HINTS \& SOLUTIONS

EXERCISE - 1

Single Choice

4. The conditions required for the formation of an ionic bond.
(i) Ionization enthalpy $\left[\mathrm{M}(\mathrm{g}) \rightarrow \mathrm{M}^{+}(\mathrm{g})+\mathrm{e}^{-}\right]$of electropositive element must be low.
(ii) Negative value of electron gain enthalpy $\left[\mathrm{X}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{X}^{-}(\mathrm{g})\right]$ of electronegative element should be high.
5. Here $\Delta_{x z}=3-1=2>1.7 \quad \therefore \quad \mathrm{XZ}$ is ionic
$\Delta_{\mathrm{yz}}=2-1=1<1.7 \quad \therefore \quad \mathrm{YZ}$ is covalent.
6. Cs has lowest IE_{1} amongst the metals and F has higher electron affinity. So Cs and F form most ionic compound.
7. \quad In $\mathrm{SF}_{6}, \mathrm{PCl}_{5}$ and IF_{7} the valence shell has 12,10 and 14 electrons. As all contain more than 8 electrons in their valence shell they are example of super octet molecules.
8.

\therefore Bond order $=1.5$.
11. (D) Position of atoms are different.
(E) Has unpaired electrons and this is not possible since the molecule is diamagnetic.
14. $\mathrm{N}_{3}^{-},(\mathrm{CNO})^{-}$and $(\mathrm{NCN})^{2-}$ all have same number of electrons i.e., 22 ; so all are isoelectronic with CO_{2} which also has 22 electrons.
15. Bond length $\propto \frac{1}{\text { Bond order }}$

Bond order of $\mathrm{CO}=3$ (as isoelectronic with N_{2})
Bond order $=\frac{\text { No. of bonds in all possible sides }}{\text { No. of resonating structures }}$
Bond order of $\mathrm{CO}_{2}=\frac{4}{2}=2$
Bond order of $\mathrm{CO}_{3}{ }^{2-}=\frac{4}{3}=1.33$
So, order of bond length of $\mathrm{C}-\mathrm{O}$ is $\mathrm{CO}<\mathrm{CO}_{2}<\mathrm{CO}_{3}{ }^{2-}$
16.

17.

$\therefore \mathrm{x}>\mathrm{y}=\mathrm{z}$

CHEMISTRY

18. (A) σ bond is formed by axial over lapping.
(B) p-orbital have both axial and side ways over lapping
19.

 19σ and 4π.
21.
(A)

(B)

(C)

(D)

24.

covalency $=7$
25.
(a)

(b)
 $s p^{2}$
(c) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{N}$:
sp
(d) $\ddot{O}=\stackrel{\oplus}{N}=\ddot{O}$
sp
\because LP is not in
hybridized orbital
26.

29. $\mathrm{N}_{3}{ }^{\Theta} \equiv\left[\stackrel{\Theta}{\mathrm{N}}=\stackrel{\oplus}{\mathrm{N}}=\mathrm{N}^{-}\right] ; \mathrm{NOCl} \equiv \quad \mathrm{O}=\mathrm{N}-\mathrm{Cl}$
\& $\quad \mathrm{N}_{2} \mathrm{O} \equiv \overline{\mathrm{N}}=\stackrel{+}{\mathrm{N}}=\mathrm{O}$
30.
(A) both are $\mathrm{sp}^{3} \mathrm{~d}$
(B) both are $\mathrm{sp}^{3} \mathrm{~d}$
(C) $\left[\mathrm{ClF}_{2} \mathrm{O}\right]^{+}$is sp^{3} but $\left[\mathrm{ClF}_{4} \mathrm{O}\right]^{-}$is $\mathrm{sp}^{3} \mathrm{~d}^{2}$

(D) both are $\mathrm{sp}^{3} \mathrm{~d}^{2}$
32.

hybridization $=\mathrm{sp}^{3}$
36.

(B)

Number of bond pairs around $I=2$. Number of lone pairs around $I=3$.
(D)

(C)

(D)

(B) IOF_{4}^{+}is see-saw.
(A) XeO_{3} is trigonal pyramid.
(C) PCl_{5} is trigonal bipyramidal.
39.
(i)

(ii) $[\mathrm{N}=\stackrel{+}{\mathrm{N}}=\mathrm{Np}]^{2-}$
(iii)

$s p^{3} d^{2}$
(iv)

40.

41. As the electronegativity of central atom increases the bond angle increases due to repulsion between bond pair and bond pair as bond pairs are more close to the central atom.
43.

S2 :

S3 :

45.

(B) $\underset{115 \mathrm{pm}}{\mathrm{N}} \stackrel{+}{=} \mathrm{O}$

Bond angle is 180° because of sp hybridisation of nitrogen.
(C)

(D)

48. Species Bond order

$\mathrm{C}_{2} \mathrm{H}_{2}$	3
$\mathrm{C}_{2} \mathrm{H}_{4}$	2
$\mathrm{C}_{2} \mathrm{H}_{6}$	1
$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Br}_{2}$	2

49. Presence of two LP.s on Cl, distorts the bond angle. Statement 3 is against VSEPR.
50. PH_{3} - No Hybridisation
NH_{3} and $\mathrm{H}_{2} \mathrm{O}$ bond angle is less than $109^{\circ} 28^{\prime}$ due to LP-BP and LP-LP repulsion.
CH_{4} bond angle is $109^{\circ} 28^{\prime}$
51. $\mathrm{P}: \mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{N}$
$\mathrm{Q}: \mathrm{H}-\mathrm{N}=\mathrm{C}=\mathrm{O}$

52. $\quad \mathrm{CaC}_{2}$ exists as Ca^{2+} and $\mathrm{C}_{2}{ }^{2-}\left[\begin{array}{l}\ominus \stackrel{\pi}{\pi} \frac{\pi}{\sigma} \\ \hline\end{array} \cdot\right]$.
53. Hybridization does not take place without s-orbital
54.

Species	Hybridisation
$\mathrm{CO}_{3}^{2 \Theta}$	sp^{2}
XeF_{4}	$\mathrm{sp}^{3} \mathrm{~d}^{2}$
I_{3}^{Θ}	$\mathrm{sp}^{3} \mathrm{~d}$
NCl_{3}	sp^{3}
BeCl_{2}	sp

58.

60. N atom in NO_{2}^{+}is sp hybridised while in NO_{2}^{-}and NO_{3}^{-}, it is sp^{2} hybridised.

Bond order $\propto \frac{1}{\text { Bond length }}$
So, bond length order is $\mathrm{NO}_{3}^{-}>\mathrm{NO}_{2}^{-}>\mathrm{NO}_{2}^{+}$.

CHEMISTRY

62.

$\mathrm{Cl} \underset{\text { (Linear) }}{\because \mathrm{I}} \mathrm{B}-\mathrm{Br}$
(Pyramidal) (T-shaped)
65.

66. $\mathrm{H}_{2} \mathrm{~S}-\mathrm{No}$ hybridisation bond angle $\approx 93^{\circ}$
NH_{3} - Pyramidal 104.5°
CH_{4} - Tetrahedral $109^{\circ} 28^{\prime}$
BF_{3} - Trigonalplanar 120°
68.

$\alpha=120^{\circ}$
$\beta=90^{\circ}$
$\gamma=180^{\circ}$
$\gamma>\alpha>\beta$
70. (a) Electronic configuration of boron in ground state is $1 s^{2} 2 s^{2} 2 p^{1}$.

(b) Electronic configuration of nitrogen in ground state is $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{3}$.

(c) Electronic configuration of phosphorus in ground state is $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$.

(d) Electronic configuration of boron in ground state is $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2}$.

71.

sp^{3}
75. $\mathrm{O}=\stackrel{\oplus}{\mathrm{N}}=\mathrm{O}$
${ }^{\ominus} \mathrm{O}-\mathrm{N}=\mathrm{O}$

Bond order $=2$
Bond order $=1.5$
80. The hybridization \& shape of $\mathrm{ClO}_{3}^{\Theta}$ is $\mathrm{sp}^{3} \&$ pyramidal but hybridization \& shape of NO_{3}^{Θ} is $\mathrm{sp}^{2} \&$ trigonal planar.

82 (A) BrF_{5} contains 10 electrons inplace of eight.
(B) SF_{6} contains 12 electrons inplace of eight.
(C) IF_{7} contains 14 electrons inplace of eight.

83 The maximum covalency of an element is equal to the number of $\mathrm{s} \& \mathrm{p}$ electrons in valence shell.
85 Electronegativity difference between two combining elements must be larger for ionic compound and it is the essential condition for the formation of ionic compounds. It is ionic because electronegativity difference between two combining elements is 1.8 .
86.

87.

88.

(B) $\mathrm{N} \underset{\bar{\sigma}}{ } \mathrm{C} \underset{\sigma}{-} \mathrm{C}_{\sigma}=\mathrm{C}_{\sigma}-\mathrm{C} \underset{\bar{\sigma}}{ } \mathrm{N}$
(C) In diamond each carbon atom is in sp^{3} hybridisation.
(D) $\mathrm{O}=\mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{O}$
sp sp sp
89. Bond energy \propto Bond order

Species Bond order
CO 3
$\mathrm{CO}_{2} \quad 2$
$\mathrm{CO}_{3}{ }^{2-} \quad 1.33$
90. $\mathrm{H}-\mathrm{N}^{+}-\mathrm{N}^{+}=\mathrm{N}^{2-}$; there is positive charge on two adjacent nitrogen atoms. This leads to repulsion and thus (II)
increases the energy of the molecule.

CHEMISTRY

92. $\mathrm{CH}_{2}=\stackrel{\oplus}{\mathrm{C}} \mathrm{H}$
steric No. $=2$
\therefore Hybridisation sp.
93. A fact, to be remembered.
94. (a) According to VSEPR as electronegativity of central atom decreases, bond angle decreases. So bond angle of $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{Te}$
(b) $\mathrm{C}_{2} \mathrm{H}_{2}>\mathrm{C}_{2} \mathrm{H}_{4}>\mathrm{CH}_{4}>\mathrm{NH}_{3}$ with bond pair- lone pair repulsion
$\mathrm{sp} \quad \mathrm{sp}^{2} \quad \mathrm{sp}^{3} \quad \mathrm{sp}^{3}$
(c) $\mathrm{SF}_{6}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{OF}_{2}$ in this case bond angle of NH_{3} is highest because lp - lp repulsion is absent in. it
(d) $\mathrm{ClO}_{2}>\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{SF}_{6}$
ClO_{2} bond angle is highest due to its sp^{2} hybridisation, rest all are sp^{3} or $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridised more repulsion in double bond electrons.

95.

Hydrogen atoms are in a vertical plane with axial fluorine atoms, π-bond involving a p-orbital of carbon atom must lie in equatorial plane of the molecule.
Six atoms, i.e. 2 H -atoms, C,S. and both axial F-atoms lie in one plane.
96. Due to more polarising power of Li against other members of the family.
97. Oxidation no. of N in $\mathrm{N}_{2} \mathrm{O}_{5}$ is +5

Anhydride of HOCl is $\mathrm{Cl}_{2} \mathrm{O}$.
The bond length decreases with increase in difference of electronegativity.
98. The cation should be
$[\mathrm{H}-\mathrm{C} \equiv \mathrm{N}-\mathrm{Xe}-\mathrm{F}]^{+}$
Hybridisations sp sp $\mathrm{sp}^{3} \mathrm{~d}$
99.

100. Generally lone pair causes more distortion than a double bond so
equitorial $\angle \mathrm{FSF}$ in $\mathrm{SOF}_{4}>$ equitorial $\angle \mathrm{FSF}$ in SF_{4}
OCF_{2} :

due to low bond pair bond pair repulsion because of fluorine \& large repulsion due to double bond.

Similar orbitals on hybridisation can not decrease their energy due to energy conservation law
101.
102.

(B)

(C)

103. $\mathrm{H}-\stackrel{\ddot{\mathrm{O}}}{\mathrm{H}^{\oplus}-\mathrm{H}}$

104.

109. In SOCl_{2}, sulphur atom is sp^{3} hybridised. Due to the presence of one lone pair of electrons on ' S ' atom, the molecule has distorted tetrahedral shape. i.e., trigonal pyramidal shape. This shape contains two chlorine and one oxygen atom in a triangle. The $\mathrm{S}-\mathrm{O}-\mathrm{pi}$ bond is $\mathrm{d} \pi-\mathrm{p} \pi$ pi bond.
110.

Decrease in $B-F$ bond length is due to delocalised $p \pi-p \pi$ bonding between filled p-orbital of F atom and vacant $p-$ orbital of B atom.
114. $\quad \mathrm{N}_{2}{ }^{2-}: \sigma 1 \mathrm{~s}^{2} \sigma^{*} 1 \mathrm{~s}^{2} \sigma 2 \mathrm{~s}^{2} \sigma^{*} 2 \mathrm{~s}^{2} \pi 2 \mathrm{p}_{\mathrm{x}}{ }^{2} \pi 2 \mathrm{p}_{\mathrm{y}}{ }^{2} \sigma 2 \mathrm{p}_{\mathrm{z}}{ }^{2} \pi 2 \mathrm{p}_{\mathrm{x}}{ }^{1} \pi^{*} 2 \mathrm{p}_{\mathrm{y}}{ }^{1}$.

$$
\text { B.O. } \mathrm{N}_{2}^{2-}=\frac{10-6}{2}=2 . \quad ; \quad \text { B.O. } \mathrm{O}_{2}=\frac{10-6}{2}=2 .
$$

NO^{-}isoelectronic with O_{2} so B.O. $=\frac{10-6}{2}=2$.
All have same number of electrons (i.e. 16) so isoelectronic.
116. The electron density is zero in the nodal plane during the formation of a molecular orbital from atomic orbitals of the same atom.

CHEMISTRY

118. (A) Bond order of $\mathrm{N}_{2}^{+}=2.5$; The bond order of $\mathrm{O}_{2}^{+} 1 / 2(10-5)=2.5$.
(B) Bond order of $\mathrm{F}_{2}=1$; The bond order of $\mathrm{Ne}_{2}=0$.
(C) Bond order of $\mathrm{O}_{2}=2$; The bond order of $\mathrm{B}_{2}=1$.
(D) Bond order of $\mathrm{C}_{2}=2$; The bond order of $\mathrm{N}_{2}=3$.
119. $\quad \mathrm{B}_{2}$ bond order $=1 ; \mathrm{C}_{2}$ bond order $=2 ; \mathrm{F}_{2}$ bond order $=1 ; \mathrm{O}_{2}{ }^{-}$bond order $=1.5$ bond order $\propto 1 /$ bond length .
120. (A) NO^{-}is derivative of O_{2} and isoelectronic with O_{2}.

So $(\sigma 1 \mathrm{~s})^{2}\left(\sigma^{*} 1 \mathrm{~s}\right)^{2}(\sigma 2 \mathrm{~s})^{2}\left(\sigma^{*} 2 \mathrm{~s}\right)^{2}\left(\sigma 2 \mathrm{p}_{\mathrm{z}}\right)^{2}\left(\pi 2 \mathrm{p}^{2}{ }_{\mathrm{x}}=\pi 2 \mathrm{p}^{2}{ }_{\mathrm{y}}\right)\left(\pi^{*} 2 \mathrm{p}_{\mathrm{x}}{ }^{1}=\pi^{*} 2 \mathrm{p}^{1}{ }_{\mathrm{y}}\right)$ and 2 unpaired electrons.
(B) $\mathrm{O}_{2}^{2-}:(\sigma 1 \mathrm{~s})^{2}\left(\sigma^{*} 1 \mathrm{~s}\right)^{2}(\sigma 2 \mathrm{~s})^{2}\left(\sigma^{*} 2 \mathrm{~s}\right)^{2}\left(\sigma 2 \mathrm{p}_{\mathrm{z}}\right)^{2}\left(\pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}\right)\left(\pi^{*} 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi * 2 \mathrm{p}_{\mathrm{y}}^{2}\right)$ and no unpaired electrons.
(C) CN^{-}is derivative of and isoelectronic with $\mathrm{N}_{2}:(\sigma 1 \mathrm{~s})^{2}\left(\sigma^{*} 1 \mathrm{~s}\right)^{2}(\sigma 2 \mathrm{~s})^{2}\left(\sigma^{*} 2 \mathrm{~s}\right)^{2}\left(\pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}\right)\left(\sigma 2 \mathrm{p}_{\mathrm{z}}\right)^{2}$ and no unpaired electron.
(D) CO is derivative of and isoelectronic with $\mathrm{N}_{2}:(\sigma 1 \mathrm{~s})^{2}\left(\sigma^{*} 1 \mathrm{~s}\right)^{2}(\sigma 2 \mathrm{~s})^{2}\left(\sigma^{*} 2 \mathrm{~s}\right)^{2}\left(\pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}\right)\left(\sigma 2 \mathrm{p}_{\mathrm{z}}\right)^{2}$ and no unpaired electron.
123.
(A) Stability
$\mathrm{O}_{2}^{+}>\mathrm{O}_{2}>\mathrm{O}_{2}^{-}$
Bond order

$$
\begin{array}{lll}
2.5 & 2 & 1.5
\end{array}
$$

(C) In all these molecules all electrons are paired in molecular orbitals.
126.
(C) $\mathrm{O}_{2}:(\sigma 1 \mathrm{~s})^{2}\left(\sigma^{*} 1 \mathrm{~s}\right)^{2}(\sigma 2 \mathrm{~s})^{2}\left(\sigma^{*} 2 \mathrm{~s}\right)^{2}\left(\sigma 2 \mathrm{p}_{\mathrm{z}}\right)^{2}\left(\pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}\right)\left(\pi^{*} 2 \mathrm{p}_{\mathrm{x}}{ }^{1}=\pi^{*} 2 \mathrm{p}_{\mathrm{y}}^{1}\right)$
$\mathrm{O}_{2}^{-}:(\sigma 1 \mathrm{~s})^{2}\left(\sigma^{*} 1 \mathrm{~s}\right)^{2}(\sigma 2 \mathrm{~s})^{2}\left(\sigma^{*} 2 \mathrm{~s}\right)^{2}\left(\sigma 2 \mathrm{p}_{\mathrm{z}}\right)^{2}\left(\pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}\right)\left(\pi^{*} 2 \mathrm{p}_{\mathrm{x}}{ }^{2}=\pi^{*} 2 \mathrm{p}_{\mathrm{y}}^{1}\right)$
128. (I) $\mathrm{O}_{2}^{+}:(\sigma 1 \mathrm{~s})^{2}\left(\sigma^{*} 1 \mathrm{~s}\right)^{2}(\sigma 2 \mathrm{~s})^{2}\left(\sigma^{*} 2 \mathrm{~s}\right)^{2}\left(\sigma 2 \mathrm{p}_{\mathrm{z}}\right)^{2}\left(\pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}\right)\left(\pi^{*} 2 \mathrm{p}_{\mathrm{x}}{ }^{1}=\pi^{*} 2 \mathrm{p}_{\mathrm{y}}^{0}\right)$

Bond order $=1 / 2(10-5)=2.5$.
(II) NO is derivative of O_{2} and isoelectronic with O_{2}^{+}:
so $(\sigma 1 \mathrm{~s})^{2}\left(\sigma^{*} 1 \mathrm{~s}\right)^{2}(\sigma 2 \mathrm{~s})^{2}\left(\sigma^{*} 2 \mathrm{~s}\right)^{2}\left(\sigma 2 \mathrm{p}_{\mathrm{z}}\right)^{2}\left(\pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}\right)\left(\pi^{*} 2 \mathrm{p}_{\mathrm{x}}{ }^{1}=\pi^{*} 2 \mathrm{p}^{0}{ }_{\mathrm{y}}\right)$

Bond order $=1 / 2(10-5)=2.5$.
(III) $\mathrm{N}_{2}^{+}:(\sigma 1 \mathrm{~s})^{2}\left(\sigma^{*} 1 \mathrm{~s}\right)^{2}(\sigma 2 \mathrm{~s})^{2}\left(\sigma^{*} 2 \mathrm{~s}\right)^{2}\left(\pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}\right)\left(\sigma 2 \mathrm{p}_{\mathrm{z}}\right)^{1}$

Bond order $=1 / 2(9-4)=2.5$.
$\mathrm{O}_{2}^{+}, \mathrm{NO}$ and N_{2}^{+}have same bond order i.e. 2.5 and have same magnetic property having one unpaired electron.
129. (A) $\mathrm{N}_{2} \mathrm{O}_{3}$ Dinitrogen trioxide
(B) $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{2-}$ Hyponitrite ion
(C) $\mathrm{N}_{2} \mathrm{O}_{5} \quad$ Dinitrogen pentoxide

(D) $\mathrm{N}_{2} \mathrm{O}_{4}$

Dinitrogen tetroxide
132.

$\left[\mathrm{Si}_{3} \mathrm{O}_{9}\right]^{6-}$

$\left[\mathrm{Si}_{4} \mathrm{O}_{12}\right]^{8-}$

$\left[\mathrm{Si}_{5} \mathrm{O}_{15}\right]^{10-}$

$\left[\mathrm{Si}_{6} \mathrm{O}_{18}\right]^{12-}$
general formula of cyclic silicates is $\left[\mathrm{Si}_{\mathrm{n}} \mathrm{O}_{3 n}\right]^{2 n-}$
135. $\mathrm{P}_{4} \mathrm{O}_{10}$

136. Partial double bond character is developed in $B-F$ bond of BF_{3} (due to formation of dative π bond)

In other case B is sp^{3} hybridised (tetrahedral molecule or ion) and the possibility for π bonding no longer exists.

CHEMISTRY

138. S_{1} : as it does not have d-orbitals.

S_{3} : In B_{2} mixing of the $\sigma_{\mathrm{g}}(2 \mathrm{~s})$ orbital with the $\sigma_{\mathrm{g}}(2 \mathrm{p})$ orbital lowers the energy of the $\sigma_{\mathrm{g}}(2 \mathrm{~s})$ orbital and increases the energy of the $\sigma_{g}(2 p)$ orbital to a higher level than the π orbitals. As a result, the last two electrons are unpaired in the degenerate (having the same energy) π orbitals, and the molecule is paramagnetic.
In N_{2} the $\sigma_{\mathrm{g}}(2 \mathrm{~s})$ and $\sigma_{\mathrm{g}}(2 \mathrm{p})$ levels of N_{2} interact (mix) less than the B_{2} and C_{2} levels, and the $\sigma_{\mathrm{g}}(2 \mathrm{p})$ and $\pi_{\mathrm{u}}(2 \mathrm{p})$ are very close in energy.
139. Boron trimethyl is a weaker Lewis acid than the boron trihalides or monoborane. The electron donating effect of the methyl groups hinders the complex formation with trimethyl amine. Hence the bond $\mathrm{N} \rightarrow \mathrm{B}$ is weakest in $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}\right.$ $\left.\rightarrow \mathrm{B}\left(\mathrm{CH}_{3}\right)_{3}\right] . \mathrm{Me}_{3} \mathrm{~N}$ as donor (capacity). $\mathrm{BBr}_{3}>\mathrm{BCl}_{3}>\mathrm{BF}_{3} \sim \mathrm{BH}_{3}>\mathrm{BMe}_{3}$.
140. There is $\mathrm{p} \pi-\mathrm{d} \pi$ delocalization of lone pair of electron on nitrogen atom and empty d-orbital of silicon but not $\mathrm{p} \pi-\mathrm{p} \pi$, one of the 2 s -orbital electrons jumps to the last P_{z} orbital and does not participate in sp^{2} hybridisation.

141. M.O for $\mathrm{C}_{2}=\sigma_{1} \mathrm{~s}^{2}<\sigma_{1}{ }^{*} \mathrm{~s}^{2}<\sigma_{2} \mathrm{~s}^{2}<\sigma_{2}{ }^{*} \mathrm{~s}^{2}<\underbrace{\pi_{2} p_{y}^{2}=\pi_{2} p_{z}^{2}}_{\text {HOMO }}<\underbrace{\sigma_{2} p_{x}}_{\text {LUMO }}$

It is important to note that double bond in C_{2} consists of both pi bonds because of the presence of four electrons in two pi molecular orbitals $\mathrm{C}_{2}{ }^{2-}\left[\mathrm{C} \overline{\overline{\frac{\pi}{6}}} \mathrm{C}\right]^{2-}$.
147.

$\mathrm{NO}^{-}>$	$\mathrm{NO}>$	NO^{+}	(bond length)
2.0	2.5	3	
$\mathrm{H}_{2}>$	$\mathrm{H}_{2}^{+}>$	He_{2}^{+}	(bond energy)
1	0.5	0.5	

(In $\mathrm{He}_{2}{ }^{+}$more electron in antibonding MO's)

$$
\begin{array}{lll}
\mathrm{NO}_{2}^{+}>\mathrm{NO}_{2}>\mathrm{NO}_{2}^{-} & \text {(bond angle) } \\
180^{\circ} & 133^{\circ} \\
\mathrm{O}_{2}^{2-}<\mathrm{O}_{2}^{+}<5^{\circ} \\
0 & \mathrm{O}_{2} & \text { (paramagnetic moment) }
\end{array}
$$

Bond angle
No. of unpaired e^{-}
148. He_{2}^{+}bond order $=\frac{2-1}{2}=\frac{1}{2} ; \mathrm{O}_{2}^{-}$bond order $=\frac{10-7}{2}=1.5$
C_{2} bond order $=\frac{8-4}{2}=2 ; \mathrm{NO}$ bond order $=\frac{10-5}{2}=2.5$
Bond order \propto bond dissociation energy.
149. diamond ($1.54 \AA$)
graphite (1.42 \AA) . (\perp^{r} to the sheets there is no covalent bonding)
$\mathrm{C}_{60}(1.45 \AA$ and $1.38 \AA)$
benzene ($1.36 \AA$).
151.

152. Hybridisation is sp^{3}.

154. (I) $\left[\mathrm{PCl}_{4}\right]^{+} \rightarrow \mathrm{sp}^{3}$

(III) All have sp^{3} hybridisation and one lone pair.
(IV)

156

$\mathrm{C}_{2} \mathrm{H}_{5}>\ddot{\mathrm{O}} \rightarrow \mathrm{BH}_{3}$
157.

(B)

(C)

CHEMISTRY

In BF_{3} the $\mathrm{B}-\mathrm{F}$ bond length is shorter than normal bond character on account of $\mathrm{p} \pi-\mathrm{p} \pi$ back bonding ($1.30 \AA$). In $1: 1$ complex there is no $\mathrm{p} \pi-\mathrm{p} \pi$ back bonding and hence the $\mathrm{B}-\mathrm{F}$ bond length is longer,($1.35 \AA$).

$\begin{array}{lll}\text { Steric number } & 4\end{array}$
Hence both N and B have tetrahedrdal geometry with sp^{3} hybridisation.
$161 \quad \mathrm{~N}_{2}:(\sigma 1 \mathrm{~s})^{2}\left(\sigma^{*} 1 \mathrm{~s}\right)^{2}(\sigma 2 \mathrm{~s})^{2}\left(\sigma^{*} 2 \mathrm{~s}\right)^{2}\left(\pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}\right)\left(\sigma 2 \mathrm{p}_{\mathrm{z}}\right)^{2}$
The bond order of N_{2} is $1 / 2(10-4)=3$.
$\mathrm{N}_{2}^{+}:(\sigma 1 \mathrm{~s})^{2}\left(\sigma^{*} 1 \mathrm{~s}\right)^{2}(\sigma 2 \mathrm{~s})^{2}\left(\sigma^{*} 2 \mathrm{~s}\right)^{2}\left(\pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}\right)\left(\sigma 2 \mathrm{p}_{\mathrm{z}}\right)^{1}$
The bond order of N_{2}^{+}is $1 / 2(9-4)=2.5$.
$\mathrm{O}_{2}:(\sigma 1 \mathrm{~s})^{2}\left(\sigma^{*} 1 \mathrm{~s}\right)^{2}(\sigma 2 \mathrm{~s})^{2}\left(\sigma^{*} 2 \mathrm{~s}\right)^{2}\left(\sigma 2 \mathrm{p}_{\mathrm{z}}\right)^{2}\left(\pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}\right)\left(\pi^{*} 2 \mathrm{p}_{\mathrm{x}}{ }^{1}=\pi^{*} 2 \mathrm{p}_{\mathrm{y}}{ }^{1}\right)$
The bond order of $\mathrm{O}_{2} 1 / 2(10-6)=2$.
$\mathrm{O}_{2}^{-}:(\sigma 1 \mathrm{~s})^{2}\left(\sigma^{*} 1 \mathrm{~s}\right)^{2}(\sigma 2 \mathrm{~s})^{2}\left(\sigma^{*} 2 \mathrm{~s}\right)^{2}\left(\sigma 2 \mathrm{p}_{\mathrm{z}}\right)^{2}\left(\pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}\right)\left(\pi^{*} 2 \mathrm{p}_{\mathrm{x}}{ }^{2}=\pi^{*} 2 \mathrm{p}_{\mathrm{y}}{ }^{1}\right)$
The bond order of $\mathrm{O}_{2} 1 / 2(10-7)=1.5$.
NO^{+}derivative of O_{2} and isoelectronic with $\mathrm{O}_{2}{ }^{2+}$; so $(\sigma 1 \mathrm{~s})^{2}\left(\sigma^{*} 1 \mathrm{~s}\right)^{2}(\sigma 2 \mathrm{~s})^{2}\left(\sigma^{*} 2 \mathrm{~s}\right)^{2}\left(\sigma 2 \mathrm{p}_{\mathrm{z}}\right)^{2}\left(\pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}\right)$
The bond order of $\mathrm{NO}^{+} 1 / 2(10-4)=3$.
NO derivative of O_{2} and isoelectronic with $\mathrm{O}_{2}^{+} ;(\sigma 1 \mathrm{~s})^{2}\left(\sigma^{*} 1 \mathrm{~s}\right)^{2}(\sigma 2 \mathrm{~s})^{2}\left(\sigma^{*} 2 \mathrm{~s}\right)^{2}\left(\sigma 2 \mathrm{p}_{\mathrm{z}}\right)^{2}\left(\pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}{ }_{\mathrm{y}}\right),\left(\pi^{*} 2 \mathrm{px}\right)^{1}$
The bond order of NO is $1 / 2(10-5)=2.5$.
bond order $\propto 1 /$ bond length \propto bond dissociation energy.
$163 \quad \mathrm{OF}$ is derivative of O_{2} and isoelectronic with O_{2}^{-}.
So $(\sigma 1 \mathrm{~s})^{2}\left(\sigma^{*} 1 \mathrm{~s}\right)^{2}(\sigma 2 \mathrm{~s})^{2}\left(\sigma^{*} 2 \mathrm{~s}\right)^{2}\left(\sigma 2 \mathrm{p}_{\mathrm{z}}\right)^{2}\left(\pi 2 \mathrm{p}^{2}{ }_{\mathrm{x}}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}\right)\left(\pi^{*} 2 \mathrm{p}_{\mathrm{x}}{ }^{2}=\pi^{*} 2 \mathrm{p}^{1}{ }_{\mathrm{y}}\right)$
The bond order of OF $1 / 2(10-7)=1.5$.

164 (A) $\mathrm{H}_{2} \mathrm{O}_{2}=1.48 \AA$ due to repulsions between non-bonded pairs of electron on O -atoms and $\mathrm{O}_{2} \mathrm{~F}_{2}=1.217 \AA$.
(B) In O_{2}^{2-} very slightly increases due to charge (-ve) on two O atoms.

	Bond Order	Internuclear Distance (pm)	Number of unpaired(s) Dlectrons
(C)	$\mathrm{O}_{2}{ }^{+}$(dioxygenyl)	2.5	112.3
O_{2} (dioxygen)	2.0	120.07	1
$\mathrm{O}_{2}{ }^{-}$(superoxide)	1.5	128	2
$\mathrm{O}_{2}{ }^{2-}$ (peroxide)	1.0	149	1

165. Bond order of $\mathrm{N}_{2}=3$ bond order of $\mathrm{N}_{2}^{+}=2.5$
B.O. of $\mathrm{O}_{2}=2$.
B.O. of $\mathrm{O}_{2}^{+}=2.5$
166.

(A) $\mathrm{O}=\underset{\mathrm{sp}}{\mathrm{C}}=\underset{\mathrm{sp}}{\mathrm{C}}=\underset{\mathrm{sp}}{\mathrm{C}}=\mathrm{O}$
(B)

Resonance
takes place ; Therefore, six $\mathrm{Cr}-\mathrm{O}$ bond lengths are not equal. takes place
(C)

This is an example of 3-centre $2-\mathrm{e}^{-}$bond which is also known as Banana bond. But $\mathrm{Al}_{2} \mathrm{Cl}_{6}$ have covalent bond only and there is no electron deficient bonding as depicted in the given structure.

(D) AgI is bright yellow coloured compound due to the polarisation of anion, I^{-} .The bigger anions are more polarised and hence their electrons get excited by partial absorption of visible light.

169. (A) $\mathrm{NO} \mathrm{B} \mathrm{O}=$.3 triple bond.
$\mathrm{O}=\mathrm{N}-\mathrm{Cl}$ there is a double bond between N and ' O ' atom
(B)

$$
\mathrm{CaC}_{2} \equiv \mathrm{Ca}^{2+}+\mathrm{C}_{2}^{2-}\left(-\mathrm{C}_{8}^{4} \mathrm{C}^{-}\right)
$$

(C)

$$
\begin{array}{ll}
\mathrm{KO}_{2} \equiv \mathrm{O}_{2}^{-} & \mathrm{B} \cdot \mathrm{O}=1.5 \\
\mathrm{Na}_{2} \equiv \mathrm{O}_{2}^{2-} & \mathrm{B} \cdot \mathrm{O}=1
\end{array}
$$

(D)

EXERCISE-2

Part \# I : Multiple Choice

1. (A) is incorrect, as ionic compounds have higher melting points as well as higher boiling points due to strong electrostatic force of attraction between the ions. (B), (C) and (D) are properties of ionic compounds.
2.

(B) $\mathrm{K}^{+} \mathrm{C} \equiv \mathrm{N}^{-}$

4. $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$

The two π bonds are in mutually perpendicular plane. The terminal C -atom is sp^{3} hybridised.
7.
(A)

(B)

(C)

(D)

8. $\mathrm{O}=\stackrel{+}{\mathrm{N}}=\mathrm{O}$

10. (A) Due to the presence of lone pair bond angle decreases.
(B)

(C) $\mathrm{NH}_{4} \mathrm{Cl}$ is an ionic compound and ' N ' is in sp^{3} hybridisation.
(D) S_{8} molecule has 16 electron parirs left behind after the bonding.
11. B and $\mathrm{C} \Rightarrow$ Drago's rule,

12. The incorrect Lewis diagram are (A) and (C) because octet of O and S are incomplete respectively .
15. (b) If X-axis is internuclear axis, then it will result in π bond.
(c) It will result in σ bond.
(d) \& (e) It shows zero overlap with no bond formation.
16. $\quad \mathrm{C}^{*} \rightarrow 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{1} 2 \mathrm{p}^{3} 4$ unpaired electron $\therefore 4$ bonds
$B^{*} \rightarrow 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{1} 2 \mathrm{p}^{2} 3$ unpaired electron $\therefore 3$ bonds
$\mathrm{I}^{*} \rightarrow 5 \mathrm{~s}^{2} 5 \mathrm{p}^{4} 5 \mathrm{~d}^{1} 3$ unpaired electron $\therefore 3$ bonds
$\mathrm{P}^{*} \rightarrow 3 \mathrm{~s}^{2} 3 \mathrm{p}^{3} \quad 3$ unpaired electron $\therefore 3$ bonds

* represent excited state

17. It is the orbital that undergo hybridisation and not the electrons. For example, for orbitals of nitrogen atom $\left(2 s^{2} 2 p_{x}^{1} 2 p_{y}^{1} 2 p_{z}^{1}\right)$ belonging to valency shell when hybridise to form four hybrid orbitals, one of which has two electrons (as before) and other three have one electron each. It is not necessary that only half filled orbitals participate in hybridisation. In some cases, even filled orbitals of valence shell take part in hybridisation.
18. (A) Nitrogen is more electronegative than phosphorus.

So, dipole moment of trimethylamine is greater than trimethy phosphine.
(B) $\mathrm{H}_{3} \mathrm{Si} \xlongequal[\square]{\mathrm{O}}-\mathrm{SiH}_{3} \longleftrightarrow \mathrm{H}_{3} \mathrm{Si}=\stackrel{+}{\mathrm{O}}-\mathrm{SiH}_{3}$

In trisilyl ether the lone pair of electron on oxygen atom is less easily available for donation because of $\mathrm{p} \pi-\mathrm{d} \pi$ delocalisation due to presence of the vacant d-orbital with Si . This however is not possible with carbon in $\mathrm{CH}_{3}-\mathrm{O}$ $-\mathrm{CH}_{3}$ due to the absence of d-orbital making it more basic.
(C) Bond order of C_{2} and O_{2} are same i.e., 2. In C_{2} molecules both bonds are π-bonds whereas, there is one σ and one π-bond in O_{2} molecule
$\mathrm{C}_{2}=131 \mathrm{pm} ; \mathrm{O}_{2}=121 \mathrm{pm}$.

CHEMISTRY

(D)

(A) : $\mathrm{N}=\mathrm{O}$
(B)

(D)

22. $\left(\mathrm{CH}_{3}\right)_{2} \ddot{\mathrm{O}}$: can act as lewis base but $\left(\mathrm{SiH}_{3}\right)_{2} \mathrm{O} \&\left(\mathrm{SiH}_{3}\right)_{3} \mathrm{~N}$ can not, as one pairs on $\mathrm{O} \& \mathrm{~N}$ are deloecalised in to empty orbitals of Si .
24. \quad In FO^{+}total no. of electrons $=16$, so bond order will be 2.

In FO^{-}total number of electrons $=18$, so bond order will be 1 .
25.
$\mathrm{P}_{4} \mathrm{O}_{10}$

The $\mathrm{P}-\mathrm{O}$ bond lengths shows that the bridging bonds on the edges are $1.60 \AA$ but the $\mathrm{P}=\mathrm{O}$ bonds on the corners are $1.43 \AA$ and this $\mathrm{P}=\mathrm{O}$ is formed by $\mathrm{p} \pi-\mathrm{d} \pi$ back bonding. A full p -orbital on the oxygen atom overlaps sideway with an empty d-orbital on the phosphorus atom. The bond angle POP is 127° and there is no $\mathrm{P}-\mathrm{P}$ bonds.
26.

28. Fullerene are cage like molecules. C_{60} molecule has a shape like soccer ball and called Buckminsterfullerene.

It contains twenty 'six -membered rings' and twelve 'five membered rings'. A six membered ring is fused with six or five membered rings but a five membered ring can only fuse with six membered rings. All the carbon atoms are equal and they undergo sp^{2} hybridisation. Each carbon atom forms three sigma bonds with other three carbon atoms. The remaining electron at each carbon atom is delocalised in molecular orbitals, which in turn give aromatic character to molecule. This ball shaped molecule has 60 vertices and each one is occupied by one carbon atom and it also contains both single and double bonds with $\mathrm{C}-\mathrm{C}$ distance of 143.5 pm and 138.3 pm respectively.
30. $\mathrm{Cl}_{2} \mathrm{O}>\mathrm{F}_{2} \mathrm{O}$ and $\mathrm{F}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{O}$
$111^{\circ} 102^{\circ} \quad 102^{\circ} 104^{\circ}$
$\mathrm{NO}_{2}{ }^{+}>\mathrm{NO}_{2}^{-}$
$\mathrm{sp} \quad \mathrm{sp}^{2}$
$\mathrm{AsI}_{3}>\mathrm{AsBr}_{3}>\mathrm{AsCl}_{3}$ (due to size of halogen)
31. (A) Structure is similar to that of ethane. Each N atom is tetrahedrally surrounded by one N , two H and a lone pair. The two halves of the molecules are rotated 95° about $\mathrm{N}-\mathrm{N}$ bond and occupy a gauche (non-eclipsed) conformation. The bond length is $1.45 \AA$.

(B) Has partial double bond character due to $\mathrm{p} \pi-\mathrm{d} \pi$ delocalisation.
(C) $\mathrm{OF}_{2}=103^{\circ}$ (approximate) and $\mathrm{OCl}_{2}=112^{\circ}$ (approximate).
(D) Exist in polymeric structure as

33. (A) $\mathrm{O}_{2}^{+}:(\sigma 1 \mathrm{~s})^{2}\left(\sigma^{*} 1 \mathrm{~s}\right)^{2}(\sigma 2 \mathrm{~s})^{2}\left(\sigma^{*} 2 \mathrm{~s}\right)^{2}\left(\sigma 2 \mathrm{p}_{\mathrm{z}}\right)^{2}\left(\pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}\right)\left(\pi^{*} 2 \mathrm{p}_{\mathrm{x}}{ }^{1}=\pi^{*} 2 \mathrm{p}_{\mathrm{y}}\right)$
(B) NO is derivative of $\mathrm{O}_{2}: \mathrm{NO}\left(\mathrm{O}_{2}^{+}\right)(\sigma 1 \mathrm{~s})^{2}\left(\sigma^{*} 1 \mathrm{~s}\right)^{2}(\sigma 2 \mathrm{~s})^{2}\left(\sigma^{*} 2 \mathrm{~s}\right)^{2}\left(\sigma 2 \mathrm{p}_{\mathrm{z}}\right)^{2}\left(\pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}\right)\left(\pi^{*} 2 \mathrm{p}_{\mathrm{x}}{ }^{1}=\pi^{*} 2 \mathrm{p}_{\mathrm{y}}\right)$
(C) $\mathrm{O}_{2}^{-}:(\sigma 1 \mathrm{~s})^{2}\left(\sigma^{*} 1 \mathrm{~s}\right)^{2}(\sigma 2 \mathrm{~s})^{2}\left(\sigma^{*} 2 \mathrm{~s}\right)^{2}\left(\sigma 2 \mathrm{p}_{\mathrm{z}}\right)^{2}\left(\pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}\right)\left(\pi^{*} 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi^{*} 2 \mathrm{p}_{\mathrm{y}}^{1}\right)$
(D) $\mathrm{B}_{2}:(\sigma 1 \mathrm{~s})^{2}\left(\sigma^{*} 1 \mathrm{~s}\right)^{2}(\sigma 2 \mathrm{~s})^{2}\left(\sigma^{*} 2 \mathrm{~s}\right)^{2}\left(\pi 2 \mathrm{p}_{\mathrm{x}}^{1}=\pi 2 \mathrm{p}_{\mathrm{y}}{ }_{\mathrm{y}}\right)\left(\sigma \mathrm{p}_{\mathrm{z}}\right)^{0}$
37. (A) It results from the electrical attractions among positively charged metal ions and mobile, delocalised electrons belonging to the crystal as a whole.
(B) In general, greater the number of $(\mathrm{n}-1) \mathrm{d}$ and ns electrons, stronger is the resultant bonding.
(C) Strength of metallic bond depend on the type of hybrid orbitals participating in metallic bonding.
(D) As the size of atom increases the attraction between the positive part of the atom and delocalised electrons decreases and thus the strength of the metallic bond decreases.
(A) $\mathrm{I}-\mathrm{Cl}$, linear and polar because of the difference in the electronegativities of iodine and chlorine.
(B)

$$
\mu \neq 0
$$

(C)

(D)

CHEMISTRY

maleic acid

$\begin{array}{cll}\mathrm{O}_{2}\left[\mathrm{AsF}_{4}\right]=\mathrm{O}_{2}^{+} & \text {B. } \mathrm{O}=2.5 & \text { so } \quad \mathrm{O}_{2}+\text { has smaller bond length than } \mathrm{O}_{2}^{-} \\ \mathrm{KO}_{2}=\mathrm{O}_{2}^{-} & \text {B. } \mathrm{O}=1.5 & \end{array}$
Greater the size of the halogen atom greater will be bond angle.
(A) Boiling point of $\mathrm{ICl}>\mathrm{Br}_{2}$ as ICI is polar and Br_{2} is non-polar in nature.
(B)

(C)

(D)

identical due to resonance.
(A) $\quad \mathrm{SbH}_{3}>\mathrm{NH}_{3}>\mathrm{AsH}_{3}>\mathrm{PH}_{3}$ (order of B.Pt)
(B) \quad As $\mathrm{D}_{2} \mathrm{O}$ has higher molecular mass than $\mathrm{H}_{2} \mathrm{O}$ so its density is more.
(C) $\quad \mathrm{Mn} \rightarrow 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{5}$
$\mathrm{Ca} \rightarrow[\mathrm{Ar}] 4 \mathrm{~s}^{2}$
$\mathrm{Sr} \rightarrow[\mathrm{Kr}] 5 \mathrm{~s}^{2}$
$\mathrm{Rb} \rightarrow[\mathrm{Kr}] 5 \mathrm{~s}^{1}$
Refer notes
(D) $\quad \mathrm{H}_{2} \rightarrow$ weak VDW forces
$\mathrm{CO}_{2} \rightarrow$ weak VDW force but stronger than H_{2}.
$\mathrm{H}_{2} \mathrm{O} \rightarrow$ H-bonding.
45. $\quad \mathrm{S}_{2} \mathrm{O}^{2-}$ ion :

Individual O.N. of S atoms $=+6$ and -2 . Average O.N. $=+2$
SbH_{3} has higher bp than NH_{3}, due to vander waal forces.
In hydracids, the acidity increases down the group while for oxyacids, the acidity decreases down the group.
46.

The $\mathrm{P}=\mathrm{O}$ contain one $\mathrm{p} \pi-\mathrm{d} \pi$ bond. The $\mathrm{PO}_{4}{ }^{3-}$ ion show resonance.
Due to the presence of H -bonded to O , it show intermolecular H -bonding due to which it is syrupy.
47. The critical temperature depends on the magnitude (of strength) of intermolecular force of attraction between the molecules. If a molecule has dipole moment it means there is dipole dipole attraction between the molecules and thus it will affect the critical temperature.
48. Polarity depend on net dipole moment. If diple moment $\mu=0$ it is nonpolar.
(A)

$$
\mathrm{XeF}_{4} \quad \mu=0 \quad \text { non polar }
$$

(B)

$$
\mathrm{XeF}_{6} \quad \mu \neq 0 \quad \text { polar }
$$

(C)

$$
\mathrm{XeOF}_{4} \quad \mu \neq 0 \quad \text { polar }
$$

(D)

$$
\mathrm{XeF}_{5}^{-} \quad \mu=0 \quad \text { non polar }
$$

49. (A) Ethyne being non-polar is more soluble in acetone.
(B) $\mathrm{CD}_{3} \mathrm{~F}$ is more polar than $\mathrm{CH}_{3} \mathrm{~F}$. In $\mathrm{CD}_{3} \mathrm{~F}, \mathrm{C}-\mathrm{D}$ bond is more polar as deuterium is more electropositive than hydrogen.
(C) Silyl isocyanate $\left(\mathrm{SiH}_{3} \mathrm{NCO}\right)$ is linear in shape because of $\mathrm{p} \pi-\mathrm{d} \pi$ delocalisation of lone pair of electrons on nitrogen. While in methyl isocyanate $\left(\mathrm{CH}_{3} \mathrm{NCO}\right)$ there is no $\mathrm{p} \pi-\mathrm{d} \pi$ delocalisation of electron as carbon does not have empty d-orbital and thus is bent in shape.
In $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$, the 2 H -atoms on one C -atom lie in a plane perpendicular to the plane in which $2 \mathrm{H}-$ atoms on other C -atom lie.

CHEMISTRY

50. The correct formula of borax is $\mathrm{Na}_{2}\left[\mathrm{~B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4}\right] .8 \mathrm{H}_{2} \mathrm{O}$. The structure of anion is :

51. As charge on cations increases, their polarising power increases and thus covalent character increases.

52. Increase in oxidation state $\left(\mathrm{Ni}^{4+}\right)$ increases the polarising power of cation and thus increases the polarisation of Br^{-}ion.
53. Because of high charge density on Sn^{4+} it has high polarising power and thus leads to greater polarisation of anion i.e., greater distortion of electron clouds of the Cl^{-}ions. $\mathrm{So}_{\mathrm{SnCl}}^{4}$ is most covalent.
54. The strength of metallic bonds depends upon the number of mobile electron(s) per atom. Sodium has only one mobile electron per atom where as iron has 8 mobile electrons per atom.
55. $\mathrm{Cu}, \mathrm{Ag}, \mathrm{Zn}$ are solids at room temperature where as mercury is liquid.
56. As size of cations increase, their polarising power decrease and thus ionic character increase.
57. Sn^{4+} has highest polarising power amongst $\mathrm{Na}^{+}, \mathrm{Pb}^{2+}, \mathrm{Sn}^{4+}$ and Al^{3+} because of smaller size and higher charge. So SnCl_{4} is most covalent and thus has least melting point.
58. Metallic bond results from the electrical attractions among positively charged metal ions and mobile, delocalised electrons belonging to the crystal as a whole.
59. AgI is less soluble than AgF due to covalent nature. LiI is more soluble then LiF due to high size difference of ions more ionic nature, more melting point. Higher the charge density, larger will be the hydrated radii.
60. Polarisation of the I^{-}by the Cu^{2+} results in the transference of an electron towards Cu^{2+} makes it as oxidising agent and I^{-}as a reducing agent, reduces Cu^{2+} to Cu^{+}and itself oxidised to I_{2}.
61. (A) N_{2} contains one σ and two π bonds but C_{2} contains only two π bonds as four electrons are present in bonding π molecular orbitals.
(B) Cu^{2+} has higher hydration energy then Cu^{+}so Cu^{2+} is more stable than Cu^{+}. Moreover, Cu^{+}undergoes disproportionation. $\quad 2 \mathrm{Cu}^{+} \rightarrow 2 \mathrm{Cu}^{2+}+\mathrm{Cu}$. (a fact)
(C) Can be explained by electron sea model as it is due to the presence of mobile electrons.
62. Larger anion has higher polarisability.
63. Dipole moment $\propto \frac{1}{\text { bond angle }}$
64. Symmetrical molecules have zero dipole moment.

65.

73. $\mathrm{O} \stackrel{\leftrightarrow}{=} \mathrm{C} \stackrel{\mapsto}{=} \mathrm{O}$. The values of $\mathrm{C}=\mathrm{O}$ bond dipoles are same but acting in opposite direction; so cancel out. Thus dipole moment of CO_{2} is zero.
74. Number of electron pairs $=4$

Number of bond pairs $=2$
Number of lone pairs $=2$
So, according to VSEPR theory to have minimum repulsions it acquires bent shape as shown below.

It is unsymmetrical molecule thus it will have some dipole moment.
75.

76. Dipole moment of compound if it would have been completely ionic

$$
=\left(4.8 \times 10^{-10} \mathrm{esu}\right)\left(2.67 \times 10^{-8} \mathrm{~cm}\right)=12.8 \mathrm{D}
$$

so $\%$ ionic character $=\frac{4.0}{12.8} \times 100 \%=31.25 \%$
77. Dipole moment depends on the electronegativity of the elements as it is the product of charge on one of the ions and the distance between them. Dipole moment of $\mathrm{CH}_{3} \mathrm{Cl}$ is greater than $\mathrm{CH}_{3} \mathrm{~F}$ due to more charge separation. (a fact)
79. Graphite has layered structure. Layers are held by van der Waal's forces and distance between two layers is 340 pm . Each layer is composed of planar hexagonal rings of carbon atoms. $\mathrm{C}-\mathrm{C}$ bond length within the layer is 141.5 pm Each carbon atom in hexagonal ring undergoes sp^{2} hybridisation and make three sigma bonds with three neighbouring carbon atoms. Fourth electron forms a π bond. The electrons are delocalised over the whole sheet.
80. Nitrogen is less electronegative than oxygen so electron pair is easily available for bonding, thus P has stronger $\mathrm{H}-$ bonding than Q . As oxygen is more electronegative so H -bond strength of Q is greater than S . The same explanation is given for R and S as that of P and Q .
81.

CHEMISTRY

82. All molecules have London dispersion force because of number of polarizable electrons.

Non polar molecules have only London dispersion force because of polarisable electron. Benzene is non polar molecule.
Polar molecules have dipole-dipole attraction in addition to London dispersion force.
$\begin{array}{cc}\delta^{+} \delta^{-} & \delta^{+} \delta^{-} \\ \mathrm{H}-\mathrm{Cl} & \mathrm{H}-\mathrm{Cl} \text { and so on }\end{array}$
Molecules with, $\mathrm{O}-\mathrm{H}, \mathrm{N}-\mathrm{H}$, or $\mathrm{F}-\mathrm{H}$ bond have hydrogen bonding in addition to London dispersion force.
Molecule $\mathrm{IC} \ell$ is polar, so in addition to London dispersion force it has dipole-dipole attraction also.
84. London forces are extremely short range in action and the weakest of all attractive forces.

The order of strength of bonds/ forces is ionic bond $>$ covalent bond $>$ hydrogen bond $>$ London force.
86. (A) A fact
(B) In the solid state and in liquid HF , the $\mathrm{HF}_{2}{ }^{-}$ion is held together by hydrogen bonding. In aqueous solutions there is hydrogen bonding but each HF molecule forms hydrogen bonds with the much more prevalent $\mathrm{H}_{2} \mathrm{O}$ present, instead of with other HF molecules and $\mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{F}{ }^{-}$are much more likely to be formed.
(C) $\mathrm{H}_{3} \mathrm{BO}_{3}$ (solid) has inter molecular hydrogen bonding.

88. As molecular weight increases, magnitude of Van der Waal's force of attraction increases.

Therefore, boiling point increases. Though NH_{3} has strong H -bonding but boiling point of SbH_{3} is highest due to highest molecular weight. Boiling point $\mathrm{NH}_{3}=238.5 \mathrm{~K}^{2}$ and $\mathrm{SbH}_{3}=254.6 \mathrm{~K}$.
89. (A) intermolecular hydrogen bonded. (true)
(B) structure of anions are different $\mathrm{CO}_{3}{ }^{2-}-$ trigonal planar $\left(\mathrm{sp}^{2}\right)$

(false)
(C)

(D) True. $\quad \mathrm{D}_{2} \mathrm{O}=374.4 \mathrm{~K} ; \mathrm{H}_{2} \mathrm{O}=373.0 \mathrm{~K}$
90. (i) $\mathrm{H}_{2} \mathrm{O}$ has highest boiling point because of H -bonding.
(ii) Boiling point also depends on the magnitude of van der Waal's force of attraction, which in turns depends on molecular weight of the compounds. Thus the correct order is $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{Te}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{~S}$.
93.
(A)

(B)

(D)

94.

$\mathrm{SF}_{2} \mathrm{Cl}_{2}$

99. Fluorine is more electronegative but dipole moment is the product of charge and distance between combining atoms (covalently bonded) ; due to more charge separation in $\mathrm{CH}_{3} \mathrm{Cl}$, it has higher dipole moment.
100.

S2 : Hydration of ions due to force of attraction between ion and water molecule. Which is a dipole.
S3: Due to intermolecular H-bonding, boiling point increases.
S4 : A symmetrical molecule with identical bonds have zero dipole moment.

CHEMISTRY

102. S_{1} : Due to intermolecular H -bonding in HF it boils at higher temperature than HCl
S_{2} : Mol. wt. of $\mathrm{HBr}<$ Mol. wt. of HI
S_{3} : Bond order of N_{2} is more than $\mathrm{N}_{2}{ }^{+}$.
S_{4} : Molecular mass of F_{2} is less than that of Cl_{2}
103. Strength of H -bond depends on following factors.
(i) Electronegativity of element covalently bonded to hydrogen atom.
(ii) Size of electronegative element.
(iii) Ease of donation of lone pair of electrons by electronegative element.
104.

106. (A) As δ^{+}charge on central atom increases, the attraction between δ^{+}and δ^{-}increases and thus Xe-F bond length decreases. The correct order is $\mathrm{XeF}_{2}>\mathrm{XeF}_{4}>\mathrm{XeF}_{6}$
(B) PH_{5} can not undergo $\mathrm{sp}^{3} \mathrm{~d}$ hybridisation as there is much large difference in size of s , p and d orbitals. PH_{5} does not exist as no partial positive charge develops on P atom.
(C) Dipole moment of $\mathrm{CH}_{3} \mathrm{Cl}$ is greater than $\mathrm{CH}_{3} \mathrm{~F}$ due to greater charge sepration on carbon and chlorine atoms in $\mathrm{CH}_{3} \mathrm{Cl}$.
(D) it is a correct order.

The strength of hydrogen bond depends upon :
(i) size (iii) electronegativity and (iii) ease of donation of electron pair by electronegative element.

Higher the value of electronegativity and smaller the size of the covalently bonded atom to H atom stronger is the hydrogen bonding.
107. (A) in S_{8} hybridisation of each S -atom is sp^{3}, in P_{4} hybridisation of each P -atom is sp^{3}
(B)

(C) Inter molecular H-bonding (PO_{4}^{3-} groups are bonded by many H-bonds)
(D)

108.
(I)

As a result of H -bonding, number of sulphuric acid molecules are associated to form cluster. Hence it has high boiling point and viscosity.
(II) All $\mathrm{S}-\mathrm{O}$ bond lengths are equal due to resonance.
(III)

(IV)

110. S1 : Polarising power of a cation is inversely proportional to its size.
S2: $\mathrm{H}_{2}^{+}: \sigma 1 \mathrm{~s}^{1}$
B.O. $=\frac{1}{2}$
$\mathrm{He}_{2}^{+}: \sigma 1 \mathrm{~s}^{2} \sigma^{*} 1 \mathrm{~s}^{1}$
B.O. $=\frac{1}{2}$

But $\mathrm{He}_{2}{ }^{+}$has electron in antibonding molecular orbital so its is unstable.
S3: H-bond formation requires the availability of lone pair of electron.
S4 : In $\mathrm{Cl}_{2} \mathrm{O}$, the bond angle is more than $109^{\circ} 28^{\prime}$ due to steric repulsion.
112.

113. This is based on the decreasing electronegativity difference between $\mathrm{H}(2.1)$ and $\mathrm{Sb}(1.9), \mathrm{As}(2.0), \mathrm{P}(2.1)$ and N (3.0).
114. van der Waal's forces \propto molecular weight. So AgBr will have maximum van der Waals forces.
115. (C) Both compounds have intermolecular H-bonding amongst themselves and with water.
116.

117. Polarity depend on net dipole moment. If dipole moment $\mu=0$ it is nonpolar.

In	XeF_{4}	$\mu=0$	non polar;	SO_{3}	$\mu=0$	non polar
	XeOF_{4}	$\mu \neq 0$	polar ;	ICl_{4}^{-}	$\mu=0$	non polar

118. In $\mathrm{CH}_{4}, \mathrm{H}_{2} \mathrm{Se}$ and $\mathrm{H}_{2} \mathrm{~S}$ the central atoms are not more electronegative ; hence do not form hydrogen bonds with itself and other molecule. In $\mathrm{N}_{2} \mathrm{H}_{4}$ the nitrogen is more electronegative and thus is able to form hydrogen bond with itself and other molecules like water.

CHEMISTRY

122. In pure phosphoric acid the PO_{4}^{3-} groups are bonded together through many hydrogen bonds.
123. HF is least volatile (i.e. high boiling point) due to strong intermolecular hydrogen bonding.
124. Boiling point of SbH_{3} is greater than NH_{3}. The higher boiling point of SbH_{3} is attributed to higher van der Waal forces because of its higher molecular weight. (a fact)
125. (A) Like hydrated copper sulphate $\left(\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}\right)$ in which one water molecule is hydrogen bonded to coordinated water molecule, one water molecule is coordinated to lone pair of electrons on SnCl_{2} and the other is hydrogen bonded to coordinated water molecule.

Part \# II : Assertion \& Reason

3. Statement-1 : It is correct statement because all three p -orbitals are involved in sp^{3} hybridisation and thus no p orbital is left for side wise overlapping.

Statement-2 : XeO_{3} is sp^{3} hybridised and Xe form three double bonds through $\mathrm{p} \pi-\mathrm{d} \pi$ overlapping.

6

8. Statement-1:To have minimum repulsion between the $\mathrm{I}=\mathrm{O}$ and the lone pair of electrons (has greater repulsive effect), the lone pair is opposite to the $\mathrm{I}=\mathrm{O}$ bond.
Statement-2 : correct statement.
9. Statement-1 and Statement-2 both are correct statement and Statement-2 is the correct statement of Statement-1, e.g., NO_{2}^{+}and I_{3}^{-}have different hybridisation but on account of stability they have linear shape as given below.

10. $\quad \mathrm{S}_{1}: \mathrm{SO}_{2}, \mathrm{NO}_{3}{ }^{-}$and $\mathrm{CO}_{3}{ }^{2-}$ have same number of electrons (i.e. 32) but have different molecular geometry.

(bent)

(trigonal planar)

(trigonal planar)
\mathbf{S}_{2} : The d and f-orbitals do not shield the nuclear charge very effectively. Therefore, there is significant reduction in the size of the ions, just after d or f orbitals have been completely filled. This is called lanthanide contraction.
12. Both Statement-1 and Statement-2 are true but Statement-2 is not true explanation (directly not but indirectly true) of Statement-1.

Atomic size of carbon is smaller and thus it has effective overlapping with itself and with other atoms of small size and high electronegativity. Few examples of multiple bonding are $\mathrm{C}=\mathrm{C}, \mathrm{C} \equiv \mathrm{C}, \mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{S}$ and $\mathrm{C} \equiv \mathrm{N}$. Heavier elements do not form $\mathrm{p} \pi-\mathrm{p} \pi$ bonds because their atomic orbital are too large and diffuse to have effective overlapping.

Elemental nitrogen exists as a diatomic molecule because nitrogen can form $\mathrm{p} \pi-\mathrm{p} \pi$ multiple bonds which is not possible in case of phosphorus due to repulsion between non-bonded electrons of the inner core. There is no such repulsion in case of smaller nitrogen atoms as they have only $1 \mathrm{~s}^{2}$ electrons in their inner core.

due to $\ell_{P}-\ell_{P}$ repulsion

Both are correct and Statement-2 is the correct explanation of Statement-1. In $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$, aluminium is in +3 oxidation state. So,

Both statements are true and the Statement-2 is the true explanation of Statement-1.
Fullerenes: It contains twenty 'six -membered rings' and twelve 'five membered rings'. A six membered ring is fused with six or five membered rings but a five membered ring can only fuse with six membered rings. All the carbon atoms are equal and they undergo sp^{2} hybridisation. Each carbon atom forms three sigma bonds with other three carbon atoms. The remaining electron at each carbon atom is delocalised in molecular orbitals, which in turn give aromatic character to molecule. This ball shaped molecule has 60 vertices and each one is occupied by one carbon atom and it also contains both single and double bonds with $\mathrm{C}-\mathrm{C}$ distance of 143.5 pm and 138.3 pm respectively.

CHEMISTRY

Order of acidic character is $\mathrm{HCIO}>\mathrm{HBrO}>\mathrm{HIO}$ as the order of the stability of their conjugate base is $\mathrm{CIO}^{-}>\mathrm{BrO}^{-}>\mathrm{IO}^{-}$; because Cl being small size atom can form effective π-bond with oxygen.

Both are true statements and the Statement-2 in the correct explanation of Statement-1.
$\mathrm{C}_{2}:(\sigma 1 \mathrm{~s})^{2}\left(\sigma^{*} 1 \mathrm{~s}\right)^{2}(\sigma 2 \mathrm{~s})^{2}\left(\sigma^{*} 2 \mathrm{~s}\right)^{2}\left(\pi 2 \mathrm{p}_{\mathrm{x}}{ }^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}{ }^{2}\right)$ or $\mathrm{KK}(\sigma 2 \mathrm{~s})^{2}\left(\sigma^{*} 2 \mathrm{~s}\right)^{2}\left(\pi 2 \mathrm{p}^{2}{ }_{\mathrm{x}}=\pi 2 \mathrm{p}^{2}{ }_{\mathrm{y}}\right)$
The bond order of C_{2} is $1 / 2(8-4)=2$ and C_{2} should be diamagnetic. It is important to note that double bond in C_{2} consists of both pi bonds because of the presence of four electrons in two pi molecular orbitals. In most of the other molecules a double bond is made up of a sigma bond and a pi bond.
27. Both the statements are true and the Statement-2 is the correct answer for the Statement-1.

28. $\left(\mathrm{CH}_{3}\right)_{2} \ddot{\mathrm{O}}:+\mathrm{B}\left(\mathrm{CH}_{3}\right)_{3} \longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}: \longrightarrow \mathrm{B}\left(\mathrm{CH}_{3}\right)_{3}$

In $\mathrm{H}_{3} \mathrm{Si}-\mathrm{O}-\mathrm{H}_{3} \mathrm{Si}$, due to $\mathrm{p} \pi-\mathrm{d} \pi$ delocalisation, availability of lone pairs on O - atom is decreased and thus disilyl ether does not the react with $\mathrm{B}\left(\mathrm{CH}_{3}\right)_{3}$.
29. LiBr has more solubility being more ionic than LiI . Lattice energy as well as hydration energy of LiBr are more than for LiI due to small size of Br .
30. Due to poor shielding by d-electrons in Ga^{3+}, its $\mathrm{Z}_{\text {eff }}$ is more. So its polarising power is more and hence it forms compound with higher covalent character.

31 In the solid state, the $\mathrm{B}(\mathrm{OH})_{3}$ units are hydrogen bonded together in to two dimensional sheets with almost hexagonal symmetry. The layered are quite a large distance apart (3.18 \AA) and thus the crystal breaks quite easily into very fine particles.
32.

33. London dispersion force exists among the non-polar molecules like $\mathrm{F}_{2}, \mathrm{O}_{2}, \mathrm{I}_{2}, \mathrm{Cl}_{2}$ etc. in solid or liquid states. Even in atoms in molecules which have no permanent dipole, instantaneous dipoles will arise as a result of momentary inbalances in electron distribution.
London forces are extremely short range in action and the weakest of all attractive forces. The London forces increase rapidly with molecular weight, or more properly, with the molecular volume and the number of polarizable electrons.
35.

Bond dipoles of $\mathrm{N}-\mathrm{F}$ bonds are counter balanced to some extent by the dipole moment of lone pair of electron acting in opposite direction. This reduces both the dipole moment and its donor powers.
38. Within the $\mathrm{Ca}^{2+} / \mathrm{SO}_{4}^{2-}$ layers the ions are held together by strong electrovalent bonds. But these separated $\mathrm{Ca}^{2+} / \mathrm{SO}_{4}^{2-}$ layers are linked by relative weak H - bond. The weaker H - bonds link SO_{4}^{2-} ions in the intermediate region. Consequently , the gypsum can be readily cleaved and stretched along the layer of water molecules.
Anhydride has a completely ionic structure involving only Ca^{2+} and $\mathrm{SO}_{4}{ }^{2-}$ ions.
EXERCISE - 3

Part \# I : Matrix Match Type

2.

CHEMISTRY

5.

(A)

(B)

(C)

(D)

6. (A) $\mathrm{N}_{2}^{+}: \mathrm{BO}=2.5$ (4 electron in antibonding MO) 1 unpaired electron (Paramagnetic)
$\mathrm{N}_{2}^{-}: \mathrm{BO}=2.5$ (5 electron in antibonding MO) 1 unpaired electron (Paramagnetic)
(B) $\mathrm{NO}: \mathrm{BO}=2.5$ (5 electron in antibonding MO) 1 unpaired electron (Paramagnetic).Last electron in antibonding MO.So, easily removed.
$\mathrm{N}_{2}: \mathrm{BO}=3$ (4 electron in antibonding MO) 0 unpaired electron (diamagnetic).Last electron in bonding MO.So, not easily removed.
(C) $\mathrm{NO}^{+}: \mathrm{BO}=3$ (0 unpaired electron) diamagnetic $[\mathrm{BO} \uparrow \Rightarrow \mathrm{BL} \downarrow]$.
(D) $\mathrm{He}_{2}^{+}: \mathrm{BO}=0.5$ (1 unpaired electron) paramagnetic [1 electron in antibonding MO].
$\mathrm{H}_{2}^{+}: \mathrm{BO}=0.5$ (1 unpaired electron) paramagnetic [0 electron in antibonding MO].
9.
(A) $\mathrm{O}_{\mathrm{O}}^{\mathrm{S}} \overbrace{\mathrm{O}}^{120^{\circ}} \rightarrow$ non-polar, $\mathrm{p} \pi-\mathrm{d} \pi$ bonds present.

All S-O bonds are identical.
No lone pair.
(B)

No lone pair.
(C)

$\rightarrow \mathrm{p} \pi-\mathrm{d} \pi$ bonds present.
\rightarrow Due to resonance identical S-O bond length
(D)

$\rightarrow \mathrm{p} \pi-\mathrm{d} \pi$ bonds present.
\rightarrow lone pair present.
10.
(A)

$\mathrm{sp}^{3} \mathrm{~d} ; \angle \mathrm{F}-\mathrm{I}-\mathrm{F}=180^{0} ; \mu=0$
(B)

(C)

(D)

sp 3 d; polar; $\angle \mathrm{F}-\mathrm{Cl}-\mathrm{F} \neq 180^{\circ}$
$\mathrm{sp}^{3} \mathrm{~d}$, non-polar, $\angle \mathrm{F}-\mathrm{Xe}-\mathrm{F}=180^{\circ}$
$\mathrm{sp}^{3} \mathrm{~d}$, polar; $\angle \mathrm{F}-\mathrm{S}-\mathrm{F} \neq 180^{\circ}$; one lone pair.
11. (A) $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O} \mathrm{SO}_{4}{ }^{2-}$ is resonance stablized.
(B) $\mathrm{Ca}^{2+} / \mathrm{SO}_{4}^{2-}$ are held together by electrostatic force of attraction i.e., ionic bond but alternate layers by $\mathrm{H}-$ bonds with water molecules.

$$
\mathrm{CaSO}_{4} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}
$$

(C)

(D)

12. (A) Br_{2} is non-polar in nature. All molecules experience London dispersion forces which results from the motion of electrons.
(B) HF has hydrogen bonding in liquid as well as in solid state. HF molecules also experience dispersion forces.
(C) Ion-dipole forces are found in the solutions of ionic compounds in polar solvent where solvated species such as $\mathrm{Na}\left(\mathrm{OH}_{2}\right)_{x}^{+}$and $\mathrm{F}\left(\mathrm{H}_{2} \mathrm{O}\right)_{y}^{-}$exist. Hydrogen bond exist between water molecules. In addition they also experience dispersion London forces.
(D) $\mathrm{CH}_{3} \mathrm{NH}_{2}$ is a polar molecule that can form hydrogen bonds. In addition, it has dispersion forces.
(E) Induced dipole-dipole interaction exists between non-polar molecules and polar molecules such as clathrate compound of Xe gas with water, when water is frozen under a high pressure of the gas. They have formulae approximating to $6 \mathrm{H}_{2} \mathrm{O}: 1$ gas atom (i.e. $\mathrm{Xe} \cdot 6 \mathrm{H}_{2} \mathrm{O}$).
In addition, $\mathrm{Xe} .6 \mathrm{H}_{2} \mathrm{O}$ has H -bonding and dispersion forces.

Part \# II : Comprehension

Comprehension \# 1 :
1.

Cl -atom is in $\mathrm{sp}^{3} \mathrm{~d}$ hybridisation state. Hence geometry is trigonal bi-pyramidal which is similar to I_{3}^{-}
2. Number of electrons pairs $=6$; number of bond pairs $=5$; number of lone pairs $=1$. According to VSEPR theory geometry of the molecule is square bipyramidal. As all positions are equivalent the lone pair of electrons can occupy any position in octahedral geometry as given below.

3. $\underset{\cdots}{\mathrm{F}-\stackrel{\mathrm{C}}{\mathrm{Br}}-\mathrm{F}} \longrightarrow \mathrm{F} \longrightarrow \mathrm{Sp}^{3} \mathrm{~d}^{2}$
(A)

(B)

(C)

4.

Valence shell electron configuration of $\mathrm{Cl}, 3 \mathrm{~s}^{2} 3 \mathrm{p}^{5}$

To obtain effective $p \pi-d \pi$ overlap the size of the d orbital must be similar to size of the p orbital. Hence in chlorine, $\mathrm{p} \pi-\mathrm{d} \pi$ bonding is so strong that no polymerization of oxoanions occurs.
5. (A) With hydrogen sulphur does not undergo $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridisation because of larger difference in energies between s, p and d-orbitals. Sulphur show +6 oxidation state with highly electronegative elements like O and F .
(B) As fluorine is smaller and more electronegative than oxygen.
(C) I being large in size, cannot get accomodated around S .

Comprehension \# 2 :
1.

(A) \begin{tabular}{|l|l|l|l|}

\hline \& Bond Order \& | Internuclear |
| :--- |
| Distance (pm) | \& | Number of unpaired(s) |
| :--- |
| Electrons /Magnetic property |

\hline O_{2}^{+}(dioxygenyl) \& 2.5 \& 112.3 \& 1 (paramagnetic)

O_{2} (dioxygen) \& 2.0 \& 120.07 \& 2 (paramagnetic)

O_{2}^{-}(superoxide) \& 1.5 \& 128 \& 1(paramagnetic)

O_{2}^{2-} (peroxide) \& 1.0 \& 149 \& 0 (diamagnetic)

\hline
\end{tabular}

Bond order \propto stability (i.e., bond strength)
(B) Helium molecule $\left(\mathrm{He}_{2}\right): \mathrm{He}_{2}:(\sigma 1 \mathrm{~s})^{2}\left(\sigma^{*} 1 \mathrm{~s}\right)^{2}$

Bond order of He_{2} is $1 / 2(2-2)=0$
The molecular orbital description of He_{2} predicts two electrons in a bonding orbital and two electrons in an antibonding orbital, with a bond order of zero - in other words, no bond. The noble gas He has not significant tendency to form diatomic molecules and, like the other noble gases, exists in the form of free atoms.
(C) Carbon molecule $\left(\mathrm{C}_{2}\right):(\sigma 1 \mathrm{~s})^{2}\left(\sigma^{*} 1 \mathrm{~s}\right)^{2}(\sigma 2 \mathrm{~s})^{2}\left(\sigma^{*} 2 \mathrm{~s}\right)^{2}\left(\pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}\right)$ or $\mathrm{KK}(\sigma 2 \mathrm{~s})^{2}\left(\sigma^{*} 2 \mathrm{~s}\right)^{2}\left(\pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}\right)$

Lithium molecule $\left(\mathrm{Li}_{2}\right):(\sigma 1 \mathrm{~s})^{2}\left(\sigma^{*} 1 \mathrm{~s}\right)^{2}(\sigma 2 \mathrm{~s})^{2}$
Peroxide $\left(\mathrm{O}_{2}{ }^{2-}\right):(\sigma 1 \mathrm{~s})^{2}\left(\sigma^{*} 1 \mathrm{~s}\right)^{2}(\sigma 2 \mathrm{~s})^{2}\left(\sigma^{*} 2 \mathrm{~s}\right)^{2}\left(\sigma 2 \mathrm{p}_{\mathrm{z}}\right)^{2}\left(\pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}\right)\left(\pi^{*} 2 \mathrm{p}_{\mathrm{x}}{ }^{2}=\pi^{*} 2 \mathrm{p}_{\mathrm{y}}^{2}\right)$
As all electrons are paired so $\mathrm{C}_{2}, \mathrm{Li}_{2}$ and $\mathrm{O}_{2}{ }^{2-}$ are diamagnetic.
(D) Fluorine molecule $\left(\mathrm{F}_{2}\right):(\sigma 1 \mathrm{~s})^{2}\left(\sigma^{*} 1 \mathrm{~s}\right)^{2}(\sigma 2 \mathrm{~s})^{2}\left(\sigma^{*} 2 \mathrm{~s}\right)^{2}\left(\sigma 2 \mathrm{p}_{\mathrm{z}}\right)^{2}\left(\pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}{ }_{\mathrm{y}}\right)\left(\pi^{*} 2 \mathrm{p}_{\mathrm{x}}{ }^{2}=\pi^{*} 2 \mathrm{p}^{2}{ }_{\mathrm{y}}\right)$
3. (B) Oxygen molecule $\left(\mathrm{O}_{2}\right): \mathrm{O}_{2}:(\sigma 1 \mathrm{~s})^{2}\left(\sigma^{*} 1 \mathrm{~s}\right)^{2}(\sigma 2 \mathrm{~s})^{2}\left(\sigma^{*} 2 \mathrm{~s}\right)^{2}\left(\sigma 2 \mathrm{p}_{\mathrm{z}}\right)^{2}\left(\pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}\right)\left(\pi^{*} 2 \mathrm{p}_{\mathrm{x}}{ }^{1}=\pi^{*} 2 \mathrm{p}_{\mathrm{y}}{ }^{1}\right)$

Bond order $=1 / 2(10-6)=2.0$,
$\mathrm{O}_{2}^{+}:(\sigma 1 \mathrm{~s})^{2}\left(\sigma^{*} 1 \mathrm{~s}\right)^{2}(\sigma 2 \mathrm{~s})^{2}\left(\sigma^{*} 2 \mathrm{~s}\right)^{2}\left(\sigma 2 \mathrm{p}_{\mathrm{z}}\right)^{2}\left(\pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}\right)\left(\pi^{*} 2 \mathrm{p}_{\mathrm{x}}{ }^{1}=\pi^{*} 2 \mathrm{p}_{\mathrm{y}}^{0}\right)$
Bond order $=1 / 2(10-5)=2.5$.
Nitrogen molecule $\left(\mathbf{N}_{2}\right):(\sigma 1 \mathrm{~s})^{2}\left(\sigma^{*} 1 \mathrm{~s}\right)^{2}(\sigma 2 \mathrm{~s})^{2}\left(\sigma^{*} 2 \mathrm{~s}\right)^{2}\left(\pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}\right)\left(\sigma 2 \mathrm{p}_{\mathrm{z}}\right)^{2}$
The bond order of N_{2} is $1 / 2(10-4)=3$.
$\mathrm{N}^{2+}:(\sigma 1 \mathrm{~s})^{2}\left(\sigma^{*} 1 \mathrm{~s}\right)^{2}(\sigma 2 \mathrm{~s})^{2}\left(\sigma^{*} 2 \mathrm{~s}\right)^{2}\left(\pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}\right)\left(\sigma 2 \mathrm{p}_{\mathrm{z}}\right)^{1}$
Bond order $=1 / 2(9-4)=2.5$.

Comprehension \# 3 :

1. (D) For more covalent character, small cation and large anion are favourable factors. In $\mathrm{MgS}, \mathrm{Mg}^{2+}$ will have higher polarising power and S^{2-} will have higher polarisability. Hence there will be higher polarisation of anion resulting in higher covalent character.
2. Due to smaller size of Be^{2+} and largest size of I^{-}amongst all anions i.e. $\mathrm{F}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}$and I^{-}, there will be greater polarisation of anion. Thus BeI_{2} will be most covalent i.e. least ionic.
3. As the size of the cations increases in the order

$$
\mathrm{Si}^{4+}<\mathrm{Sn}^{4+}<\mathrm{Sn}^{2+}
$$

and for size of anions

$$
\mathrm{F}^{-}<\mathrm{Cl}^{-}
$$

so the order of increasing ionic character is $\mathrm{SiCl}_{4}<\mathrm{SnCl}_{4}<\mathrm{SnF}_{4}<\mathrm{SnCl}_{2}<\mathrm{SnF}_{2}$.

CHEMISTRY

4. As polarizability of anion increases covalent character increases.

Comprehension \#4:
2. Vector addition of dipole moment cancels the dipole moment due to three $\mathrm{C}-\mathrm{Cl}$ bonds. Only one remains.
3.
(A)

(B)

(C)

(D)

Comprehension \# 5 :

1.

Comprehension \# 6 :
1.

2. o-nitrophenol has intramolecular H -bonding so it will be vaporised first.
3. $\mathrm{D}_{2} \mathrm{O}$ has different physical properties than $\mathrm{H}_{2} \mathrm{O}$ max. density of $\mathrm{D}_{2} \mathrm{O}$ is at approximately $10^{\circ} \mathrm{C}$.

EXERCISE - 4

Subjective Type

1.

(a) Ionic
(b) covalent.
2. $\angle \mathrm{O}-\mathrm{S}-\mathrm{O}>\angle \mathrm{O}-\mathrm{O}-\mathrm{O}$.
3.

4. $\mathrm{sp}^{3}-\mathrm{s}$

5. \quad| 6 | 4 | 1 | 5 |
| :--- | :--- | :--- | :--- |
6. Two terminal carbons can be assumed to be at A and B , while the central carbon at O . Then, $\mathrm{AB}=2 \mathrm{AP}$

$$
\begin{array}{ll}
& \text { But } \frac{\mathrm{AP}}{\mathrm{AO}}=\sin \left(\frac{\theta}{2}\right) \\
& \left.=\sin \left(\frac{109^{\circ} 28}{2}\right) \quad \therefore \quad \quad \text { (in tetrahedral structure } \theta=109^{\circ} 28\right) \\
& =\sin \left(54^{\circ} 44^{\prime}\right) \\
\therefore \quad & \mathrm{AP}=\mathrm{AO} \sin \left(54^{\circ} 44^{\prime}\right)=1.54 \times 0.82=1.26 \AA \\
\therefore \quad & \mathrm{AB}=2 \mathrm{AP}=2.52 \AA
\end{array}
$$

Ans. $\quad 2.52 \AA$
8.

$\mathrm{d}_{1}=2 \times 134 \times \sin 60^{\circ} \quad \mathrm{pm}=227.8 \mathrm{pm}=228 \mathrm{pm}$
$\mathrm{d}_{2}=134 \times 3+2 \times 134 \cos 60^{\circ} \mathrm{pm}=536 \mathrm{pm}$
9.
(d)

(a)

(e)

(c)

No bond
(b)

No bond
(f)

10. OF_{4} and OF_{6} are not possible because oxygen does not have d-orbital for $\mathrm{sp}^{3} \mathrm{~d}$ and $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridisation.
11. Because ionic bonds are non directional in nature

CHEMISTRY

12. $\quad: \ddot{O}=C=\ddot{N}^{\Theta} \longleftrightarrow \stackrel{\Theta \cdot \bullet}{: O}-C \equiv N:$

Cyanate ion has canonical structures in which negative charge resides on electronegative O or N .

The contributing canonical structures in fulminates are less stable as both contain \oplus as well as Θ charge.
13. In $\mathrm{BF}_{3,} \mathrm{~B}$ is electron defficient whereas in graphite, ' C ' has one free electron, which can conduct electricity.
14.

$\left(\mathrm{BeH}_{2}\right)_{\mathrm{n}}$ contains $2 \mathrm{e}-3 \mathrm{c}$ bonds whereas

$\left(\mathrm{BeCl}_{2}\right)_{\mathrm{n}}$ contain the usual $2 \mathrm{e}-2 \mathrm{c}$ bonds.
15.
(a) 6
(b) 6
16.

634
17.

Species	M.O.Configuration	Bond	Magnetic Properties
NO	$\begin{array}{r} \sigma 1 \mathrm{~s}^{\prime} \sigma^{*} 1 \mathrm{~s}^{*} \sigma 2 \mathrm{~s}^{*} \sigma^{*} 2 \mathrm{~s}^{2} \\ \sigma 2 p_{x}^{2}\left[\begin{array}{l} \pi 2 p_{y}^{2}{ }^{2} \\ \pi 2 p_{z}^{2} \end{array}\right]\left[\begin{array}{l} \pi^{*} 2 p_{y}^{1} \\ \pi^{*} 2 p_{z}^{0} \end{array}\right] \end{array}$	$\frac{1}{2}[10-5]=2.5$	Paramagnetic
NO^{+}	$\begin{gathered} \sigma 1 \mathrm{~s} \sigma^{*} 1 \mathrm{~s}^{\mathrm{s}} \sigma 2 \mathrm{~s}^{*} \sigma^{*} 2 \mathrm{~s}^{2} \\ \sigma 2 p_{x}^{2}\left[\begin{array}{l} \pi 2 p_{y}^{2}{ }^{2} \\ \pi 2 \mathrm{p}_{z}^{2} \end{array}\right]\left[\begin{array}{l} \pi^{*} 2 p_{y}^{0} \\ \pi^{*} 2 \mathrm{p}_{\mathrm{z}}^{0} \end{array}\right] \end{gathered}$	$\frac{1}{2}[10-4]=3$	Diamagnetic
NO^{2+}	$\begin{array}{r} \sigma 1 \mathrm{~s}^{\prime} \sigma^{*} 1 \mathrm{~s}^{\prime} \sigma 2 \mathrm{~s}^{*} \sigma^{*} 2 \mathrm{~s}^{*} \\ \sigma 2 p_{x}{ }^{2}\left[\begin{array}{l} \pi 2 p_{\mathrm{y}}{ }^{2} \\ \pi 2 p_{z}{ }^{1} \end{array}\right]\left[\begin{array}{l} \pi^{*} 2 p_{y}{ }^{0} \\ \pi^{*} 2 p_{z}^{0} \end{array}\right] \end{array}$	$\frac{1}{2}[9-4]=2.5$	Paramagnetic
NO^{-}	$\begin{gathered} \sigma 1 s^{s} \sigma^{*} 1 s^{*} \sigma 2 s^{*} \sigma^{*} 2 s^{2} \\ \sigma 2 p_{x}^{2}\left[\begin{array}{l} \pi 2 p_{y}^{2}{ }_{2}^{2} \\ \pi 2 p_{z}^{2} \end{array}\right]\left[\begin{array}{l} \pi^{*} 2 p_{y}^{1} \\ \pi^{*} 2 p_{z}^{1} \end{array}\right] \end{gathered}$	$\frac{1}{2}[10-6]=2$	Paramagnetic

18
(c)

3 P-P bond
(d)

$3 \mathrm{~S}-\mathrm{O}-\mathrm{S}$ bond
(e)

a	b	c	d	e
6	3	3	4	3

$\left.\mathrm{O}_{2}\left[\mathrm{AsF}_{6}\right] \longrightarrow \mathrm{O}_{2}^{+}+\stackrel{\mathrm{V}}{\left[\mathrm{AsF}^{2}\right.}\right]^{-}$
$\mathrm{O}_{2}^{2-}+$ peroxide ion B. $\mathrm{O}=\frac{1}{2}(10-8)=1$
$\mathrm{H}^{\mathrm{O}-\mathrm{O}} \quad \mathrm{O}-\mathrm{O}$ bond is non polar so 2 polar bond.
carbon suboxide is $\mathrm{C}_{3} \mathrm{O}_{2}$
$\mathrm{O}=\mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{O}$
$\mathrm{Me}_{3} \mathrm{Si} \xlongequal{-\mathrm{SiMe}_{3}}$ Number of l.p is present in $\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}$ is zero.

CHEMISTRY

21

The $\mathrm{P}-\mathrm{O}$ bond lengths shows that the bridging bonds on the edges are $1.60 \AA$ but the $\mathrm{P}=\mathrm{O}$ bonds on the corners are $1.43 \AA$ and this $\mathrm{P}=\mathrm{O}$ is formed by $\mathrm{p} \pi-\mathrm{d} \pi$ back bonding. A full p -orbital on the oxygen atom overlaps sideway with an empty d-orbital on the phosphorus atom. The bond angle POP is 127° and there is no $\mathrm{P}-\mathrm{P}$ bonds.
(i) $\mathrm{P}=\mathrm{O}$ have bond length of $1.43 \AA$ (8 covalent bonds $)$
(iii) $\mathrm{P}-\mathrm{O}$ have bond length of $1.60 \AA$ (12 covalent bonds)
(iii) Number of $\mathrm{P}-\mathrm{O}-\mathrm{P}$ linkage $=6$.
(iv) Number of lone pair on each phosphorus atom is zero.

4	12	6	0

(i) (ii) (iii) (iv)
22. 2 n
23. The lone pair of electrons on N atom in trisilyl amine undergoes $\mathrm{p} \pi-\mathrm{d} \pi$ delocalisation. Thus this lone pair of electron is not easily available for the donation. On the other hand, in trimethyl amine it is easily available for donation as carbon does not have d -orbital for $\mathrm{p} \pi-\mathrm{d} \pi$ delocalisation.
24. In O_{2} and N_{2} energy gap between HOMO and LUMO is large so electronic excitation is not possible with visible light. But for halogens, the electronic excitation can be done with visible light because energy difference between HOMO and LUMO is small.
25.

Bonding (3 nodal planes)

Anti bonding (4 nodal planes)
26.
 sheet like planar structure.
27. $\mathrm{A} \ell \mathrm{P}, \mathrm{CaS}, \mathrm{KI}, \mathrm{MgO}$
28. AlCl_{3} shows significant covalent character due to high polarising power of Al^{3+}. (Fajan's rule) while NaCl is predominantly ionic. Hence NaCl has higher M.P. and B.P. against AlCl_{3}.
29. Alkali metals have one loosly bound electron which can easily be excited by heat. During de- excitation the electron imparts colour to the flame.
30.
(i) $\mathrm{Mg}^{2+}<\mathrm{Fe}^{2+}<\mathrm{Ni}^{2+}<\mathrm{Zn}^{2+}$
(ii) $\mathrm{Al}^{3+}<\mathrm{Fe}^{3+}<\mathrm{Ga}^{3+}$
31. (i) $\mathrm{XeF}_{2}>\mathrm{XeF}_{4}>\mathrm{XeF}_{6}$
(ii) $\mathrm{TiCl}_{2}>\mathrm{TiCl}_{3}>\mathrm{TiCl}_{4}$
(iii) $\mathrm{NaCl}>\mathrm{MgCl}_{2}>\mathrm{AlCl}_{3}$
32. Al^{3+}, As per Fajan's rule, higher the charge on cation, higher will be its polarising power.
33. $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$
sp Hybridisation.
Due to sp hybridisation of C atom, the electronegativity of C is more and hence can form H-bond with HF.
34. The structure of chloral hydrate is a follows

Its stability is due to intermolecular H -bonding.
35. Thio-ethers have higher boiling points due to their higher molecular weights than that of ethers.
36. $\Delta \mathrm{EN}=1.4$
$\%$ ionic character $=29.26$

$$
\mu_{\text {obser }}=1.4 \mathrm{D} \quad \Rightarrow \quad \mu_{\mathrm{Th}}=4.8 \mathrm{D} \quad \Rightarrow \quad \mathrm{~d}=1 \AA
$$

37. Percentage of $\mathrm{IC}=\frac{6 \times 10^{-18}}{4.8 \times 10^{-10} \times 2.5 \times 10^{-8}} \times 100=50 \%$
38. Dipole moment of compound would have been completely ionic

$$
=\left(4.8 \times 10^{-10} \mathrm{esu}\right)\left(2.25 \times 10^{-8} \mathrm{~cm}\right)=4.8 \times 2.25 \mathrm{D}
$$

so $\%$ ionic character $=\frac{9}{4.8 \times 2.25} \times 100 \%=83.33 \%$

CHEMISTRY

$\mu_{\mathrm{R}}=\sqrt{2 \mu_{\mathrm{S}-\mathrm{H}}^{2}+2 \mu_{\mathrm{S}-\mathrm{H}}^{2} \times \cos 97^{\circ}}$
$\mu_{\mathrm{R}}=\sqrt{2} \times \mu_{\mathrm{S}-\mathrm{H}} \times \sqrt{1-0.12}$
$\mu_{\mathrm{R}}=\sqrt{2} \times \mu_{\mathrm{S}-\mathrm{H}} \times \sqrt{0.88}$
$\mu_{S-H}=\frac{1.5}{\sqrt{2} \times 0.94} D$
$\left(\mu_{\mathrm{S}-\mathrm{H}}\right)_{\mathrm{Cal}}=\frac{0.15 \times 10^{-9} \times 1.6 \times 10^{-19}}{\frac{10}{3} \times 10^{-30}}$
$\left(\mu_{\mathrm{S}-\mathrm{H}}\right)_{\mathrm{Cal}}=3 \times 0.15 \times 1.6 \times 10 \mathrm{D}$
So $\%$ Ionic character $=\frac{1.5}{\sqrt{2} \times 0.94} \times\left[\frac{1}{0.15 \times 16.3}\right] \times 100=16 \%$
$\mathrm{CO}_{2} \quad: \stackrel{\mathrm{O}}{\stackrel{\leftarrow}{=} \mathrm{C}}=\stackrel{\leftrightarrow}{\mathrm{O}:} \quad$ and $\quad \mathrm{BF}_{3}$
$\mathrm{C}-\mathrm{F}$ bond is most polar due to maximum difference in electronegativity.
(P)

No of $\mathrm{p} \pi-\mathrm{d} \pi$ bonds $=6$.
(Q) NOHSO_{4} exists as NO^{+}and $\mathrm{HSO}_{4}^{-} ; \mathrm{NO}^{+}$is derivative of oxygen and isoelectronic with $\mathrm{O}_{2}{ }^{2+}$. Bond order is $1 / 2$ $(10-4)=3$.
(R)

No of vacant sp^{3} hybrid orbitals participating in the formation of banana bonds are 2 .
(S)

44. Theoretical value of dipole moment of a 100% ionic character $=e \times d$

$$
=\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(1.41 \times 10^{-10} \mathrm{~m}\right)=2.26 \times 10^{-29} \mathrm{Cm}
$$

Observed value of dipole moment $=2.60 \times 10^{-30} \mathrm{Cm}$
Percent ionic character $=\frac{\text { observed value }}{\text { theoretical value }} \times 100=\frac{2.60 \times 10^{-30}}{2.26 \times 10^{-29}} \times 100=\mathbf{1 1 . 5 \%}$ Ans.
45. For a diatomic molecule dipole moment $\mu=\mathrm{e} \times \mathrm{d}$
$\therefore \quad$ Electronic charge $=\frac{\mu}{\mathrm{d}}=\frac{1.2 \times 10^{-18} \mathrm{esucm}}{1.0 \times 10^{-8} \mathrm{~cm}}$
Actual value of electronic charge $=4.8 \times 10^{-10} \mathrm{esu}$
$\therefore \quad$ Fraction of the electronic charge $=\frac{1.2 \times 10^{-10}}{4.8 \times 10^{-10}}=0.25$
46. (i) Bond order of $\mathrm{N}_{2}=1 / 2(10-4)=3$

Bond order of $\mathrm{O}_{2}=1 / 2(10-6)=2$
Bond order of $\mathrm{F}_{2}=1 / 2(10-8)=1$
Bond order of $\mathrm{O}_{2}{ }^{+}=1 / 2(10-5)=2.5$
Bond order is directly proportional to the bond strength and so, the increasing order of their bond dissociation energies is: $\mathrm{F}_{2}<\mathrm{O}_{2}<\mathrm{O}_{2}^{+}<\mathrm{N}_{2}$.
(ii) The strength of H - bond mainly depends on the electronegativity of the atom attached to the H atom and it increases with increasing electronegativity of the atom attached to polar H atom. So the increasing order of strength of hydrogen bonding ($\mathrm{X}-\mathrm{H}---\mathrm{X}$) is : $\mathrm{S}<\mathrm{CI}<\mathrm{N}<\mathrm{O}<\mathrm{F}$
(iii)

So, the increasing order of bond angles is $\mathrm{XeF}_{4}<\mathrm{NH}_{3}<\mathrm{BF}_{3}>\mathrm{N}_{3}^{-}$
47.

I

II

III
$\mu_{\mathrm{I}}=3 \mu_{\mathrm{C}-\mathrm{Cl}} \times \cos 70.5+\mu_{\mathrm{CH}_{3}}=1.5+0.4=1.9 \mathrm{D}$
$\mu_{\mathrm{II}}=3 \mu_{\mathrm{C}-\mathrm{Cl}} \times \cos 70.5-\mu_{\mathrm{C}-\mathrm{H}}=1.5-0.4=1.1 \mathrm{D}$
$\mu_{\mathrm{III}}=3 \mu_{\mathrm{C}-\mathrm{H}} \times \cos 70.5+\mu_{\mathrm{C}-\mathrm{CI}}=1.9 \mathrm{D}$
(ii)

CHEMISTRY

EXERCISE-5

Part \# I : AIEDE/JEE-MAIN

1. The correct order of bond angle (smallest first) is

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{~S}<\mathrm{NH}_{3}<\mathrm{SiH}_{4}<\mathrm{BF}_{3} \\
& 92.6^{\circ}<107^{\circ}<109^{\circ} 28^{\prime}<120^{\circ}
\end{aligned}
$$

4.

square planar
(B)

see-saw shaped
(C)

(D)

square planar
9. According to VSEPR theory

$\mathrm{lp}=1$
sp 3 d-hybridisation
see-saw shape

$\mathrm{lp}=0$
sp^{3}-hybridisation
tetrahedral shape

$\mathrm{lp}=2$
$\mathrm{sp}^{3} \mathrm{~d}^{2}$-hybridisation
square planar shape
13. The elements of group 14 show an oxidation state of +4 and +2 . The compounds showing an oxidation state of +4 forms covalent compound and have tetrahedral structures. e.g. $\mathrm{SnCl}_{4}, \mathrm{PbCl}_{4}, \mathrm{SiCl}_{4}$, etc. whereas those which show +2 oxidation state are ionic in nature and behave as reducing agent. e.g. $\mathrm{SnCI}_{2}, \mathrm{PbCI}_{2}$ etc. Further as we move down the group the tendency of the element to form covalent compound decreases but the tendency to form ionic compound increases.
17. Because of highest electronegativity of F , hydrogen bonding in $\mathrm{F}-\mathrm{H}-\mathrm{-}-\mathrm{F}$ is strongest.
20. $\quad \mathrm{O}_{2}{ }^{2-}(8+8+2=18): \sigma 1 s^{2} \sigma^{*} 1 s^{2} \sigma 2 s^{2} \sigma^{*} 2 s^{2} \sigma 2 p_{z}{ }^{2} \pi 2 p_{x}{ }^{2} \pi 2 p_{\mathrm{y}}{ }^{2} \pi^{*} 2 p_{\mathrm{x}}{ }^{2} \pi^{*} 2 p_{\mathrm{y}}{ }^{2}$; all electrons are paired. So diamagnetic.
22. Structure of IF_{7} is pentagonal bipyramidal
24. XeF_{2} has maximum lone pairs out of the given options.

Number of lone pairs $=3$
29. PF_{5} trigonal bipyramidal
BrF_{5} square pyramidal (distorted)
30. NO is paramagnetic in gaseous state.
33. Xe has highest boiling point because boiling point increases with increase in molecular mass.
39. $\mathrm{NO} \Rightarrow$ One unpaired electron is present in π^{*} molecular orbital.
$\mathrm{CO} \Rightarrow$ No unpaired electron is present
$\mathrm{B}_{2} \Rightarrow$ Two unpaired electrons are present in π bonding molecular orbitals.
$\mathrm{O}_{2} \Rightarrow$ Two unpaired electrons are present in π^{*} molecular orbitals.
40.

ions	O^{2-}	F^{-}	Na^{+}	Mg^{2+}
Atomic number $=$	8	9	11	12
No. of $\mathrm{e}^{-}=$	10	10	10	10

therefore $\mathrm{O}^{2-}, \mathrm{F}^{-}, \mathrm{Na}^{+}, \mathrm{Mg}^{2+}$ are isoelectronic
41.

Total number of lone pair in I_{3}^{-}is 9 .
42. The electonic configuration of $\mathrm{H}_{2}{ }^{2 \Theta}$ is $\Rightarrow\left(\sigma 1 \mathrm{~s}^{2}\right),\left(\sigma^{*} 1 \mathrm{~s}\right)^{2}$

Bond order of $\mathrm{H}_{2}^{2 \Theta}=\frac{\mathrm{N}_{\mathrm{b}}-\mathrm{N}_{\mathrm{a}}}{2}=\frac{2-2}{2}=0$.

Hence $\mathrm{H}_{2}{ }^{2 \Theta}$ does not exist, due to zero bond order.

Part \# II : IIT-JEE ADVANCED

1. Molecular orbital electronic configuration is $\sigma_{1 s^{2}} \sigma^{*}{ }_{1 s^{2}} \sigma_{2 s^{2}} \sigma^{*}{ }_{2 s^{2}} \sigma_{2 p_{z}{ }^{2}} \pi_{2 p_{x}}{ }^{2} \pi_{2 p_{y}}{ }^{2} \pi^{*}{ }_{2 p_{x}{ }^{1}} \pi^{*}{ }_{2 p_{y}}{ }^{0}$ As it contains one unpaired electron it is paramagnetic and bond order $=(10-5) / 2=2.5\left(\mathrm{O}_{2}=2.0\right)$.
2. Structure of $\mathrm{XeO}_{2} \mathrm{~F}_{2}$ molecule is see saw.

3. (B, D)
(A) $\mathrm{H}_{3} \mathrm{BO}_{3}$ is a weak monobasic Lewis acid.

$$
\begin{equation*}
\mathrm{H}_{3} \mathrm{BO}_{3}+\mathrm{H}-\mathrm{OH} \rightleftharpoons \mathrm{~B}(\mathrm{OH})_{4}^{-}+\mathrm{H}^{+} \tag{i}
\end{equation*}
$$

(B) Equilibrium (i) is shifted in forward direction by the addition of syn-diols like ethylene glycol which forms a stable complex with $\mathrm{B}(\mathrm{OH})_{4}^{-}$.

(C) It has a planar sheet like structure due to hydrogen bonding.
(D) $\mathrm{H}_{3} \mathrm{BO}_{3}$ is a weak electrolyte in water.
34. 6

lone pair in C.A. is 1

lone pair of electron $=0$
lone pair of electron $=3$
Total sum is $0+1+2+3=6$
35. 5 or 6

Diamagnetic species are
$\mathrm{C}_{2}, \mathrm{H}_{2}, \mathrm{Li}_{2}, \mathrm{~N}_{2}, \mathrm{~F}_{2}, \mathrm{Be}_{2} \longrightarrow$ (does not exist)

MOCK TEST

1. (B)

As anionis same, the covalent character in ionic compound will depend upon the size and charge on the cation. According to Fajan's rule, PbO (most ionic) $=\mathrm{Pb}^{2+}, \mathrm{Mn}_{2} \mathrm{O}_{7}($ most covalent $)=\mathrm{Mn}^{+7}$.
2.
(D)

Hybridisation is calculated by steric number rule. Steric no. $=$ no. of atoms attached to central atom + no. of lone pairs present on central atom.
Steric no. for $\mathrm{IO}_{4}^{-}=4+0=4 \quad \mathrm{sp}^{3}$;
Steric no. for $\mathrm{ICl}_{4}^{-}=4+2=6 \quad \mathrm{sp}^{3} \mathrm{~d}^{2}$
Steric no. for $\mathrm{IF}_{4}^{+}=4+1=5 \quad \mathrm{sp}^{3} \mathrm{~d}$;
Steric no. for $\mathrm{SO}_{3}=3+0=3 \quad \mathrm{sp}^{2}$
Steric no. for $\mathrm{SO}_{4}^{2-}=4+0=4 \quad \mathrm{sp}^{3}$;
Steric no. for $\mathrm{SO}_{3}{ }^{2-}=3+1=4 \quad \mathrm{sp}^{3}$
Steric no. for $\mathrm{PCl}_{4}{ }^{+}=4+0=4 \quad \mathrm{sp}^{3}$;
Steric no. for $\mathrm{BF}_{4}^{-}=4+0=4 \quad \mathrm{sp}^{3}$
Steric no. for $\mathrm{XeO}_{3}=3+1=4 \quad \mathrm{sp}^{3}$;
Steric no. for $\mathrm{XeO}_{4}=4+0=4 \quad \mathrm{sp}^{3}$
Steric no. for $\mathrm{XeF}_{4}=4+2=6 \quad \mathrm{sp}^{3} \mathrm{~d}^{2}$;
Steric no. for $\mathrm{ClO}_{4}^{-}=4+0=4$ sp^{3}
3. (A)

(A) In $\mathrm{P}_{4} \mathrm{O}_{10}$, POP angle is not 180°
4. (D)

5. (C)
$\mathrm{HNO}_{2}+2 \mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{NH}_{2} \mathrm{OH}+2 \mathrm{H}_{2} \mathrm{SO}_{4}$

sp^{3} (tetrahedral)
6. (D)
(A)

(B)

(C)

(D)

midal.
7. (D)
$\mu=\mathrm{q} \times \mathrm{d}$
$1.2 \times 10^{-18}=\mathrm{q} \times 10^{-8} \mathrm{~cm}$
$\mathrm{q}=\frac{1.2 \times 10^{-18}}{10^{-8}}=1.2 \times 10^{-10}$
$\%$ charge $=\frac{\mathrm{q}}{\mathrm{e}} \times 100=\frac{1.2 \times 10^{-10}}{4.8 \times 10^{-10}} \times 100=25 \%$
8. (D)
(A) In $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiOH}$, because of $\mathrm{p} \pi-\mathrm{d} \pi$ deocalisation between silicon and oxygen. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiO}^{-}$becomes stable.
(B) Si having larger size is unable to form multiple like C in CO and thus SiO_{3} is unstable.
(C) Due to resonance.

9. (A)

$$
\mathrm{BF}_{3}\left(\mathrm{sp}^{2}\right)+\mathrm{F}^{-} \longrightarrow \mathrm{BF}_{4}^{-}\left(\mathrm{sp}^{3}\right)
$$

10. (D)
(A), (B) M.O. for $\mathrm{C}_{2}=$

$$
\sigma_{1} \mathrm{~s}^{2}<\sigma_{1} \cdot \mathrm{~s}^{2}<\sigma_{2} \mathrm{~s}^{2}<\sigma_{2} \cdot \mathrm{~s}^{2}<\underbrace{\pi_{2} \mathrm{p}_{\mathrm{y}}^{2}=\pi_{2} \mathrm{p}_{\mathrm{z}}^{2}}_{\text {HOMO }}<\underbrace{\sigma_{2} \mathrm{p}_{\mathrm{x}}}_{\text {LUMO }}
$$

two π molecular orbitals are involved in bonding .
(C) It is isoelectronic with N_{2} and has one sigma and two pie-bonds.
(D) In both, all electrons are paired so diamagnetic.
11. (A, B, C)

So, number of $\mathrm{P}-\mathrm{S}$ bonds $=6$; numberof $\mathrm{P}-\mathrm{P}$ bonds $=$ 3 ; total number of lone pairs $=10$ and all atoms i.e. P and S have sp^{3} hybridisation.
12. (B, C)

Plarity depend on net diple momen. If dipole moment $\mu=$ 0 it is nonpolar.
(A)
 $\mathrm{XeF}_{4} \quad \mu=0 \quad$ non polar
(B)

$\mathrm{XeF}_{6} \quad \mu \neq 0 \quad$ polar
(C)

$\mathrm{XeOF}_{4} \quad \mu \neq 0 \quad$ non polar
(D)

$\mathrm{XeF}_{5}^{-} \quad \mu=0 \quad$ non polar
13. $(\mathrm{A}, \mathrm{C}, \mathrm{D})$

Hydrogen bonding is possible in $\mathrm{CH}_{3} \mathrm{NH}_{2}, \mathrm{CH}_{3} \mathrm{COOH}$, $\mathrm{CCl}_{3} \mathrm{CH}(\mathrm{OH})_{2}$

14. $(\mathrm{A}, \mathrm{B}, \mathrm{D})$
(A) According to VSEPR theory as electronegativity of central atom decreases, bond angle decreases. So bond angle of $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{Te}$
(B) $\mathrm{C}_{2} \mathrm{H}_{2}>\mathrm{C}_{2} \mathrm{H}_{4}>\mathrm{CH}_{4}>\mathrm{NH}_{3}$. In NH_{3} there is bp-lp repulsion
so bond alngle decreases to 107° from 109.5°

sp	so 2	sp 3	sp 3
180°	120°	109.5°	107°

(C) $\mathrm{SF}_{6}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{OF}_{2}$ in this case bond angle of NH_{3} is highest because $\mathrm{lp}-\mathrm{lp}$ reuplsion is absent in it.
(D) $\mathrm{ClO}_{2}>\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{SF}_{6}$

Note : It is supposed that in $\mathrm{H}_{2} \mathrm{~S}$ the hybrid orbitals donot participate in bonding but pure p -atomic orbitals participate in bonding.
15. (A, C)

For $\mathrm{sp}^{3} \mathrm{~d}^{2}$ steric no. is 6
Steric no, of $\mathrm{IF}_{5}=5+1=6$;
Steric no. of $\mathrm{XeF}_{4}=4+2=6$;
Steric no. of $\mathrm{XeOF}_{4}=5+1=6$;
Steric no. of $\mathrm{ICl}_{4}^{-}=4+2=6$.
But in $\mathrm{XeF}_{4} \& \mathrm{ICl}_{4}^{-}$dipole moment is zero because of symmetrical molecule and therfore, these are non-polar.
16. (B)

Within the $\mathrm{Ca}^{2+} / \mathrm{SO}_{4}{ }^{2-}$ layers the ions are held together by strong electrovalent bonds. But these separated Ca^{2+} / SO_{4}^{2-} layers are linked by relative weak H -bond. The weaker H -bonds link $\mathrm{SO}_{4}{ }^{2-}$ ions in the intermediate region. Consequenctly, the gypsum can be readily cleaved and stretched along the layer of water molecules.
Anhydride has a completely ionic structure involving only Ca^{2+} and SO_{4}^{2-} ions.
17. (B)

Both S-1 and S-2 are true statements but are different and reason is not true explanation of assertion.
High electronegativity of atoms attached to carbon atom indirectly results into the contraction of the size of p-orbitals. As carbon atomic size is smaller and thus it has effective overlapping.
18. (A)

19. (D)

20. (A)

Transition metal ions have pseudo inert gas configuration which have higher polarising power due to poor shielding of d-electrons. Alkali metal and alkaline earth metal ions have less polarising power due to inert gas configuration (more shielding effect of s- and p-electrons as compared to d-electrons).
21. (A)

As size of cation decreases and charge on cation increases, the polarisation increases according to Fajan's rule. Hence the covalent character increases.
22. (C)

As size of cation increases and charge on cation decreases, the polarisation decreases according to Fajan's rule. Thus the ionic character increases. So SnO with +2 oxidation state will be most ionic.
23. (D)

Agl shows highest polarisation due to following two factors (A) Ag^{+}has pseudo inert gas configuration (B) I^{-}is biggest anion.
24. (D)
(A) Bond order $\propto \frac{1}{\text { bond length }}$

Bond order $\mathrm{O}_{2}^{+}=2.5, \mathrm{O}_{2}=2 \quad \mathrm{O}_{2}^{-}=1.5$. so correct order of bond length is $\mathrm{O}_{2}^{-}>\mathrm{O}_{2}>\mathrm{O}_{2}^{+}$.
(B) Bond order for $\mathrm{He}_{2}=\frac{2-2}{2}=0$. So He_{2} does not exist.
(C) In all these molecules all electrons are paired in molecules orbitals. So they are all diamagnetic.
(D) F_{2} MOT configuration.
$\sigma 1 \mathrm{~s}^{2} \sigma^{*} 1 \mathrm{~s}^{2} \sigma 2 \mathrm{~s}^{2} \sigma^{*} 2 \mathrm{~s}^{2} \sigma 2 \mathrm{p}_{\mathrm{z}}{ }^{2} \pi 2 \mathrm{p}_{\mathrm{y}}{ }^{2} \pi 2 \mathrm{p}_{\mathrm{z}}{ }^{2} \pi^{*} 2 \mathrm{p}_{\mathrm{y}}{ }^{2} \pi^{*} 2 \mathrm{p}_{\mathrm{z}}{ }^{2}$ $\sigma^{*} 2 p_{z}{ }^{2}$
25. (A)

$$
\mathrm{O}_{2} \quad \mathrm{O}_{2}^{-}-\mathrm{O}_{2}^{2-} \mathrm{O}_{2}^{+}
$$

$\begin{array}{lllll}\text { Bond Order } & 2 & 1.5 & 1 & 2.5\end{array}$
26. (B)
$\begin{array}{lllll}\text { Species } & \mathrm{N}_{2} & \mathrm{~N}_{2}^{+} & \mathrm{O}_{2} & \mathrm{O}_{2}^{+}\end{array}$
Bond Order $\begin{array}{lllll} & 2.5 & 2 & 2.5\end{array}$
27. (C)
(A), (B) and (D) have intermolecular H-bonding (Y) while anion of Caro's acid (i.e. HSO_{5}^{-}) has intramolecular H -bonding (X) as shown below.
28. (C)
(A)

(B) Association of molecules leads to a high melting solid because of inter molecular H -bonding (Y).

(D) Ionic peroxides form well crystallised hydrates such as $\mathrm{Na}_{2} \mathrm{O}_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{M}^{\prime \prime} \mathrm{O}_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$. These compounds contain discrete $\mathrm{O}_{2}{ }^{2-}$ ions to which water molecules are hydrogen bonded, giving chains of the type shown in structure $\cdots \mathrm{O}_{2}{ }^{2-} \cdots\left(\mathrm{H}_{2} \mathrm{O}\right)_{8} \cdots \mathrm{O}_{2}{ }^{2-} \cdots\left(\mathrm{H}_{2} \mathrm{O}\right)_{8} \cdots$. The formation of such stable hydrates, accounts for the extreme hygroscopic nature of crystalline peroxide.
29. (B)

In the solid state, the $\mathrm{B}(\mathrm{OH})_{3}$ units are intermolecular $\mathrm{H}-$ bonded together into two dimensional sheets with almost hexagonal symmetry the layers are quite a large di387fce apart ($3.18 \AA$) and thus crystal break quite easily into very fine particles.

