SOLVED EXAMPLES

Ex. 1 Which of the following will be strongest Lewis base ?
(A) $\mathrm{CH}_{3} \mathrm{CN}$
(B) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
(C) N_{2}
(D) None of these

We know that in hybridisation, as s-character increases the electronegativity of atom also increases. Due to this tendency the release of lone pair of electrons becomes some what difficult. In methyl amine the nitrogen is in sp^{3} hybridisation and therefore the donation of the lone pair of electron will be quite easier; so it is strongest Lewis base.

Ex. 2 Which type of hybridisation is found in $\mathrm{H}_{3} \mathrm{O}^{+}$?
Sol. According to steric no. rule
Steric number $=$ Number of bond pair(s) + number of lone pair(s) at central atom

Thus the hybridisation of oxygen in $\mathrm{H}_{3} \mathrm{O}^{+}$is sp^{3}.

Ex. 3 Classify the following bonds as ionic, polar covalent or covalent and give your reasons :
(A) SiSi bond in $\mathrm{Cl}_{3} \mathrm{SiSiCl}_{3}$
(B) SiCl bond in $\mathrm{Cl}_{3} \mathrm{SiSiCl}_{3}$
(C) CaF bond in CaF_{2}
(D) NH bond in NH_{3}

Sol. (A) Covalent, due to identical electronegativity.
(B) Covalent, due to less electronegativity difference.
(C) Ionic, due to more electronegativity difference.
(D) Covalent, due to nearly similar electronegativity.

Ex. 4 (A) Which one has highest and lowest melting point and why?
NaCl
KCl
RbCl
CsCl
(B) Why melting points of cesium halide (CsX) decrease in the order given below?
$\mathrm{CsF}>\mathrm{CsCl}>\mathrm{CsBr}>$ CsI.
Sol. (A) NaCl will have highest lattice energy on account of the smaller Na^{+}while CsCl has lowest lattice energy on account of the larger Cs^{+}. Hence NaCl has highest melting point and CsCl has lowest melting point .
(B) As size of anions increase their polarisability increases thus their covalent character increases and melting point decrease.

Ex. 5 Which is incorrect statement?
(A) In $\mathrm{CF}_{2}=\mathrm{C}=\mathrm{CF}_{2}$ molecule all the four fluorine atoms are not in the same plane.
(B) Ka_{2} of fumaric acid is more than Ka_{2} of maleic acid due to intra molecular hydrogen bonding in maleic acid.
(C) The $\mathrm{O}-\mathrm{O}$ bond length in $\mathrm{O}_{2}\left[\mathrm{AsF}_{4}\right]$ is longer than KO_{2}.
(D) The bond angle order in halogen $-\mathrm{S}-$ halogen is $\mathrm{OSF}_{2}<\mathrm{OSCl}_{2}<\mathrm{OSBr}_{2}$

Ans. (C)

Sol. (A)

As both carbon atoms are in different planes, all the four fluorine atoms are not in the same plane. maleic acid

Due to intramolecular hydrogen bonding the maleate ion gets stabilized and thus removal of second hydrogen becomes quite difficult.
(C)

$$
\begin{array}{cc}
\mathrm{O}_{2}\left[\mathrm{AsF}_{4}\right]=\mathrm{O}_{2}^{+} & \mathrm{B} \cdot \mathrm{O}=2.5 \\
\mathrm{KO}_{2}=\mathrm{O}_{2}^{-} & \text {B. } \mathrm{O}=1.5
\end{array}
$$

Bond order $\propto \frac{1}{\text { bond length }} ;$ so O_{2}^{+}has smaller bond length than O_{2}^{-}
(D) Greater the size of the halogen atoms greater will be the steric repulsions and thus larger will be the bond angles.

Ex. 6 Which of the compounds MgCO_{3} and ZnCO_{3} is thermally more stable? Explain.
Sol. $\quad \mathrm{Mg}^{+2}$ has less polarising power due to inert gas configuration while Zn^{+2} has higher polarising power due to pseudo inert gas configuration. A cation i.e. Zn^{2+} with a greater, polarising power exercise a strong pull on the electron cloud of the neighbouring O -atom of the $\mathrm{CO}_{3}{ }^{2-}$ ion and as such the metal carbonate $\left(\mathrm{ZnCO}_{3}\right)$ gets readily decomposed into CO_{2} and the oxide of the metal, ZnO . Thus ZnCO_{3} is less stable than MgCO_{3}.

Ex. 7 Why is anhydrous HCl predominantly covalent in the gaseous state but is ionic in aqueous solution?
Sol. It exists as HCl (bond formed by equal sharing of electrons) but in aqueous solution ionises as $\mathrm{H}^{+}\left(\mathrm{or} \mathrm{H}_{3} \mathrm{O}^{+}\right)$and Cl^{-} due to polarity of HCl .

Ex. 8 Super oxides are coloured and paramagnetic why?
Sol. Super oxides contain one unpaired electron in anti bonding molecular orbital and are coloured due to transition of HOMO orbital electron within visible region.

CHEMISTRY

Ex. 9 Of the species $\mathrm{O}_{2}^{+}, \mathrm{O}_{2}^{-}, \mathrm{O}_{2}$ and O_{2}^{2-} which would have the maximum bond strength ?
Sol. $\quad \mathrm{O}_{2}^{+}$has higher bond order i.e. 2.5 than $\mathrm{O}_{2}(2)$ and $\mathrm{O}_{2}^{-}(1.5)$ and bond strength is directly proportional to bond order.

Ex. 10 Why BeF_{2} has zero dipole moment whereas $\mathrm{H}_{2} \mathrm{O}$ has some dipole moment?
Sol. $\quad \mathrm{BeF}_{2}$ has linear molecule and $\mathrm{H}_{2} \mathrm{O}$ has bent molecule.

Ex. 11 A diatomic molecule has a dipole moment of 1.2 D. If its bond distance is equal to $1.0 \AA$ then the fraction of an electronic charge on each atom is :
(A) 25%
(B) 37%
(C) 52%
(D) 42%

Ans. (A)
Sol. Assuming complete charge transfer then dipole moment $=\left(4.8 \times 10^{-10} \mathrm{esu}\right)\left(10^{-8} \mathrm{~cm}\right)=4.8 \mathrm{D}$
so $\%$ ionic character $=\frac{1.2}{4.8} \times 100 \%=25 \%$

Ex. 12 Why crystals of hydrated calcium sulphate are soft and easily cleaved where as anhydrous calcium sulphate are very hard and very difficult to cleave?
Sol. With in the $\mathrm{Ca}^{2+} / \mathrm{SO}_{4}^{2-}$ layer the ions are held together by strong electrovalent bonds but these separated $\mathrm{Ca}^{2+} /$ $\mathrm{SO}_{4}{ }^{2-}$ layers are linked by relative weak H -bond. The weak H -bonds link $\mathrm{SO}_{4}{ }^{2-}$ ion in the intermediate region.

Ex. 13 The dipole moment of KCl is 3.336×10^{-29} Coulomb meter. The interionic distance in KCl is $2.6 \AA$. Find the $\%$ ionic character in KCl .
Sol. The theoretical dipole moment in $\mathrm{KCl}=\mathrm{e} \times \mathrm{d}=1.602 \times 10^{-19} \times 2.6 \times 10^{-10}=4.1652 \times 10^{-29} \mathrm{C}$ meter
$\%$ ionic character $=\frac{\text { experimental dipole moment }}{\text { theoretical dipole moment }} \times 100=\left(3.336 \times 10^{-29 / 4.1652 \times 10^{-29}}\right) \times 100$

Ex. 14 For an ionic compound $\mathrm{AX}_{3}(\mathrm{~s})$ formed between a metal A and a non-metal X (outermost shell configuration of $\mathrm{X}=\mathrm{ns}^{2} \mathrm{np}^{5}$). Find the enthalpy of formation (magnitude) of $\mathrm{AX}_{3}(\mathrm{~s})$ in $\mathrm{k} \mathrm{cal} \mathrm{mol}^{-1}$ with the help of the following data. (Non-metal X is found to exist in nature as a diatomic gas)
$\Delta \mathrm{H}_{\text {Sublimation }} \mathrm{A}(\mathrm{s})=100 \mathrm{Kcal} / \mathrm{mol}$
$\Delta \mathrm{H}_{\mathrm{IE}_{1}} \mathrm{~A}(\mathrm{~g})=60 \mathrm{Kcal} / \mathrm{mol}$
$\Delta \mathrm{H}_{\mathrm{IE}_{2}} \mathrm{~A}(\mathrm{~g})=150 \mathrm{Kcal} / \mathrm{mol}$
$\Delta \mathrm{H}_{\mathrm{IE}_{3}} \mathrm{~A}(\mathrm{~g})=280 \mathrm{Kcal} / \mathrm{mol}$
$\Delta \mathrm{H}_{\text {diss }} \mathrm{X}_{2}(\mathrm{~g})=80 \mathrm{Kcal} / \mathrm{mol}$
$\Delta \mathrm{H}_{\text {e.g }} \mathrm{X}(\mathrm{g})=-110 \mathrm{Kcal} / \mathrm{mol}$
$\Delta H_{\text {Lattice energy }} \mathrm{AX}_{3}(\mathrm{~s})=-470 \mathrm{Kcal} / \mathrm{mol}$

Sol.

Ex. 15 CO forms weak bonds to Lewis acid such as BF_{3}. In contrast CO forms strong bonds to transition metals. Why explain ?
Sol. $\mathrm{CO} \longleftarrow \mathrm{BF}_{3}$
Transition metal $\underset{\sigma}{\underset{\sigma}{\underset{~}{\leftrightarrows}}} \mathrm{CO}$
This is called synergic interaction and because of it the bond between CO and transition metal is stronger.

Ex. 16 The gaseous potassium chloride molecule has a measured dipole moment of 10.0 D , which indicates that it is a very polar molecule. The separation between the nuclei in this molecule is $2.67 \times 10^{-8} \mathrm{~cm}$. Calculate the percentage ionic character in KCl molecule.
Sol. Dipole moment of compound would have been completely ionic

$$
=\left(4.8 \times 10^{-10} \mathrm{esu}\right)\left(2.67 \times 10^{-8} \mathrm{~cm}\right)=12.8 \mathrm{D}
$$

$$
\text { so } \% \text { ionic character }=\frac{10.0}{12.8} \times 100 \%=78.125 \% \simeq 78 \% \quad \text { Ans. }
$$

Ex. 17 There will be three different fluorine-fluorine distances in molecule $\mathrm{CF}_{2}(\mathrm{C})_{2} \mathrm{CF}_{2}$. Assuming ideal bond angles for a particular hybridisation (assume no distortion due to double bonds) find out the two smaller fluorinefluorine distances and fill the result (in pm) in the increasing order in your answer sheet. Round off your answer to the nearest whole number.
(Given that $\mathrm{C}-\mathrm{F}$ bond length $=134 \mathrm{pm}, \mathrm{C}=\mathrm{C}$ bond length $=134 \mathrm{pm} \sqrt{3}=1.73$)

Sol.

$\mathrm{d}_{1}=2 \times 134 \times \sin 60^{\circ} \quad \mathrm{pm}=231.8 \mathrm{pm}=232 \mathrm{pm}$
$\mathrm{d}_{2}=134 \times 3+2 \times 134 \cos 60^{\circ} \mathrm{pm}=536 \mathrm{pm}$ Ans.

$$
\begin{aligned}
& \Delta H_{f}=\Delta H_{\text {sub }}+\Delta H_{\text {I.E }}+\Delta H_{\text {I.E }}+\Delta H_{\text {I.E. }}^{3} \text { }+\frac{3}{2} \Delta \mathrm{H}_{\text {diss }}+3 \Delta \mathrm{H}_{\text {e.g }}+\Delta \mathrm{H}_{\text {L.E }} \\
& =100+60+150+280+\frac{3}{2} \times 80-3 \times 110-470=100+60+150+280+120-330-470 \\
& =-90 \mathrm{Kcal} / \mathrm{mol} \text { Ans. }
\end{aligned}
$$

Exercise \# $1>$ [Single Correct Choice Type Questions]

1. Electrovalent compound's
(A) Melting points are low
(B) Boiling points are low
(C) Conduct current in fused state
(D) Insoluble in polar solvent
2. An element has electronegativity 1 . The bonds formed between atoms of this elements are
(A) covalent
(B) metallic
(C) ionic
(D) hydrogen bond
3. Which of the following compound has electrovalent linkage ?
(A) $\mathrm{CH}_{3} \mathrm{Cl}$
(B) NaCl
(C) $\mathrm{CH}_{3} \mathrm{OH}$
(D) $\mathrm{CH}_{3} \mathrm{COOH}$
4. An ionic bond $\mathrm{A}^{+} \mathrm{B}^{-}$is most likely to be formed when :
(A) the ionization energy of A is high and the electron affinity of B is low
(B) the ionization energy of A is low and the electron affinity of B is high
(C) the ionization energy of A and the electron affinity of B is high
(D) the ionization energy of A and the electron affinity of B is low
5. Among the following which property is commonly exhibited by a covalent compound
(A) High solubility in water
(B) High electrical conductance
(C) Low boiling point
(D) High melting point
6. Given the electronegativities of three elements $\mathrm{X}=1.0, \mathrm{Y}=2.0, \mathrm{Z}=3.0$. The type of bonding formed between XZ and YZ respectively would be :
(A) Covalent, ionic
(B) Ionic, covalent
(C) Covalent, covalent
(D) Ionic, ionic.
7. Which of the following pairs of elements forms a compound with maximum ionic character?
(A) Na and F
(B) Cs and F
(C) Na and C
(D) Cs and I
8. Example of super octet molecule is :
(A) SF_{6}
(B) PCl_{5}
(C) IF_{7}
(D) All of these
9. Average bond order of $\mathrm{C}-\mathrm{C}$ bond in $\mathrm{C}_{6} \mathrm{H}_{6}$ is
(A) 1
(B) 2
(C) 1.5
(D) 1.33
10. The possible structure of monothiocarbonate ion is :
(A)

(B)

(C)

(D)

11. Which one (s) of the following structures cannot represent resonance forms for $\mathrm{N}_{2} \mathrm{O}$ (diamagnetic)?
(A) $: \dot{\mathrm{N}}=\mathrm{N}=\ddot{\mathrm{O}}$:
(B) $: N \equiv N-\ddot{O}:$
(C) $: \dot{\mathrm{N}}-\mathrm{N} \equiv \mathrm{O}$:
(D) $: \ddot{\mathrm{N}}=\mathrm{O}=\dot{\mathrm{N}}:(\mathrm{E}): \dot{\mathrm{N}}=\mathrm{N}=\dot{\mathrm{O}}:$
(A) A and C
(B) C, E and D
(C) D and E
(D) C and D .
12. The octet rule is not obeyed in :
(A) CO_{2}
(B) BCl_{3}
(C) PCl_{5}
(D) (B) and (C) both
13. Which of the following compounds does not contain -1 formal charge on any of O atom :
(A) O_{3}
(B) $\mathrm{H}_{3} \mathrm{PO}_{4}$
(C) HNO_{3}
(D) $\mathrm{N}_{2} \mathrm{O}_{5}$
14. Pick out among the following species isoelectronic with CO_{2}.
(A) $\mathrm{N}_{3}{ }^{-}$
(B) (CNO) ${ }^{-}$
(C) $(\mathrm{NCN})^{2-}$
(D) All of these
15. The correct order of increasing $\mathrm{C}-\mathrm{O}$ bond length of $\mathrm{CO}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{CO}_{2}$ is :
(A) $\mathrm{CO}_{3}{ }^{2-}<\mathrm{CO}_{2}<\mathrm{CO}$
(B) $\mathrm{CO}_{2}<\mathrm{CO}_{3}{ }^{2-}<\mathrm{CO}$
(C) $\mathrm{CO}<\mathrm{CO}_{3}{ }^{2-}<\mathrm{CO}_{2}$
(D) $\mathrm{CO}<\mathrm{CO}_{2}<\mathrm{CO}_{3}{ }^{2-}$
16. The average charge on each O atom and average bond order of $\mathrm{I}-\mathrm{O}$ bond in $\mathrm{IO}_{6}{ }^{5-}$ is :
(A) -1 and 1.67
(B) $-5 / 6$ and 1.67
(C) $-5 / 6$ and 1.33
(D) $-5 / 6$ and 1.167
17. $\mathrm{H}-\mathrm{O}-\mathrm{C} \frac{\mathrm{y}}{\mathrm{z}} \mathrm{O}^{-}$The relation between x, y and z in bicarbonate ion with respect to bond length is :
(A) $x>y>z$
(B) $x>z>y$
(C) $z=y>x$
(D) $x>y=z$
18. Indicate the wrong statement:
(A) A sigma bond is stronger then π - bond
(B) p-orbitals always have only sidewise overlapping
(C) s-orbitals never form π - bonds
(D) There can be only one sigma bond between two atoms
19. $\mathrm{C}_{3}{ }^{-}$has
(A) two σ and two π bond
(B) three σ and one π bond
(C) two σ and one π bond
(D) two σ and three π bond
20. How many bonds are there in

(A) 13
(B) 23
(C) 20
(D) 26
21. Which of the following overlaps is incorrect [assuming z-axis to be the internuclear axis] ?
(A) $2 \mathrm{p}_{\mathrm{y}}+2 \mathrm{p}_{\mathrm{y}} \rightarrow \pi 2 \mathrm{p}_{\mathrm{y}}$
(B) $2 \mathrm{p}_{\mathrm{z}}+2 \mathrm{p}_{\mathrm{z}} \rightarrow \sigma 2 \mathrm{p}_{\mathrm{z}}$
(C) $2 \mathrm{p}_{\mathrm{x}}+2 \mathrm{p}_{\mathrm{x}} \rightarrow \pi 2 \mathrm{p}_{\mathrm{x}}$
(D) $1 \mathrm{~s}+2 \mathrm{p}_{\mathrm{y}} \rightarrow \pi\left(1 \mathrm{~s}-2 \mathrm{p}_{\mathrm{y}}\right)$
(A) ' a ' \& ' b '
(B) 'b' \& 'd'
(C) only 'd'
(D) None of these
22. Effective overlapping will be shown by :
(A) $\oplus \Theta+\oplus \Theta$
(B) $\xlongequal{\oplus}+\odot$
(C) $\oplus \odot+\bigodot \oplus$
(D) All the above
23. The covalency of nitrogen in HNO_{3} is
(A) 0
(B) 3
(C) 4
(D) 5
24. What is covalency of I in IF_{7} ?
(A) 5
(B) 3
(C) 7
(D) 1
25. In which of the following N is in the sp^{2} hybridisation state
(A) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
(B) $\mathrm{CH}_{3} \mathrm{CONH}_{2}$
(C) $\mathrm{CH}_{3} \mathrm{CN}$
(D) $\mathrm{NO}_{2}{ }^{+}$
26. In pent-3-en-1-yne the terminal carbon-atoms have following hybridisation
(A) $\mathrm{sp} \& \mathrm{sp}^{2}$
(B) $\mathrm{sp}^{2} \& \mathrm{sp}^{3}$
(C) $\mathrm{sp}^{2} \& \mathrm{sp}$
(D) $\mathrm{sp} \& \mathrm{sp}^{3}$

CHEMISTRY

27. Which of the following has been arranged in increasing order of size of the hybrid orbitals ?
(A) $\mathrm{sp}<\mathrm{sp}^{2}<\mathrm{sp}^{3}$
(B) $\mathrm{sp}^{3}<\mathrm{sp}^{2}<\mathrm{sp}$
(C) $\mathrm{sp}^{2}<\mathrm{sp}^{3}<\mathrm{sp}$
(D) $\mathrm{sp}^{2}<\mathrm{sp}<\mathrm{sp}^{3}$
28. The hybridization of carbon atoms in $\mathrm{C}_{2}-\mathrm{C}_{3}$ single bond of $\mathrm{H} \stackrel{4}{\mathrm{C}} \equiv \stackrel{3}{\mathrm{C}}-\stackrel{2}{\mathrm{C}} \mathrm{H}=\stackrel{1}{\mathrm{C}} \mathrm{H}_{2}$ is :
(A) $\mathrm{sp}^{3}-\mathrm{sp}^{3}$
(B) $\mathrm{sp}^{2}-\mathrm{sp}$
(C) $\mathrm{sp}-\mathrm{sp}^{2}$
(D) $\mathrm{sp}^{3}-\mathrm{sp}$
29. Specify the hybridisations of central atom in the following species respectively $\left\{\mathrm{N}_{3}{ }^{-}, \mathrm{NOCl}, \mathrm{N}_{2} \mathrm{O}\right\}$
(A) $\mathrm{sp}, \mathrm{sp}^{2}$, sp
(B) $\mathrm{sp}, \mathrm{sp}, \mathrm{sp}^{3}$
(C) $\mathrm{sp}^{2}, \mathrm{sp}, \mathrm{sp}$
(D) $\mathrm{sp}^{2}, \mathrm{sp}^{2}, \mathrm{sp}$.
30. In which of the following pairs hybridisation of the central atoms are different ?
(A) $\mathrm{ClF}_{3}, \mathrm{ClF}_{3} \mathrm{O}$
(B) $\mathrm{ClF}_{3} \mathrm{O}, \mathrm{ClF}_{3} \mathrm{O}_{2}$
(C) $\left[\mathrm{ClF}_{2} \mathrm{O}\right]^{+},\left[\mathrm{ClF}_{4} \mathrm{O}\right]^{-}$
(D) $\left[\mathrm{ClF}_{4} \mathrm{O}\right]^{-},\left[\mathrm{XeOF}_{4}\right]$
31. $\mathrm{BF}_{3}+\mathrm{F}^{-} \rightarrow \mathrm{BF}_{4}^{-}$

What is the hybridisation state of B in BF_{3} and BF_{4}^{-}:
(A) $\mathrm{sp}^{2}, \mathrm{sp}^{3}$
(B) $\mathrm{sp}^{3}, \mathrm{sp}^{3}$
(C) $\mathrm{sp}^{2}, \mathrm{sp}^{2}$
(D) $\mathrm{sp}^{3}, \mathrm{sp}^{3} \mathrm{~d}$
32. \quad In $\mathrm{H}_{2} \mathrm{SO}_{4}$ molecule
(A) S -atom is $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridised and there are 4 lone pair electrons on ' O ' atoms.
(B) S-atom is sp^{3} hybridised and there are no lone pair of electrons in the molecule.
(C) S -atom is sp^{3} hybridised and there are 8 lone pair of electrons on the ' O ' atoms.
(D) S-atom is sp^{2} hybridised and these are 8 lone pair of electrons ' O ' atoms
33. $\quad \mathrm{S}_{1}:\left[\mathrm{XeF}_{7}\right]^{+}$has $\mathrm{sp}^{3} \mathrm{~d}^{3}$ hybridisation $\quad ; \quad \mathrm{S}_{2}:\left[\mathrm{PCl}_{4}\right]^{+}$has $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridisation $\mathrm{S}_{3}:\left[\mathrm{SF}_{6}\right]$ has $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridisation $\quad ; \quad \mathrm{S}_{4}:\left[\mathrm{PF}_{4}\right]^{+}$has sp^{3} hybridisation
(A) T F F T
(B) T T F T
(C) T F T T
(D) F F F T
34. Which is the right structure of XeF_{4} ?
(A)

(B)

(C)

(D)

35. Which reaction involves a change in the electron-pair geometry for the under lined element?
(A) $\underline{B F}_{3}+\mathrm{F}^{-} \longrightarrow \mathrm{BF}_{4}^{-}$
(B) $\mathrm{NH}_{3}+\mathrm{H}^{+} \longrightarrow \mathrm{NH}_{4}^{+}$
(C) $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \longrightarrow 2 \underline{\mathrm{SO}}_{3}$
(D) $\mathrm{H}_{2} \underline{\mathrm{O}}+\mathrm{H}^{+} \longrightarrow \mathrm{H}_{3} \underline{\mathrm{O}}^{+}$
36. In which of the following molecules number of lone pairs and bond pairs on central atom are not equal ?
(A) $\mathrm{H}_{2} \mathrm{O}$
(B) $\mathrm{I}_{3}{ }^{-}$
(C) $\mathrm{O}_{2} \mathrm{~F}_{2}$
(D) SCl_{2}
37. The structure of $\mathrm{F}_{2} \mathrm{SeO}$ is analogous to :
(A) SO_{3}
(B) ClO_{3}^{-}
(C) XeO_{3}
(D) (B) and (C) both
38. Which of the following species given below have shape similar to XeOF_{4} ?
(A) XeO_{3}
(B) IOF_{4}^{+}
(C) PCl_{5}
(D) $\mathrm{XeF}_{5}^{\oplus}$
39. Identify the correct match.
(i) XeF_{2}
(A) Central atom has sp^{3} hybridisation and bent geometry.
(ii) $\mathrm{N}_{3}{ }^{-}$
(B) Central atom has $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridisation and octahedral.
(iii) $\mathrm{PCl}_{6}^{-}\left(\mathrm{PCl}_{5}\right.$ (s) anion)
(C) Central atom has sp hybridisation and linear geometry.
(iv) $\mathrm{ICl}_{2}^{+}\left(\mathrm{I}_{2} \mathrm{Cl}_{6}(\ell)\right.$ cation $)$
(D) Central atom has $\mathrm{sp}^{3} \mathrm{~d}$ hybridisation and linear geometry.
(A) ($\mathrm{i}-\mathrm{a}$), (ii-b), (iii-c), (iv-d)
(B) $(\mathrm{i}-\mathrm{d}),(\mathrm{ii}-\mathrm{b}),(\mathrm{iii}-\mathrm{d}),(\mathrm{iv}-\mathrm{c})$
(C) $(\mathrm{i}-\mathrm{b}),(\mathrm{ii}-\mathrm{c}),(\mathrm{iii}-\mathrm{a}),(\mathrm{iv}-\mathrm{d})$
(D) $(\mathrm{i}-\mathrm{d}),(\mathrm{ii}-\mathrm{c}),(\mathrm{iii}-\mathrm{b}),(\mathrm{iv}-\mathrm{a})$
40. Which of the following statement is true for $\mathrm{IO}_{2} \mathrm{~F}_{2}^{-}$?
(A) The electrons are located at the corners of a trigonal bipyramidal but one of the equatorial pairs is unshared.
(B) It has $\mathrm{sp}^{3} \mathrm{~d}$ hybridisation and is T -shaped.
(C) Its structure is analogous to SF_{4}.
(D) (A) and (C) both
41. Consider the following molecules ; $\begin{array}{ccccc}\mathrm{H}_{2} \mathrm{O} & \mathrm{H}_{2} \mathrm{~S} & \mathrm{H}_{2} \mathrm{Se} & \mathrm{H}_{2} \mathrm{Te}\end{array}$

Arrange these molecules in increasing order of bond angles.
(A) I $<$ II $<$ III $<$ IV
(B) IV $<$ III $<$ II $<$ I
(C) I $<$ II $<$ IV $<$ III
(D) II $<$ IV $<$ III $<$ I
42. In which of the following bond angle is maximum
(A) NH_{3}
(B) NH_{4}^{+}
(C) PCl_{3}
(D) SCl_{2}
43. Consider the following statement and arrange in the order of true / false.
S_{1} : In SnCl_{2} the bonding takes place in ground state and the bond angle $\mathrm{Cl}-\mathrm{Sn}-\mathrm{Cl}$ is slightly less than 120°.
S_{2} : The molecular geometry of XeF_{7}^{+}is pentagonal bipyramidal having two different $\mathrm{Xe}-\mathrm{F}$ bond lengths.
$\mathrm{S}_{3}:$ In SF_{4}, the bond angles, instead of being 90° and 180° are 89° and 177° respectively due to the presence of a lone pair.
(A) T T T
(B) F T T
(C) T T F
(D) T F T
44. In which of the following central atom is unhybridised?
(A) $\mathrm{S}\left(\mathrm{CH}_{3}\right)_{2}$
(B) SO_{2}
(C) SiH_{4}
(D) PCl_{3}
45. The ONO angle is maximum in :
(A) HNO_{3}
(B) NO_{2}^{+}
(C) HNO_{2}
(D) NO_{2}
46. Which statement is correct for $\mathrm{N}_{3}{ }^{-}$ion
(A) It is bent molecule
(B) Bond angle is $<120^{\circ}$
(C) Central atom is sp^{2} hybridized
(D) None of these
47. All the following species have all their bond lengths identical except :
(A) AsF_{3}
(B) AsF_{4}^{-}
(C) AsF_{4}^{+}
(D) AsF_{6}^{-}
48. Which of the following has maximum $(\mathrm{C}-\mathrm{C})$ bond length
(A) $\mathrm{C}_{2} \mathrm{H}_{2}$
(B) $\mathrm{C}_{2} \mathrm{H}_{4}$
(C) $\mathrm{C}_{2} \mathrm{H}_{6}$
(D) $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Br}_{2}$
49. Consider the following statements

1. Steric number ' 7 ' gives ' $\mathrm{sp}^{3} \mathrm{~d}^{3}$ hybridisation.
2. In $\mathrm{C} \ell \mathrm{F}_{3}$ at least one bond angle is exactly 180°
3. Lone pair does not cause any distortion in the bond angle.

The above statements $1,2,3$ respectively are ($\mathrm{T}=$ True, $\mathrm{F}=$ False)
(A) T F F
(B) T T F
(C) F T F
(D) T T T
50. Which one has highest bond angle.
(A) NH_{3}
(B) PH_{3}
(C) $\mathrm{H}_{2} \mathrm{O}$
(D) CH_{4}
51. In the thiocyanate ion, SCN^{-}three resonating structure are possible with the electron-dot method as shown in figure
$: S=C={ }^{1-}$:
$\stackrel{-}{-}-\mathrm{C}-\mathrm{C} \equiv \mathrm{N}$:
(y)
$\mathrm{S}^{1+} \equiv \mathrm{C}-\mathrm{N}^{2-}$
(z)

The decreasing order of \% contribution in resonance hybrid is :
(A) $y>x>z$
(B) $y>z>x$
(C) $z>x>y$
(D) cannot predicted.
52. The correct order of $\mathrm{C}-\mathrm{N}$ bond length in the given compounds is :
P: $\mathrm{CH}_{3} \mathrm{CN}$
Q: HNCO
R: $\mathrm{CH}_{3} \mathrm{CONH}_{2}$
(A) P $>$ Q $>R$
(B) $P=Q=R$
(C) $\mathrm{R}>\mathrm{Q}>\mathrm{P}$
(D) R $>$ P $>$ Q
53. Which of the following statements is not correct for sigma and pi bond formed between two carbon atoms?
(A) Free rotation of atoms about a sigma - bond is allowed but not in case of a pi-bond
(B) Sigma -bond determines the direction between carbon atoms but a pi-bond has no primary effect in this regard
(C) Sigma-bond is stronger than a pi-bond
(D) Bond energies of sigma- and pi-bonds are of the order of $264 \mathrm{~kJ} / \mathrm{mol}$ and $347 \mathrm{~kJ} / \mathrm{mol}$. respectively.
54. Number and type of bonds between two carbon atoms in CaC_{2} are :
(A) one sigma (σ) and one pi (π) bond
(B) one σ and two π bonds
(C) one σ and one and a half π bond
(D) one σ bond
55. The number of σ and π bonds in dicyanogen $(\mathrm{CN})_{2}$ are :
(A) $2 \sigma+3 \pi$
(B) $3 \sigma+2 \pi$
(C) $3 \sigma+4 \pi$
(D) $4 \sigma+3 \pi$
56. Indicate the incorrect statement :
(A) An 'sp' hybrid orbital is not lower in energy than both s- and p-orbitals
(B) $2 p_{x}$ and $2 p_{y}$ - orbitals of carbon can be hybridized to yield two new more stable orbitals
(C) Effective hybridisation is not possible with orbitals of widely different energies
(D) The concept of hybridisation has a greater significance in the VB theory of localised orbitals than in the MO theory.
57. The correct order of increasing s character (in percentage) in the hybrid orbitals in below molecules / ions is (assume all hybrid orbitals are exactly equivalent) :
XeF_{4}
II
$\mathrm{CO}_{3}{ }^{2-}$
I
(A) II $<$ III $<$ IV $<$ I $<$ V
(C) III $<$ II $<$ I $<$ V $<$ IV
I_{3}^{-}
III
NCl_{3} N
(B) II $<$ IV $<$ III $<$ V $<$ I
(D) II $<$ IV $<$ III $<$ I $<$ V
58. Which of the following contains both electrovalent and covalent bonds ?
(A) CH_{4}
(B) $\mathrm{H}_{2} \mathrm{O}_{2}$
(C) $\mathrm{NH}_{4} \mathrm{Cl}$
(D) none
59. In the following which substance will have highest boiling point
(A) He
(B) CsF
(C) NH_{3}
(D) CHCl_{3}
60. Arrange the following in order of decreasing $\mathrm{N}-\mathrm{O}$ bond length : $\mathrm{NO}_{2}^{+}, \mathrm{NO}_{2}^{-}, \mathrm{NO}_{3}^{-}$
(A) $\mathrm{NO}_{3}^{-}>\mathrm{NO}_{2}^{+}>\mathrm{NO}_{2}^{-}$
(B) $\mathrm{NO}_{3}^{-}>\mathrm{NO}_{2}^{-}>\mathrm{NO}_{2}^{+}$
(C) $\mathrm{NO}_{2}^{+}>\mathrm{NO}_{3}^{-}>\mathrm{NO}_{2}^{-}$
(D) $\mathrm{NO}_{2}^{-}>\mathrm{NO}_{3}^{-}>\mathrm{NO}_{2}^{+}$
61. $\mathrm{sp}^{3} \mathrm{~d}$ hybridization is considered to be a combination of two hybridization. They are
(A) $\mathrm{p}^{3}+\mathrm{sd}$
(B) $\mathrm{sp}^{2}+\mathrm{pd}$
(C) $\mathrm{spd}+\mathrm{p}^{2}$
(D) none of these
62. Which of the following should have pyramidal shape :
(A) $\left[\mathrm{ClOF}_{2}\right]^{+}$
(B) ICl_{3}
(C) $[\mathrm{BrICl}]$
(D) All of these
63. Which of the following species have a non linear shape ?
(A) $\mathrm{N}_{2} \mathrm{O}$
(B) $\mathrm{I}_{3}{ }^{+}$
(C) SCN^{-}
(D) NO_{2}^{+}
64. The correct order of increasing $X-O-X$ bond angle is $(X=H, F$ or $C l)$:
(A) $\mathrm{H}_{2} \mathrm{O}>\mathrm{Cl}_{2} \mathrm{O}>\mathrm{F}_{2} \mathrm{O}$
(B) $\mathrm{Cl}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{O}>\mathrm{F}_{2} \mathrm{O}$
(C) $\mathrm{F}_{2} \mathrm{O}>\mathrm{Cl}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{O}$
(D) $\mathrm{F}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{O}>\mathrm{Cl}_{2} \mathrm{O}$
65. When NH_{3} is treated with HCl , in the product species $\mathrm{H}-\mathrm{N}-\mathrm{H}$ bond angle (in comparison to ammonia)
(A) Increases
(B) Decreases
(C) Remains same
(D) Depends upon temperature
66. The correct order of bond angle is :
(A) $\mathrm{H}_{2} \mathrm{~S}<\mathrm{NH}_{3}<\mathrm{BF}_{3}<\mathrm{CH}_{4}$
(B) $\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{CH}_{4}<\mathrm{BF}_{3}$
(C) $\mathrm{H}_{2} \mathrm{~S}<\mathrm{NH}_{3}<\mathrm{CH}_{4}<\mathrm{BF}_{3}$
(D) $\mathrm{H}_{2} \mathrm{~S}<\mathrm{CH}_{4}<\mathrm{NH}_{3}<\mathrm{BF}_{3}$
67. Arrange the following in the increasing order of deviation from normal tetrahedral angle :
(A) $\mathrm{P}_{4}<\mathrm{PH}_{3}<\mathrm{H}_{2} \mathrm{O}$
(B) $\mathrm{PH}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{P}_{4}$
(C) $\mathrm{P}_{4}<\mathrm{H}_{2} \mathrm{O}<\mathrm{PH}_{3}$
(D) $\mathrm{H}_{2} \mathrm{O}<\mathrm{PH}_{3}<\mathrm{P}_{4}$
68. In XeF_{2} molecule the angle between two lone pair orbitals is α, the angle between lone pair orbital and bond pair orbital is β and the angle between bond pair orbitals is γ :
(A) $\alpha=\beta=\gamma$
(B) $\alpha>\beta>\gamma$
(C) $\gamma>\beta>\alpha$
(D) $\gamma>\alpha>\beta$
69. The hybridisation of P in phosphate ion $\left(\mathrm{PO}_{4}^{3-}\right)$ is the same as :
(A) I in $\mathrm{IC} \ell_{4}^{-}$
(B) S in SO_{3}
(C) $\mathrm{N} \mathrm{in}_{\mathrm{NO}}^{3}{ }^{-}$
(D) S in $\mathrm{SO}_{3}{ }^{2-}$
70. Choose the molecules in which hybridisation occurs in the ground state ?
(A) BCl_{3}
(B) NH_{3}
(C) PCl_{3}
(D) BeF_{2}

The correct answer is :
(A) a, b, d
(B) a, b, c
(C) b, c
(D) c, d
71. Phosphorous penta-chloride in gaseous phase exists as a monomer. In solid state, it exists as PCl_{4}^{+}and PCl_{6}^{-}ions. The hybrid state of P -atom in PCl_{5} is $\mathrm{sp}^{3} \mathrm{~d}$. The hybrid states of P -atoms in PCl_{4}^{+}and PCl_{6}^{-}will be :
(A) $\mathrm{sp}^{3} \mathrm{~d}, \mathrm{sp}^{3} \mathrm{~d}^{2}$
(B) $\mathrm{sp}^{3}, \mathrm{sp}^{3} \mathrm{~d}^{2}$
(C) $\mathrm{sp}^{3} \mathrm{~d}^{2}, \mathrm{sp}^{3} d$
(D) $\mathrm{sp}^{3}, \mathrm{sp}^{3} \mathrm{~d}$
72. In which of the following cyclic compound the nitrogen atom is sp^{3} hybridised
(I)

(A) I\& III
(II)

(III)

(IV)

(B) I, II, III
(C) III \& IV
(D) I, III \& IV

CHEMISTRY

73. The bent or V-shape of the molecule can be resulted from which of the following hybridization.
(A) sp^{3}
(B) sp^{2}
(C) Both (A) and (B)
(D) None of these
74. In which of the following molecules are all the bonds not equal?
(A) NF_{3}
(B) ClF_{3}
(C) BF_{3}
(D) AlF_{3}
75. Which of the following is correct order of bond length ?
(A) $\mathrm{BF}_{4}^{-}<\mathrm{BF}_{3}$
(B) $\mathrm{NO}_{2}^{+}<\mathrm{NO}_{2}^{-}$
(C) $\mathrm{CCl}_{4}<\mathrm{CF}_{4}$
(D) ${ }^{+} \mathrm{CH}_{3}>\mathrm{CH}_{4}$
76. In which of the following cases the stated bond is longer in first species than in second species?
(A) $\mathrm{C}-\mathrm{H}$ bond in cyclopropane and propane
(B) Equatorial $\mathrm{P}-\mathrm{Cl}$ bond in PCl_{5} and $\mathrm{P}-\mathrm{Cl}$ bond in PCl_{6}^{-}
(C) $\mathrm{N}-\mathrm{N}$ bond in $\mathrm{N}_{2} \mathrm{O}_{4}$ and $\mathrm{N}-\mathrm{N}$ bond in $\mathrm{N}_{2} \mathrm{H}_{4}$
(D) $\mathrm{C}-\mathrm{C}$ bond in benzene and $\mathrm{C}_{2} \mathrm{H}_{6}$
77. Identify the correct statement:
(A) single $N-N$ bond is stronger than single $P-P$ bond
(B) single $\mathrm{N}-\mathrm{N}$ bond is weaker than single $\mathrm{P}-\mathrm{P}$ bond
(C) $\mathrm{N} \equiv \mathrm{N}$ is weaker than $\mathrm{P} \equiv \mathrm{P}$
(D) None of these
78. In $\mathrm{O}_{2} \mathrm{~F}_{2}$, which of the following statement is incorrect.
(A) $\mathrm{O}-\mathrm{F}$ bond length in $\mathrm{O}_{2} \mathrm{~F}_{2}$ is longer than $\mathrm{O}-\mathrm{Fbond}$ length in OF_{2}.
(B) The O.N. of oxygen in $\mathrm{O}_{2} \mathrm{~F}_{2}$ is +1 .
(C) The $\mathrm{O}-\mathrm{O}$ bond length in $\mathrm{O}_{2} \mathrm{~F}_{2}$ is shorter than $\mathrm{O}-\mathrm{O}$ bond length in $\mathrm{H}_{2} \mathrm{O}_{2}$.
(D) None of these
79. $\mathrm{A} \sigma$ bonded molecule MX_{3} is T-shaped. The number of non-bonding pairs of electrons can be
(A) 0
(B) 2
(C) 1
(D) none of these
80. Which of the following pairs does not contain isomorphous species :
(A) $\mathrm{BaSO}_{4}, \mathrm{KMnO}_{4}$
(B) $\mathrm{KClO}_{4}, \mathrm{KBF}_{4}$
(C) $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}, \mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
(D) $\mathrm{NaClO}_{3}, \mathrm{NaNO}_{3}$
81. Boron forms covalent compound due to
(A) Small size
(B) Higher ionization energy
(C) Lower ionization energy
(D) Both (A) and (B)
82. To which of the following species is the octet rule applicable?
(A) BrF_{5}
(B) SF_{6}
(C) IF_{7}
(D) CO_{2}
83. The maximum covalency for representative elements is equal to (excluding 1st and 2 nd period) :
(A) the number of unpaired p-electrons
(B) the number of paired d-electrons
(C) the number of unpaired s and p-electrons
(D) the actual number of s and p -electrons in the outermost shell.
84. Which of the following are not characteristics of metallic solids?
(A) high electrical conductivity
(B) malleable and ductile
(C) the free electrons give them lustrous appearance
(D) electrical conductivity increases on increasing temperature
85. Two element have electronegativity of 1.2 and 3.0 . Bond formed between them would be :
(A) more ionic
(B) polar Covalent
(C) co-ordinate
(D) metallic
86. Which of the following overlaps gives a σ bond with x as internuclear axis?
(A) p_{z} and p_{z}
(B) s and p_{z}
(C) s and p_{x}
(D) $d_{x^{2}-y^{2}}$ and $d_{x^{2}-y^{2}}$
87. Which of the statements is correct about SO_{2} ?
(A) two σ, two π and no lone pair of electrons
(B) two σ and one π
(C) two σ, two π and one lone pair
(D) none of these
88. Which of the following is true statement?
(A) All the carbon in $\mathrm{H}_{2} \mathrm{C}=\underset{\mid}{\mathrm{C}}-\mathrm{C} \equiv \mathrm{C}-\underset{\mid}{\mathrm{C}}=\mathrm{CH}_{2}$ are in sp^{2} hybridisation.
(B) In $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{CN})_{2}$ there are six ' σ ' bonds.
(C) $\mathrm{In}_{2} \mathrm{H}_{6}$, all C are sp^{2} hybridized
(D) In $\mathrm{C}_{3} \mathrm{O}_{2}$ all the carbons are in sp hybridisation.
89. Correct order of bond energy of $\mathrm{C}-\mathrm{O}$ bond is :
(A) $\mathrm{CO}_{3}{ }^{2-}>\mathrm{CO}_{2}>\mathrm{CO}$
(B) $\mathrm{CO}_{2}>\mathrm{CO}>\mathrm{CO}_{3}{ }^{2-}$
(C) $\mathrm{CO}>\mathrm{CO}_{2}>\mathrm{CO}_{3}{ }^{2-}$
(D) None of these.
90. For hydrazoic acid, which of the following resonating structure will be least stable ?

(I)
(B) I I
(C) II F
(ID) Both (I) and (III)
91. The correct order of increasing s character (in percentage) in the hybrid orbitals in below molecules / ions is (assume all hybrid orbitals are exactly equivalent) :
SnCl_{2}
I
XeF_{4}
II
I_{3}^{-}
III
NCl_{3}
IV
$\mathrm{HgCl}_{2}(\mathrm{~g})$
V
(A) II $<$ III $<$ IV $<$ I $<$ V
(B) II $<$ IV $<$ III $<$ V $<$ I
(C) III $<$ II $<$ I $<$ V $<$ IV
(D) II $<$ IV $<$ III $<$ I $<$ V
92. The hybrid state of positively charged carbon in vinyl cation $\left(\mathrm{CH}_{2}=\stackrel{\oplus}{\mathrm{C}} \mathrm{H}\right)$ is :
(A) Unpredicatable
(B) sp^{2}
(C) sp
(D) sp^{3}
93. If the equatorial plane is $\mathrm{x}-\mathrm{y}$ plane in $\mathrm{sp}^{3} \mathrm{~d}$ hybridisation then the orbital used in pd hybridisation are -
(A) p_{z} and $d_{z}{ }^{2}$
(B) p_{x} and d_{xy}
(C) p_{y} and d_{yz}
(D) none of these
94. Incorrect order about bond angle is :
(A) $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{Te}$
(B) $\mathrm{C}_{2} \mathrm{H}_{2}>\mathrm{C}_{2} \mathrm{H}_{4}>\mathrm{CH}_{4}>\mathrm{NH}_{3}$
(C) $\mathrm{SF}_{6}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{OF}_{2}$
(D) $\mathrm{ClO}_{2}>\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{SF}_{6}$
95. In the structure of $\mathrm{H}_{2} \mathrm{CSF}_{4}$, to decide the plane in which $\mathrm{C}=\mathrm{S}$ is present the following bond angle values are given

Axial FSF angle (idealised $=180^{\circ}$) $\quad \Rightarrow \quad 170^{\circ}$
Equatorial FSF angle (idealised $=120^{\circ}$) $\quad \Rightarrow \quad 97^{\circ}$
After deciding the plane of double bond, which of the following statement is/are correct?
(A) two $\mathrm{C}-\mathrm{H}$ bonds are in the same plane of axial $\mathrm{S}-\mathrm{F}$ bonds
(B) two $\mathrm{C}-\mathrm{H}$ bonds are in the same plane of equatorial $\mathrm{S}-\mathrm{F}$ bonds
(C) total five atoms are in the same plane
(D) equatorial $\mathrm{S}-\mathrm{F}$ bonds are perpendicular to plane of π-bond

CHEMISTRY

96. The bond length in LiF will be
(A) less than that of NaF
(B) equal to that of KF
(C) more than that of KF
(D) equal to that of NaF
97. S 1 : Oxidation number of N in $\mathrm{N}_{2} \mathrm{O}_{5}$ is 5

S2: The anhydride of Hypochlorous acid is $\mathrm{Cl}_{2} \mathrm{O}$
S3: As the electronegativity of central atom in a molecule having same hybridisation state and same terminal atoms increases, bond angle increases.
S4: For heteronuclear diatomic species $\mathrm{A}-\mathrm{B}$, the bond length decreases as the difference in electronegativity values increases.
(A) T T T F
(B) F T T T
(C) F F T F
(D) T T F T
98. In the cation $[\mathrm{H}-\mathrm{C}-\mathrm{N}-\mathrm{Xe}-\mathrm{F}]^{+}$which is linear, the hybridisations of $\mathrm{C}, \mathrm{N} \& \mathrm{Xe}$ atoms respectively are -
(A) $\mathrm{sp}, \mathrm{sp}, \mathrm{sp}$
(B) $\mathrm{sp}, \mathrm{sp}^{2}, \mathrm{sp}^{3} \mathrm{~d}$
(C) $\mathrm{sp}, \mathrm{sp}, \mathrm{sp}^{3} \mathrm{~d}$
(D) $\mathrm{sp}^{2}, \mathrm{sp}, \mathrm{sp}^{3} \mathrm{~d}$
99. The structure of $\mathrm{IO}_{2} \mathrm{~F}_{2}^{-}$is analogous to :
(A) SF_{4}
(B) $\mathrm{XeO}_{2} \mathrm{~F}_{2}$
(C) $\mathrm{F}_{2} \mathrm{SeO}_{2}$
(D) (A) and (B) both
100. Which of the following about $\mathrm{SF}_{4}, \mathrm{SOF}_{4}$ and OCF_{2} molecules is correct.
(A) Equitorial FSF bond angle in SOF_{4} will be greater than in SF_{4} molecule
(B) Hybridisation states of sulphur in SF_{4} and SOF_{4} molecules will be different.
(C) The bond angle FCO will be $<120^{\circ}$ in molecule OCF_{2}
(D) The axial FSF bond angle in SF_{4} is exactly 180°
101. Which of the following molecules has two lone pairs and bond angle (need not be all bond angles) $<109.5^{\circ}$?
(A) SF_{2}
(B) KrF_{4}
(C) ICl_{4}^{-}
(D) All of these
102. For $\mathrm{B}_{2} \mathrm{H}_{6}$

S 1 : Each boron is sp^{3} hybridised
S 2 : from terminal 'H' \& two 'B' atom are in same plane but two bridge hydrogen in different plane.
S3: It has 4σ bond $\& 2$ bridge bond
S4:8 σ bonds are present in it
(A) TTFF
(B) T T T F
(C) F F T F
(D) FTFT
103. Which combination is best explained by the co-ordinate covalent bond
(A) $\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O}$
(B) $\mathrm{Cl}+\mathrm{Cl}$
(C) $\mathrm{Mg}+\frac{1}{2} \mathrm{O}_{2}$
(D) $\mathrm{H}_{2}+\mathrm{I}_{2}$
104. Which of the following contains a coordinate covalent bond
(A) HNO_{3}
(B) BaCl_{2}
(C) HCl
(D) $\mathrm{H}_{2} \mathrm{O}$
105. Bonds present in $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ is
(A) Electrovalent and covalent
(B) Electrovalent and coordinate
(C) Electrovalent, covalent and coordinate
(D) Covalent and coordinate
106. Identify the species containing Banana bonds
(A) $\left(\mathrm{BeH}_{2}\right)_{\mathrm{n}}$
(B) BF_{3}
(C) $\left(\mathrm{AlCl}_{3}\right)_{2}$
(D) $\left(\mathrm{BeCl}_{2}\right)_{\mathrm{n}}$
107. Which is not true about $\mathrm{B}_{2} \mathrm{H}_{6}$
(A) Both ' B ' atoms are sp^{3} hybridised
(B) Boron atom is in ground state
(C) Two hydrogens occupy special positions
(D) There are two, three centre two electron bonds
108. Which of the following compounds has coordinate (dative) bond
(A) $\mathrm{CH}_{3} \mathrm{NC}$
(B) $\mathrm{CH}_{3} \mathrm{OH}$
(C) $\mathrm{CH}_{3} \mathrm{Cl}$
(D) NH_{3}
109. Which of the following statements regarding the structure of SOCl_{2} is not correct ?
(A) The sulphur is sp^{3} hybridised and it has a tetrahedral shape.
(B) The sulphur is sp^{3} hybridised and it has a trigonal pyramid shape.
(C) The oxygen -sulphur bond is $\mathrm{p} \pi-\mathrm{d} \pi$ bond.
(D) It contain one lone pair of electrons in the sp^{3} hybrid orbital of sulphur.
110. For BF_{3} molecule which of the following is true ?
(A) B-atom is sp^{2} hybridised.
(B) There is a $\mathrm{P} \pi-\mathrm{P} \pi$ back bonding in this molecule.
(C) Observed $\mathrm{B}-\mathrm{F}$ bond length is found to be less than the expected bond length.
(D) All of these
111. For BF_{3} molecule which of the following will not be true
(A) It has less bond length than BF_{4}^{-}
(B) It has less bond length than the compound $\left[\mathrm{NH}_{3} \rightarrow \mathrm{BF}_{3}\right]$
(C) It's bond strength is increased because of $\mathrm{p} \pi-\mathrm{d} \pi$ back bonding
(D) It forms $\mathrm{BF}_{4}{ }^{-}$when hydrolysed in water.
112. Respective order of strength of back-bonding and Lewis acidic strength in boron trihalides is :
(A) $\mathrm{BF}_{3}<\mathrm{BCl}_{3}<\mathrm{BBr}_{3}$ and $\mathrm{BF}_{3}<\mathrm{BCl}_{3}<\mathrm{BBr}_{3}$
(B) $\mathrm{BF}_{3}>\mathrm{BCl}_{3}>\mathrm{BBr}_{3}$ and $\mathrm{BF}_{3}>\mathrm{BCl}_{3}>\mathrm{BBr}_{3}$
(C) $\mathrm{BF}_{3}>\mathrm{BCl}_{3}>\mathrm{BBr}_{3}$ and $\mathrm{BF}_{3}<\mathrm{BCl}_{3}<\mathrm{BBr}_{3}$
(D) $\mathrm{BF}_{3}<\mathrm{BCl}_{3}<\mathrm{BBr}_{3}$ and $\mathrm{BF}_{3}>\mathrm{BCl}_{3}>\mathrm{BBr}_{3}$
113. If Z -axis is the molecular axis, then π-molecular orbitals are formed by the overlap of
(A) $\mathrm{s}+\mathrm{p}_{\mathrm{z}}$
(B) $p_{x}+p_{y}$
(C) $p_{z}+p_{z}$
(D) $\mathrm{p}_{\mathrm{x}}+\mathrm{p}_{\mathrm{x}}$
114. The common features of the species $\mathrm{N}_{2}{ }^{2-}, \mathrm{O}_{2}$ and NO^{-}are :
(A) bond order three and isoelectronic.
(B) bond order two and isoelectronic.
(C) bond order three but not isoelectronic.
(D) bond order two but not isoelectronic.
115. Which of the following molecular orbitals has two nodal planes
(A) $\sigma 2 \mathrm{~s}$
(B) $\pi 2 p_{y}$
(C) $\pi^{*} 2 p_{y}$
(D) $\sigma^{*} 2 p_{x}$
116. During the formation of a molecular orbital from atomic orbitals of the same atom, probability of electron density is
(A) none zero in the nodal plane
(B) maximum in the nodal plane
(C) zero in the nodal plane
(D) zero on the surface of the lobe
117. Bond order is a concept in the molecular orbital theory. It depends on the number of electrons in the bonding and antibonding orbitals. Which of the following statements is true about it? The bond order
(A) Can have a negative quantity
(B) Has always an integral value
(C) Can assume any positive or integral or fractional value including zero
(D) Is a non zero quantity
118. Which of the following pairs have identical values of bond order?
(A) $\mathrm{N}_{2}{ }^{+}$and $\mathrm{O}_{2}{ }^{+}$
(B) F_{2} and Ne_{2}
(C) O_{2} and B_{2}
(D) C_{2} and N_{2}

CHEMISTRY

119. Which of the following molecules /ions exhibit sp mixing?
(A) B_{2}
(B) $\mathrm{C}_{2}{ }^{2-}$
(C) O_{2}^{+}
(D) Both (A) and (B)
120. Among the following species, which has the minimum bond length?
(A) B_{2}
(B) C_{2}
(C) F_{2}
(D) O_{2}^{-}
121. Which of the following species is paramagnetic ?
(A) NO^{-}
(B) $\mathrm{O}_{2}{ }^{2-}$
(C) CN^{-}
(D) CO
122. The following molecules / species have been arranged in the order of their increasing bond orders, Identify the correct order.
(I) $\mathrm{O}_{2} ;$ (II) $\mathrm{O}_{2}^{-} ;$(III) $\mathrm{O}_{2}{ }^{2-} ;$ (IV) O_{2}^{+}
(A) I I I $<$ II $<$ I $<$ IV
(B) IV $<$ II I $<$ II $<$ I
(C) II I $<$ II $<$ IV $<$ I
(D) I I $<$ II I $<$ I $<$ IV
123. Which of the following statements is incorrect?
(A) Among $\mathrm{O}_{2}^{+}, \mathrm{O}_{2}$ and O_{2}^{-}the stability decreases as $\mathrm{O}_{2}^{+}>\mathrm{O}_{2}>\mathrm{O}_{2}^{-}$
(B) He_{2} molecule does not exist as the effect of bonding and anti-bonding orbitals cancel each other .
(C) $\mathrm{C}_{2}, \mathrm{O}_{2}{ }^{2-}$ and Li_{2} are diamagnetic
(D) In F_{2} molecule, the energy of $\sigma_{2 p_{z}}$ is more than $\pi_{2 p_{x}}$ and $\pi_{2 p_{y}}$
124. Which one is paramagnetic from the following
(A) O_{2}^{-}
(B) NO
(C) Both (A) and (B)
(D) CN^{-}
125. Which of the following orders is correct in respect of bond dissociation energy ?
(A) $\mathrm{N}_{2}^{+}>\mathrm{N}_{2}^{-}$
(B) $\mathrm{O}_{2}^{+}>\mathrm{O}_{3}$
(C) $\mathrm{NO}^{+}>\mathrm{NO}$
(D) All of those
126. Which of the following statement is incorrect?
(A) During N_{2}^{+}formation, one electron is removed from the bonding molecular orbital of N_{2}.
(B) During O_{2}^{+}formation, one electron is removed from the antibonding molecular orbital of O_{2}.
C) During O_{2}^{-}formation, one electron is added to the bonding molecular orbital of O_{2}.
(D) During CN^{-}formation, one electron is added to the bonding molecular orbital of CN .
127. S_{1} : The HOMO in F_{2}^{-}is $\pi 2 \mathrm{p}_{\mathrm{x}}=\pi 2 \mathrm{p}_{\mathrm{y}}$ molecular orbitals.
S_{2} : Bond order of O_{2}^{-}is more then O_{2}^{+}.
$\mathrm{S}_{3}: \mathrm{NO}^{+}$is more stable than $\mathrm{N}_{2}{ }^{+}$
$\mathrm{S}_{4}: \mathrm{C}_{2}$ is more stable than C_{2}^{+}
State, in order, whether $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4}$ are true or false
(A) FFFT
(B) FTTT
(C) FTFT
(D) FFTT
128. Which the following molecules / species have identical bond order and same magnetic properties ?
(I) O_{2}^{+}; (II) NO ; (III) N_{2}^{+}
(A) (I), (II) only
(B) (I) and I I I only
(C) (I) ,(I I) and (I I I)
(D) (I I) and (I I I) only
129. Which of the following species does not contain $\mathrm{N}-\mathrm{N}$ covalent bond ?
(A) $\mathrm{N}_{2} \mathrm{O}_{3}$
(B) $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{2-}$
(C) $\mathrm{N}_{2} \mathrm{O}_{5}$
(D) $\mathrm{N}_{2} \mathrm{O}_{4}$
130. Which statement is incorrect about pyrosilicate ion.
(A) sp^{3} hybridisation
(B) One oxygen atom is shared between two tetrahydron
(C) there are eight $\mathrm{Si}-\mathrm{O}$ bond
(D) There is one $\mathrm{Si}-\mathrm{Si}$ bond
131. The specie which does not contain an odd number of valence electrons and is diamagnetic:
(A) NO
(B) NO_{2}
(C) ClO_{2}
(D) $\mathrm{N}_{2} \mathrm{O}_{4}$
132. Which is correct about the cyclic silicate $\left[\mathrm{Si}_{6} \mathrm{O}_{18}\right]^{\mathrm{n}-}$:
(A) The value of n is 12
(B) each Si atom is bonded with three oxygen atoms
(C) each oxygen atom is bonded with two Si atoms
(D) all the above are correct.
133. The no. of S-O-S bonds in the trimer of SO_{3} is
(A) 1
(B) 2
(C) 3
(D) None
134. Which of the following species do not contain $\mathrm{S}-\mathrm{S}$ linkage?
(A) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$
(B) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
(C) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
(D) $\mathrm{H}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$
135. Number of sigma bonds in $\mathrm{P}_{4} \mathrm{O}_{10}$ is :
(A) 6
(B) 7
(C) 17
(D) 16
136. In which of the following compounds $B-F$ bond length is shortest ?
(A) BF_{4}^{-}
(B) $\mathrm{BF}_{3} \rightarrow \mathrm{NH}_{3}$
(C) BF_{3}
(D) $\mathrm{BF}_{3} \leftarrow \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3}$
137. Number of antibonding electrons in N_{2} is :
(A) 4
(B) 10
(C) 12
(D) 14
138. Consider the following statements.
S_{1} : Fluorine does not form any polyhalide because it does not have d-orbitals in valence shell.
S_{2} : $\mathrm{In} \mathrm{ClF}_{3}$, the three lone pairs of electrons occupy the equatorial position.
S_{3} : In B_{2} and N_{2} molecules mixing of s - and p - atomic orbitals takes place.
Of these statements :
(A) $\mathrm{S}_{1}, \mathrm{~S}_{2}$ and S_{3} are correct
(B) S_{1} and S_{2} are correct
(C) S_{1} and S_{3} are correct
(D) S_{2} and S_{3} are correct
139. Which of the following has the minimum heat of dissociation of $\mathrm{N} \rightarrow \mathrm{B}$ bond ?
(A) $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N} \rightarrow \mathrm{BF}_{3}\right]$
(B) $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N} \rightarrow \mathrm{~B}\left(\mathrm{CH}_{3}\right) \mathrm{F}_{2}\right]$
(C) $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N} \rightarrow \mathrm{~B}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~F}\right]$
(D) $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N} \rightarrow \mathrm{~B}\left(\mathrm{CH}_{3}\right)_{3}\right]$
140. In which of the following molecules/species all following characteristics are found ?
(A) Tetrahedral hybridisation
(B) Hybridisation can be considered to have taken place with the help of empty orbital(s).
(C) All bond lengths are identical i.e. all $\mathrm{A}-\mathrm{B}$ bond lengths are identical.
(A) $\mathrm{B}_{2} \mathrm{H}_{6}$
(B) $\mathrm{Al}_{2} \mathrm{Cl}_{6}$
(C) BeCl_{2}
(D) BF_{4}^{-}
141. Which of the following statement is false for trisilylamine?
(A) Three sp^{2} orbitals are used for σ bonding, giving a plane triangular structure.
(B) The lone pair of electrons occupy a p-orbital at right angles to the plane triangle and this overlaps with empty p -orbitals on each of the three silicon atoms resulting in π bonding.
(C) The $\mathrm{N}-\mathrm{Si}$ bond length is shorter than the expected $\mathrm{N}-\mathrm{Si}$ bond length.
(D) It is a weaker Lewis base than trimethyl amine.

CHEMISTRY

142. Gaseous SO_{3} molecule
(A) is planar triangular in shape with three σ-bonds from $\mathrm{sp}^{2}-\mathrm{p}$ overlap and three π-bonds formed by one $\mathrm{p} \pi-\mathrm{p} \pi$ overlap and two $\mathrm{p} \pi-\mathrm{d} \pi$ overlap.
(\mathbb{B}) is a pyramidal molecule with one double bond and two single bonds
(C) planar triangular in shape with two double bonds between S and O and one single bond
(D) is planar triangular in shape with three σ bonds from $\mathrm{sp}^{2}-\mathrm{p}$ overlap and three π-bonds formed by two $\mathrm{p} \pi-\mathrm{p} \pi$ overlap and one $\mathrm{p} \pi-\mathrm{d} \pi$ overlap.
143. Among the following which one will have the largest $\mathrm{O}-\mathrm{O}$ bond length ?
(A) KO_{2}
(B) O_{2}
(C) $\mathrm{O}_{2}{ }^{+}\left[\mathrm{AsF}_{6}\right]^{-}$
(D) $\mathrm{K}_{2} \mathrm{O}_{2}$
144. According to Molecular orbital theory which of the following is correct ?
(A) LUMO level for C_{2} molecule is $\sigma_{2 p_{x}}$ orbital
(B) In C_{2} molecules both the bonds are π bonds
(C) In $\mathrm{C}_{2}{ }^{2-}$ ion there is one σ and two π bonds
(D) All the above are correct
145. Which species can exist among the following :
(A) B_{2}
(B) Be_{2}
(C) Ne_{2}
(D) He_{2}
146. The correct order in which the $\mathrm{O}-\mathrm{O}$ bond length increases in the following is :
(A) $\mathrm{H}_{2} \mathrm{O}_{2}<\mathrm{O}_{2}<\mathrm{O}_{3}$
(B) $\mathrm{O}_{2}<\mathrm{H}_{2} \mathrm{O}_{2}<\mathrm{O}_{3}$
(C) $\mathrm{O}_{2}<\mathrm{O}_{3}<\mathrm{H}_{2} \mathrm{O}_{2}$
(D) $\mathrm{O}_{3}<\mathrm{H}_{2} \mathrm{O}_{2}<\mathrm{O}_{2}$
147. Which of the following is a wrong order with respect to the property mentioned against each ?
(A) $\mathrm{O}_{2}{ }^{2-}>\mathrm{O}_{2}>\mathrm{O}_{2}{ }^{+}$[Paramagnetic moment]
(B) $(\mathrm{NO})^{-}>(\mathrm{NO})>(\mathrm{NO})^{+}$[bond length]
(C) $\mathrm{H}_{2}>\mathrm{H}_{2}^{+}>\mathrm{He}_{2}^{+}$[bond energy]
(D) $\mathrm{NO}_{2}^{+}>\mathrm{NO}_{2}>\mathrm{NO}_{2}^{-}$[bond angle]
148. Which of the following option with respect to increasing bond dissociation energies is correct ?
(A) $\mathrm{NO}<\mathrm{C}_{2}<\mathrm{O}_{2}^{-}<\mathrm{He}_{2}^{+}$
(B) $\mathrm{C}_{2}<\mathrm{NO}<\mathrm{He}_{2}^{+}<\mathrm{O}_{2}^{-}$
(C) $\mathrm{He}_{2}^{+}<\mathrm{O}_{2}^{-}<\mathrm{NO}<\mathrm{C}_{2}$
(D) $\mathrm{He}_{2}^{+}<\mathrm{O}_{2}^{-}<\mathrm{C}_{2}<\mathrm{NO}$
149. Two types of carbon-carbon covalent bond lengths are present in
(A) diamond
(B) graphite
(C) C_{60}
(D) benzene
150. In which of the following species peroxide group is not present :
(A) $\left[\mathrm{B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4}\right]^{2-}$
(B) $\left[\mathrm{S}_{2} \mathrm{O}_{8}\right]^{2-}$
(C) CrO_{5}
(D) HNO_{4}
151. Which of the following is correct?
(A) $\mathrm{S}_{3} \mathrm{O}_{9}$ - contains no $\mathrm{S}-\mathrm{S}$ linkage.
(B) $\mathrm{S}_{2} \mathrm{O}_{6}{ }^{2-}$ - contains -O-O- linkage.
(C) $\left(\mathrm{HPO}_{3}\right)_{3}$ - contains $\mathrm{P}-\mathrm{P}$ linkage
(D) $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}$ contains $\mathrm{S}-\mathrm{S}$ linkage
152. The percentage of s-character in the orbital forming $P-S$ bonds in $P_{4} S_{3}$ is :
(A) 25
(B) 33
(C) 75
(D) 50
153. Which of the following solids is a good conductor of electricity
(A) $(\mathrm{BN})_{\mathrm{x}}$
(B) SiO_{2}
(C) SiC
(D) none of these
154. Consider the following statements;
(I) The hybridisation found in cation of solid PCl_{5} is sp^{3}.
(II) In $\mathrm{AB}_{2} \mathrm{~L}_{2}$ type the BAB bond angle is always greater than the normal tetrahedral bond angle.
(III) $\mathrm{In}_{\mathrm{ClO}_{3}-}, \mathrm{NH}_{3}$ and XeO_{3}, the hybridisation and the number of lone pairs on the central atoms are same.
(IV) In P_{4} molecule, there are six $\mathrm{P}-\mathrm{P}$ bonds and four lone pairs of electrons.
of these statements :
(A) I, II and III are correct only
(B) I, III and IV are correct only
(C) III and IV are correct only
(D) All are correct
155. In the coordinate valency
(A) Electrons are equally shared by the atoms
(B) Electrons of one atom are shared with two atoms
(C) Hydrogen bond is formed
(D) None of the above
156. What is the nature of the bond between B and O in $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{OBH}_{3}$
(A) Covalent
(B) Co-ordinate covalent
(C) Ionic bond
(D) Banana shaped bond
157. Which of the following statements is correct?
(A) $\mathrm{N}_{2} \mathrm{~F}_{3}{ }^{+}$is planar at each nitrogen atom.
(B) In $\mathrm{N}_{3} \mathrm{H}$, the $\mathrm{H}-\mathrm{N}-\mathrm{N}$ bond angle is exactly of 120°.
(C) The shape of $\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{3}$, is trigonal planar.
(D) (A) and (C) both.
158. Which of the following statement is correct for the $1: 1$ complex of trimethyl amine and boron tri fluoride ?
(A) The $\mathrm{B}-\mathrm{F}$ bond length in the complex is longer than that of in BF_{3}.
(B) The N is pyramidal with sp^{3} hybridisation and B is planar with sp^{2} hybridisation.
(C) The coordination geometry of N and B both are tetrahedral with sp^{3} hybridisation each.
(D) (A) and (C) both.
159. The molecular orbital configuration of a diatomic molecule is

$$
\sigma 1 \mathrm{~s}^{2} \sigma^{*} 1 \mathrm{~s}^{2} \sigma 2 \mathrm{~s}^{2} \sigma^{*} 2 \mathrm{~s}^{2} \sigma 2 \mathrm{p}_{\mathrm{x}}^{2}\left\{\begin{array}{l}
\pi 2 \mathrm{p}_{\mathrm{y}}^{2} \\
\pi 2 \mathrm{p}_{\mathrm{z}}^{2}
\end{array}\right.
$$

Its bond order is
(A) 3
(B) 2.5
(C) 2
(D) 1
160. The bond order of He_{2}^{+}molecule ion is:
(A) 1
(B) 2
(C) $\frac{1}{2}$
(D) $\frac{1}{4}$
161. Pick out the incorrect statement.
(A) N_{2} has greater dissociation energy than $\mathrm{N}_{2}{ }^{+}$
(B) O_{2} has lower dissociation energy than O_{2}^{+}
(C) Bond length in $\mathrm{N}_{2}{ }^{+}$is less than N_{2}
(D) Bond length in NO^{+}is less than in NO.
162. The species which are diamagnetic:
(A) O_{2}^{-}
(B) NO_{2}
(C) ClO_{2}
(D) $\mathrm{N}_{2} \mathrm{O}_{4}$
163. A simplified application of MO theory to the hypothetical 'molecule' OF would give its bond order as :
(A) 2
(B) 1.5
(C) 1.0
(D) 0.5
164. Which of the following is incorrect?
(A) The $\mathrm{O}-\mathrm{O}$ bond length in $\mathrm{H}_{2} \mathrm{O}_{2}$ is larger than that in $\mathrm{O}_{2} \mathrm{~F}_{2}$.
(B) The $\mathrm{O}-\mathrm{O}$ bond length in $\mathrm{H}_{2} \mathrm{O}_{2}$ is very slightly smaller than in $\mathrm{O}_{2}{ }^{2-}$ ion.
(C) O_{2}^{-}and O_{2}^{+}species are paramagnetic and have same number of unpaired electrons.
(D) None
165. When N_{2} goes to N_{2}^{+}, the $\mathrm{N}-\mathrm{N}$ bond distance \ldots and when O_{2} goes to O_{2}^{+}, the $\mathrm{O}-\mathrm{O}$ bond distance...
(A) Decrease, Increases
(B) Increases ,Decrease
(C) Increases ,Increases
(D) None of these
166. In a $\mathrm{P}_{4} \mathrm{O}_{6}$ molecule, the total number of $\mathrm{P}-\mathrm{O}-\mathrm{P}$ bonds is
(A) 4
(B) 6
(C) 2
(D) 3
167. The point of dissimilarity between $\left(\mathrm{SO}_{3}\right)_{3}$ and $\left(\mathrm{HPO}_{3}\right)$ (cyclic trimers) is.
(A) Both have six membered ring.
(B) Both contain central atom in same hybridization
(C) Both contain planar ring.
(D) Both are isoelectronic.

CHEMISTRY

168. Which of the following statements is / are correct?
(A) Hybridisation of carbon in $\mathrm{C}_{3} \mathrm{O}_{2}$ is sp^{2}.
(B) In $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$, six $\mathrm{Cr}-\mathrm{O}$ bonds are identical.
(C) Three centre two electron bonds exist in $\mathrm{B}_{2} \mathrm{H}_{6}$ and $\mathrm{Al}_{2} \mathrm{Cl}_{6}$.
(D) In AgI , the colour is attributed to charge transfer spectrum.
169. Which of the following is correct :
(A) $\mathrm{N}-\mathrm{O}$ bond length in NO gaseous molecule will be greater than in NOCl gaseous molecule.
(B) Carbon-carbon bond length in CaC_{2} will be more than in $\mathrm{C}_{2} \mathrm{H}_{4}$
(C) $\mathrm{O}-\mathrm{O}$ bond length in KO_{2} will be more than in $\mathrm{Na}_{2} \mathrm{O}_{2}$.
(D) All the four hydrogen atoms in CH_{4} are not coplanar
170. Which one of the following oxides is expected exhibit paramagnetic behaviour
(A) CO_{2}
(B) SO_{2}
(C) ClO_{2}
(D) SiO_{2}

Exercise \# 2 Part \# I [Multiple Correct Choice Type Questions]

1. Most ionic compounds have :
(A) high melting points and low boiling points
(B) high melting points and non-directional bonds
(C) high solubilities in polar solvents and low solubilities in nonpolar solvents
(D) three-dimensional crystal structures, and are good conductors of electricity in the molten state.
2. All bond :
(A) dissociations are exothermic
(B) dissociations are endothermic
(C) enthalpies are positive
(D) enthalpies are negative
3. Which of the following compounds contain(s) both ionic and covalent bonds?
(A) $\mathrm{NH}_{4} \mathrm{Cl}$
(B) KCN
(C) $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
(D) NaOH
4. Which of the following statements concerning the molecule $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$ is / are not correct.
(A) It has 6σ and 2π bonds
(B) Both the π-bonds are present in the same plane
(C) The central carbon atom is sp hybridised while the terminal atoms are sp^{2} hybridised
(D) The molecule is linear
5. In which of following, vacant orbital take part in hybridisation :
(A) BF_{3}
(B) PCl_{6}^{-}
(C) BF_{4}^{-}
(D) $\ddot{\mathrm{N}} \mathrm{H}_{3}$
6. Which is not true about VSEPR theory
(A) Lone pair-lone pair repulsion is maximum.
(B) Lone pair and double bond occupy axial position in trigonal bipyramidal structure.
(C) More electronegative atoms occupies axial position in trigonal bipyramidal structure.
(D) Bigger atoms occupy axial positions in trigonal bipyramidal structure.
7. Select the correct statement.
(A) Perxenate ion is $\left[\mathrm{XeO}_{6}\right]^{4}$ with octahedral geometry.
(B) XeF_{2} is linear molecule with 3 lone pairs (l.p)
(C) $\mathrm{XeOF}_{4}, \mathrm{XeF}_{4}, \mathrm{XeO}_{2} \mathrm{~F}_{2}$ all contains one lone pair only
(D) None of these
8. Which is/are in linear shape ?
(A) $\mathrm{NO}_{2}{ }^{+}$
(B) XeF_{2}
(C) I_{3}^{-}
(D) I_{3}^{+}
9. Which is true about $\mathrm{NH}_{2}^{-}, \mathrm{NH}_{3}, \mathrm{NH}_{4}^{+}$?
(A) Hybridization of N is same.
(B) No. of lone pair of electron on N are same.
(C) Molecular geometry (i.e. shape) is different.
(D) Bond angle is same.
10. Identify the correct option(s)
(A) $\mathrm{NH}_{4}^{+}>\mathrm{NH}_{3}>\mathrm{NH}_{2}^{-}$order of bond angle
(B) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~B}$ is a trigonal planar molecule (not considering the H -atoms on ' C ')
(C) $\operatorname{In} \mathrm{NH}_{4} \mathrm{Cl}$ ' N ' atom is in $\mathrm{sp}^{3} \mathrm{~d}$ hybridisation
(D) In S_{8} molecule a total of 16 electrons are left on all the ' S ' atoms after bonding.
11. Which of the following molecule (s) has/have bond angle close to 90° ?
(A) NH_{3}
(B) $\mathrm{H}_{2} \mathrm{~S}$
(C) PH_{3}
(D) ICl_{3}

CHEMISTRY

12. Which of the following Lewis diagram is/are incorrect?
(A) $\mathrm{Na}^{+} \underset{\bullet-}{\ddot{\mathrm{O}}-\stackrel{\bullet}{\mathrm{Cl}}{ }^{\bullet}}$
(B)

(C)

(D)

13. Hypervalent compound is(are) :
(A) $\mathrm{SO}_{3}{ }^{2-}$
(B) PO_{4}^{3-}
(C) SO_{4}^{2-}
(D) CIO_{4}^{-}
14. Which are the exceptions of the lewis octet rule
(A) $\mathrm{NO}_{3}{ }^{-}$and $\mathrm{N}_{2} \mathrm{O}$
(B) BeH_{2} and NO
(C) KrF_{2} and ClF_{3}
(D) All of these
15. Which of the following overlaps is/are incorrect [assuming X-axis to be the internuclear axis] :
(a) $2 \mathrm{p}_{\mathrm{y}}+2 \mathrm{p}_{\mathrm{y}} \rightarrow \pi$
(b) $2 \mathrm{p}_{\mathrm{z}}+2 \mathrm{p}_{\mathrm{z}} \rightarrow \sigma$
(c) $2 \mathrm{p}_{\mathrm{x}}+2 \mathrm{p}_{\mathrm{x}} \rightarrow \pi$
(d) $1 \mathrm{~s}+2 \mathrm{p}_{\mathrm{y}} \rightarrow \pi$
(e) $2 p_{\mathrm{y}}+2 \mathrm{p}_{\mathrm{z}} \rightarrow \pi$
(f) $1 \mathrm{~s}+2 \mathrm{~s} \rightarrow \sigma$
(A) ' $a^{\prime} \&{ }^{\prime} b$ '
(B) 'b' \& 'd'
(C) 'd'\& 'f'
(D) 'c' \& 'e'
16. In which of the following molecule bonding is taking place in excited state
(A) CH_{4}
(B) BF_{3}
(C) ICl_{3}
(D) PCl_{3}
17. Which statement is correct about hybridization ?
(A) In hybridisation orbitals take part
(B) In hybridisation electrons take part
(C) In hybridisation fully filled, half filled or empty orbitals can take part
(D) Hybridised orbitals only contains bond pair electron
18. Which of the following represent the given mode of hybridisation $\mathrm{sp}^{2}-\mathrm{sp}^{2}-\mathrm{sp}-\mathrm{sp}$ from left to right
(A) $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$
(B) $\mathrm{HC} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CH}$
(C) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{N}$
(D) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{CH}$
19. Which of the following is/are electron deficient compounds?
(A) NaBH_{4}
(B) $\mathrm{B}_{2} \mathrm{H}_{6}$
(C) AlCl_{3}
(D) LiAlH_{4}
20. Which of the following statements is/are correct?
(A) Out of trimethylamine and trimethylphosphine, trimethylamine has higher dipole moment.
(B) Out of $\left(\mathrm{SiH}_{3}\right)_{2} \mathrm{O}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O},\left(\mathrm{SiH}_{3}\right)_{2} \mathrm{O}$ is more basic.
(C) $\mathrm{C}-\mathrm{C}$ bond length (in pm) in C_{2} molecule is greater than $\mathrm{O}-\mathrm{O}$ bond length in O_{2} molecule.
(D) $\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{3}$ and BF_{3} molecules are isostructural.
21. The species which are paramagnetic is/are :
(A) NO
(B) NO_{2}
(C) ClO_{2}
(D) $\mathrm{N}_{2} \mathrm{O}_{4}$
22. Which of the following reactions is/are likely to be impossible.
(A) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}+\mathrm{BF}_{3} \rightarrow$
(B) $\left(\mathrm{SiH}_{3}\right)_{2} \mathrm{O}+\mathrm{BF}_{3} \rightarrow$
(C) $\left(\mathrm{SiH}_{3}\right)_{3} \mathrm{~N}+\mathrm{BF}_{3} \rightarrow$
(D) All the above
23. Which of the following have bond order three ?
(A) $\mathrm{O}_{2}{ }^{2+}$
(B) NO^{+}
(C) CN^{-}
(D) CN^{+}
24. Which of the statement(s) are correct ?
(A) There is a single bond in FO^{+}
(B) The F and O are further apart in FO^{-}than in FO^{+}.
(C) There is a double bond in FO^{-}.
(D) It would take more energy to break $\mathrm{F}-\mathrm{O}$ bond in FO^{+}than in FO^{-}.
25. Which of the following statements is incorrect about $\mathrm{P}_{4} \mathrm{O}_{10}$ molecule ?
(A) Each ' P ' atom can be considered to be sp^{3} hybridised
(B) There are six POP bonds in the molecule
(C) There are two types of $\mathrm{P}-\mathrm{O}$ bond lengths
(D) POP angle is 180°.
26. Which of the following statements is /are true for $\mathrm{P}_{4} \mathrm{~S}_{3}$ molecule ?
(A) It contains six $\mathrm{P}-\mathrm{S}$ bonds and three $\mathrm{P}-\mathrm{P}$ bonds.
(B) It contains six $\mathrm{P}-\mathrm{S}$ bonds and ten lone pairs.
(C) It has all atoms sp^{3} hybridised.
(D) It contains six $\mathrm{P}-\mathrm{P}$ bonds and ten lone pairs.
27. Identify the correct statement (s)
(A) in H -atom bond is formed by non direction orbital
(B) graphite behaves as conductor as well as semi conductor.
(C) in SiO_{2} molecule Si -atom is sp^{3} hybridised
(D) ClF_{3} is hyper valent molecule.
28. Which of the following statements is /are true about the structure of fullerene (Buckminister fullerene) ?
(A) All the carbon atoms undergo sp^{2} hybridisation.
(B) Remaining fourth electron at each carbon is delocalised in molecular orbitals which in turn gives aromatic character to molecule.
(C) It has a shape like rugby ball.
(D) It contains both single and double bonds and has two $\mathrm{C}-\mathrm{C}$ distances of 143.5 pm and 138.3 pm respectively.
29. Identify the correct statement
(A) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$ has peroxy linkage
(B) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}$ has S-S linkage
(C) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ has peroxy linkage
(D) $\mathrm{H}_{2} \mathrm{SO}_{3}$ (Sulphurous acid) has S in +4 oxidation state
30. Identify correct order of bond angles
(A) $\mathrm{Cl}_{2} \mathrm{O}>\mathrm{F}_{2} \mathrm{O}$ and $\mathrm{F}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{O}$
(B) $\mathrm{AsI}_{3}>\mathrm{AsBr}_{3}>\mathrm{AsCl}_{3}$
(C) $\mathrm{NO}_{2}^{+}>\mathrm{NO}_{2}^{-}$
(D) $H_{b} \hat{B} H_{b}>H_{t} \hat{B} H_{t}$; where H_{t} is terminal Hydrogen of $B_{2} H_{6}$ and H_{b} is the bridging Hydrogen of $B_{2} H_{6}$
31. Choose the correct options.
(A) In $\mathrm{N}_{2} \mathrm{H}_{4}$, the $\mathrm{N}-\mathrm{N}$, bond length is greater than expected value.
(B) In trisilyl amine $\left(\mathrm{SiH}_{3}\right)_{3} \mathrm{~N}$, the $\mathrm{Si-N}$ bond length is lesser than expected value.
(C) The bond angle in OF_{2} is lesser than OCl_{2}.
(D) The Be atom in $\mathrm{BeCl}_{2}(\mathrm{~s})$ is sp^{3} hybridised.
32. In the following, identify the incorrect statements.
(A) $\mathrm{N}_{2} \mathrm{~F}_{3}^{+}$is a planar at each nitrogen atom
(B) In F_{2} molecule, the energy of $\sigma 2 p_{z}$ is more than $\pi 2 p_{x}$ and $\pi 2 p_{y}$.
(C) The $\mathrm{O}-\mathrm{O}$ bond length in $\mathrm{H}_{2} \mathrm{O}_{2}$ is smaller than in $\mathrm{O}_{2} \mathrm{~F}_{2}$.
(D) $\mathrm{B}_{2}, \mathrm{O}_{2}$ and F_{2} are paramagnetic molecules.
33. Among the following, the species with one unpaired electron are :
(A) O_{2}^{+}
(B) NO
(C) O_{2}^{-}
(D) B_{2}

CHEMISTRY

34. Which of the following factors do not favour electrovalency?
(A) Low charge on ions
(B) High charge on ions
(C) Large cation and small anion
(D) Small cation and large anion
35. Which statement(s) is/are correct?
(A) Polarising power refers to cation.
(B) Polarisability refers to anion.
(C) Small cation is more efficient to polarise anion.
(D) Molecules in which cation having pseudo inert gas configuration are more covalent.
36. Which of the following is/are correct statement(s).
(A) Increasing covalent character : $\mathrm{NaCl}<\mathrm{MgCl}_{2}<\mathrm{AlCl}_{3}$
(B) Increasing covalent character: $\mathrm{LiF}<\mathrm{LiCl}<\mathrm{LiBr}<\mathrm{LiI}$.
(C) Increasing polarizability: $\mathrm{F}^{-}<\mathrm{Cl}^{-}<\mathrm{Br}^{-}<\mathrm{I}^{-}$
(D) Decreasing ionic nature: $\mathrm{MCl}_{3}>\mathrm{MCl}_{2}>\mathrm{MCl}$
37. Which of the following statements is / are true for the metallic bond ?
(A) It is an electrical attraction between delocalised electrons and the positive part of the atom.
(B) Transition metals may use inner d - electrons along with the outer s-electrons for metallic bonding.
(C) Strength of metallic bond does not depend on the type of hybrid orbitals participating in metallic bonding.
(D) Strength of metallic bond is inversely proportional to the radius of metallic atom.
38. Which of the following statements are correct?
(A) PbI_{2} is yellow due to high polarization of Pb^{2+}
(B) Beryllium chloride exists in a polymeric chain like structure in solid state.
(C) The thermal stability of alkalline earth metal carbonates follow the order :
$\mathrm{BeCO}_{3}<\mathrm{MgCO}_{3}<\mathrm{CaCO}_{3}<\mathrm{SrCO}_{3}<\mathrm{BaCO}_{3}$
(D) CuI has higher covalent character than NaI .
39. The halogen form compounds among themselves with formula $\mathrm{XX}^{\prime}, \mathrm{XX}_{3}^{\prime}, \mathrm{XX}_{5}^{\prime}$ and $\mathrm{XX}^{\prime}{ }_{7}$ where X is the heavier halogen. Which of the following pairs representing their structures and being polar and non-polar are correct?
(A) XX^{\prime} - Linear - polar
(B) XX_{3}^{\prime} - T-shaped - polar
(C) $\mathrm{XX}^{\prime}{ }_{5}$ - square pyramidal - polar
(D) $\mathrm{XX}^{\prime}{ }_{7}$ - Pentagonal bipyramidal - non-polar
40. Which of the following is/are correct statement(s) for dipole moment?
(A) Lone pair of electrons present on central atom can give rise to dipole moment.
(B) Dipole moment is vector quantity.
(C) CO_{2} molecule has dipole moment.
(D) Difference in electronegativities of combining atoms can lead to dipole moment.
41. Which of the following molecules have intermolecular hydrogen bonds?
(A) $\mathrm{KH}_{2} \mathrm{PO}_{4}$
(B) $\mathrm{H}_{3} \mathrm{BO}_{3}$
(C) $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CO}_{2} \mathrm{H}$
(D) $\mathrm{CH}_{3} \mathrm{OH}$
42. Which is correct statement :
(A) Borazine has higher intermolecular force of attraction as compared to benzene.
(B) Ka_{2} fumaric acid is more than Ka_{2} of maleic acid due to intra molecular hydrogen bonding in maleic acid.
(C) The $\mathrm{O}-\mathrm{O}$ bond length in $\mathrm{O}_{2}\left[\mathrm{AsF}_{4}\right]$ is shorter then KO_{2}.
(D) The bond angle order in halogen $-\mathrm{S}-$ halogen is $\mathrm{OSF}_{2}<\mathrm{OSCl}_{2}<\mathrm{OSBr}_{2}$
43. Select the correct statement(s).
(A) Br_{2} and ICl have the same number of electrons and thus both have nearly the same boiling points.
(B) $\mathrm{N}_{2} \mathrm{H}_{4}$ is pyramidal about each N -atom.
(C) In $\mathrm{P}_{4} \mathrm{~S}_{3}$ molecule, there are six P-S bonds, three P - P bonds and ten lone pairs of electrons (on all atoms).
(D) In ClO_{4}^{-}, all $\mathrm{Cl}-\mathrm{O}$ bonds are identical and there is strong $\mathrm{p} \pi-\mathrm{d} \pi$ bonding between chlorine and oxygen atoms.
44. Which of following is correct
(A) $\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{SbH}_{3}<\mathrm{NH}_{3}$
order of boiling point
(B) $\mathrm{D}_{2} \mathrm{O}(\mathrm{s})>\mathrm{H}_{2} \mathrm{O}(\ell)$
order of density
(C) $\mathrm{Mn}>\mathrm{Ca}>\mathrm{Sr}>\mathrm{Rb}$
order of metallic bond strength
(D) $\mathrm{H}_{2}<\mathrm{CO}_{2}<\mathrm{H}_{2} \mathrm{O}$
increasing order of intermolecular forces of attraction
45. Which of the following statements is/are correct :
(A) Individual oxidation number of two sulphur atoms in thiosulphate $\left(\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}\right)$ ion are +4 and 0 , however the average oxidation number of sulphur is +2 .
(B) The reason for $\mathrm{Ka}_{2} \lll \mathrm{Ka}_{1}$ for peroxymonosulphuric acid is, intramolecular H -bonding in the anion of acid after first ionisation.
(C) NH_{3} has a higher boiling point than SbH_{3}, because of H -bonding between NH_{3} molecules.
(D) Among $\mathrm{HCl}, \mathrm{HBr}$ and HI, HI is the strongest acid while HCl is the weakest acid while among $\mathrm{HOCl}, \mathrm{HOBr}$ and $\mathrm{HOI}, \mathrm{HOCl}$ is the strongest acid while HOI is the weakest acid.
46. Which of the following statements is correct regarding phosphoric acid ?
(A) $\mathrm{p} \pi-\mathrm{d} \pi$ back bonding exist between O and P
(B) The anion is resonance stablized
(C) It is a dibasic acid
(D) Inter molecular H bonding between molecules make it a syrupy (viscous) liquid.
47. The critical temperature of water is higher than that of O_{2} because the $\mathrm{H}_{2} \mathrm{O}$ molecule has :
(A) fewer electrons than O_{2}
(B) two covalent bonds
(C) V - shape
(D) dipole moment
48. Which of the following are polar?
(A) XeF_{4}
(B) XeF_{6}
(C) XeOF_{4}
(D) XeF_{5}^{-}
49. Which of the following statement(s) is/are correct?
(A) Ethyne gas is more soluble in acetone than in water.
(B) $\mathrm{CH}_{3} \mathrm{~F}$ is more polar than $\mathrm{CD}_{3} \mathrm{~F}$ due to deuterium (D) being less electronegative than hydrogen (H).
(C) Silyl isocyanate $\left(\mathrm{SiH}_{3} \mathrm{NCO}\right)$ is linear in shape while methyl isocyanate $\left(\mathrm{CH}_{3} \mathrm{NCO}\right)$ is bent in shape.
(D) All of these
50. In which of the following compounds B atoms are in sp^{2} and sp^{3} hybridisation states?
(A) Borax
(B) Diborane
(C) Borazole
(D) All
51. (a) There are only 12 bonding electrons available in one molecule of diborane.
(b) $\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}$ is an electron deficient compound.
(c) $\mathrm{Al}_{2} \mathrm{Cl}_{6}$ sublimes on heating and give AlCl_{3} vapours at high temperature.
(d) ${\mathrm{In} \mathrm{Si}_{2} \mathrm{O}_{7}{ }^{6-} \text { anion, one oxygen of a } \mathrm{SiO}_{4}{ }^{4-} \text { tetrahedron is shared with another } \mathrm{SiO}_{4}{ }^{4-} \text { tetrahedron. }}_{\text {d }}$.
(A) T F T T
(B) F T F F
(C) T F T F
(D) F T F T

CHEMISTRY

52. The correct order of decreasing polarizability of ion is :
(A) $\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{F}^{-}$
(B) $\mathrm{F}^{-}, \mathrm{I}^{-}, \mathrm{Br}^{-}, \mathrm{Cl}^{-}$
(C) $\mathrm{I}^{-}, \mathrm{Br}^{-}, \mathrm{Cl}^{-}, \mathrm{F}^{-}$
(D) $\mathrm{F}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$
53. Which of the following is in order of increasing covalent character?
(A) $\mathrm{CCl}_{4}<\mathrm{BeCl}_{2}<\mathrm{BCl}_{3}<\mathrm{LiCl}$
(B) $\mathrm{LiCl}<\mathrm{CCl}_{4}<\mathrm{BeCl}_{2}<\mathrm{BCl}_{3}$
(C) $\mathrm{LiCl}<\mathrm{BeCl}_{2}<\mathrm{BCl}_{3}<\mathrm{CCl}_{4}$
(D) $\mathrm{LiCl}<\mathrm{BeCl}_{2}<\mathrm{CCl}_{4}<\mathrm{BCl}_{3}$
54. Which of the following combination of ion will have highest polarisation ?
(A) $\mathrm{Fe}^{2+}, \mathrm{Br}^{-}$
(B) $\mathrm{Ni}^{4+}, \mathrm{Br}^{-}$
(C) $\mathrm{Ni}^{2+}, \mathrm{Br}^{-}$
(D) $\mathrm{Fe}, \mathrm{Br}^{-}$
55. $\quad \mathrm{SnCl}_{4}$ is a covalent liquid because :
(A) electron clouds of the Cl^{-}ions are weakly polarized to envelop the cation.
(B) electron clouds of the Cl^{-}ions are strongly polarized to envelop the cation.
(C) its molecules are attracted to one another by strong van der Waals forces.
(D) Sn shows inert pair effect.
56. Which of the following has highest melting point according to Fajan's rule :
(A) NaCl
(B) MgCl_{2}
(C) AlCl_{3}
(D) LiCl
57. Iron is harder than sodium because :
(A) iron atoms are smaller.
(B) iron atoms are more closely packed.
(C) metallic bonds are stronger in sodium.
(D) metallic bonds are stronger in iron.
58. The enhanced force of cohesion in metals is due to
(A) The covalent linkages between atoms
(B) The electrovalent linkages between atoms
(C) The lack of exchange of valency electrons
(D) The delocalization of valence electron between metallic kernels.
59. In the following metals which one has lowest probable interatomic forces
(A) Copper
(B) Silver
(C) Zinc
(D) Mercury
60. Which of the following cannot be explained on the basis of Fajan's Rules ?
(A) $\mathrm{Ag}_{2} \mathrm{~S}$ is much less soluble than $\mathrm{Ag}_{2} \mathrm{O}$
(B) $\mathrm{Fe}(\mathrm{OH})_{3}$ is much less soluble than $\mathrm{Fe}(\mathrm{OH})_{2}$
(C) BaCO_{3} is much less soluble than MgCO_{3}
(D) Melting point of AlCl_{3} is much less than that of NaCl
61. The correct order of the increasing ionic character is :
(A) $\mathrm{BeCl}_{2}<\mathrm{MgCl}_{2}<\mathrm{CaCl}_{2}<\mathrm{BaCl}_{2}$
(B) $\mathrm{BeCl}_{2}<\mathrm{MgCl}_{2}<\mathrm{BaCl}_{2}<\mathrm{CaCl}_{2}$
(C) $\mathrm{BeCl}_{2}<\mathrm{BaCl}_{2}<\mathrm{MgCl}_{2}<\mathrm{CaCl}_{2}$
(D) $\mathrm{BaCl}_{2}<\mathrm{MgCl}_{2}<\mathrm{CaCl}_{2}<\mathrm{BeCl}_{2}$
62. Which of the following compounds of elements in group IV is expected to be most ionic ?
(A) PbCl_{2}
(B) PbCl_{4}
(C) CCl_{4}
(D) SiCl_{4}
63. Least melting point is shown by the compound :
(A) PbCl_{2}
(B) SnCl_{4}
(C) NaCl
(D) AlCl_{3}
64. Which of the following is observed in metallic bonds ?
(A) Mobile valence electrons
(B) Localised electrons
(C) Highly directed bond
(D) None of these
65. $\mathrm{S} 1: \mathrm{AgI}$ is less soluble in water than AgF due to more polarisation of I^{-}in comparison to F^{-}ion.

S 2 : Melting point of BaCl_{2} is higher than the melting point of BeCl_{2} due to greater ionic nature of BaCl_{2}.
S 3 : Order of hydrated radii is : $\mathrm{Al}^{3+}(\mathrm{aq})>\mathrm{Mg}^{2+}(\mathrm{aq})>\mathrm{Na}^{+}(\mathrm{aq})$
(A) T T T
(B) T T F
(C) T F T
(D) F T T
66. CuI_{2} is unstable even at ordinary temperature because :
(A) the Cu^{2+} ion with a comparatively small radius has a strong polarising power.
(B) the Cu^{2+} ion with a 17 electron outer shell has weak polarising power.
(C) the I^{-}ion with a larger radius has a high polarisability.
(D) both (A) and (C)
67. Which of the following statements is incorrect ?
(A) N_{2} and C_{2} molecules contain both σ and π bonds.
(B) Cu^{2+} is more stable than Cu^{+}in aqueous medium.
(C) The electrical conductivity of metals can not be explained by electron sea model.
(D) (A) and (C) both
68. Which anion has the highest polarisability?
(A) I^{-}
(B) Cl^{-}
(C) F^{-}
(D) Br^{-}
69. Boron forms covalent compound due to
(A) Small size
(B) Higher ionization energy
(C) Lower ionization energy
(D) Both (A) and (B)
70. Which has maximum dipole moment?
(A)

(B)

(C)

(D)

71. Which of the following compounds possesses zero dipole moment?
(A) Benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$
(B) Carbon tetrachloride
(C) Boron trifluoride
(D) All of these
72. Of the following molecules, the one, which has permanent dipole moment, is :
(A) SiF_{4}
(B) BF_{3}
(C) PF_{3}
(D) PF_{5}
73. Which of the following has the least dipole moment ?
(A) NF_{3}
(B) CO_{2}
(C) SO_{2}
(D) NH_{3}
74. The geometry of $\mathrm{H}_{2} \mathrm{~S}$ and its dipole moment are :
[JEE-1999, 2/80]
(A) angular and non zero
(B) angular and zero
(C) linear and non zero
(D) linear and zero
75. Which of the following statements is false for $\mathrm{XeO}_{3} \mathrm{~F}_{2}$?
(A) Hybridisation of central atom xenon is $\mathrm{sp}^{3} \mathrm{~d}$.
(B) The compound is non-polar.
(C) The compound has $\mathrm{p} \pi-\mathrm{d} \pi$ bonding.
(D) None.
76. The gaseous HX molecule has a measured dipole moment of 4.0 D , which indicates that it is a very polar molecule. The separation between the nuclei in this molecule is $2.67 \times 10^{-8} \mathrm{~cm}$ then the percentage ionic character in HX molecule is :
(A) 78%
(B) 31.25%
(C) 50.25%
(D) None of these

CHEMISTRY

77. Which of the following has been arranged in order of decreasing dipole moment ?
(A) $\mathrm{CH}_{3} \mathrm{Cl}>\mathrm{CH}_{3} \mathrm{~F}>\mathrm{CH}_{3} \mathrm{Br}>\mathrm{CH}_{3} \mathrm{I}$
(B) $\mathrm{CH}_{3} \mathrm{~F}>\mathrm{CH}_{3} \mathrm{Cl}>\mathrm{CH}_{3} \mathrm{Br}>\mathrm{CH}_{3} \mathrm{I}$
(C) $\mathrm{CH}_{3} \mathrm{Cl}>\mathrm{CH}_{3} \mathrm{Br}>\mathrm{CH}_{3} \mathrm{I}>\mathrm{CH}_{3} \mathrm{~F}$
(D) $\mathrm{CH}_{3} \mathrm{~F}>\mathrm{CH}_{3} \mathrm{Cl}>\mathrm{CH}_{3} \mathrm{I}>\mathrm{CH}_{3} \mathrm{Br}$
78. The dipole moment of chlorobenzene is 1.73 D . The dipole moment of p-dichlorobenzene is expected to be :
(A) 3.46 D
(B) 0.00 D
(C) 1.73 D
(D) 1.00 D
79. Which of the following models best describes the bonding within a layer of the graphite structure ?
(A) metallic bonding
(B) ionic bonding
(C) non-metallic covalent bonding
(D) van der Waals forces
80. Consider the following sets of H -bonds

The correct order of H -bond strengths is :
(A) Q $>$ P $>$ S $>$ R
(B) R $>$ Q $>$ S $>$ P
(C) R $>$ S $>$ P $>$ Q
(D) P $>$ Q $>$ R $>$ S
81. Which of the following compounds would have significant intermolecular hydrogen bonding ?

HF, $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{N}_{2} \mathrm{O}_{4}, \mathrm{CH}_{4}$
(A) $\mathrm{HF}, \mathrm{N}_{2} \mathrm{O}_{4}$
(B) $\mathrm{HF}, \mathrm{CH}_{4}, \mathrm{CH}_{3} \mathrm{OH}$
(C) $\mathrm{HF}, \mathrm{CH}_{3} \mathrm{OH}$
(D) $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{CH}_{4}$
82. Which of the following is not correctly matched with respect to the intermolecular forces existing amongst the molecules (Hydrogen bonding is not taken as dipole-dipole attraction)?
(A) Benzene - London dispresion forces
(B) Orthophosphoric acid - London dispresion force, hydrogen bonding.
(C) Hydrochloric acid - London dispresion force, dipole-dipole attraction
(D) Iodine monochloride - London dispersion force
83. Which of the following factor is responsible for van der Waals forces?
(A) Instantaneous dipole-induced dipole interaction.
(B) Dipole-induced dipole interaction and ion-induced dipole interaction.
(C) Dipole-dipole interaction and ion-induced dipole interaction.
(D) All of these.
84. Which of the following bonds/forces is weakest ?
(A) Covalent bond
(B) Ionic bond
(C) Hydrogen bond
(D) London force
85. In which of the following compound, intra-molecular H -bonding is not observed :
(A) O-hydroxy benzyaldehyde
(B) O -nitrophenol
(C) Chloral hydrate
(D) Boric acid
86. Which of the following statement is not true ?
(A) CCl_{4} has higher boling point that CHCl_{3}.
(B) The $\mathrm{HF}_{2}{ }^{-}$ion exists in the solid state and in liquid HF solution, but not in dilute aqueous solutions.
(C) Hydrogen bonding maintains the planar $\mathrm{H}_{3} \mathrm{BO}_{3}$ units in layers in solid state.
(D) None of these.
87. Which is correct about $\mathrm{D}_{2} \mathrm{O}$
(A) Its boiling point is higher than that of $\mathrm{H}_{2} \mathrm{O}(\ell)$
(B) $\mathrm{O}-\mathrm{D}-\mathrm{-}-\mathrm{O}$ bond is stronger than $\mathrm{O}-\mathrm{H}-\mathrm{-}-\mathrm{O}$ bond.
(C) $\mathrm{D}_{2} \mathrm{O}(\mathrm{s})$ sinks in $\mathrm{H}_{2} \mathrm{O}(\ell)$.
(D) all the above are correct.
88. Amongst $\mathrm{NH}_{3}, \mathrm{PH}_{3}, \mathrm{AsH}_{3}$ and SbH_{3} the one with highest boiling point is :
(A) NH_{3} because of lower molecular weight
(B) SbH_{3} because of higher molecular weight
(C) PH_{3} because of H -bonding
(D) AsH_{3} because of lower molecular weight
89. S 1 : In the solid $\mathrm{B}(\mathrm{OH})_{3}$ units are hydrogen bonded together into two-dimensional sheets with almost hexagonal symmetry.
S2: $\mathrm{Na}_{2} \mathrm{CO}_{3}$ can be isomorphous with $\mathrm{Na}_{2} \mathrm{SO}_{3}$ as both have similar formula type.
S 3 : $\mathrm{XeO}_{3} \mathrm{~F}_{2}$ has one lone pair of electron on central xenon atom.
$\mathrm{S} 4: \mathrm{D}_{2} \mathrm{O}$ has higher boiling point than $\mathrm{H}_{2} \mathrm{O}$
(A) T F T F
(B) T F F T
(C) T T F F
(D) T T T T
90. The correct order of boiling point is :
(A) $\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}$
(B) $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{Te}>\mathrm{H}_{2} \mathrm{~S}$
(C) $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{Te}$
(D) $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{Te}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{~S}$
91. Which of the following compounds has the highest boiling point
(A) HCl
(B) HBr
(C) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(D) HNO_{3}
92. If molecule MX_{3} has Zero dipole moment, the hybrid orbitals used by M (Atomic No. <21) are
(A) Pure p
(B) sp hybrid
(C) sp^{2} hybrid
(D) sp^{3} hybrid
93. Which of the following would be expected to have a dipole moment of zero on the basis of symmetry?
(A) SOCl_{2}
(B) OF_{2}
(C) SeF_{6}
(D) ClF_{5}
94. Among the $\mathrm{XeF}_{2}, \mathrm{SF}_{2} \mathrm{Cl}_{2}, \mathrm{XeOF}_{2}, \mathrm{ICl}_{2}^{-}, \mathrm{IOCl}_{4}^{-}$and $\mathrm{F}_{2} \mathrm{ClO}^{+1}$
$\mathrm{S} 1: \mathrm{XeF}_{2}, \mathrm{ICl}_{2}^{-}, \mathrm{XeOF}_{2}$ have zero dipole moment
S 2 : IOCl_{4}^{-}and $\mathrm{F}_{2} \mathrm{ClO}^{+1}$ have different electronic arrangement (geometry) at central atom
S 3 : $\mathrm{SF}_{2} \mathrm{Cl}_{2}, \mathrm{IOCl}_{4}{ }^{-}$and $\mathrm{F}_{2} \mathrm{ClO}^{+}$have equal number of lone pairs of electrons at the central atom.
S 4 : All bond angle in each of species, $\mathrm{XeOF}_{4}, \mathrm{IOCl}_{4}^{-}, \mathrm{SF}_{2} \mathrm{Cl}_{2}$ and $\mathrm{F}_{2} \mathrm{ClO}^{+}$are identical
The correct order for the above statements is :
(A) F T T F
(B) F F F F
(C) T T F F
(D) T F T F
95. $\mathrm{S} 1: \mathrm{In}_{\mathrm{CrO}}^{5}$, the oxidation number of Cr is +6 .

S2: Out of $\mathrm{CH}_{3} \mathrm{Cl}$ and $\mathrm{CHCl}_{3}, \mathrm{CH}_{3} \mathrm{Cl}$ has higher dipole moment
S 3 : Hybridisation of sulphur in SO_{3} and in its trimer is the same, sp^{2}.
(A) T F T
(B) T T F
(C) T F F
(D) T T T
96. Given the species $\mathrm{N}_{2}, \mathrm{CO}, \mathrm{CN}^{-}$and NO^{+}. Which of the following statement is incorrect .
(A) All the species are diamagnetic
(B) All the species are isoelectronic
(C) All the species have dipole moment
(D) All the species are linear

CHEMISTRY

97. Which of the following are incorrect for dipole moment?
(A) Lone pair of elements present on central atom can give rise to dipole moment
(B) Dipole moment is vector quantity
(C) PF_{5} (g) molecule has non zero dipole moment
(D) Difference in electronegativities of combining atom can lead to dipole moment
98. Which of the following orders are correct regarding mentioned properties
(A) $\mathrm{SO}_{3}<\mathrm{CCl}_{4}<\mathrm{XeF}_{2}$ (Bond angle).
(B) $\mathrm{SOF}_{2}>\mathrm{SOCl}_{2}>\mathrm{SOBr}_{2}$ (Bond angle)
(C) $\mathrm{CH}_{3} \mathrm{COO}^{-}>\mathrm{CO}_{3}{ }^{2-}>\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{C}-\mathrm{O}$ bond length)
(D) $\mathrm{CH}_{3} \mathrm{Cl}>\mathrm{CH}_{3} \mathrm{~F}<\mathrm{CD}_{3} \mathrm{~F}$ (dipole moment).
99. $\mathrm{CH}_{3} \mathrm{Cl}$ has more dipole moment than $\mathrm{CH}_{3} \mathrm{~F}$ because :
(A) electron affinity of chlorine is greater than that of fluorine.
(B) the charge separation is larger in $\mathrm{CH}_{3} \mathrm{Cl}$ compared to $\mathrm{CH}_{3} \mathrm{~F}$.
(C) the repulsion between the bond pairs and non-bonded pairs of electrons is greater in $\mathrm{CH}_{3} \mathrm{Cl}$ than $\mathrm{CH}_{3} \mathrm{~F}$.
(D) chlorine has higher electronegativity than fluorine.
100. S 1 : In ozone molecule, $\mathrm{O}-\mathrm{O}$ bond lengths are equal, this can be explained on the basis of resonance.
$\mathbf{S} 2$: Ion-dipole attraction is responsible for hydration of ions.
S3 : Intermolecular H-bonding decreases the boiling point.
S4 : A symmetrical molecule with identical bonds have non zero dipole moment.
(A) T F T F
(B) T T F T
(C) T T F F
(D) T T T F
101. H - bonding is maximum in
(A) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$
(B) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$
(C) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
(D) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
102. Give the correct order of initials T or F for following statements. Use T if statement is true and F if it is false.
S_{1} : HF boils at a higher temperature than HCl
$\mathrm{S}_{2}: \mathrm{HBr}$ boils at lower temperature than HI
S_{3} : Bond length of N_{2} is less than $\mathrm{N}_{2}{ }^{+}$
$\mathrm{S}_{4}: \mathrm{F}_{2}$ has higher boiling point than Cl_{2}
(A) T F T T
(B) T T F F
(C) T T T F
(D) T T T T
103. The increasing order of the strength of hydrogen bond in the following mentioned linkages is :
(i) $\mathrm{O}-\mathrm{H}---\mathrm{S}$
(ii) $\mathrm{S}-\mathrm{H}--\mathrm{O}$
(iii) $\mathrm{F}-\mathrm{H}--\mathrm{F}$
(iv) $\mathrm{F}-\mathrm{H}--\mathrm{O}$
(A) (i) $<$ (ii) $<$ (iv) $<$ (iii)
(B) (ii) $<$ (i) $<$ (iv) $<$ (iii)
(C) (i) $<$ (ii) $<$ (iii) $<$ (iv)
(D) (ii) $<$ (i) $<$ (iii) $<$ (iv)
104. Which one of the following does not have intermolecular H-bonding ?
(A) $\mathrm{H}_{2} \mathrm{O}$
(B) o-nitro phenol
(C) HF
(D) $\mathrm{CH}_{3} \mathrm{COOH}$
105. Which of the following compounds would have significant intermolecular hydrogen bonding ?

$$
\mathrm{HF}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{~N}_{2} \mathrm{O}_{4}, \mathrm{CH}_{4}, \mathrm{NH}_{3}(\ell)
$$

(A) $\mathrm{HF}, \mathrm{N}_{2} \mathrm{O}_{4}, \mathrm{NH}_{3}(\ell)$
(B) $\mathrm{HF}, \mathrm{CH}_{4}, \mathrm{CH}_{3} \mathrm{OH}$
(C) HF, $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{NH}_{3}(\ell)$
(D) $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{CH}_{4}, \mathrm{NH}_{3}(\ell)$
106. Select the correct statement.
(A) The order of $\mathrm{Xe}-\mathrm{F}$ bond length in various fluorides of $\mathrm{Xenon}^{\text {is }} \mathrm{XeF}_{2}<\mathrm{XeF}_{4}<\mathrm{XeF}_{6}$
(B) PH_{5} can undergo $\mathrm{sp}^{3} \mathrm{~d}$ hybridisation to have octahedral geometry.
(C) Dipole moment of $\mathrm{CH}_{3} \mathrm{~F}$ is greater than that of $\mathrm{CH}_{3} \mathrm{Cl}$
(D) Increasing strength of hydrogen bonding is $\mathrm{Cl}-\mathrm{H}---\mathrm{Cl}<\mathrm{N}-\mathrm{H}---\mathrm{N}<\mathrm{O}-\mathrm{H}---\mathrm{O}<\mathrm{F}-\mathrm{H}---\mathrm{F}$
107. Consider the following statements.

S1: The percentage of s-character in the orbital forming $\mathrm{S}-\mathrm{S}$ bonds and $\mathrm{P}-\mathrm{P}$ bonds in S_{8} and P_{4} molecules respectively are same.
S 2 : In SF_{4} the bond angles, instead of being 90° and 180° are 89° and 177° respectively due to the repulsions between lone pair and bond pairs of electrons.
S 3 : Aqueous $\mathrm{H}_{3} \mathrm{PO}_{4}$ is syrupy (i.e more viscous than water)
S 4 : SiO_{2} crystal may be considered as giant molecule in which eight-membered rings are formed with alternate silicon and oxygen atoms.
Of these :
(A) $\mathrm{S}_{1} \& \mathrm{~S}_{4}$ are correct only.
(B) $\mathrm{S}_{2}, \mathrm{~S}_{3} \& \mathrm{~S}_{4}$ are correct only.
(C) $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3} \& \mathrm{~S}_{4}$ are correct.
(D) $\mathrm{S}_{1}, \mathrm{~S}_{2} \& \mathrm{~S}_{3}$ are correct only.
108. Select the correct statement for the sulphuric acid.
(I) It has high boiling point and viscosity.
(II) There are two types of bond lengths in its bivalent anion.
(III) $\mathrm{p} \pi-\mathrm{d} \pi$ bonding between sulphur and oxygen is observed.
(IV) Sulphur has the same hybridisation that is of boron in diborane.
(A) II and III only
(B) II, III and IV only
(C) I, III and IV only
(D) III and IV only
109. Intermolecular hydrogen bonding increases the enthalpy of vaporization of a liquid due to the :
(A) decrease in the attraction between molecules.
(B) increase in the attraction between molecules.
(C) decrease in the molar mass of unassociated liquid molecules.
(D) increase in the effective molar mass of hydrogen - bonded molecules.
110. S1: The polarising power of a cation and polarisability of an anion, both are directly proportional to their sizes.

S2: H_{2}^{+}and He_{2}^{+}have same bond order but H_{2}^{+}is more stable than He_{2}^{+}.
S3: The strength of hydrogen bond does not depend at all on the availability of the lone pair of electrons on the atom forming H -bond.
$\mathrm{S} 4: \mathrm{OF}_{2}$ and $\mathrm{Cl}_{2} \mathrm{O}$ both are sp^{3} hybridised and bond angle in $\mathrm{C}_{2} \mathrm{O}$ is greater than $109^{\circ} 28^{\prime}$.
(A) T F F T
(B) F F F T
(B) F T F T
(D) T T T T
111. Which of the following has minimum melting point
(A) CsF
(B) HCl
(C) HF
(ID) LiF
112. Which of the following statemets is true?
(A) The dipole moment of NF_{3} is zero
(B) The dipole moment of NF_{3} is less than NH_{3}
(C) The dipole moment of NF_{3} is more than NH_{3}
(D) The dipole moment of NH_{3} is zero
113. Among the following compounds, the correct order of the polarity of the bonds is :

$$
\mathrm{SbH}_{3}, \mathrm{AsH}_{3}, \mathrm{PH}_{3}, \mathrm{NH}_{3} .
$$

(A) $\mathrm{SbH}_{3}<\mathrm{AsH}_{3}<\mathrm{PH}_{3}<\mathrm{NH}_{3}$
(B) $\mathrm{AsH}_{3}<\mathrm{SbH}_{3}=\mathrm{PH}_{3}<\mathrm{NH}_{3}$
(C) $\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{SbH}_{3}<\mathrm{NH}_{3}$
(D) $\mathrm{AsH}_{3}<\mathrm{PH}_{3}<\mathrm{SbH}_{3}<\mathrm{NH}_{3}$
114. Among the following, van der Waals forces are maximum in :
(A) HBr
(B) LiBr
(C) LiCl
(D) AgBr

CHEMISTRY

115. Intermolecular hydrogen bond is present in which of the following pair of molecules?
(A) SiH_{4} and SiF_{4}
(B) $\mathrm{CH}_{3}-\stackrel{\stackrel{\mathrm{O}}{\mathrm{C}}}{\mathrm{C}}-\mathrm{CH}_{3}$ and CHCl_{3}
(C)

(D) $\mathrm{CH}_{3} \mathrm{OCH}_{3}$ and $\mathrm{H}_{2} \mathrm{O}_{2}$
116. Among the following compounds the one that is polar and has central atom with sp^{3} hybridisation is :
(A) $\mathrm{H}_{2} \mathrm{CO}_{3}$
(B) SiF_{4}
(C) BF_{3}
(D) HClO_{2}
117. Which of the following are polar
(A) XeF_{4}
(B) SO_{3}
(C) XeOF_{4}
(D) ICl_{4}^{-}
118. Which of the following exhibits H-bonding?
(A) CH_{4}
(B) $\mathrm{H}_{2} \mathrm{Se}$
(C) $\mathrm{N}_{2} \mathrm{H}_{4}$
(D) $\mathrm{H}_{2} \mathrm{~S}$
119. Bicarbonate $\left(\mathrm{HCO}_{3}^{-}\right)$exists in KHCO_{3} and NaHCO_{3} respectively as :
(A) Dimeric and polymeric chain like structure.
(B) Polymeric chain and dimeric structure.
(C) Dimeric and trimeric structure.
(D) Trimeric and dimeric structure.
120. Covalent compounds have low melting point because
(A) Covalent bond is less exothermic
(B) Covalent molecules have definite shape
(C) Covalent bond is weaker than ionic bond
(D) Covalent molecules are held by weak Vander Waal's force of attraction
121. The bond that determines the secondary structure of a protein is
(A) Coordinate bond
(B) Covalent bond
(C) Hydrogen bond
(D) Ionic bond
122. Pure phosphoric acid is very viscous, because :
(A) It is a strong acid
(B) It is tribasic acid
(C) It is hygroscopic
(D) It has $\mathrm{PO}_{4}{ }^{3-}$ groups which are bonded by many hydrogen bonds
123. Which of the following is least volatile?
(A) HF
(B) HCl
(C) HBr
(D) HI
124. Which of the following is false?
(A) Van der Waals forces are responsible for the formation of molecular crystals.
(B) Branching lowers the boiling points of isomeric organic compounds due to reduction in the van der Waals force of attraction.
(C) In graphite, van der Waals forces act between the carbon layers.
(D) Boiling point of NH_{3} is greater than SbH_{3}.
125.

$\mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ readily loses one molecule of water at $80^{\circ} \mathrm{C}$ because :
(A) One water molecule is coordinated to lone pair of electrons on SnCl_{2} and the other is hydrogen bonded to coordinated water molecule.
(B) One water molecule is bonded to SnCl_{2} by coordinate covalent bond and the other is held by iondipole attractive forces to central metal ion.
(C) Both the water molecules are coordinated to lone pairs of electrons on pyramidal SnCl_{2}.
(D) Both the water molecules are bonded to pyramidal SnCl_{2} by hydrogen bonds.
126. The pairs of bases in DNA are held together by
(A) Hydrogen bonds
(B) Ionic bonds
(C) Phosphate groups
(D) Deoxyribose groups

CHEMISTRY

Part \# II \geq [Assertion \& Reason Type Questions]

Each question has 5 choices (A), (B), (C), (D) and (E) out of which only one is correct.
(A) Statement-1 is true, Statement-2 is true and Statement-2 is correct explanation for Statement-1
(B) Statement-1 is true, Statement-2 is true and Statement-2 is not correct explanation for Statement-1
(C) Statement-1 is true, Statement-2 is false
(D) Statement-1 is false, Statement-2 is true
(E) Both Statements are false

1. Statement-1 : The bond angles of BrNO, CINO and FNO are approximately $114.5^{\circ}, 113.3^{\circ}$ and 110.1^{0} respectively. Statement-2 : The hybridisation of central N atom in all three compounds is sp^{2}.
2. Statement-1 : All F-S-F angles in SF_{4} are greater than 90° but less than 180°.

Statement-2 : The bond pair-bond pair repulsion is weaker than lone pair-bond pair repulsion.
3. Statement-1: In tetrahedral hybridisation i.e., in sp^{3} hybridisation all p -orbitals of valence shell are involved and no p -orbital is left for forming π-bonds.
Statement-2 : Central atom can not form double bonds in the molecules or species having sp^{3} hybridisation.
4. Statement-1: Molecular species like $\mathrm{SF}_{6}, \mathrm{PF}_{5}, \mathrm{I}_{3}^{-}$and XeF_{2} violate the octet rule.

Statement-2 : Compounds with an expanded octet are called hypervalent compounds.
5. Statement-1: $\left[\mathrm{SiC}_{6}\right]^{2-}$ does not exist.

Statement-2: Interaction between lone pairs of chloride ions and Si^{4+} is not very strong and six large chloride ions can not be accommodated around Si^{4+} due to limitation of its size.
6. Statement-1: In $\mathrm{CH}_{3} \mathrm{NCO}$, the bond angles $\mathrm{C}-\mathrm{N}-\mathrm{C}$ and $\mathrm{N}-\mathrm{C}-\mathrm{O}$ are not identical.

Statement-2: N -atom has a lone pair of electrons which is involved in $\mathrm{p} \pi-\mathrm{d} \pi$ delocalisation where as C -atom does not have lone pair of electrons.
7.

Bond angle R is a normal triangular angle 120°.

Statement-2: $\angle \mathrm{P} \neq 180^{\circ} ; \angle \mathrm{Q} \neq 90^{\circ}$ and thus $\angle \mathrm{R} \neq 120^{\circ}$ but less then 120° due to the presence of a lone pair.
8. Statement-1: $\mathrm{In}_{\mathrm{IOF}}^{4}-{ }^{-}$a single lone pair is present on iodine atom trans to oxygen atom to have minimum repulsion between the $\mathrm{I}=\mathrm{O}$ and the lone pair of electrons.
Statement-2: The VSEPR model considers double and triple bonds to have slightly greater repulsive effect than single bonds because of the repulsive effect of π electrons.
9. Statement-1: Molecules having different hybridisation can have same shape.

Statement-2 : The shape of a molecule does not depend on the hybridisation but it depends on the energy factor.
10. Statement-1: $\mathrm{SO}_{2}, \mathrm{NO}_{3}^{-}$and $\mathrm{CO}_{3}{ }^{2-}$ are isoelectronic as well as isostructural species.

Statement-2: The d and f -orbitals do not shield the nuclear charge very effectively. Therefore, there is significant reduction in the size of the ions, just after d or f orbitals have been completely filled.
11. Statement-1 : $\mathrm{NO}_{3}{ }^{-}$and $\mathrm{PO}_{3}{ }^{-}$have similar formula type but differ structurally i.e. they have different type of hybridisation.
Statement-2: NO_{3}^{-}ion exists as free ion. On the other hand PO_{3}^{-}exists as cyclic or linear polymeric structure.
12. Statement-1: Carbon has unique ability to form $\mathrm{p} \pi-\mathrm{p} \pi$ multiple bonds with itself and with other atoms of small size and high electronegativity.
Statement-2 : Heavier elements of group $14^{\text {th }}$ do not form $\mathrm{p} \pi-\mathrm{p} \pi$ bonds because their atomic orbitals are too large and diffuse to have effective side ways overlapping.
13. Statement-1 : Elemental nitrogen exists as a diatomic molecule and phosphorous as tetratomic molecule.

Statement-2 : Nitrogen does not have vacant d-orbital whereas phosphorus have vacant d-orbital.
14. Statement-1: Single $\mathrm{N}-\mathrm{N}$ bond is weaker than the single $\mathrm{P}-\mathrm{P}$ bond.

Statement-2 : In $\mathrm{N}-\mathrm{N}$ bond there is high interelectronic repulsion of the non-bonding electrons, owing to the weaker bond.
15. Statement-1: The hybridisation of N atom in acetamide is sp^{3}.

Statement-2 : There occurs delocalisation of lone pair of electrons present on N atom.

16. Statement-1: Cl

Statement-2 : The molecule is T -Shaped and there is repulsion between lone pairs of electrons
17. Statement-1 : The electronic structure of azide ion $\left(N_{3}^{-}\right)$is $[: \underset{\sim}{\sim} \leftarrow N \equiv N:]^{-}$.

Statement-2 : $[\stackrel{\text { N}}{\mathrm{N}=\mathrm{N}:}]^{-}$is not a resonating structure of azide ion, because the position of atoms cannot be changed.
18. Statement-1: $\mathrm{Si}-\mathrm{F}, \mathrm{Si}-\mathrm{C} \ell$ and $\mathrm{Si}-\mathrm{O}$ bonds are stronger than the corresponding bonds with C .

Statement-2 :

19. Statement-1: Aluminium chloride in acidified aqueous solution forms octahedral $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ ion.

Statement-2 : $\operatorname{In}\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right)^{3+}$ complex ion, the 3 d orbitals of Al are involved and the hybridisation state of Al is $\mathrm{sp}^{3} \mathrm{~d}^{2}$.
20. Statement-1: In graphite, on increasing the temperature the conductivity decreases along the layers of carbon atoms.
Statement-2 : Graphite cleaves easily, because the force of attraction between the layers is weak van der Waal's force.

CHEMISTRY

21. Statement-1: A molecule of buckminister fullerene exhibits aromatic character.

Statement-2 : All the carbon atoms undergo sp^{2} hybridisation. Each carbon atom forms three sigma bonds with other three carbon atoms. The remaining electron at each carbon is delocalised in molecular orbitals.
22. Statement-1 : Amongst the oxo acids of halogens, $\mathrm{HOCl}, \mathrm{HOBr}$ and HOI , the HOI is the most acidic acid.

Statement-2 : The conjugate base stability is $\mathrm{CIO}^{-}>\mathrm{BrO}^{-}>\mathrm{IO}^{-}$
23. Statement-1: PF_{5} keeps trigonal bipyramidal structure in gas as well as in solid state.

Statement-2 : $\mathrm{PC} \ell_{5}$ in gas and liquid state is covalent but in solid state it is ionic and exist as $\left[\mathrm{PC} \ell_{4}\right]^{+}$and $\left[\mathrm{PC} \ell_{6}\right]^{-}$
24. Statement-1: The double bond in C_{2} molecule consists of both π-bonds.

Statement-2 : Four electrons are present in two π-bonding molecular orbitals in C_{2}.
25. Statement-1 : Anhydrous $\mathrm{A} \ell \mathrm{C} \ell_{3}$ is more soluble in diethyl ether than hydrous $\mathrm{A} \ell \mathrm{C} \ell_{3}$.

Statement-2: Anhydrous $\mathrm{A} \ell \mathrm{C}_{3}$ is electron deficient. The oxygen atom of ether donates a pair of electrons to vacant p -orbital on the $\mathrm{A} \ell$ atom forming a co-ordinate bond.
26. Statement-1: Atomic orbitals are monocentric while molecular orbitals are polycentric.

Statement-2: In an atomic orbital the movement of an electron is influenced by only one positive nucleus, while that of an electron in a molecular orbital is influenced by two or more nuclei depending on the number of atoms contained in the molecule.
27. Statement-1 : To obtain effective $\mathrm{p} \pi-\mathrm{d} \pi$ overlap, the size of the d -orbital must be similar to the size of the $\mathrm{p}-$ orbital. So for chlorine $\mathrm{p} \pi-\mathrm{d} \pi$ bonding is strongest in their oxoanions.
Statement-2: On moving a period from left to right in the periodic table, the nuclear charge is increased and more s and p-electrons are added. Since these s-and p-electrons shield the nuclear charge incompletely, the size of the atom and that of the d -orbitals decreases. This leads to progressively stronger $\mathrm{p} \pi-\mathrm{d} \pi$ bonding.
28. Statement-1 : Dimethyl ether and disilyl ether both readily form complexes with trimethyl borane

29. Statement-1 : Solubility of LiI is more than that of LiBr .

Statement-1 : LiI has more lattice energy and more hydration energy in comparison to LiBr .
30. Statement-1: Al^{3+} form more ionic compound in comparison to Ga^{3+}, with identical anion.

Statement-2: $\mathrm{Al}^{\mathrm{A}^{+}} \approx \mathrm{r}_{\mathrm{Ga}^{3+}}$ and $\mathrm{Z}_{\text {eff }}$ of Ga^{3+} is more than that of Al^{3+}.
31. Statement-1: Ortho boric acid crystal are hard and cannot be broken easily into the powder form.

Statement-2 : In the solid state $\mathrm{B}(\mathrm{OH})_{3}$ units are hydrogen bonded together into two dimensional sheets.
32. Statement-1: The crystal structures of NaHCO_{3} and KHCO_{3}, both show intermolecular hydrogen bonding but are different.
Statement-2: In NaHCO_{3} the HCO_{3}^{-}ions are linked together through intermolecular hydrogen bonds into an infinite chain, while in $\mathrm{KHCO}_{3}, \mathrm{HCO}_{3}^{-}$ions form dimeric anions through intermolecular hydrogen bonds.
33. Statement-1: Fluorine $\left(\mathrm{F}_{2}\right)$ is gas while iodine $\left(\mathrm{I}_{2}\right)$ is solid at room temperature.

Statement-2 : A larger molecule or heavy atom is more polarizable and has larger dispersion forces because it has many electrons some of which are less tightly held and are farther from the nucleus.
34. Statement-1: Noble gases are liquefied at very low temperature. Hence they have low boiling points.

Statement-2 : Noble gases being monoatomic have no other interatomic forces except weak dispersion forces.
35. Statement-1: NF_{3} has little tendency to act as a donor molecule.

Statement-2 : The highly electronegative F atoms attract electrons and these moments partly cancel the moment from the lone pair.
36. Statement-1 : Fluoromethane $\left(\mathrm{CH}_{3} \mathrm{~F} ; \mu=1.85 \mathrm{D}\right)$ has a smaller dipole moment than chloromethane $\left(\mathrm{CH}_{3} \mathrm{Cl} ; \mu=1.87 \mathrm{D}\right)$
Statement-2 : Fluorine has less electron affinity than that of chlorine.
37. Statement-1 : Acetylene is not soluble in $\mathrm{H}_{2} \mathrm{O}$ but is highly soluble in acetone.

Statement-2 : Acetylene forms inter molecular H-bond with acetone easily but not with $\mathrm{H}_{2} \mathrm{O}$ as water molecular themselves are highly associated through inter molecular H -bonds.
38. Statement-1 : Crystals of hydrated calcium sulphate (gypsum : $\left(\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$) are soft and easily cleaved.

Statement-2 : Crystals of anhydrous calcium sulphate (anhydride : CaSO_{4}) are very hard and very difficult to cleave.
39. Statement-1: In case of persulphuric acid, the $\mathrm{K}_{1} \gg \mathrm{~K}_{2}$.

Statement-2 : The anion of persulphuric acid is intermolecular hydrogen bonded.

Exercise \# 3 Part \# I [Matrix Match Type Questions]

Match the compounds listed in column-I with characteristic(s) listed in column-II.

1. Column-I
(A) $\mathrm{IO}_{2} \mathrm{~F}_{2}^{-}$
(B) $\mathrm{F}_{2} \mathrm{SeO}$
(C) ClOF_{3}
(D) $\mathrm{XeF}_{5}{ }^{+}$
2. Column-I
(A) SF_{2}
(B) KrF_{4}
(C) NOCl
(D) NF_{3}
3. Column-I
(A) $\mathrm{ClF}_{2}^{-}, \mathrm{CIF}_{2}{ }^{+}$
(B) $\mathrm{IO}_{2} \mathrm{~F}_{2}^{-}, \mathrm{F}_{2} \mathrm{SeO}$
(C) $\mathrm{IOF}_{4}^{-}, \mathrm{XeOF}_{2}$
(D) $\mathrm{BrF}_{5}, \mathrm{XeOF}_{4}$
4. Column (I)
(A) P_{4}
(B) $\mathrm{SO}_{4}{ }^{2-}$
(C) $\mathrm{C}_{2} \mathrm{H}_{6}$
(D) $\mathrm{P}_{4} \mathrm{O}_{10}$
5. Column-I
(A) $\mathrm{H}_{3} \mathrm{P}_{3} \mathrm{O}_{9}$
(B) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
(C) $\mathrm{H}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$
(D) $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}$
6. Column-I
(A) N_{2}^{+}is stable than N_{2}^{-}
(B) NO can easily lose its electron than N_{2}
(C) NO have large bond length than NO^{+}
(D) He_{2}^{+}exists, but is less stable than H_{2}^{+}
7. Column - I
(A) BF_{3}
(B) $\left(\mathrm{SiH}_{3}\right)_{3} \mathrm{~N}$
(C) $\mathrm{B}_{2} \mathrm{H}_{6}$
(D) SiO_{2}

Column-II
(p) $\mathrm{sp}^{3} \mathrm{~d}$
(q) sp^{3}
(r) sp^{2}
(s) $\mathrm{sp}^{3} \mathrm{~d}^{2}$

Column-II
(p) sp^{3} and bent
(q) two lone pairs
(r) bond angle $<109^{\circ} 28^{\prime}$
(s) sp^{2} and bent
(t) $\mathrm{sp}^{3} \mathrm{~d}^{2}$ and square planar

Column -II
(p) Square pyramidal.
(q) See - saw and pyramidal shaped respectively.
(r) Linear and bent shaped respectively.
(s) Square pyramidal and T-shaped respectively.
(t) Both $\mathrm{sp}^{3} \mathrm{~d}^{2}$.

Column (II)
(p) 7σ - bond
(q) central atom is in sp^{3} hybridisation
(r) No, 'P-P' bond
(s) No, 'O-O' bond

Column-II
(p) $\mathrm{S}-\mathrm{O}-\mathrm{S}$ bond is present
(q) Di-basic acid
(r) $\mathrm{P}-\mathrm{O}-\mathrm{P}$ bond is present
(s) Central atom (S or P) in maximum oxidation state.

Column-II
(p) due to one have greater number of electrons in antibonding molecular orbitals than other
(q) one has B.O. 3 and other has 2.5
(r) both are paramagnetic with same bond order
(s) one is paramagnetic and other diamagnetic

Column - II
(p) sp^{3} hybridization
(q) $p \pi-p \pi$ back bond
(r) $\mathrm{p} \pi-\mathrm{d} \pi$ back bond
(s) $3 \mathrm{c}-2 \mathrm{e}$ bond
8. Column - I
(A) O_{2} and NO^{-}
(B) $\mathrm{O}_{2}{ }^{+}$and NO
(C) CO and CN^{-}
(D) C_{2} and CN^{+}
9. Column - I
(A) SO_{3} (gas)
(B) OSF_{4}
(C) $\mathrm{SO}_{3} \mathrm{~F}^{-}$
(D) ClOF_{3}
10. Column - I
(A) IF_{2}^{-}
(B) ClF_{3}
(C) $\mathrm{XeO}_{3} \mathrm{~F}_{2}$
(D) SF_{4}
11. Column-I
(A) Blue vitriol
(B) Gypsum
(C) Pure orthophosphoric acid
(D) Chloral hydrate

Column - II
(p) Same magnetic property and bond order as that in $\mathrm{N}_{2}{ }^{+}$
(q) Same bond order but not same magnetic property as that in O_{2}
(r) Same magnetic property and bond order as that $\mathrm{N}_{2}{ }^{2-}$
(s) Same magnetic property and bond order as that in NO^{+}

Column - II
(p) Polar with $\mathrm{p} \pi-\mathrm{d} \pi$ bonds and identical $\mathrm{S}-\mathrm{O}$ bond, lengths.
(q) One lone pair and $p \pi-d \pi$ bond.
(r) Non-polar with $\mathrm{p} \pi-\mathrm{p} \pi$ and $\mathrm{p} \pi-\mathrm{d} \pi$ bonds. Identical S-O bond lengths.
(s) Polar with $\mathrm{p} \pi-\mathrm{d} \pi$ bond.

Column - II
(p) $\mathrm{sp}^{3} \mathrm{~d}$
(q) polar
(r) one of the bond angles is 180°.
(s) one lone pair

Column-II
(p) Ionic bond
(q) Covalent bond
(r) Hydrogen bond
(s) Resonance stabilisation

Column-II
(p) Hydrogen bond
(q) Ion-dipole force
(r) Dispersion force.
(s) Dipole induced dipole interaction.

Column-I
(A) $\mathrm{HCl}<\mathrm{HF}$
(B) $\mathrm{PH}_{3}<\mathrm{NH}_{3}$
(C) $\mathrm{H}_{2} \mathrm{O}<\mathrm{D}_{2} \mathrm{O}$
(D) $\mathrm{F}_{2}<\mathrm{Cl}_{2}$

Column-II
(p) Strength of hydrogen bonding
(q) Dipole moment
(r) Boiling point
(s) Bond energy

Part \# II [Comprehension Type Questions]

Comprehension \# 1

VSEPR Theory

The trigonal bipyramid is not a regular shape since the bond angles are not all the same. It therefore follows that the corners are not equivalent in ClF_{3} molecule. Lone pairs occupy two of the corners, and F atoms occupy the other three corners. These different arrangements are theoretically possible, as shown in figure.
(i) The most stable structure will be the one of lowest energy, that is the one with the minimum repulsion between the five orbitals. The greatest repulsion occurs between two lone pairs. Lone pair bond pair repulsions are next strongest, and bond pair-bond pair repulsions the weakest.

(1)

(2)

(3)

A rule of thumb can be theorised, that the position having maximum repulsion amongst them are occupied at equatorial points. Therefore (3) structure is right.
(ii) Since double bond occupies more space compared to single bond therefore it will prefer equatorial position.
(iii) More electronegative element will occupy axial position in case of trigonal bipyramidal geometry
(iv) In case of $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridisation lone pairs should be placed opposite to each other because all the corners are identical.

1. Geometry (i.e. arrangement of electron pairs around central atom) of ClOF_{3} is similar to the :
(A) XeF_{4}
(B) SOCl_{2}
(C) I_{3}^{-}
(D) ClO_{4}^{-}
2. The shape of $\mathrm{SF}_{5}{ }^{-}$can be :

(A) I only

(B) I and II only

(C) IV only

(D) I, II, \& III
3. Actual shape of the molecule BrF_{5} is similar to the molecule :
(A) PCl_{5}
(B) XeF_{4}
(C) PCl_{4}^{+}
(D) None of these
4. Which of the following statements is/are correct for CIO_{4}^{-}oxoanion?
(A) It does not have any tendency of polymerisation.
(B) It has strong $\mathrm{p} \pi-\mathrm{p} \pi$ bonding between chlorine and oxygen.
(C) All $\mathrm{Cl}-\mathrm{O}$ bonds are identical and chlorine atom is sp^{3} hybridised.
(D) The chemical bonding takes place in ground state and charge dispersion is more than $\mathrm{CIO}_{3}{ }^{-}$oxo anion.
5. Which of the following do not exist?
(A) SH_{6}
(B) HFO_{4}
(C) SI_{6}
(D) HClO_{3}

Comprehension \# 2

The distribution of electrons among various molecular orbitals is called the electronic configuration of the molecule which provides us the following very important informations about the molecule .
(A) Stability of molecule : The molecule is stable if number of bonding molecular orbital electrons $\left(\mathrm{N}_{\mathrm{b}}\right)$ is greater than the number of antibonding molecular orbital electrons $\left(\mathrm{N}_{\mathrm{a}}\right)$ and vice- versa.
(B) Bond order :

Bond order $=\frac{1}{2}\left(\mathrm{~N}_{\mathrm{b}}-\mathrm{N}_{\mathrm{a}}\right)$
A positive bond order means a stable molecule while a negative or zero bond order means an unstable molecule.
(C) Nature of the bond :

Bond order 1, 2, or 3 corresponds to single, double or triple bonds respectively.
(D) Bond length :

Bond length decreases as bond order increases.
(E) Magnetic nature :

Molecular orbitals in a molecule are doubly occupied, the substance is diamagnetic and if one or more molecular orbitals are singly occupied, it is paramagnetic.

1. Which of the following statements is incorrect?
(A) Among $\mathrm{O}_{2}^{+}, \mathrm{O}_{2}$ and O_{2}^{-}the stability decreases as $\mathrm{O}_{2}^{+}>\mathrm{O}_{2}>\mathrm{O}_{2}^{-}$
(B) He_{2} molecule does not exit as the effect of bonding and anti-bonding molecular orbitals cancel each other
(C) $\mathrm{C}_{2}, \mathrm{O}_{2}{ }^{2-}$ and Li_{2} are diamagnetic
(D) In F_{2} molecule, the energy of $\sigma 2 P_{z}$ is more than $\pi_{2 p x}$ and $\pi_{2 \text { Py }}$
2. The bromine $\left(\mathrm{Br}_{2}\right)$ is coloured because:
(A) the difference in energy ($\Delta \mathrm{E}$) between HOMO and LUMO is large and the electronic excitation take place by absorption of light which falls in ultra violet region.
(B) the difference in energy ($\Delta \mathrm{E}$) between HOMO and LUMO is small and the electronic excitation take place by absorption of light which falls in infrared region.
(C) the bromine molecule is paramagnetic and the difference in energy $(\Delta \mathrm{E})$ is such that the electronic excitation take place in visible light.
(D) the difference in energy ($\Delta \mathrm{E}$) between HOMO and LUMO is such that the electronic excitation take place by absorption of light which falls in visible region and bromine molecule is diamagnetic.
3. $\quad \mathrm{N}_{2}$ has greater bond dissociation energy than N_{2}^{+}, where as O_{2} has a lower bond dissociation energy than O_{2}^{+} because:
(A) Bond order is reduced when O_{2} is ionized to O_{2}^{+}and bond order is increased when N_{2} is ionized to N_{2}^{+}
(B) Bond order is increased when O_{2} is ionized to O_{2}^{+}and bond order is decreased when N_{2} is ionized to $\mathrm{N}_{2}{ }^{+}$
(C) Bond order is deceased when O_{2} is ionized to O_{2}^{+}and bond order is decreased when N_{2}^{-}is ionized to N_{2}^{+}
(D) None of these.

Comprehension \# 3

A covalent bond in which electrons are shared unequally and the bonded atoms acquire a partial positive and negative charge, is called a polar covalent bond. Bond polarity is described in terms of ionic character.
Similarly in ionic bond, some covalent character is introduced because of the tendency of the cation to polarise the anion. The magnitude of covalent character in the ionic bond depends upon the extent of polarization caused by cations.

In general :
(i) Smaller the size of cation, larger is its polarizing power.
(ii) Larger the anion, more will be its polarisability.
(iii) Among two cations of similar size, the polarizing power of cations with pseudo - inert gas configuration $\left(n s^{2} n p^{6} n d^{10}\right)$ is larger than cation with noble gas configuration $\left(n s^{2} n p^{6}\right)$ e.g. polarizing power of Ag^{+}is more than K^{+}.

1. Which of the following will be most covalent ?

CHEMISTRY

(A) NaCl
(B) $\mathrm{Na}_{2} \mathrm{~S}$
(C) MgCl_{2}
(D) MgS
2. Which of the following is least ionic?
(A) BeI_{2}
(B) BeCl_{2}
(C) BeBr_{2}
(D) BeF_{2}
3. Arrange the following compounds in increasing order of their ionic character :

$$
\mathrm{SnCl}_{2}, \mathrm{SnCl}_{4}, \mathrm{SiCl}_{4}, \mathrm{SnF}_{4}, \mathrm{SnF}_{2}
$$

(A) $\mathrm{SnF}_{2}<\mathrm{SnCl}_{2}<\mathrm{SnF}_{4}<\mathrm{SnCl}_{4}<\mathrm{SiCl}_{4}$
(B) $\mathrm{SnF}_{2}<\mathrm{SnCl}_{2}<\mathrm{SnF}_{4}<\mathrm{SiCl}_{4}<\mathrm{SnCl}_{4}$
(C) $\mathrm{SiCl}_{4}<\mathrm{SnCl}_{4}<\mathrm{SnF}_{4}<\mathrm{SnCl}_{2}<\mathrm{SnF}_{2}$
(D) $\mathrm{SnCl}_{4}<\mathrm{SnF}_{4}<\mathrm{SnCl}_{2}<\mathrm{SnF}_{2}<\mathrm{SiCl}_{4}$
4. Which is the correct order of covalent character
(A) $\mathrm{BeF}_{2}<\mathrm{BeCl}_{2}<\mathrm{BeBr}_{2}<\mathrm{Bel}_{2}$
(B) $\mathrm{BeCl}_{2}<\mathrm{BeF}_{2}<\mathrm{Bel}_{2}<\mathrm{BeBr}_{2}$
(C) $\mathrm{Bel}_{2}<\mathrm{BeBr}_{2}<\mathrm{BeCl}_{2}<\mathrm{BeF}_{2}$
(D) $\mathrm{Bel}_{2}<\mathrm{BeCl}_{2}<\mathrm{BeBr}_{2}<\mathrm{BeF}_{2}$
5. Which of the following combination of cation and anion has maximum covalent character.
(A) $\mathrm{K}^{+}, \mathrm{Cl}^{-}$
(B) $\mathrm{Na}^{+}, \mathrm{Cl}^{-}$
(C) $\mathrm{Cs}^{+}, \mathrm{Cl}^{-}$
(D) $\mathrm{Mg}^{+2}, \mathrm{Cl}^{-}$

Comprehension \# 4

The degree of polarity of a covalent compound is measured by the dipole moment ($\mu_{\text {bond }}$) of the bond defined as:
$\mu_{\text {bond }}=$ Charge on one of the poles \times bond length
$\mu_{\text {bond }}$ is a vector quantity. The dipole moment of a molecule is the vector addition of all the bond dipole moments present in it. For a triatomic molecule, containing two bond's like $\mathrm{H}_{2} \mathrm{O}, \mu_{\text {molecule }}$ is given by

$$
\begin{aligned}
& \mu_{\text {molecule }}^{2}=\mu_{\text {bond }}^{2}+\mu_{\text {bond }}^{2}+2 \mu_{\text {bond }} \cdot \mu_{\text {bond }} \cos \theta \\
& \theta=\text { bond angle }
\end{aligned}
$$

The \% ionic character of a bond is calculated using the equations

$$
\% \text { ionic character }=\frac{\mu_{\text {obs }}}{\mu_{\text {ionic }}} \times 100
$$

$\mu_{\text {ionic }}=$ dipole moment when the molecule is assumed to be completely ionic.

1. Which of the following molecule has non-zero dipole moment :
(A) XeF_{2}
(B) ClF_{3}
(C) $\mathrm{XeO}_{2} \mathrm{~F}_{4}$
(D) XeF_{4}
2. The dipole moment of

(A) 0 D
(B) 1.5 D
(C) 2.86 D
(D) 2.25 D
3. Which of the following compound has Zero dipole moment -
(A) PCl_{3}
(B) $\mathrm{PCl}_{2} \mathrm{~F}_{3}$
(C) $\mathrm{PCl}_{3} \mathrm{~F}_{2}$
(D) PClF_{4}

Comprehension \# 5

Molecular geometry is the general shape of a molecule as determined by the relative positions of the atomic nuclei. VSEPR model predicts the shape of the molecules \& ions in which valence shell electron pairs are arranged about the atom as far away from one another as possible, thus minimizing pair repulsion information about the geometry of a molecule can sometimes be obtained from an experimental quantity called dipole moment.

1. The dipole moment of a triatomic molecule AX_{2} was found to be equal to the bond moment of $\mathrm{A}-\mathrm{X}$ bond. Which of the following information regarding geometry of the molecule can be drawn from the above observation.
(A) Molecule is linear
(B) Molecule is V shaped with $\angle \mathrm{X}-\mathrm{A}-\mathrm{X}=90^{\circ}$
(C) Molecule is V shaped with $\angle \mathrm{X}-\mathrm{A}-\mathrm{X}=120^{\circ}$
(D) Molecular geometry can not be predicted with the given information
2. Which of the following inter-halogen compounds is non-polar in nature:
(A) ClF_{3}
(B) BrF_{5}
(C) IF_{7}
(D) BrCl

Comprehension \# 6

Nitrogen, oxygen and fluorine are the highly electronegative elements. When they are tied to a hydrogen atom to form covalent bond, the electrons of the covalent bond are shifted towards the more electronegative atom. This partially positively charged hydrogen atom forms a bond with the other electronegative atom. This bond is called as hydrogen bond and is weaker than covalent bond. For example, in HF molecule, the hydrogen bond exists between hydrogen atom of one molecule and fluorine atom of another molecule as depicted :--- $\mathrm{H}^{\delta+}-\mathrm{F}^{\delta-}---\mathrm{H}^{\delta+}-\mathrm{F}^{\delta-}--$ $-\mathrm{H}^{\delta+}-\mathrm{F}^{\delta-}$
Here, hydrogen bond acts as a bridge between atoms which holds one atom by covalent bond and the other by hydrogen bond. Hydrogen bond is represented by a dotted line (---) while a solid line represents the covalent bond. Thus, hydrogen bond can be defined as the attractive force which binds hydrogen atom of one molecule with the electronegative atom (F, O or N) of another molecule.

1. What would be correct about bonding in chloral hydrate $\mathrm{CCl}_{3} \mathrm{CH}(\mathrm{OH})_{2}$?
(A) Only intra molecular H-bonding
(B) Only inter molecular H-bonding
(C) Both inter and intra molecular H-bonding
(D) No hydrogen bonding
2. If boiling point of ortho-nitro phenol and para nitro phenol are t_{1} and t_{2} respectively and mixture of these two are heated at temperature ' t ' where ' t ' is between these two temperature. Vapours will contains
(A) Only ortho nitro phenol
(B) Only para nitro phenol
(C) Both ortho and para nitro phenol
(D) None of these
3. What statement is incorrect about $\mathrm{D}_{2} \mathrm{O}$ (solid)
(A) It will float in $\mathrm{D}_{2} \mathrm{O}$ liquid
(B) It will sink in $\mathrm{H}_{2} \mathrm{O}$ liquid
(C) It has maximum density at $4{ }^{\circ} \mathrm{C}$
(D) It has less volume than $\mathrm{H}_{2} \mathrm{O}$ solid for same mass of both compound.

CHEMISTRY

Exercise \# 4

[Subjective Type Questions]

1. What type of bonding is expected between.
(a) a metal and a non-metal
(b) two non-metal
2. Compare the bond angle in O_{3} and SO_{2}.
3. Write down the resonating structures for $\mathrm{SO}_{4}{ }^{2-}$ and NO_{3}^{-}.
4. Identify the type of overlapping in $\mathrm{N}-\mathrm{H}$ bond in $\mathrm{N}_{2} \mathrm{H}_{4}$ molecule?
5. One of the first drugs to be prepared for use in treatment of acquired immuno deficiency syndrome (AIDS) was azidothymidine (AZT).

(a) How many carbon atoms have sp^{3} hybridisation?
(b) How many carbon atoms have sp^{2} hybridisation?
(c) How many nitrogen atoms (central atom not terminal) have sp hybridisation?
(d) How many π bonds are in the molecule?
6. Draw the structure of the following compounds. Clearly indicate the number of bond pairs and lone pairs involved on central atom. Write (i) number of bond pairs and lone pairs on the central atom (iii) the shape of the molecules (iii) hybridization of the central atom.
(a) SF_{4}
(b) XeOF_{4}
7. Assuming that all the four valency of carbon atom in propane pointing towards the corners of a regular tetrahedron. Calculate the distance between the terminal carbon atoms in propane. Given, C-C single bond length is $1.54 \AA$.
8. There will be three different flourine-flourine distances in molecule $\mathrm{F}_{2} \mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{CF}_{2}$. Assuming ideal bond angles for a particular hybridisation (assume no distortion due to double bonds), find out the two smaller flourine-flourine distances (in pm).
$($ Given that $\mathrm{C}-\mathrm{F}$ bond length $=134 \mathrm{pm}, \mathrm{C}=\mathrm{C}$ bond length $=134 \mathrm{pm}, \sqrt{3}=1.7)$
9. Draw orbital overlap diagram for the cases given below. consider internuclear axis as y-axis . Also classify them as σ, π, δ if bond is formed by their overlap
(a) s and p_{y}
(b) $d_{x y}$ and p_{y}
(c) s and p_{z}
(d) p_{x} and p_{x}
(e) p_{z} and p_{z}
(f) d_{xz} and $\mathrm{d}_{\mathrm{x} z}$
10. SF_{4} and SF_{6} are known but OF_{4} and OF_{6} are not. Explain only in one or two lines.
11. Why electrovalent compounds do not show stereoisomerism?
12. The cynate ion $(\mathrm{OCN})^{-}$form stable series of salts, but many fulminates (CNO) ${ }^{-}$are explosive. Explain.
13. BF_{3} and graphite both are coplanar having sp^{2} hybridisition yet graphite is a conductor. Explain.
14. Draw structures for the polymeric $\left(\mathrm{BeH}_{2}\right)_{\mathrm{n}}$ and $\left(\mathrm{BeCl}_{2}\right)_{\mathrm{n}}$. Explain in brief why the hydride bridge in $\left(\mathrm{BeH}_{2}\right)_{\mathrm{n}}$ is considered to be electron deficient but not the halide bridge in $\left(\mathrm{BeCl}_{2}\right)_{\mathrm{n}}$?
15. Find number of bonds in : (a) $\mathrm{P}_{3} \mathrm{O}_{10}{ }^{5-}$ with bond order $=\frac{4}{3} \quad$ (b) $\mathrm{S}_{2} \mathrm{O}_{7}{ }^{2-}$ with bond order $=\frac{5}{3}$
16. The number of $\mathrm{P}-\mathrm{S}$ bonds and $\mathrm{P}-\mathrm{P}$ bonds in $\mathrm{P}_{4} \mathrm{~S}_{3}$ are x and y respectively. The number of π-bonds in $\mathrm{P}_{4} \mathrm{O}_{10}$ is z . Fill answer in bubbles as xyz.
17. Discuss the bond order and magnetic nature of following species.

$$
\mathrm{NO}, \mathrm{NO}^{+} \mathrm{NO}^{2+}, \mathrm{NO}^{-}
$$

18. (a) Number of shared ' O ' atoms in $\left[\mathrm{Si}_{6} \mathrm{O}_{18}\right]^{12-}$ cyclic silicate.
(b) Number of $\mathrm{S}-\mathrm{S}$ bond present in $\mathrm{H}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$ (tetrathionic acid).
(c) Number of $\mathrm{P}-\mathrm{P}$ bonds in $\mathrm{P}_{4} \mathrm{~S}_{3}$ molecule.
(d) Maximum number of equivalent $\mathrm{N}-\mathrm{O}$ bonds in $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$.
(e) Number of $\mathrm{S}-\mathrm{O}-\mathrm{S}$ bonds in cyclic trimer of SO_{3}.
19. Answer the following questions with respect to the compound $\underline{\mathrm{NO}}\left[\mathrm{BF}_{4}\right]$.
(P) Bond order of the part underlined.
(Q) Total number of σ bonds in the compound.
(R) Total number of π bonds in the compound.
(S) Number of hybrid orbitals involved in the hybridisation of boron.

20. (a) Number of unpaired electrons in $\mathrm{O}_{2}\left[\mathrm{AsF}_{6}\right]$.
(b) Bond order of $\mathrm{O}-\mathrm{O}$ bond in $\mathrm{Na}_{2} \mathrm{O}_{2}$
(c) Number of polar bonds in $\mathrm{H}_{2} \mathrm{O}_{2}$
(d) Number of π bonds in carbon suboxide molecule.
(e) Number of non bonded electron pairs is present in $\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{3}$.

Fill your answer in the box provides :

21. Answer the following questions about the structure of the dimer of phosphorus pentaoxide.
(i) The number of $\mathrm{P}-\mathrm{O}$ linkages which have bond length equal to $1.43 \AA$.
(ii) The number of covalent bonds which have bond length equal to $1.60 \AA$.
(iii) The number of $\mathrm{P}-\mathrm{O}-\mathrm{P}$ linkages.
(iv) The number of lone pair(s) of electrons on each phosphorus atom.

(i) (ii) (iii) (iv)

CHEMISTRY

22. Find number of $3 \mathrm{c}-2 \mathrm{e}$ bond in $\left(\mathrm{BeH}_{2}\right)_{\mathrm{n}}$
23. In trimethylamine, the nitrogen has a pyramidal geometry whereas in trisilylamine $\mathrm{N}\left(\mathrm{SiH}_{3}\right)_{3}$ it has a planar geometry. Explain? Out of trimethylamine and trisilyamine which one is more basic and why?
24. $\mathrm{O}_{2}, \mathrm{~N}_{2}$ are colourless gases but $\mathrm{Cl}_{2}, \mathrm{Br}_{2}, \mathrm{I}_{2}$ are coloured gases. Explain on the basis of M.O. theory.
25. Draw the molecular orbital (both bonding and antibonding) and identify the number of nodal planes in the following combination of atomic orbitals with z as internuclear axis : $d_{y z}$ and $d_{y z}$
26. Draw structure of boron nitride and express the hybridisation of B and N . Will it conduct electricity like graphite?
27. Arrange the following compounds in the order of increasing ionic character : $\mathrm{KI}, \mathrm{A} \ell \mathrm{P}, \mathrm{CaS}, \mathrm{MgO}$.
28. The M.P. of NaCl is higher than that of AlCl_{3}. Explain.

29 Alkali metals impart colour to the flame. Explain.
30. Radii of the following cations are nearly same. Arrange them in the increasing order of polarising power :
(i) $\mathrm{Mg}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Zn}^{2+}$
(ii) $\mathrm{Ga}^{3+}, \mathrm{Fe}^{3+}, \mathrm{Al}^{3+}$
31. Arrange the following in increasing order of melting points.
(i) $\mathrm{XeF}_{2}, \mathrm{XeF}_{4}, \mathrm{XeF}_{6}$
(ii) $\mathrm{TiCl}_{2}, \mathrm{TiCl}_{3}, \mathrm{TiCl}_{4}$
(iii) $\mathrm{NaCl}, \mathrm{MgCl}_{2}, \mathrm{AlCl}_{3}$

Out of the given species, which one has highest polarising power and why.

$$
\mathrm{Na}^{+}, \mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}, \mathrm{Al}^{3+}
$$

33. HF forms H-bonding with acetylene while it is a non polar molecule. Explain.
34. It is said that two - OH groups present on a carbon are unstable. But choral hydrate $\mathrm{CCl}_{3} \mathrm{CH}(\mathrm{OH})_{2}$ is fairly stable. Explain.
35. Thio - ethers have higher boiling point than ethers. Explain.
36. Two atoms A and B have electronegativities as 2.1 and 3.5. These two atoms are covalently single bonded and compound AB has experimental dipole moment equal to 1.4 D . Calculate AB bond length in \AA (Use Hanny smith formula for calculation of percentage ionic character).
37. Dipole moment of LiF was experimentally determined and was found to be 6.0 D . Calculate percentage of ionic character in LiF molecule. LiF bond length is $2.5 \AA$.
38. The gaseous metallic chloride ($\mathrm{MC} \ell$ type) molecule has a measured dipole moment of 9.0 D , which indicates that it is a very polar molecule. The separation between the nuclei in this molecule is $2.25 \times 10^{-8} \mathrm{~cm}$. Calculate the percentage ionic character in KCl molecule. [$1.6 \times 10^{-19}, \mathrm{C}=4.8 \times 10^{-10} \mathrm{esu}$]
39. The bond angle in $\mathrm{H}_{2} \mathrm{~S}$ is 97° and its dipole moment is 1.5 D . The $\mathrm{S}-\mathrm{H}$ bond distance is 0.15 nm . Therefore, approximate percentage ionic character of $\mathrm{S}-\mathrm{H}$ bond is (neglect the effect of dipole moment of lone pair on sulphur atom in $\mathrm{H}_{2} \mathrm{~S}$). (Given $\left[\cos 97^{\circ}=-0.12\right]$ and $\left.\sqrt{0.88}=0.94\right)$
40. Arrange the following in the increasing order as stated below :
(i) Polarisibility (for the same cation) : $\mathrm{O}^{2-}, \mathrm{F}^{-}, \mathrm{N}^{3-}$
(ii) Covalent character : $\mathrm{LiI}, \mathrm{LiBr}, \mathrm{LiF}$
(iii) H -bond strength :
P:

Q:

R:

S:

(iv) Boiling point: $\mathrm{NH}_{3}, \mathrm{AsH}_{3}, \mathrm{PH}_{3}$
41. Which among the following will have zero dipole moment.

$$
\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}, \mathrm{BF}_{3}, \mathrm{NH}_{3}
$$

42. Out of the given bonds, which one is most polar?
(a) $\mathrm{C}-\mathrm{O}$
(b) $\mathrm{C}-\mathrm{F}$
(c) $\mathrm{O}-\mathrm{F}$
(d) $\mathrm{N}-\mathrm{F}$
43. Answer the following questions :
(P) The number of $\mathrm{p} \pi-\mathrm{d} \pi$ bonds in $\mathrm{S}_{3} \mathrm{O}_{9}$.
(Q) The bond order of the underlined species ; NOHSO_{4}.
(R) The number of vacant hybrid orbitals which participate in the formation of 3-centre 2 electron bonds i.e., banana bonds in diborane structure.
(S) The number of intramolecular H-bonds formed in a molecule of chloral hydrate.

44. The dipole moment of HBr is $2.60 \times 10^{-30} \mathrm{Cm}$ and the inter-atomic distance is $1.41 \AA$. What is the per cent ionic character of HBr ?
45. A diatomic molecule has a dipole moment of 1.2 D . If bond length is $1.0 \AA$, what percentage of an electronic charge exists on each atom.

CHEMISTRY

46. Arrange the following
(i) $\mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{~F}_{2}, \mathrm{O}_{2}^{+}$; in increasing order of bond dissociation energy.
(iii) $\mathrm{O}, \mathrm{S}, \mathrm{F}, \mathrm{CI}, \mathrm{N}$; in increasing strength of hydrogen bonding ($\mathrm{X}-\mathrm{H}---\mathrm{X}$).
(iiii) $\mathrm{N}_{3}^{-}, \mathrm{BF}_{3}, \mathrm{NH}_{3}, \mathrm{XeF}_{4}$. in increasing bond angle.
47. The dipole moment of a molecule is really the vectorial sum of the individual bond moment present in it. To compute the dipole moment it is necessary to find out the values of various bond moment. in the following table dipole moment of different bonds are as given.

Bond

$\overrightarrow{\mathrm{C}=\mathrm{O}}$
Bond moments
0.4 D
1.5 D
2.5 D

The group moments of few group as given

Group	NO_{2}	OH	CN	CH_{3}
direction of dipole	toward N	towards O	toward N	away from CH_{3}
Dipole moment	4 D	1.6 D	3.8 D	0.4 D

(i) In $\mathrm{CH}_{3} \mathrm{CCI}_{3}$ (I), CHCI_{3} (II) and $\mathrm{CH}_{3} \mathrm{CI}$ (III) the normal tetrahedral bond angle is maintained. Also given $\cos 70.5^{\circ}=\frac{1}{3}$. Find dipole moments of the given compounds. (given due to -I effect of CI, the Bond moment of $\mathrm{H}-\mathrm{C}$ bond directed toward the H in CHCI_{3})
(ii) In the acetone molecule considering the normal planer structure, find the observed dipole moment of acetone molecule.
48. Explain the H-bonding in crystalline NaHCO_{3} and KHCO_{3} ?

Exercise \# 5 Part \# I [Previous Year Questions] [AIDEE/JEE-MAIN]

1. The correct order of bond angles (smallest first) in $\mathrm{H}_{2} \mathrm{~S}, \mathrm{NH}_{3}, \mathrm{BF}_{3}$ and SiH_{4} is :-
[AIEEE-2004]
(1) $\mathrm{H}_{2} \mathrm{~S}<\mathrm{NH}_{3}<\mathrm{SiH}_{4}<\mathrm{BF}_{3}$
(2) $\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{SiH}_{4}<\mathrm{BF}_{3}$
(3) $\mathrm{H}_{2} \mathrm{~S}<\mathrm{SiH}_{4}<\mathrm{NH}_{3}<\mathrm{BF}_{3}$
(4) $\mathrm{H}_{2} \mathrm{~S}<\mathrm{NH}_{3}<\mathrm{BF}_{3}<\mathrm{SiH}_{4}$
2. The bond order in NO is 2.5 while that in NO^{+}is 3 . Which of the following statements is true for these two species ?
[AIEEE-2004]
(1) Bond length in NO^{+}is equal to that in NO
(2) Bond length in NO is greater than in NO^{+}
(3) Bond length in NO^{+}is greater than in NO
(4) Bond length is unpredictable
3. The states of hybridization of boron and oxygen atoms in boric acid $\left(\mathrm{H}_{3} \mathrm{BO}_{3}\right)$ are respectively
[AIEEE-2004]
(1) sp^{3} and sp^{2}
(2) sp^{2} and sp^{3}
(3) sp^{2} and sp^{2}
(4) sp^{3} and sp^{3}
4. Which one of the following has the regular tetrahedral structure ?
[AIEEE-2004]
(1) BF_{4}^{-}
(2) SF_{4}
(3) XeF_{4}
(4) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
(Atomic nos.: $\mathrm{B}=5, \mathrm{~S}=16, \mathrm{Ni}=28, \mathrm{Xe}=54$)
5. The maximum number of 90° angles between bond pair-bond pair of electrons is observed in :-
[AIEEE-2004]
(1) dsp^{2} hybridization
(2) $\mathrm{sp}^{3} \mathrm{~d}$ hybridization
(3) dsp^{3} hybridization
(4) $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridization
6. Beryllium and aluminium exhibit many properties which are similar. But, the two elements differ in
(1) Forming covalent halides
(2) Forming polymeric hydrides
[AIEEE-2004]
(3) Exhibiting maximum covalency in compounds
(4) Exhibiting amphoteric nature in their oxides
7. Which one of the following species is diamagnetic in nature ?
[AIEEE-2005]
(1) $\mathrm{He}_{2}{ }^{+}$
(2) H_{2}
(3) $\mathrm{H}_{2}{ }^{+}$
(4) H_{2}^{-}
8. lattice energy of an ionic compound depends upon
[AIEEE-2005]
(1) charge on the ion only
(2) size of the ion only
(3) packing of the ion only
(4) charge and size of the ion
9. The molecular shapes of $\mathrm{SF}_{4}, \mathrm{CF}_{4}$ and XeF_{4} are
(1) the same with 2, 0 and 1 lone pair of electrons on the central atom, respecitvely
[AIEEE-2005]
(2) the same with 1,1 and 1 lone pair of electrons on the central atoms, respectively
(3) different with 0,1 and 2 lone pair of electrons on the central atoms, respectively
(4) different with 1,0 and 2 lone pair of electrons on the central atoms, respectively

CHEMISTRY

10. Of the following sets which one does not contain isoelectronic species ?
[AIEEE-2005]
(1) $\mathrm{PO}_{4}^{3-}, \mathrm{SO}_{4}^{2-}, \mathrm{ClO}_{4}^{-}$
(2) $\mathrm{CN}^{-}, \mathrm{N}_{2}, \mathrm{C}_{2}^{2-}$
(3) $\mathrm{SO}_{3}^{2-}, \mathrm{CO}_{3}^{2-}, \mathrm{NO}_{3}^{-}$
(4) $\mathrm{BO}_{3}^{3-}, \mathrm{CO}_{3}^{2-}, \mathrm{NO}_{3}^{-}$
11. Which of the following moleculeslions does not contain unpaired electrons?
[AIEEE-2006]
(1) N_{2}^{+}
(2) O_{2}
(3) O_{2}^{2-}
(4) B_{2}
12. Among the following mixtures, dipole-dipole as the major interaction, is present in
[AIEEE-2006]
(1) KCl and water
(2) benzene and carbon tetrachloride
(3) benzene and ethanol
(4) acetonitrile and acetone
13. A metal, M forms chlorides in its +2 and +4 oxidation states. Which of the following statements about these chlorides is correct?
[AIEEE-2006]
(1) MCl_{2} is more ionic than MCl_{4}
(2) MCl_{2} is more easily hydrolysed than MCl_{4}
(3) MCl_{2} is more volatile than MCl_{4}
(4) MCl_{2} is more soluble in anhydrous ethanol than MCl_{4}
14. In which of the following molecules/ions are all the bonds not equal?
[AIEEE-2006]
(1) XeF_{4}
(2) BF_{4}^{-}
(3) SF_{4}
(4) SiF_{4}
15. The decreasing values of bond angles from $\mathrm{NH}_{3}\left(106^{\circ}\right)$ to $\mathrm{SbH}_{3}\left(91^{\circ}\right)$ down group- 15 of the periodic table is due to
[AIEEE-2006]
(1) decreasing lp - bp repulsion
(2) increasing electronegativity
(3) increasing $\mathrm{bp}-\mathrm{bp}$ repulsion
(4) increasing p-orbital character in sp^{3}
16. In which of the following ionizion processes, the bond order has increased and the magnetic behaviour has changed
[AIEEE-2007]
(1) $\mathrm{NO} \rightarrow \mathrm{NO}^{+}$
(2) $\mathrm{O}_{2} \rightarrow \mathrm{O}_{2}^{+}$
(3) $\mathrm{N}_{2} \rightarrow \mathrm{~N}_{2}^{+}$
(4) $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}^{+}$
17. Which of the following hydrogen bonds is the strongest
[AIEEE-2007]
(1) F-H.....F
(2) $\mathrm{O}-\mathrm{H} \mathrm{O}$
(3) $\mathrm{O}-\mathrm{H} . . .$. . F
(4) $\mathrm{O}-\mathrm{H} \mathrm{N}$
18. Which of the following species exhibits the diamagnetic behaviour
[AIEEE-2007]
(1) O_{2}^{+}
(2) O_{2}
(3) NO
(4) O_{2}^{2-}
19. The charge/size ratio of a cation determines its polarizing power. Which one of the following sequences represents the increasing order of the polarizing power of the cationic species, $\mathrm{K}^{+}, \mathrm{Ca}^{+2}, \mathrm{Mg}^{+2}, \mathrm{Be}^{+2}$
[AIEEE-2007]
(1) $\mathrm{Be}^{+2}<\mathrm{K}^{+}<\mathrm{Ca}^{+2}<\mathrm{Mg}^{+2}$
(2) $\mathrm{K}^{+}<\mathrm{Ca}^{+2}<\mathrm{Mg}^{+2}<\mathrm{Be}^{+2}$
(3) $\mathrm{Ca}^{+2}<\mathrm{Mg}^{+2}<\mathrm{Be}^{+2}<\mathrm{K}^{+}$
(4) $\mathrm{Mg}^{+2}<\mathrm{Be}^{+2}<\mathrm{K}^{+}<\mathrm{Ca}^{+2}$
20. Using MO theory predict which of the following species has the shortest bond length?
[AIEEE-2009]
(1) O_{2}^{-}
(2) O_{2}^{2-}
(3) O_{2}^{2+}
(4) O_{2}^{+}
21. The hybridisation of orbitals of N atom in $\mathrm{NO}_{3}^{-}, \mathrm{NO}_{2}^{+}$and NH_{4}^{+}are respectively:-
[AIEEE-2011]
(1) $\mathrm{sp}, \mathrm{sp}^{3}, \mathrm{sp}^{2}$
(2) $\mathrm{sp}^{2}, \mathrm{sp}^{3}, \mathrm{sp}$
(3) $\mathrm{sp}, \mathrm{sp}^{2}, \mathrm{sp}^{3}$
(4) $\mathrm{sp}^{2}, \mathrm{sp}, \mathrm{sp}^{3}$
22. The structure of IF_{7} is :-
[AIEEE-2011]
(1) octahedral
(2) pentagonal bipyramid
(3) square pyramid
(4) trigonal bipyramid
23. Among the following the maximum covalent character is shown by the compound :-
[AIEEE-2011]
(1) AlCl_{3}
(2) MgCl_{2}
(3) FeCl_{2}
(4) SnCl_{2}
24. Which of the following has maximum number of lone pairs associated with Xe ?
[AIEEE-2011]
(1) XeO_{3}
(2) XeF_{4}
(3) XeF_{6}
(4) XeF_{2}
25. The number of types of bonds between two carbon atoms in calcium carbide is :-
[AIEEE-2005, 2011]
(1) One sigma, two pi
(2) One sigma, one pi
(3) Two sigma, one pi
(4) Two sigma, two pi
26. Ortho-Nitrophenol is less soluble in water than $\mathrm{p}-$ and $\mathrm{m}-$ Nitrophenols because :-
[AIEEE-2005, 2012]
(1) Melting point of $\mathrm{o}-$ Nitrophenol is lower than those of $\mathrm{m}-$ and p - isomers
(2) $\mathrm{o}-$ Nitrophenol is more volatile in steam than those of m - and p - isomers
(3) o-Nitrophenol shows Intramolecular H -bonding
(4) o-Nitrophenol shows Intermolecular H-bonding
27. Iron exhibits +2 and +3 oxidation states. Which of the following statements about iron is incorrect [AIEEE-2012]
(1) Ferrous compounds are more easily hydrolysed than the corresponding ferric compounds.
(2) Ferrous oxide is more basic in nature than the ferric oxide.
(3) Ferrous compounds are relatively more ionic than the corresponding ferric compounds.
(4) Ferrous compounds are less volatile than the corresponding ferric compounds.

CHEMISTRY

28. The molecule having smallest bond angle is :-
[AIEEE-2012]
(1) PCl_{3}
(2) NCl_{3}
(3) AsCl_{3}
(4) SbCl_{3}
29. In which of the following pairs the two species are not isostructural ?
[AIEEE-2012]
(1) AlF_{6}^{3-} and SF_{6}
(2) CO_{3}^{2-} and NO_{3}^{-}
(3) PCl_{4}^{+}and SiCl_{4}
(4) PF_{5} and BrF_{5}
30. Which one of the following properties is not shown by NO?
[JEE MAIN-2014]
(1) It combines with oxygen to form nitrogen dioxide
(2) It's bons oeswe ia 2.5
(3) It is diamagnetic in gaseous state
(4) It is a neutral oxide
31. Among the following oxoacids, the correct decreasing order of acid strength is :
[JEE MAIN-2014]
(1) $\mathrm{HClO}_{4}>\mathrm{HClO}_{3}>\mathrm{HClO}_{2}>\mathrm{HOCl}$
(2) $\mathrm{HClO}_{2}>\mathrm{HClO}_{4}>\mathrm{HClO}_{3}>\mathrm{HOCl}$
(3) $\mathrm{HOCl}>\mathrm{HClO}_{2}>\mathrm{HClO}_{3}>\mathrm{HClO}_{4}$
(4) $\mathrm{HClO}_{4}>\mathrm{HOCl}>\mathrm{HClO}_{2}>\mathrm{HClO}_{3}$
32. Which among the following is the most reactive ?
[JEE MAIN-2015]
(1) I_{2}
(2) ICl
(3) Cl_{2}
(4) Br_{2}
33. Which one has the highest boiling point?
[JEE MAIN-2015]
(1) Kr
(2) Xe
(3) He
(4) Ne
34. The species in which the N atom is in a state of sp hybridization is:
[JEE MAIN-2016]
(1) NO_{2}^{-}
(2) NO_{3}^{-}
(3) NO_{2}
(4) NO_{2}^{+}
35. The pair in which phosphorous atoms have a formal oxidation state of +3 is :
[JEE MAIN-2016]
(1) Pyrophosphorous and hypophosphoric acids
(2) Orthophosphorous and hypophosphoric acids
(3) Pyrophosphorous and pyrophosphoric acids
(4) Orthophosphorous and pyrophosphorous acids
36. The reaction of zinc with dilute and concentrated nitric acid, respectively, produces:
[JEE MAIN-2016]
(1) NO_{2} and NO
(2) NO and $\mathrm{N}_{2} \mathrm{O}$
(3) NO_{2} and $\mathrm{N}_{2} \mathrm{O}$
(4) $\mathrm{N}_{2} \mathrm{O}$ and NO_{2}
37. Which of the following compounds is metallic and ferromagnetic?
[JEE MAIN-2016]
(1) CrO_{2}
(2) VO_{2}
(3) MnO_{2}
(4) TiO_{2}
38. The species in which the N atom is in a state of sp hybridization is:
[JEE MAIN-2016]
(1) NO_{2}^{-}
(2) NO_{3}^{-}
(3) NO_{2}
(4) NO_{2}^{+}
39. Which of the following species in not paramagnetic?
[JEE MAIN-2017]
(1) NO
(2) CO
(3) O_{2}
(4) B_{2}
40. The group having isoelectronic species is:
[JEE MAIN-2017]
(1) $\mathrm{O}^{2-}, \mathrm{F}^{-}, \mathrm{Na}^{+}, \mathrm{Mg}^{2+}$
(2) $\mathrm{O}^{-}, \mathrm{F}^{-}, \mathrm{Na}, \mathrm{Mg}^{+}$
(3) $\mathrm{O}^{2-}, \mathrm{F}^{-}, \mathrm{Na}, \mathrm{Mg}^{2+}$
(4) $\mathrm{O}^{-}, \mathrm{F}^{-}, \mathrm{Na}^{+}, \mathrm{Mg}^{2+}$
41. Total number of lone pair of electrons in I_{3}^{-}ion is :
[JEE MAIN-2018]
(1) 6
(2) 9
(3) 12
(4) 3
42. According to molecular orbital theory, which of the following will not be a viable molecule ?
[JEE MAIN-2018]
(1) He_{2}^{+}
(2) H_{2}^{-}
(3) H_{2}^{2-}
(4) He_{2}^{2+}

Part \# II $>$ [Previous Year Questions][IIT-JEE ADVANCED]

1. According to molecular orbital theory which of the following statement about the magnetic character and bond order is correct regarding O_{2}^{+}
[JEE 2004]
(A) Paramagnetic and Bond order $<\mathrm{O}_{2}$
(B) Paramagnetic and Bond order $>\mathrm{O}_{2}$
(C) Diamagnetic and Bond order $<\mathrm{O}_{2}$
(D) Diamagnetic and Bond order $>\mathrm{O}_{2}$
2. Which species has the maximum number of lone pair of electrons on the central atom?
(A) ClO_{3}^{-}
(B) XeF_{4}
(C) SF_{4}
(D) I_{3}^{-}
[JEE 2005]
3. The percentage of p-character in the orbitals forming $\mathrm{P}-\mathrm{P}$ bonds in P_{4} is
(A) 25
(B) 33
(C) 50
(D) 75
4. Among the following, the paramagnetic compound is
[JEE 2007]
(A) $\mathrm{Na}_{2} \mathrm{O}_{2}$
(B) O_{3}
(C) $\mathrm{N}_{2} \mathrm{O}$
(D) KO_{2}
5. The species having bond order different from that in CO is
[JEE 2007]
(A) NO
(B) NO^{+}
(C) CN^{-}
(D) N_{2}
6. The structure of XeO_{3} is
[JEE 2007]
(A) linear
(B) planar
(C) pyramidal
(D) T-shaped

CHEMISTRY

7. Statement-1:p-Hydroxybenzoic acid has a lower boiling point than o-hydroxybenzoic acid.
[JEE 2007]
Statement-2 : o-Hydroxybenzoic acid has intramolecular hydrogen bonding.
(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
(B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
(C) Statement-1 is True, Statement-2 is False.
(D) Statement-1 is False, Statement-2 is True.
8. Statement-1 : In water, orthoboric acid behaves as a weak monobasic acid.
[JEE 2007]
Statement-2 : In water, orthoboric, acid acts as a proton donor.
(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
(B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
(C) Statement-1 is True, Statement-2 is False.
(D) Statement-1 is False, Statement-2 is True.
9. Statement-1: Pb^{+4} compounds are stronger oxidizing agents than Sn^{4+} compounds
[JEE 2008]
Statement-2: The higher oxidation states for the group 14 elements are more stable for the heavier members of the group due to 'inert pair effect' .
(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
(B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
(C) Statement-1 is True, Statement-2 is False.
(D) Statement-1 is False, Statement-2 is True.
10. Match each of the diatomic molecules in Column I with its property / properties in Column II.
[JEE 2009]

Column I
$\begin{array}{lll}\text { (A) } \mathrm{B}_{2} & \text { (P) } & \text { Paramagnetic } \\ \text { (B) } \mathrm{N}_{2} & \text { (Q) } & \text { undergoes oxidation } \\ \text { (C) } \mathrm{O}_{2}^{-} & \text {(R) } & \text { Undergoes reduction } \\ \text { (D) } \mathrm{O}_{2} & \text { (S) } & \text { Bond order } \leq 2 \\ & & \text { (T) }\end{array}$

Column II
11. The nitrogen oxide(s) that contain(s) $\mathrm{N}-\mathrm{N}$ bond(s) is (are)
[JEE 2009]
(A) $\mathrm{N}_{2} \mathrm{O}$
(B) $\mathrm{N}_{2} \mathrm{O}_{3}$
(C) $\mathrm{N}_{2} \mathrm{O}_{4}$
(D) $\mathrm{N}_{2} \mathrm{O}_{5}$
12. In the reaction
[JEE 2009]

$$
2 \mathrm{X}+\mathrm{B}_{2} \mathrm{H}_{6} \longrightarrow\left[\mathrm{BH}_{2}(\mathrm{X})_{2}\right]^{+}\left[\mathrm{BH}_{4}\right]^{-}
$$

the amine(s) X is (are)
(A) NH_{3}
(B) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
(C) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
(D) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
13. The species having pyramidal shape is
[JEE 2010]
(A) SO_{3}
(B) BrF_{3}
(C) SiO_{3}^{2-}
(D) OSF_{2}
14. Assuming that Hund's rule is violated, the bond order and magnetic nature of the diatomic molecule B_{2} is
[JEE 2010]
(A) 1 and diamagnetic
(B) 0 and diamagnetic
(C) 1 and paramagnetic
(D) 0 and paramagnetic
15. In allene $\left(\mathrm{C}_{3} \mathrm{H}_{4}\right)$, the type(s) of hybridisation of the carbon atoms is (are)
[JEE 2012]
(A) sp and sp^{3}
(B) sp and sp^{2}
(C) only sp^{2}
(D) sp^{2} and sp^{3}
16. Which ordering of compounds is according to the decreasing order of the oxidation state of nitrogen-
(A) $\mathrm{HNO}_{3}, \mathrm{NO}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{N}_{2}$
(B) $\mathrm{HNO}_{3}, \mathrm{NO}, \mathrm{N}_{2}, \mathrm{NH}_{4} \mathrm{Cl}$
(C) $\mathrm{HNO}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NO}, \mathrm{N}_{2}$
(D) $\mathrm{NO}, \mathrm{HNO}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{N}_{2}$
[JEE 2012]
[JEE 2012]
17. The shape of $\mathrm{XeO}_{2} \mathrm{~F}_{2}$ molecule is :
(A) Trigonal bipyramidal
(B) Square planar
(C) tetrahedral
(D) see-saw
18. The pair(s) of reagents that yield paramagnetic species is/are
[JEE '14]
(A) Na and excess of of NH_{3}
(B) K and excess of O_{2}
(C) Cu and dilute HNO_{3}
(D) O_{2} and 2-ethylanthraquinol
19. The correct statement(s) for orthoboric acid is/are
[JEE '14]
(A) It behaves as a weak acid in water due to self ionization.
(B) Acidity of its aqueous solutoin increases upon addition of ethylene glycol.
(C) It has a three dimensional structure due to hydrogen bonding.
(D) It is weak electrolyte in water
20. Assuming 2s-2p mixing is NOT operative, the paramagnetic species among the following is :
[JEE '14]
(A) Be_{2}
(B) B_{2}
(C) C_{2}
(D) N_{2}
21. The total number of lone pairs of electrons in $\mathrm{N}_{2} \mathrm{O}_{3}$ is.
[JEE '15]
22. Among the triatomic molecules/ions, $\mathrm{BeCl}_{2}, \mathrm{~N}_{3}^{-}, \mathrm{N}_{2} \mathrm{O}, \mathrm{NO}_{2}^{+}, \mathrm{O}_{3}, \mathrm{SCl}_{3}, \mathrm{ICl}_{2}^{-}, \mathrm{I}_{3}^{-}$, and XeF_{2}, the total number of linear molecule(s)/ion(s) where the hybridization of the central atom does not have contribution from the d-orbital(s) is
[Atomic number: $\mathrm{S}=16, \mathrm{Cl}=17, \mathrm{I}=53$ and $\mathrm{Xe}=54$]
[JEE '15]

CHEMISTRY

23. The correct statement(s) regarding, (i) HClO , (ii) HClO_{2}, (iii) HClO_{3} and (iv) HClO_{4} is (are)
[JEE '15]
(A) The number of $\mathrm{Cl}=\mathrm{O}$ bonds in (ii) and (iii) together is two
(B) The number of lone pairs of electrons on Cl in (ii) and (iii) together is three
(C) The hybridixation of Cl in (iv) is sp^{3}
(D) Amongst (i) to (iv), the strongest scid is (i)
24. Under hydrolytic conditions, the compounds used for preparation of linear polymer and for chain termination, respectively, are
[JEE '15]
(A) $\mathrm{CH}_{3} \mathrm{SiCl}_{3}$ and $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}$
(B) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SiCl}_{2}$ and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiCl}$
(C) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SiCl}_{2}$ and $\mathrm{CH}_{3} \mathrm{SiCl}_{3}$
(D) SiCl_{4} and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiCl}$
25. The compound(s) with TWO lone pairs of electrons on the central atom is(are)
[JEE '16]
(A) BrF_{5}
(B) ClF_{3}
(C) XeF_{4}
(D) SF_{4}
26. According to Molecular Orbital Theory,
[JEE '16]
(A) C_{2}^{2-} is expected to be diamagnetic
(B) O_{2}^{2+} is expected to have a longer bond length than O_{2}
(C) N_{2}^{+}and N_{2}^{-}have the same bond order
(D) He_{2}^{+}has the same energy as two isolated He atoms

Subjective

27. Decreasing order of the O-O bond length present in them
[JEE 2004]

$$
\mathrm{O}_{2}, \mathrm{KO}_{2} \text { and } \mathrm{O}_{2}\left[\mathrm{AsF}_{4}\right]
$$

28. The number of water molecule(s) directly bonded to the metal centre in $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is
[JEE 2009]
29. Based on VSEPR theory, the number of 90 degree $\mathrm{F}-\mathrm{Br}-\mathrm{F}$ angles in BrF_{5} is
[JEE 2010]
30. The value of n in the molecular formula $\mathrm{Be}_{\mathrm{n}} \mathrm{Al}_{2} \mathrm{Si}_{6} \mathrm{O}_{18}$ is
[JEE 2010]
31. The total number of diprotic acids among the following is
[JEE 2010]

$\mathrm{H}_{3} \mathrm{PO}_{4}$	$\mathrm{H}_{2} \mathrm{SO}_{4}$	$\mathrm{H}_{3} \mathrm{PO}_{3}$	$\mathrm{H}_{2} \mathrm{CO}_{3}$	$\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
$\mathrm{H}_{3} \mathrm{BO}_{3}$	$\mathrm{H}_{3} \mathrm{PO}_{2}$	H	${ }_{2} \mathrm{CrO}_{4}$	$\mathrm{H}_{2} \mathrm{SO}_{3}$

32. Among the following, the number of elements showing only one non-zero oxidation state is
[JEE 2010]
O, $\mathrm{Cl}, \quad \mathrm{F}, \quad \mathrm{N}, \quad \mathrm{P}, \quad \mathrm{Sn}, \quad \mathrm{Tl}, \quad \mathrm{Na}, \quad \mathrm{Ti}$
33. The difference in the oxidation numbers of the two types of sulphur atoms in $\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$ is.
[JEE 2011]
34. The sum of the number of lone pairs of electrons on each central atom in the following species is -
[JEE '17]

$$
\left[\mathrm{TeBr}_{6}\right]^{2-},\left[\mathrm{BrF}_{2}\right]^{+}, \mathrm{SNF}_{3} \text {, and }\left[\mathrm{XeF}_{3}\right]^{-}
$$

(Atomic numbers: $\mathrm{N}=7, \mathrm{~F}=9, \mathrm{~S}=16, \mathrm{Br}=35, \mathrm{Te}=52, \mathrm{Xe}=54$)
35. Among $\mathrm{H}_{2}, \mathrm{He}_{2}^{+}, \mathrm{Li}_{2}, \mathrm{Be}_{2}, \mathrm{~B}_{2}, \mathrm{C}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}^{-}$and F_{2}, the number of diamagnetic species is [JEE '17]
(Atomic numbers: $\mathrm{H}=1, \mathrm{He}=2, \mathrm{Li}=3, \mathrm{Be}=4, \mathrm{~B}=5, \mathrm{C}=6, \mathrm{~N}=7, \mathrm{O}=8, \mathrm{~F}=9$)

CHEMISTRY

MOCK THEST

SECTION-I : STRAIGHT OBJECTIVE TYPE

1. Select the most ionic and most covalent compounds respectively from the following.

$$
\mathrm{CrO}_{5}, \mathrm{Mn}_{2} \mathrm{O}_{7}, \mathrm{PbO}, \mathrm{P}_{4} \mathrm{O}_{10}, \mathrm{SnO}_{2}
$$

(A) $\mathrm{CrO}_{5}, \mathrm{Mn}_{2} \mathrm{O}_{7}$
(B) $\mathrm{Mn}_{2} \mathrm{O}_{7}, \mathrm{PbO}$
(C) $\mathrm{CrO}_{5}, \mathrm{P}_{4} \mathrm{O}_{10}$
(D) $\mathrm{CrO}_{5}, \mathrm{SnO}_{2}$
2. In which of the following sets central atom of each member involves sp^{3} hybridisation?
(A) $\mathrm{IO}_{4}^{-}, \mathrm{ICl}_{4}^{-}, \mathrm{IF}_{4}^{+}$
(B) $\mathrm{XeO}_{3}, \mathrm{XeO}_{4}, \mathrm{XeF}_{4}$
(B) $\mathrm{SO}_{3}, \mathrm{SO}_{3}^{2-}, \mathrm{SO}_{4}^{2-}$
(D) $\mathrm{PCl}_{4}^{+}, \mathrm{BF}_{4}^{-}, \mathrm{ClO}_{4}^{-}$
3. What is wrong about $\mathrm{P}_{4} \mathrm{O}_{10}$ molecule?
(A) POP angle is 180°
(B) Each ' P ' atom can be considerd to be sp^{3} hybridised
(C) There are two types of $\mathrm{P}-\mathrm{O}$ bond lengths
(D) There are $6 \mathrm{P}-\mathrm{O}-\mathrm{P}$ bonds.
4. Which of the following statement is true for $\mathrm{IO}_{2} \mathrm{~F}_{2}{ }^{-}$according to VSEPR theory?
(A) The lone pair and two I- O double bonds occupy the equatorial positions of trigonal bipyramid.
(B) It has sp3d hybridisation and is T-shaped.
(C) Its structure is analogous to SF_{4}.
(D) (A) and (C) both
5. In the equation ;

$$
\mathrm{A}+2 \mathrm{~B}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{C}+2 \mathrm{D}
$$

where $\mathrm{A}=\mathrm{HNO}_{2} ; \mathrm{B}=\mathrm{H}_{2} \mathrm{SO}_{3} ; \mathrm{C}=\mathrm{NH}_{2} \mathrm{OH}$
Identify the geometry and hybridisation of (D)
(A) Trigonal planar and sp^{2}
(B) Bent and sp^{2}
(C) Tetrahedral and sp
(D) Trigonal pyramidal and sp^{3}.
6. The structure of $\mathrm{F}_{2} \mathrm{SeO}$ is analogous to :
(A) SO_{3}
(B) ClO_{3}^{-}
(C) $\mathrm{SO}_{3}{ }^{2-}$
(D) Both (B) and (C)
7. A diatomic molecule has a dipole moment of 1.2 D. If its bond length is equal to $10^{-10} \mathrm{~m}$ then the fraction of an electronic charge on each atom will be :
(A) 42%
(B) 52%
(C) 37%
(D) 25%
8. Which of the following statement is correct?
(A) $\left(\mathrm{SiH}_{3}\right)_{3} \mathrm{~N}$ is a weaker Lewis base than $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiOH}$.
(B) Like CO , its analogue of Si is not stable
(C) In phosgene, $\mathrm{C}-\mathrm{O}$ bond length is longer than expected while $\mathrm{C}-\mathrm{Cl}$ bond length is shorter.
(D) All of these
9. Which reactions involve a change in the electron-pair gemoetry for the under lined geometry?
(A) $\underline{\mathrm{BF}}_{3}+\mathrm{F}^{-} \longrightarrow \underline{\mathrm{BF}}_{4}^{-}$
(B) $\mathrm{NH}_{3}+\mathrm{H}^{+} \longrightarrow \mathrm{NH}_{4}^{+}$
(C) $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \longrightarrow 2 \underline{\mathrm{SO}}_{3}$
(D) $\mathrm{H}_{2} \underline{\mathrm{O}}+\mathrm{H}^{+} \longrightarrow \mathrm{H}_{3} \underline{\mathrm{O}}^{+}$
10. According to Molecular orbital theory which of the following is incorrect?
(A) LUMO level for C_{2} molecule is $\sigma_{2 p_{x}}$ orbital
(B) In C_{2} molecules both the bonds are π bonds
(C) In $\mathrm{C}_{2}{ }^{2-}$ ion there is one σ bonds and two π bonds.
(D) C_{2} is paramagnetic but $\mathrm{C}_{2}{ }^{2-}$ is diamagnetic.

SECTION - II : MULTIIPLE CORRECT ANSWER TYPE

11. Which of the following statements is/are true for $\mathrm{P}_{4} \mathrm{~S}_{3}$ molecule ?
(A) It contains six $\mathrm{P}-\mathrm{S}$ bonds and three $\mathrm{P}-\mathrm{P}$ bonds.
(B) It contains six $\mathrm{P}-\mathrm{S}$ bonds and ten lone pairs.
(C) It has all atoms sp^{3} hybridised.
(D) It contains six $\mathrm{P}-\mathrm{P}$ bonds and ten lone pairs.
12. Which of the following is polar?
(A) XeF_{4}
(B) XeF_{6}
(C) XeOF_{4}
(D) XeF_{5}^{-}
13. Hydrogen bonding is present in which of the following species?
(A) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
(B) CH_{3}^{-}
(C) $\mathrm{CH}_{3} \mathrm{COOH}$
(D) $\mathrm{CCl}_{3} \mathrm{CH}(\mathrm{OH})_{2}$
14. Correct order about bond angle is :
(A) $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{Te}$
(B) $\mathrm{C}_{2} \mathrm{H}_{2}>\mathrm{C}_{2} \mathrm{H}_{4}>\mathrm{CH}_{4}>\mathrm{NH}_{3}$
(C) $\mathrm{SF}_{6}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{OF}_{2}$
(D) $\mathrm{ClO}_{2}>\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{SF}_{6}$
15. Which of the following molecule are polar $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridized
(A) IF_{5}
(B) XeF_{4}
(C) XeOF_{4}
(D) ICl_{4}^{-}

SECTION - III : ASSERTION AND REASON TYPE

16. Statement-1 : Crystals of hydrated calcium sulphate (gypsum : $\left(\mathrm{CaSO}_{4} .2 \mathrm{H}_{2} \mathrm{O}\right)$ are soft and easily cleavedx.

Statement-2 : Crystals of anhydrous calcium sulphate (anhydrite : CaSO_{4}) are very hard and very difficult to cleave.
(A) Statement-1 is True, Statement02 is True ; Statement-2 is a correct explanation for Statement-1.
(B) Statement-1 is True, Statement-2 is True ; Statement02 is NOT a correct explanation for Statement-1.
(C) Statement-1 is True, Statement-2 is False
(D) Statement-1 is False, Statement-2 is True.

CHEMISTRY

17. Statement-1 : Carbon has unique ability to form $\mathrm{p} \pi-\mathrm{p} \pi$ multiple bonds with itself and with other atoms of small size and high electronegativity.
Statement-2 : Heavier elements of group 14th do not form $p \pi-p \pi$ multiple bonds with itself because their atomic orbitals are too large and diffuse to have effective overlapping.
(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
(B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
(C) Statement-1 is True, Statement-2 is False.
(D) Statement-1 is False, Statement-2 is True.
18.

Statement - 2 : The molecule is slightly bent T-shaped and there is repulsion between lone pairs of electrons.
(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
(B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
(C) Statement-1 is True, Statement-2 is False.
(D) Statement-1 is False, Statement-2 is True.
19.

Statement - 2: $\angle \mathrm{P} \neq 180^{\circ} ; \angle \mathrm{Q} \neq 90^{\circ}$ and thus $\angle \mathrm{R} \neq 120^{\circ}$ but less than 120° due to the presence of a lone pair.
(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
(B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
(C) Statement-1 is True, Statement-2 is False.
(D) Statement-1 is False, Statement-2 is True.
20. Statement-1: Compounds oh Hg^{2+} ions having an ionic radius of 116 pm are more covalent in character than those of Ca^{2+} ions with almost identical size (114 pm) and the same charge.
Statement-2 : For two ions of same size and charge, one with an $(n-1) d^{10} n s^{0}$, electronic configuration will be more polarizing than a cation with an $(n-1) s^{2}(n-1) p^{6} n s^{0}$, electronic configuration.
(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
(B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
(C) Statement-1 is True, Statement-2 is False.
(D) Statement-1 is False, Statement-2 is True.

SECTION - IV : COMPREHENSION TYPE

Read the following comprehensions carefully and answer the questions.

Comprehension \# 1

When anions and cations approach each other, the valence shell of anions are pulled towards a cation, is known as polarisation and ability of a cation to polarize the anion is called as polarising power of cation. Due to polarisation, sharing of electrons occurs between two ions to some extent and bond shows some covalent character. Fajan's suggested following factors on which polarisation depend.
(i) As the charge on cation or anion increases polarisation increases.
(ii) Size of cation decreases or size of anion increases, polarisation increases.
(iii) Cation with pseudo noble gas configuration shows higher polarisation power than that with inert gas configuration.
21. Arrange the following compounds in increasing order of covalent character.
(i) SiCl_{4}
(ii) MgCl_{2}
(iii) NaCl (iv) AlCl_{3}
(A) $\mathrm{NaCl}<\mathrm{MgCl}_{2}<\mathrm{AlCl}_{3}<\mathrm{SiCl}_{4}$
(B) $\mathrm{SiCl}_{4}<\mathrm{AlCl}_{3}<\mathrm{MgCl}_{2}<\mathrm{NaCl}$
(C) $\mathrm{NaCl}<\mathrm{MgCl}_{2}<\mathrm{SiCl}_{4}<\mathrm{AlCl}_{3}$
(D) $\mathrm{SiCl}_{4}<\mathrm{AlCl}_{3}<\mathrm{NaCl}<\mathrm{MgCl}_{2}$
22. Which one is the most ionic ?
(A) $\mathrm{P}_{4} \mathrm{O}_{10}$
(B) TiO_{2}
(C) SnO
(D) SO_{3}
23. Highest polarisation is shown in the following compounds?
(A) MgCl_{2}
(B) BaCl_{2}
(C) AgCl
(D) AgI

Comprehension \# 2

The distribution of electrons among various molecular orbitals is called the electronic configuration of the molecule which provides us the following very important informations about the molecule.
(A) Stability Of molecule : The molecule is stable if number of bonding molecular orbital electrons $\left(\mathrm{N}_{\mathrm{b}}\right)$ is greater than the number of antibonding molecular orbitals electrons $\left(N_{a}\right)$.
(B) Bond Order: Bond order $=\frac{1}{2}\left(\mathrm{~N}_{\mathrm{b}}-\mathrm{N}_{\mathrm{a}}\right)$

A positive bond order means a stable molecule while a negative or zero bond order means an unstable molecule.
(C) Nature of the Bond: Bond order 1, 2 and 3 corresponds to a single, double and triple bond respectively.
(D) Bond Length : Bond length decreases as bond order increases
(E) Magnetic Nature : Molecular orbitals in a molecule are doubly occupied, the substance is diamagnetic and if one or more molecular orbitals are singly occupied, it is paramagnetic.
24. Which one of the following statement is incorrect?
(A) Among $\mathrm{O}_{2}^{+}, \mathrm{O}_{2}$ and O_{2}^{-}the bond length decreases as $\mathrm{O}_{2}^{-}>\mathrm{O}_{2}>\mathrm{O}_{2}^{+}$
(B) He_{2} molecule does not exist as the bonding and anti-bonding orbitals cancel each other.
(C) $\mathrm{C}_{2}, \mathrm{O}_{2}^{2-}, \mathrm{Li}_{2}$ are diamagnetic
(D) In F_{2} molecule, the energy of $\sigma_{2 p_{z}}$ is more than $\pi_{2 p x}$ and $\pi_{2 p y}$.

CHEMISTRY

25. The following molecules / species have been arranged in the order of their increasing bond orders. Identify the correct order.
(I) $\mathrm{O}_{2} ; ~$ (II) O_{2}^{-};
(III) $\mathrm{O}_{2}{ }^{2-}$; (IV) O_{2}^{+}
(A) III $<$ II $<$ I $<$ IV
(B) IV $<$ III $<$ II $<$ I
(C) III $<$ II $<$ IV $<$ I
(D) II $<$ III $<$ I $<$ IV
26. $\quad \mathrm{N}_{2}$ has greater dissociation energy than $\mathrm{N}_{2}{ }^{+}$, where as O_{2} has a lower dissociation energy than $\mathrm{O}_{2}{ }^{+}$because :
(A) bond order is reduced when O_{2} is ionized to O_{2}^{+}and bond order is increased when N_{2} is ionized to $\mathrm{N}_{2}{ }^{+}$.
(B) bond order is increased when O_{2} is ionized to O_{2}^{+}and bond order is decreased when N_{2} is ionized to N_{2}^{+}
(C) bond order is decreased when O_{2} is ionized to O_{2}^{+}and bond order is decreased when N_{2} is ionized to N_{2}^{+}
(D) none of these

Comprehension \# 3
Hydrogen bonding :

(X)

(Y)
27. Which of the following species shows the same type of bonding as found in (X) ?
(A) Crystalline potassium bicarbonate
(B) Fromic acid
(C) Anion of Caro's acid
(D) Sulphuric acid
28. Which of the following can not be explained by (Y) type of bondig?
(A) The hydrolysis of NCl_{3} to NH_{3}.
(B) The p-hydroxybenzaldehyde as high melting solid at room temperature
(C) Extra stability of the complex of $\mathrm{Ni}(\mathrm{II})$ with dimethylglyoxime.
(D) The hygroscopic nature of sodium peroxide.
29. Select the incorrect statement for (X) and (Y).
(A) p-hydroxy benzoic acid the higher boiling point than o-hydroxy benzoic acid on account of (Y).
(B) Boric acid crystal breaks quite easily into very fine particles because of (X).
(C) HF exists as zig-zag chains, $(\mathrm{HF})_{\mathrm{n}}$ in solid as well as in liquid because of (Y).
(D) The higher k_{1} value than k_{2} for maleic acid is because of (X).

SECTION - V : MATRIX - MATCH TYPE

30. Match the species listed in column I with hybridisation of central atom listed in column II.

Column I
(A) $\mathrm{IO}_{2} \mathrm{~F}_{2}^{-}$
(B) $\mathrm{F}_{2} \mathrm{SeO}$
(C) ClOF_{3}
(D) XeF_{5}^{+}
(p) $\mathrm{sp}^{3} \mathrm{~d}$
(q) sp^{3}
(r) sp^{2}
(s) $\mathrm{sp}^{3} \mathrm{~d}^{2}$

Column II
31. Match the species listed in column I with shape(s) listed in column II.
Column I
Column II
(A) $\mathrm{ClF}_{2}^{-}, \mathrm{ClF}_{2}^{+}$
(p) Square pyramidal
(B) $\mathrm{IO}_{2} \mathrm{~F}_{2}^{-}, \mathrm{F}_{2} \mathrm{SeO}$
(q) See-saw and pyramidal molecular geometry respectively
(C) $\mathrm{IOF}_{4}^{-}, \mathrm{XeOF}_{2}$
(r) Linear and bent respectively
(D) $\mathrm{BrF}_{5}, \mathrm{XeOF}_{4}$
(s) Square pyramidal and T - shaped respectively.
32. Match the compounds listed in column I with characteristic(s) listed in column II.

Column I
(A) SF_{2}
(B) KrF_{4}
(C) NOCl
(D) $\mathrm{N}(\mathrm{Me})_{3}$

Column II
(p) sp^{3} and bent
(q) lone pair(s)
(r) Bond angle $<109^{\circ} 28^{\prime}$
(s) sp^{2} and bent
(t) $\mathrm{sp}^{3} \mathrm{~d}^{2}$ and square planar
33. Match the compounds listed in column I with type of bond(s) listed in column II

Column I
(A) Blue vitriol
(p) Ionic bond
(B) Gypsum
(q) Covalent bond
(C) Pure orthophosphoric acid
(D) Chloral hydrate
(r) Hydrogen bond
(s) Co-ordinate bond

Column II

ANSWER KEY

EXERCISE - 1

1.	B, C, D		2.	B,C		3.	A, B, C, D		4.	B, C		
5.	B, C		6.	B, D		7.	A, B		8.	A, B, C		
9.	A, C		10.	A, B		11.	B, C, D		12.	A, C		
13.	A, B, C, D		14.	B, C		15.	B, D		16.	A, B, C		
17.	A, C		18.	C, D		19.	B, C		20.	A, C, D		
21.	A, B, C		22.	B, C		23.	A, B, C		24.	B, D		
25.	D		26.	A,B,C		27.	A, B, C, D		28.	A, B, D		
29.	B, C, D		30.	A, B, C		31.	B, C, D		32.	B, C, D		
33.	A, B, C		34.	B, D		35.	A, B, C, D		36.	A, B, C		
37.	A, B, D		38.	B, C, D		39.	A, B, C, D		40.	A, B, D		
41.	A, B, C, D		42.	A, B, C, D		43.	B, C, D		44.	B, C, D		
45.	B, D		46.	A, B, D		47.	D		48.	B, C		
49.	A, C	50. A	51. A	52. C	53. C	54. B	55. B	56. A	57. D	58. D	59. D	60. C
61. A	62. A	63. B	64. A	65. A	66. D	67. D	68. A	69. D	70. A	71. D	72. C	73. B
74. A	75. D	76. B	77. A	78. B	79. C	80. D	81. C	82. D	83. D	84. D	85. D	86. D
87. D	88. B	89. B	90. D	91. C	92. C	93. C	94. A	95. B	96. D	97. C	98. D	99. B
100. C	101. B	102. B	103. A	104. B	105. C	106. D	107. C	108. C	109. B	110. B	111. B	112. B
113. C	114. D	115. C	116. D	117. C	118. C	119. A	120. D	121. C	122. D	123. A	124. D	125. A
126. A												

PART \# II

EXERCISE - 3 : PART \# I

1. $\mathrm{A} \rightarrow(\mathrm{p}), \mathrm{B} \rightarrow(\mathrm{q}), \mathrm{C} \rightarrow(\mathrm{p}), \mathrm{D} \rightarrow(\mathrm{s})$
2. $\mathrm{A} \rightarrow(\mathrm{r}), \mathrm{B} \rightarrow(\mathrm{q}), \mathrm{C} \rightarrow(\mathrm{s}), \mathrm{D} \rightarrow(\mathrm{p}, \mathrm{t})$
3. $\mathrm{A} \rightarrow(\mathrm{r}, \mathrm{s}), \mathrm{B} \rightarrow(\mathrm{p}, \mathrm{q}, \mathrm{s}), \mathrm{C} \rightarrow(\mathrm{q}), \mathrm{D}-(\mathrm{q}, \mathrm{r})$
4. $\mathrm{A} \rightarrow(\mathrm{q}), \mathrm{B} \rightarrow(\mathrm{r}), \mathrm{C} \rightarrow(\mathrm{s}, \mathrm{p}), \mathrm{D}-(\mathrm{p})$
5. $\mathrm{A} \rightarrow(\mathrm{r}), \mathrm{B} \rightarrow(\mathrm{s}), \mathrm{C} \rightarrow(\mathrm{p}), \mathrm{D}-(\mathrm{q})$
6. $\mathrm{A} \rightarrow(\mathrm{p}, \mathrm{q}, \mathrm{r}), \mathrm{B} \rightarrow(\mathrm{q}, \mathrm{r}, \mathrm{t}), \mathrm{C} \rightarrow(\mathrm{s}), \mathrm{D} \rightarrow(\mathrm{r})$
7. $\mathrm{A} \rightarrow(\mathrm{q}, \mathrm{s}), \mathrm{B}-(\mathrm{q}, \mathrm{r}, \mathrm{s}), \mathrm{C} \rightarrow(\mathrm{p}, \mathrm{q}), \mathrm{D} \rightarrow(\mathrm{q}, \mathrm{s})$
8. $\mathrm{A} \rightarrow(\mathrm{p}, \mathrm{r}), \mathrm{B} \rightarrow(\mathrm{p}, \mathrm{q}, \mathrm{s}), \mathrm{C} \rightarrow(\mathrm{q}, \mathrm{s}), \mathrm{D} \rightarrow(\mathrm{p}, \mathrm{r})$
9. $\mathrm{A} \rightarrow(\mathrm{r}), \mathrm{B} \rightarrow(\mathrm{p}), \mathrm{C} \rightarrow(\mathrm{s}), \mathrm{D} \rightarrow(\mathrm{q})$
10. $\mathrm{A} \rightarrow(\mathrm{p}, \mathrm{r}), \mathrm{B} \rightarrow(\mathrm{p}, \mathrm{q}), \mathrm{C} \rightarrow(\mathrm{p}, \mathrm{r}), \mathrm{D} \rightarrow(\mathrm{p}, \mathrm{q}, \mathrm{s})$
11. $\mathrm{A} \rightarrow(\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}), \mathrm{B} \rightarrow(\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}), \mathrm{C} \rightarrow(\mathrm{q}, \mathrm{r}), \mathrm{D} \rightarrow(\mathrm{q}, \mathrm{r})$
12. $\mathrm{A} \rightarrow(\mathrm{r}), \mathrm{B} \rightarrow(\mathrm{p}, \mathrm{q}, \mathrm{r}), \mathrm{C} \rightarrow(\mathrm{p}, \mathrm{q}, \mathrm{r}), \mathrm{D} \rightarrow(\mathrm{p}, \mathrm{r}), \mathrm{E} \rightarrow(\mathrm{p}, \mathrm{r}, \mathrm{s})$
13. $\mathrm{A} \rightarrow(\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}), \mathrm{B} \rightarrow(\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}), \mathrm{C} \rightarrow(\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}), \mathrm{D} \rightarrow(\mathrm{r}, \mathrm{s})$

PART \# II

Comprehension \#1:

1. C
2. D
3. D
4. A, C
5. $\mathrm{A}, \mathrm{B}, \mathrm{C}$

Comprehension \#2 :

1. D 2. D 3. B

Comprehension \# 3 :

1. D
2. A
3. C
4. A
5. D

Comprehension \# 4 :

1. B 2. B 3. C

Comprehension \# 5 :

1. C 2. C

Comprehension \#6:

1. A 2. A
2. C

EXERCISE - 5 : PART \# I

1. 1
2. 2
3. 3
4. 1
5. 4
6. 3
7. 2
8. 4
9. 4
10. 3
11. 3
12. 4
13. 1
14. 3
15. 4
16. 1
17. 1
18. 4
19. 2
20. 3
21. 4
22. 2
23. 1
24. 4
25. 1
26. 3
27. 1
28. 4
29. 4
30. 3
31. 1
32. 2
33. 2
34. 4
35. 4
36. 4
37. 1
38. 4
39. 2
40. 1
41. 2
42. 3

PART \# II

1. B
2. D 3. D
3. D 5. A 6. C
4. D
5. C 9. C
6. $\mathrm{A} \rightarrow(\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{T}) ; \mathrm{B} \rightarrow \mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T} ; \mathrm{C} \rightarrow(\mathrm{P}, \mathrm{Q}, \mathrm{R}) ; \mathrm{D} \rightarrow(\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S})$
7. $\mathrm{A}, \mathrm{B}, \mathrm{C}$
8. B, C 13. D
9. A
10. B
11. B
12. D
13. $\mathrm{A}, \mathrm{B}, \mathrm{C}$
14. B, D
15. C
16. 8
17. 4
18. B, C
19. B
20. B, C
21. A, C

Subjective Questions
27. $\mathrm{KO}_{2}>\mathrm{O}_{2}>\mathrm{O}_{2}\left[\mathrm{AsF}_{4}\right]$
28. 4
29. 0
30. 3
31. 6
32. 2
33. 5
34. 6
35. 5 or 6

MOCKTEST

1. B
2. D
3. A
4. D
5. $\mathrm{A}, \mathrm{C}, \mathrm{D}$
6. A
7. D
8. C
9. C
10. C
11. D
12. A
13. $\mathrm{A}, \mathrm{B}, \mathrm{D}$
14. D
15. D
16. A
17. B
18. $\mathrm{A} \rightarrow(\mathrm{p}), \mathrm{B} \rightarrow(\mathrm{q}), \mathrm{C} \rightarrow(\mathrm{s}), \mathrm{D} \rightarrow(\mathrm{p})$
19. $\mathrm{A} \rightarrow(\mathrm{r}), \mathrm{B} \rightarrow(\mathrm{q}), \mathrm{C} \rightarrow(\mathrm{s}), \mathrm{D} \rightarrow(\mathrm{p})$
20. $\mathrm{A} \rightarrow(\mathrm{p}, \mathrm{q}, \mathrm{r}), \mathrm{B} \rightarrow(\mathrm{q}, \mathrm{r}, \mathrm{t}), \mathrm{C} \rightarrow(\mathrm{q}, \mathrm{s}), \mathrm{D} \rightarrow(\mathrm{r})$
21. $\mathrm{A} \rightarrow(\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}), \mathrm{B} \rightarrow(\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}), \mathrm{C} \rightarrow(\mathrm{q}, \mathrm{r}), \mathrm{D} \rightarrow(\mathrm{q}, \mathrm{r})$
