frac{1}{\lambda}=\mathrm{R} \times 3^{2}\left(1-\frac{1}{3^{2}}\right)=8 \mathrm{R}$
20. Given $h \mathrm{v}_{1}=13.6 \mathrm{eV}, \mathrm{h} \mathrm{v}_{2}=10.2 \mathrm{eV}$
$h v_{3}=3.4 \mathrm{eV}$
clearly $\mathrm{v}_{1}-\mathrm{v}_{2}=\mathrm{v}_{3}$
21. $\mathrm{Fe}^{2+}-[\mathrm{Ar}] 3 \mathrm{~d}^{6}$

$\mathrm{Cr}^{3+}-[\mathrm{Ar}] 3 \mathrm{~d}^{4}$
$\mathrm{V}^{3+}[\mathrm{Ar}] 3 \mathrm{~d}^{1}$
clearly Mn^{2+} has maximum number of unpaired electrons therefore it has highest magnetic moment.
22. Magnetic moment $=\sqrt{\mathrm{n}(\mathrm{n}+2)}=3.873$
\Rightarrow number of unpaired electron $\mathrm{n}=3$
$\therefore \quad{ }_{25} \mathrm{Mn}-[\mathrm{Ar}] 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{2}$

23. There is two unpaired electron in Ti^{2+}
24. $\mathrm{Mn}^{4+}-[\mathrm{Ar}] 3 \mathrm{~d}^{3}$

25. (A) $\mathrm{T}_{\mathrm{n}}=-\frac{\mathrm{kze}^{2}}{2 \mathrm{r}} \quad \Rightarrow \mathrm{T}_{\mathrm{n}} \alpha \mathrm{r}^{-1}$
(B) $\mathrm{T}_{\mathrm{n}}=\frac{\mathrm{P}_{\mathrm{n}}}{2}$

$$
\Rightarrow \frac{\mathrm{T}_{\mathrm{n}}}{\mathrm{P}_{\mathrm{n}}}=1 / 2
$$

(C) $\frac{1}{\mathrm{f}_{\mathrm{n}}^{-\mathrm{x}}} \alpha \mathrm{z}$
$\Rightarrow \mathrm{f}_{\mathrm{n}}^{\mathrm{x}} \alpha \mathrm{z}$

$$
\mathrm{f}_{\mathrm{n}} \alpha \mathrm{z}^{2} \Rightarrow \mathrm{x}=1 / 2
$$

(D) $\mathrm{T}_{\mathrm{n}} \times \mathrm{V}_{\mathrm{n}}=\frac{2 \pi}{\mathrm{v}_{\mathrm{n}}} \mathrm{r} \times \mathrm{v}_{\mathrm{n}} \Rightarrow \mathrm{t}=1$
26. (A) $6 \rightarrow 3 \quad \Delta \mathrm{n}=3$
\therefore no. of lines $=\frac{3(3+1)}{2}=6$
All lines are in infrared region
(B) $7 \rightarrow 3 \quad \Delta \mathrm{n}=4$
\therefore no. of lines $=\frac{4(4+1)}{2}=10$
All lines are in infrared region
(C) $5 \rightarrow 2 \quad \Delta \mathrm{n}=3$

All lines are in visible region
(D) $6 \rightarrow 2 \quad \Delta \mathrm{n}=4$

All lines are in visible region
27. For the positive particle, applying energy conservation initially and at a point A.
K.E. $._{i_{i}}+$ P.E. $_{\mathrm{r}_{\mathrm{i}}}=$ K.E. $_{\mathrm{f}_{\mathrm{f}}}+$ P.E. $_{{ }_{\mathrm{f}}}$
$\Rightarrow 4 \mathrm{eV}+(+4 \mathrm{e})(0 \mathrm{~V})=0+(+4 \mathrm{e})(\mathrm{x}$ volt $) \quad\{\mathrm{x}=$ potential at point A \}
$\Rightarrow \mathrm{x}=1$ volt
Now applying energy conservation for the negative particle at point ' A ' and initially
\Rightarrow K.E. ${ }_{\cdot}+(-2 \mathrm{e})(4 \mathrm{~V})=0+(-2 \mathrm{e})(1$ volt $)$
K. $\mathrm{E}_{\mathrm{i}}-8 \mathrm{eV}=-2 \mathrm{ev}$
$\Rightarrow K_{\text {K. }}^{\mathrm{i}_{\mathrm{i}}}=6 \mathrm{eV}$.
28. From Bohr model $\mathrm{mvr}=\frac{\mathrm{nh}}{2 \pi} \quad \mathrm{mv}=\frac{\mathrm{nh}}{2 \pi \mathrm{r}}$

De broglie wavelength $\lambda=\frac{\mathrm{h}}{\mathrm{mv}} \Rightarrow \lambda=\frac{\mathrm{h}}{\frac{\mathrm{nh}}{2 \pi \mathrm{r}}}$
$\Rightarrow \lambda=\frac{2 \pi \mathrm{r}}{\mathrm{n}}$
\therefore number of waves made in one revolution
$=\frac{2 \pi \mathrm{r}}{\lambda}=\frac{2 \pi \mathrm{r}}{\frac{2 \pi \mathrm{r}}{\mathrm{n}}}=\mathrm{n}=$ Orbit number $=3$
29. (a) $\operatorname{mur}=\frac{\mathrm{nh}}{2 \pi}$
$\mathrm{u}=\frac{\mathrm{nh}}{2 \pi \mathrm{mr}}=\frac{1 \times 6.626 \times 10^{-34}}{2 \times 3.14 \times 9.108 \times 10^{-31} \times 0.529 \times 10^{-10}}$
$=2.19 \times 10^{6} \mathrm{~m} / \mathrm{s}$
$\lambda=\frac{\mathrm{h}}{\mathrm{mu}}=\frac{6.626 \times 10^{-34}}{9.108 \times 10^{-31} \times 2.19 \times 10^{6}}$
$=3.32 \times 10^{-10} \mathrm{~m}=3.32 \AA$
(b) Orbital angular momentum for 2 p -orbital $(\ell=1)$
$=\sqrt{\ell(\ell+1)} \cdot \frac{\mathrm{h}}{2 \pi}=\frac{\mathrm{h}}{2 \pi} \sqrt{1(1+1)}=\sqrt{2}\left[\frac{\mathrm{~h}}{2 \pi}\right]$
$=\frac{\mathrm{h}}{\sqrt{2} \pi}=\sqrt{2} \hbar \quad(\hbar=\mathrm{h} / 2 \pi)$
30. $\left(\right.$ a) $(\psi)_{2 s}=\frac{1}{2 \sqrt{2} \pi}\left(\frac{1}{a_{0}}\right)^{1 / 2}\left(2-\frac{r}{a_{0}}\right) e^{-r / 2 a_{0}}$

For radical node at $\mathrm{r}=\mathrm{r}_{0}, \psi_{2 \mathrm{~s}}^{2}=0$. this is possible only when $\left(2-\frac{r}{a_{0}}\right)=0$
or $2=\frac{\mathrm{r}_{0}}{\mathrm{a}_{0}}$
$\therefore \quad r_{0}=2 a_{0}$
(b) Given : $\mathrm{m}=100, \mathrm{~g}=0.1 \mathrm{~kg} ; \mathrm{u}=100 \mathrm{~ms}^{-1}$
wavelength $\lambda=\frac{\mathrm{h}}{\mathrm{mu}}=\frac{6.626 \times 10^{-34}}{0.1 \times 100}=6.626 \times 10^{-35} \mathrm{~m}$
31. We have
$\Delta \mathrm{E}=\frac{3}{4} \times 0.85 \mathrm{eV}$
as energy $=0.6375$ the photon will belong to brackett series (as for brackett $0.31 \leq \mathrm{E} \leq 0.85$)
$0.85 \times\left(1-\frac{1}{4}\right)=13.6\left(\frac{1}{4^{2}}-\frac{1}{\mathrm{n}^{2}}\right)$
$0.85\left(1-\frac{1}{4}\right)=\frac{13.6}{16}\left[1-\left(\frac{4}{\mathrm{n}}\right)^{2}\right] \quad \therefore \quad \frac{4}{\mathrm{n}}=\frac{1}{2}$
$\Rightarrow \mathrm{n}=8$
Hence $\mathrm{x}=8$.
32. $\frac{\mathrm{X}}{2} \longrightarrow \frac{\mathrm{X}^{+}}{2}+\mathrm{e} \quad \frac{1}{2}$ I.E.
$\mathrm{e}+\frac{\mathrm{X}}{2} \longrightarrow \frac{\mathrm{X}^{-}}{2} \quad \frac{1}{2}$ E.A.(-ve)
(I) + (III)

$$
\begin{array}{r}
\mathrm{X} \longrightarrow \frac{1}{2} \mathrm{x}^{+}+\frac{1}{2} \mathrm{X}^{-} \quad \frac{1}{2}(\text { I.E. }- \text { E.A. })=410 \mathrm{~kJ} \\
\text { I.E. }- \text { E.A. }=820 \mathrm{~J}
\end{array}
$$

Now $\quad \frac{1}{2} \mathrm{X}^{-} \longrightarrow \frac{1}{2} \mathrm{X}^{+}+2 \mathrm{e}^{-} \quad \ldots$. (IIII) $\Delta \mathrm{H}=735$
Now evaluation (IIII) can be achieved by (II) + reverse (III) and we will get
$\frac{1}{2}$ I.E. $+\frac{1}{2}$ E.A. $=735$
I.E. + E.A. $=1470$

2 E.A. $=650$
E.A. $=325 \mathrm{~kJ} / \mathrm{mol}$.

