SOLVED EXAMPLES

Ex.1 Which of the following will be strongest Lewis base ?

(A) CH_3CN	(B) CH_3NH_2
(C) N ₂	(D) None of these

Sol. (B) In CH₃NH₂, hybridisation of N is sp³ while in CH₃CN hybridisation of N is sp. N₂ is also sp hybridised.

We know that in hybridisation, as s-character increases the electronegativity of atom also increases. Due to this tendency the release of lone pair of electrons becomes some what difficult. In methyl amine the nitrogen is in sp³ hybridisation and therefore the donation of the lone pair of electron will be quite easier; so it is strongest Lewis base.

- **Ex.2** Which type of hybridisation is found in H_2O^+ ?
- **Sol.** According to steric no. rule

Steric number = Number of bond pair(s) + number of lone pair(s) at central atom

$$H \xrightarrow{\bullet \bullet}_{I} H^+$$
 So, steric number = 3 + 1 = 4.
H

Thus the hybridisation of oxygen in H_3O^+ is sp³.

- **Ex.3** Classify the following bonds as ionic, polar covalent or covalent and give your reasons :
 - (A) SiSi bond in Cl₃SiSiCl₃
 - (B) SiCl bond in Cl₃SiSiCl₃
 - (C) CaF bond in CaF₂
 - **(D)** NH bond in NH₃
- Sol. (A) Covalent, due to identical electronegativity.
 - (B) Covalent, due to less electronegativity difference.
 - (C) Ionic, due to more electronegativity difference.
 - (D) Covalent, due to nearly similar electronegativity.
- **Ex.4** (A) Which one has highest and lowest melting point and why?

NaCl KCl RbCl CsCl

(B) Why melting points of cesium halide (CsX) decrease in the order given below?

CsF > CsCl > CsBr > CsI.

Sol. (A) NaCl will have highest lattice energy on account of the smaller Na⁺ while CsCl has lowest lattice energy on account of the larger Cs⁺. Hence NaCl has highest melting point and CsCl has lowest melting point.

(B) As size of anions increase their polarisability increases thus their covalent character increases and melting point decrease.

Ex.5 Which is **incorrect** statement ?

(A) In CF₂=C=CF, molecule all the four fluorine atoms are not in the same plane.

(B) Ka, of fumaric acid is more than Ka, of maleic acid due to intra molecular hydrogen bonding in maleic acid.

(C) The O–O bond length in $O_2[AsF_4]$ is longer than KO_2 .

(D) The bond angle order in halogen -S - halogen is $OSF_2 < OSCl_2 < OSBr_2$

Sol.

(A)

(B)

 $\begin{array}{c} F \\ F \\ F \end{array} \begin{array}{c} C \\ (s+p_x+p_y) \end{array} \begin{array}{c} C \\ (s+p_x) \end{array} \begin{array}{c} C \\ (s+p_x+p_z) \end{array} \begin{array}{c} F \\ (s+p_x+p_z) \end{array} \begin{array}{c} F \\ F \end{array}$

As both carbon atoms are in different planes, all the four fluorine atoms are not in the same plane.

Due to intramolecular hydrogen bonding the maleate ion gets stabilized and thus removal of second hydrogen becomes quite difficult.

- (C) $O_2[AsF_4] = O_2^+$ B.O=2.5 $KO_2 = O_2^-$ B.O=1.5 Bond order $\propto \frac{1}{bond length}$; so O_2^+ has smaller bond length than O_2^-
- (D) Greater the size of the halogen atoms greater will be the steric repulsions and thus larger will be the bond angles.
- **Ex. 6** Which of the compounds MgCO₃ and ZnCO₃ is thermally more stable ? Explain.
- **Sol.** Mg^{+2} has less polarising power due to inert gas configuration while Zn^{+2} has higher polarising power due to pseudo inert gas configuration. A cation i.e. Zn^{2+} with a greater, polarising power exercise a strong pull on the electron cloud of the neighbouring O-atom of the CO_3^{2-} ion and as such the metal carbonate ($ZnCO_3$) gets readily decomposed into CO_3 and the oxide of the metal, ZnO. Thus $ZnCO_3$ is less stable than $MgCO_3$.
- **Ex.7** Why is anhydrous HCl predominantly covalent in the gaseous state but is ionic in aqueous solution?
- Sol. It exists as HCl (bond formed by equal sharing of electrons) but in aqueous solution ionises as H^+ (or H_3O^+) and $C\Gamma^-$ due to polarity of HCl.
- **Ex.8** Super oxides are coloured and paramagnetic why?
- **Sol.** Super oxides contain one unpaired electron in anti bonding molecular orbital and are coloured due to transition of HOMO orbital electron within visible region.

- **Ex.9** Of the species O_2^+, O_2^-, O_2 and O_2^{2-} which would have the maximum bond strength ?
- **Sol.** O_2^+ has higher bond order i.e. 2.5 than $O_2(2)$ and $O_2^-(1.5)$ and bond strength is directly proportional to bond order.
- **Ex. 10** Why BeF, has zero dipole moment whereas H₂O has some dipole moment ?
- **Sol.** BeF, has linear molecule and H₂O has bent molecule.

Ex.11 A diatomic molecule has a dipole moment of 1.2 D. If its bond distance is equal to 1.0Å then the fraction of an electronic charge on each atom is :

(A) 25%	(B) 37%
(C) 52%	(D) 42%

Ans. (A)

Sol. Assuming complete charge transfer then dipole moment = $(4.8 \times 10^{-10} \text{ esu}) (10^{-8} \text{ cm}) = 4.8 \text{ D}$

so % ionic character = $\frac{1.2}{4.8} \times 100\% = 25\%$

- **Ex.12** Why crystals of hydrated calcium sulphate are soft and easily cleaved where as anhydrous calcium sulphate are very hard and very difficult to cleave ?
- Sol. With in the Ca^{2+} / SO_4^{2-} layer the ions are held together by strong electrovalent bonds but these separated Ca^{2+} / SO_4^{2-} layers are linked by relative weak H–bond. The weak H-bonds link SO_4^{2-} ion in the intermediate region.
- **Ex. 13** The dipole moment of KCl is 3.336×10^{-29} Coulomb meter. The interionic distance in KCl is 2.6Å. Find the % ionic character in KCl.
- Sol. The theoretical dipole moment in KCl = $e \times d = 1.602 \times 10^{-19} \times 2.6 \times 10^{-10} = 4.1652 \times 10^{-29}$ C meter

% ionic character = $\frac{\text{experimental dipole moment}}{\text{theoretical dipole moment}} \times 100 = (3.336 \times 10^{-29}/4.1652 \times 10^{-29}) \times 100$

Ex. 14 For an ionic compound AX_3 (s) formed between a metal A and a non-metal X (outermost shell configuration of $X = ns^2 np^5$). Find the enthalpy of formation (magnitude) of AX_3 (s) in k cal mol⁻¹ with the help of the following data. (Non-metal X is found to exist in nature as a diatomic gas)

$\Delta H_{\text{Sublimation}} A(s) = 100 \text{ Kcal/mol}$	$\Delta H_{IE_1} A(g) = 60 \text{ Kcal/mol}$
$\Delta H_{IE_2} A(g) = 150 \text{ Kcal/mol}$	$\Delta H_{IE_3} A(g) = 280 \text{ Kcal/mol}$
$\Delta H_{diss} X_2(g) = 80 \text{ Kcal/mol}$	$\Delta H_{e.g} X(g) = -110 \text{ Kcal/mol}$
$\Delta H_{\text{Lattice energy}} A X_3(s) = -470 \text{ Kcal/mol}$	

Sol.

$$A(s) + \frac{3}{2}X_{2}(g) \rightarrow AX_{3}(s)$$

$$A(s) + \frac{3}{2}X_{2}(g) \rightarrow AX_{3}(s)$$

$$A(g) + \frac{3}{2}\Delta H_{diss} + \frac{3}{2}\Delta H_{LE} + \frac{3}{2}A_{H_{LE}} + \frac{3}{2}A_{H_{LE}} + \frac{3}{2}A_{H_{LE}} + \frac{3}{2}A_{H_{LE}} + \frac{3}{2}A_{H_{LE}} + \frac{3}{2}A_{H_{LE}} + \frac{3}{2}A_{H_{diss}} + 3A_{H_{e,g}} + A_{H_{LE}} + \frac{3}{2}A_{H_{diss}} + 3A_{H_{e,g}} + A_{H_{LE}} + \frac{3}{2}A_{H_{diss}} + 3A_{H_{e,g}} + A_{H_{LE}} + \frac{3}{2}A_{H_{diss}} +$$

Ex. 15 CO forms weak bonds to Lewis acid such as BF_3 . In contrast CO forms strong bonds to transition metals. Why explain ? Sol. $CO \leftarrow_{\sigma} BF_3$

Transition metal $\xrightarrow{\pi}_{\sigma}$ CO

This is called synergic interaction and because of it the bond between CO and transition metal is stronger.

- **Ex. 16** The gaseous potassium chloride molecule has a measured dipole moment of 10.0 D, which indicates that it is a very polar molecule. The separation between the nuclei in this molecule is 2.67×10^{-8} cm. Calculate the percentage ionic character in KCl molecule.
- Sol. Dipole moment of compound would have been completely ionic

=
$$(4.8 \times 10^{-10} \text{ esu}) (2.67 \times 10^{-8} \text{ cm}) = 12.8 \text{ D}$$

so % ionic character = $\frac{10.0}{12.8} \times 100\% = 78.125\% \simeq 78\%$ Ans.

Ex. 17 There will be three different fluorine-fluorine distances in molecule $CF_2(C)_2 CF_2$. Assuming ideal bond angles for a particular hybridisation (assume no distortion due to double bonds) find out the two smaller fluorine-fluorine distances and fill the result (in pm) in the increasing order in your answer sheet. Round off your answer to the nearest whole number.

(Given that C–F bond length = 134 pm, C = C bond length = 134 pm $\sqrt{3}$ = 1.73)

Sol.

 $d_1 = 2 \times 134 \times \sin 60^\circ$ pm = 231.8 pm = 232 pm $d_2 = 134 \times 3 + 2 \times 134 \cos 60^\circ$ pm = 536 pm Ans.

E	xercise # 1		[Single Correct Choi	ce Type Questions]
1.	Electrovalent compoun (A) Melting points are l (C) Conduct current in	d's ow fused state	(B) Boiling points an(D) Insoluble in pola	re low ar solvent
2.	An element has electron (A) covalent	negativity 1. The bonds (B) metallic	s formed between atoms of t (C) ionic	his elements are (D) hydrogen bond
3.	Which of the following (A) CH ₃ Cl	compound has electro (B) NaCl	valent linkage ? (C) CH ₃ OH	(D) CH ₃ COOH
4.	An ionic bond A ⁺ B ⁻ is (A) the ionization energ (B) the ionization energ (C) the ionization energ (D) the ionization energ	most likely to be form gy of A is high and the e gy of A is low and the electron gy of A and the electron gy of A and the electron	ed when : electron affinity of B is low lectron affinity of B is high affinity of B is high affinity of B is low	
5.	Among the following w (A) High solubility in w (C) Low boiling point	hich property is comm ater	only exhibited by a covalent (B) High electrical c (D) High melting po	compound conductance int
6.	Given the electronegativ YZ respectively would (A) Covalent, ionic (C) Covalent, covalent	vities of three elements 2 be :	 X = 1.0, Y = 2.0, Z = 3.0. The (B) Ionic, covalent (D) Ionic, ionic. 	type of bonding formed between XZ and
7.	Which of the following (A) Na and F	pairs of elements forms (B) Cs and F	s a compound with maximum (C) Na and C	ionic character ? (D) Cs and I
8.	Example of super octet (A) SF ₆	molecule is : (B) PCl ₅	(C) IF ₇	(D) All of these
9.	Average bond order of (A) 1	C–C bond in C_6H_6 is (B) 2	(C) 1.5	(D) 1.33
10.	The possible structure of	of monothiocarbonate	ion is :	
	(A) :0:::::::::::::::::::::::::::::::::::	(B) :0: .0: .0:	(C) ;0; ;0; ;0; ;0;	
11.	Which one (s) of the fo (A) : $\ddot{N} = N = \ddot{O}$:	llowing structures can (B) $: N \equiv N - \ddot{O}:$	not represent resonance form (C) $: \ddot{N} - N \equiv O$: (is for N ₂ O (diamagnetic)? D) : $\ddot{N} = O = \ddot{N}$: (E) : $\dot{N} = N = \dot{O}$:
	(A) A and C	(B) C , E and D	(C) D and E	(D) C and D.
12.	The octet rule is not ob (A) CO ₂	eyed in : (B) BCl ₃	(C) PCI ₅	(D) (B) and (C) both

13.	Which of the following co $(\mathbf{A}) O_2$	ompounds does not contain (B) H ₂ PO ₄	 –1 formal charge on any of (C) HNO₂ 	f O atom : (D) N ₂ O ₂	
		() <u>3</u> <u>4</u>		2-5	
14.	Pick out among the follow $(\Lambda) N^{-}$	ving species isoelectronic w	with CO_2 .	(D) All of these	
	(\mathbf{A}) \mathbf{N}_3	(b)(CNO)		(D) All of these	
15.	The correct order of incre	asing C-O bond length of C	$O, CO_3^{2-}, CO_2 $ is :		
	(A) $CO_3^{2-} < CO_2 < CO$		(B) $\text{CO}_2 < \text{CO}_3^{2-} < \text{CO}$		
	$(\mathbb{C}) \operatorname{CO} < \operatorname{CO}_3^{2-} < \operatorname{CO}_2$		(D) $\text{CO} < \text{CO}_2 < \text{CO}_3^{2-1}$		
16.	The average charge on ea	ch O atom and average bo	nd order of I–O bond in IO,	5^{5-} is :	
	(A) –1 and 1.67	(B) $- 5/6$ and 1.67	(C) - 5/6 and 1.33	$(\mathbf{D}) - 5/6 \text{ and } 1.167$	
	0				
17	H_{-}	on between x, y and z in hi	carbonate ion with respect t	o bond length is .	
17.	(1)				
	(A) $X > Y > Z$	$(\mathbf{B}) \mathbf{X} \ge \mathbf{Z} \ge \mathbf{y}$	$(\mathbf{C}) \mathbf{z} = \mathbf{y} > \mathbf{x}$	$(\mathbf{D}) \mathbf{X} > \mathbf{y} = \mathbf{Z}$	
18.	Indicate the wrong statem	nent :			
	(A) A sigma bond is stron	ger then π - bond	(B) p-orbitals always have only sidewise overlapping		
	(C) s-orbitals never form	π - bonds	(D) There can be only on	e sigma bond between two atoms	
19.	C_3^{4-} has				
	(A) two σ and two π bond	l	(B) three σ and one π bond		
	(C) two σ and one π bond		(D) two σ and three π bond		
20					
20.	How many bonds are the	re in O			
	(A) 13	(B) 23	(C) 20	(D) 26	
21.	Which of the following ov	verlaps is incorrect [assum	ing z-axis to be the internuc	lear axis] ?	
	(A) $2 p_y + 2 p_y \rightarrow \pi 2 p_y$		(B) $2 p_z + 2 p_z \rightarrow \sigma 2 p_z$		
	$(\mathbf{C}) 2 \mathbf{p}_{\mathrm{x}} + 2 \mathbf{p}_{\mathrm{x}} \rightarrow \pi 2 \mathbf{p}_{\mathrm{x}}$		(D) $1 \text{ s} + 2 \text{ p}_y \rightarrow \pi (1 \text{ s} - 2 \text{ p}_y)$	_y)	
	(A) 'a' & 'b'	(B) 'b' & 'd'	(C) only 'd'	(D) None of these	
22.	Effective overlapping will	l be shown by :			
		(B) ⊕ + ⊖	$() \oplus + \oplus + \oplus \oplus$	(\mathbf{D}) All the above	
23.	The covalency of nitrogen	n in HNO ₃ is			
	(A) 0	(B) 3	(C) 4	(D) 5	
24	What is covalency of Lin	IF- ?			
	(A) 5	(B) 3	(C) 7	(D) 1	
		2			
25.	In which of the following	N is in the sp^2 hybridisatio	on state		
	(A) $(CH_3)_3N$	(b) CH_3CONH_2	(\mathbf{C}) CH ₃ CN	$(\mathbf{D}) \operatorname{NO}_2^{-1}$	
26.	In pent-3-en-1-yne the ter	minal carbon-atoms have for	ollowing hybridisation		
	(A) sp & sp^2	(B) $sp^2 \& sp^3$	(C) $sp^2 \& sp$	(D) sp & sp^3	

27.	27. Which of the following has been arranged in increasing order of size of the hybrid orbit				
	(A) $sp < sp^2 < sp^3$		(B) $sp^3 < sp^2 < sp$		
	(C) $sp^2 < sp^3 < sp$		(D) $sp^2 < sp < sp^3$		
28.	The hybridization of carbo (A) $sp^3 - sp^3$	on atoms in $C_2 - C_3$ single b (B) $sp^2 - sp$	bond of $HC^4 \equiv C^2 - CH^2 = CH^2$ (C) $sp - sp^2$	H_2 is: (D) sp ³ - sp	
29.	Specify the hybridisations (A) sp , sp ² , sp	(B) sp , sp , sp ³	wing species respectively { (C) sp ² , sp, sp	N_3^- , NOCl, N_2O (D) sp ² , sp ² , sp.	
30.	In which of the following (A) ClF_3 , ClF_3O	pairs hybridisation of the co (B) CIF ₃ O, CIF ₃ O ₂	entral atoms are different ? (C) $[ClF_2O]^+, [ClF_4O]^-$	(D) [ClF ₄ O] ⁻ , [XeOF ₄]	
31.	$BF_3 + F^- \rightarrow BF_4^-$ What is the hybridisation (A) sp^2 , sp^3	state of B in BF_3 and BF_4^- (B) sp ³ , sp ³	: (C) sp ² , sp ²	(D) sp ³ , sp ³ d	
32.	In H_2SO_4 molecule (A) S-atom is sp^3d^2 hybrid (B) S-atom is sp^3 hybridis (C) S-atom is sp^3 hybridis (D) S-atom is sp^2 hybridis	dised and there are 4 lone part ed and there are no lone part and there are 8 lone pair and these are 8 lone pair	air electrons on 'O' atoms. ir of electrons in the molect of electrons on the 'O' atom of electrons 'O' atoms	ıle. ns.	
33.	$S_1 : [XeF_7]^+$ has sp^3d^3 hyb $S_3 : [SF_6]$ has sp^3d^2 hybrid	oridisation ; disation ;	$S_2 : [PCl_4]^+$ has sp^3d^2 hyb $S_4 : [PF_4]^+$ has sp^3 hybrid	ridisation isation	
	(A) T F F T	(B) T T F T	(C) T F T T	(D) F F F T	
34.	Which is the right structure	re of XeF ₄ ?			
	(A) F Xe F F	F	(B) F Xe F		

35. Which reaction involves a change in the electron-pair geometry for the under lined element ? (A) $BF_{+} + F^{-} \longrightarrow BF_{-}^{-}$ (B) $NH_{+} + H^{+} \longrightarrow NH_{+}^{+}$

$(A) \underline{D} \Gamma_3 + \Gamma \longrightarrow \underline{D} \Gamma_4$	$(\mathbf{D}) \underline{\mathbf{N}} \mathbf{n}_3 + \mathbf{n} \longrightarrow \underline{\mathbf{N}} \mathbf{n}_4$
$(\mathbf{C}) 2 \underline{\mathbf{S}} \mathbf{O}_2 + \mathbf{O}_2 \longrightarrow 2 \underline{\mathbf{S}} \mathbf{O}_3$	$(\mathbf{D}) \operatorname{H}_{2}\underline{O} + \operatorname{H}^{+} \longrightarrow \operatorname{H}_{3}\underline{O}^{+}$

36. In which of the following molecules number of lone pairs and bond pairs on central atom are not equal ? (A) H_2O (B) I_3^- (C) O_2F_2 (D) SCl_2

37.	The structure of F ₂	The structure of F_2 SeO is analogous to :					
	$(\mathbf{A}) \operatorname{SO}_3$	$(\mathbf{B}) \operatorname{CIO}_{3}^{-}$		(C) Xe	O ₃	(D) (B) and (C) both	
38.	8. Which of the following species given below have shape similar to $XeOF_4$?						
	(A) XeO ₃	(B) $\operatorname{IOF_4^+}$		(C) PC	l ₅	(D) XeF ₅ [⊕]	
39.	Identify the correct match. (i) XeF ₂ (ii) N ₃ ⁻ (iii) PCl ₆ ⁻ (PCl ₅ (s) anion) (iv) ICl ₂ ⁺ (I ₂ Cl ₆ (ℓ) cation) (A) (i-a), (ii-b), (iii-c), (iv-d) (C) (i-b), (ii-c), (iii-a), (iv-d)			(A) Central atom has sp ³ hybridisation and bent geometry. (B) Central atom has sp ³ d ² hybridisation and octahedral. (C) Central atom has sp hybridisation and linear geometry. (D) Central atom has sp ³ d hybridisation and linear geometry. (B) $(i-d), (ii-b), (iii-d), (iv-c)$ (D) $(i-d), (ii-c), (iii-b), (iv-a)$			
40.	 Which of the following statement is true for IO₂F₂⁻? (A) The electrons are located at the corners of a trigonal bipyramidal but one of the equatorial pairs is unshared. (B) It has sp³d hybridisation and is T-shaped. (C) Its structure is analogous to SF₄. (D) (A) and (C) both 						
41.	Consider the follow	ving molecules ; H_2O	H₂S Ⅱ	H₂Se Ⅲ	H ₂ Te IV		
	Arrange these mole (A) I < II < III < IV	ecules in increasing order (B) IV < III < II <	r of bond	l angles. (C) I <	II < IV < III	(D) II < IV < III < I	
42.	In which of the follo $(A) \text{ NH}_3$	bowing bond angle is maximaximation (B) NH_4^+	imum	(C) PC	l ₃	(D) SCl ₂	
43.	Consider the following statement and arrange in the order of true / false. S_1 : In SnCl ₂ the bonding takes place in ground state and the bond angle Cl–Sn–Cl is slightly less than 120°. S_2 : The molecular geometry of XeF ₇ ⁺ is pentagonal bipyramidal having two different Xe–F bond lengths. S_3 : In SF ₄ , the bond angles, instead of being 90° and 180° are 89° and 177° respectively due to the presence of a lone pair						
	(A) T T T	(B) F T T		(C) T T	F	(D) T F T	
44.	In which of the foll (A) $S(CH_3)_2$	owing central atom is un (B) SO ₂	hybridise	ed? (C) SiF	I ₄	(D) PCl ₃	
45.	The ONO angle is n (A) HNO ₃	$\frac{(\mathbf{B}) \operatorname{NO}_2^+}{(\mathbf{B}) \operatorname{NO}_2^+}$		(C) HN	IO ₂	(D) NO ₂	
46.	Which statement is correct for N_3^- ion(A) It is bent molecule(B)(C) Central atom is sp ² hybridized(D)			(B) Bo (D) No	nd angle is < 120 one of these	0°	
47.	All the following sp (A) AsF ₃	becies have all their bond (B) AsF_4^-	llengths	identical (C) As	except : F ₄ ⁺	(D) AsF_6^-	
48.	Which of the follow (A) C_2H_2	wing has maximum (C–C) (B) C_2H_4) bond ler	ngth (C) C_2 l	H ₆	(D) $C_2H_2Br_2$	

49.	Consider the following statements 1. Steric number '7' gives 'sp ³ d ³ hybridisation. 2. In $C\ell F_3$ at least one bond angle is exactly 180° 3. Lone pair does not cause any distortion in the bond angle. The above statements 1, 2, 3 respectively are (T = True, F = False)					
	(A) T F F	(B) T T F	(1 114	(C) FTF	(D) T T T	
50.	Which one has highest b (A) NH ₂	ond angle. (B) PH_2		(C) H ₂ O	(D) CH ₄	
51.	In the thiocyanate ion, S figure	CN ⁻ three resonation	ing struct	ure are possible with the	electron-dot method as shown in	
	S = C = N: (x)	$: \stackrel{\overleftarrow{i}}{:S} - C \equiv N:$ (y)				
	The decreasing order of	% contribution in re	esonance	hybrid is :		
	(A) $y > x > z$	$(\mathbf{B}) \mathbf{y} > \mathbf{z} > \mathbf{x}$		$(\mathbf{C}) z > x > y$	(D) cannot predicted.	
52.	The correct order of C–N	bond length in the	given co	mpounds is :		
	$P:CH_3CN$	$(\mathbf{P}) \mathbf{P} = \mathbf{O} = \mathbf{P}$		$K : CH_3 CONH_2$	$(\mathbf{D}) \mathbf{R} > \mathbf{P} > \mathbf{O}$	
	(\mathbf{A}) $\mathbf{I} > \mathbf{Q} > \mathbf{K}$	$(\mathbf{D})1 = \mathbf{Q} = \mathbf{K}$		(\mathbf{C}) $\mathbf{K} \neq \mathbf{Q} \neq \mathbf{I}$	(\mathbf{D}) K > 1 > Q	
53.	 Which of the following statements is not correct for sigma and pi bond formed between two carbon atoms? (A) Free rotation of atoms about a sigma - bond is allowed but not in case of a pi-bond (B) Sigma -bond determines the direction between carbon atoms but a pi-bond has no primary effect in this regard (C) Sigma-bond is stronger than a pi-bond (D) Bond energies of sigma- and pi-bonds are of the order of 264 kJ/mol and 347 kJ/mol. respectively. 					
54.	Number and type of bond (A) one sigma (σ) and on (C) one σ and one and a b	ds between two carb e pi (π) bond half π bond	oon atoms	s in CaC_2 are : (B) one σ and two π bond (D) one σ bond	ls	
55.	The number of σ and π (A) $2\sigma + 3\pi$	bonds in dicyanog (B) $3\sigma + 2\pi$	en (CN) ₂	are : (C) $3\sigma + 4\pi$	(D) $4\sigma + 3\pi$	
56.	 Indicate the incorrect statement : (A) An 'sp' hybrid orbital is not lower in energy than both s- and p-orbitals (B) 2p_x and 2p_y - orbitals of carbon can be hybridized to yield two new more stable orbitals (C) Effective hybridisation is not possible with orbitals of widely different energies (D) The concept of hybridisation has a greater significance in the VB theory of localised orbitals than in the MO theory. 					
57.	The correct order of incre all hybrid orbitals are exa	asing s character (in ctly equivalent) :	n percenta	ge) in the hybrid orbitals in	below molecules / ions is (assume	
	CO ₃ ^{2–}	XeF ₄	I_{3}^{-}	NCl ₃	$\operatorname{BeCl}_2(g)$	
	I (A) II < III < IV < I < V (C) III < II < I < V < IV	I	Ш	IV (B) II < IV < III < V < I	V	
58.	Which of the following $(A) CH_4$	contains both electr (B) H_2O_2	ovalent a	nd covalent bonds ? (C) NH ₄ Cl	(D) none	
59.	In the following which su (A) He	ubstance will have l (B) CsF	nighest bo	oiling point (C) NH ₃	(D) CHCl ₃	

60.	Arrange the following in order of decreasing N – O bond length : NO_2^+ , NO_2^- , NO_3^-			
	(A) $NO_3^- > NO_2^+ > NO_2^-$		(B) $NO_3^- > NO_2^- > NO_2^+$	
	(C) $NO_2^+ > NO_3^- > NO_2^-$		(D) $NO_2^- > NO_3^- > NO_2^+$	
61.	$sp^{3}d$ hybridization is con	sidered to be a combinatior	n of two hybridization. They	vare
	(A) $p^3 + sd$	(B) $sp^2 + pd$	(C) spd + p^2	(D) none of these
62.	Which of the following sl	hould have pyramidal shape	2:	
	(A) $[ClOF_2]^+$	(B) ICl ₃	(C) [BrICl] ⁻	(D) All of these
63.	Which of the following s	pecies have a non linear sha	ape ?	
	(A) N ₂ O	(B) I_3^+	(C) SCN ⁻	(D) NO_2^+
64.	The correct order of incre	easing $X - O - X$ bond ang	gle is $(X = H, F \text{ or } CI)$:	
	(A) $H_2O > CI_2O > F_2O$		(B) $Cl_2O > H_2O > F_2O$	
	(C) $F_2O > CI_2O > H_2O$		(D) $F_2O > H_2O > Cl_2O$	
65.	When NH ₃ is treated with (A) Increases	HCl, in the product species (B) Decreases	s H—N—H bond angle (in (C) Remains same	comparison to ammonia)(D) Depends upon temperature
66.	The correct order of bond (A) $H_2S < NH_3 < BF_3 < CI$ (C) $H_2S < NH_3 < CH_4 < B$	l angle is : H ₄ BF ₃	(B) $NH_3 < H_2S < CH_4 < B$ (D) $H_2S < CH_4 < NH_3 < E$	F ₃ BF ₃
67.	Arrange the following ir	the increasing order of d	eviation from normal tetra	hedral angle :
	(A) $P_4 < PH_3 < H_2O$	(B) $PH_3 < H_2O < P_4$	(C) $P_4 < H_2O < PH_3$	(D) $H_2O < PH_3 < P_4$
68.	In XeF ₂ molecule the ang orbital is β and the angle	the between two lone pair of between bond pair orbitals	tbitals is α , the angle betwe is γ :	en lone pair orbital and bond pair
	(A) $\alpha = \beta = \gamma$	(B) $\alpha > \beta > \gamma$	(C) $\gamma > \beta > \alpha$	(D) $\gamma > \alpha > \beta$
69.	The hybridisation of P in (A) I in $IC\ell_4^-$	phosphate ion (PO_4^{3-}) is th (B) S in SO ₃	the same as : (C) N in NO ₃	(D) S in SO ₃ ^{2–}
70.	Choose the molecules in (A) BCl ₃ The correct answer is :	which hybridisation occurs (B) NH ₃	in the ground state ? (C) PCl ₃	(D) BeF_2
	(A) a, b, d	(B) a, b, c	(C) b, c	(D) c, d
71.	Phosphorous penta-chlori The hybrid state of P-ator (A) sp^3d , sp^3d^2	ide in gaseous phase exists a n in PCl ₅ is sp ³ d. The hybri (B) sp ³ ,sp ³ d ²	as a monomer. In solid state d states of P-atoms in PCl_4^{-1} (C) sp ³ d ² , sp ³ d	e, it exists as PCl_4^+ and PCl_6^- ions. + and PCl_6^- will be : (D) sp^3, sp^3d

72. In which of the following cyclic compound the nitrogen atom is sp^3 hybridised

73.	The bent or V–shap (A) sp ³	e of the molecule can be resul (B) sp ²	Ited from which of the follow (C) Both (A) and (B)	ring hybridization. (D) None of these		
74.	In which of the follo $(A) NF_3$	(B) CIF ₃	onds not equal? (C) BF ₃	(D) AlF ₃		
75.	Which of the follow (A) $BF_4^- < BF_3$	ing is correct order of bond l (B) $NO_2^+ < NO_2^-$	ength ? (C) $CCl_4 < CF_4$	(D) ⁺ CH ₃ >CH ₄		
76.	In which of the following cases the stated bond is longer in first species than in second species? (A) C- H bond in cyclopropane and propane (C) N - N bond in N_2O_4 and N- N bond in N_2H_4 (B) Equatorial P -Cl bond in PCl ₅ and P-Cl bond in (D) C - C bond in benzene and C_2H_6					
77.	Identify the correct (A) single N–N bot (B) single N–N bot (C) N \equiv N is weake (D) None of these	statement : nd is stronger than single P nd is weaker than single P – r than $P = P$	– P bond - P bond			
78.	In O_2F_2 , which of the (A) O–F bond length (B) The O.N. of oxy (C) The O–O bond (D) None of these	the following statement is incomplete following statement is incomplete in O_2F_2 is longer than O_2F_1 is end of the following of the following statement in O_2F_2 is shorter than being the in O_2F_2 is shorter than	orrect. bond length in OF_2 . O–O bond length in H_2O_2 .			
79.	A σ bonded molect (A) 0	le MX ₃ is T-shaped. The nur (\mathbf{B}) 2	nber of non-bonding pairs of (C) 1	f electrons can be (D) none of these		
80.	Which of the follow (A) $BaSO_4$, $KMnO_4$ (C) $FeSO_4$.7 H_2O , M_2	ing pairs does not contain is 2SO ₄ .7H ₂ O	omorphous species : (B) KClO ₄ , KBF ₄ (D) NaClO ₃ , NaNO ₃			
81.	Boron forms covale (A) Small size (C) Lower ionization	nt compound due to	(B) Higher ionization e(D) Both (A) and (B)	nergy		
82.	To which of the foll	owing species is the octet rule	e applicable ?			
	(A) BrF_5	(B) SF_6	(C) IF_7	(\mathbf{D}) CO_2		
83.	The maximum cova (A) the number of u (B) the number of pa (C) the number of u (D) the actual numb	ency for representative eleme npaired p-electrons aired d-electrons npaired s and p-electrons er of s and p-electrons in the	ents is equal to (excluding 1s	t and 2nd period) :		
84.	 Which of the follow (A) high electrical c (B) malleable and du (C) the free electror (D) electrical condu 	ing are not characteristics of onductivity ictile is give them lustrous appeara ctivity increases on increasin	metallic solids ? ance g temperature			
85.	Two element have e	ectronegativity of 1.2 and 3.0 (B) polar Covalent). Bond formed between then (C) co-ordinate	n would be : (D) metallic		

86.	6. Which of the following overlaps gives a σ bond with x as internuclear axis?					
	(A) p_z and p_z	(B) s and p _z		(C) s and p_x	(D) $d_{x^2-y^2}$ and $d_{x^2-y^2}$	
87.	Which of the statements is correct about SO ₂ ? (A) two σ , two π and no lone pair of electrons (C) two σ , two π and one lone pair		(B) two σ and one π(D) none of these			
88.	Which of the following	is true statement ?	1			
	(A) All the carbon in H		= CH ₂ are	e in sp ² hybridisation	1.	
89.	(B) In $C_2H_2(CN)_2$ there (C) In C_2H_6 , all C are sp (D) In C_3O_2 all the carb Correct order of bond	are six 'σ' bonds. ² hybridized ons are in sp hybrid energy of C–O bo	disation. nd is :			
	(A) $CO_3^{2-} > CO_2 > CO$ (C) $CO > CO_2 > CO_2^{2-}$			(B) $CO_2 > CO > CO$ (D) None of the	CO_3^{2-}	
00					1 4 4 11 0	
90.	For hydrazoic acid, wh $H - N = N^{+} =$	ich of the following $N^- \longleftarrow H = 1$	g resonatin $N^+ - N^+ =$	ng structure will be $N^{2-} \longleftarrow H = 1$	least stable ? $N^ N^+ \circ N$	
	(I)		(II)	(III)	
	(A) I	(B) I I		(C) II F	(D) Both (I) and (III)	
91.	The correct order of molecules / ions is (assu	of increasing s ume all hybrid orbit	characte als are ex	er (in percentage actly equivalent) : NCl	e) in the hybrid orbitals in below	
	I	II	III	IV IV	V	
	(A) II <iii<iv<i<v (C) III<ii<iv<iv< td=""><td></td><td></td><td>(B) II < IV < III < V (D) II < IV < III < I</td><td>V<i ≺V</i </td></ii<iv<iv<></iii<iv<i<v 			(B) II < IV < III < V (D) II < IV < III < I	V <i ≺V</i 	
92.	The hybrid state of posi	tively charged carb	oon in vin	yl cation (CH ₂ = $\overset{\oplus}{C}$	H) is :	
	(A) Unpredicatable	(B) sp ²		(C) sp	(D) sp^3	
93.	If the equatorial plane i (A) p_z and d_z^2	s x- y plane in sp ³ (B) p_x and d_{xy}	l hybridis	ation then the orbita (C) p _y and d _{yz}	al used in pd hybridisation are - (D) none of these	
94.	Incorrect order about be (A) $H_2O > H_2S > H_2Se >$ (C) $SF_6 < NH_3 < H_2O <$	ond angle is : H_2 Te OF_2		(B) $C_2H_2 > C_2H_4$ (D) $CIO_2 > H_2O >$	$> CH_4 > NH_3$ $> H_2S > SF_6$	
95.	(C) $SF_6 < NH_3 < H_2O < OF_2$ In the structure of H_2CSF_4 , to decide the plane in which $C = S$ is present the following bond angle values are given Axial FSF angle (idealised = 180°) \Rightarrow 170° Equatorial FSF angle (idealised = 120°) \Rightarrow 97° After deciding the plane of double bond, which of the following statement is/are correct ? (A) two C – H bonds are in the same plane of axial S – F bonds (B) two C – H bonds are in the same plane of equatorial S – F bonds (C) total five atoms are in the same plane (D) equatorial S – F bonds are perpendicular to plane of π -bond					

96.	The bond length in Lil (A) less than that of N (C) more than that of I	F will be IaF KF	(B) equal to that of K (D) equal to that of N	F IaF
97.	 S1 : Oxidation numb S2 : The anhydride of S3 : As the electrone, atoms increases, bort S4 : For heteronuclear 	er of N in N_2O_5 is 5 of Hypochlorous acid is C gativity of central atom in and angle increases. ar diatomic species A – B,	Cl ₂ O a molecule having same h the bond length decreases	hybridisation state and same terminal as the difference in electronegativity
	values increases. (A) T T T F	(B) F T T T	(C) F F T F	(D) T T F T
98.	In the cation [H–C–N- (A) sp, sp, sp	-Xe-F] ⁺ which is linear, th (B) sp , sp ² , sp ³ d	e hybridisations of C, N & 2 (C) sp, sp, sp ³ d	Xe atoms respectively are - (D) sp ² , sp, sp ³ d
99.	The structure of IO_2F_4 (A) SF ₄	2^{-} is analogous to : (B) XeO ₂ F ₂	(C) $F_2 SeO_2$	(D) (A) and (B) both
100.	 Which of the followin (A) Equitorial FSF box (B) Hybridisation stat (C) The bond angle FC (D) The axial FSF box 	g about SF_4 , SOF_4 and OC nd angle in SOF_4 will be groups of sulphur in SF_4 and SC CO will be < 120° in molecu d angle in SF_4 is exactly 180	F_2 molecules is correct. eater than in SF_4 molecule DF_4 molecules will be differ le OCF ₂ 0°	ent.
101.	Which of the followin (A) SF_2	g molecules has two lone p (B) KrF ₄	bairs and bond angle (need (C) ICl_4^-	not be all bond angles) < 109.5°? (D) All of these
102.	For B_2H_6 S1 : Each boron is sp S2 : from terminal 'H' S3 : It has 4 σ bond & S4 : 8 σ bonds are pre-	³ hybridised & two 'B' atom are in same 2 bridge bond esent in it	plane but two bridge hydro	gen in different plane.
	(A) TTFF	(B) T T T F	(C) F F T F	(D) FTFT
103.	Which combination is	s best explained by the co-	ordinate covalent bond	
	$(\mathbf{A}) \mathbf{H}^{+} + \mathbf{H}_2 \mathbf{O}$	(\mathbf{B}) Cl+Cl	(C) Mg + $\frac{1}{2}$ O ₂	(D) $H_2 + I_2$
104.	Which of the followir (A)HNO ₃	ng contains a coordinate co (B) BaCl ₂	ovalent bond (C) HCl	(D) H ₂ O
105.	 Bonds present in CuSO₄. 5H₂O(s) is (A) Electrovalent and covalent (C) Electrovalent, covalent and coordinate 		(B) Electrovalent and(D) Covalent and coordinate	l coordinate ordinate
106.	Identify the species c (A) $(BeH_2)_n$	ontaining Banana bonds (B) BF ₃	(C) $(AlCl_3)_2$	(D) $(\text{BeCl}_2)_n$
107.	 Which is not true ab (A) Both 'B' atoms a (B) Boron atom is in (C) Two hydrogens (D) There are two, th 	out B_2H_6 re sp ³ hybridised ground state occupy special positions nree centre two electron b	onds	

108. Which of the following compounds has coordinate (dative) bond				
	(A) CH ₃ NC	(B) CH ₃ OH	(C) CH ₃ Cl	(D) NH ₃
109.	 Which of the follo (A) The sulphur is (B) The sulphur is (C) The oxygen -s (D) It contain one 	by b	te structure of SOCl ₂ is no tetrahedral shape. rigonal pyramid shape. sp ³ hybrid orbital of sulph	t correct ? ur.
110.	For BF ₃ molecule (A) B-atom is sp ² (B) There is a $P\pi$ - (C) Observed B-I (D) All of these	which of the following is true hybridised. - $P\pi$ back bonding in this mole F bond length is found to be	? ecule. less than the expected bor	nd length.
111.	For BF_3 molecule (A) It has less bor (B) It has less bor (C) It's bond stren (D) It forms BF_4^-	which of the following will not dength than BF_4^- and length than BF_4^- and length than the compound agth is increased because of p when hydrolysed in water.	to the true $[NH_3 \rightarrow BF_3]$ π -d π back bonding	
112.	Respective order (A) $BF_3 < BCl_3 < BCl_3 < C$ (C) $BF_3 > BCl_3 > B$	of strength of back-bonding a BBr_3 and $BF_3 < BCl_3 < BBr_3$ BBr_3 and $BF_3 < BCl_3 < BBr_3$	and Lewis acidic strength $(B) BF_3 > BCl_3 > B$ (D) $BF_3 < BCl_3 < B$	in boron trihalides is : Br_3 and $BF_3 > BCl_3 > BBr_3$ Br_3 and $BF_3 > BCl_3 > BBr_3$
113.	If Z-axis is the motion $(A) s + p_z$	lecular axis, then π -molecular (B) $p_x + p_y$	orbitals are formed by the (C) $p_z + p_z$	overlap of (D) $p_x + p_x$
114.	The common feature (A) bond order that (C) bond order that	ures of the species N_2^{2-} , O_2 a ree and isoelectronic. ree but not isoelectronic.	nd NO ⁻ are : (B) bond order two (D) bond order two	o and isoelectronic. o but not isoelectronic.
115.	Which of the follo	owing molecular orbitals has t	two nodal planes	
	(A)σ2s	(B) π2p _y	(C) π [*] 2p _y	(D) $\sigma^* 2p_x$
116.	During the format: (A) none zero in the nor	ion of a molecular orbital fron he nodal plane dal plane	n atomic orbitals of the sar (B) maximum in th (D) zero on the sur	ne atom, probability of electron density is e nodal plane face of the lobe
117.	Bond order is a co antibonding orbita (A) Can have a ne (B) Has always an (C) Can assume an (D) Is a non zero o	oncept in the molecular orbita als. Which of the following st egative quantity a integral value ny positive or integral or fract quantity	I theory. It depends on the atements is true about it ?	e number of electrons in the bonding and The bond order
118.	Which of the follo (A) N_2^+ and O_2^+	wing pairs have identical val (B) F_2 and Ne_2	ues of bond order ? (C) O_2 and B_2	(D) C_2 and N_2

119.	Which of the following molecules /ions exhibit sp mixing?					
	$(\mathbf{A})\mathbf{B}_2$	(B) C_2^{2-}	$(C) O_2^+$	(D) Both (A) and (B)		
120.	Among the following spec	cies, which has the minimum	n bond length ?			
	$(\mathbf{A})\mathbf{B}_2$	(B) C ₂	$(\mathbf{C})\mathbf{F}_2$	(D) O_2^-		
121.	Which of the following sp (A) NO ⁻	ecies is paramagnetic ?		()) (()		
	(A) NO	$(\mathbf{B}) \mathbf{O}_2$	(C) CN			
122.	The following molecules correct order. (II) $O = (III) O$	/ species have been arrange 2^{-} : (IV) O +	ed in the order of their inc	reasing bond orders, Identify the		
	$(I) O_2, (II) O_2, (III) O_2$ $(A) I I I < I I < I < IV$	$(\mathbf{IV})\mathbf{O}_{2}$ (B) IV < I I I < I I < I	(C) < < V <	(D)]]<]]]<]]		
123.	Which of the following statements is incorrect ? (A) Among O_2^+ , O_2 and O_2^- the stability decreases as $O_2^+ > O_2 > O_2^-$ (B) He ₂ molecule does not exist as the effect of bonding and anti-bonding orbitals cancel each other . (C) C_2, O_2^{-2-} and Li ₂ are diamagnetic					
	(D) In F_2 molecule, the en	ergy of σ_{2p_z} is more than	π_{2p_x} and π_{2p_y}			
124.	Which one is paramagneti (A) O_2^-	(B) NO	(C) Both (A) and (B)	(D) CN ⁻		
125.	Which of the following or (A) $N_2^+ > N_2^-$	ders is correct in respect of (B) $O_2^+ > O_3$	bond dissociation energy (C) NO ⁺ >NO	? (D) All of those		
126.	 Which of the following statement is incorrect ? (A) During N⁺₂ formation, one electron is removed from the bonding molecular orbital of N₂. (B) During O⁺₂ formation, one electron is removed from the antibonding molecular orbital of O₂. (C) During O⁻₂ formation, one electron is added to the bonding molecular orbital of O₂. (D) During CN⁻ formation, one electron is added to the bonding molecular orbital of CN. 					
127.	S ₁ : The HOMO in F_2^- is τ S ₂ : Bond order of O_2^- is τ S ₃ : NO ⁺ is more stable the S ₄ : C ₂ is more stable than State, in order, whether S ₁ (A) FFFT	$t2p_x = \pi 2p_y$ molecular orbit more then O_2^+ . $an N_2^+$ C_2^+ S_2, S_3, S_4 are true or false (B) FTTT	tals. (C) FTFT	(D) FFTT		
128.	Which the following mole $(I) O_2^+$; $(II) NO$; $(III) N_2^+$	cules / species have identic	al bond order and same ma	gnetic properties ?		
	(A) (I), (II) only	(B) (I) and I I I only	(C) (I) ,(I I) and (I I I)	(D) (I I) and (I I I) only		
129.	Which of the following sp $(A) N_2O_3$	becies does not contain N – (B) $N_2O_2^{2-}$	N covalent bond ? (C) N_2O_5 (D) N_2C_5	D_4		
130.	Which statement is incorr (A) sp ³ hybridisation (C) there are eight Si–O b	rect about pyrosilicate ion.	(B) One oxygen atom is s(D) There is one Si-Si bon	hared between two tetrahydron d		

131.	The specie which does n	ot contain an odd number	of valence electrons and is o	diamagnetic:
	(A) NO	(B) NO ₂	(\mathbf{C}) ClO ₂	(D) N_2O_4
132.	 Which is correct about th (A) The value of n is 12 (B) each Si atom is bond (C) each oxygen atom is (D) all the above are corr 	the cyclic silicate $[Si_6O_{18}]^{n-1}$ ed with three oxygen atom bonded with two Si atoms ect.	: s	
133.	The no. of S-O-S bonds i (A) 1	n the trimer of SO_3 is (B) 2	(C) 3	(D) None
124	Which of the following a	maning do not contain S. S.	linkaga	
134.	(A) $H_2S_2O_5$	(B) $H_2S_2O_7$	$(C) H_2 S_2 O_3$	$\textbf{(D)} \operatorname{H}_2 \operatorname{S}_4 \operatorname{O}_6$
135.	Number of sigma bonds (A) 6	s in P_4O_{10} is : (B) 7	(C) 17	(D) 16
136.	In which of the following	g compounds B – F bond l	ength is shortest ?	
	(A) BF ₄ ⁻	(B) $BF_3 \rightarrow NH_3$	(C) BF ₃	(D) BF ₃ \leftarrow N(CH ₃) ₃
137.	Number of antibonding e (A) 4	electrons in N_2 is : (B) 10	(C) 12	(D) 14
138.	Consider the following statements. S_1 : Fluorine does not form any polyhalide because it does not have d-orbitals in valence shell. S_2 : In ClF ₃ , the three lone pairs of electrons occupy the equatorial position. S_3 : In B_2 and N_2 molecules mixing of s- and p- atomic orbitals takes place. Of these statements :			
	(C) S_1 and S_3 are correct		(D) S_2^1 and S_3^2 are correct	
139.	Which o f the following has the minimum heat of dissociation of $N \rightarrow B$ bond ? (A) [(CH ₃) ₃ N \rightarrow BF ₃] (C) [(CH ₃) ₃ N \rightarrow B(CH ₃) ₂ F] (D) [(CH ₃) ₃ N \rightarrow B(CH ₃) ₂ F]			5 ₂]]
140.	In which of the following (A) Tetrahedral hybridisa (B) Hybridisation can be (C) All bond lengths are (A) B_2H_6	g molecules/species all follo ation considered to have taken j identical i.e. all A – B bond (B) Al ₂ Cl ₆	owing characteristics are for place with the help of empty lengths are identical. (C) BeCl ₂	and ? r orbital(s). (D) BF ₄ ⁻
141.	Which of the following s (A) Three sp ² orbitals are (B) The lone pair of elec p-orbitals on each of the	tatement is false for trisilyl e used for σ bonding, givin trons occupy a p-orbital at three silicon atoms resulti	amine ? g a plane triangular structur right angles to the plane tria ng in π bonding.	re. angle and this overlaps with empty

(C) The N–Si bond length is shorter than the expected N–Si bond length.

(D) It is a weaker Lewis base than trimethyl amine.

142.	 Gaseous SO₃ molecule (A) is planar triangular in shape with three σ-b overlap and two pπ – dπ overlap. (B) is a pyramidal molecule with one double b (C) planar triangular in shape with two doubl (D) is planar triangular in shape with three σ b overlap and one pπ – dπ overlap. 	bonds from $sp^2 - p$ overlap and thr bond and two single bonds le bonds between S and O and on bonds from $sp^2 - p$ overlap and thr	wee π-bonds formed by one $p\pi - p\pi$ e single bond ee π-bonds formed by two $p\pi - p\pi$
143.	Among the following which one will have the $(A) \text{ KO}_2$ $(B) \text{ O}_2$	largest O – O bond length ? (C) $O_2^+[AsF_6]^-$	(\mathbf{D}) K ₂ O ₂
144.	According to Molecular orbital theory which of the following is correct? (A) LUMO level for C_2 molecule is σ_{2p_x} orbital (C) In $C_2^{2^-}$ ion there is one σ and two π bonds (D) All the above are correct		the bonds are π bonds rect
145.	Which species can exist among the following $(A) B_2$ (B) Be_2	: (C) Ne ₂	(D) He ₂
146.	The correct order in which the O - O bond len (A) $H_2O_2 < O_2 < O_3$ (B) $O_2 < H_2O_2 < O_3$	gth increases in the following is : $_{3}$ (C) $O_{2} < O_{3} < H_{2}O_{2}$	(D) $O_3 < H_2O_2 < O_2$
147.	Which of the following is a wrong order with respect to the property mentioned against each ? (A) $O_2^{2-} > O_2 > O_2^+$ [Paramagnetic moment] (C) $H_2 > H_2^+ > He_2^+$ [bond energy] (D) $NO_2^+ > NO_2 > NO_2^-$ [bond angle]		d against each ?) ⁺ [bond length] [bond angle]
148. 149.	Which of the following option with respect to (A) NO $<$ C ₂ $<$ O ₂ ⁻ $<$ He ₂ ⁺ (C) He ₂ ⁺ $<$ O ₂ ⁻ $<$ NO $<$ C ₂ Two types of carbon-carbon covalent bond le (A) diamond (B) graphite	b increasing bond dissociation energy (B) $C_2 < NO < He_2^+ < O_2^-$ (D) $He_2^+ < O_2^- < C_2 < NO$ engths are present in (C) C_{60}	(D) benzene
150.	In which of the following species peroxide graces $(A) [B_4O_5(OH)_4]^{2-}$ (B) $[S_2O_8]^{2-}$	oup is not present : (C) CrO ₅	(D) HNO ₄
151.	Which of the following is correct ? (A) S_3O_9 – contains no S–S linkage. (C) $(HPO_3)_3$ – contains P – P linkage	(B) $S_2O_6^{2-}$ – contains –O (D) $S_2O_8^{2-}$ contains S–S	–O– linkage. linkage
152.	The percentage of s-character in the orbital for (A) 25 (B) 33	prming P – S bonds in P_4S_3 is : (C) 75	(D) 50
153.	Which of the following solids is a good condu (A) (BN) _x (B) SiO_2	actor of electricity (C) SiC	(D) none of these
154.	Consider the following statements ; (I) The hybridisation found in cation of solid I (II) In AB_2L_2 type the BAB bond angle is alwa (III) In CIO_3^- , NH_3 and XeO_3 , the hybridisation (IV) In P_4 molecule, there are six $P - P$ bonds a of these statements : (A) I, II and III are correct only (C) III and IV are correct only	PCl ₅ is sp ³ . ays greater than the normal tetrah on and the number of lone pairs on and four lone pairs of electrons. (B) I, III and IV are corre (D) All are correct	edral bond angle. I the central atoms are same. ct only

155.	In the coordinate valence (A) Electrons are equally (C) Hydrogen bond is fo	y y shared by the atoms rmed	(B) Electrons of one atom(D) None of the above	n are shared with two atoms
156.	What is the nature of the (A) Covalent	bond between B and O in (B) Co-ordinate covalent	$(C_2H_5)_2OBH_3$ (C) Ionic bond	(D) Banana shaped bond
157.	Which of the following s (A) $N_2F_3^+$ is planar at ease (C) The shape of N(SiMe	statements is correct ? ch nitrogen atom. e_3 , is trigonal planar.	(B) In N_3H , the $H - N - N$ (D) (A) and (C) both.	N bond angle is exactly of 120°.
158.	 Which of the following statement is correct for the 1 : 1 complex of trimethyl amine and boron tri fluoride ? (A) The B - F bond length in the complex is longer than that of in BF₃. (B) The N is pyramidal with sp³ hybridisation and B is planar with sp² hybridisation. (C) The coordination geometry of N and B both are tetrahedral with sp³ hybridisation each. (D) (A) and (C) both. 			ine and boron tri fluoride ? ation. isation each.
159.	The molecular orbital co	nfiguration of a diatomic mo	lecule is	
	$\sigma ls^2 \sigma^* ls^2 \sigma 2s^2 \sigma^* 2$	$s^2 \sigma 2p_x^2 \begin{cases} \pi 2p_y^2 \\ \pi 2p_z^2 \end{cases}$		
	Its bond order is (A) 3	(B) 2.5	(C)2	(D) 1
160.	The bond order of He_2^+	molecule ion is :		
	(A) 1	(B) 2	(C) $\frac{1}{2}$	(D) $\frac{1}{4}$
161.	Pick out the incorrect sta (A) N_2 has greater disso (C) Bond length in N_2^+ i	ttement. ciation energy than N_2^+ s less than N_2^-	 (B) O₂ has lower dissocia (D) Bond length in NO⁺ i 	ation energy than O_2^+ is less than in NO.
162.	The species which are di $(A) O_2^-$	amagnetic : (B) NO ₂	(C) ClO ₂	(D) N_2O_4
163.	A simplified application (A) 2	of MO theory to the hypothe (B) 1.5	etical 'molecule' OF would (C) 1.0	give its bond order as : (D) 0.5
164.	Which of the following is incorrect ? (A) The O – O bond length in H_2O_2 is larger than that in O_2F_2 . (B) The O – O bond length in H_2O_2 is very slightly smaller than in $O_2^{2^-}$ ion. (C) O_2^{-} and O_2^{+} species are paramagnetic and have same number of unpaired electrons. (D) None			
165.	When N_2 goes to N_2^+ , the N– N bond distance and when O_2 goes to O_2^+ , the O–O bond distance (A) Decrease, Increases (C) Increases ,Increases (D) None of these			e O – O bond distance
166.	In a P_4O_6 molecule, the t (A) 4	otal number of P–O–P bond (B) 6	s is (C) 2	(D) 3
167.	The point of dissimilarity (A) Both have six memb (C) Both contain planar	between $(SO_3)_3$ and $(HPO_3)_3$ ered ring.) (cyclic trimers) is. (B) Both contain central a (D) Both are isoelectronic	atom in same hybridization

- 168. Which of the following statements is / are correct ?

 (A) Hybridisation of carbon in C₃O₂ is sp².
 (B) In Cr₂O₇²⁻, six Cr O bonds are identical.
 (C) Three centre two electron bonds exist in B₂H₆ and Al₂Cl₆.
 (D) In AgI, the colour is attributed to charge transfer spectrum.

 169. Which of the following is correct :
- (A) N–O bond length in NO gaseous molecule will be greater than in NOCl gaseous molecule.
 (B) Carbon-carbon bond length in CaC₂ will be more than in C₂H₄
 (C) O–O bond length in KO₂ will be more than in Na₂O₂.
 (D) All the four hydrogen atoms in CH₄ are not coplanar
- 170.Which one of the following oxides is expected exhibit paramagnetic behaviour
(A) CO_2 (B) SO_2 (C) CIO_2 (D) SiO_2

E	xercise # 2	2 Part # I > [Mu	ltiple Correct C	hoice Type Questions]
1.	Most ionic compo (A) high melting p (B) high melting p (C) high solubilit (D) three-dimensi	ounds have : points and low boiling points points and non-directional bonds ies in polar solvents and low solu ional crystal structures, and are g	bilities in nonpolar s	olvents ectricity in the molten state.
2.	All bond : (A) dissociations : (C) enthalpies are	are exothermic positive	(B) dissociations(D) enthalpies are	are endothermic e negative
3.	Which of the foll (A) NH ₄ Cl	owing compounds contain(s) bot (B) KCN	h ionic and covalent (C) CuSO ₄ ·5H ₂ O	bonds? (D) NaOH
4.	Which of the follo (A) It has 6σ and (B) Both the π -bo (C) The central ca (D) The molecule	by bowing statements concerning the 12π bonds and are present in the same plane arbon atom is sp hybridised while is linear	molecule $H - C \equiv C - C$ the terminal atoms a	- CH_3 is / are not correct. are sp^2 hybridised
5.	In which of follow (A) BF_3	ving, vacant orbital take part in hy (B) PCl ₆ ⁻	$\sqrt{\text{bridisation}}$: (C) BF ₄ ⁻	(D)
6.	 Which is not true (A) Lone pair-lone (B) Lone pair and (C) More electror (D) Bigger atoms 	about VSEPR theory e pair repulsion is maximum. double bond occupy axial position negative atoms occupies axial pos occupy axial positions in trigonal	on in trigonal bipyran ition in trigonal bipyr bipyramidal structur	nidal structure. ramidal structure. re.
7.	Select the correct (A) Perxenate ion (B) XeF_2 is linear (C) $XeOF_4$, XeF_4 , (D) None of these	t statement. is $[XeO_6]^{4-}$ with octahedral geom molecule with 3 lone pairs (l.p) XeO_2F_2 all contains one lone pair	etry. • only	
8.	Which is/are in lin (A) NO_2^+	(B) XeF ₂	(C) I ₃ ⁻	(D) I ₃ ⁺
9.	Which is true abo (A) Hybridization (C) Molecular geo	ut NH_2^- , NH_3^- , NH_4^+ ? of N is same. ometry (i.e. shape) is different.	(B) No. of lone p (D) Bond angle is	air of electron on N are same. s same.
10.	Identify the correct (A) $NH_4^+ > NH_3 >$ (B) $(CH_3)_3$ B is a function of the correct of the	ect option(s) > NH ₂ ⁻ order of bond angle trigonal planar molecule (not cons atom is in sp ³ d hybridisation e a total of 16 electrons are left or	sidering the H-atoms all the 'S' atoms afte	on 'C') er bonding .
11.	Which of the follo $(\mathbf{A}) \operatorname{NH}_3$	owing molecule (s) has/have bond (B) H ₂ S	d angle close to 90° ? (C) PH ₃	(D) ICl ₃

12. Which of the following Lewis diagram is/are incorrect ?

	(A) Na ⁺ $\overset{\bullet}{O}$ - CI $\overset{-}{C}$:ĊI: (B) :ĊI — Ċ — ĊI: .ĊI: .ĊI:	$(\mathbf{C}) \begin{bmatrix} \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \end{bmatrix}_{2}^{+} [::\mathbf{S}]^{2}$	H H │ │ (D) H−N−N−H •• ••
13.	Hypervalent compound is (A) SO_3^{2-}	s(are): (B) PO ₄ ³⁻	(C) SO ₄ ^{2–}	(D) CIO ₄ ⁻
14.	Which are the exceptions (A) NO_3^- and N_2O	of the lewis octet rule (B) BeH ₂ and NO	(C) KrF_2 and ClF_3	(D) All of these
15.	Which of the following of (a) $2p_y + 2p_y \rightarrow \pi$ (c) $2p_x + 2p_x \rightarrow \pi$ (e) $2p_y + 2p_z \rightarrow \pi$ (A) 'a' & 'b'	(B) 'b' & 'd'	suming X-axis to be the inte (b) $2p_z + 2p_z \rightarrow \sigma$ (d) $1s + 2p_y \rightarrow \pi$ (f) $1s + 2s \rightarrow \sigma$ (C) 'd'& 'f'	rnuclear axis] : (D) 'c' & 'e'
16.	In which of the following $(A) CH_4$	molecule bonding is taking (B) BF ₃	place in excited state (C) ICl ₃	(D) PCl ₃
17.	 Which statement is corre (A) In hybridisation orbit (B) In hybridisation elect (C) In hybridisation fully (D) Hybridised orbitals orbitals 	ct about hybridization ? als take part rons take part filled, half filled or empty nly contains bond pair elect	orbitals can take part tron	
18.	Which of the following (A) $H_2C = C = C = CH_2$ (C) $H_2C = CH - C \equiv N$	represent the given mode	of hybridisation $sp^2 - sp^2$ (B) $HC \equiv C - C \equiv CH$ (D) $H_2C = CH - C \equiv CH$	- sp – sp from left to right
19.	Which of the following is (A) NaBH ₄	s/are electron deficient com (B) B_2H_6	pounds ? (C) AlCl ₃ (D) LiA	JIH ₄
20.	 Which of the following statements is/are correct ? (A) Out of trimethylamine and trimethylphosphine, trimethylamine has higher dipole moment. (B) Out of (SiH₃)₂O and (CH₃)₂O, (SiH₃)₂O is more basic. (C) C - C bond length (in pm) in C₂ molecule is greater than O - O bond length in O₂ molecule. (D) N(SiMe₃)₃ and BF₃ molecules are isostructural. 			
21.	The species which are pa (A) NO	ramagnetic is/are : (B) NO ₂	(C) ClO ₂	(D) N_2O_4
22.	Which of the following re (A) $(CH_3)_2O + BF_3 \rightarrow$	eactions is/are likely to be ir (B) $(SiH_3)_2O + BF_3 \rightarrow$	mpossible. (C) (SiH ₃) ₃ N+BF ₃ →	(D) All the above
23.	Which of the following h (A) O_2^{2+}	ave bond order three ? (B) NO ⁺	(C) CN⁻	(D) CN ⁺
24.	 Which of the statement(s (A) There is a single bond (B) The F and O are furth (C) There is a double bond (D) It would take more error) are correct ? d in FO ⁺ er apart in FO ⁻ than in FO ⁺ . d in FO ⁻ . hergy to break F – O bond ir	n FO⁺ than in FO⁻.	

- 25. Which of the following statements is incorrect about P_4O_{10} molecule ?
 - (A) Each 'P' atom can be considered to be sp^3 hybridised
 - (B) There are six POP bonds in the molecule
 - (C) There are two types of P— O bond lengths
 - (**D**) \overrightarrow{POP} angle is 180°.
- 26. Which of the following statements is /are true for P_4S_3 molecule ?
 - (A) It contains six P–S bonds and three P–P bonds.
 - **(B)** It contains six P–S bonds and ten lone pairs.
 - (C) It has all atoms sp³ hybridised.
 - (D) It contains six P–P bonds and ten lone pairs.
- **27.** Identify the correct statement (s)
 - (A) in H-atom bond is formed by non direction orbital
 - (B) graphite behaves as conductor as well as semi conductor.
 - (C) in SiO₂ molecule Si-atom is sp³ hybridised
 - **(D)** ClF_3 is hyper valent molecule.
- 28. Which of the following statements is /are true about the structure of fullerene (Buckminister fullerene)?(A) All the carbon atoms undergo sp² hybridisation.
 - (B) Remaining fourth electron at each carbon is delocalised in molecular orbitals which in turn gives aromatic character to molecule.
 - (C) It has a shape like rugby ball.
 - (D) It contains both single and double bonds and has two C-C distances of 143.5 pm and 138.3 pm respectively.
- 29. Identify the correct statement (A) $H_2S_2O_7$ has peroxy linkage (C) $H_2S_2O_8$ has peroxy linkage

(B) H₂S₂O₆ has S–S linkage
(D) H₂SO₃(Sulphurous acid) has S in +4 oxidation state

- 30. Identify correct order of bond angles
 (A) Cl₂O > F₂O and F₂O < H₂O
 (B) AsI₃ > AsBr₃ > AsCl₃
 (C) NO₂⁺ > NO₂⁻
 (D) H_b B̂ H_b > H_c B̂ H_c; where H_c is terminal Hydrogen of B₂H₆ and H_b is the bridging Hydrogen of B₂H₆
- 31. Choose the correct options.
 (A) In N₂H₄, the N–N, bond length is greater than expected value.
 (B) In trisilyl amine (SiH₃)₃ N, the Si–N bond length is lesser than expected value.
 (C) The bond angle in OF₂ is lesser than OCl₂.
 (D) The Be atom in BeCl₂(s) is sp³ hybridised.
- 32. In the following, identify the incorrect statements.
 (A) N₂F₃⁺ is a planar at each nitrogen atom
 (B) In F₂ molecule, the energy of σ 2p_z is more than π 2p_x and π 2p_y.
 (C) The O–O bond length in H₂O₂ is smaller than in O₂F₂.
 (D) B₂, O₂ and F₂ are paramagnetic molecules.
- 33. Among the following, the species with one unpaired electron are : (A) O_2^+ (B) NO (C) O_2^- (D) B_2

34. Which of the following factors do not favour electrovalency ? (A) Low charge on ions (B) High charge on ions (C) Large cation and small anion (D) Small cation and large anion 35. Which statement(s) is/are correct? (A) Polarising power refers to cation. (B) Polarisability refers to anion. (C) Small cation is more efficient to polarise anion. (D) Molecules in which cation having pseudo inert gas configuration are more covalent. 36. Which of the following is/are correct statement(s). (A) Increasing covalent character : $NaCl < MgCl_{2} < AlCl_{3}$ **(B)** Increasing covalent character : LiF < LiCl < LiBr < LiI. (C) Increasing polarizability : $F^- < Cl^- < Br^- < I^-$ (D) Decreasing ionic nature : $MCl_2 > MCl_2 > MCl_2$ 37. Which of the following statements is / are true for the metallic bond ? (A) It is an electrical attraction between delocalised electrons and the positive part of the atom. (B) Transition metals may use inner d– electrons along with the outer s–electrons for metallic bonding. (C) Strength of metallic bond does not depend on the type of hybrid orbitals participating in metallic bonding. (D) Strength of metallic bond is inversely proportional to the radius of metallic atom. 38. Which of the following statements are correct? (A) PbI₂ is yellow due to high polarization of Pb^{2+} (B) Beryllium chloride exists in a polymeric chain like structure in solid state. (C) The thermal stability of alkalline earth metal carbonates follow the order : BeCO₃ < MgCO₃ < CaCO₃ < SrCO₃ < BaCO₃ (D) CuI has higher covalent character than NaI. 39. The halogen form compounds among themselves with formula XX', XX', XX', and XX', where X is the heavier halogen. Which of the following pairs representing their structures and being polar and non-polar are correct? **(B)** XX'_3 – T-shaped – polar (A) XX' - Linear - polar(C) XX'_{5} – square pyramidal – polar **(D)** XX'_{7} – Pentagonal bipyramidal – non-polar **40.** Which of the following is/are correct statement(s) for dipole moment? (A) Lone pair of electrons present on central atom can give rise to dipole moment. (B) Dipole moment is vector quantity. (C) CO₂ molecule has dipole moment. (D) Difference in electronegativities of combining atoms can lead to dipole moment. Which of the following molecules have intermolecular hydrogen bonds ? 41. (A) KH₂PO₄ (B) H₃BO₃ (C) C₆H₂CO₂H (D) CH₃OH 42. Which is **correct** statement : (A) Borazine has higher intermolecular force of attraction as compared to benzene. (B) Ka, fumaric acid is more than Ka, of maleic acid due to intra molecular hydrogen bonding in maleic acid. (C) The O – O bond length in $O_2[AsF_4]$ is shorter then KO_2 . (**D**) The bond angle order in halogen -S - halogen is OSF₂ < OSCl₂ < OSBr₂

43.	 Select the correct statement(s). (A) Br₂ and ICl have the same number of electrons and thus both have nearly the same boiling points. (B) N₂H₄ is pyramidal about each N-atom. (C) In P₄S₃ molecule, there are six P-S bonds, three P-P bonds and ten lone pairs of electrons (on all atoms). (D) In ClO₄⁻, all Cl - O bonds are identical and there is strong pπ - dπ bonding between chlorine and oxygen atoms. 				
44.	Which of following is cor (A) $PH_3 < AsH_3 < SbH_3 < T$ (B) $D_2O(s) > H_2O(\ell)$ (C) $Mn > Ca > Sr > Rb$ (D) $H_2 < CO_2 < H_2O$	rect NH ₃	order of boiling point order of density order of metallic bond stren increasing order of intermol	gth ecular forces of attraction	
45.	 Which of the following statements is/are correct : (A) Individual oxidation number of two sulphur atoms in thiosulphate (S₂O₃²⁻) ion are +4 and 0, however the average oxidation number of sulphur is +2. (B) The reason for Ka₂ <<< Ka₁ for peroxymonosulphuric acid is, intramolecular H–bonding in the anion of acid after first ionisation. (C) NH₃ has a higher boiling point than SbH₃, because of H–bonding between NH₃ molecules. (D) Among HCl, HBr and HI, HI is the strongest acid while HCl is the weakest acid while among HOCl, HOBr and HOI, HOCl is the strongest acid while HOI is the weakest acid. 				
46.	 Which of the following statements is correct regarding phosphoric acid ? (A) pπ-dπ back bonding exist between O and P (B) The anion is resonance stablized (C) It is a dibasic acid (D) Inter molecular H bonding between molecules make it a syrupy (viscous) liquid. 				
47.	The critical temperature of (A) fewer electrons than (C) V - shape	f water is higher th D ₂	an that of O ₂ because the H ₂ (B) two covalent b (D) dipole moment	O molecule has : ponds	
48.	Which of the following ar (A) XeF_4	e polar ? (B) XeF ₆	(C) $XeOF_4$	(D) XeF_5^-	
49.	 Which of the following statement(s) is/are correct? (A) Ethyne gas is more soluble in acetone than in water. (B) CH₃F is more polar than CD₃F due to deuterium (D) being less electronegative than hydrogen (H). (C) Silyl isocyanate (SiH₃NCO) is linear in shape while methyl isocyanate (CH₃NCO) is bent in shape. (D) All of these 				
50.	In which of the following (A) Borax	compounds B ator (B) Diborane	ns are in sp ² and sp ³ hybridi (C) Borazole	sation states ? (D) All	
51.	(a) There are only 12 bond (b) $B_3N_3H_6$ is an electron (c) Al_2Cl_6 sublimes on here (d) In $Si_2O_7^{6-}$ anion, one (A) T F T T	ding electrons avail deficient compound ating and give AlCl oxygen of a SiO ₄ ^{4–} (B) F T F F	able in one molecule of dibo d. 3 vapours at high temperatur tetrahedron is shared with ar (C) T F T F	rane. e. nother SiO_4^{4-} tetrahedron. (D) F T F T	

52.	The correct order of decreasing polarizability of ion is :			
	(A) Cl ⁻ , Br ⁻ , I ⁻ , F ⁻		(B) F ⁻ , I ⁻ , Br ⁻ , Cl ⁻	
	(C) I ⁻ , Br ⁻ , Cl ⁻ , F ⁻		(D) F ⁻ , Cl ⁻ , Br ⁻ , I ⁻	
53.	Which of the following is	in order of increasing cova	lent character ?	
	(A) $CCl_4 < BeCl_2 < BC$	I ₃ < LiCl	(B) $\text{LiCl} < \text{CCl}_4 < \text{BeCl}_2$	$_{2} < BCI_{3}$
	(C) LiCl $<$ BeCl ₂ $<$ BCl ₃	< CCl ₄	(D) LiCl $<$ BeCl ₂ $<$ CCl ₄	Second Second
54.	Which of the following co (A) Fe^{2^+} , Br^-	ombination of ion will have (B) Ni ⁴⁺ , Br ⁻	highest polarisation ? (C) Ni ²⁺ , Br ⁻	(D) Fe, Br [−]
55.	 SnCl₄ is a covalent liquid (A) electron clouds of the (B) electron clouds of the (C) its molecules are attra (D) Sn shows inert pair effects 	because : Cl ⁻ ions are weakly polariz Cl ⁻ ions are strongly polar acted to one another by stro fect.	ted to envelop the cation. ized to envelop the cation. ong van der Waals forces.	
56.	Which of the following h (A) NaCl	as highest melting point acc (B) MgCl ₂	cording to Fajan's rule : (C) AlCl ₃	(D) LiCl
57.	Iron is harder than sodium (A) iron atoms are smaller (C) metallic bonds are str	n because : onger in sodium.	(B) iron atoms are more cl(D) metallic bonds are street	losely packed. onger in iron.
58. 59.	The enhanced force of co (A) The covalent linkage (B) The electrovalent link (C) The lack of exchange (D) The delocalization of In the following metals w	s between atoms cages between atoms of valency electrons valence electron between m hich one has lowest probab	etallic kernels. le interatomic forces	
	(A) Copper	(B) Silver		(D) Mercury
60.	Which of the following c	annot be explained on the b	asis of Fajan's Rules ?	
	(A) Ag_2S is much less so.	The second seco	(B) $Fe(OH)_3$ is much less	soluble than $Fe(OH)_2$
	(C) BaCO ₃ is much less s	oluble than MgCO ₃	(D) Melting point of AlCI	₃ is much less than that of NaCl
61.	The correct order of the in	ncreasing ionic character is		
	(A) $\operatorname{BeCl}_2 < \operatorname{MgCl}_2 < \operatorname{CaC}_2$	$l_2 < BaCl_2$	(B) $\operatorname{BeCl}_2 < \operatorname{MgCl}_2 < \operatorname{BaCl}_2$	$l_2 < CaCl_2$
	(C) $BeCl_2 < BaCl_2 < MgC$	$l_2 < CaCl_2$	(D) $BaCl_2 < MgCl_2 < CaCl$	$l_2 < \text{BeCl}_2$
62.	Which of the following co	ompounds of elements in gr	oup IV is expected to be mo	ost ionic ?
63.	(A) PbCl ₂ Least melting point is sho	(B) $PbCl_4$ own by the compound :	$(C) CCl_4$	(D) SiCl ₄
	(A) PbCl ₂	(B) SnCl ₄	(C) NaCl	(D) $AlCl_3$
64.	Which of the following is (A) Mobile valence electr (C) Highly directed bond	observed in metallic bonds ons	 (B) Localised electrons (D) None of these 	

65.	S1 : AgI is less soluble in	water than AgF due to mor	e polarisation of I- in comp	arison to F ⁻ ion.
	S2 : Melting point of BaC	Cl_2 is higher than the melting	g point of BeCl ₂ due to great	ter ionic nature of BaCl ₂ .
	S3 : Order of hydrated rac	dii is : $Al^{3+}(aq) > Mg^{2+}(aq)$	$> Na^{+} (aq)$	2
	(A) T T T	(B) T T F	(C) T F T	(D) F T T
66.	CuI ₂ is unstable even at (A) the Cu ²⁺ ion with a co (B) the Cu ²⁺ ion with a 17 (C) the I ⁻ ion with a large (D) both (A) and (C)	ordinary temperature becau omparatively small radius ha ' electron outer shell has we r radius has a high polarisab	se : as a strong polarising power ak polarising power. vility.	
67.	 Which of the following statements is incorrect ? (A) N₂ and C₂ molecules contain both σ and π bonds. (B) Cu²⁺ is more stable than Cu⁺ in aqueous medium. (C) The electrical conductivity of metals can not be explained by electron sea model. (D) (A) and (C) both 			
68.	Which anion has the high	nest polarisability?		
	(A) I [−]	(B) Cl [−]	(C) F ⁻	(D) Br ⁻
69.	Boron forms covalent compound due to(A) Small size(C) Lower ionization energy(D) Both (A) and (B)			гуу
70.	Which has maximum dipc	le moment ?		
	(A)	(B) ↓ →	(C)	(D) ←→→
71.	Which of the following c (A) Benzene (C_6H_6) (C) Boron trifluoride	ompounds possesses zero d	(B) Carbon tetrachloride(D) All of these	
72.	Of the following molecule (A) SiF_4	es, the one, which has perma (B) BF ₃	anent dipole moment, is : (C) PF ₃	(D) PF ₅
73.	Which of the following he (A) NF_3	as the least dipole moment of (B) CO ₂	? (C) SO ₂	(D) NH ₃
74.	The geometry of H_2S and (A) angular and non zero (C) linear and non zero	its dipole moment are :	(B) angular and zero(D) linear and zero	[JEE-1999, 2/80]
75.	Which of the following statements is false for XeO_3F_2 ?(A) Hybridisation of central atom xenon is sp^3d .(B) The compound is non-polar.(C) The compound has $p\pi$ - $d\pi$ bonding.(D) None.			-polar.
76.	The gaseous HX molecule molecule. The separatic character in HX molecul (A) 78%	ule has a measured dipole on between the nuclei in the is: (B) 31.25%	moment of 4.0 D, which his molecule is $2.67 \times 10^{\circ}$ (C) 50.25%	indicates that it is a very polar ⁻⁸ cm then the percentage ionic (D) None of these

77.	Which of the following has been arranged in order o	f decreasing dipole moment ?
	(A) $CH_3Cl > CH_3F > CH_3Br > CH_3I$	(B) $CH_3F > CH_3Cl > CH_3Br > CH_3I$
	(C) $CH_3Cl > CH_3Br > CH_3I > CH_3F$	(D) $CH_3F > CH_3Cl > CH_3I > CH_3Br$
78.	The dipole moment of chlorobenzene is 1.73 D. The (A) 3.46 D (B) 0.00D	dipole moment of p-dichlorobenzene is expected to be : (C) 1.73 D (D) 1.00 D
79.	Which of the following models best describes the bo(A) metallic bonding(C) non-metallic covalent bonding	 (B) ionic bonding (D) van der Waals forces
80.	Consider the following sets of H-bonds	
	P: -O-H N - Q: -C)-Н О -
	$\mathbf{R} : -\mathbf{N} - \mathbf{H} - \cdots - \mathbf{N} - \mathbf{N} - \mathbf{S} : -\mathbf{N}$	↓ — H O —
	The correct order of H-bond strengths is : (A) $Q > P > S > R$ (C) $R > S > P > Q$	 (B) R>Q>S>P (D) P>Q>R>S
81.	Which of the following compounds would have sign	ificant intermolecular hydrogen bonding?
	HF, CH ₃ OH, N ₂ O ₄ , CH ₄	
	(A) HF, N ₂ O ₄ (B) HF, CH ₄ , CH ₃ OH	(C) HF, CH ₃ OH (D) CH ₃ OH, CH ₄
82.	 Which of the following is not correctly matched with molecules (Hydrogen bonding is not taken as dipole (A) Benzene – London dispresion forces (B) Orthophosphoric acid – London dispresion force, dip (D) Iodine monochloride – London dispersion force 	th respect to the intermolecular forces existing amongst the e-dipole attraction) ? e, hydrogen bonding. pole-dipole attraction
83.	 Which of the following factor is responsible for van (A) Instantaneous dipole-induced dipole interaction. (B) Dipole-induced dipole interaction and ion-induced (C) Dipole-dipole interaction and ion-induced dipole (D) All of these. 	der Waals forces ? ed dipole interaction. interaction.
84.	Which of the following bonds/forces is weakest ?(A) Covalent bond(B) Ionic bond	(C) Hydrogen bond (D) London force
85.	In which of the following compound, intra-molecula (A) O-hydroxy benzyaldehyde (C) Chloral hydrate	 IF H-bonding is not observed : (B) O-nitrophenol (D) Boric acid
86.	 Which of the following statement is not true ? (A) CCl₄ has higher boling point that CHCl₃. (B) The HF₂⁻ ion exists in the solid state and in liqu (C) Hydrogen bonding maintains the planar H₃BO₃ (D) None of these. 	id HF solution , but not in dilute aqueous solutions. units in layers in solid state.

87.	Which is correct a (A) Its boiling point (B) $O - D O$ (C) $D_2O(s)$ sinks in (D) all the above a	bout D_2O nt is higher than that of H_2O (bond is stronger than $O - H -$ $n H_2O(\ell)$. re correct.	ℓ) O bond.		
88.	Amongst NH ₃ , PH (A) NH ₃ because c (C) PH ₃ because c	I ₃ , AsH ₃ and SbH ₃ the one with of lower molecular weight f H-bonding	 th highest boiling point is : (B) SbH₃ because of (D) AsH₃ because of 	`higher molecular weight `lower molecular weight	
89.	S1 : In the solid B symmetry. S2 : Na ₂ CO ₃ can b S3 : XeO ₃ F ₂ has o S4 : D ₂ O has high (A) T F T F	$(OH)_3$ units are hydrogen box be isomorphous with Na ₂ SO ₃ and lone pair of electron on cert er boiling point than H ₂ O (B) T F F T	nded together into two-dim as both have similar formul ntral xenon atom. (C) T T F F	ensional sheets with almost hexagona a type. (D) T T T T	1
90.	The correct order of (A) H ₂ O < H ₂ S < H (C) H ₂ O > H ₂ S > H	of boiling point is : I ₂ Se < H ₂ Te I ₂ Se > H ₂ Te	(B) $H_2O > H_2Se > H_2$ (D) $H_2O > H_2Te > H_2$	$_{2}\text{Te} > \text{H}_{2}\text{S}$ $_{2}\text{Se} > \text{H}_{2}\text{S}$	
91.	Which of the follo	wing compounds has the hig	hest boiling point		
	(A) HCl	(B) HBr	$(C)H_2SO_4$	(D) HNO ₃	
92.	If molecule MX ₃ h (A) Pure p	as Zero dipole moment, the h (B) sp hybrid	ybrid orbitals used by M (A (C) sp ² hybrid	tomic No. < 21) are (D) sp ³ hybrid	
93.	Which of the follo (A) SOCl ₂	wing would be expected to ha (B) OF ₂	ave a dipole moment of zero (C) SeF ₆	o on the basis of symmetry? (D) ClF ₅	
94.	Among the XeF_2 , S S1 : XeF_2 , ICl_2^- , 2 S2 : $IOCl_4^-$ and F_2^- S3 : $SF_2Cl_2^-$, $IOCl_4^-$ S4 : All bond angle The correct order (A) F T T F	SF_2Cl_2 , $XeOF_2$, ICl_2^- , $IOCl_4^-$ $XeOF_2$ have zero dipole mome CIO^{+1} have different electronic a_4^- and F_2CIO^+ have equal nur- e in each of species, $XeOF_4$, T_4^- for the above statements is : (B) F F F F	and F_2CIO^{+1} ent ic arrangement (geometry) a mber of lone pairs of electro $IOCl_4^-$, SF_2Cl_2 and F_2CIO^+ (C) T T F F	at central atom ons at the central atom. are identical (D) T F T F	
95.	S1 : In CrO_5 , the c	oxidation number of Cr is +6.			
	S2 : Out of CH_3Cl	and CHCl ₃ , CH ₃ Cl has higher	dipole moment		
	S3 : Hybridisation	of sulphur in SO_3 and in its t	rimer is the same, sp^2 .		
	(A) T F T	(B) T T F	(C) T F F	(D) T T T	
96.	Given the species (A) All the species (C) All the species	N ₂ , CO, CN ⁻ and NO ⁺ . Which are diamagnetic have dipole moment	h of the following statement (B) All the species a (D) All the species and	t is incorrect . re isoelectronic re linear	

97.	Which of the following	are incorrect for dipole me	oment?			
	(A) Lone pair of elements present on central atom can give rise to dipole moment					
	(B) Dipole moment is vector quantity					
	(C) $PF_5(g)$ molecule has	s non zero dipole moment				
	(D) Difference in electro	onegativities of combining	g atom can lead to dipole n	noment		
98.	Which of the following orders are correct regarding mentioned properties (A) $SO_3 < CCl_4 < XeF_2$ (Bond angle). (B) $SOF_2 > SOCl_2 > SOBr_2$ (Bond angle) (C) $CH_3COO^- > CO_3^{2-} > CH_3COCH_3$ (C — O bond length) (D) $CH_3Cl > CH_3F < CD_3F$ (dipole moment).					
99.	 CH₃Cl has more dipole m (A) electron affinity of ch (B) the charge separation (C) the repulsion between (D) chlorine has higher elements 	oment than CH ₃ F because : lorine is greater than that o is larger in CH ₃ Cl compare the bond pairs and non-be ectronegativity than fluorin	f fluorine. d to CH_3F . onded pairs of electrons is g ne.	greater in CH_3Cl than CH_3F .		
100.	 S1 : In ozone molecule, O – O bond lengths are equal, this can be explained on the basis of resonance. S2 : Ion-dipole attraction is responsible for hydration of ions. S3 : Intermolecular H-bonding decreases the boiling point. S4 : A symmetrical molecule with identical bonds have non zero dipole moment. (A) TFTF (B) TTFT (C) TTFF (D) TTTF 					
101.	H - bonding is maximum i	n				
	(A) C ₆ H ₅ OH	(B) C ₆ H ₅ COOH	(C) CH ₃ CH ₂ OH	(D) CH ₃ COCH ₃		
102.	Give the correct order of S_1 : HF boils at a higher t S_2 : HBr boils at lower ter S_3 : Bond length of N_2 is S_4 : F_2 has higher boiling (A) TFTT	initials T or F for following emperature than HCl mperature than HI less than N_2^+ point than Cl_2 (B) T T F F	statements. Use T if statem	ent is true and F if it is false. (D) T T T T		
103.	The increasing order of the first of the fir	ne strength of hydrogen bo (ii) S—HO	nd in the following mention (iii) FHF	ed linkages is : (iv)F—HO		
	(A) (i) < (ii) < (iv) < (iii)	(B) (ii) < (i) < (iv) < (iii)	(C) (i) < (ii) < (iii) < (iv)	(D) (ii)<(i)<(iii)<(iv)		
104.	Which one of the followite (A) H ₂ O	ng does not have intermole (B) o-nitro phenol	cular H-bonding ? (C) HF	(D) CH ₃ COOH		
105	Which of the following c	ompounds would have sign	nificant intermolecular hydr	ogen honding ?		
100.	HE CE	$OH N O CH NH (\ell)$	internet internitiee data nyai	ogen oonung :		
	(A) HF, N ₂ O ₄ , NH ₂ (ℓ)	(B) HF. CH. CH. OH	(C) HF. CH.OH. $NH_{2}(\ell)$	(D) CH ₂ OH ₂ CH ₁ , NH ₂ (ℓ)		
106.	Select the correct stateme (A) The order of Xe–F bo (B) PH_5 can undergo sp^3 (C) Dipole moment of CH (D) Increasing strength of	ent. ond length in various fluorid d hybridisation to have octa I_3F is greater than that of CI 'hydrogen bonding is CI–H-	les of Xenon is $XeF_2 < XeF_3$ ahedral geometry. H_3Cl Cl < N-HN < O-H	$C_4 < XeF_6$ -O < F-HF		

107.	Consider the following	g statements.				
	S1 : The percentage of s-character in the orbital forming S – S bonds and P – P bonds in S ₈ and P ₄ molecules					
	respectively are same.					
	S2 : In SF_4 the bond a	angles, instead of being 90°	and 180° are 89° and	177° respectively due to the repulsions		
	between lone pair and	bond pairs of electrons.				
	S3 : Aqueous H_3PO_4 i	s syrupy (i.e more viscous th	nan water)			
	S4 : SiO ₂ crystal may	be considered as giant mole	cule in which eight-me	embered rings are formed with alternate		
	silicon and oxygen ato	oms.				
	Of these :					
	(A) $S_1 \& S_4$ are correct	only.	(B) $S_2, S_3 \& S_4$ are	correct only.		
	(C) $S_1, S_2, S_3 \& S_4$ are	correct.	(D) $S_1, S_2 \& S_3 are c$	correct only.		
108.	Select the correct state	ment for the sulphuric acid.				
	(I) It has high boiling	point and viscosity.				
	(II) There are two type	es of bond lengths in its bival	ent anion.			
	(III) $p\pi$ - $d\pi$ bonding be	tween sulphur and oxygen is	observed.			
	(IV) Sulphur has the sa	ame hybridisation that is of b	oron in diborane.			
	(A) and only		(B) and V only			
	(C) and V only		(D) III and IV only	5		
	(c) i, in and i v only					
109.	Intermolecular hydrog	en bonding increases the ent	halpy of vaporization	of a liquid due to the :		
	(A) decrease in the attr	raction between molecules.				
	(B) increase in the attr	action between molecules.				
	(C) decrease in the mo	lar mass of unassociated liqu	id molecules.			
	(D) increase in the effe	ective molar mass of hydroge	en - bonded molecules.			
110.	S1: The polarising power of a cation and polarisability of an anion, both are directly proportional to their sizes.					
	S2 : H_2^+ and He_2^+ have same bond order but H_2^+ is more stable than He_2^+ .					
	S3 : The strength of hydrogen bond does not depend at all on the availability of the lone pair of electrons on the atom forming H-bond.					
	$S4: OF_2$ and Cl_2O bot	h are sp ³ hybridised and bon	d angle in $C\ell_2O$ is grea	ter than 109°28'.		
	$(\mathbf{A}) \mathbf{T} \mathbf{F} \mathbf{F} \mathbf{T}$	(B) F F F T	(B) F T F T	(D) T T T T		
111.	Which of the following	g has minimum melting point				
	(A) CsF	(B) HCl	(C) HF	(D) Lif		
112.	Which of the following	g statemets is true?				
	(A) The dipole momen	t of NF_3 is zero	(B) The dipole more	ment of NF_3 is less than NH_3		
	(C) The dipole momen	t of NF_3 is more than NH_3	(D) The dipole mor	ment of NH ₃ is zero		
113.	Among the following	compounds, the correct orde	r of the polarity of the	bonds is :		
	SbH ₂ , AsH ₂ , PH ₂ , NH ₂ .					
	(A) $SbH_3 < AsH_3 < PH$	3 <nh3< td=""><td>(\mathbf{B}) AsH₃ < SbH₃ =</td><td>PH3 < NH3</td></nh3<>	(\mathbf{B}) AsH ₃ < SbH ₃ =	PH3 < NH3		
	(C) $PH_3 < AsH_3 < SbH$	3 < NH ₃	$(\mathbf{D}) \operatorname{AsH}_3 < \operatorname{PH}_3 < S$	$SbH_3 < NH_3$		
114.	Among the following,	van der Waals forces are max	timum in :			

(A) HBr (B) LiBr (C) LiCl (D) AgBr

115. Intermolecular hydrogen bond is present in which of the following pair of molecules ?			lecules ?			
			0 			
	(A) SiH_4 and SiF_4		(B) $CH_3 - C - CH_3$ and	I CHCl ₃		
	(C) H - C - OH and C	О Н ₃ – С – ОН	(D) CH_3OCH_3 and H_2O	2		
116.	Among the following co (A) H ₂ CO ₃	compounds the one that is point (\mathbf{B}) SiF ₄	olar and has central atom v (C) BF ₃	 with sp³ hybridisation is : (D) HClO₂ 		
	<u> </u>			2		
117.	Which of the following	are polar				
	(A) XeF_4	$(\mathbf{B}) \operatorname{SO}_3$	(C) $XeOF_4$	(D) ICl_4^-		
118.	Which of the following	exhibits H-bonding ?				
	(A) CH ₄	(B) H_2Se	(C) N ₂ H ₄	(D) H ₂ S		
119	Bicarbonate (HCO ⁻) ex	rists in KHCO_ and NaHCC	respectively as ·			
117.	(A) Dimeric and polyme	ric chain like structure.	(B) Polymeric chain an	d dimeric structure.		
	(C) Dimeric and trimeri	c structure.	(D) Trimeric and dimer	ic structure.		
120	Coursent commences de heure leur meltine meint heurene					
120.	(A) Covalent bond is less excharmin					
	(B) Covalent molecules	have definite shape				
	(C) Covalent hold is w	eaker than ionic bond				
	(D) Covalent molecules	are held by weak Vander W	Vaal's force of attraction			
121.	The bond that determines the secondary structure of a protein is					
	(A) Coordinate bond	(B) Covalent bond	(C) Hydrogen bond	(D) Ionic bond		
122	Pure phosphoric acid is	very viscous because .				
1	(A) It is a strong acid	very viscous, occuuse .				
	(B) It is tribasic acid					
	(C) It is hygroscopic					
	(D) It has PO_4^{3-} groups	which are bonded by many	y hydrogen bonds			
122						
123.						
124.	Which of the following	is false ?				
	(A) Van der Waals force	es are responsible for the for	rmation of molecular crysta	als.		
	(B) Branching lowers the boiling points of isomeric organic compounds due to reduction in the van der Waals force of attraction.					

(C) In graphite, van der Waals forces act between the carbon layers.

(D) Boiling point of NH_3 is greater than SbH_3 .

125. SnCl₂.2H₂O readily loses one molecule of water at 80° C because :

(A) One water molecule is coordinated to lone pair of electrons on $SnCl_2$ and the other is hydrogen bonded to coordinated water molecule.

(B) One water molecule is bonded to $SnCl_2$ by coordinate covalent bond and the other is held by iondipole attractive forces to central metal ion.

- (C) Both the water molecules are coordinated to lone pairs of electrons on pyramidal SnCl₂.
- (D) Both the water molecules are bonded to pyramidal $SnCl_2$ by hydrogen bonds.
- **126.** The pairs of bases in DNA are held together by
 - (A) Hydrogen bonds
 - (C) Phosphate groups

- (B) Ionic bonds
- (D) Deoxyribose groups

Statement-2: $\angle P \neq 180^\circ$; $\angle Q \neq 90^\circ$ and thus $\angle R \neq 120^\circ$ but less then 120° due to the presence of a lone pair.

- 8. Statement-1 : In IOF_4^- a single lone pair is present on iodine atom trans to oxygen atom to have minimum repulsion between the I = O and the lone pair of electrons.
 - Statement-2 : The VSEPR model considers double and triple bonds to have slightly greater repulsive effect than single bonds because of the repulsive effect of π electrons.
- Statement-1: Molecules having different hybridisation can have same shape.
 Statement-2: The shape of a molecule does not depend on the hybridisation but it depends on the energy factor.
- Statement-1: SO₂, NO₃⁻ and CO₃²⁻ are isoelectronic as well as isostructural species.
 Statement-2: The d and f-orbitals do not shield the nuclear charge very effectively. Therefore, there is significant reduction in the size of the ions, just after d or f orbitals have been completely filled.

Statement-1 : NO₃⁻ and PO₃⁻ have similar formula type but differ structurally i.e. they have different type of 11. hybridisation.

Statement-2: NO₃⁻ ion exists as free ion. On the other hand PO₃⁻ exists as cyclic or linear polymeric structure.

12. **Statement-1**: Carbon has unique ability to form $p\pi - p\pi$ multiple bonds with itself and with other atoms of small size and high electronegativity.

Statement-2: Heavier elements of group 14^{th} do not form $p\pi - p\pi$ bonds because their atomic orbitals are too large and diffuse to have effective side ways overlapping.

- 13. **Statement-1**: Elemental nitrogen exists as a diatomic molecule and phosphorous as tetratomic molecule. Statement-2 : Nitrogen does not have vacant d-orbital whereas phosphorus have vacant d-orbital.
- 14. **Statement-1**: Single N–N bond is weaker than the single P–P bond. Statement-2: In N-N bond there is high interelectronic repulsion of the non-bonding electrons, owing to the weaker bond.
- Statement-1: The hybridisation of N atom in acetamide is sp³. 15. Statement-2: There occurs delocalisation of lone pair of electrons present on N atom.

$$CH_3 - C - NH_2 \leftrightarrow CH_3 - C = NH_2$$

Statement-1: CI \xrightarrow{P} F, bond angle P is equal to the bond angle Q but not precisely equal to 90^o. 16.

Statement-2: The molecule is T -Shaped and there is repulsion between lone pairs of electrons

17.

Statement-1 : The electronic structure of azide ion (N_3^-) is $\begin{bmatrix} : N \\ : N \\ = N \\ \end{bmatrix}^-$. **Statement-2 :** $\begin{bmatrix} N \\ : \\ N \\ = N \\ \end{bmatrix}^-$ is not a resonating structure of azide ion, because the position of atoms cannot be changed.

18. **Statement-1**: Si – F, Si – C ℓ and Si – O bonds are stronger than the corresponding bonds with C.

Statement-2:
$$p\pi - d\pi$$
 overlapping
F Si

- **Statement-1**: Aluminium chloride in acidified aqueous solution forms octahedral $[Al(H_2O)_{2}]^{3+}$ ion. 19. Statement-2: In $[Al(H,O)_{2}]^{3+}$ complex ion, the 3d orbitals of Al are involved and the hybridisation state of Al is sp³d².
- 20. Statement-1: In graphite, on increasing the temperature the conductivity decreases along the layers of carbon atoms.
 - **Statement-2**: Graphite cleaves easily, because the force of attraction between the layers is weak van der Waal's force.

21.	Statement-1: A molecule of buckminister fullerene exhibits aromatic character.
	Statement-2 : All the carbon atoms undergo sp ² hybridisation. Each carbon atom forms three sigma bonds with other three carbon atoms. The remaining electron at each carbon is delocalised in molecular orbitals.
22.	Statement-1: Amongst the oxo acids of halogens, HOCl, HOBr and HOI, the HOI is the most acidic acid.
	Statement-2 : The conjugate base stability is $CIO^- > BrO^- > IO^-$
23.	Statement-1 : PF ₅ keeps trigonal bipyramidal structure in gas as well as in solid state.
	Statement-2 : $PC\ell_5$ in gas and liquid state is covalent but in solid state it is ionic and exist as $[PC\ell_4]^+$ and $[PC\ell_6]^-$
24.	Statement-1 : The double bond in C_2 molecule consists of both π -bonds.
	Statement-2 : Four electrons are present in two π -bonding molecular orbitals in C ₂ .
25.	Statement-1 : Anhydrous $A\ell C\ell_3$ is more soluble in diethyl ether than hydrous $A\ell C\ell_3$.
	Statement-2 : Anhydrous $A\ell C\ell_3$ is electron deficient. The oxygen atom of ether donates a pair of electrons to vacant p-orbital on the $A\ell$ atom forming a co-ordinate bond.
26.	Statement-1: Atomic orbitals are monocentric while molecular orbitals are polycentric.

- Statement-2 : In an atomic orbital the movement of an electron is influenced by only one positive nucleus, while that of an electron in a molecular orbital is influenced by two or more nuclei depending on the number of atoms contained in the molecule.
- 27. Statement-1 : To obtain effective $p\pi$ -d π overlap, the size of the d-orbital must be similar to the size of the p-orbital. So for chlorine $p\pi$ -d π bonding is strongest in their oxoanions.
 - **Statement-2** : On moving a period from left to right in the periodic table , the nuclear charge is increased and more s and p-electrons are added. Since these s- and p-electrons shield the nuclear charge incompletely, the size of the atom and that of the d-orbitals decreases. This leads to progressively stronger $p\pi$ -d π bonding.
- 28. Statement-1 : Dimethyl ether and disilyl ether both readily form complexes with trimethyl borane

Statement-2:
$$H_3Si - \ddot{O} - H_3Si$$

 $H_3\bar{S}i = \ddot{O}^+ - SiH_3$
 $H_3Si - Q = \bar{S}iH_3$

- 29. Statement-1 : Solubility of LiI is more than that of LiBr.
 Statement-1 : LiI has more lattice energy and more hydration energy in comparison to LiBr.
- **30.** Statement-1 : Al³⁺ form more ionic compound in comparison to Ga³⁺, with identical anion. Statement-2 : $r_{Al^{3+}} \approx r_{Ga^{3+}}$ and Z_{eff} of Ga³⁺ is more than that of Al³⁺.
- Statement-1 : Ortho boric acid crystal are hard and cannot be broken easily into the powder form.
 Statement-2 : In the solid state B(OH)₃ units are hydrogen bonded together into two dimensional sheets.
- **32. Statement-1**: The crystal structures of NaHCO₃ and KHCO₃, both show intermolecular hydrogen bonding but are different.

Statement-2 : In NaHCO₃ the HCO₃⁻ ions are linked together through intermolecular hydrogen bonds into an infinite chain , while in KHCO₃, HCO₃⁻ ions form dimeric anions through intermolecular hydrogen bonds.

- **33. Statement-1**: Fluorine (F_2) is gas while iodine (I_2) is solid at room temperature.
 - Statement-2 : A larger molecule or heavy atom is more polarizable and has larger dispersion forces because it has many electrons some of which are less tightly held and are farther from the nucleus.
- Statement-1 : Noble gases are liquefied at very low temperature. Hence they have low boiling points.
 Statement-2 : Noble gases being monoatomic have no other interatomic forces except weak dispersion forces.
- Statement-1: NF₃ has little tendency to act as a donor molecule.
 Statement-2: The highly electronegative F atoms attract electrons and these moments partly cancel the moment from the lone pair.
- 36. Statement-1 : Fluoromethane (CH₃ F ; $\mu = 1.85$ D) has a smaller dipole moment than chloromethane (CH₃Cl; $\mu = 1.87$ D)

Statement-2 : Fluorine has less electron affinity than that of chlorine.

- Statement-1 : Acetylene is not soluble in H₂O but is highly soluble in acetone.
 Statement-2 : Acetylene forms inter molecular H–bond with acetone easily but not with H₂O as water molecular themselves are highly associated through inter molecular H–bonds.
- Statement-1 : Crystals of hydrated calcium sulphate (gypsum : (CaSO₄ . 2 H₂O)) are soft and easily cleaved.
 Statement-2 : Crystals of anhydrous calcium sulphate (anhydride : CaSO₄) are very hard and very difficult to cleave.
- **39.** Statement-1 : In case of persulphuric acid, the $K_1 >> K_2$. Statement-2 : The anion of persulphuric acid is intermolecular hydrogen bonded.

	Exercise # 3 Part # I	[Matrix Match Type Questions]
1.	Match the compounds listed in column- Column-I	I with characteristic(s) listed in column-II. Column-II
	(A) $IO_2F_2^-$	(p) sp^3d
	(B) F_2 SeO	(q) sp ³
	(C) $ClOF_3$	(r) sp ²
	(D) $\operatorname{XeF}_{5}^{+}$	(s) sp^3d^2
2.	Column-I	Column-II
	(\mathbf{A}) SF ₂	(p) sp ³ and bent
	(B) KrF_4	(q) two lone pairs
	(C) NOCI	(r) bond angle $< 109^{\circ}28'$
	(D) NF_3	(s) sp ² and bent
		(t) sp^3d^2 and square planar
3.	Column – I	Column –II
	(A) ClF_{2}^{-}, ClF_{2}^{+}	(p) Square pyramidal.
	(B) $IO_2F_2^-$, F_2SeO	(q) See – saw and pyramidal shaped respectively.
	(C) IOF_{-} , XeOF ₂	(r) Linear and bent shaped respectively.
	(D) $\operatorname{BrF}_{\epsilon}$, XeOF	(s) Square pyramidal and T-shaped respectively.
	> 3 4	(t) Both sp^3d^2 .
4	Column (I)	Column (II)
	(A) P.	(\mathbf{n}) 7 σ - bond
	(B) SO $_{2^{-}}$	(a) central atom is in sp^3 hybridisation
	$(\mathbf{C}) \mathbf{C}_{2} \mathbf{H}_{c}$	(r) No. 'P-P' bond
	(D) P_4O_{10}	(s) No, 'O–O' bond
5.	Column-I	Column-II
	(A) H ₂ P ₂ O ₂	(p) S–O–S bond is present
	$(\mathbf{B}) \mathbf{H}_{0} \mathbf{S}_{0} \mathbf{O}_{7}$	(a) Di-basic acid
	$(\mathbf{C}) \mathbf{H}_{2} \mathbf{S}_{4} \mathbf{O}_{c}$	(r) P-O-P bond is present
	(D) $H_4P_2O_5$	(s) Central atom (S or P) in maximum oxidation state.
6.	Column-I	Column-II
	(A) N_2^+ is stable than N_2^-	(p) due to one have greater number of electrons in antibonding molecular orbitals than other
	(B) NO can easily lose its electron than	N_{a} (q) one has B.O. 3 and other has 2.5
	(C) NO have large bond length than NO	D^+ (r) both are paramagnetic with same bond order
	(D) He ₂ ⁺ exists, but is less stable than H	I_2^+ (s) one is paramagnetic and other diamagnetic
7.	Column - I	Column - II
	(\mathbf{A}) BF ₃	(p) sp^3 hybridization
	(\mathbf{B}) (SiH ₃) ₂ N	(q) $p\pi - p\pi$ back bond
	$(\mathbf{C}) \mathbf{B}_{2}\mathbf{H}_{6}$	(r) $p\pi - d\pi$ back bond
	(\mathbf{D}) SiO ₂	(s) $3c - 2e$ bond

- 8. Column I (A) O_2 and NO⁻ (B) O_2^+ and NO (C) CO and CN⁻ (D) C_2 and CN⁺
- 9. Column I (A) SO_3 (gas) (B) OSF_4 (C) SO_3F^-

(D) ClOF_3

10. Column – I (A) IF_2^- (B) CIF_3 (C) XeO_3F_2 (D) SF_4

11. Column-I

(A) Blue vitriol
(B) Gypsum
(C) Pure orthophosphoric acid
(D) Chloral hydrate

12. Column-I

(A) Liquid bromine
(B) Solid hydrogen fluoride
(C) Solution of sodium fluoride in water
(D) Liquid methylamine
(E) Noble gas clathrate.

13. Column-I (A) HCl < HF(B) $PH_3 < NH_3$ (C) $H_2O < D_2O$ (D) $F_2 < Cl_2$

Part # II

Column – II

- (p) Same magnetic property and bond order as that in N_2^+
- (q) Same bond order but not same magnetic property as that in O_2
- (r) Same magnetic property and bond order as that N_2^{2-}
- (s) Same magnetic property and bond order as that in NO^+

Column – II

- (p) Polar with $p\pi$ -d π bonds and identical S–O bond, lengths.
- (q) One lone pair and $p\pi d\pi$ bond.
- (r) Non-polar with $p\pi p\pi$ and $p\pi d\pi$ bonds. Identical S-O bond lengths.
- (s) Polar with $p\pi d\pi$ bond.

Column – II

- (**p**) sp³d (**q**) polar
- (r) one of the bond angles is 180° .
- (s) one lone pair

Column-II

(p) Ionic bond
(q) Covalent bond
(r) Hydrogen bond
(s) Resonance stabilisation

Column-II

- (p) Hydrogen bond
- (q) Ion-dipole force
- (r) Dispersion force.
- (s) Dipole induced dipole interaction.

Column-II

(p) Strength of hydrogen bonding
(q) Dipole moment
(r) Boiling point
(s) Bond energy

[Comprehension Type Questions]

Comprehension #1

VSEPR Theory

The trigonal bipyramid is not a regular shape since the bond angles are not all the same. It therefore follows that the corners are not equivalent in ClF_3 molecule. Lone pairs occupy two of the corners, and F atoms occupy the other three corners. These different arrangements are theoretically possible, as shown in figure.

(i) The most stable structure will be the one of lowest energy,

that is the one with the minimum repulsion between the five orbitals. The greatest repulsion occurs between two lone

pairs. Lone pair bond pair repulsions are next strongest, and

bond pair-bond pair repulsions the weakest.

A rule of thumb can be theorised, that the position having maximum repulsion amongst them are occupied at equatorial points. Therefore (3) structure is right.

(ii) Since double bond occupies more space compared to single bond therefore it will prefer equatorial position. (iii) More electronegative element will occupy axial position in case of trigonal bipyramidal geometry (iv) In case of sp^3d^2 hybridisation lone pairs should be placed opposite to each other because all the corners are identical.

- 1. Geometry (i.e. arrangement of electron pairs around central atom) of ClOF_3 is similar to the : (A) XeF_4 (B) SOCl_2 (C) I_3^- (D) ClO_4^-
- 2. The shape of SF_5^- can be :

- 3. Actual shape of the molecule BrF_5 is similar to the molecule : (A) PCl_5 (B) XeF_4 (C) PCl_4^+ (D) None of these
- 4. Which of the following statements is/are correct for CIO₄⁻ oxoanion?
 (A) It does not have any tendency of polymerisation.
 (B) It has strong pπ-pπ bonding between chlorine and oxygen.
 (C) All Cl-O bonds are identical and chlorine atom is sp³ hybridised.
 (D) The chemical bonding takes place in ground state and charge dispersion is more than CIO₃⁻ oxo anion.
- 5. Which of the following do not exist ? (A) SH_6 (B) HFO_4 (C) SI_6 (D) HCO_3

Comprehension #2

The distribution of electrons among various molecular orbitals is called the electronic configuration of the molecule which provides us the following very important informations about the molecule .

(A) Stability of molecule : The molecule is stable if number of bonding molecular orbital electrons (N_b) is greater than the number of antibonding molecular orbital electrons (N_a) and vice- versa. (B) Bond order : Bond order = $\frac{1}{2} (N_b - N_a)$

A positive bond order means a stable molecule while a negative or zero bond order means an unstable molecule. **(C)** Nature of the bond :

Bond order 1, 2, or 3 corresponds to single, double or triple bonds respectively.

(D) Bond length :

Bond length decreases as bond order increases.

(E) Magnetic nature :

Molecular orbitals in a molecule are doubly occupied, the substance is diamagnetic and if one or more molecular orbitals are singly occupied, it is paramagnetic.

1. Which of the following statements is incorrect ?

(A) Among O_2^+ , O_2 and O_2^- the stability decreases as $O_2^+ > O_2^- > O_2^-$

(B) He₂ molecule does not exit as the effect of bonding and anti-bonding molecular orbitals cancel each other (C) C_2 , O_2^{2-} and Li₂ are diamagnetic

(D) In F₂ molecule, the energy of $\sigma 2 P_z$ is more than π_{2px} and π_{2Py}

- **2.** The bromine (Br_2) is coloured because:
 - (A) the difference in energy (ΔE) between HOMO and LUMO is large and the electronic excitation take place by absorption of light which falls in ultra violet region.
 - (B) the difference in energy (ΔE) between HOMO and LUMO is small and the electronic excitation take place by absorption of light which falls in infrared region.
 - (C) the bromine molecule is paramagnetic and the difference in energy (ΔE) is such that the electronic excitation take place in visible light.
 - (D) the difference in energy (ΔE) between HOMO and LUMO is such that the electronic excitation take place by absorption of light which falls in visible region and bromine molecule is diamagnetic.
- 3. N_2 has greater bond dissociation energy than N_2^+ , where as O_2 has a lower bond dissociation energy than O_2^+ because:
 - (A) Bond order is reduced when O_2 is ionized to O_2^+ and bond order is increased when N_2 is ionized to N_2^+
 - (B) Bond order is increased when O_2 is ionized to O_2^+ and bond order is decreased when N_2 is ionized to N_2^+

(C) Bond order is deceased when O_2 is ionized to O_2^+ and bond order is decreased when N_2^- is ionized to N_2^+

(D) None of these.

Comprehension #3

A covalent bond in which electrons are shared unequally and the bonded atoms acquire a partial positive and negative charge, is called a polar covalent bond. Bond polarity is described in terms of ionic character. Similarly in ionic bond, some covalent character is introduced because of the tendency of the cation to polarise the anion. The magnitude of covalent character in the ionic bond depends upon the extent of polarization caused by cations.

In general :

(i) Smaller the size of cation, larger is its polarizing power.

(ii) Larger the anion, more will be its polarisability.

(iii) Among two cations of similar size, the polarizing power of cations with pseudo - inert gas configuration $(ns^2np^6nd^{10})$ is larger than cation with noble gas configuration (ns^2np^6) e.g. polarizing power of Ag⁺ is more than K⁺.

1. Which of the following will be most covalent ?

2.

(A) NaCl	(B) Na_2S	(C) MgCl ₂	(D) MgS
Which of the follo	owing is least ionic?		
(A) Bel_2	(B) BeCl_2	(C) $BeBr_2$	(D) BeF_2

3. Arrange the following compounds in increasing order of their ionic character :

SnCl₂, SnCl₄, SiCl₄, SnF₄, SnF₂

(A) $SnF_2 < SnCl_2 < SnF_4 < SnCl_4 < SiCl_4$ (B) $SnF_2 < SnCl_2 < SnF_4 < SiCl_4 < SnCl_4$ (C) $SiCl_4 < SnCl_4 < SnF_4 < SnCl_2 < SnF_2$ (D) $SnCl_4 < SnF_4 < SnCl_2 < SnF_2 < SiCl_4$

- 4. Which is the correct order of covalent character (A) $BeF_2 < BeCl_2 < BeBr_2 < Bel_2$ (B) $BeCl_2 < BeF_2 < Bel_2 < BeBr_2$ (C) $Bel_2 < BeBr_2 < BeCl_2 < BeF_2$ (D) $Bel_2 < BeCl_2 < BeBr_2 < BeF_2$
- 5. Which of the following combination of cation and anion has maximum covalent character.

(A)
$$K^+$$
, Cl^- (B) Na^+ , Cl^- (C) Cs^+ , Cl^- (D) Mg^{+2} , Cl^-
Comprehension # 4

The degree of polarity of a covalent compound is measured by the dipole moment (μ_{hond}) of the bond defined as:

 μ_{bond} = Charge on one of the poles × bond length

 μ_{bond} is a vector quantity. The dipole moment of a molecule is the vector addition of all the bond dipole moments present in it. For a triatomic molecule, containing two bond's like H₂O, $\mu_{molecule}$ is given by

$$\mu^{2}_{\text{molecule}} = \mu^{2}_{\text{bond}} + \mu^{2}_{\text{bond}} + 2\mu_{\text{bond}} \cdot \mu_{\text{bond}} \cos \theta$$

$$\theta$$
 = bond angle

The % ionic character of a bond is calculated using the equations

% ionic character =
$$\frac{\mu_{obs}}{\mu_{ionic}} \times 100$$

 μ_{ionic} = dipole moment when the molecule is assumed to be completely ionic.

- 1.Which of the following molecule has non-zero dipole moment :(A) XeF_2 (B) ClF_3 (C) XeO_2F_4 (D) XeF_4
- 2. The dipole moment of \bigcirc is 1.5 D. The dipole moment of \bigcirc CI \bigcirc CI \bigcirc CI \bigcirc will be -

(A) 0 D	(B) 1.5 D	(C) 2.86 D	(D) 2.25 D		
Which of the follo	owing compound has Zero di	pole moment -			
(A) PCl ₃	(B) PCl_2F_3	(C) PCl_3F_2	(D) PClF ₄		
	Comprehension # 5				

Molecular geometry is the general shape of a molecule as determined by the relative positions of the atomic nuclei. VSEPR model predicts the shape of the molecules & ions in which valence shell electron pairs are arranged about the atom as far away from one another as possible, thus minimizing pair repulsion information about the geometry of a molecule can sometimes be obtained from an experimental quantity called dipole moment.

- 1. The dipole moment of a triatomic molecule AX_2 was found to be equal to the bond moment of A X bond. Which of the following information regarding geometry of the molecule can be drawn from the above observation.
 - (A) Molecule is linear

3.

- **(B)** Molecule is V shaped with $\angle X A X = 90^{\circ}$
- (C) Molecule is V shaped with $\angle X A X = 120^{\circ}$
- (D) Molecular geometry can not be predicted with the given information
- 2. Which of the following inter-halogen compounds is non-polar in nature: (A) ClF_3 (B) BrF_5 (C) IF_7 (D) BrCl

Comprehension #6

Nitrogen, oxygen and fluorine are the highly electronegative elements. When they are tied to a hydrogen atom to form covalent bond , the electrons of the covalent bond are shifted towards the more electronegative atom. This partially positively charged hydrogen atom forms a bond with the other electronegative atom. This bond is called as hydrogen bond and is weaker than covalent bond. For example, in HF molecule, the hydrogen bond exists between hydrogen atom of one molecule and fluorine atom of another molecule as depicted :--- $H^{\delta_+} - F^{\delta_-} - - H^{\delta_+} - F^{\delta_-} - - H^{\delta_+} - F^{\delta_-}$

Here, hydrogen bond acts as a bridge between atoms which holds one atom by covalent bond and the other by hydrogen bond. Hydrogen bond is represented by a dotted line (- - -) while a solid line represents the covalent bond. Thus, hydrogen bond can be defined as the attractive force which binds hydrogen atom of one molecule with the electronegative atom (F, O or N) of another molecule.

- 1. What would be correct about bonding in chloral hydrate CCl₃CH(OH)₂?
 - (A) Only intra molecular H-bonding
 - (B) Only inter molecular H-bonding
 - (C) Both inter and intra molecular H-bonding
 - (D) No hydrogen bonding

2. If boiling point of ortho-nitro phenol and para nitro phenol are t_1 and t_2 respectively and mixture of these two are heated at temperature 't' where 't' is between these two temperature. Vapours will contains

- (A) Only ortho nitro phenol
- (B) Only para nitro phenol
- (C) Both ortho and para nitro phenol
- (D) None of these
- **3.** What statement is **incorrect** about D₂O (solid)
 - (A) It will float in D₂O liquid
 - (B) It will sink in H₂O liquid
 - (C) It has maximum density at 4°C
 - (D) It has less volume than H₂O solid for same mass of both compound.

Exercise # 4 [Subjective Type Questions] 1. What type of bonding is expected between. (a) a metal and a non-metal (b) two non-metal

- 2. Compare the bond angle in O_3 and SO_2 .
- 3. Write down the resonating structures for SO_4^{2-} and NO_3^{-} .
- 4. Identify the type of overlapping in N–H bond in N_2H_4 molecule?
- 5. One of the first drugs to be prepared for use in treatment of acquired immuno deficiency syndrome (AIDS) was azidothymidine (AZT).

- (a) How many carbon atoms have sp³ hybridisation ?
- **(b)** How many carbon atoms have sp² hybridisation ?
- (c) How many nitrogen atoms (central atom not terminal) have sp hybridisation ?
- (d) How many π bonds are in the molecule ?
- 6. Draw the structure of the following compounds. Clearly indicate the number of bond pairs and lone pairs involved on central atom. Write (i) number of bond pairs and lone pairs on the central atom (ii) the shape of the molecules (iii) hybridization of the central atom.
 (a) SF₄ (b) XeOF₄
- 7. Assuming that all the four valency of carbon atom in propane pointing towards the corners of a regular tetrahedron. Calculate the distance between the terminal carbon atoms in propane. Given, C—C single bond length is 1.54 Å.
- 8. There will be three different flourine-flourine distances in molecule $F_2C=C=C=CF_2$. Assuming ideal bond angles for a particular hybridisation (assume no distortion due to double bonds), find out the two smaller flourine-flourine distances (in pm).

(Given that C–F bond length = 134 pm, C = C bond length = 134 pm, $\sqrt{3}$ = 1.7)

Draw orbital overlap diagram for the cases given below. consider internuclear axis as y-axis . Also classify them as σ,π,δ if bond is formed by their overlap

(a) s and p_y (b) d_{xy} and p_y (c) s and p_z (d) p_x and p_x (e) p_z and p_z (f) d_{xz} and d_{xz}

9.

- 10. SF_4 and SF_6 are known but OF_4 and OF_6 are not. Explain only in one or two lines.
- 11. Why electrovalent compounds do not show stereoisomerism?
- 12. The cynate ion (OCN)⁻ form stable series of salts, but many fulminates (CNO)⁻ are explosive. Explain.
- 13. BF₃ and graphite both are coplanar having sp^2 hybridisition yet graphite is a conductor. Explain.
- 14. Draw structures for the polymeric $(BeH_2)_n$ and $(BeCl_2)_n$. Explain in brief why the hydride bridge in $(BeH_2)_n$ is considered to be electron deficient but not the halide bridge in $(BeCl_2)_n$?
- 15. Find number of bonds in : (a) $P_3 O_{10}^{5-}$ with bond order = $\frac{4}{3}$ (b) $S_2 O_7^{2-}$ with bond order = $\frac{5}{3}$
- 16. The number of P–S bonds and P–P bonds in P_4S_3 are x and y respectively. The number of π -bonds in P_4O_{10} is z. Fill answer in bubbles as xyz.
- 17. Discuss the bond order and magnetic nature of following species. NO, NO^+NO^{2+}, NO^-
- (a) Number of shared 'O' atoms in [Si₆O₁₈]¹²⁻ cyclic silicate.
 (b) Number of S S bond present in H₂S₄O₆ (tetrathionic acid).
 (c) Number of P P bonds in P₄S₃ molecule.
 (d) Maximum number of equivalent N O bonds in N₂O₅ (g).
 (e) Number of S O S bonds in cyclic trimer of SO₃.
- 19. Answer the following questions with respect to the compound <u>NO[BF₄]</u>.(P) Bond order of the part underlined.
 - (Q) Total number of σ bonds in the compound.
 - (R) Total number of π bonds in the compound.

(S) Number of hybrid orbitals involved in the hybridisation of boron.

- **20.** (a) Number of unpaired electrons in $O_2[AsF_6]$.
 - **(b)** Bond order of O O bond in Na_2O_2
 - (c) Number of polar bonds in H_2O_2
 - (d) Number of π bonds in carbon suboxide molecule.
 - (e) Number of non bonded electron pairs is present in $N(SiMe_3)_3$.

Fill your answer in the box provides :

- 21. Answer the following questions about the structure of the dimer of phosphorus pentaoxide.
 - (i) The number of P O linkages which have bond length equal to 1.43Å.
 - (ii) The number of covalent bonds which have bond length equal to 1.60Å.
 - (iii) The number of P O P linkages.

(iv) The number of lone pair(s) of electrons on each phosphorus atom.

(i) (ii) (iii) (iv)

22.	Find number of $3c-2e$ bond in $(BeH_2)_n$			
23.	In trimethylamine, the nitrogen has a pyramidal geometry whereas in trisilylamine $N(SiH_3)_3$ it has a planar geometry. Explain? Out of trimethylamine and trisilyamine which one is more basic and why?			
24.	O_2 , N_2 are colourless gases but Cl_2 , Br_2 , I_2 are coloured gases. Explain on the basis of M.O. theory.			
25.	Draw the molecular orbital (both bonding and antibonding) and identify the number of nodal planes in the following combination of atomic orbitals with z as internuclear axis : d_{yz} and d_{yz}			
26.	Draw structure of boron nitride and express the hybridisation of B and N. Will it conduct electricity like graphite?			
27.	Arrange the following compounds in the order of increasing ionic character : KI, A/P, CaS, MgO.			
28.	The M.P. of NaCl is higher than that of AlCl ₃ . Explain.			
29	Alkali metals impart colour to the flame. Explain.			
30.	Radii of the following cations are nearly same. Arrange them in the increasing order of polarising power :			
	(i) Mg^{2+} , Fe^{2+} , Ni^{2+} , Zn^{2+} (ii) Ga^{3+} , Fe^{3+} , Al^{3+}			
31.	Arrange the following in increasing order of melting points.			
	(i) XeF_2 , XeF_4 , XeF_6 (ii) TiCl_2 , TiCl_3 , TiCl_4 (iii) NaCl_2 , MgCl_2 , AlCl_3			
32	Out of the given species, which one has highest polarising power and why.			
	$Na^{+}, Ca^{2+}, Mg^{2+}, Al^{3+}$			
33.	HF forms H-bonding with acetylene while it is a non polar molecule. Explain.			
34.	It is said that two –OH groups present on a carbon are unstable. But choral hydrate $CCl_3CH(OH)_2$ is fairly stable. Explain.			
35.	Thio - ethers have higher boiling point than ethers. Explain.			
36.	Two atoms A and B have electronegativities as 2.1 and 3.5. These two atoms are covalently single bonded and compound AB has experimental dipole moment equal to 1.4 D. Calculate AB bond length in Å(Use Hanny smith formula for calculation of percentage ionic character).			
37.	Dipole moment of LiF was experimentally determined and was found to be 6.0 D. Calculate percentage of ionic character in LiF molecule. LiF bond length is 2.5 Å.			
38.	The gaseous metallic chloride (MC ℓ type) molecule has a measured dipole moment of 9.0 D, which indicates that it is a very polar molecule. The separation between the nuclei in this molecule is 2.25×10^{-8} cm. Calculate the percentage ionic character in KCl molecule. [$1.6 \ge 10^{-19}$, C = $4.8 \ge 10^{-10}$ esu]			

- 39. The bond angle in H₂S is 97° and its dipole moment is 1.5 D. The S H bond distance is 0.15 nm. Therefore, approximate percentage ionic character of S H bond is (neglect the effect of dipole moment of lone pair on sulphur atom in H₂S). (Given [cos 97°=-0.12] and $\sqrt{0.88} = 0.94$)
- **40.** Arrange the following in the increasing order as stated below :
 - (i) Polarisibility (for the same cation) : O^{2-} , F^- , N^{3-}
 - (ii) Covalent character : LiI, LiBr, LiF
 - (iii) H-bond strength :

P:
$$-O-H-..., N-$$
 Q: $-N-H-..., O-$

$$\mathbf{R}: \qquad -\mathbf{N} - \mathbf{H} - \cdots - \mathbf{N} - \qquad \qquad \mathbf{S}: \qquad -\mathbf{O} - \mathbf{H} - \cdots - \mathbf{O} - \mathbf{H}$$

(iv) Boiling point : NH₃, AsH₃, PH₃

41. Which among the following will have zero dipole moment.

42. Out of the given bonds, which one is most polar?

(a) C–O (b) C–F (c) O–F (d) N-F

43. Answer the following questions :

(P) The number of $p\pi$ -d π bonds in S₃O₉.

(Q) The bond order of the underlined species ; $\underline{NO}HSO_4$.

(R) The number of vacant hybrid orbitals which participate in the formation of 3-centre 2 electron bonds i.e., banana bonds in diborane structure.

(S) The number of intramolecular H-bonds formed in a molecule of chloral hydrate.

- 44. The dipole moment of HBr is 2.60×10^{-30} Cm and the inter-atomic distance is 1.41 Å. What is the per cent ionic character of HBr ?
- 45. A diatomic molecule has a dipole moment of 1.2 D. If bond length is 1.0 Å, what percentage of an electronic charge exists on each atom.

- **46.** Arrange the following
 - (i) N₂, O₂, F₂, O⁺₂; in increasing order of bond dissociation energy.
 (ii) O, S, F, CI, N; in increasing strength of hydrogen bonding (X H – X).
 (iii) N₃⁻, BF₃, NH₃, XeF₄. in increasing bond angle.
- 47. The dipole moment of a molecule is really the vectorial sum of the individual bond moment present in it. To compute the dipole moment it is necessary to find out the values of various bond moment. in the following table dipole moment of different bonds are as given.

Bond	$\overrightarrow{H - C}$	c — CI	$\overrightarrow{C} = \overrightarrow{O}$
Bond moments	0.4 D	1.5 D	2.5 D

The group moments of few group as given

Group	NO ₂	ОН	CN	CH ₃
direction of dipole	toward N	towards O	toward N	away from CH3
Dipole moment	4D	1.6 D	3.8 D	0.4 D

(i) In CH₃CCI₃ (I), CHCI₃ (II) and CH₃CI (III) the normal tetrahedral bond angle is maintained. Also given

 $\cos 70.5^\circ = \frac{1}{3}$. Find dipole moments of the given compounds. (given due to – I effect of CI, the Bond moment of

H—C bond directed toward the H in CHCI₃)

(ii) In the acetone molecule considering the normal planer structure, find the observed dipole moment of acetone molecule.

48. Explain the H-bonding in crystalline NaHCO₃ and KHCO₃?

I	Exercise # 5	Part # I Previ	ous Year Questions] [A	AIEEE/JEE-MAIN]
1.	The correct order of be (1) $H_2S < NH_3 < SiH_4$ (3) $H_2S < SiH_4 < NH_3$	ond angles (smallest first) in I < BF ₃ < BF ₃	H_2S , NH_3 , BF_3 and SiH_4 i (2) $NH_3 < H_2S < SiH_4$ (4) $H_2S < NH_3 < BF_3$	s :- [AIEEE-2004] $I_4 < BF_3$ $< SiH_4$
2.	The bond order in NO is	s 2.5 while that in NO^+ is 3. W	hich of the following statem	nents is true for these two species ?
	(1) Bond length in NO ⁺ i	s equal to that in NO	(2) Bond length in NO i	s greater than in NO ⁺
	(3) Bond length in NO	⁺ is greater than in NO	(4) Bond length is un	predictable
3.	The states of hybridizat (1) sp ³ and sp ²	(2) sp ² and sp ³	(3) sp ² and sp ²	(4) sp ³ and sp ³
4.	Which one of the follo	owing has the regular tetrahed	Iral structure ?	[AIEEE-2004]
	(1) BF_4^-	(2) SF ₄	(3) XeF ₄	(4) $[Ni(CN)_4]^{2-}$
	(Atomic nos.: $B = 5$, S	= 16, Ni = 28, Xe = 54)		
5.	The maximum number	of 90° angles between bond p	air-bond pair of electrons	is observed in :- [AIEEE-2004]
	(1) dsp ² hybridization		(2) sp ³ d hybridization	
	(3) dsp ³ hybridization		(4) sp ³ d ² hybridization	1
6.	Beryllium and aluminiu	m exhibit many properties wh	nich are similar. But, the tw	vo elements differ in
	(1) Forming covalent h	alides	(2) Forming polymeric	hydrides [AIEEE-2004]
	(3) Exhibiting maximum	n covalency in compounds	(4) Exhibiting amphot	eric nature in their oxides
7.	Which one of the follow	ving species is diamagnetic in r	nature ?	[AIEEE-2005]
	(1) He_2^+	(2) H ₂	(3) H ₂ ⁺	(4) H ₂ ⁻
8.	lattice energy of an ion	c compound depends upon		[AIEEE-2005]
	(1) charge on the ion or	ıly	(2) size of the ion only	
	(3) packing of the ion of	nly	(4) charge and size of t	the ion
9.	The molecular shapes o	$f SF_4$, CF_4 and XeF_4 are		
	(1) the same with 2, 0 and	nd 1 lone pair of electrons on th	ne central atom, respecitvel	y [AIEEE-2005]
	(2) the same with 1, 1 and	nd 1 lone pair of electrons on th	ne central atoms, respective	ly
	(3) different with 0, 1 ar	nd 2 lone pair of electrons on th	e central atoms, respective	ly

(4) different with 1, 0 and 2 lone pair of electrons on the central atoms, respectively

10.	Of the following sets whic	h one does not contain isoeled	etronic species ?	[AIEEE-2005]	
	(1) PO_4^{3-} , SO_4^{2-} , ClO_4^{-}		(2) CN^{-} , N_2 , C_2^{2-}		
	(3) $SO_3^{2-}, CO_3^{2-}, NO_3^{-}$		(4) $BO_3^{3-}, CO_3^{2-}, NO_3^{-}$		
11.	Which of the following me	olecules\ions does not contain	unpaired electrons?	[AIEEE-2006]	
	(1) N ₂ ⁺	(2) O ₂	(3) O ₂ ²⁻	(4) B ₂	
12.	Among the following mixt	ures, dipole-dipole as the majo	r interaction, is present in	[AIEEE-2006]	
	(1) KCl and water		(2) benzene and carbon tetr	achloride	
	(3) benzene and ethanol		(4) acetonitrile and acetone		
13.	A metal, M forms chlorides is correct?	s in its +2 and +4 oxidation stat	ates. Which of the following statements about these chlorides [AIEEE-2006]		
	(1) MCl_2 is more ionic than	MCl ₄	(2) MCl_2 is more easily hydrolysed than MCl_4		
	(3) MCl_2 is more volatile the	an MCl ₄	(4) MCl_2 is more soluble in	anhydrous ethanol than MCl_4	
14.	In which of the following r	nolecules/ions are all the bond	s not equal? [AIEEE-2006]		
	(1) XeF ₄	(2) BF ₄	(3) SF ₄	(4) SiF ₄	
15.	The decreasing values of b	ond angles from NH ₃ (106°) to	o SbH ₃ (91°) down group-15 o	of the periodic table is due to [AIEEE-2006]	
	(1) decreasing lp – bp rep	oulsion	(2) increasing electronegativity		
	(3) increasing bp – bp rep	pulsion	(4) increasing p-orbital character in sp ³		
16.	In which of the following i	onizion processes, the bond or	rder has increased and the ma	gnetic behaviour has changed [AIEEE-2007]	
	(1) NO \rightarrow NO ⁺	(2) $O_2 \rightarrow O_2^+$	$\textbf{(3)} \text{ N}_2 \rightarrow \text{ N}_2^+$	$(4) \operatorname{C}_2 \to \operatorname{C}_2^+$	
17.	Which of the following hy	drogen bonds is the strongest	t	[AIEEE-2007]	
	(1) F–HF	(2) O–HO	(3) O–HF	(4) O–HN	
18.	Which of the following spo	ecies exhibits the diamagnetic	behaviour	[AIEEE-2007]	
	(1) O ₂ ⁺	(2) O ₂	(3) NO	(4) O_2^{2-}	

19.	The charge/size ratio of a cation determines its polarizing power. Which one of the following sequence the increasing order of the polarizing power of the cationic species, K ⁺ , Ca ⁺² , Mg ⁺² , Be ⁺²					
	(1) $Be^{+2} < K^+ < Ca^{+2} < Mg$	+2	(2) $K^+ < Ca^{+2} < Mg^{+2} < Be^{-2}$	+2		
	(3) $Ca^{+2} < Mg^{+2} < Be^{+2} < K$	[+	(4) $Mg^{+2} < Be^{+2} < K^+ < Ca^{+2}$			
20.	Using MO theory predict	which of the following speci	es has the shortest bond length	n? [AIEEE-2009]		
	(1) O_2^-	(2) O_2^{2-}	(3) O_2^{2+}	(4) O ₂ ⁺		
21.	The hybridisation of orbit	tals of N atom in NO_3^- , NO_2^+	and NH ₄ ⁺ are respectively:-	[AIEEE-2011]		
	(1) sp, sp^3 , sp^2	(2) sp^2 , sp^3 , sp	(3) sp, sp^2 , sp^3	(4) sp^2 , sp , sp^3		
22.	The structure of IF ₇ is :-			[AIEEE-2011]		
	(1) octahedral		(2) pentagonal bipyramid			
	(3) square pyramid		(4) trigonal bipyramid			
23.	Among the following the	maximum covalent character	r is shown by the compound :-	[AIEEE-2011]		
	(1) $AlCl_3$	(2) MgCl ₂	(3) FeCl_2	(4) SnCl_2		
24.	Which of the following ha	as maximum number of lone	pairs associated with Xe?	[AIEEE-2011]		
	(1) XeO ₃	(2) XeF_4	(3) XeF ₆	(4) XeF ₂		
25.	The number of types of b	oonds between two carbon at	oms in calcium carbide is :-	[AIEEE-2005, 2011]		
	(1) One sigma, two pi	(2) One sigma, one pi	(3) Two sigma, one pi	(4) Two sigma, two pi		
26.	Ortho-Nitrophenol is less	soluble in water than p- and	d m– Nitrophenols because :-	[AIEEE-2005, 2012]		
	(1) Melting point of o-N	itrophenol is lower than thos	e of m- and p- isomers			
	(2) o-Nitrophenol is more	e volatile in steam than those	e of m- and p- isomers			
	(3) o–Nitrophenol shows	Intramolecular H-bonding				
	(4) o-Nitrophenol shows	Intermolecular H-bonding				
27.	Iron exhibits +2 and +3 or	xidation states. Which of the	following statements about iron	n is incorrect [AIEEE-2012]		
	(1) Ferrous compounds a	re more easily hydrolysed th	an the corresponding ferric co	ompounds.		
	(2) Ferrous oxide is more	basic in nature than the ferri	c oxide.			

- (3) Ferrous compounds are relatively more ionic than the corresponding ferric compounds.
- (4) Ferrous compounds are less volatile than the corresponding ferric compounds.

28.	The molecule having s	mallest bond angle is :-			[AIEEE-2012]			
	(1) PCl ₃	(2) NCl ₃	$(3) \operatorname{AsCl}_3$	(4) Sb(Cl ₃			
29.	In which of the follow:	ing pairs the two species an	e not isostructural?		[AIEEE-2012]			
	(1) AlF_6^{3-} and SF_6	(2) CO_3^{2-} and NO_3^{-}	(3) PCl_4^+ and $SiCl_4$	(4) PF	$_5$ and BrF $_5$			
30.	Which one of the foll	owing properties is not show	wn by NO?		[JEE MAIN-2014]			
	(1) It combines with c	oxygen to form nitrogen diox	tide					
	(2) It's bons oeswe ia	2.5						
	(3) It is diamagnetic	in gaseous state						
	(4) It is a neutral oxide	e						
31.	Among the following	oxoacids, the correct decre	asing order of acid strength is	S :	[JEE MAIN-2014]			
	(1) $\text{HClO}_4 > \text{HClO}_3 >$							
	$(3) HOCl > HClO_2 >$	$HClO_3 > HClO_4$	$(4) \text{HClO}_4 > \text{HOCl} > \text{HCl}$	$O_2 > HClO_3$				
32.	Which among the following the	lowing is the most reactive	?		[JEE MAIN-2015]			
	(1) I ₂	(2) ICl	(3) Cl_2	(4) Br ₂				
33.	Which one has the hi	ighest boiling point?			[JEE MAIN-2015]			
	(1) Kr	(2) Xe	(3) He	(4) Ne				
34.	The species in which	the N atom is in a state of s	p hybridization is:		[JEE MAIN-2016]			
	(1) NO ₂ ⁻	(2) NO ₃	(3) NO ₂	(4) NO ₂ ⁺				
35.	The pair in which pho	osphorous atoms have a form	nal oxidation state of $+3$ is :		[JEE MAIN-2016]			
	(1) Pyrophosphorous and hypophosphoric acids							
	(2) Orthophosphorous and hypophosphoric acids							
	(3) Pyrophosphorous and pyrophosphoric acids							
	(4) Orthophosphorous and pyrophosphorous acids							
36.	The reaction of zinc v	with dilute and concentrated	nitric acid, respectively, prod	luces:	[JEE MAIN-2016]			
	(1) NO_2 and NO	(2) NO and N_2O	(3) NO_2 and N_2O	(4) N ₂ O and	d NO ₂			
37.	Which of the followir	ng compounds is metallic an	d ferromagnetic ?		[JEE MAIN-2016]			
	(1) CrO ₂	(2) VO ₂	(3) MnO ₂	(4) TiO ₂				

CHEMICAL BONDING

38.	38. The species in which the N atom is in a state of sp hybridization is:			
	(1) NO ₂ ⁻	(2) NO ₃ ⁻	(3) NO ₂	(4) NO ₂ ⁺
39.	Which of the following s (1) NO	pecies in not paramagnetic (2) CO	? (3) O ₂	[JEE MAIN-2017] (4) B ₂
40.	The group having isoeled (1) O^{2-} , F^- , Na^+ , Mg^{2+}	etronic species is : (2) O ⁻ , F ⁻ , Na, Mg ⁺	(3) O ²⁻ , F ⁻ , Na, Mg ²⁺	[JEE MAIN-2017] (4) O ⁻ , F ⁻ , Na ⁺ , Mg ²⁺
41.	Total number of lone pair	of electrons in I_3^- ion is :		[JEE MAIN-2018]
	(1) 6	(2)9	(3) 12	(4) 3
42.	According to molecular or	rbital theory, which of the fol	lowing will not be a viable n	nolecule? [JEE MAIN-2018]
	(1) He_2^+	(2) H ₂ ⁻	(3) H ₂ ²⁻	(4) He_2^{2+}
1.	Part # II According to molecular of order is correct regarding (A) Paramagnetic and Bo (C) Diamagnetic and Bor	Previous Year Questi orbital theory which of the $g O_2^+$ and order $< O_2$ and order $< O_2$	following statement about (B) Paramagnetic an (D) Diamagnetic and	NCED] the magnetic character and bond [JEE 2004] d Bond order $> O_2$ d Bond order $> O_2$
2.	Which species has the ma	aximum number of lone pai	ir of electrons on the centr	al atom?
	(A) ClO_3^-	(B) XeF_4	(C) SF ₄	(D) I_3^- [JEE 2005]
3.	The percentage of p-char (A) 25	acter in the orbitals forming (B) 33	g P–P bonds in P_4 is (C) 50	(D) 75
4.	Among the following, the	e paramagnetic compound i	s	[JEE 2007]
	$(\mathbf{A}) \operatorname{Na_2O_2}$	(B) O ₃	(C) N ₂ O	(D) KO ₂
5.	The species having bond (A) NO ⁻	order different from that in (B) NO ⁺	n CO is (C) CN⁻	[JEE 2007] (D) N ₂
6.	The structure of XeO ₃ is (A) linear	(B) planar	(C) pyramidal	[JEE 2007] (D) T-shaped

7.	 Statement-1 : p-Hydroxybenzoic acid has a lower boiling point than o-hydroxybenzoic acid. Statement-2 : o-Hydroxybenzoic acid has intramolecular hydrogen bonding. (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (C) Statement-1 is True, Statement-2 is True. (D) Statement-1 is False, Statement-2 is True. 						
8.	 Statement-1 : In water, orth Statement-2 : In water, orth (A) Statement-1 is True, Stateme (B) Statement-1 is True, Stateme (C) Statement-1 is True, Stateme (D) Statement-1 is False, Stateme 	atement-1 : In water, orthoboric acid behaves as a weak monobasic acid. [JEE 2007] atement-2 : In water, orthoboric, acid acts as a proton donor. .) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. c) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. c) Statement-1 is True, Statement-2 is False. c) Statement-1 is True, Statement-2 is True:					
9.	 Statement-1 : Pb⁺⁴ compounds are stronger oxidizing agents than Sn⁴⁺ compounds [JEE 2003] Statement-2 : The higher oxidation states for the group 14 elements are more stable for the heavier members of the group due to 'inert pair effect' . (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (C) Statement-1 is True, Statement-2 is True. 						
10.	Match each of the diatomic f Column I (A) B_2 (B) N_2 (C) O_2^- (D) O_2	nolecules in Column I v (P) (Q) (R) (S) (T)	with its property / properties in C Column II Paramagnetic undergoes oxidation Undergoes reduction Bond order ≤ 2 Mixing of 's' and `p' orbitals	Column II.	[JEE 2009]		
11.	The nitrogen oxide(s) that c (A) N_2O	ontain(s) N–N bond(s) (B) N ₂ O ₃	is (are) (C) N ₂ O ₄	(D) N ₂ O ₅	[JEE 2009]		
12.	In the reaction $2X + B_2H_6 \longrightarrow [BH_2(X)]$ the amine(s) X is (are) (A) NH ₃	$[B]^{+}[BH_{4}]^{-}$ (B) CH ₃ NH ₂	(C) (CH ₃) ₂ NH	(D) (CH ₃) ₃ N	[JEE 2009]		

13.	The species having pyramic	lal shape is		[JEE 2010]		
	(\mathbf{A}) SO ₃	(B) BrF_3	(C) SiO_3^{2-}	(D) OSF_2		
14.	Assuming that Hund's rule i	s violated, the bond order a	nd magnetic nature of the di	atomic molecule B_2 is		
				[JEE 2010]		
	(A) 1 and diamagnetic	(B) 0 and diamagnetic	(C) 1 and paramagnetic	(D) 0 and paramagnetic		
15.	In allene (C_3H_4) , the type(s)	of hybridisation of the carb	oon atoms is (are)	[JEE 2012]		
	(A) sp and sp^3		(B) sp and sp ²			
	(C) only sp^2		(D) sp^2 and sp^3			
16.	Which ordering of compou	unds is according to the de	creasing order of the oxida	tion state of nitrogen-		
	(A) HNO, NO, NH ₄ Cl, N	C	(B) HNO,, NO, N, NH, C	[JEE 2012]		
	(C) HNO_3 , NH_4Cl , NO , N_2		(D) NO, HNO ₃ , NH_4Cl , N	2		
17.	The shape of XeO_2F_2 mole	cule is :		[JEE 2012]		
	(A) Trigonal bipyramidal	(B) Square planar	(C) tetrahedral	(D) see-saw		
18.	The pair(s) of reagents that	yield paramagnetic species i	s/are	[JEE '14]		
	(A) Na and excess of of NH_3		(B) K and excess of O_2			
	(C) Cu and dilute HNO_3		(D) O_2 and 2-ethylanthraqu	inol		
19.	The correct statement(s) for	orthoboric acid is/are		[JEE '14]		
	(A) It behaves as a weak aci	d in water due to self ionizat	ion.			
	(B) Acidity of its aqueous s	olutoin increases upon addit	ion of ethylene glycol.			
	(C) It has a three dimension	al structure due to hydrogen	n bonding.			
	(D) It is weak electrolyte in v	water				
20.	Assuming 2s-2p mixing is N	OT operative, the paramagn	etic species among the follow	ving is : [JEE '14]		
	(A) Be ₂	(B) B ₂	(C) C ₂	(D) N ₂		
21.	The total number of lone pa	irs of electrons in N_2O_3 is.		[JEE '15]		
22.	Among the triatomic molecu	Among the triatomic molecules/ions, BeCl ₂ , N_3^- , $N_2O_1O_2^+$, O_3 , SCl ₂ , ICl ₂ , I_3^- , and XeF ₂ , the total number of linear				
	molecule(s)/ion(s) where d-orbital(s) is	the hybridization of the	central atom does not ha	we contribution from the		
	[Atomic number: $S = 16$, Cl =	= 17, I = 53 and Xe = 54]		[JEE '15]		

23.	The correct	statement(s)	regarding O bonds	g, (i) HCl(in (ii) and	D, (ii) HC l (iii) toge	lO ₂ , (iii) I ether is tw	HClO ₃ and	d (iv) HCl0	D_4 is (are)	[JEE '15]
	(B) The nur	nber of lone	pairs of e	electrons of	on Cl in (ii) and (ii	i) togethe	r is three		
	(C) The hyt	oridixation o	f Cl in (iv	v) is sp ³	() (.)			
	(D) Amongs	st (i) to (iv), th	ne stronge	est scid is (i	i)					
24.	Under hydr respectively	olytic condi , are	tions, the	e compou	nds used	for prep	aration o	f linear po	olymer and for ch	ain termination, [JEE '15]
	(A) CH ₃ SiC	l ₃ and Si(CH ₃	.) ₄			<mark>(B</mark>)(C	CH ₃) ₂ SiCl ₂	and (CH ₃)	₃ SiCl	
	$(\mathbf{C})(\mathrm{CH}_3)_2\mathrm{S}$	iCl ₂ and CH ₃	SiCl ₃			(D) Si	Cl_4 and (C	CH ₃) ₃ SiCl		
25.	The compo	und(s) with '	TWO lor	ne pairs of	electron	s on the c	entral atc	om is(are)		[JEE '16]
	(A) BrF_5		(B) C	lF ₃		(C) X	eF ₄		(D) SF_4	
26.	According	to Molecular	· Orbital '	Theory,						[JEE '16]
	(A) C_2^{2-} is	expected to l	be diama	gnetic						
	(B) O_2^{2+} is	expected to	have a lo	onger bon	d length t	han O ₂				
	(C) N_2^+ and	$1 N_2^-$ have t	he same	bond orde	er					
	(D) He_2^+ has	as the same of	energy as	s two isola	ated He a	toms				
Subje	ective									
27.	Decreasing	order of th	e O-O b	ond lengt	h present	in them				[JEE 2004]
			O ₂	KO_2 and	d O ₂ [AsI	F ₄]				
28.	The number	of water m	olecule(s) directly	bonded	to the me	etal centre	e in CuSO	₄ .5H ₂ O is	[JEE 2009]
29.	Based on VSEPR theory, the number of 90 degree F–Br–F angles in BrF ₅ is [JEE 2010]					[JEE 2010]				
30.	The value of \mathbf{n} in the molecular formula Be Al Si O is [IFF 2010]					LIEE 20101				
			iccului i		u _n ¹ u ₂ bu ₆ c	18 15				
31.	The total nu	mber of dip	rotic aci	ds among	the follo	wing is				[JEE 2010]
	H ₃ PO ₄	H ₂ SO	4	H ₃ PO	3	H ₂ CO	3	H ₂ S ₂ O ₂	,	
	H_3BO_3	H ₃ PO	2 H	2CrO4		H ₂ SO	3			
32.	Among the	following, tl	he numbe	er of elen	nents sho	wing only	y one nor	n-zero oxi	dation state is	[JEE 2010]
	0, Cl,	F,	N,	Р,	Sn,	Tl,	Na,	Ti		
22	The different	and in the	videtian	n	of the t	to tomas	of cul-t-	r otoma :		LIPE 20111
33.	The amerei	ice in the of	xiuation	numbers	or the tw	o types	or suiphu	n atoms li	$1110a_2S_4O_6$ is.	[JEE 2011]

328

34. The sum of the number of lone pairs of electrons on each central atom in the following species is – [JEE '17] [TeBr₆]²⁻, [BrF₂]⁺, SNF₃, and [XeF₃]⁻ (Atomic numbers : N = 7, F = 9, S = 16, Br = 35, Te = 52, Xe = 54)
35. Among H₂, He₂⁺, Li₂, Be₂, B₂, C₂, N₂, O₂⁻ and F₂, the number of diamagnetic species is (JEE '17] (Atomic numbers : H = 1, He = 2, Li = 3, Be = 4, B = 5, C = 6, N = 7, O = 8, F = 9)

		> M	OCK TEST	$\langle \langle \rangle$			
	S	SECTION - I : ST	RAIGHT OBJECTIVE	ТҮРЕ			
	Select the most ionic	and most covalent co O_5 , Mn, O_7 , PbO, P_4O_1	compounds respectively from the $_{02}$ SnO ₂	ne following.			
	$\textbf{(A)} \operatorname{CrO}_5, \operatorname{Mn}_2\operatorname{O}_7$	$(\mathbf{B}) \operatorname{Mn}_2 \operatorname{O}_7, \operatorname{PbO}_7$	$C C C C C C O_5, P_4 O_{10}$	(D) CrO_5 , SnO_2			
	In which of the follow	wing sets central aton	n of each member involves sp ³	hybridisation ?			
	(A) IO_4^- , ICl_4^- , IF_4^+		(B) XeO_3 , XeO_4 , Y	KeF ₄			
	(B) $SO_3, SO_3^{2-}, SO_4^{2-}$		(D) PCl_4^+, BF_4^-, Clo	O_4^-			
	What is wrong about	P ₄ O ₁₀ molecule?					
	(A) POP angle is 180°						
	(B) Each 'P' atom can be considerd to be sp ³ hybridised						
	(C) There are two types of P–O bond lengths						
	(D) There are 6 P–O–	-P bonds.					
	Which of the following statement is true for $IO_2F_2^-$ according to VSEPR theory?						
	(A) The lone pair and two I– O double bonds occupy the equatorial positions of trigonal bipyramid.						
	(B) It has sp3d hybridisation and is T-shaped.						
	(C) Its structure is an	alogous to SF ₄ .					
	(D) (A) and (C) both						
	In the equation ;						
	$A + 2B + H_2$	$0 \longrightarrow C + 2D$					
	where $A = HNO_2$; $B =$	$H_2SO_3; C = NH_2OH$					
	Identify the geometry and hybridisation of (D)						
	(A) Trigonal planar a	nd sp ²	(B) Bent and sp ²	(B) Bent and sp ²			
(C) Tetrahedral and sp (D) Trigonal pyramidal and sp ³				midal and sp ³ .			
	The structure of F_2 Se	O is analogous to :					
	$(\mathbf{A}) \operatorname{SO}_3$	(B) ClO_3^-	(C) SO_3^{2-}	(D) Both (B) and (C)			
	A diatomic molecule electronic charge on e	has a dipole moment each atom will be :	of 1.2 D. If its bond length is e	equal to 10^{-10} m then the fraction o			
	(A) 42%	(B) 52%	(C) 37%	(D) 25%			
	Which of the followi	ng statement is correct	ct?				
	(A) $(SiH_3)_3N$ is a weak	ker Lewis base than (C	CH ₃) ₃ SiOH.				
	(B) Like CO, its analog	ogue of Si is not stabl	e				
	(C) In phosgene, C–C) bond length is long	er than expected while C-Cl b	oond length is shorter.			
	(D) All of these						

9. Which reactions involve a change in the electron-pair gemoetry for the under lined geometry ? (A) $\underline{B}F_3 + F^- \longrightarrow \underline{B}F_4^-$ **(B)** $\underline{N}H_3 + H^+ \longrightarrow \underline{N}H_4^+$ $(\mathbb{C}) 2 \underline{S} O_2 + O_2 \longrightarrow 2 \underline{S} O_3$ (**D**) $H_2O + H^+ \longrightarrow H_3O^+$ 10. According to Molecular orbital theory which of the following is incorrect? (A) LUMO level for C_2 molecule is σ_{2p_x} orbital **(B)** In C₂ molecules both the bonds are π bonds (C) In C_2^{2-} ion there is one σ bonds and two π bonds. **(D)** C_2 is paramagnetic but C_2^{2-} is diamagnetic. **SECTION - II : MULTIPLE CORRECT ANSWER TYPE** 11. Which of the following statements is/are true for P_4S_3 molecule ? (A) It contains six P–S bonds and three P–P bonds. (B) It contains six P–S bonds and ten lone pairs. (C) It has all atoms sp³ hybridised. (D) It contains six P–P bonds and ten lone pairs. 12. Which of the following is polar? (A) XeF_{4} **(B)** XeF_{6} (C) XeOF₄ (D) XeF_{5} 13. Hydrogen bonding is present in which of the following species? (A) CH₃NH₂ **(B)** CH₂⁻ (C) CH₂COOH (D) CCl₃CH(OH)₂ Correct order about bond angle is : 14. (A) $H_0 O > H_0 S > H_0 S = H_0 Te$ **(B)** $C_2H_2 > C_2H_4 > CH_4 > NH_3$ (C) $SF_6 < NH_3 < H_2O < OF_2$ (**D**) $ClO_2 > H_2O > H_2S > SF_6$ 15. Which of the following molecule are polar sp³d² hybridized (A) IF₅ **(B)** XeF_{4} (C) XeOF₄ (**D**) ICl_{4}^{-}

SECTION - III : ASSERTION AND REASON TYPE

16. Statement-1 : Crystals of hydrated calcium sulphate (gypsum : (CaSO₄ . 2 H₂O) are soft and easily cleavedx.
Statement-2 : Crystals of anhydrous calcium sulphate (anhydrite : CaSO₄) are very hard and very difficult to cleave.
(A) Statement-1 is True, Statement02 is True ; Statement-2 is a correct explanation for Statement-1.
(B) Statement-1 is True, Statement-2 is True ; Statement02 is NOT a correct explanation for Statement-1.

- (C) Statement-1 is True, Statement-2 is False
- (D) Statement-1 is False, Statement-2 is True.

17. Statement-1: Carbon has unique ability to form $p\pi - p\pi$ multiple bonds with itself and with other atoms of small size and high electronegativity.

Statement-2: Heavier elements of group 14th do not form $p\pi - p\pi$ multiple bonds with itself because their atomic orbitals are too large and diffuse to have effective overlapping.

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False.
- (D) Statement-1 is False, Statement-2 is True.

18. Statement-1 :
$$C \xrightarrow{F} Q$$

F bond angle P = bond angle Q but not precisely 90°

Statement - 2: The molecule is slightly bent T-shaped and there is repulsion between lone pairs of electrons.

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False.
- (D) Statement-1 is False, Statement-2 is True.

Statement - 2: $\angle P \neq 180^\circ$; $\angle Q \neq 90^\circ$ and thus $\angle R \neq 120^\circ$ but less than 120° due to the presence of a lone pair.

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False.
- (D) Statement-1 is False, Statement-2 is True.
- 20. Statement 1 : Compounds oh Hg^{2+} ions having an ionic radius of 116 pm are more covalent in character than those of Ca^{2+} ions with almost identical size (114 pm) and the same charge.

Statement - 2: For two ions of same size and charge, one with an $(n-1)d^{10}ns^0$, electronic configuration will be more polarizing than a cation with an $(n-1)s^2 (n-1)p^6 ns^0$, electronic configuration.

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False.
- (D) Statement-1 is False, Statement-2 is True.

SECTION - IV : COMPREHENSION TYPE

Read the following comprehensions carefully and answer the questions.

Comprehension #1

When anions and cations approach each other, the valence shell of anions are pulled towards a cation, is known as polarisation and ability of a cation to polarize the anion is called as polarising power of cation. Due to polarisation, sharing of electrons occurs between two ions to some extent and bond shows some covalent character. Fajan's suggested following factors on which polarisation depend.

(i) As the charge on cation or anion increases polarisation increases.

(ii) Size of cation decreases or size of anion increases, polarisation increases.

(iii) Cation with pseudo noble gas configuration shows higher polarisation power than that with inert gas configuration.

21. Arrange the following compounds in increasing order of covalent character.

(i) SiCl₄ (ii) MgCl₂ (iii) NaCl (iv) AlCl₃ (A) NaCl \leq MgCl₂ \leq AlCl₃ \leq SiCl₄ (B) SiCl₄ \leq AlCl₃ \leq MgCl₂ \leq NaCl (C) NaCl \leq MgCl₂ \leq SiCl₄ \leq AlCl₃ (D) SiCl₄ \leq AlCl₃ \leq NaCl \leq MgCl₂ 22. Which one is the most ionic ?

(A) P_4O_{10}		(B) TiO_2	(C) SnO	(D) SO	
_					

23.	Highest polarisation	on is shown in the following	compounds?	
	(A) MgCl ₂	(B) BaCl_2	(C) AgCl	(D) AgI

Comprehension #2

The distribution of electrons among various molecular orbitals is called the electronic configuration of the molecule which provides us the following very important informations about the molecule.

(A) Stability Of molecule : The molecule is stable if number of bonding molecular orbital electrons (N_b) is greater than the number of antibonding molecular orbitals electrons (N_a) .

(B) Bond Order : Bond order = $\frac{1}{2} (N_b - N_a)$

A positive bond order means a stable molecule while a negative or zero bond order means an unstable molecule.

(C) Nature of the Bond : Bond order 1, 2 and 3 corresponds to a single, double and triple bond respectively.

(D) Bond Length : Bond length decreases as bond order increases

(E) Magnetic Nature : Molecular orbitals in a molecule are doubly occupied, the substance is diamagnetic and if one or more molecular orbitals are singly occupied, it is paramagnetic.

24. Which one of the following statement is incorrect ?

(A) Among O_2^+ , O_2 and O_2^- the bond length decreases as $O_2^- > O_2 > O_2^+$

(B) He, molecule does not exist as the bonding and anti-bonding orbitals cancel each other.

(C) C_2 , O_2^{2-} , Li₂ are diamagnetic

(D) In F_2 molecule, the energy of σ_{2p_2} is more than π_{2px} and π_{2py} .

25.	The following molecu	les / species have been arra	anged in the order of their	increasing bond orders. Iden	tify the
	correct order.				
	(I) O_2 ; (II) O_2^- ; (II)	I) O_2^{2-} ; (IV) O_2^{+}			
	(A) III < II < I < IV	(B) IV < III < II < I	(C) III < II < IV < I	(D) II < III < II < IV	

26. N_2 has greater dissociation energy than N_2^+ , where as O_2 has a lower dissociation energy than O_2^+ because :

- (A) bond order is reduced when O_2 is ionized to O_2^+ and bond order is increased when N_2 is ionized to N_2^+ .
- (B) bond order is increased when O_2 is ionized to O_2^+ and bond order is decreased when N_2 is ionized to N_2^+
- (C) bond order is decreased when O_2 is ionized to O_2^+ and bond order is decreased when N_2 is ionized to N_2^+
- **(D)** none of these

Comprehension #3

Hydrogen bonding :

- 27. Which of the following species shows the same type of bonding as found in (X) ?
 (A) Crystalline potassium bicarbonate
 (B) Fromic acid
 (C) Anion of Caro's acid
 (D) Sulphuric acid
- 28. Which of the following can not be explained by (Y) type of bondig?
 - (A) The hydrolysis of NCl₃ to NH_3 .
 - (B) The p-hydroxybenzaldehyde as high melting solid at room temperature
 - (C) Extra stability of the complex of Ni(II) with dimethylglyoxime.
 - **(D)** The hygroscopic nature of sodium peroxide.
- **29.** Select the incorrect statement for (X) and (Y).
 - (A) p-hydroxy benzoic acid the higher boiling point than o-hydroxy benzoic acid on account of (Y).
 - (B) Boric acid crystal breaks quite easily into very fine particles because of (X).
 - (C) HF exists as zig-zag chains, $(HF)_n$ in solid as well as in liquid because of (Y).
 - **(D)** The higher k_1 value than k_2 for maleic acid is because of (X).

SECTION - V : MATRIX - MATCH TYPE

30. Match the species listed in column I with hybridisation of central atom listed in column II.

Column I	Column II
(A) $IO_2F_2^-$	(p) $sp^{3}d$
(B) F, SeO	(\mathbf{q}) sp ³
(C) CIOF,	(r) sp ²
(D) $\operatorname{XeF}_{5}^{+}$	(s) sp^3d^2

31. Match the species listed in column I with shape(s) listed in column II.

Column I	Column II
(A) $\operatorname{ClF}_2^-, \operatorname{ClF}_2^+$	(p) Square pyramidal
(B) $IO_2F_2^-, F_2SeO$	(q) See-saw and pyramidal molecular geometry respectively
(C) IOF_4^- , $XeOF_2$	(r) Linear and bent respectively
(D) BrF_5 , XeOF ₄	(s) Square pyramidal and T – shaped respectively.

32. Match the compounds listed in column I with characteristic(s) listed in column II.

Column I	Column II
(A) SF_2	(p) sp ³ and bent
(B) KrF ₄	(q) lone pair(s)
(C) NOCl	(r) Bond angle < 109°28'
(D) $N(Me)_3$	(s) sp ² and bent
	(t) sp^3d^2 and square planar

33. Match the compounds listed in column I with type of bond(s) listed in column II

Column I	Column II
(A) Blue vitriol	(p) Ionic bond
(B) Gypsum	(q) Covalent bond
(C) Pure orthophosphoric acid	(r) Hydrogen bond
(D) Chloral hydrate	(s) Co-ordinate bond

ANSWER KEY

EXERCISE - 1

2. B 3. B 4. B 5. C 6. B 7. B 8. D 9. C 10. D 11. C 12. D 1. C **13.** B 14. D 15. D 16. D 18. B 19. A 20. B **21.** C **22.** C 23. C 24. C 17. D 25. B 26. D 27. A 28. B **29.** A **30.** C 31. A 32. C 33. C **34.** C 35. A 36. B 37. D 38. D 39. D **40.** D **41.** B **42.** B **43.** A 44. A 45. B 46. D **47.** B **48.** C 49. A 50. D 51. A 52. C **60.** B 53. D 54. B 55. C 56. B 57. A 58. C 59. B 61. B 62. A 63. B 64. B 65. A 66. C 67. D 68. D 69. D 70. C 71. B 72. A 73. C 74. B 75. B 76. C 77. B 78. D 79. B 80. D 81. D 82. D 83. D 84. D 85. A 86. C 87. C 88. D 89. C **90.** B 91. A 92. C 93. A 94. C 95. A 96. A 97. D 98. C 99. D 100. A 101. D 102. B 103. A 104. A 105. C 106. A 107. B 108. A 109. A 110. D 111. C 112. C 113. D 114. B 115. C 116. C 117. C 118. A 119. D 120. B 121. A 122. A 123. D 124. C 125. D 126. C 127. D 128. C 129. C 130. D 131. D 132. A 133. C 134. B 135. D 136. C 137. A 138. C 139. D 140. D 141. B 142. A 143. D 144. D 145. A 146. C 147. A 148. D 149. C 150. A 151. A 152. A 153. D 154. B 155. D 156. B 157. D 158. D 159. A 160. C 161. C 162. D 163. B 164. D 165. B 166. B 167. C 168. B 169. D 170. C

EXERCISE - 2 : PART # I

1.	B, C, D		2.	B,C		3.	A, B, C,	A, B, C, D		B,C		
5.	B,C		6.	B, D		7.	A, B		8.	A, B, C		
9.	A, C		10.	A, B		11.	B,C,D		12.	A, C		
13.	A, B, C,	D	14.	B,C		15.	B, D		16.	A, B, C		
17.	A, C		18.	C, D		19.	B,C		20.	A, C, D	A, C, D	
21.	A, B, C		22.	B,C		23.	A, B, C		24.	B, D		
25.	D		26.	A,B,C		27.	A, B, C,	D	28.	A, B, D		
29.	B, C, D		30.	A, B, C		31.	B,C,D		32.	B,C,D		
33.	A, B, C		34.	B, D		35.	A, B, C, D		36.	A, B, C		
37.	A, B,D		38.	B,C,D		39.	A, B, C, D		40.	A, B, D		
41.	A, B, C,	D	42.	A, B, C,	D	43.	B,C,D		44.	B, C, D		
45.	B, D		46.	A, B, D		47.	D		48.	B,C		
49.	A, C	50. A	51. A	52. C	53. C	54. B	55. B	56. A	57. D	58. D	59. D	60. C
61. A	62. A	63. B	64. A	65. A	66. D	67. D	68. A	69. D	70. A	71. D	72. C	73. B
74. A	75. D	76. B	77. A	78. B	79. C	80. D	81. C	82. D	83. D	84. D	85. D	86. D
87. D	88. B	89. B	90. D	91. C	92. C	93. C	94. A	95. B	96. D	97. C	98. D	99. B
100. C	101. B	102. B	103. A	104. B	105. C	106. D	107. C	108. C	109. B	110. B	111. B	112. B
113. C	114. D	115. C	116. D	117. C	118. C	119. A	120. D	121. C	122. D	123. A	124. D	125. A
126. A												

PART # II

 1. B
 2. D
 3. C
 4. B
 5. A
 6. C
 7. D
 8. A
 9. A
 10. D
 11. A
 12. B
 13. B

 14. A
 15. D
 16. A
 17. B
 18. A
 19. A
 20. B
 21. As
 22. D
 23. B
 24. A
 25. A
 26. A

 27. A
 28. D
 29. C
 30. A
 31. D
 32. A
 33. A
 34. A
 35. A
 36. B
 37. A
 38. B
 39. C

۲

EXERCISE - 3 : PART # I

1. $A \rightarrow (p), B \rightarrow (q), C \rightarrow (p), D \rightarrow (s)$ 2. $A \rightarrow (p, q)$ 3. $A \rightarrow (r), B \rightarrow (q), C \rightarrow (s), D \rightarrow (p, t)$ 4. $A \rightarrow (q, s)$ 5. $A \rightarrow (r, s), B \rightarrow (p, q, s), C \rightarrow (q), D - (q, r)$ 6. $A \rightarrow (p, r)$ 7. $A \rightarrow (q), B \rightarrow (r), C \rightarrow (s, p), D - (p)$ 8. $A \rightarrow (r), B$ 9. $A \rightarrow (r), B \rightarrow (s), C \rightarrow (p), D - (q)$ 10. $A \rightarrow (p, r)$ 11. $A \rightarrow (p, q, r, s), B \rightarrow (p, q, r, s), C \rightarrow (q, r), D \rightarrow (q, r)$ 12. $A \rightarrow (r), B \rightarrow (p, q, r), C \rightarrow (p, q, r), D \rightarrow (p, r), E \rightarrow (p, r, s)$ 13. $A \rightarrow (p, q, r, s), B \rightarrow (p, q, r, s), C \rightarrow (p, q, r, s), D \rightarrow (r, s)$

PART # II

Comprehension #1:	1.	С	2.	D	3.	D	4 .	A,C	5.	A,B,C
Comprehension #2:	1.	D	2.	D	3.	В				
Comprehension #3:	1.	D	2.	Α	3.	С	4.	А	5.	D
Comprehension #4:	1.	В	2.	В	3.	С				
Comprehension #5:	1.	С	2.	С						
Comprehension #6:	1.	А	2.	А	3.	С				

EXERCISE - 5 : PART # I

1. 1 **2.** 2 **3.** 3 **4.** 1 **5.** 4 **6.** 3 **7.** 2 **8.** 4 **9.** 4 **10.** 3 **11.** 3 **12.** 4 **13.** 1 **18.** 4 **19.** 2 **20.** 3 **21.** 4 **22.** 2 **23.** 1 **14.** 3 **15.** 4 **16.** 1 **17.** 1 **24.** 4 **25.** 1 **26.** 3 **28.** 4 **29.** 4 **27.** 1 **30.** 3 **31.** 1 **32.** 2 **33.** 2 **34.** 4 **35.** 4 **36.** 4 **37.** 1 **38.** 4 **39.** 2 **40.** 1 **41.** 2 **42.** 3

PART # II

1. B **2.** D **3.** D **4.** D **5.** A **6.** C **7.** D **8.** C **9.** C **10.** $A \rightarrow (P,Q,R,T)$; $B \rightarrow Q,R,S,T$; $C \rightarrow (P,Q,R)$; $D \rightarrow (P,Q,R,S)$ **11.** A,B,C **12.** B,C **13.** D **14.** A **15.** B **16.** B **17.** D **18.** A,B,C **19.** B,D **20.** C **21.** 8 **22.** 4 **23.** B,C **24.** B **25.** B,C **26.** A,C

Subjective Questions

27. $KO_2 > O_2 > O_2 [AsF_4]$ **28.** 4 **29.** 0 **30.** 3 **31.** 6 **32.** 2 **33.** 5 **34.** 6 **35.** 5 or 6

- 2. $A \rightarrow (p, q, r), B \rightarrow (q, r, t), C \rightarrow (s), D \rightarrow (r)$
- 4. $A \rightarrow (q, s), B (q, r, s), C \rightarrow (p, q), D \rightarrow (q, s)$
- 6. $A \rightarrow (p, r), B \rightarrow (p, q, s), C \rightarrow (q, s), D \rightarrow (p, r)$
- 8. $A \rightarrow (r), B \rightarrow (p), C \rightarrow (s), D \rightarrow (q)$
- **10.** $A \rightarrow (p, r), B \rightarrow (p, q), C \rightarrow (p, r), D \rightarrow (p, q, s)$

MOCK TEST									
1.	В	2.	D	3.	А	4.	D	5.	С
6.	D	7.	D	8.	D	9.	А	10.	D
11.	A,B,C	12.	B,C	13.	A,C,D	14.	A,B,D	15.	A,C
16.	В	17.	В	18.	А	19.	D	20.	А
21.	А	22.	С	23.	D	24.	D	25.	А
26.	В	27.	С	28.	С	29.	В		

30. $A \rightarrow (p), B \rightarrow (q), C \rightarrow (s), D \rightarrow (p)$

31.
$$A \rightarrow (r), B \rightarrow (q), C \rightarrow (s), D \rightarrow (p)$$

32.
$$A \rightarrow (p, q, r), B \rightarrow (q, r, t), C \rightarrow (q, s), D \rightarrow (r)$$

33. $A \rightarrow (p, q, r, s), B \rightarrow (p, q, r, s), C \rightarrow (q, r), D \rightarrow (q, r)$

