SOLVED EXAMPLES

Ex. $1 \quad \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
When 92 g of I_{2} and $1 \mathrm{~g} \mathrm{of}_{2}$ are heated at equilibrium at $450^{\circ} \mathrm{C}$, the equilibrium mixture contained 1.9 g of I_{2}. How many moles of I_{2} and HI are present at equilibrium.
(A) $0.0075 \& 0.147$ moles
(B) $0.0050 \& 0.147$ moles
(C) $0.0075 \& 0.7094$ moles
(D) $0.0052 \& 0.347 \mathrm{moles}$

Sol. (C)
moles of I_{2} taken $=\frac{92}{254}=0.3622$
moles of H_{2} taken $=\frac{1}{2}=0.5$
moles of I_{2} remaining $=\frac{1.9}{254}=0.0075$
moles of I_{2} used $=0.3622-0.0075=0.3547$
moles of H_{2} used $=0.3547$
moles of H_{2} remaining $=0.5-0.3547=0.1453$
moles of HI formed $=0.3547 \times 2=0.7094$
At equilibrium
moles of $\mathrm{I}_{2}=0.0075$ moles
moles of $\mathrm{HI}=0.7094$ moles
Ex. 2 The volume of a closed reaction vessel in which the equilibrium :
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$ sets is halved, Now -
(A) the rates of forward and backward reactions will remain the same.
(B) the equilibrium will not shift.
(C) the equilibrium will shift to the left.
(D) the rate of forward reaction will become double that of reverse reaction and the equilibrium will shift to the right.

Sol. (D)
In the reaction
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$
In this reaction three moles (or volumes) of reactants are converted into two moles (or volumes) of products i.e. there is a decrease in volume and so if the volume of the reaction vessel is halved the equilibrium will be shifted to the right i.e. more product will be formed and the rate of forward reaction will increase i.e. double that of reverse reaction.

Ex. 3 The equilibrium constant of the reaction $\mathrm{A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB}(\mathrm{g})$ at $100^{\circ} \mathrm{C}$ is 50 . If one litre flask containing one mole of A_{2} is connected to a 3 litre flask containing two moles of B_{2} the number of moles of AB formed at 373 K will be
(A) 1.886
(B) 2.317
(C) 0.943
(D) 18.86

Sol. (A)

The equilibrium is represented as :

$$
\mathrm{A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB}(\mathrm{~g})
$$

Initial concentration	1	2	0
Moles at equilibrium	$1-x$	$2-x$	$2 x$

Total volume $=1+3=4$ litres
$\left[\mathrm{A}_{2}\right]=\frac{1-\mathrm{x}}{4},\left[\mathrm{~B}_{2}\right]=\frac{2-\mathrm{x}}{4}$ and $[\mathrm{AB}]=\frac{2 \mathrm{x}}{4}$
$\mathrm{K}=\frac{[\mathrm{AB}]^{2}}{\left[\mathrm{~A}_{2}\right]\left[\mathrm{B}_{2}\right]}=\frac{\left(\frac{2 \mathrm{x}}{4}\right)^{2}}{\left(\frac{1-\mathrm{x}}{4}\right)\left(\frac{2-\mathrm{x}}{4}\right)}=50$
On solving we get $23 \mathrm{x}^{2}-75 \mathrm{x}+50=0$
$\therefore x=2.31$ or 0.943 , since x can't be more than 1
so, $x=0.943$
\therefore moles of AB formed $=2 \times 0.943=1.886$

Ex. $4 \quad \mathrm{~A}_{2}(\mathrm{~g})$ and $\mathrm{B}_{2}(\mathrm{~g})$ at initial partial pressure of 98.4 and 41.3 torr, respectively were allowed to react at 400 K . At equilibrium the total pressure was 110.5 torr. Calculate the value of K_{p} for the following reaction at 400 K .

$$
2 \mathrm{~A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~A}_{2} \mathrm{~B}(\mathrm{~g})
$$

(A) 124
(B) 134
(C) 154
(D) 174

Sol. (B)
The given reaction is,

	$2 \mathrm{~A}_{2}(\mathrm{~g})$	+	$\mathrm{B}_{2}(\mathrm{~g})$	\rightleftharpoons
Initial pressure (torr)	98.4		$2 \mathrm{~A}_{2} \mathrm{~B}(\mathrm{~g})$	
At equilibrium	$98.4-\mathrm{x}$		$41.3-\frac{\mathrm{x}}{2}$	0
n				

Total pressure at equilibrium $=110.5$ torr.
$(98.4-x)+\left(41.3-\frac{x}{2}\right)+x=110.5$
$\therefore \mathrm{x}=58.4$ torr (760 torr $=1 \mathrm{~atm}$)
$\mathrm{P}_{\left(\mathrm{A}_{2} \mathrm{~B}\right)}=58.4$ torr $=7.68 \times 10^{-2} \mathrm{~atm}$
$P_{\left(\mathrm{A}_{2}\right)}=98.4-58.4=40$ torr $=5.26 \times 10^{-2} \mathrm{~atm}$
$P_{\left(B_{2}\right)}=41.3-\frac{58.4}{2}=12.1$ torr $=1.59 \times 10^{-2} \mathrm{~atm}$
$K_{P}=\frac{\mathrm{P}_{\mathrm{A}_{2} \mathrm{~B}}^{2}}{\mathrm{P}_{\mathrm{A}_{2}}^{2} \times \mathrm{P}_{\mathrm{B}_{2}}}=\frac{\left(7.68 \times 10^{-2}\right)^{2}}{\left(5.26 \times 10^{-2}\right)\left(1.59 \times 10^{-2}\right)}=134$

Ex. 5 When 1.0 mole of N_{2} and 3.0 moles of H_{2} was heated in a vessel at 873 K and a pressure of $3.55 \mathrm{~atm} .30 \%$ of N_{2} is converted into NH_{3} at equilibrium. Find the value of K_{P} for the reaction.
(A) $3.1 \times 10^{-2} \mathrm{~atm}^{-2}$
(B) $4.1 \times 10^{-2} \mathrm{~atm}^{-2}$
(C) $5.1 \times 10^{-2} \mathrm{~atm}^{-2}$
(D) $6.1 \times 10^{-2} \mathrm{~atm}^{-2}$

Sol. (C)

$\mathrm{N}_{2}(\mathrm{~g})$	$3 \mathrm{H}_{2}(\mathrm{~g})$	\rightleftharpoons	$2 \mathrm{NH}_{3}(\mathrm{~g})$
1 mole	3 moles		0
$1-0.3$	$3.0-0.9$		0.6 moles
$=0.7$ moles $=2.1$ moles			Initial moles
at equilibrium			

Total no. of moles at equilibrium $=3.4$
$\mathrm{K}_{\mathrm{p}}=\frac{\left(\frac{0.6}{3.4} \times 3.55\right)^{2}}{\left(\frac{0.7}{3.4} \times 3.55\right)\left(\frac{2.1}{3.4} \times 3.55\right)^{3}}=5.1 \times 10^{-2} \mathrm{~atm}^{-2}$

Ex. $6 \quad 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$
If the partial pressure of $\mathrm{SO}_{2}, \mathrm{O}_{2}$ and SO_{3} are $0.559,0.101$ and 0.331 atm respectively. What would be the partial pressure of O_{2} gas, to get equal moles of SO_{2} and SO_{3}.
(A) 0.188 atm
(B) 0.288 atm
(C) 0.388 atm
(D) 0.488 atm

Sol. (B)
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{P}}=\frac{\left[\mathrm{P}_{\mathrm{SO}_{3}}\right]^{2}}{\left[\mathrm{P}_{\mathrm{SO}_{2}}\right]^{2}\left[\mathrm{P}_{\mathrm{O}_{2}}\right]}=\frac{(0.331)^{2}}{(0.559)^{2}(0.101)}=3.47$
If SO_{2} and SO_{3} have same number of moles, their partial pressure will be equal and
$\mathrm{P}_{\mathrm{SO}_{3}}=\mathrm{P}_{\mathrm{SO}_{2}} \therefore \mathrm{P}_{\mathrm{O}_{2}}=\frac{1}{3.47}=0.288 \mathrm{~atm}$

Ex. $7 \quad \mathrm{~K}_{\mathrm{P}}$ for the reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$ at $400^{\circ} \mathrm{C}$ is 3.28×10^{-4}. Calculate K_{c}.
(A) 0.3 mole $^{-2}$ litre 2
(B) 0.4 mole $^{-2}$ litre 2
(C) 1.0 mole $^{-2}$ litre 2
(D) $0.6 \mathrm{~mole}^{-2} \mathrm{litre}^{2}$

Sol. (C)
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
$\Delta \mathrm{n}=-2$ and $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{C}}(\mathrm{RT})^{\Delta \mathrm{n}}$
$3.28 \times 10^{-4}=K_{c}(0.0821 \times 673)^{-2}$
and $\mathrm{K}_{\mathrm{c}}=1.0 \mathrm{~mole}^{-2}$ litre 2.
Ex. 8 A mixture of H_{2} and I_{2} in molecular proportion of 2:3 was heated at $444{ }^{\circ} \mathrm{C}$ till the reaction
$\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$ reached equilibrium state. Calculate the percentage of iodine converted into HI. (K_{C} at $444^{\circ} \mathrm{C}$ is 0.02)
(A) 3.38%
(B) 4.38%
(C) 5.38%
(D) 6.38%

Sol. (C)

	H_{2}	I_{2}	\rightleftharpoons	2 HI
Initial moles	2	3	0	
Equi.conc.	$\frac{2-x}{v}$	$\frac{3-x}{v}$		$\frac{2 x}{v}$

$K_{C}=\frac{4 x^{2}}{(2-x)(3-x)}=0.02$
$199 \mathrm{x}^{2}+5 \mathrm{x}-6=0$
$\mathrm{x}=0.1615$
Out of 3 moles, 0.1615 moles I_{2} is converted into HI .
\therefore Percentage of I_{2} converted to $\mathrm{HI}=\frac{0.1615 \times 100}{3}=5.38 \%$
Ex. 9 The equilibrium composition for the reaction is :

PCl_{3}	$+\mathrm{Cl}_{2}$		
0.20	$\rightleftharpoons .05$	\quad	PCl_{5}
:---			
0.40 moles/litre			

If 0.25 moles of Cl_{2} is added at same temperature. Find equilibrium concentration of $\mathrm{PCl}_{5}\left(\mathrm{~K}_{\mathrm{C}}=20\right)$
(A) $0.48 \mathrm{moles} /$ litre
(B) $0.38 \mathrm{moles} /$ litre
(C) $0.56 \mathrm{moles} /$ litre
(D) $1.20 \mathrm{moles} /$ litre

Sol. (A)
$\mathrm{PCl}_{3}+\mathrm{Cl}_{2} \rightleftharpoons \mathrm{PCl}_{5}$
$0.20 \quad 0.05 \quad 0.40 \mathrm{moles} / \mathrm{litre}$
If 0.25 moles of Cl_{2} is added then at equilibrium [Let $\mathrm{V}=1 \mathrm{~L}$]
$0.20-\mathrm{x} 0.30-\mathrm{x}$
$0.40+\mathrm{x}$
$20=\frac{0.40+x}{(0.20-x)(0.30-x)}$ or $x=0.08$
$\left[\mathrm{PCl}_{5}\right]=0.4+0.08=0.48 \mathrm{moles} /$ litre

Ex. $10 \quad 0.96 \mathrm{~g}$ of HI were heated to attain equilibrium $2 \mathrm{HI} \rightleftharpoons \mathrm{H}_{2}+\mathrm{I}_{2}$. The reaction mixture on titration requires 15.7 mL of N/20 hypo. Calculate \% dissociation of HI.
(A) 18.9%
(B) 19.9%
(C) 10.46%
(D) 21.9%

Sol. (C)

	2 HI	H_{2}	2
Initial moles	0.96	0	0
	128		
	$=7.5 \times 10^{-3}$		
Moles at equilibrium	$\left(7.5 \times 10^{-3}-\mathrm{x}\right)$	$\mathrm{x} / 2$	$\mathrm{x} / 2$

Now Meq. of I_{2} formed at equilibrium $=$ Meq. of hypo used
$\frac{\mathrm{W}}{\mathrm{E}} \times 1000=15.7 \times \frac{1}{20} \quad$ or $\quad \frac{\mathrm{W}}{\mathrm{E}}$ of $\mathrm{I}_{2}=0.785 \times 10^{-3}$
\therefore Moles of I_{2} formed at equilibrium $=\frac{0.785 \times 10^{-3}}{2}=0.3925 \times 10^{-3}$
or $\frac{x}{2}=0.3925 \times 10^{-3}$ or $x=0.785 \times 10^{-3}$
\therefore degree of dissociation of $\mathrm{HI}=\frac{\text { moles dissociated }}{\text { initial moles }}=\frac{\mathrm{x}}{7.5 \times 10^{-3}}$
$\alpha=\frac{0.785 \times 10^{-3}}{7.5 \times 10^{-3}}=0.1046=10.46 \%$
Ex. 11 In an experiment at 500 K , the concentration of different species are $\left[\mathrm{NH}_{3}\right]=0.105 \mathrm{~mol} \mathrm{dm}^{-3}$, $\left[\mathrm{N}_{2}\right]=1.10 \mathrm{~mol} \mathrm{dm}^{-3}$ and $\left[\mathrm{H}_{2}\right]=1.50 \mathrm{~mol} \mathrm{dm}^{-3}$ then find the followings :-
(A) values of K_{C} and K_{P} for the reaction

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}
$$

(B) value of K_{c} for the reaction -

$$
2 \mathrm{NH}_{3} \rightleftharpoons \mathrm{~N}_{2}+3 \mathrm{H}_{2}
$$

Sol. (A) For the reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$

$$
\mathrm{K}_{\mathrm{C}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}
$$

$\left[\mathrm{NH}_{3}\right]=0.105 \mathrm{~mol} \mathrm{dm}^{-3},\left[\mathrm{~N}_{2}\right]=1.10 \mathrm{~mol} \mathrm{dm}^{-3}$ and $\left[\mathrm{H}_{2}\right]=1.50 \mathrm{~mol} \mathrm{dm}^{-3}$

$$
\text { Now } \mathrm{K}_{\mathrm{P}}=\mathrm{K}_{\mathrm{C}} \times(\mathrm{RT})^{\Delta \mathrm{n}} \quad \Delta \mathrm{n}=-2
$$

$$
\mathrm{R}=0.082 \mathrm{~atm} \mathrm{dm}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, \mathrm{~T}=500 \mathrm{~K}
$$

$$
\therefore \quad \mathrm{K}_{\mathrm{p}}=\left(2.97 \times 10^{-3} \mathrm{~mol}^{-3} \mathrm{dm}^{6}\right) \times\left[\left(0.082 \mathrm{~atm} \mathrm{dm}^{3} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(500 \mathrm{~K})\right]^{-2}
$$

$$
=1.76 \times 10^{-6} \mathrm{~atm}^{-2}
$$

(B) The equilibrium constant K_{C} for the reverse reaction is related to the equilibrium constant K_{C} for the forward reaction as :

$$
\mathrm{K}_{\mathrm{C}}^{\prime}=\frac{1}{\mathrm{~K}_{\mathrm{c}}}=\frac{1}{2.97 \times 10^{-3} \mathrm{~mol}^{-2} \mathrm{dm}^{6}}=3.37 \times 10^{-2} \mathrm{~mol}^{2} \mathrm{dm}^{-6}
$$

Ex. 12 The equilibrium constant K , for the reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$ is $1.64 \times 10^{-4} \mathrm{~atm}^{-2}$ at $300^{\circ} \mathrm{C}$. What will be the equilibrium constant at $400^{\circ} \mathrm{C}$, if heat of reaction in this temperature range is -105185.8 Joules.
(A) $0.64 \times 10^{-5} \mathrm{~atm}^{-2}$
(B) $6.4 \times 10^{-3} \mathrm{~atm}^{-2}$
(C) $0.64 \times 10^{-3} \mathrm{~atm}^{-2}$
(D) $0.64 \times 10^{-1} \mathrm{~atm}^{-2}$

Sol. (A)
$\mathrm{K}_{\mathrm{p}_{1}}=1.64 \times 10^{-4} \mathrm{~atm}^{-2}, \mathrm{~K}_{\mathrm{p}_{2}}=$?
$\mathrm{T}_{1}=300+273=573 \mathrm{~K}$
$\mathrm{T}_{2}=400+273=673 \mathrm{~K}$
$\Delta \mathrm{H}=-105185.8$ Joules
$\mathrm{R}=8.314 \mathrm{~J} / \mathrm{K} / \mathrm{mole}$
Applying equation
$\log K_{p_{2}}-\log K_{p_{1}}=\frac{\Delta H}{2.303 R}\left(\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right)$
$\log \mathrm{K}_{\mathrm{p}_{2}}-\log 1.64 \times 10^{-4}=-\frac{105185.8}{2.303 \times 8.314}\left(\frac{673-573}{673 \times 573}\right)$
or $\mathrm{K}_{\mathrm{p}_{2}}=0.64 \times 10^{-5} \mathrm{~atm}^{-2}$
Ex. 13 The equlibrium pressure of $\mathrm{NH}_{4} \mathrm{CN}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCN}(\mathrm{g})$ is 0.298 atm . Calculate K_{p}. If $\mathrm{NH}_{4} \mathrm{CN}(\mathrm{s})$ is allowed to decompose in presence of NH_{3} at 0.50 atm then calculate partial pressure of HCN at equilibrium.

Sol.
Pressure at equilibrium

\therefore Total pressure at equilibrium $=2 \mathrm{P}=0.298 \mathrm{~atm}$
$\therefore \mathrm{P}=0.149 \mathrm{~atm}$
$\therefore \mathrm{K}_{\mathrm{P}}=\mathrm{P}_{\mathrm{NH}_{3}} \times \mathrm{P}_{\mathrm{HCN}}=0.149 \times 0.149=0.0222 \mathrm{~atm}^{2}$
If dissociation is made in presence of NH_{3} at 0.5 atm

$\qquad \mathrm{NH}_{4} \mathrm{CN}(\mathrm{s}) \rightleftharpoons$	$\mathrm{NH}_{3}(\mathrm{~g})+$	$\mathrm{HCN}(\mathrm{g})$
Initial pressure -	0.50	0
Pressure at equli. -	$\left(0.50+\mathrm{P}^{\prime}\right)$	P^{\prime}

Also $\mathrm{K}_{\mathrm{P}}=\mathrm{P}^{\prime}\left(0.50+\mathrm{P}^{\prime}\right)$
or $0.0222=\mathrm{P}^{\prime}\left(0.50+\mathrm{P}^{\prime}\right)$
$\therefore \mathrm{P}^{\prime}=0.1656 \mathrm{~atm}$
Ex. 14 Ice melts slowly at higher altitude, why?
Sol. According to Le Chatelier principle, the melting of ice is favoured at high pressure because the forward reaction ice \longrightarrow water shows a decrease in volume. At higher altitude atmospheric pressure being low and thus ice melts slowly.
Ex. 15 Both metals Mg and Fe can reduce copper from a solution having Cu^{+2} ion according to equilibria.
$\mathrm{Mg}(\mathrm{s})+\mathrm{Cu}^{+2} \rightleftharpoons \mathrm{Mg}^{+2}+\mathrm{Cu}(\mathrm{s}) ; \mathrm{K}_{1}=5 \times 10^{90}$
$\mathrm{Fe}(\mathrm{s})+\mathrm{Cu}^{+2} \rightleftharpoons \mathrm{Fe}^{+2}+\mathrm{Cu}(\mathrm{s}) ; \mathrm{K}_{2}=2 \times 10^{26}$
Which metal will remove cupric ion from the solution to a greater extent.
Sol. Since $\mathrm{K}_{1}>\mathrm{K}_{2}$, the product in the first reaction is much more favoured than in the second one. Mg thus removes more Cu^{+2} from solution than Fe does.

Ex. 16. A vessel at 1000 K contains CO_{2} with a pressure of 0.6 atm . some of the CO_{2} is converted into CO on addition of graphite. Calculate the value of K , if total pressure at equilibrium is 0.9 atm .

Sol.

	$\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s}) \rightleftharpoons$	$2 \mathrm{CO}(\mathrm{g})$
Initial pressure	0.6 atm	-
Equilibrium pressure	$(0.6-\mathrm{x}) \mathrm{atm}$	
0	2 x atm	

From question, $(0.6-x)+2 x=0.9$ hence, $x=0.3 \mathrm{~atm}$.
Now, $\mathrm{K}_{\mathrm{P}}=\frac{\mathrm{P}_{\mathrm{CO}}^{2}}{\mathrm{P}_{\mathrm{CO}_{2}}}=\frac{(2 \mathrm{x})^{2}}{(0.6-\mathrm{x})}=1.2 \mathrm{~atm}$.

Ex. 17 The value of K_{C} for the reaction,
$\mathrm{N}_{2}+2 \mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}_{2}$ at a certain temperature is 900 . Calculate the value of equilibrium constant for
(i) $2 \mathrm{NO}_{2} \rightleftharpoons \mathrm{~N}_{2}+2 \mathrm{O}_{2}$
(ii) $1 / 2 \mathrm{~N}_{2}+\mathrm{O}_{2} \rightleftharpoons \mathrm{NO}_{2}$

Sol. Equilibrium constant $\left(\mathrm{K}_{\mathrm{C}}\right)$ for the reaction
$\mathrm{N}_{2}+2 \mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}_{2}$ is
$\mathrm{K}_{\mathrm{C}}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{O}_{2}\right]^{2}}=900$
(i) For the reaction $2 \mathrm{NO}_{2} \rightleftharpoons \mathrm{~N}_{2}+2 \mathrm{O}_{2}, \mathrm{~K}_{\mathrm{C}}^{\prime}=\frac{\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right]^{2}}{\left[\mathrm{NO}_{2}\right]^{2}}=\frac{1}{\mathrm{~K}_{\mathrm{c}}}$
$\mathrm{K}_{\mathrm{C}}^{\prime}=\frac{1}{900}=0.0011$ mole litre ${ }^{-1}$
(ii) For the reaction $1 / 2 \mathrm{~N}_{2}+\mathrm{O}_{2} \rightleftharpoons \mathrm{NO}_{2}$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{C}}^{\prime \prime}=\frac{\left[\mathrm{NO}_{2}\right]}{\left[\mathrm{N}_{2}\right]^{1 / 2}\left[\mathrm{O}_{2}\right]}=\sqrt{\mathrm{K}_{\mathrm{C}}} \\
& \mathrm{~K}_{\mathrm{C}}^{\prime \prime}=\sqrt{900}=30 \mathrm{iit}^{1 / 2} \mathrm{~mol}^{-1 / 2}
\end{aligned}
$$

Ex. 18 When S in the form of S_{8} is heated 800 K , the initial pressure of 1 atmosphere falls by 30% at equilibrium. This is because of conversion of some S_{8} to S_{2}. Calculate the K_{p} for reaction.

Sol.

	$\mathrm{S}_{8}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{~S}_{2}(\mathrm{~g})$	
Initial pressure	1 atm	0
Equilibrium pressure	$(1-0.30)$	4×0.30
	$=0.70 \mathrm{~atm}=1.2 \mathrm{~atm}$	

Now, $\mathrm{K}_{\mathrm{P}}=\frac{\mathrm{P}_{\mathrm{S}_{2}}^{4}}{\mathrm{P}_{\mathrm{S}_{8}}}=\frac{(1.2)^{4}}{0.70}=2.9622 \mathrm{~atm}^{3}$

Ex. 19 The equilibrium constant K_{C} for $\mathrm{Y}(\mathrm{g}) \rightleftharpoons \mathrm{Z}(\mathrm{g})$ is 1.1. Which gas has molar concentration greater than 1.

Sol. For $\mathrm{Y}(\mathrm{g}) \rightleftharpoons \mathrm{Z}(\mathrm{g})$
$\mathrm{K}_{\mathrm{C}}=\frac{[\mathrm{Z}]}{[\mathrm{Y}]}=1.1$
if $\mathrm{Z}=1$;
$[\mathrm{Y}]=0.91$
Case I

$$
0.9<[\mathrm{Y}]<1 \text { only } \mathrm{Z}=1
$$

Case II

$$
[\mathrm{Y}]>1 \text { both }[\mathrm{Y}] \text { and }[\mathrm{Z}]>1
$$

Sol.

Initial
At equilibrium $\left(0.02-\frac{0.02}{100}\right)$
$\left(\mathrm{p}-\frac{0.01}{100}\right) \quad \frac{0.02}{100}$

$$
=2 \times 10^{-4}(100-1)
$$

$$
=198 \times 10^{-4} \mathrm{~atm}
$$

$\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{NOCl}}^{2}}{\mathrm{P}_{\mathrm{NO}}^{2} \times \mathrm{P}_{\mathrm{Cl}_{2}}}$
$\Rightarrow 10^{-3}=\frac{\left(2 \times 10^{-4}\right)^{2}}{\left(198 \times 10^{-4}\right)^{2} \times\left(\mathrm{p}-10^{-4}\right)}$
$\Rightarrow \mathrm{p}-10^{-4}=\frac{4}{(198)^{2} \times 10^{-3}}=0.102$
$\therefore \mathrm{p}=0.102+0.0001=0.1021 \mathrm{~atm}$
Volume of the vessel can be calculated as follows,
$\mathrm{PV}=\mathrm{nRT}$
or $\mathrm{V}=\frac{\mathrm{nRT}}{\mathrm{P}}=\frac{0.2 \times 0.082 \times 298}{1} \mathrm{~L}=4.887 \mathrm{~L}$
Again applying, $(\mathrm{PV}=\mathrm{nRT})$ we can calculate the number of moles of Cl_{2}
$\mathrm{n}_{\mathrm{Cl}_{2}}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{0.1021 \times 4.887}{0.082 \times 298}=0.0204 \mathrm{~mol}$.
(i) Consider the heterogeneous equilibrium

$$
\begin{array}{ll}
\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~s}) & \mathrm{K}_{\mathrm{p}}=4 \times 10^{-2} \mathrm{~atm} \\
\mathrm{C}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{~g}) & \mathrm{K}_{\mathrm{p}}^{\prime}=4.0 \mathrm{~atm} \tag{ii}
\end{array}
$$

Calculate the partial pressure of $\mathrm{CO}(\mathrm{g})$ when CaCO_{3} and C are mixed and allowed to attain equilibrium at the temperature for which the above two equilibria have been studied.
(ii) Calculate the pressure of CO_{2} gas at 700 K in the heterogeneous equilibrium reaction.
$\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
If $\Delta \mathrm{G}^{\circ}$ for this reaction is $120.2 \mathrm{~kJ} / \mathrm{mol}$.
Sol.
(i) For Eq. (i), $\mathrm{K}_{\mathrm{p}}=\mathrm{P}_{\mathrm{CO}_{2}}$

From Eq. (ii), $\mathrm{K}_{\mathrm{p}}^{\prime}=\mathrm{P}_{\mathrm{CO}}^{2} / \mathrm{P}_{\mathrm{Co}_{2}}$
$\therefore \mathrm{K}_{\mathrm{p}} \times \mathrm{K}_{\mathrm{p}}^{\prime}=\left(\mathrm{P}_{\mathrm{CO}}\right)^{2}=4 \times 10^{-2} \times 4=16 \times 10^{-2} \mathrm{~atm}^{2}$
$\therefore \mathrm{P}_{\mathrm{CO}}=\sqrt{16 \times 10^{-2} \mathrm{~atm}^{2}}=0.4 \mathrm{~atm}$
(ii) $\Delta \mathrm{G}^{\circ}=-2.303 \mathrm{RT} \log \mathrm{K}_{\mathrm{p}}$

$$
\begin{aligned}
& \therefore \log \mathrm{K}_{\mathrm{p}}=-\frac{\Delta \mathrm{G}^{\circ}}{2.303 \times \mathrm{R} \times \mathrm{T}}=-\frac{120.2 \times 10^{3} \mathrm{Jmol}^{-1}}{2.303 \times\left(8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right) \times(700 \mathrm{~K})} \\
& \therefore \mathrm{K}_{\mathrm{p}}=1.00 \times 10^{-9} \mathrm{~atm}=\mathrm{P}_{\mathrm{CO}_{2}}
\end{aligned}
$$

Ex. 22 For the dissociation reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
derive the expression for the degree of dissociation in terms of K_{p} and total pressure P .
Sol.

Ex. 23 For the reaction, $\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-} \rightleftharpoons \mathrm{Ag}^{+}+2 \mathrm{CN}^{-}$, the equilibrium constant, K_{c} at $27^{\circ} \mathrm{C}$ is 4.0×10^{-19}. To find the silver ion concentration in a solution which is originally 0.10 M in KCN and 0.03 M in AgNO_{3}.

Sol. $\mathrm{Ag}^{+}+2 \mathrm{CN}^{-} \rightleftharpoons\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}$
$\mathrm{K}_{\mathrm{c}}^{\prime}=\frac{\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}}{\left[\mathrm{Ag}^{+}\right]\left[\mathrm{CN}^{-}\right]^{2}}=\frac{1}{\mathrm{~K}_{\mathrm{c}}}=2.5 \times 10^{20}$
Very high value of K_{c} ' show that complex forming equilibrium is spontaneous and almost all the Ag^{+}ion would have reacted leaving xM in solution :
initial

$\mathrm{Ag}^{+}+2 \mathrm{CN}^{-}$	\rightleftharpoons	$\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}$
0.03 M	0.1 M	0
xM	$(0.1-0.03 \times 2 \mathrm{x}) \mathrm{M}$	0.03 M

$\mathrm{K}_{\mathrm{c}}^{\prime}=2.5 \times 10^{20}=\frac{0.03}{\mathrm{x}(0.1-0.03 \times 2 \mathrm{x})^{2}}$
$\therefore \mathrm{x}=\left[\mathrm{Ag}^{+}\right]=7.5 \times 10^{-18} \mathrm{M}$

Sol. Let, 2 n be the number of moles of HI which is decomposed, the number of moles of H_{2} and I_{2} produced will be n mole each. Then molar concentrations of various species at equilibrium are
$[\mathrm{HI}]=\frac{(5-2 \mathrm{n})}{10} \mathrm{~mol} / \mathrm{L},\left[\mathrm{H}_{2}\right]=\frac{\mathrm{n}}{10} \mathrm{~mol} / \mathrm{L}$, and $\left[\mathrm{I}_{2}\right]=\frac{\mathrm{n}}{10} \mathrm{~mol} / \mathrm{L}$
Also, $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}{[\mathrm{HI}]^{2}}=\frac{\frac{\mathrm{n}}{10} \times \frac{\mathrm{n}}{10}}{\left(\frac{5-2 \mathrm{n}}{10}\right)^{2}}$
$0.025=\frac{\mathrm{n}^{2}}{(5-2 \mathrm{n})^{2}}$
Solving for n , we get $\mathrm{n}=0.6$
$\therefore[\mathrm{HI}]=\frac{5-2 \times 0.6}{10}=\frac{3.8}{10}=0.38 \mathrm{~mol} / \mathrm{L}$
$\left[\mathrm{H}_{2}\right]=\frac{0.6}{10}=0.06 \mathrm{~mol} / \mathrm{L}$
$\left[I_{2}\right]=\frac{0.6}{10}=0.06 \mathrm{~mol} / \mathrm{L}$
Fraction of HI decomposed $=\frac{2 \times 0.6}{5}$

$$
=0.24 \text { or } 24 \%
$$

Ex. 25 When 1-pentyne (A) is treated with 4 N alcoholic KOH at $175^{\circ} \mathrm{C}$, it is converted slowly into an equilibrium mixture of 1.3% 1-pentyne (A), 95.2% 2-pentyne (B) and 3.5% of 1,2-pentadiene (C). The equilibrium was maintained at $175^{\circ} \mathrm{C}$. Calculate $\Delta \mathrm{G}^{\circ}$ for the following equilibria.
$\mathrm{B} \rightleftharpoons \mathrm{A}$
$\Delta \mathrm{G}_{1}^{\circ}=$?
$\mathrm{B} \rightleftharpoons \mathrm{C}$

$$
\Delta \mathrm{G}_{2}^{\circ}=?
$$

From the calculated value of $\Delta \mathrm{G}_{1}^{\circ}$ and $\Delta \mathrm{G}_{2}^{\circ}$ indicate the order of stability of $(\mathrm{A}),(B)$ and (C). Write a reasonable reaction mechanism showing all intermediates leading to (A), (B) and (C).

Sol.

(A)	(B)	(C)
At eqm.\% 1.3	95.5	3.5

$\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{B}][\mathrm{C}]}{[\mathrm{A}]}=\frac{95.2 \times 3.5}{1.3}=256.31$
From eqm. $\mathrm{B} \rightleftharpoons \mathrm{A}$
$\mathrm{K}_{1}=\frac{[\mathrm{A}]}{[\mathrm{B}]}$

From Eqs. (i) and (ii), $\mathrm{K}_{1}=\frac{[\mathrm{C}]}{\mathrm{K}_{\mathrm{c}}}=\frac{3.5}{256.31}=0.013$
$\Delta G^{\circ} \quad=-2.303 R T \log _{10} K_{1}$
$=-2.303 \times 8.314 \times 448 \log _{10} 0.013$
$=16178.4$
$=16.1784 \mathrm{~kJ}$
Stability order for A and B is B $>$ A
Similarly, $\mathrm{B} \rightleftharpoons \mathrm{C}$
$\mathrm{K}_{2}=\frac{[\mathrm{C}]}{[\mathrm{B}]}=\frac{\mathrm{K}_{\mathrm{c}} \times[\mathrm{A}]}{[\mathrm{B}]^{2}}=\frac{256.31 \times 3.1}{95.2 \times 95.2}=0.0876$
$\therefore \Delta \mathrm{G}_{2}^{\circ}=-2.303 \mathrm{RT} \log _{10} \mathrm{~K}_{2}$
$=-2.303 \times 8.314 \times 448 \log _{10} 0.0876$
$=9068.06 \mathrm{~J}=9.068 \mathrm{~kJ}$
Thus, stability order for B and C is $\mathrm{B}>\mathrm{C}$
Total order of stability is $\mathrm{B}>\mathrm{C}>\mathrm{A}$.
Ex. 26 The density of an equilibrium mixture of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} at 1 atm is $3.62 \mathrm{~g} / \mathrm{L}$ at 288 K and $1.84 \mathrm{~g} / \mathrm{L}$ at 348 K . Calculate the entropy change during the reaction at 348 K .

Sol. $\quad \mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$
Case (i)
$\mathrm{PV}=\mathrm{nRT}=\frac{\mathrm{w}}{\mathrm{m}_{\text {mix }}} \mathrm{R} \tilde{T}$
$\Rightarrow \mathrm{m}_{\text {mix }}=\frac{\mathrm{w}}{\mathrm{V}} \times \frac{\mathrm{RT}}{\mathrm{P}}=\frac{\mathrm{dRT}}{\mathrm{P}}=3.62 \times 0.082 \times 288=85.6$
Let, a mole of $\mathrm{N}_{2} \mathrm{O}_{4}$ and (1-a) mole of NO_{2} exist at equilibrium
$\therefore a \times 92+(1-a) \times 46=85.6$
$\therefore a=0.86$
$\therefore \mathrm{n}_{\mathrm{N}_{2} \mathrm{O}_{4}}=0.86 \mathrm{~mol}, \quad \mathrm{n}_{\mathrm{NO}_{2}}=0.14 \mathrm{~mol}$
$\mathrm{K}_{\mathrm{p}}=\frac{0.14 \times 0.14}{0.86} \times\left[\frac{1}{1}\right]^{1}=0.0228$ atm at 288 K .
Case (ii)
$\mathrm{m}_{\text {mix }}=\frac{\mathrm{dRT}}{\mathrm{P}}=1.84 \times 0.0821 \times 348=52.57$
Let, $\mathrm{a}^{\prime} \mathrm{mol}$ of $\mathrm{N}_{2} \mathrm{O}_{4}$ and ($1-\mathrm{a}^{\prime}$) mol of NO_{2} exist at equilibrium
$\therefore a^{\prime} \times 92+\left(1-a^{\prime}\right) \times 46=52.57$
$\therefore \mathrm{a}^{\prime}=0.14$
$\therefore \mathrm{n}_{\mathrm{N}_{2} \mathrm{O}_{4}}=0.14 \mathrm{~mol}, \quad \mathrm{n}_{\mathrm{NO}_{2}}=0.86 \mathrm{~mol}$
$\therefore \mathrm{K}_{\mathrm{p}}=\frac{0.86 \times 0.86}{0.14}\left[\frac{1}{1}\right]^{1}=5.283 \mathrm{~atm}$ at 348 K
$\log _{10}\left(\frac{\mathrm{~K}_{\mathrm{p}_{2}}}{\mathrm{~K}_{\mathrm{p}_{1}}}\right)=\frac{\Delta \mathrm{H}}{2.303 \mathrm{R}}\left[\frac{\mathrm{T}_{2}-\mathrm{T}_{1}}{\mathrm{~T}_{1} \mathrm{~T}_{2}}\right]$
$\Rightarrow \log _{10} \frac{5.283}{0.0228}=\frac{\Delta \mathrm{H}}{2 \times 2.303}\left[\frac{348-288}{348 \times 288}\right]$
$\therefore \Delta \mathrm{H}=18195.6 \mathrm{cal}=18.196 \mathrm{Kcal}$
$\Delta \mathrm{G}=-2.303 \mathrm{RT} \log \mathrm{K}_{\mathrm{p}}$
$=-2.303 \times 2 \times 348 \times \log 5.283$
$=-1158.7 \mathrm{cal}$.
$\Delta \mathrm{S}=\frac{\Delta \mathrm{H}-\Delta \mathrm{G}}{\mathrm{T}}=\frac{18195.6+1158.7}{348}=55.62 \mathrm{cal}$

Sol. $\quad K_{p}=K_{c}(R T)^{\Delta n}$
$\Delta \mathrm{n}=$ moles of products - moles of reactants $=5-4=1$
$\mathrm{R}=0.0821 \mathrm{Latm} / \mathrm{mol} / \mathrm{K}, \mathrm{T}=500+273=773 \mathrm{~K}$
$\therefore 0.035=\mathrm{K}_{\mathrm{c}}(0.0821 \times 773)$
$\mathrm{K}_{\mathrm{c}}=5.515 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$
$\therefore \mathrm{K}_{\mathrm{c}}{ }^{\prime}$ for the reverse reaction would be $\frac{1}{\mathrm{~K}_{\mathrm{c}}}$
$\therefore \mathrm{K}_{\mathrm{c}}^{\prime}=\frac{1}{5.515 \times 10^{-4}}=1813.24\left(\mathrm{~mol} \mathrm{~L}^{-1}\right)^{-1}$
When a reaction is multiplied by any number n (integer or a fraction) then K_{c}^{\prime} or K_{p}^{\prime} becomes $\left(K_{c}\right)^{n}$ or $\left(K_{p}\right)^{n}$ of the original reaction.
$\therefore \mathrm{K}_{\mathrm{c}}$ for $\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{HCl}(\mathrm{g}) \rightleftharpoons \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
is $\sqrt{1813.24}=42.58\left(\mathrm{~mol} . \mathrm{L}^{-1}\right)^{-1 / 2}$

Ex. $28 \quad \mathrm{~K}_{\mathrm{p}}$ for the reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$ is 0.66 at $46^{\circ} \mathrm{C}$. Calculate the percent dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ at $46^{\circ} \mathrm{C}$ and a total pressure of 0.5 atm . Also calculate the partial pressure of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} at equilibrium.
Sol. This problem can be solved by two methods.
Method 1 : Let, the number of moles of $\mathrm{N}_{2} \mathrm{O}_{4}$ initially be 1 and α is the degree of dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$.

$$
\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}
$$

Initial moles	1	0
Moles at equilibrium	$1-\alpha$	2α

Total moles at equilibrium $=1-\alpha+2 \alpha=1+\alpha$
$\mathrm{p}_{\mathrm{N}_{2} \mathrm{O}_{4}}=\frac{1-\alpha}{1+\alpha} \times \mathrm{P}_{\mathrm{T}}$
$\mathrm{p}_{\mathrm{NO}_{2}}=\frac{2 \alpha}{1+\alpha} \times \mathrm{P}_{\mathrm{T}}$
$\therefore \mathrm{K}_{\mathrm{p}}=\frac{\mathrm{p}_{\mathrm{NO}_{2}}^{2}}{\mathrm{p}_{\mathrm{N}_{2} \mathrm{O}_{4}}}=\frac{4 \alpha^{2} \mathrm{P}_{\mathrm{T}}}{(1-\alpha)(1+\alpha)}=\frac{4 \alpha^{2} \times 0.5}{1-\alpha^{2}}$
$\alpha=0.5$, i.e. 50% dissociation
Hence, partial pressure of $\mathrm{N}_{2} \mathrm{O}_{4}=0.167 \mathrm{~atm}$.
and partial pressure of $\mathrm{NO}_{2}=0.333 \mathrm{~atm}$.
Method 2 : Let, the partial pressure of NO_{2} at equilibrium be p atm, then the partial pressure of $\mathrm{N}_{2} \mathrm{O}_{4}$ at equilibrium will be $(0.5-p)$ atm.
$\therefore \mathrm{K}_{\mathrm{p}}=\frac{\mathrm{p}^{2}}{(0.5-\mathrm{p})}=0.66$
$\mathrm{p}^{2}+0.66 \mathrm{p}-0.33=0$
On solving, $\mathrm{p}=0.333 \mathrm{~atm}$.
$\therefore \mathrm{p}_{\mathrm{NO}_{2}}=0.333 \mathrm{~atm}$ and $\mathrm{p}_{\mathrm{N}_{2} \mathrm{O}_{4}}=0.167 \mathrm{~atm}$.

Ex. $29 \quad 0.5$ moles of N_{2} and 3 moles of PCl_{5} are placed in a 100 litre container heated to $227^{\circ} \mathrm{C}$. The equilibrium pressure is 2.05 atm . Assuming ideal behaviour, calculate the degree of dissociation of PCl_{5} and value of K_{p} for its dissociation.
Sol. Dissociation of PCl_{5} is written as
$\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
Let, x be the no. of moles of PCl_{5} decomposed at equilibrium

	$\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$		
Initial moles	3	0	0
Moles at eqm.	$3-\mathrm{x}$	x	x

Now, total gaseous moles in the container $=n_{T}$
$\mathrm{n}_{\mathrm{T}}=$ moles of $\left(\mathrm{PCl}_{5}+\mathrm{PCl}_{3}+\mathrm{Cl}_{2}\right)+$ moles of N_{2}
$\mathrm{n}_{\mathrm{T}}=3-\mathrm{x}+\mathrm{x}+\mathrm{x}+0.5=3.5+\mathrm{x}$
The mixture behaves ideally, hence $\mathrm{PV}=\mathrm{n}_{\mathrm{T}} \mathrm{RT}$
Let us, calculate no. of moles by using gas equation
$\Rightarrow \mathrm{n}_{\mathrm{T}}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{2.05 \times 100}{0.0821 \times 400} \Rightarrow \mathrm{n}_{\mathrm{T}}=5$
Now, equating the two values of n_{T}, we have
$3.5+x=5 \Rightarrow x=1.5 \Rightarrow$ degree of dissociation $=1.5 / 3=1 / 2=0.5$
Now, $\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{PCl}_{3}} \times \mathrm{P}_{\mathrm{Cl}_{2}}}{\mathrm{P}_{\mathrm{PCl}_{5}}}$
$\mathrm{P}_{\mathrm{PC}_{5}}=\frac{3-\mathrm{x}}{3.5+\mathrm{x}} \mathrm{P}=\frac{1.5}{5} \times 2.05=0.615 \mathrm{~atm}$
$\mathrm{P}_{\mathrm{PC}_{3}}=\frac{1.5}{5} \times 2.05=0.615 \mathrm{~atm}$
$\mathrm{P}_{\mathrm{Cl}_{2}}=\frac{1.5}{5} \times 2.05=0.615 \mathrm{~atm}$
$\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{PCl}_{3}} \times \mathrm{P}_{\mathrm{Cl}_{2}}}{\mathrm{P}_{\mathrm{PCl}_{5}}} \operatorname{atm} \Rightarrow \mathrm{~K}_{\mathrm{p}}=\frac{0.615 \times 0.615}{0.615}=0.615 \mathrm{~atm}$
$\mathrm{K}_{\mathrm{p}}=0.615 \mathrm{~atm}$

Note: The inert gases like N_{2} or noble gases (He, Ne etc.) though do not take part in the reaction, but still they affect the degree of dissociation and equilibrium concentrations for the reactions in which $\Delta \mathrm{n} \neq 0$. They add to the total pressure of the equilibrium mixture $(p \propto n)$.

Ex. 30 For the reaction, $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) ; \mathrm{K}=0.059$ atm at 1000 K .1 g of CaCO_{3} is placed in a 10 litre container at 1000 K to reach the equilibrium. Calculate the mass of CaCO_{3} left at equilibrium.

Sol.

Ex. 31 Given below are the values of $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{S}^{\circ}$ for the reaction at $27^{\circ} \mathrm{C}$,
$\mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{SO}_{3}(\mathrm{~g})$
$\Delta \mathrm{H}^{\circ}=98.32 \mathrm{~kJ} / \mathrm{mol} \quad \Delta \mathrm{S}^{\circ}=-95 \mathrm{~J} / \mathrm{mol}$. Calculate the value of K_{p} for the reaction.
Sol. $\quad \log _{10} \mathrm{~K}_{\mathrm{p}}=\frac{\Delta \mathrm{H}^{\circ}}{2.303 \mathrm{RT}}+\frac{\Delta \mathrm{S}^{\circ}}{2.303 \times \mathrm{R}}$
$\therefore \log _{10} \mathrm{~K}_{\mathrm{p}}=\frac{98320}{2.303 \times 8.314 \times 300}-\frac{95}{2.303 \times 8.314} \Rightarrow \mathrm{~K}_{\mathrm{p}}=1.44 \times 10^{12} \mathrm{~atm}^{-1 / 2}$

Ex. 32 In a mixture of N_{2} and H_{2}, initially they are in mole ratio of $1: 3$ at 30 atm and $300^{\circ} \mathrm{C}$, the percentage of ammonia by volume under the equilibrium is 17.8%. Calculate the equilibrium constant $\left(\mathrm{K}_{\mathrm{p}}\right)$ of the mixture, for the reaction, $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$.

Sol. Let, the initial moles N_{2} and H_{2} be 1 and 3 respectively (this assumption is valid as K_{p} will not depend on the exact number of moles of N_{2} and H_{2}. One can even start with x and 3 x)

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

Initially	1	3	0
At equilibrium	$1-x$	$3-3 x$	$2 x$

Since \% by volume of a gas is same as \% by mole,
$\therefore \frac{2 \mathrm{x}}{4-2 \mathrm{x}}=0.178$
$\therefore \mathrm{x}=\frac{4 \times 0.178}{(2+2 \times 0.178)}=0.302$
\therefore Mole fraction of H_{2} at equilibrium $=\frac{3-3 \mathrm{x}}{4-2 \mathrm{x}}=0.6165$
Mole fraction of N_{2} at equilibrium $=1-0.6165-0.178=0.2055$
$\therefore \mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{X}_{\mathrm{NH}_{3}} \times \mathrm{P}_{\mathrm{T}}\right)^{2}}{\left(\mathrm{X}_{\mathrm{N}_{2}} \times \mathrm{P}_{\mathrm{T}}\right)\left(\mathrm{X}_{\mathrm{H}_{2}} \times \mathrm{P}_{\mathrm{T}}\right)^{3}}=\frac{(0.178 \times 30)^{2}}{(0.2055 \times 30)(0.6165 \times 30)^{3}}$
$\mathrm{K}_{\mathrm{p}}=7.31 \times 10^{-4} \mathrm{~atm}^{-2}$.
Ex. 33 Ammonium hydrogen sulphide dissociated according to the equation,
$\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$. If the observed pressure of the mixture is 2.24 atm at $106^{\circ} \mathrm{C}$, what is the equilibrium constant K_{p} of the reaction ?

Sol. The reaction is $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$.
If α is the degree of dissociation of equilibrium,
Total moles of NH_{3} and $\mathrm{H}_{2} \mathrm{~S}$ at equilibrium $=2 \alpha$.
Partial pressure $=\frac{\text { Moles of substance }}{\text { Total no. of moles }} \times$ Total pressure
$\therefore \mathrm{p}_{\mathrm{NH}_{3}}=\frac{\alpha}{2 \alpha} \times \mathrm{P}=0.5 \mathrm{P} ; \mathrm{p}_{\mathrm{H}_{2} \mathrm{~S}}=\frac{\alpha}{2 \alpha} \times \mathrm{P}=0.5 \mathrm{P}$
$\mathrm{K}_{\mathrm{p}}=\mathrm{p}_{\mathrm{NH}_{3}} \times \mathrm{p}_{\mathrm{H}_{2} \mathrm{~S}}=0.5 \mathrm{P} \times 0.5 \mathrm{P}=0.25 \mathrm{P}^{2}$
Substituting the value of $\mathrm{P}=2.24 \mathrm{~atm}$.
$\mathrm{K}_{\mathrm{p}}=0.25 \times 2.24 \times 2.24=1.2544 \mathrm{~atm}^{2}$

Alternatively :

At equilibrium $\mathrm{p}_{\mathrm{NH}_{3}}+\mathrm{p}_{\mathrm{H}_{2} \mathrm{~S}}=2.24 \mathrm{~atm}$
As $\mathrm{p}_{\mathrm{NH}_{3}}=\mathrm{p}_{\mathrm{H}_{2} \mathrm{~S}}$
$\therefore \mathrm{p}_{\mathrm{NH}_{3}}=\frac{2.24}{2}=1.12 \mathrm{~atm}$
$\therefore \mathrm{K}_{\mathrm{p}}=1.12 \times 1.12=1.2544 \mathrm{~atm}^{2}$

Exercise \# $1>$ [Single Correct Choice Type Questions]

1. A chemical reaction is at equilibrium when
(A) Reactants are completely transformed into products
(B) The rates of forward and backward reactions are equal
(C) Formation of products is minimised
(D) Equal amounts of reactants and products are present
2. A reversible reaction is one which
(A) Proceeds in one direction
(B) Proceeds in both directions
(C) Proceeds spontaneously
(D) All the statements are wrong
3. According to law of mass action rate of a chemical reaction is proportional to
(A) Concentration of reactants
(B) Molar concentration of reactants
(C) Concentration of products
(D) Molar concentration of products
4. Molar concentration of 96 g of O_{2} contained in a 2 litre vessel is :
(A) $16 \mathrm{~mol} / \mathrm{litre}$
(B) $1.5 \mathrm{~mol} /$ litre
(C) $4 \mathrm{~mol} /$ litre
(D) $24 \mathrm{~mol} / \mathrm{litre}$

5
Rate of reaction curve for equilibrium can be like :
(A) rate

(B) rate

(C) rate

(D) rate

6. For the reaction $3 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{g}) \rightleftharpoons 2 \mathrm{C}(\mathrm{g})$ at a given temperature, $\mathrm{K}_{\mathrm{c}}=9.0$. What must be the volume of the flask, if a mixture of 2.0 mol each of A, B and C exist in equilibrium?
(A) 6 L
(B) 9 L
(C) 36 L
(D) None of these
7. The figure show the change in concentration of species A and B as a fuctional of time. The equilibrium constant K_{C} for the reaction $\mathrm{A}(\mathrm{g}) \rightleftharpoons 2 \mathrm{~B}(\mathrm{~g})$ is :

(A) $\mathrm{K}_{\mathrm{c}}>1$
(B) $\mathrm{K}<1$
(C) $\mathrm{K}=1$
(D) data insufficient
8. In a reversible reaction $A \underset{k_{2}}{\stackrel{k_{1}}{\rightleftharpoons}} B$, the initial concentration of A and B are a and b in moles per litre, k_{1} and k_{2} are rate constants for forward \& backward reactions respectively and the equilibrium concentrations are $(a-x)$ and $(b+x)$ respectively; express x in terms of k_{1}, k_{2}, a and b.
(A) $\frac{\mathrm{k}_{1} \mathrm{a}-\mathrm{k}_{2} \mathrm{~b}}{\mathrm{k}_{1}+\mathrm{k}_{2}}$
(B) $\frac{\mathrm{k}_{1} \mathrm{a}-\mathrm{k}_{2} \mathrm{~b}}{\mathrm{k}_{1}-\mathrm{k}_{2}}$
(C) $\frac{\mathrm{k}_{1} \mathrm{a}-\mathrm{k}_{2} \mathrm{~b}}{\mathrm{k}_{1} \mathrm{k}_{2}}$
(D) $\frac{\mathrm{k}_{1} \mathrm{a}+\mathrm{k}_{2} \mathrm{~b}}{\mathrm{k}_{1}+\mathrm{k}_{2}}$
9. The reaction $\mathrm{A}(\mathrm{g})+\mathrm{B}(\mathrm{g}) \rightleftharpoons \mathrm{C}(\mathrm{g})+\mathrm{D}(\mathrm{g})$ is studied in a one litre vessel at $250^{\circ} \mathrm{C}$. The initial concentration of A was $3 n$ and that of B was n. When equilibrium was attained, equilibrium concentration of C was found to the equal to the equilibrium concentration of B. What is the concentration of D at equilibrium?
(A) $\mathrm{n} / 2$
(B) $(3 n-1 / 2)$
(C) $(\mathrm{n}-\mathrm{n} / 3)$
(D) n
10. $K_{c}=9$ for the reaction, $A+B \rightleftharpoons C+D$, If A and B are taken in equal amounts, then amount of C in equilibrium is
(A) 1
(B) 0.25
(C) 0.75
(D) None of these
11. Using molar concentration, What is the unit of K_{c} for the reaction
$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g})$
(A) M^{-2}
(B) M^{2}
(C) M^{-1}
(D) M
12. What is the unit of K_{p} for the reaction ?

$$
\mathrm{CS}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})
$$

(A) atm
(B) atm^{-2}
(C) atm^{2}
(D) atm^{-1}
13. N_{2} and H_{2} are taken in $1: 3$ molar ratio in a closed vessel to attained the following equilibrium
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$. Find K_{p} for reaction at total pressure of 2 P if $\mathrm{P}_{\mathrm{N}_{2}}$ at equilibrium is $\frac{\mathrm{P}}{3}$
(A) $\frac{1}{3 P^{2}}$
(B) $\frac{4}{3 P^{2}}$
(C) $\frac{4 \mathrm{P}^{2}}{3}$
(D) none
14. The equilibrium constant, K_{p} for the reaction

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

is $4.0 \mathrm{~atm}^{-1}$ at 1000 K . What would be the partial pressure of O_{2} if at equilibrium the amount of SO_{2} and SO_{3} is the same ?
(A) 16.0 atm
(B) 0.25 atm
(C) 1 atm
(D) 0.75 atm
15. For the reaction
$\mathrm{A}_{2}(\mathrm{~g})+2 \mathrm{~B}_{2} \rightleftharpoons 2 \mathrm{C}_{2}(\mathrm{~g})$
the partial pressure of $\mathrm{A}_{2}, \mathrm{~B}_{2}$ at equilibrium are 0.80 atm and 0.40 atm respectively. The pressure of the system is 2.80 atm. The equilibrium constant K_{p} will be
(A) 20
(B) 5.0
(C) 0.02
(D) 0.2
16. At $527^{\circ} \mathrm{C}$, the reaction given below has $\mathrm{K}_{\mathrm{C}}=4$

$$
\mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g})
$$

What is the K_{p} for the reaction?
(A) $16 \times(800 \mathrm{R})^{2}$
(B) $\left(\frac{800 \mathrm{R}}{4}\right)^{-2}$
(C) $4 \times 800 \mathrm{R}$
(D) None of these
17. The value of K_{p} for the reaction, $\quad 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{C}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{HC} \ell(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$ is 0.03 atm at $427^{\circ} \mathrm{C}$, when the partial pressure are expressed in atmosphere then the value of K_{C} for the same reaction is :
(A) 5.23×10^{-4}
(B) 7.34×10^{-4}
(C) 3.2×10^{-3}
(D) 5.43×10^{-5}
18. $\log \frac{\mathrm{K}_{\mathrm{p}}}{\mathrm{K}_{\mathrm{c}}}+\log \mathrm{RT}=0$ is a relationship for the reaction :
(A) $\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$
(B) $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}$
(C) $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$
(D) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
19. The equilibrium constant of the reaction $\mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})$ is $4 \times 10^{-3} \mathrm{~atm}^{-1 / 2}$. The equilibrium constant of the reaction $2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ would be :
(A) 250 atm
(B) $4 \times 10^{3} \mathrm{~atm}$
(C) $0.25 \times 10^{4} \mathrm{~atm}$
(D) $6.25 \times 10^{4} \mathrm{~atm}$
20. Equilibrium constant for the reactions,

$$
\begin{array}{ll}
2 \mathrm{NO}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}_{2} & \text { is } \mathrm{K}_{\mathrm{C}_{1}} \\
\mathrm{NO}_{2}+\mathrm{SO}_{2} \rightleftharpoons \mathrm{SO}_{3}+\mathrm{NO} & \text { is } \mathrm{K}_{\mathrm{C}_{2}} \text { and }
\end{array}
$$

$$
2 \mathrm{SO}_{3} \rightleftharpoons 2 \mathrm{SO}_{2}+\mathrm{O}_{2} \text { is } \mathrm{K}_{\mathrm{C}_{3}} \text { then correct reaction is : }
$$

(A) $\mathrm{K}_{\mathrm{C}_{3}}=\mathrm{K}_{\mathrm{C}_{1}} \times \mathrm{K}_{\mathrm{C}_{2}}$
(B) $\mathrm{K}_{\mathrm{C}_{3}} \times \mathrm{K}_{\mathrm{C}_{1}} \times \mathrm{K}^{2} \mathrm{C}_{2}=1$
(C) $\mathrm{K}_{\mathrm{C}_{3}} \times \mathrm{K}_{\mathrm{C}_{1}} \times \mathrm{K}_{\mathrm{C}_{2}}=1$
(D) $\mathrm{K}_{\mathrm{C}_{3}} \times \mathrm{K}^{2} \mathrm{C}_{1} \times \mathrm{K}_{\mathrm{C}_{2}}=1$
21. At a certain temperature, the following reactions have the equilibrium constant as shown below :

$$
\begin{aligned}
& \mathrm{S}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g}) ; \mathrm{K}_{\mathrm{c}}=5 \times 10^{52} \\
& 2 \mathrm{~S}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}) ; \mathrm{K}_{\mathrm{c}}=10^{29}
\end{aligned}
$$

What is the equilibrium constant K_{c} for the reaction at the same temperature ?

$$
2 \mathrm{SO}_{2}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

(A) 2.5×10^{76}
(B) 4×10^{23}
(C) 4×10^{-77}
(D) None of these
22. Sulfide ion in alkaline solution reacts with solid sulfur to form polysulfide ions having formulae $\mathrm{S}_{2}{ }^{2-}, \mathrm{S}_{3}{ }^{2-}, \mathrm{S}_{4}{ }^{2-}$ and so on. The equilibrium constant for the formation of $\mathrm{S}_{2}{ }^{2-}$ is $\mathrm{K}_{1}=12 \&$ for the formation of $\mathrm{S}_{3}{ }^{2-}$ is $\mathrm{K}_{2}=132$, both from S and S^{2-}. What is the equilibrium constant for the formation of $\mathrm{S}_{3}{ }^{2-}$ from $\mathrm{S}_{2}{ }^{2-}$ and S ?
(A) 11
(B) 12
(C) 132
(D) None of these
23. When alcohol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\ell)\right)$ and acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}(\ell)\right)$ are mixed together in equimolar ratio at $27^{\circ} \mathrm{C}, 33 \%$ of each is converted into ester. Then the K_{C} for the equilibrium

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\ell)+\mathrm{CH}_{3} \mathrm{COOH}(\ell) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\ell)+\mathrm{H}_{2} \mathrm{O}(\ell) \text { is : }
$$

(A) 4
(B) $1 / 4$
(C) 9
(D) $1 / 9$
24. One litre of 2 M acetic acid and one litre of 3 M ethyl alcohol are mixed to form ester according to the given equation $: \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}$.
If each solution is diluted by adding equal volume (1 litre) of water by how many times the initial forward rate is reduced?
(A) 4 times
(B) 2 times
(C) 0.5 times
(D) 0.25 times

CHEMICAL EQUILIBRIUM

25. In the dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ into $\mathrm{NO}_{2},(1+\alpha)$ values with the vapour densities ratio $\left(\frac{D}{d}\right)$ is as given by :
[α-degree of dissociation, D-vapour density before dissociation, d-vapour density after dissociation]
(A)

(B)

(C)

(D)

26. In the above question, α varies with $\frac{D}{d}$ according to :
(A)

(B)

(C)

(D)

27. For the reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$, if percentage dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ are $20 \%, 45 \%, 65 \% \& 80 \%$, then the sequence of observed vapour densities will be :
(A) $\mathrm{d}_{20}>\mathrm{d}_{45}>\mathrm{d}_{65}>\mathrm{d}_{80}$
(B) $\mathrm{d}_{80}>\mathrm{d}_{65}>\mathrm{d}_{45}>\mathrm{d}_{20}$
(C) $\mathrm{d}_{20}=\mathrm{d}_{45}=\mathrm{d}_{65}=\mathrm{d}_{80}$
(D) $\left(\mathrm{d}_{20}=\mathrm{d}_{45}\right)>\left(\mathrm{d}_{65}=\mathrm{d}_{80}\right)$
28. For the dissociation reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$, the degree of dissociation (A) in terms of K_{p} and total equilibrium pressure P is:
(A) $\alpha=\sqrt{\frac{4 \mathrm{p}+\mathrm{K}_{\mathrm{p}}}{\mathrm{K}_{\mathrm{p}}}}$
(B) $\alpha=\sqrt{\frac{\mathrm{K}_{\mathrm{p}}}{4 \mathrm{p}+\mathrm{K}_{\mathrm{p}}}}$
(C) $\alpha=\sqrt{\frac{\mathrm{K}_{\mathrm{p}}}{4 \mathrm{p}}}$
(D) None of these
29. The degree of dissociation of SO_{3} is α at equilibrium pressure P_{0}.
K_{p} for $2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ is
(A) $\left[\left(\mathrm{P}_{0} \alpha^{3}\right) / 2(1-\alpha)^{3}\right]$
(B) $\left[\left(\mathrm{P}_{0} \alpha^{3}\right) /(2+\alpha)(1-\alpha)^{2}\right]$
(C) $\left[\left(\mathrm{P}_{0} \alpha^{2}\right) / 2(1-\alpha)^{2}\right]$
(D) None of these
30. What is the minimum mass of $\mathrm{CaCO}_{3}(\mathrm{~s})$, below which it decomposes completely, required to establish equilibrium in a 6.50 litre container for the reaction: $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) ; \mathrm{K}_{\mathrm{c}}=0.05$ mole/litre
(A) 32.5 g
(B) 24.6 g
(C) 40.9 g
(D) 8.0 gm
31. In the reaction $\mathrm{C}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})$, the equilibrium pressure is 12 atm . If 50% of CO_{2} reacts then K_{p} will be
(A) 12 atm
(B) 16 atm
(C) 20 atm
(D) 24 atm

CHEMISTRY FOR JEE MAIN \& ADVANCED

32. Solid ammonium carbamate dissociate to give ammonia and carbon dioxide as follows

$$
\mathrm{NH}_{2} \mathrm{COONH}_{4}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

which of the following graph correctly represents the equilibrium.
(A)

(B)

(C)

(D)

33. $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g}), \mathrm{K}_{\mathrm{c}}=4$. This reversible reaction is studied graphically as shown in figure. Select the correct statements out of I, II and III.
I : Reaction quotient has maximum value at point A .
II : Reaction proceeds left to right at a point when

$$
\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=\left[\mathrm{NO}_{2}\right]=0.1 \mathrm{M} .
$$

III : $\mathrm{K}_{\mathrm{c}}=\mathrm{Q}$ when point D or F is reached :
(A) I, II
(B) II, III
(C) I, III
(D) I, II, III
34. 2 mole each of $\mathrm{SO}_{3}, \mathrm{CO}, \mathrm{SO}_{2}$ and CO_{2} is taken in a one lit. vessel. If K_{C} for

$$
\mathrm{SO}_{3}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \text { is } 1 / 9 \text { then }
$$

(A) total no. of moles at equilibrium are less than 8
(B) $\mathrm{n}\left(\mathrm{SO}_{3}\right)+\mathrm{n}\left(\mathrm{CO}_{2}\right)=4$
(C) $\left[\mathrm{n}\left(\mathrm{SO}_{2}\right) / \mathrm{n}(\mathrm{CO})\right]<1$
(D) both (B) and (C).
35. For the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
$\mathrm{K}_{\mathrm{c}}=66.9$ at $350^{\circ} \mathrm{C}$ and $\mathrm{K}_{\mathrm{c}}=50.0$ at $448^{\circ} \mathrm{C}$. The reaction has
(A) $\Delta \mathrm{H}=+\mathrm{ve}$
(B) $\Delta H=-v e$
(C) $\Delta \mathrm{H}=$ zero
(D) $\Delta \mathrm{H}$ sign can not be determined
36. The correct relationship between standard free energy change in a reaction and the corresponding equilibrium constant K is
(A) $-\Delta \mathrm{G}^{\mathrm{o}}=\mathrm{RT} \ln \mathrm{K}$
(B) $\Delta \mathrm{G}=\mathrm{RT} \ln \mathrm{K}$
(C) $-\Delta \mathrm{G}=\mathrm{RT} \ln \mathrm{K}$
(D) $\Delta \mathrm{G}^{0}=\mathrm{RT} \ln \mathrm{K}$
37. The effect of temperature on equilibrium constant is expressed as $\left(\mathrm{T}_{2}>\mathrm{T}_{1}\right)$ $\log K_{2} / K_{1}=\frac{-\Delta H}{2.303}\left[\frac{1}{T_{2}}-\frac{1}{T_{1}}\right]$. For endothermic reaction false statement is
(A) $\left[\frac{1}{T_{2}}-\frac{1}{T_{1}}\right]=$ positive (B) $\Delta H=$ positive
(C) $\log \mathrm{K}_{2}>\log \mathrm{K}_{1}$
(D) $\mathrm{K}_{2}>\mathrm{K}_{1}$
38. An exothermic reaction is represented by the graph :
(A)

(B)

(C)

(D) None of these
39. An endothermic reaction is represented by the graph :
(A)

(B)

(C)

(D) None of these
40. The value of $\Delta \mathrm{G}^{\circ}$ for a reaction in aqueous phase having $\mathrm{K}_{\mathrm{c}}=1$, would be:
(A) -RT
(B) -1
(C) 0
(D) + RT
41. For the equilibrium $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightleftharpoons \mathrm{CuSO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\mathrm{K}_{\mathrm{p}}=2.25 \times 10^{-4} \mathrm{~atm}^{2}$ and vapour pressure of water is 22.8 Torr at 298 K .
$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ is efflorescent (i.e., loses water) when relative humidity is :
(A) less than 33.3%
(B) less than 50%
(C) less than 66.6%
(D) above 66.6\%
42. Equilibrium constant for the following equilibrium is given at $0^{\circ} \mathrm{C}$.
$\mathrm{Na}_{2} \mathrm{HPO}_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightleftharpoons \mathrm{Na}_{2} \mathrm{HPO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \mathrm{K}_{\mathrm{p}}=31.25 \times 10^{-13}$
At equilibrium what will be partial pressure of water vapour :
(A) $\frac{1}{5} \times 10^{-3} \mathrm{~atm}$
(B) $0.5 \times 10^{-3} \mathrm{~atm}$
(C) $5 \times 10^{-2} \mathrm{~atm}$
(D) $5 \times 10^{-3} \mathrm{~atm}$.
43. A liquid is in equilibrium with its vapour at its boiling point. On the average the molecules in the two phases have equal
(A) inter molecular forces
(B) potential energy
(C) kinetic energy
(D) none of these .
44. Densities of diamond and graphite are 3.5 and $2.3 \mathrm{~g} / \mathrm{mL}$.

$$
\mathrm{C}(\text { diamond }) \rightleftharpoons \mathrm{C}(\text { graphite })
$$

$\Delta_{\mathrm{r}} \mathrm{H}=-1.9 \mathrm{~kJ} / \mathrm{mole}$
favourable conditions for formation of diamond are
(A) high pressure and low temperature
(B) low pressure and high temperature
(C) high pressure and high temperature
(D) low pressure and low temperature

CHEMISTRY FOR JEE MAIN \& ADVANCED

45. Introduction of inert gas (at the same temperature) will affect the equilibrium if :
(A) volume is constant and $\Delta \mathrm{n}_{\mathrm{g}} \neq 0$
(B) pressure is constant and $\Delta \mathrm{n}_{\mathrm{g}} \neq 0$
(C) volume is constant and $\Delta \mathrm{n}_{\mathrm{g}}=0$
(D) pressure is constant and $\Delta \mathrm{n}_{\mathrm{g}}^{\mathrm{g}}=0$
46. For the reaction $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$ at a given temperature the equilibrium amount of $\mathrm{CO}_{2}(\mathrm{~g})$ can be increased by :
(A) adding a suitable catalyst
(B) adding an inert gas
(C) decreasing the volume of container
(D) increasing the amount of $\mathrm{CO}(\mathrm{g})$
47. Given the following reaction at equilibrium $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$. Some inert gas at constant pressure is added to the system. Predict which of the following facts will be affected.
(A) More $\mathrm{NH}_{3}(\mathrm{~g})$ is produced
(B) Less $\mathrm{NH}_{3}(\mathrm{~g})$ is produced
(C) No affect on the equilibrium
(D) K_{p} of the reaction is decreased
48. The equilibrium, $\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ is attained at $25^{\circ} \mathrm{C}$ in a closed container and an inert gas, helium, is introduced. Which of the following statement(s) is/are correct.
(A) Concentrations of $\mathrm{SO}_{2}, \mathrm{Cl}_{2}$ and $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ are changed
(B) No effect on equilibrium
(C) Concentration of SO_{2} is reduced
(D) K_{p} of reaction is increasing
49. An equilibrium mixture in a vessel of capacity 100 litre contain $1 \mathrm{~mol} \mathrm{~N}_{2}, 2 \mathrm{~mol} \mathrm{O}_{2}$ and 3 mol NO. Number of moles of O_{2} to be added so that at new equilibrium the conc. of NO is found to be $0.04 \mathrm{~mol} / \mathrm{lit}$.:
(A) (101/18)
(B) (101/9)
(C) (202/9)
(D) None of these
50. The reactions $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ and $\mathrm{COCl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$ are simultaneously in equilibrium at constant volume. A few moles of $\mathrm{CO}(\mathrm{g})$ are introduced into the vessel. After some time, the new equilibrium concentration of
(A) PCl_{5} will remain unchanged
(B) Cl_{2} will be greater
(C) PCl_{5} will become less
(D) PCl_{5} will become greater
51. The two equilibria, $\mathrm{AB}(\mathrm{aq}) \rightleftharpoons \mathrm{A}^{+}(\mathrm{aq})+\mathrm{B}^{-}(\mathrm{aq})$ and $\mathrm{AB}(\mathrm{aq})+\mathrm{B}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{AB}_{2}{ }^{-}(\mathrm{aq})$ are simultaneously maintained in a solution with equilibrium constants, K_{1} and K_{2} respectively. The ratio of concentration of A^{+}to AB_{2}^{-}in the solution is :
(A) directly proportional to the concentration of B^{-}(aq.).
(B) inversely proportional to the concentration of B^{-}(aq.).
(C) directly proportional to the square of the concentration of B^{-}(aq.).
(D) inversely proportional to the square of the concentration of B^{-}(aq.).
52. In the preceeding problem, if $\left[\mathrm{A}^{+}\right]$and $\left[\mathrm{AB}_{2}^{-}\right]$are y and x respectively, under equilibrium produced by adding the substance $A B$ to the solvents, then K_{1} / K_{2} is equal to
(A) $\frac{y}{x}(y-x)^{2}$
(B) $\frac{y^{2}(x+y)}{x}$
(C) $\frac{y^{2}(x+y)}{x}$
(D) $\frac{y}{x}(x-y)$
[Note: Use the information of the preceeding problem]
53. The equilibrium $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$ is estabilished in a reaction vessel of 2.5 L capacity. The amounts of N_{2} and O_{2} taken at the start were respectively 2 moles and 4 moles. Half a mole of nitrogen has been used up at equilibrium. The molar concentration of nitric oxide is :
(A) 0.2
(B) 0.4
(C) 0.6
(D) 0.1
54.

The gas A_{2} in the left flask allowed to react with gas B_{2} present in right flask as

$$
\mathrm{A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB}(\mathrm{~g}) ; \mathrm{K}_{\mathrm{c}}=4 \text { at } 27^{\circ} \mathrm{C} .
$$

What is the concentration of AB when equilibrium is established?
(A) 1.33 M
(B) 2.66 M
(C) 0.66 M
(D) 0.33 M
55. $\quad \mathrm{X}_{2}(\mathrm{~g})+\mathrm{Y}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{XY}(\mathrm{g})$ reaction was studied at a certain temperature. In the beginning 1 mole of X_{2} was taken in a one litre flask and 2 moles of Y_{2} was taken in another 2 litre flask and both these containers are connected so equilibrium can be established. What is the equilibrium concentration of X_{2} and Y_{2} ? Given Equilibrium concentration of $[\mathrm{XY}]=0.6 \mathrm{moles} / \mathrm{litre}$.
(A) $\left(\frac{1}{3}-0.3\right),\left(\frac{2}{3}-0.3\right)$
(B) $\left(\frac{1}{3}-0.6\right),\left(\frac{2}{3}-0.6\right)$
(C) $(1-0.3),(2-0.3)$
(D) $(1-0.6),(2-0.6)$
56. The active mass of 64 gm of HI in a two litre flask would be :
(A) 2
(B) 1
(C) 5
(D) 0.25
57. Ratio of active masses of $22 \mathrm{~g} \mathrm{CO}_{2}, 3 \mathrm{~g} \mathrm{H}_{2}$ and $7 \mathrm{~g} \mathrm{~N}_{2}$ in a gaseous mixture :
(A) $22: 3: 7$
(B) $0.5: 3: 7$
(C) $1: 3: 1$
(D) $1: 3: 0.5$
58. For the following gases equilibrium, $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g}), \mathrm{K}_{\mathrm{p}}$ is found to be equal to K_{c}. This is attained when:
(A) $0^{\circ} \mathrm{C}$
(B) 273 K
(C) 1 K
(D) 12.19 K
59. Consider the following reversible gaseous reactions (at 298 K) :
(a) $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$
(b) $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}$
(c) $2 \mathrm{HI} \rightleftharpoons \mathrm{H}_{2}+\mathrm{I}_{2}$
(d) $\mathrm{X}+\mathrm{Y} \rightleftharpoons 4 \mathrm{Z}$

Highest and lowest value of $\frac{\mathrm{K}_{\mathrm{p}}}{\mathrm{K}_{\mathrm{c}}}$ will be shown by the equilibrium
(A) d, b
(B) a, c
(C) a, b
(D) b, c
60. A 10 litre box contains O_{3} and O_{2} at equilibrium at $2000 \mathrm{~K} . \mathrm{K}_{\mathrm{P}}=4 \times 10^{14} \mathrm{~atm}$ for $2 \mathrm{O}_{3}(\mathrm{~g}) \rightleftharpoons 3 \mathrm{O}_{2}(\mathrm{~g})$. Assume that $\mathrm{P}_{\mathrm{O}_{2}} \gg \mathrm{P}_{\mathrm{O}_{3}}$ and if total pressure is 8 atm , then partial pressure of O_{3} will be :
(A) $8 \times 10^{-5} \mathrm{~atm}$
(B) $11.3 \times 10^{-7} \mathrm{~atm}$
(C) $9.71 \times 10^{-6} \mathrm{~atm}$
(D) $9.71 \times 10^{-2} \mathrm{~atm}$
61. $\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$ in the reversible reaction the moles of $\mathrm{PCl}_{5}, \mathrm{PCl}_{3}$ and Cl_{2} are a, b and c respectively and total pressure is P then value of K_{p} is :
(A) $\frac{b c}{a} . R T$
(B) $\frac{b}{(a+b+c)} \cdot P$
(C) $\frac{b c . P}{a(a+b+c)}$
(D) $\frac{\mathrm{c}}{(\mathrm{a}+\mathrm{b}+\mathrm{c})} . \mathrm{P}$
62. A sample of pure NO_{2} gas heated to 1000 K decomposes : $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$. The equilibrium constant K_{p} is 100 atm . Analysis shows that the partial pressure of O_{2} is 0.25 atm . at equilibrium. The partial pressure of NO_{2} at equilibrium is:
(A) 0.03
(B) 0.25
(C) 0.025
(D) 0.04

CHEMISTRY FOR JEE MAIN \& ADVANCED

63. Ammonia dissociates into N_{2} and H_{2} such that degree of dissociation α is very less than 1 and equilibrium pressure is P_{0} then the value of α is [if K_{p} for $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$ is $27 \times 10^{-8} \mathrm{P}_{0}{ }^{2}$]:
(A) 10^{-4}
(B) 4×10^{-4}
(C) 0.02
(D) can't be calculated.
64. At $727^{\circ} \mathrm{C}$ and 1.23 atm of total equilibrium pressure, SO_{3} is partially dissociated into SO_{2} and O_{2} according to $\mathrm{SO}_{3}(\mathrm{~g})$ $\rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$. The density of equilibrium mixture is $0.9 \mathrm{gm} /$ litre. The degree of dissociation is:
(A) $1 / 3$
(B) $2 / 3$
(C) $1 / 4$
(D) $1 / 5$.
65. If for $2 \mathrm{~A}_{2} \mathrm{~B}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}), \mathrm{K}_{\mathrm{p}}=$ TOTAL PRESSURE (at equilibrium) and starting the dissociation from 4 mol of $A_{2} B$ then :
(A) degree of dissociation of $\mathrm{A}_{2} \mathrm{~B}$ will be $(2 / 3)$.
(B) total no. of moles at equilibrium will be (14/3).
(C) at equilibrium the no. of moles of $A_{2} B$ are not equal to the no. of moles of B_{2}.
(D) at equilibrium the no. of moles of $A_{2} B$ are equal to the no. of moles of A_{2}.
66. The formation constant of $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ is 6×10^{8} at $25^{\circ} \mathrm{C}$. If 50 ml of $2.0 \mathrm{M} \mathrm{NH}_{3}$ is added to 50 ml of 0.20 M solution of Ni^{2+}, the concentration of Ni^{2+} ion will be nearly equal to :
(A) 3×10^{-10} mole litre ${ }^{-1}$
(B) 2×10^{-10} mole litre ${ }^{-1}$
(C) 2×10^{-9} mole litre ${ }^{-1}$
(D) 4×10^{-8} mole litre ${ }^{-1}$
67. At a temperature T , a compound $\mathrm{AB}_{4}(\mathrm{~g})$ dissociates as $2 \mathrm{AB}_{4}(\mathrm{~g}) \rightleftharpoons \mathrm{A}_{2}(\mathrm{~g})+4 \mathrm{~B}_{2}(\mathrm{~g})$ with a degree of dissociation x, which is small compared with unity. The expression of K_{p} in terms of x and total pressure P is;
(A) $8 P^{3} x^{5}$
(B) $256 \mathrm{P}^{3} \mathrm{x}^{5}$
(C) $4 \mathrm{Px}^{2}$
(D) None of these
68. The degree of dissociation of $\mathrm{PCl}_{5}(\mathrm{aq})$ obeying the equilibrium, $\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$, is approximately related to the presure at equilibrium by (given $\alpha \ll 1$) :
(A) $\alpha \propto P$
(B) $\alpha \propto \frac{1}{\sqrt{\mathrm{P}}}$
(C) $\alpha \propto \frac{1}{\mathrm{P}^{2}}$
(D) $\alpha \propto \frac{1}{\mathrm{P}^{4}}$
69. A 10 L container at 300 K contains CO_{2} gas at pressure of 0.2 atm and an excess solid CaO (neglect the volume of solid CaO). The volume of container is now decreased by moving the movable piston fitted in the container. What will be the maximum volume of container when pressure of CO_{2} attains its maximum value given that

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{p}}=0.800 \mathrm{~atm}
$$

(A) 5 L
(B) 2.5 L
(C) 1 L
(D) The information is insufficient.
70. A reaction mixture containing $\mathrm{H}_{2}, \mathrm{~N}_{2}$ and NH_{3} has partial pressure $2 \mathrm{~atm}, 1 \mathrm{~atm}$ and 3 atm respectively at 725 K . If the value of K_{P} for the reaction, $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$ is $4.28 \times 10^{-5} \mathrm{~atm}^{-2}$ at 725 K , in which direction the net reaction will go :
(A) Forward
(B) Backward
(C) No net reaction
(D) Direction of reaction cannot be predicted

equilibrium constant is found to be 1.732
at 298 K . Now if in a vessel at 298 K , a mixture of these two gases be taken as represented by the point P in the figure, predict what will happen
(A) Immediately, above equilibrium will be setup
(B) Above reaction will go in the forward direction till it attains equilibrium
(C) Above reaction will go in the backward direction till it attains equilibrium
(D) Nothing can be said

72. Ammonia gas at 15 atm is introduced in a rigid vessel at 300 K . At equilibrium the total pressure of the vessel is found to be 40.11 atm at $300^{\circ} \mathrm{C}$. The degree of dissociation of NH_{3} will be:
(A) 0.6
(B) 0.4
(C) Unpredictable
(D) None of these
73. Attainment of the equilibrium

$$
\mathrm{A}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{C}(\mathrm{~g})+\mathrm{B}(\mathrm{~g})
$$

gave the following graph.
Find the correct option.
(\% dissociation $=$ fraction dissociated $\times 100$)
(A) $\mathrm{At} t=5 \mathrm{sec}$ equilibrium has been reached and $\mathrm{K}_{\mathrm{c}}=128(\mathrm{~mol} / \text { litre })^{2}$
(B) At $t=5 \mathrm{sec}$ equilibrium has been reached and $\%$ dissociation of A is 60%
(C) At $\mathrm{t}=5 \mathrm{sec}$ equilibrium has been reached and $\%$ dissociation of A is 40%
(D) None of these

74. Addition of water to which of the following equilibria causes it to shift in the backward direction?
(A) $\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{3}^{\oplus}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
(B) $\mathrm{AgCl}(\mathrm{s}) \rightleftharpoons \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
(C) $\mathrm{HCN}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CN}^{-}(\mathrm{aq})$
(D) $\left[\mathrm{Cr}(\text { dien })_{2}\right]^{3+}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\ell)+3 \mathrm{Cl}^{-}(\mathrm{aq}) \rightleftharpoons\left[\mathrm{Cr}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right](\mathrm{aq})+2$ dien (aq)
75. The equilibrium constant for the reaction $\mathrm{Br}_{2} \rightleftharpoons 2 \mathrm{Br}$ at 500 K and 700 K are 1×10^{-10} and 1×10^{-5} respectively. The reaction is :
(A) Endothermic
(B) Exothermic
(C) Fast
(D) Slow
76. The value of k_{p} for the reaction at $27^{\circ} \mathrm{C}$

$$
\mathrm{Br}_{2}(\ell)+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{BrCl}(\mathrm{~g})
$$

is ' 1 atm '. At equilibrium in a closed container partial pressure of BrCl gas is 0.1 atm and at this temperature the vapour pressure of $\mathrm{Br}_{2}(\ell)$ is also 0.1 atm . Then what will be minimum moles of $\mathrm{Br}_{2}(\ell)$ to be added to 1 mole of Cl_{2}, initially, to get above equilibrium situation :
(A) $\frac{10}{6}$ moles
(B) $\frac{5}{6}$ moles
(C) $\frac{15}{6}$ moles
(D) 2 moles
77. Some quantity of water is contained in a container as shown in figure. As neon is added to this system at constant pressure, the amount of liquid water in the vessel
(A) increases
(B) decreases
(C) remains same
(D) changes unpredictably

78. When a bottle of cold drink is opened, the gas comes out with a fizz due to :
(A) Decrease in temperature
(B) Increase in pressure
(C) Decrease in pressure suddenly which results in decrease of solubility of CO_{2} gas in water
(D) None
79. For an equilibrium $\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\ell)$ which of the following statements is true.
(A) The pressure changes do not affect the equilibrium
(B) More of ice melts if pressure on the system is increased
(C) More of liquid freezes if pressure on the system is increased
(D) The pressure changes may increase or decrease the degree of advancement of the reaction depending upon the temperature of the system
80. Variation of $\log _{10} \mathrm{~K}$ with $\frac{1}{\mathrm{~T}}$ is shown by the following graph in which straight line is at 45°, hence $\Delta \mathrm{H}^{\circ}$ is :

(A) +4.606 cal
(B) -4.606 cal
(C) 2 cal
(D) -2 cal
81. The equilibrium constant for, $2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g})$ is 0.0118 at 1300 K while the heat of dissociation is 597.4 kJ . The standard equilibrium constant of the reaction at 1200 K is :
(A) 1.180×10^{-4}
(B) 11.80
(C) 118.0
(D) cannot be calculated from given data.
82. In the system, $\mathrm{LaCl}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+$ heat $\rightleftharpoons \mathrm{LaClO}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{g})$, equilibrium is established. More water vapour is added to restablish the equlibrium. The pressure of water vapour is doubled. The factor by which pressure of HCl is changed is:
(A) 2
(B) $\sqrt{2}$
(C) $\sqrt{3}$
(D) $\sqrt{5}$
83. Statement-1: $\mathrm{A}(\mathrm{s}) \rightleftharpoons \mathrm{B}(\mathrm{g})+\mathrm{C}(\mathrm{g}) ; \mathrm{Kp}_{1}$

$$
\mathrm{X}(\mathrm{~s}) \rightleftharpoons \mathrm{B}(\mathrm{~g})+\mathrm{Y}(\mathrm{~g}) ; \mathrm{Kp}_{2}=3 \mathrm{Kp}_{1}
$$

Total pressure of B over the mixture of solid A and X is greater than pressure of B either over excess solid A or over excess solid X But less then their directly sumup value when excess of solid A and excess of solid B kept in different container.
Statement-2 : In presence of each other, degree of dissociation of both solids decreases.
(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
(B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
(C) Statement-1 is True, Statement- 2 is False
(D) Statement-1 is False, Statement-2 is True
84. Two solid A and B are present in two different container having same volume and same temperature following equilibrium are established :
In container $(1) \mathrm{A}(\mathrm{s}) \rightleftharpoons \mathrm{D}(\mathrm{g})+\mathrm{C}(\mathrm{g}) \mathrm{P}_{\mathrm{T}}=40$ atm at equilibrium
In container $(2) \mathrm{B}(\mathrm{s}) \rightleftharpoons \mathrm{E}(\mathrm{g})+\mathrm{F}(\mathrm{g}) \mathrm{P}_{\mathrm{T}}=60$ atm at equilibrium
If excess of A and B are added to a third container having double the volume and at same temperature then, the total pressure of this container at equilibrium is :
(A) 50 atm
(B) 100 atm
(C) 200 atm
(D) 70 atm
85. Solid A and B are taken in a closed container at a certain temperature. These two solids decompose and following equilibria are established simultaneously

$$
\begin{array}{ll}
\mathrm{A}(\mathrm{~s}) \rightleftharpoons \mathrm{X}(\mathrm{~g})+\mathrm{Y}(\mathrm{~g}) & \mathrm{K}_{\mathrm{P}_{1}}=250 \mathrm{~atm}^{2} \\
\mathrm{~B}(\mathrm{~s}) \rightleftharpoons \mathrm{Y}(\mathrm{~g})+\mathrm{Z}(\mathrm{~g}) & \mathrm{K}_{\mathrm{P}_{2}}=?
\end{array}
$$

If the total pressure developed over the solid mixture is 50 atm . Then the value of K_{P} for the $2^{\text {nd }}$ reaction.
(A) 375
(B) 625
(C) 225
(D) 250
86. In the Haber process for the industrial manufacturing of ammonia involving the reaction, $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$ at 200 atm pressure in the presence of a catalyst, a temperature of about $500^{\circ} \mathrm{C}$ is used. This is considered as optimum temperature for the process because
(A) yield is maximum at this temperature
(B) catalyst is active only at this temperature
(C) energy needed for the reaction is easily obtained at this temperature
(D) rate of the catalytic reaction is fast enough while the yield is also appreciable for this exothermic reaction at this temperature.
87. Two solid compounds X and Y dissociates at a certain temperature as follows

$$
\begin{aligned}
& \mathrm{X}(\mathrm{~s}) \rightleftharpoons \mathrm{A}(\mathrm{~g})+2 \mathrm{~B}(\mathrm{~g}) ; \mathrm{K}_{\mathrm{p} 1}=9 \times 10^{-3} \mathrm{~atm}^{3} \\
& \mathrm{Y}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{~g}) ; \mathrm{K}_{\mathrm{p} 2}=4.5 \times 10^{-3} \mathrm{~atm}^{3}
\end{aligned}
$$

The total pressure of gases over a mixture of X and Y is :
(A) 4.5 atm
(B) 0.45 atm
(C) 0.6 atm
(D) None of these
88. The equilibrium concentration of $[B]_{e q}$ for the reversible reaction $A \rightleftharpoons B$ can be evaluated by the expression:
(A) $\mathrm{K}_{\mathrm{C}}[\mathrm{A}]_{\mathrm{e}}^{-1}$
(B) $\frac{\mathrm{k}_{\mathrm{f}}}{\mathrm{k}_{\mathrm{b}}}[\mathrm{A}]_{\mathrm{e}}^{-1}$
(C) $\mathrm{k}_{\mathrm{f}} \mathrm{k}_{\mathrm{b}}^{-1}[\mathrm{~A}]_{\mathrm{e}}$
(D) $\mathrm{k}_{\mathrm{f}} \mathrm{k}_{\mathrm{b}}[\mathrm{A}]^{-1}$
89. In a chemical equilibrium, the rate constant for the backward reaction is 7.5×10^{-4} and the equilibrium constant is 1.5 the rate constant for the forward reaction is :
(A) 2×10^{-3}
(B) 5×10^{-4}
(C) 1.12×10^{-3}
(D) 9.0×10^{-4}
90. Which of the following is correct for the equilibrium of the reaction

$$
\mathrm{C}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

(A) $\mathrm{p}_{\mathrm{H}_{2}} \propto \mathrm{p}_{\mathrm{H}_{2} \mathrm{O}}$
(B) $\mathrm{p}_{\mathrm{H}_{2}} \propto \sqrt{\mathrm{p}_{\mathrm{H}_{2} \mathrm{O}}}$
(C) $\mathrm{p}_{\mathrm{H}_{2}} \propto \mathrm{p}_{\mathrm{H}_{2} \mathrm{O}}^{2}$
(D) $\mathrm{p}_{\mathrm{H}_{2}} \propto \frac{\mathrm{p}_{\mathrm{H}_{2} \mathrm{O}}^{2}}{\mathrm{p}_{\mathrm{CO}}}$
91. Which of the following is not favourable for SO_{3} formation

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}) ; \quad \Delta \mathrm{H}=-45.0 \mathrm{kcal}
$$

(A) High pressure
(B) High temperature
(C) Decreasing SO_{3} concentration
(D) Increasing reactant concentration
92. Rate of reaction curve for equilibrium can be like: $\quad\left[r_{f}=\right.$ forward rate, $r_{b}=$ backward rate $]$
(A)

(B)

(C)

(D)

93. For a reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$, the value of K_{C} does not depends upon :
(a) Initial concentration of the reactants
(b) Pressure
(c) Temperature
(d) catalyst
(A) Only c
(B) a,b,c
(C) a,b,d
(D) a,b,c,d
94. At 1000 K , the value of K_{p} for the reaction :
$\mathrm{A}(\mathrm{g})+2 \mathrm{~B}(\mathrm{~g}) \rightleftharpoons 3 \mathrm{C}(\mathrm{g})+\mathrm{D}(\mathrm{g})$ is 0.05 atmosphere. The value of K_{C} in terms of R would be :
(A) 20000 R
(B) 0.02 R
(C) $5 \times 10^{-5} \mathrm{R}$
(D) $5 \times 10^{-5} \times \mathrm{R}^{-1}$
95. The equilibrium constant $\left(\mathrm{K}_{\mathrm{p}}\right)$ for the reaction $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ is 16 . If the volume of the container is reduced to one half its original volume, the value of K_{p} for the reaction at the same temperature will be :
(A) 32
(B) 64
(C) 16
(D) 4
96. The equilibrium constant for the reaction : $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$ at 2000 K is 4×10^{4} In presence of a catalyst the equilibrium is established ten times faster at the same temperature. What is the value of equilibrium constant in presence of catalyst : -
(A) 40×10^{-4}
(B) 4×10^{-4}
(C) 4×10^{4}
(D) None

Exercise \# $2>$ Part \# I [Multiple Correct Choice Type Questions]

1. (i) $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$,
K_{1}
(ii)

$$
\left(\frac{1}{2}\right) \mathrm{N}_{2}(\mathrm{~g})+\left(\frac{1}{2}\right) \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}(\mathrm{~g}) ; \quad \mathrm{K}_{2}
$$

(iii) $\quad 2 \mathrm{NO}(\mathrm{g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$; $\quad \mathrm{K}_{3}$
(iv) $\quad \mathrm{NO}(\mathrm{g}) \rightleftharpoons\left(\frac{1}{2}\right) \mathrm{N}_{2}(\mathrm{~g})+\left(\frac{1}{2}\right) \mathrm{O}_{2}(\mathrm{~g}) ; \quad \mathrm{K}_{4}$

Correct relation between $\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}$ and K_{4} is/are :
(A) $\mathrm{K}_{1} \times \mathrm{K}_{3}=1$
(B) $\sqrt{\mathrm{K}_{1}} \times \mathrm{K}_{4}=1$
(C) $\sqrt{\mathrm{K}_{3}} \times \mathrm{K}_{2}=1$
(D) None
2. For a reversible reaction $\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD}$; the variation of K with temperature is given by $\log \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\frac{-\Delta \mathrm{H}^{\circ}}{2.303 \mathrm{R}}\left[\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{1}}\right]$ then,

(A) $\mathrm{K}_{2}>\mathrm{K}_{1}$	if	$\mathrm{T}_{2}>\mathrm{T}_{1}$ for an endothermic change
(B) $\mathrm{K}_{2}<\mathrm{K}_{1}$	if	$\mathrm{T}_{2}>\mathrm{T}_{1}$ for an endothermic change
(C) $\mathrm{K}_{2}>\mathrm{K}_{1}$	if	$\mathrm{T}_{2}>\mathrm{T}_{1}$ for an exothermic change
(D) $\mathrm{K}_{2}<\mathrm{K}_{1}$	if	$\mathrm{T}_{2}>\mathrm{T}_{1}$ for an exothermic change

3. If $\log \frac{\mathrm{k}_{\mathrm{c}}}{\mathrm{k}_{\mathrm{p}}}-\log \frac{1}{\mathrm{RT}}=0$
then above is true for the following equilibrium reaction
$(\mathrm{A}) \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g})$
(B) $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
(C) $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$
(D) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
4. The equation $\alpha=\frac{D-d}{(n-1) d}$ is not correctly matched for :
$(\mathrm{A}) \mathrm{A}(\mathrm{g}) \rightleftharpoons(\mathrm{n} / 2) \mathrm{B}(\mathrm{g})+(\mathrm{n} / 3) \mathrm{C}(\mathrm{g})$
$(B) A(g) \rightleftharpoons(n / 3) B(g)+(2 n / 3) C(g)$
$(\mathrm{C}) \mathrm{A}(\mathrm{g}) \rightleftharpoons(\mathrm{n} / 2) \mathrm{B}(\mathrm{g})+(\mathrm{n} / 4) \mathrm{C}(\mathrm{g})$
(D) $\mathrm{A}(\mathrm{g}) \rightleftharpoons(\mathrm{n} / 2) \mathrm{B}(\mathrm{g})+\mathrm{C}(\mathrm{g})$
5. Which of the following is correct about the chemical equilibrium?
(A) $(\Delta G)_{T, P}=0$
(B) Equilibrium constant is independent of initial concentration of reactants
(C) Catalyst has no effect on equilibrium state
(D) Reaction stops at equilibrium
6. Four vessel each of volume $\mathrm{V}=10 \mathrm{~L}$ contains
(A) $16 \mathrm{~g} \mathrm{CH}_{4}$
(B) $18 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
(C) $35.5 \mathrm{~g} \mathrm{Cl}_{2}$
(D) $44 \mathrm{~g} \mathrm{CO}_{2}$

Which container will contain same active mass?
7. For the reaction : $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$

The forward reaction at constant temperature is favoured by
(A) introducing chlorine gas at constant volume
(B) introducing an inert gas at constant pressure
(C) increasing the volume of the container
(D) introducing PCl_{5} at constant volume
8. $\quad 2 \mathrm{CaSO}_{4}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{CaO}(\mathrm{s})+2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}), \Delta \mathrm{H}>0$

Above equilibrium is established by taking some amount of $\mathrm{CaSO}_{4}(\mathrm{~s})$ in a closed container at 1600 K . Then which of the following may be correct option.
(A) moles of CaO (s) will increase with the increase in temperature
(B) If the volume of the container is doubled at equilibrium then partial pressure of $\mathrm{SO}_{2}(\mathrm{~g})$ will change at new equilibrium.
(C) If the volume of the container is halved partial pressure of $\mathrm{O}_{2}(\mathrm{~g})$ at new equilibrium will remain same
(D) If two moles of the He gas is added at constant pressure then the moles of CaO (s) will increase.
9. $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightleftharpoons \mathrm{CuSO}_{4}(\mathrm{~s})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \mathrm{K}_{\mathrm{p}}=10^{-10}(\mathrm{~atm}) .10^{-2}$ moles of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ is taken in a 2.5 L container at $27^{\circ} \mathrm{C}$ then at equilibrium [Take : $\mathrm{R}=\frac{1}{12}$ litre $\mathrm{atm} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$]
(A) Moles of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ left in the container is 9×10^{-3}
(B) Moles of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ left in the container is 9.8×10^{-3}
(C) Moles of CuSO_{4} left in the container is 10^{-3}
(D) Moles of CuSO_{4} left in the container is 2×10^{-4}
10. 1 mole each of $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{I}_{2}(\mathrm{~g})$ are introduced in a 1 L evacuated vessel at 523 K and equilibrium $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ is established. The concentration of $\mathrm{HI}(\mathrm{g})$ at equilibrium :
(A) Changes on changing pressure.
(B) Changes on changing temperature.
(C) Changes on changing volume of the vessel.
(D) Is same even if only 2 mol of $\mathrm{HI}(\mathrm{g})$ were introduced in the vessel in the begining.
(E) Is same even when a platinum gauze is introduced to catalyse the reaction.
11. An industrial fuel, 'water gas', which consists of a mixture of H_{2} and CO can be made by passing steam over red-hot carbon. The reaction is

$$
\mathrm{C}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}), \Delta \mathrm{H}=+131 \mathrm{~kJ}
$$

The yield of CO and H_{2} at equilibrium would be shifted to the product side by :
(A) raising the relative pressure of the steam
(B) adding hot carbon
(C) raising the temperature
(D) reducing the volume of the system
12. If two gases AB_{2} and $\mathrm{B}_{2} \mathrm{C}$ are mixed the following equilibria are readily established

$$
\begin{aligned}
& \mathrm{AB}_{2}(\mathrm{~g})+\mathrm{B}_{2} \mathrm{C}(\mathrm{~g}) \rightleftharpoons \mathrm{AB}_{3}(\mathrm{~g})+\mathrm{BC}(\mathrm{~g}) \\
& \mathrm{BC}(\mathrm{~g})+\mathrm{B}_{2} \mathrm{C}(\mathrm{~g}) \rightleftharpoons \mathrm{B}_{3} \mathrm{C}_{2}(\mathrm{~g})
\end{aligned}
$$

It the reaction is started only with $A B_{2}$ with $B_{2} C$, then which of the following is necessarily true at equilibrium:
(A) $\left[\mathrm{AB}_{3}\right]_{\mathrm{eq}}=[\mathrm{BC}]_{\mathrm{eq}}$
(B) $\left[\mathrm{AB}_{2}\right]_{\mathrm{eq}}=\left[\mathrm{B}_{2} \mathrm{C}\right]_{\text {eq }}$
(C) $\left[\mathrm{AB}_{3}\right]_{\mathrm{eq}}>\left[\mathrm{B}_{3} \mathrm{C}_{2}\right]_{\mathrm{eq}}$
(D) $\left[\mathrm{AB}_{3}\right]_{\mathrm{eq}}>[\mathrm{BC}]_{\mathrm{eq}}$
13. The dissociation of phosgene, which occurs according to the reaction

$$
\mathrm{COCl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

Is an endothermic process. Which of the following will increase the degree of dissociation of COCl_{2} ?
(A) Adding Cl_{2} to the system
(B) Adding helium to the system at constant pressure
(C) Decreasing the temperature of the system
(D) Reducing the total pressure
14. For the gas phase reaction, $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{6}(\Delta \mathrm{H}=-32.7 \mathrm{kcal})$, carried out in a closed vessel, the equilibrium moles of $\mathrm{C}_{2} \mathrm{H}_{4}$ can be increased by :
(A) increasing the temperature
(B) decreasing the pressure
(C) removing some H_{2}
(D) adding some $\mathrm{C}_{2} \mathrm{H}_{6}$
15. $\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}, \mathrm{K}_{1} ;\left(\frac{1}{2}\right) \mathrm{N}_{2}+\left(\frac{1}{2}\right) \mathrm{O}_{2} \rightleftharpoons \mathrm{NO}, \mathrm{K}_{2}$
$2 \mathrm{NO} \rightleftharpoons \mathrm{N}_{2}+\mathrm{O}_{2}, \mathrm{~K}_{3} ; \mathrm{NO} \rightleftharpoons\left(\frac{1}{2}\right) \mathrm{N}_{2}+\left(\frac{1}{2}\right) \mathrm{O}_{2}, \mathrm{~K}_{4}$
Correct relation between $\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}$ and K_{4} is :
(A) $\mathrm{K}_{1} \times \mathrm{K}_{3}=1$
(B) $\sqrt{\mathrm{K}_{1}} \times \mathrm{K}_{4}=1$
(C) $\sqrt{\mathrm{K}_{3}} \times \mathrm{K}_{2}=1$
(D) None
16. Variation of equilibrium constant K for the reaction; $2 \mathrm{~A}(\mathrm{~s})+\mathrm{B}(\mathrm{g}) \rightleftharpoons \mathrm{C}(\mathrm{g})+2 \mathrm{D}(\mathrm{g})$ is plotted against absolute temperature T in figure as $-\ell \mathrm{nK}$ Vs $(1 / \mathrm{T})$:

($\ell \mathrm{nK}$ vs $1 / \mathrm{T}$ diagram)
(A) the forward reaction is exothermic
(B) the forward reaction is endothermic
(C) the slope of line is proportional to $\Delta \mathrm{H}$
(D) adding ' A ' favours forward reaction
(E) removing C favours forward reaction
17. The equilibrium of which of the following reactions will not be disturbed by the addition of an inert gas at constant volume?
$(\mathrm{A}) \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
$(\mathrm{B}) \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
(C) $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
(D) $\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$
18. The dissociation of ammonium carbamate may be represented by the equation :

$$
\mathrm{NH}_{4} \mathrm{CO}_{2} \mathrm{NH}_{2}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

$\Delta \mathrm{H}^{0}$ for the forward reaction is negative. The equilibrium will shift from right to left if there is
(A) a decrease in pressure
(B) an increase in temperature
(C) an increase in the concentration of ammonia
(D) an increase in the concentration of carbon dioxide
19. The percentage of ammonia obtainable, if equilibrium were to be established during the Haber process, is plotted against the operating pressure for two temperatures $400^{\circ} \mathrm{C}$ and $500^{\circ} \mathrm{C}$. Which of the following correctly represents the two graphs ?
(A)

(B)

(C)

(D)

20. In a 0.25 litre tube dissociation of 4 moles of NO is take place. If its degree of dissociation is 10%. The value of K_{p} for reaction $2 \mathrm{NO} \rightleftharpoons \mathrm{N}_{2}+\mathrm{O}_{2}$ is :
(A) $\frac{1}{(18)^{2}}$
(B) $\frac{1}{(8)^{2}}$
(C) $\frac{1}{16}$
(D) $\frac{1}{32}$
21. The vapour density of $\mathrm{N}_{2} \mathrm{O}_{4}$ at a certain temperature is 30 . What is the percentage dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ at this temperature?
(A) 53.3%
(B) 106.6\%
(C) 26.7%
(D) none
22. A sample of mixture of $\mathrm{A}(\mathrm{g}), \mathrm{B}(\mathrm{g})$ and $\mathrm{C}(\mathrm{g})$ under equilibrium has a mean molecular weight (observed) is 80 .
The equilibrium is

$$
\begin{gathered}
\mathrm{A}(\mathrm{~g}) \\
\text { (mol. wt. }=100 \text {) }
\end{gathered}
$$

$\rightleftharpoons \quad \mathrm{B}(\mathrm{g})+$
$\mathrm{C}(\mathrm{g})$
$(\mathrm{mol} . \mathrm{wt} .=60) \quad(\mathrm{mo} . \mathrm{wt} .=40)$

Find the degree of dissociation α for $\mathrm{A}(\mathrm{g})$.
(A) 0.25
(B) 0.5
(C) 0.75
(D) 0.8
23. In an equilibrium reaction for which $\Delta \mathrm{G}^{\circ}=0$, the value of equilibrium constant $\mathrm{K}=$
(A) 0
(B) 1
(C) 2
(D) 10
24. A reaction in equilibrium is represent by the following equation -
$2 \mathrm{~A}_{(\mathrm{s})}+3 \mathrm{~B}_{(\mathrm{g})} \rightleftharpoons 3 \mathrm{C}_{(\mathrm{g})}+\mathrm{D}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})}$ if the pressure on the system is reduced to half of its original value
(A) The amounts of C and D decreases
(B) The amounts of C and D increases
(C) The amount of B and D decreases
(D) All the amounts remain constant
25. On cooling of following system at equilibrium $\mathrm{CO}_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})$
(A) There is no effect on the equilibrium state
(B) More gas is formed
(C) More gas solidifies
(D) None of above
26. $\quad \mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD}$

In above reaction low pressure and high temperature, conditions are shift equilibrium in back direction so correct set
(A) $(\mathrm{a}+\mathrm{b})>(\mathrm{c}+\mathrm{d}), \Delta \mathrm{H}>0$
(B) $($ a + b) $<($ c + d $), \Delta \mathrm{H}>0$
(C) $($ a + b) $<($ c + d), Δ H <0
(D) $($ a + b) $>($ c + d), $\Delta \mathrm{H}<0$
27. 'a' moles of PCl_{5}, undergoes, thermal dissociation as: $\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$, the mole fraction of PCl_{3} at equilibrium is 0.25 and the total pressure is 2.0 atmosphere. The partial pressure of Cl_{2} at equilibrium is :
(A) 2.5
(B) 1.0
(C) 0.5
(D) None
28. 4.5 moles each of hydrogen and iodine heated in a sealed ten litre vessel. At equilibrium 3 moles of HI were found. The equilibrium constant for $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ is :
(A) 1
(B) 10
(C) 5
(D) 0.33
29. 1.50 moles each of hydrogen and iodine were placed in a sealed 10 litre container maintained at 717 K . At equilibrium 1.25 moles each of hydrogen and iodine were left behind. The equilibrium constant, K_{c} for the reaction. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$ $\rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ at 717 K is
(A) 0.4
(B) 0.16
(C) 25
(D) 50
30. Consider the reactions
(i) $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
(ii) $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$

The addition of an inert gas at constant volume
(A) will increase the dissociation of PCl_{5} as well as $\mathrm{N}_{2} \mathrm{O}_{4}$
(B) will reduce the dissociation of PCl_{5} as well as $\mathrm{N}_{2} \mathrm{O}_{4}$
(C) will increase the dissociation of PCl_{5} and step up the formation of NO_{2}
(D) will not disturb the equilibrium of the reactions
31. A quantity of PCl_{5} was heated in a $10 \mathrm{dm}^{3}$ vessel at $250^{\circ} \mathrm{C}: \mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$. At Equilibrium, the vessel contains 0.1 mole of PCl_{5} and 0.2 mole of Cl_{2}. The equilibrium constant of the reaction is :
(A) 0.04
(B) 0.025
(C) 0.02
(D) 0.05
32. 1 mole of N_{2} and 2 moles of H_{2} are allowed to react in a $1 \mathrm{dm}^{3}$ vessel. At equilibrium, 0.8 mole of NH_{3} is formed. The concentration of H_{2} in the vessel is :
(A) 0.6 mole
(B) 0.8 mole
(C) 0.2 mole
(D) 0.4 mole
33. In a given system, water and ice are in equilibrium. If pressure is applied to the above system then
(A) More of ice is formed
(B) Amount of ice and water will remain same
(C) More of ice is melted
(D) Either (A) or (C)
34. In a 20 litre vessel initially each have $1-1$ mole $\mathrm{CO}, \mathrm{H}_{2} \mathrm{OCO}_{2}$ is present, then for the equilibrium of $\mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CO}_{2}+\mathrm{H}_{2}$ following is true :
(A) H_{2}, more then 1 mole
(B) $\mathrm{CO}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2}$ less then 1 mole
(C) $\mathrm{CO}_{2} \& \mathrm{H}_{2} \mathrm{O}$ both more than 1 mole
(D) All of these
35. For which reaction at 298 K , the value of $\frac{\mathrm{K}_{\mathrm{p}}}{\mathrm{K}_{\mathrm{c}}}$ is maximum and minimum respectively :
(a) $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$
(b) $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}$
(c) $\mathrm{X}+\mathrm{Y} \rightleftharpoons 4 \mathrm{Z}$
(d) $\mathrm{A}+3 \mathrm{~B} \rightleftharpoons 7 \mathrm{C}$
(A) d,c
(B) d,b
(C) c, b
(D) d, a

CHEMISTRY FOR JEE MAIN \& ADVANCED

36. For the reaction $\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$, the degree of dissociation varies inversely as the square root of pressure of the system. Supposing at constant temperature. If the volume is increased 16 times the initial volume, the degree of dissociation for this reaction will becomes :
(A) 4 times
(B) $\frac{1}{4}$ times
(C) 2 times
(D) $\frac{1}{2}$ times
37. If $\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}$ are equilibrium constant for formation of $\mathrm{AD}, \mathrm{AD}_{2}, \mathrm{AD}_{3}$ respectively as follows $\mathrm{A}+\mathrm{D} \rightleftharpoons \mathrm{D}$, $\mathrm{AD}+\mathrm{D} \rightleftharpoons \mathrm{AD}_{2}, \mathrm{AD}_{2}+\mathrm{D} \rightleftharpoons \mathrm{AD}_{3}$. Then equilibrium constant ' K ' for $\mathrm{A}+3 \mathrm{D} \rightleftharpoons \rightleftharpoons \mathrm{AD}_{3}$ is related as
(A) $\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{3}=\mathrm{K}$
(B) $\log \mathrm{K}_{1}+\log \mathrm{K}_{2}+\log \mathrm{K}_{3}=\log \mathrm{K}$
(C) $K_{1}+K_{2}=K_{3}+K$
(D) $\log \mathrm{K}_{1}+\log \mathrm{K}_{2}=\log \mathrm{K}_{3}+\log \mathrm{K}$
38. For the reaction $\mathrm{C}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})$ the partial pressure of CO and CO_{2} are 2.0 and 4.0 atm. respectively at equilibrium. The K_{p} for the reaction is :
(A) 0.5
(B) 4.0
(C) 8.0
(D) 1
39. In the following reaction started only with A_{8},

$$
2 \mathrm{~A}_{8}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~A}_{3}(\mathrm{~g})+3 \mathrm{~A}_{2}(\mathrm{~g})+\mathrm{A}_{4}(\mathrm{~g})
$$

mole fraction of A_{2} is found to 0.36 at a total pressure of 100 atm at equilibrium. The mole fraction of $\mathrm{A}_{8}(\mathrm{~g})$ at equilibrium is :
(A) 0.28
(B) 0.72
(C) 0.18
(D) None of these
40. 500 ml vessel contains 1.5 M each of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D at equilibrium. If 0.5 M each of C and D are taken out, the value of K_{C} for $\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D}$ will be
(A) 1.0
(B) $1 / 9$
(C) $4 / 9$
(D) $8 / 9$
41. The effect of adding krypton (Kr) gas on position of equilibrium, keeping the volume of the system constant is
(A) If $\Delta \mathrm{n}=0$, backward reaction is favoured.
(B) If, $\Delta \mathrm{n}=+\mathrm{ve}$, forward reaction is favoured
(C) If $\Delta n=-v e$, forward reaction is favoured
(D) No effect watever be the value of Δn
42. S1: When a liquid and its vapour are at equilibrium and the pressure is suddenly decreased, cooling occurs.

S2 : If equilibrium constant for the reaction, $A_{2}+B_{2} \rightleftharpoons 2 A B$, is K, then for the backward reaction $\mathrm{AB} \rightleftharpoons \frac{1}{2} \mathrm{~A}_{2}+\frac{1}{2} \mathrm{~B}_{2}$, the equilibrium constant is $\frac{1}{\mathrm{~K}}$.
S3: Catalyst makes a reaction more exothermic.
(A) T F F
(B) F T F
(C) T T F
(D) F T T
43. S1: The rate of an exothermic reaction increases with increasing temperature.
$\mathrm{S} 2:$ For the reaction, $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{K}_{\mathrm{p}}=\mathrm{P}_{\mathrm{CO}}$.
S 3 : A catalyst increases the value of the equilibrium constant for a reaction.
(A) T F F
(B) F T F
(C) T T F
(D) F T T
44. What should be the value of K_{C} for the reaction $2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{3(\mathrm{~g})}$. If the amount are $\mathrm{SO}_{3}=48 \mathrm{~g}, \mathrm{SO}_{2}=12.8$ and $\mathrm{O}_{2}=9.6$ at equilibrium and the volume of the container is one litre ?
(A) 64
(B) 0.30
(C) 42
(D) 8.5
45. If 0.5 mole $_{2}$ is reacted with 0.5 mole I_{2} in a ten-litre container at $444^{\circ} \mathrm{C}$ and at same temperature value of equilibrium constant K_{C} is 49 , the ratio of $[\mathrm{HI}]$ and $\left[\mathrm{I}_{2}\right]$ will be :
(A) 7
(B) $\frac{1}{7}$
(C) $\sqrt{\frac{1}{7}}$
(D) 49
46. 1.1 mole of A mixed with 2.2 mole of B and the mixture is kept in a 1 litre at the equilibrium $A+2 B \rightleftharpoons 2 C+D$ is reached. At equilibrium 0.2 mole of C is formed then the value of K_{C} will be :
(A) 0.005
(B) 0.001
(C) 0.01
(D) 0.0001
47. In the reaction, $\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}$, the moles/litre of $\mathrm{N}_{2}, \mathrm{O}_{2}$ and NO respectively $0.25,0.05$ and 1.0 at equilibrium, the initial concentration of N_{2} and O_{2} will respectively be :
(A) $0.75 \mathrm{~mol} /$ litre, $0.55 \mathrm{~mole} /$ litre
(B) $0.50 \mathrm{~mole} / \mathrm{litre}, 0.75 \mathrm{~mole} / \mathrm{litre}$
(C) $0.25 \mathrm{~mole} / \mathrm{litre}, 0.50 \mathrm{~mole} /$ litre
(D) $0.25 \mathrm{~mole} / \mathrm{litre}, 1.0 \mathrm{~mole} /$ litre
48. S1: In case of endothermic reactions, the equilibrium shifts in backward direaction on increasing the temperature.

S 2 : The value of K increases with increases in pressure.
S 3 : For the reaction, $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$, the equilibrium constant, K is dimenstionless.
(A) T F F
(B) F T F
(C) T T F
(D) F F T
49. At room temperature, the equilibrium constant for the reaction $\mathrm{P}+\mathrm{Q} \rightleftharpoons \mathrm{R}+\mathrm{S}$ was calculated to be 4.32 . At $425^{\circ} \mathrm{C}$ the equilibrium constant became 1.24×10^{-2}. This indicates that the reaction
(A) is exothermic
(B) is endothermic
(C) is difficult to predict
(D) no relation between $\Delta \mathrm{H}$ and K
50. On decomposition of $\mathrm{NH}_{4} \mathrm{HS}$, the following equilibrium is established :

$$
\mathrm{NH}_{4} \mathrm{HS}(\mathrm{~s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})
$$

If the total pressure is P atm , then the equilibrium constant K_{P} is equal to
(A) Patm
(B) $\mathrm{P}^{2} \mathrm{~atm}^{2}$
(C) $\mathrm{P}^{2} / 4 \mathrm{~atm}^{2}$
(D) 2 P atm
51. The average person can see the red colour imparted by the complex $[\mathrm{Fe}(\mathrm{SCN})]^{2+}$ to an aqueous solution if the concentration of the complex is $6 \times 10^{-6} \mathrm{M}$ or greater. What minimum concentration of KSCN would be required to make it possible to detect 1 ppm (part per million) of Fe (III) in a natural water sample? The instability constant for $\mathrm{Fe}(\mathrm{SCN})^{2+} \rightleftharpoons \mathrm{Fe}^{3+}+\mathrm{SCN}^{-}$is 7.142×10^{-3}.
(A) 0.0036 M
(B) 0.0037 M
(C) 0.0035 M
(D) None of these
52. For the given reaction at constant pressure,

	$\mathrm{nA}(\mathrm{g}) \rightleftharpoons$	\rightleftharpoons
Initial moles	1	0
Moles at equilibrium	$1-\alpha$	
		α / n

Then the correct relation between initial density $\left(\mathrm{d}_{\mathrm{i}}\right) \&$ final density $\left(\mathrm{d}_{\mathrm{f}}\right)$ of the system is
(A) $\left[\frac{\mathrm{n}-1}{\mathrm{n}}\right]\left[\frac{\mathrm{d}_{\mathrm{f}}-\mathrm{d}_{\mathrm{i}}}{\mathrm{d}_{\mathrm{f}}}\right]=\alpha$
(B) $\frac{n}{n-1} \frac{\left[d_{f}-d_{i}\right]}{d_{f}}=\alpha$
(C) $\left[\frac{\mathrm{n}-1}{\mathrm{n}}\right]\left[\frac{\mathrm{d}_{\mathrm{i}}-\mathrm{d}_{\mathrm{f}}}{\mathrm{d}_{\mathrm{i}}}\right]=\alpha$
(D) $\frac{1}{(\mathrm{n}-1)}\left[\frac{\mathrm{d}_{\mathrm{i}}-\mathrm{d}_{\mathrm{f}}}{\mathrm{d}_{\mathrm{i}}}\right]=\alpha$
53. For the following mechanism, $\mathrm{P}+\mathrm{Q} \underset{\mathrm{K}_{\mathrm{B}}}{\stackrel{\mathrm{K}_{\triangle}}{\rightleftharpoons}} \mathrm{PQ} \underset{\mathrm{K}_{\mathrm{D}}}{\mathrm{K}_{\mathrm{C}}}$ R at equilibrium $\frac{[\mathrm{R}]}{[\mathrm{P}][\mathrm{Q}]}$ is :
[k represents rate constant]
(A) $\frac{\mathrm{K}_{\mathrm{A}} \cdot \mathrm{K}_{\mathrm{B}}}{\mathrm{K}_{\mathrm{C}} \cdot \mathrm{K}_{\mathrm{D}}}$
(B) $\frac{\mathrm{K}_{\mathrm{A}} \cdot \mathrm{K}_{\mathrm{D}}}{\mathrm{K}_{\mathrm{B}} \cdot \mathrm{K}_{\mathrm{C}}}$
(C) $\frac{\mathrm{K}_{\mathrm{B}} \cdot \mathrm{K}_{\mathrm{D}}}{\mathrm{K}_{\mathrm{A}} \cdot \mathrm{K}_{\mathrm{C}}}$
(D) $\frac{\mathrm{K}_{\mathrm{A}} \cdot \mathrm{K}_{\mathrm{C}}}{\mathrm{K}_{\mathrm{B}} \cdot \mathrm{K}_{\mathrm{D}}}$
54. Select the reaction for which the equilibrium constant is written as $\left[\mathrm{MX}_{3}\right]^{2}=\mathrm{K}_{\mathrm{eq} .}\left[\mathrm{MX}_{2}\right]^{2}\left[\mathrm{X}_{2}\right]$
$(\mathrm{A}) \mathrm{MX}_{3} \rightleftharpoons \mathrm{MX}_{2}+\frac{1}{2} \mathrm{X}_{2}$
(B) $2 \mathrm{MX}_{3} \rightleftharpoons 2 \mathrm{MX}_{2}+\mathrm{X}_{2}$
(C) $2 \mathrm{MX}_{2}+\mathrm{X}_{2} \rightleftharpoons 2 \mathrm{MX}_{3}$
(D) $\mathrm{MX}_{2}+\frac{1}{2} \mathrm{X}_{2} \rightleftharpoons \mathrm{MX}_{3}$.

CHEMISTRY FOR JEE MAIN \& ADVANCED

55. For the reaction, $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \rightleftharpoons 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\ell), \Delta \mathrm{H}=$ positive .

At equilibrium which factor will not effect the concentration of NH_{3} is :
(A) change in pressure
(B) change in volume
(C) catalyst
(D) None of these
56. The reaction, $\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$ is started in a five litre container by taking one mole of PCl_{5}. If 0.3 mole of PCl_{5} is there at equilibrium, concentration of PCl_{3} and K_{C} will respectively be :
(A) $0.14, \frac{49}{150}$
(B) $0.12, \frac{23}{100}$
(C) $0.07, \frac{23}{100}$
(D) $20, \frac{49}{150}$
57. Pure ammonia is placed in a vessel at a temperature where its dissociation constant (A) is appreciable. At equilibrium
(A) K_{p} does not change significantly with pressure.
(B) α does not change with pressure.
(C) concentration of NH_{3} does not change with pressure.
(D) concentration of hydrogen is less than that of nitrogen
58. For the following gases equilibrium, $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$ K_{p} is found to be equal to K_{c}. This is attained when :
(A) $0^{\circ} \mathrm{C}$
(B) 273 K
(C) 1 K
(D) 12.19 K
59. In a container equili brium $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
is attained at $25^{\circ} \mathrm{C}$. The total equilibrium pressure in container is 380 torr. If equilibrium constant of above equilibrium is 0.667 atm , then degree of dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ at this temperature will be :
(A) $\frac{1}{3}$
(B) $\frac{1}{2}$
(C) $\frac{2}{3}$
(D) $\frac{1}{4}$

Part \# II > [Assertion \& Reason Type Questions]

Each question has 5 choices (A), (B), (C), (D) and (E) out of which only one is correct.
(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
(B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
(C) Statement-1 is True, Statement- 2 is False.
(D) Statement-1 is False, Statement-2 is True.
(E) Statement-1 and Statement-2 both are False.

1. Statement-1: No term in the concentration of a pure solid or a pure liquid appears in an equilibrium constant expression.
Statement-2 : Each pure solid or pure liquid is in a phase by itself, and has a constant concentration at constant temperature.
2. Statement-1 : The reaction quotient, Q has the same form as the equilibrium constant K_{eq}, and is evaluated using any given concentrations of the species involved in the reaction, and not necessarily equilibrium concentrations.

Statement-2 : If the numerical value of Q is not the same as the value of equilibrium constant, a reaction will occur.
3. Statement-1 : The dissociation of CaCO_{3} can be represented as, $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$. Some solid CaCO_{3} is placed in an evacuated vessel enclosed by a piston and heated so that a portion of its decomposes. If the piston is moved so that the volume of the vessel is doubled, while the temperature is held constant, the number of moles of CO_{2} in the vessel increase.
Statement-2 : The pressure of CO_{2} in the vessel will remain the same.
4. Statement-1 : A catalyst does not influences the values of equilibrium constant.

Statement-2 : Catalysts influence the rate of both forward and backward reactions equally.
5. Statement-1 : For $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$. If more Cl_{2} is added the equilibrium will shift in backward direction hence equilibrium constant will decrease.
Statement-2 : Addition of inert gas to the equilibrium mixture at constant volume, does not alter the equilibrium.
6. Statement-I : The melting point of ice decreases with increase of pressure.

Statement-III : Ice contracts on melting.
7. Statement-I : The equilibrium of $\mathrm{A}(\mathrm{g}) \rightleftharpoons \mathrm{B}(\mathrm{g})+\mathrm{C}(\mathrm{g})$ is not affected by changing the volume.

Statement-II : K_{c} for the reaction does not depend on volume of the container.
8. Statement-I : For the reaction $\mathrm{A}(\mathrm{g}) \rightleftharpoons \mathrm{B}(\mathrm{g})+\mathrm{C}(\mathrm{g}), \mathrm{K}_{\mathrm{p}}=1 \mathrm{~atm}$. If we start with equal moles of all gases at 9 atm of initial pressure, then at equilibrium partial pressure of A increases.
Statement-II : Reaction quotient $\mathrm{Q}_{\mathrm{p}}>\mathrm{K}_{\mathrm{p}}$ hence equilibrium shifts in backward direction.
9. Statement-I : For a reaction at equilibrium, the Gibb's free energy of reaction is minimum at constant temp. and pressure.
Statement-III : The Gibb's free energy of both reactants and products increases and become equal at equilibrium.
10. Statement-I : Equilibrium constant for the reverse reaction is the inverse of the equilibrium constant for the reaction in the forward direction.

Statement-II : Equilibrium constant depends upon the way in which the reaction is written.
11. Statement-I : For the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ if the volume of vessel is reduced to half of its original volume, equilibrium concentration of all gases will be doubled.
Statement-III : According to Le Chatelier's principle, reaction shifts in a direction that tends to minimized the effect of the stress.
12. Statement-I : For the reaction at certain temperature

$$
\mathrm{A}(\mathrm{~g})+\mathrm{B}(\mathrm{~g}) \rightleftharpoons \mathrm{C}(\mathrm{~g})
$$

there will be no effect by addition of inert gas at constant volume.
Statement-III : Molar concentration of all gases remains constant.
13. Statement-I : The catalyst does not alter the equilibrium constant.

Statement-II : For the catalysed reaction and uncatalysed reaction $\Delta \mathrm{H}$ remains same and equilibrium constant depends on ΔH.

Exercise \# 3 Part \# I [Matrix Match Type Questions]

1. Match the following :

Column I (Assume only reactant were present initially)
(A) For the equilibrium $\mathrm{NH}_{4} \mathrm{I}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HI}(\mathrm{g})$, if pressure is increased at equilibrium
(B) For the equilibrium $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$ volume is increased at equilibrium
(C) For the equilibrium $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$ inert gas is added at constant pressure at equilibrium
(D) For the equilibrium $\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$ Cl_{2} is removed at equilibrium.

Column II

(p) Forward shift
(q) No shift in equilibrium
(r) Backward shift
(s) Final pressure is more than initial pressure
2. Match the following : (Assume only reactants were present initially).

Column I

$(\mathrm{A}) \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})\left(\mathrm{t}=300^{\circ} \mathrm{C}\right)$
(B) $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})\left(\mathrm{t}=50^{\circ} \mathrm{C}\right)$
(C) $\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$
(D) $\mathrm{CH}_{3} \mathrm{COOH}(\ell)+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{OH}(\ell) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\ell)+\mathrm{H}_{2} \mathrm{O}(\ell)$

Column-I
(Reactions)
(A) Oxidation of nitrogen

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+180.5 \mathrm{~kJ} \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})
$$

(B) Dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})+57.2 \mathrm{~kJ} \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
(C) Oxidation of $\mathrm{NH}_{3}(\mathrm{~g})$ $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+905.6 \mathrm{~kJ}$
(D) Formation of $\mathrm{NO}_{2}(\mathrm{~g})$

$$
\mathrm{NO}(\mathrm{~g})+\mathrm{O}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+200 \mathrm{~kJ}
$$

Column-I
(Reaction)

Column-II
(If α is negligiable w.r.t. 1)
(p) $\alpha=2 \times \sqrt{\mathrm{K}_{\mathrm{c}}}$
(q) $\alpha=3 \times \sqrt{\mathrm{K}_{\mathrm{c}}}$
(r) $\alpha=\left(2 \mathrm{~K}_{\mathrm{c}}\right)^{1 / 3}$
(s) $\alpha=\sqrt{\mathrm{K}_{\mathrm{c}}}$

Part \# II [Comprehension Type Questions]

Comprehension \# 1

Effect of temperature on the equilibrium process is analysed by using the thermodynamics From the thermodynamics relation

$$
\begin{array}{ll}
\Delta \mathrm{G}^{\mathrm{o}}=-2.30 \mathrm{RT} \log \mathrm{k} & \ldots \text { (1) } \Delta \mathrm{G}^{\mathrm{o}}: \text { Standard free energy change } \\
\Delta \mathrm{G}^{\mathrm{o}}=\Delta \mathrm{H}^{\mathrm{o}}-\mathrm{T} \Delta \mathrm{~S}^{\mathrm{o}} & \ldots \ldots \text { (2) } \Delta \mathrm{H}^{\mathrm{o}}: \text { Standard heat of the reaction. }
\end{array}
$$

From (1) \& (2)

$$
-2.3 \mathrm{RT} \operatorname{logk}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{~S}^{\circ}
$$

$\Delta \mathrm{S}^{\circ}$: Standard entropy change
$\Rightarrow \quad \log \mathrm{K}=-\frac{\Delta \mathrm{H}^{\circ}}{2.3 \mathrm{RT}}+\frac{\Delta \mathrm{S}^{\circ}}{2.3 \mathrm{R}}$
Clearly if a plot of $\log \mathrm{k}$ vs $1 / \mathrm{T}$ is made then it is a straight line having slope $=\frac{-\Delta \mathrm{H}^{\circ}}{2.3 \mathrm{R}}$
and Y intercept $=\frac{\Delta S^{\circ}}{2.3 R}$
If at temp. T_{1} equilibrium constant be k_{1} and at temperature T_{2} equilibrium constant be k_{2} then :
The above equation reduces to:

$$
\begin{align*}
& \Rightarrow \quad \log \mathrm{K}_{1}=-\frac{\Delta \mathrm{H}^{\circ}}{2.3 R \mathrm{~T}_{1}}+\frac{\Delta \mathrm{S}^{\circ}}{2.3 \mathrm{R}} \tag{4}\\
& \Rightarrow \quad \log \mathrm{~K}_{2}=-\frac{\Delta \mathrm{H}^{\circ}}{2.3 R \mathrm{~T}_{2}}+\frac{\Delta \mathrm{S}^{\circ}}{2.3 \mathrm{R}} \tag{5}
\end{align*}
$$

Substracting (4) from (5) we get

$$
\Rightarrow \quad \log \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\frac{\Delta \mathrm{H}^{\circ}}{2.30 \mathrm{R}}\left(\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right)
$$

From the above relation we can conclude that the value of equilibrium constant increases with increase in temperature for endothermic reaction but value of equilibrium constant decreases with the increase in temperature for exothermic reaction.

1. If standard heat of dissociation of PCl_{5} is 230 cal then slope of the graph of logk vs $\frac{1}{\mathrm{~T}}$ is :
(A) +50
(B) -50
(C) 10
(D) None
2. For exothermic reaction if $\Delta \mathrm{S}_{0}<0$ then the sketch of logk vs $\frac{1}{\mathrm{~T}}$ may be :
(A)

(B)

(C) logk

(D)

3. If for a particular reversible reaction :
$\mathrm{K}_{\mathrm{C}}=57$ at $355^{\circ} \mathrm{C}$ and $\mathrm{K}_{\mathrm{C}}=69$ at $450^{\circ} \mathrm{C}$ then :
(A) $\Delta \mathrm{H}<0$
(B) $\Delta \mathrm{H}>0$
(C) $\Delta \mathrm{H}=0$
(D) $\Delta \mathrm{H}$ whose sign can't be determined

Comprehension \# 2

Le chatelier's principle

If a system at equilibrium is subjected to a change of any one of the factors such as concentration, pressure or temperature, the system adjusts itself in such a way as to nulify the effect of that change.
Change of pressure : If a system in equilibrium consists of gases, then the concentrations of all the components can be altered by changing the pressure. To increase the pressure on the system, the volume has to be decreased proportionately. The total number of moles per unit volume will now be more and the equilibirum will shift in the direction in which there is decrease in number of moles i.e., towards the direction in which there can be decrease in pressure .
Effect of pressure on melting point : There are two types of solids :
(A) Solids whose volume decreases on melting, e.g., ice, diamond, carborundum, magnesium nitride and quartz.
Solid (higher volume) \rightleftharpoons Liquid (lower volume)
The process of melting is facilitated at high pressure, thus melting point is lowered.
(B) Solids whose volume increase on melting, e.g., $\mathrm{Fe}, \mathrm{Cu}, \mathrm{Ag}, \mathrm{Au}$, etc.

Solid (lower volume) \rightleftharpoons Liquid (higher volume)
In this case the process of melting become difficult at high pressure; thus melting point becomes high.
(C) Solubility of substances : When solid substance are dissolved in water, either heat is evolved (exothermic) or heat is absorbed (endothermic).
$\mathrm{KCl}+\mathrm{aq} \rightleftharpoons \mathrm{KCl}(\mathrm{aq})$ - heat
In such cases, solubility increase with increase in temperature. Consider the case of KOH ; when this is dissolved, heat is evolved.
$\mathrm{KOH}+\mathrm{aq} \rightleftharpoons \mathrm{KOH}(\mathrm{aq})+$ heat
In such cases, solubility decrease with increase in temperature.
(D) Solubility of gases in liquids : When a gas dissolves in liquid, there is decrease in volume. Thus, increase of pressure will favour the dissolution of gas in liquid.

1. A gas ' X ' when dissolved in water heat is evolved. Then solublity of ' X ' will increase :
(A) Low pressure, high temperature
(B) Low pressure, low temperature
(C) high pressure, high temperature
(D) high pressure, low temperature
2. $\quad \mathrm{Au}(\mathrm{s}) \rightleftharpoons \mathrm{Au}(\ell)$

Above equilibrium is favoured at :
(A) High pressure low temperature
(B) High pressure high temperature
(C) Low pressure, high temperature
(D) Low pressure, low temperature

For the reaction,

$$
\frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}(\mathrm{~g})
$$

If pressure is increased by reducing the volume of the container then :
(A) Total pressure at equilibrium will change.
(B) Concentration of all the component at equilibrium will change.
(C) Concentration of all the component at equilibrium will remain same
(D) Equilibrium will shift in the forward direction

Comprehension \# 3

Read the following passage carefully and answer the questions.

$2 \mathrm{~A}_{2} \rightleftharpoons \mathrm{~A}_{4}$

$$
\begin{equation*}
\mathrm{K}_{\mathrm{p}_{1}}=\frac{2}{81} \mathrm{~atm}^{-1} \tag{i}
\end{equation*}
$$

$\mathrm{A}_{2}+2 \mathrm{C} \rightleftharpoons \mathrm{A}_{2} \mathrm{C}_{2}$
$\mathrm{A}_{2} \mathrm{C}_{2} \rightleftharpoons 2 \mathrm{AC}$
A_{2} and C are taken in $3: 1$ mole ratio in a closed container of a certain volume at a fixed temperature and aobve three equilibriums are established simultaneously. $\mathrm{K}_{\mathrm{p}_{1}}$ for the first reaction is $\frac{2}{81} \mathrm{~atm}^{-1}$. At equiliburm partial pressure of $\mathrm{A}_{4}(\mathrm{~g})$ and $\mathrm{AC}(\mathrm{g})$ are found to be $1 / 2 \mathrm{~atm}$ each and the total pressure at equilibirum is found to be $\frac{27}{4}$ atm. Then

1. The partical pressure of $\mathrm{A}_{2} \mathrm{C}_{2}$ at equilibrium is
(A) $1 / 2$
(B) $3 / 4$
(C) $1 / 4$
(D) 1
2. The mole ratio of gases A_{2} and AC at equiliburm is
(A) $9 / 2$
(B) $7 / 2$
(C) 8
(D) 9
3. Equilibrium constant K_{p} for the reaction $2 \mathrm{AC} \rightleftharpoons \mathrm{A}_{2} \mathrm{C}_{2}$ is
(A) $3 / 4$
(B) 1
(C) 4
(D) $1 / 3$

Comprehension \# 4

Questions are based on the manufacture of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ by Solvay process :

In the manufacture of $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$ by Solvay process, $\mathrm{NaHCO}_{3}(\mathrm{~s})$ is decomposed by heating :

$$
\begin{aligned}
& 2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& \mathrm{K}_{\mathrm{p}}=0.23 \text { at } 100^{\circ} \mathrm{C} \quad \Delta \mathrm{H}^{\circ}=136 \mathrm{~kJ}
\end{aligned}
$$

1. If a sample of $\mathrm{NaHCO}_{3}(\mathrm{~s})$ is brought to a temperature of $100^{\circ} \mathrm{C}$ in a closed container total gas pressure at equilibrium is :
(A) 0.96 atm
(B) 0.23 atm
(C) 0.48 atm
(D) 0.46 atm
2. A mixture of 1.00 mol each of $\mathrm{NaHCO}_{3}(\mathrm{~s})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$ is introduced into a 2.5 L flask in which $\mathrm{P}_{\mathrm{CO}_{2}}=2.10 \mathrm{~atm}$ and $\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}=0.94 \mathrm{~atm}$. When equilibrium is established at $100^{\circ} \mathrm{C}$, then partial pressure of :
(A) $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ will be greater than their initial pressure
(B) $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ will be less than their initial pressure
(C) $\mathrm{CO}_{2}(\mathrm{~g})$ will be larger and that of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ will be less than their initial pressure
(D) $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ will be larger and that of $\mathrm{CO}_{2}(\mathrm{~g})$ will be less than their initial pressure

Comprehension \# 5

On July, 1, 2000, the combined tunnel and bridge connecting Denmark and Sweden was officially opened. It consists of a tunnel from Copenhagen to an artificial Island and a bridge from the island to Malmo in Sweden. The major construction materials employed are concrete and steel. This problem deals with chemical reactions relating to production and degradation of such materials.
Concrete is produced from a mixture of cement, water, sand and small stones. Cement consists primarly of calcium silicates and calcium aluminates formed by heating and grinding of clay and limestone. In the later steps of cement production may lead to formation of unwanted hemihydrate, $\mathrm{CaSO}_{4} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$. Consider the following reaction :

$$
\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \longrightarrow \mathrm{CaSO}_{4} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{~s})+1 \frac{1}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

The following thermodynamic data apply at $25^{\circ} \mathrm{C}$, standard pressure : 1.00 bar :

Compound	$\mathrm{H}^{\circ} /\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)(\Delta \mathrm{Hq})$	$\mathrm{S}^{\circ} /\left(\mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$
$\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$	-2021.0	194.0
$\mathrm{CaSO}_{4} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$	-1575.0	130.5
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-241.8	188.6
Gas constant ; R $=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$		

1. $\Delta \mathrm{H}^{\circ}$ for the transformation of 1.00 kg of $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ to $\mathrm{CaSO}_{4} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ is :
(A) +446 kJ
(B) +484 kJ
(C) -446 kJ
(D) -484 kJ
2. Equilibrium pressure (in bar) of water vapour in a closed vessel containing $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$, $\mathrm{CaSO}_{4}(\mathrm{~s}) \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ at $25^{\circ} \mathrm{C}$ is :
(A) 7.35×10^{-4} bar
(B) $2.15 \times 10^{-4} \mathrm{bar}$
(C) 8.10×10^{-3} bar
(D) 7.00×10^{-4} bar
3. Temperature at which the equilibrium water vapour pressure is 1.00 bar.
(A) $107^{\circ} \mathrm{C}$
(B) $380^{\circ} \mathrm{C}$
(C) $215^{\circ} \mathrm{C}$
(D) $240^{\circ} \mathrm{C}$

Exercise \# 4 [Subjective Type Questions]

1. Give one example of each of the following equilibria :
(i) Solid-Liquid Equilibria
(ii) Liquid-Gas Equilibria
2. What is the active mass of 5.6 litres of O_{2} at S.T.P. ?
3. Write the expressions for equilibrium constant K_{C} and K_{P} for the following reactions :
(i) $\quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
(ii) $3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})$
(iii) $\quad \mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
(iv) $\quad \mathrm{CH}_{3} \mathrm{COOH}(\ell)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\ell) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\ell)+\mathrm{H}_{2} \mathrm{O}(\ell)$
(v) MgCO_{3} (s) $\rightleftharpoons \mathrm{MgO}$ (s) $+\mathrm{CO}_{2}$ (g)
(vi) $\quad 2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g})$
(vii) $\quad \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$
(viii) $\quad \mathrm{NH}_{4} \mathrm{NO}_{2}(\ell) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\ell)$
4. Briefly explain the important characteristics of chemical equilibrium.
5.. In a reaction $\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D}$ the rate constant of forward reaction \& backward reaction is k_{1} and k_{2} then the equilibrium constant (k) for reaction is expressed as :
5. The equilibrium $\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})$ is established in a container of 4 L at a particular temperature. If the number of moles of $\mathrm{SO}_{2}, \mathrm{O}_{2}$ and SO_{3} at equilibrium are 2,1 and 4 respectively then find the value of equilibrium constant.
6. A mixture of $\mathrm{SO}_{3}, \mathrm{SO}_{2}$ and O_{2} gases is maintained at equilibrium in 10 litre flask at a temperature at which K_{C} for the reaction,

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}) \text { is } 100 \mathrm{~mol}^{-1} \text { litre. At equilibrium. }
$$

(a) If no. of mole of SO_{3} and SO_{2} in flask are same, how many mole of O_{2} are present?
(b) If no. of mole of SO_{3} in flask are twice the no. of mole of SO_{2}, how many mole of O_{2} are present?
8. $\quad \mathrm{A}(\mathrm{g})+\mathrm{B}(\mathrm{g}) \rightleftharpoons \mathrm{C}(\mathrm{g})+\mathrm{D}(\mathrm{g})$

Above equilibrium is established by taking A \& B in a closed container. Initial concentration of A is twice of the initial concentration of B. At equilibrium concentrations of B and C are equal. Then find the equilibrium constant for the reaction, $\mathrm{C}(\mathrm{g})+\mathrm{D}(\mathrm{g}) \rightleftharpoons \mathrm{A}(\mathrm{g})+\mathrm{B}(\mathrm{g})$.
9. The equilibrium constant of the reaction $\mathrm{A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB}(\mathrm{g})$ at $100^{\circ} \mathrm{C}$ is 50 . If a one litre flask containing one mole of A_{2} is connected to a two litre flask containing two moles of B_{2}, how many moles of AB will be formed at 373 K ?
10. The partial pressures of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} at $40^{\circ} \mathrm{C}$ for the following equilibrium $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$ are 0.1 atm and 0.3 atm respectively. Find K_{p} for the reaction.
11. 1 mole of N_{2} and 3 moles of H_{2} are placed in 1 L vessel. Find the concentration of NH_{3} at equilibrium, if equilibrium pressure is 1 atm and the equilibrium constant at 400 K is $\frac{4}{27}$

CHEMISTRY FOR JEE MAIN \& ADVANCED

12. n mole each of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{O}_{2}(\mathrm{~g})$ are mixed at a suitable high temperature to attain the equilibrium $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$. If y mole of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ are the dissociated and the total pressure maintained is P , calculate the K_{p}.
13. 1 mole of a gas ' A ' is taken in a vessel of volume 1 L . It dissociates according to the reaction $\mathrm{A}(\mathrm{g}) \rightleftharpoons \mathrm{B}(\mathrm{g})+\mathrm{C}(\mathrm{g})$ at $27^{\circ} \mathrm{C}$. Forward and backward reaction rate constants for the reaction are 1.5×10^{-2} and $3 \times 10^{-}$ ${ }^{2}$ respectively. Find the concentrations of A, B and C at equilibrium. Also find K_{p} and K_{c} with proper units.
14. 0.15 mole of CO taken in a 2.5 litre flask is maintained at 500 K along with a catalyst so that the following reaction can take place; $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$.
Hydrogen is introduced until the total pressure of the system is 8.2 atm at equilibrium and 0.08 mole of methanol is formed.Calculate :
(i) $\quad \mathrm{K}_{\mathrm{p}} \& \mathrm{~K}_{\mathrm{c}}$;
(ii) the final pressure if the same amount of CO and H_{2} as before are used, but with no catalyst so that the reaction takes place on its own.
15. Calculate the expression for K_{c} and K_{p} if initially a moles of N_{2} and b moles of H_{2} is taken for the following reaction.
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
$(\Delta \mathrm{n}<0)(\mathrm{P}, \mathrm{T}, \mathrm{V}$ given $)$
16. The equilibrium constant for the reactions $\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}$ and $2 \mathrm{NO}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}_{2}$ are K_{1} and K_{2} respectively, then what will be the equilibrium constant for the reaction $\mathrm{N}_{2}+2 \mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}_{2}$?
17. Calculate the equilibrium constant for the reaction: $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g})$ at 1395 K , if the equilibrium constants at 1395 K for the following are

$$
\begin{array}{ll}
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) & \mathrm{K}_{1}=2.1 \times 10^{-13} \\
2 \mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) & \mathrm{K}_{2}=1.4 \times 10^{-12}
\end{array}
$$

18. Explain the effect of the following on the equilibrium constant.
(i) Concentrations of the reactants are doubled
(ii) The reaction is reversed
(iii) Catalyst is added to the reaction
(iv) Temperature is increased.
19. In an experiment starting with 1 mole of ethyl alcohol, 1 mole of acetic acid and 1 mole of water at $\mathrm{T}^{0} \mathrm{C}$, the equilibrium mixture on analysis shows that 54.3% of the acid is esterfied. Calculate the equilibrium constant of this reaction.
20. The homogeneous reversible reaction, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}$
is studied at various initial concentrations of the reactants at constant temperature. Calculate ' k ' in each case .

	Moles of acid per litre (initial)	Moles of alcohol per litre (initial)	Moles of ester per litre at equilibrium
(i)	1	1	0.667
(ii)	1	4	0.93

21. $\quad \mathrm{N}_{2} \mathrm{O}_{4}$ is 25% dissociated at $37^{\circ} \mathrm{C}$ and one atmosphere pressure. Calculate (i) K_{p} and (ii) the percentage dissociation at 0.1 atmosphere and $37^{\circ} \mathrm{C}$.
22. At temperature T , the compound $\mathrm{AB}_{2}(\mathrm{~g})$ dissociates according to the reaction; $2 \mathrm{AB}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB}(\mathrm{g})+\mathrm{B}_{2}(\mathrm{~g})$. With a degree of dissociation x, which is small compared with unity.Deduce the expression for x in terms of the equilibrium constant, K_{p} and the total pressure, P .
23. Vapour density of the equilibrium mixture of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ is found to be 38.33. For the equilibrium

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

Calculate: (i) abnormal molecular weight.
(ii) degree of dissociation.
(iii) percentage of NO_{2} in the mixture.
(iv) K_{p} for the reaction if total pressure is 2 atm .
24. When sulphur in the form of $\mathrm{S}_{8}(\mathrm{~g})$ is heated at 900 K , the initial partial pressure of $\mathrm{S}_{8}(\mathrm{~g})$ which was 1 atm falls by 29% at equilibrium. This is because of conversion of some $S_{8}(g)$ to $S_{2}(g)$. Find the K_{p} for reaction, $\mathrm{S}_{8}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{~S}_{2}(\mathrm{~g})$.
25. Solid ammonium carbamate dissociates to give ammonia and carbon dioxide as follows:

$$
\mathrm{NH}_{2} \mathrm{COONH}_{4}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

At equilibrium, ammonia is added such that partial pressures of NH_{3} at new equilibrium equals the original total pressure (at previous equilibrium). Calculate the ratio of the total pressures now to the original total pressure.
26. In a container $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \mathrm{CO}(\mathrm{g})$ and $\mathrm{H}_{2}(\mathrm{~g})$ are present in the molar ratio of $1: 2: 3$ respectively at temperature of 300 K . Find the pressure in the container at which solid carbon (graphite) will start forming in the container given that:

$$
\mathrm{C}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{p}}=3 \mathrm{~atm}
$$

 this temperature, the equilibrium constant, K_{c} for the reaction

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \text { is } 1.7 \times 10^{2}
$$

Is the reaction mixture at equilibrium? If not what is the direction of the net reaction?
28. At $460^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{C}}=81$ for the reaction, $\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}(\mathrm{g})+\mathrm{SO}_{3}(\mathrm{~g})$

A mixture of these gases has the following concentrations of the reactants and products :

$$
\begin{array}{ll}
{\left[\mathrm{SO}_{2}\right]=0.04 \mathrm{M}} & {\left[\mathrm{NO}_{2}\right]=0.04 \mathrm{M}} \\
{[\mathrm{NO}]=0.30 \mathrm{M}} & {\left[\mathrm{SO}_{3}\right]=0.3 \mathrm{M}}
\end{array}
$$

Is the system at equilibrium? If not, in which direction must the reaction proceed to reach equilibrium. What will be the molar concentrations of the four gases at equilibrium?
29. For the reaction, $\mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})$
$\Delta \mathrm{H}^{0}{ }_{298}=-98.32 \mathrm{~kJ} / \mathrm{mole}, \Delta \mathrm{S}^{0}{ }_{298}=-95.0 \mathrm{~J} / \mathrm{mole}-\mathrm{K}$. Find the K_{p} for this reaction at 298 K . (Given that $10{ }^{.27}=1.86$)
30. From the following data :
(i) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g}) ; \quad \mathrm{K}_{2000 \mathrm{~K}}=4.4$
(ii) $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$;

$$
\mathrm{K}_{2000 \mathrm{~K}}=5.31 \times 10^{-10}
$$

(iii) $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}_{2}(\mathrm{~g})$;

$$
\mathrm{K}_{1000 \mathrm{~K}}=2.24 \times 10^{22}
$$

State whether the reaction (iii) is exothermic or endothermic?
31. The dissociation pressure of silver oxide at $445^{\circ} \mathrm{C}$ is 207 atm . Calculate $\Delta \mathrm{G}^{0}$ for the formation of $1 \mathrm{~mole} \mathrm{Ag}_{2} \mathrm{O}(\mathrm{s})$ from metal and oxygen at this temperature. $(\log 207=2.315)$
32. Equilibrium constants are given (in atm) for the following reaction $0^{\circ} \mathrm{C}$:

$$
\mathrm{Na}_{2} \mathrm{HPO}_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \rightleftharpoons \mathrm{Na}_{2} \mathrm{HPO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(\mathrm{~s})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{p}}=2.43 \times 10^{-13}
$$

The vapour pressure of water at $0^{\circ} \mathrm{C}$ is 4.56 torr.
At what relative humidities will $\mathrm{Na}_{2} \mathrm{HPO}_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ be efflorescent when exposed to air at $0^{\circ} \mathrm{C}$?
33. For the equilibrium $\mathrm{SrCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightleftharpoons \mathrm{SrCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ the equilibrium constant $\mathrm{K}_{\mathrm{P}}=16 \mathrm{x} 10^{-12} \mathrm{~atm}^{4}$ at $1^{0} \mathrm{C}$. If one litre of air saturated with water vapour at $1^{0} \mathrm{C}$ is exposed to a large quantity of $\mathrm{SrCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$, what weight of water vapour will be absorbed? Saturated vapour pressure of water at $1^{0} \mathrm{C}=7.6$ torr.
34. A vessel contain 5 mole of $\mathrm{A} \& 10$ mole of B , total pressure of vessel is 18 atm . Calculate the $\mathrm{P}_{\mathrm{B}} \& \mathrm{P}_{\mathrm{A}}$
35. Using Le Chatelier's principle, predict the effect of
(i) decreasing the temperature and
(ii) increasing the pressure on each of the following equilibria :
(A) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+$ Heat
(B) $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+$ Heat
$(\mathrm{C}) \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+$ Heat $\rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$
(D) $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}_{2}(\mathrm{~g})+$ Heat
36. Hydrogen gas is obtained from natural gas by partial oxidation with steam as per following endothermic reaction.

$$
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) ;
$$

(a) Write an expression for K_{p} for the above reaction.
(b) How will the value of K_{p} and composition of equilibrium mixture be affected by :
(i) increasing the pressure
(ii) increasing the temperature
(iii) using a catalyst?
37. Which of the following reactions will get affected by increase of pressure ? Also mention, whether change will cause the reaction to go into the right or left direction?
(i) $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{~S}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CS}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \quad$ (ii) $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})$
(iii) $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(iv) $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$
38. Two solids A and D dissociates into gaseous products as follows

$$
\mathrm{A}(\mathrm{~s}) \rightleftharpoons \mathrm{B}(\mathrm{~g})+\mathrm{C}(\mathrm{~g}) ; \mathrm{K}_{\mathrm{P}_{1}}=300 ; \quad \mathrm{D}(\mathrm{~s}) \rightleftharpoons \mathrm{E}(\mathrm{~g})+\mathrm{C}(\mathrm{~g}) \mathrm{K}_{\mathrm{P}_{2}}=600
$$

at $27^{\circ} \mathrm{C}$, then find the total pressure of the solid mixture.
39. In a vessel, two equilibrium are simultaneously established at the same temperature as follows:

$$
\begin{align*}
& \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \tag{1}\\
& \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g}) \tag{2}
\end{align*}
$$

Initially the vessel contains N_{2} and H_{2} in the molar ratio of $9: 13$. The equilibrium pressure is $7 \mathrm{P}_{0}$, in which pressure due to ammonia is P_{0} and due to hydrogen is $2 \mathrm{P}_{0}$. Find the values of equilibrium constants $\left(\mathrm{K}_{\mathrm{p}}\right.$'s) for both the reactions
40. The decomposition of solid ammonium carbamate, $\left(\mathrm{NH}_{4}\right)\left(\mathrm{NH}_{2} \mathrm{CO}_{2}\right)$, to gaseous ammonia and carbon dioxide is an endothermic reaction.

$$
\left(\mathrm{NH}_{4}\right)\left(\mathrm{NH}_{2} \mathrm{CO}_{2}\right)(\mathrm{s}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

(a) When solid $\left(\mathrm{NH}_{4}\right)\left(\mathrm{NH}_{2} \mathrm{CO}_{2}\right)$ is introduced into an evacuated flask at $25^{\circ} \mathrm{C}$, the total pressure of gas at equilibrium is 0.116 atm . What is the value of K_{p} at $25^{\circ} \mathrm{C}$?
(b) Given that the decomposition reaction is at equilibrium, how would the following changes affect the total quantity of NH_{3} in the flask once equilibrium is re-established ?
(i) Adding CO_{2}
(ii) Adding $\left(\mathrm{NH}_{4}\right)\left(\mathrm{NH}_{2} \mathrm{CO}_{2}\right)$
(iii) Removing CO_{2}
(iv) Increasing the total volume
(v) Adding neon
(vi) Increasing the temperature.
41. Following equilibrium is established at temperature T .

$$
\begin{array}{llll}
& \mathrm{A}(\mathrm{~g}) \rightleftharpoons \mathrm{B}(\mathrm{~g})+\mathrm{C}(\mathrm{~g}) \\
\text { at eq. } & 1 \mathrm{M} & 2 \mathrm{M} \quad 2 \mathrm{M} .
\end{array}
$$

If volume of the vessel is doubled then find the equilibrium concentration of each species.
(Given that: $\sqrt{40}=6.324$)
42. At 700 K equilibrium constant for the reaction

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})
$$

is 54.8 . If $0.5 \mathrm{~mol} \mathrm{~L}^{-1}$ of $\mathrm{HI}(\mathrm{g})$ is present at equilibrium at 700 K , what are the concentration of $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{I}_{2}(\mathrm{~g})$ assuming that we initially started with $\mathrm{HI}(\mathrm{g})$ and allowed it to reach equilibrium at 700 K . (Given that : $\sqrt{54.8}=7.4$)
43. The equilibrium constant for the reaction :

$$
\mathrm{H}_{3} \mathrm{BO}_{3}+\text { glycerine } \rightleftharpoons\left(\mathrm{H}_{3} \mathrm{BO}_{3}+\text { glycerine }\right) \text { complex is } 0.90 .
$$

How much glycerine should be added to one litre of $0.10 \mathrm{M} \mathrm{H}_{3} \mathrm{BO}_{3}$ solution, so that 60% of the $\mathrm{H}_{3} \mathrm{BO}_{3}$ is converted to boric acid-glycerine complex ? (Assume volume remains same even after adding glycerine and one mole each of boric acid and glycerine react to give one mole of the complex.)
44. For the reaction; $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$, hydrogen gas is introduced into a five litre flask at $327^{\circ} \mathrm{C}$, containing 0.2 mole of $\mathrm{CO}(\mathrm{g})$ and a catalyst, until the pressure is 4.92 atm (at eqilibrium). At this point 0.1 mole of $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$ is formed. Calculate the equilibrium constants $\mathrm{K}_{\mathrm{p}} \& \mathrm{~K}_{\mathrm{c}}$.
45. At $540 \mathrm{~K}, 0.10 \mathrm{~mol}$ of PCl_{5} are heated in a 8.0 L flask. The pressure of the equilibrium mixture is found to be 1.0 bar. Calcualted K_{p} and K_{c} for the reaction.
46. Ethyl acetate is formed by the reaction between ethanol and acetic acid and the equilibrium is represented as:
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(i) Write the concentration ratio (reaction quotient), Q_{c}, for this reaction (note: water is not in excess and is not a solvent in this reaction)
(ii) At 293 K , if one starts with 1.00 mol of acetic acid and 0.18 mol of ethanol, there is 0.171 mol of ethyl acetate in the final equilibrium mixture. Calculate the equilibrium constant.
(iii) Starting with 0.5 mol of ethanol and 1.0 mol of acetic acid and maintaining it at $293 \mathrm{~K}, 0.214 \mathrm{~mol}$ of ethyl acetate is found after sometime. Has equilibrium been reached?
47. Two gases A and B in the molar ratio $1: 2$ were admitted to an empty vessel and allowed to reach equilibrium at $400^{\circ} \mathrm{C}$ and 8 atm pressure as $\mathrm{A}+2 \mathrm{~B} \rightleftharpoons 2 \mathrm{C}$. The mole fraction of C at equilibrium is 0.4 . Calculate
(a) K_{p} for the reaction
(b) The pressure at which mole fraction of A in equilibrium mixture is 0.16 .
48. Reaction between N_{2} and O_{2} takes place as follows:

$$
2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g})
$$

If a mixture of $0.482 \mathrm{~mol} \mathrm{~N}_{2}$ and 0.933 mol of O_{2} is placed in a 10 L reaction vessel and allowed to form $\mathrm{N}_{2} \mathrm{O}$ at a temperature for which $\mathrm{K}_{\mathrm{c}}=2.0 \times 10^{-40}$, determine the composition of equilibrium mixture.
(Given that: $\sqrt{43}=6.6$)

CHEMISTRY FOR JEE MAIN \& ADVANCED

49. One mole of $\mathrm{Cl}_{2}(\mathrm{~g})$ and 3 moles of $\mathrm{PCl}_{5}(\mathrm{~g})$ are placed in a 100 litre vessel heated to $227^{\circ} \mathrm{C}$. The equilibrium pressure is 2.05 atm . Assuming ideal behaviour, calculate the degree of dissociation of $\mathrm{PCl}_{5}(\mathrm{~g})$ and K_{p} for the reaction, $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$.
 gas mixture occupied 2.05 litre at one atmospheric pressure. Calculate the degree of dissociation of PCl_{5} and equilibrium constant K_{p} of following reactions at this temperature. $\left(\mathrm{R}=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

51. The degree of dissociation is 0.39 at $500 \mathrm{~K} \& 1.0 \mathrm{~atm}$ for the gasoues reaction $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$. Assuming ideal behaviour of all gases. Calculate the density of equilibrium mixture at $500 \mathrm{~K} \& 1.0 \mathrm{~atm}$ pressure.
52. For the equilibrium : $\quad \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
the standard enthalpy and entropy changes at 300 K and 1200 K for the forward reaction are as follows:

$$
\begin{array}{ll}
\Delta \mathrm{H}_{300 \mathrm{~K}}^{\circ}=-41.16 \mathrm{~kJ} \mathrm{~mol}^{-1} & \Delta \mathrm{~S}_{300 \mathrm{~K}}^{\circ}=-0.0424 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\Delta \mathrm{H}_{1200 \mathrm{~K}}^{\circ}=-32.93 \mathrm{~kJ} \mathrm{~mol}^{-1} & \Delta \mathrm{~S}_{1200 \mathrm{~K}}^{\circ}=-0.0296 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

In which direction will the reaction be spontaneous
(a) At $300 \mathrm{~K}(\mathrm{~b}) \quad$ At 1200 K ,
(any time of reaction $\mathrm{P}_{\mathrm{CO}}=\mathrm{P}_{\mathrm{CO} 2}=\mathrm{P}_{\mathrm{H} 2}=\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}=1 \mathrm{~atm}$)
Also calculate K_{p} for the reaction at each temperature. \quad (Given that : $10^{-.11}=0.77$)
53. $\quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$

This reaction is carried out at 298 K and 20 bar. 5 mole each of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} are taken initially.

$$
\text { Given : } \Delta \mathrm{G}_{\mathrm{N}_{2} \mathrm{O}_{4}}^{\circ}=100 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \quad \Delta \mathrm{G}_{\mathrm{NO}_{2}}^{\circ}=50 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

(i) Find $\Delta \mathrm{G}$ for for reaction at 298 K under given condition.
(ii) Find the direction in which the reaction proceeds to achieve equilibrium.
54. Consider the reaction, $\quad 2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons 4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{0}=+113 \mathrm{~kJ}$

The four gases, $\mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{HCl}$ and O_{2}, are mixed and the reaction is allowed to come to equilibrium. State and explain the effect (increase, decrease, no change) of the operation in the left column (below) on the equilibrium value of the quantity in the right column. Each operation is to be considered separately. Temperature and volume are constant unless stated otherwise.
(a) Increasing the volume of the container
(b) Adding O_{2}
(c) Adding O_{2}
(d) Decreasing the volume of the container
(e) Decreasing the volume of the container
(f) Decreasing the volume of the container
(g) Raising the temperature
(h) Raising the temperature
(i) Adding He
(j) Adding catalyst

Number of moles of $\mathrm{H}_{2} \mathrm{O}$
Number of moles of $\mathrm{H}_{2} \mathrm{O}$
Number of moles of HCl
Number of moles of Cl_{2}
Partial pressure of Cl_{2}
K_{C}
K_{C}
Concentration of HCl
Number of moles of HCl
Number of moles of HCl
55. Consider the following equilibrium process:

$$
\mathrm{N}_{2} \mathrm{~F}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NF}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\mathrm{o}}=38.5 \mathrm{~kJ}
$$

Predict the changes in the equilibrium if (a) the reacting mixture is heated at constant volume; (b) NF_{2} gas is removed from the reacting mixture at constant temperature and volume; (c) the pressure on the reacting mixture is decreased at constant temperature; and (d) an inert gas, such as helium, is added to the reacting mixture at constant volume and temperature.
56. The density of an equilibrium mixture of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} at 1 atm and 346 K is $1.8 \mathrm{~g} / \mathrm{L}$. Calculate K_{C} for the reaction,

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

57. $\quad \mathrm{K}_{\mathrm{p}}$ is $9 \mathrm{~atm}^{2}$ for the reaction : $\mathrm{LiCl} \cdot 3 \mathrm{NH}_{3}(\mathrm{~s}) \rightleftharpoons \operatorname{LiCl} \cdot \mathrm{NH}_{3}(\mathrm{~s})+2 \mathrm{NH}_{3}(\mathrm{~g})$ at $40^{\circ} \mathrm{C}$. How many moles of ammonia must be added at this temperature to a 5 litre flask containing 0.1 mole of $\mathrm{LiCl} . \mathrm{NH}_{3}$ in order to completely convert the solid to $\mathrm{LiCl} .3 \mathrm{NH}_{3}$?
58. At certain temperature, the equilibrium constant $\left(\mathrm{K}_{\mathrm{c}}\right)$ is 16 for the reaction

$$
\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g})
$$

If we take one mole each of all the four gases in 1 L container, what be concentration of NO and NO_{2} at equilibrium?
59. Consider the equilibrium

$$
\mathrm{Ni}(\mathrm{~s})+4 \mathrm{CO}(\mathrm{~g}) \rightleftharpoons \mathrm{Ni}(\mathrm{CO})_{4}(\mathrm{~g}) \quad ; \quad \mathrm{K}_{\mathrm{p}}=0.125 \mathrm{~atm}^{-3} .
$$

If equal number of moles of CO and $\mathrm{Ni}(\mathrm{CO})_{4}$ (ideal gases) are mixed in a small container fitted with a piston, find the maximum total pressure (in atm) to which this mixture must be brought in order to just precipitate out metallic Ni ?
60. Two solid compounds A and B dissociate into gaseous products at $20^{\circ} \mathrm{C}$ as
(i) $\mathrm{A}(\mathrm{s}) \rightleftharpoons \mathrm{A}^{\prime}(\mathrm{g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
(ii) $\mathrm{B}(\mathrm{s}) \rightleftharpoons \mathrm{B}^{\prime}(\mathrm{g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$

At $20^{\circ} \mathrm{C}$ pressure over excess solid A is 50 mm and that over excess solid B is 68 mm find :
(a) The dissociation constant of A and B
(b) Relative no. of moles of A^{\prime} and B^{\prime} in the vapour phase over a mixture of solid A and B .
(c) Show that the total pressure of the gas over the solid mixture would be 84.4 mm
61. When $\mathrm{NO} \& \mathrm{NO}_{2}$ are mixed, the following equilibria readily obtained;

$$
\begin{array}{ll}
2 \mathrm{NO}_{2} \rightleftharpoons \mathrm{~N}_{2} \mathrm{O}_{4} & \mathrm{~K}_{\mathrm{p}}=6.8 \mathrm{~atm}^{-1} \\
\mathrm{NO}+\mathrm{NO}_{2} \rightleftharpoons \mathrm{~N}_{2} \mathrm{O}_{3} & \mathrm{~K}_{\mathrm{p}}=?
\end{array}
$$

In an experiment when $\mathrm{NO} \& \mathrm{NO}_{2}$ are mixed in the ratio of $1: 2$, the total final pressure was $5.05 \mathrm{~atm} \&$ the partial pressure of $\mathrm{N}_{2} \mathrm{O}_{4}$ was 1.7 atm . Calculate
(a) the equilibrium partial pressure of NO.
(b) K_{p} for $\mathrm{NO}+\mathrm{NO}_{2} \rightleftharpoons \mathrm{~N}_{2} \mathrm{O}_{3}$
62. At $700 \mathrm{~K}, \mathrm{CO}_{2}$ and H_{2} react to form CO and $\mathrm{H}_{2} \mathrm{O}$. For this purpose K_{C} is 0.11 . If a mixture of 0.45 mole of CO_{2} and 0.45 mole of H_{2} is heated to 700 K .
(a) Find out the amount of each gas at equilibrium.
(b) When equilibrium has been reached, another 0.34 mole of CO_{2} and 0.34 mole of H_{2} are added to the reaction mixture. Find the composition of mixture at new equilibrium. (Given that : $\sqrt{.11}=.33$)
63. A container contains three gases. A, B and C in equilibrium $\mathrm{A}(\mathrm{g}) \rightleftharpoons 2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{g})$

At equilibrium the concentration of A was 3 M , and of B was 4 M . On doubling the volume of container, the new equilibrium concentration of B was 3 M . Calculate K_{C} and initial equilibrium concentration of C.

Exercise \# 5 Part \# I [Previous Year Questions] [AIEEE/JEE-MAIN]

1. What is the equilibrium constant expression for the reaction $\mathrm{P}_{4}(\mathrm{~s})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})$?
[AIEEE 2004]
(1) $\mathrm{K}_{\mathrm{C}}=\left[\mathrm{P}_{4} \mathrm{O}_{10}\right] /\left[\mathrm{P}_{4}\right]\left[\mathrm{O}_{2}\right]^{5}$
(2) $\mathrm{K}_{\mathrm{C}}=1 /\left[\mathrm{O}_{2}\right]^{5}$
(3) $\mathrm{K}_{\mathrm{C}}=\left[\mathrm{O}_{2}\right]^{5}$
(4) $\mathrm{K}_{\mathrm{C}}=\left[\mathrm{P}_{4} \mathrm{O}_{10}\right] / 5\left[\mathrm{P}_{4}\right]\left[\mathrm{O}_{2}\right]$
2. For the reaction, $\mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{COCl}_{2}(\mathrm{~g})$ then $\mathrm{K}_{\mathrm{p}} / \mathrm{K}_{\mathrm{c}}$ is equal to :
[AIEEE 2004]
(1) $1 / \mathrm{RT}$
(2) 1.0
(3) $\sqrt{R T}$
(4) RT
3. The equilibrium constant for the reaction, $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$ at temperature T is 4×10^{-4}. The value of K_{c} for the reaction, $\mathrm{NO}(\mathrm{g}) \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$ at the same temperature is
(1) 2.5×10^{2}
(2) 0.02
(3) 4×10^{-4}
(4) 50
[AIEEE 2004]
4. For the reaction, $\quad 2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}), \quad\left(\mathrm{K}_{\mathrm{C}}=1.8 \times 10^{-6}\right.$ at $\left.184^{\circ} \mathrm{C}\right)$ ($\mathrm{R}=0.0831 \mathrm{~kJ} /(\mathrm{mol} . \mathrm{K})$)

When K_{p} and K_{c} are compared at $184^{\circ} \mathrm{C}$ it is found that
[AIEEE 2005]
(1) Whether K_{p} is greater than, less than or equal to K_{c} depends upon the total gas pressure
(2) $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}$
(3) K_{p} is less than K_{c}
(4) K_{p} is greater than K_{c}
5. The exothermic formation of ClF_{3} is represented by the equation :
[AIEEE 2005]

$$
\mathrm{Cl}_{2}(\mathrm{~g})+3 \mathrm{~F}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{ClF}_{3}(\mathrm{~g}) ; \Delta_{\mathrm{r}} \mathrm{H}=-329 \mathrm{~J}
$$

which of the following will increase the quantity of ClF_{3} in an equilibrium mixture of $\mathrm{Cl}_{2}, \mathrm{~F}_{2}$ and ClF_{3}.
(1) Adding F_{2}
(2) Increasing the volume of container
(3) Removing Cl_{2}
(4) Increasing the temperature
6. An amount of solid $\mathrm{NH}_{4} \mathrm{HS}$ is placed in a flask already containing ammonia gas at a certain temperature at 0.50 atm pressure. Ammonium hydrogen sulphide decomposes to yield NH_{3} and $\mathrm{H}_{2} \mathrm{~S}$ gases in the flask. When the decomposition reaction reaches equilibrium, the total pressure in the flask rises to 0.84 atm ? The equilibrium constant for $\mathrm{NH}_{4} \mathrm{HS}$ decomposition at this temperature is :
[AIEEE 2005]
(1) 0.11
(2) 0.17
(3) 0.18
(4) 0.30
7. Phosphorus pentachloride dissociates as follows in a closed reaction vessel.

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

If total pressure at equilibrium of the reaction mixture is P and degree of dissociation of PCl_{5} is x , the partial pressure of PCl_{3} will be :
[AIEEE 2006]
(1) $\left(\frac{x}{x+1}\right) P$
(2) $\left(\frac{2 x}{1-x}\right) P$
(3) $\left(\frac{x}{x+1}\right) P$
(4) $\left(\frac{x}{1-x}\right) P$
8. The equilibrium constant for the reaction, $\mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$
is $\mathrm{K}_{\mathrm{C}}=4.9 \times 10^{-2}$. The value of K_{C} for the reaction $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$ will be
[AIEEE 2006]
(1) 416
(2) 2.40×10^{-3}
(3) 9.8×10^{-2}
(4) 4.9×10^{-2}
9. For the following three reactions a, b and c , equilibrium constants are given:
(A) $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$;
K_{1}
(B) $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})$;
K_{2}
(C) $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g})$;
K_{3}

Which of the following relations is correct?
[AIEEE 2008]
(1) $K_{2} K_{3}=K_{1}$
(2) $\mathrm{K}_{3}=\mathrm{K}_{1} \mathrm{~K}_{2}$
(3) $\mathrm{K}_{3} \mathrm{~K}_{2}{ }^{3}=\mathrm{K}_{1}{ }^{2}$
(4) $\mathrm{K}_{1} \sqrt{\mathrm{~K}_{2}}=\mathrm{K}_{3}$
10. The equilibrium constants $K_{p_{1}}$ and $K_{p_{2}}$ for the reactions $X \rightleftharpoons 2 Y$ and $Z \rightleftharpoons P+Q$, respectively are in the ratio of 1 : 9. If the degree of dissociation of X and Z be equal then the ratio of total pressures at these equilibria is
[AIEEE 2008]
(1) $1: 1$
(2) $1: 3$
(3) $1: 9$
(4) $1: 36$
11. If $10^{-4} \mathrm{dm}^{3}$ of water is introduced into a $1.0 \mathrm{dm}^{3}$ flask at 300 K , how many moles of water are in the vapour phase when equilibrium is established?
[AIEEE 2010]
(Given : Vapour pressure of $\mathrm{H}_{2} \mathrm{O}$ at 300 K is $3170 \mathrm{~Pa} ; \mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)
(1) $5.56 \times 10^{-3} \mathrm{~mol}$
(2) $1.53 \times 10^{-2} \mathrm{~mol}$
(3) $4.46 \times 10^{-2} \mathrm{~mol}$
(4) $1.27 \times 10^{-3} \mathrm{~mol}$
12. A vessel at 1000 K contains CO_{2} with a pressure of 0.5 atm . Some of the CO_{2} is converted into CO on the addition of graphite. If the total pressure at equilibrium is 0.8 atm , the value of K is :
[AIEEE 2011]
(1) 1.8 atm
(2) 3 atm
(3) 0.3 atm
(4) 0.18
13. The equilibrium constant $\left(\mathrm{K}_{\mathrm{c}}\right)$ for the reaction $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$ at temperature T is 4×10^{-4}. The value of K_{c} for the reaction $\mathrm{NO}(\mathrm{g}) \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$ at the same temperature is :
[AIEEE 2012]
(1) 0.02
(2) 2.5×10^{2}
(3) 4×10^{-4}
(4) 50.0
14. For the reaction, $\mathrm{SO}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{SO}_{3(\mathrm{~g})}$, if $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{C}}(\mathrm{RT})^{\mathrm{x}}$ where the symbols have usual meaning then the value of x is: (assuming ideality)
[JEE MAIN 2014]
(1) $\frac{1}{2}$
(2) 1
(3) -1
(4) $-\frac{1}{2}$
15. The standard Gibbs energy change at 300 K for the reaction $2 \mathrm{~A} \rightleftharpoons \mathrm{~B}+\mathrm{C}$ is 2494.2 J . At a given time, the composition of the reaction mixture is $[\mathrm{A}]=\frac{1}{2},[\mathrm{~B}]=2$ and $[\mathrm{C}]=\frac{1}{2}$. The reaction proceeds in the : $[\mathrm{R}=8.314 \mathrm{~J} / \mathrm{K} / \mathrm{mol}, \mathrm{e}=2.718]$
[JEE MAIN 2015]
(1) forward direction because $\mathrm{Q}<\mathrm{K}_{\mathrm{C}}$
(2) reverse direction because $\mathrm{Q}<\mathrm{K}_{\mathrm{C}}$
(3) forward direction because $\mathrm{Q}>\mathrm{K}_{\mathrm{C}}$
(4) reverse direction because $\mathrm{Q}>\mathrm{K}_{\mathrm{C}}$

CHEMISTRY FOR JEE MAIN \& ADVANCED

16. The equilibrium constant at 298 K for a reaction $A+B \rightleftharpoons C+D$ is 100 . If the initial concentration of all the four species were 1 M each, then equilibrium concentration of D (in mol^{-1}) will be:
[JEE MAIN 2016]
(1) 0.818
(2) 1.818
(3) 1.182
(4) 0.182
17. Given
[JEE MAIN 2017]
$\mathrm{C}_{\text {(graphite) }}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}):$
$\Delta_{\mathrm{r}} \mathrm{H}^{\circ}=-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\ell) ;$
$\Delta_{\mathrm{r}} \mathrm{H}^{\circ}=-285.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) ;$
$\Delta_{\mathrm{r}} \mathrm{H}^{\circ}=+890.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Based on the above thermochemical equations, the value of $\Delta_{\mathrm{r}} \mathrm{H}^{\circ}$ at 298 K for the reaction
$\mathrm{C}_{\text {(graphite) }}+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})$ will be :
(1) $+74.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(2) $+144.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(3) $-74.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(4) $-144.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Part \# II [Previous Year Questions][ITT-JEE ADVANCED]

1. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3} \mathrm{~K}=4 \times 10^{6}$ at 298

$$
\mathrm{K}=41 \text { at } 400 \mathrm{~K}
$$

Which statements is correct?
[JEE 2006]
(A) If N_{2} is added at equlibrium condition, the equilibrium will shift to the forward direction because according to $\mathrm{II}^{\text {nd }}$ law of thermodynamics the entropy must increases in the direction of spontaneous reaction.
(B) The condition for equilibrium is $2 \Delta G_{N_{3}}=3 \Delta G_{H_{2}}+\Delta G_{N_{2}}$ where G is Gibbs free energy per mole of the gaseous species measured at that partial pressure.
(C) Addition of catalyst does not change K_{p} but changes $\Delta \mathrm{H}$.
(D) At 400 K addition of catalyst will increase forward reaction by 2 times while reverse reaction rate will be changed by 1.7 times.
2. The value of $\log _{10} \mathrm{~K}$ for a reaction $\mathrm{A} \rightleftharpoons \mathrm{B}$ is :
(Given: $\Delta_{\mathrm{r}} \mathrm{H}_{298 \mathrm{~K}}^{\circ}=-54.07 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta_{\mathrm{r}} \mathrm{S}_{298 \mathrm{~K}}^{\circ}=10 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ and $\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} ; 2.303 \times 8.314 \times 298=5705$)
[JEE 2007]
(A) 5
(B) 10
(C) 95
(ID) 100
3. Statement-1: For every chemical reaction at equilibrium, standard Gibbs energy of reaction is zero.

Statement-2 : At constant temperature and pressure, chemical reactions are spontaneous in the direction of decreasing Gibbs energy.
[JEE 2008]
(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
(B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
(C) Statement-1 is True, Statement-2 is False.
(D) Statement-1 is False, Statement-2 is True.
(E) Statement-1 and Statement-2 both are False.

4 According to the Arrhenius equation,
[JEE 2016]
(A) a high activation energy usually implies a fast reaction.
(B) rate constant increases with increase in temperature. This is due to a greater number of collisions whose energy exceeds the activation energy.
(C) higher the magnitude of activation energy, stronger in the temperature dependence of the rate constant.
(D) the pre-exponential factor is a measure of the rate at which collisions occur, irrespective of their energy.

PARAGRAPH (5-6)

Thermal decomposition of gaseous X_{2} to gaseous X at 298 K takes palce according to the following equation :
[JEE 2016]

$$
\mathrm{X}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{X}(\mathrm{~g})
$$

The standard reaction Gibbs energy, $\Delta_{\mathrm{f}} \mathrm{G}^{\circ}$, of this reaction is positive. At the start of the reaction, there is one mole of X_{2} and no X. As the reaction proceeds, the number of moles of X formed is given by β. Thus, $\beta_{\text {equilibrium }}$ is the number of moles of X formed at equilibrium. The reaction is carried out at a constant total pressure of 2 bar. Consider the gases to behave ideally.
(Given : $\mathrm{R}=0.083 \mathrm{~L}^{2}$ bar K $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$)
5. The equilibrium constant K_{p} for this reaction at 298 K , in terms of $\beta_{\text {equilibrium }}$, is
(A) $\frac{8 \beta_{\text {equilibrium }}^{2}}{2-\beta_{\text {equilibrium }}}$
(B) $\frac{8 \beta_{\text {equilibrium }}^{2}}{4-\beta_{\text {equilibrium }}^{2}}$
(C) $\frac{4 \beta_{\text {equilibrium }}^{2}}{2-\beta_{\text {equilibrium }}}$
(D) $\frac{4 \beta_{\text {equilibrium }}^{2}}{4-\beta_{\text {equilibrium }}^{2}}$
6. The INCORRECT statement among the following, for this reaction, is
(A) Decrease in the total pressure will result in formation of more moles of gaseous X
(B) At the start of the reaction, dissociation of gaseous X_{2} takes place spontaneously
(C) $\beta_{\text {equilibrium }}=0.7$
(D) $\mathrm{K}_{\mathrm{C}}<1$

MOCK TVST

SECTION - I : STRAIGHT OBJECTIVE TYPE

1. Solid ammonium carbamate dissociates to give ammonia and carbon dioxide as follows.

$$
\mathrm{NH}_{2} \mathrm{COONH}_{4}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

At equilibrium, ammonia is added such that partial pressures of NH_{3} now equals the original totoal pressure. Calculate the ratio of the total pressure now to the original total pressure.
(A) $\frac{31}{27}$
(B) $\frac{60}{40}$
(C) $\frac{31}{9}$
(D) $\frac{62}{27}$
2. In the Haber process for the industrial manufacture of ammonia involving the reaction,
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$ at 200 atm pressure in the presence of a catalyst, a temperature of about $500^{\circ} \mathrm{C}$ is used. This is considered as optimum temperature for the process because
(A) yield is maximum at this temperature
(B) catalyst is active only at this temperature
(C) energy needed for the reaction is easily obtained at this temperature
(D) rate of the catalytic reaction is fast enough while the yield is also appreciable for this exothermic reaction at this temperature.
3. For the equilibrium of the reaction, $\mathrm{HgO}(\mathrm{s}) \rightleftharpoons \mathrm{Hg}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}), \mathrm{k}_{\mathrm{p}}$ for the reaction at total pressure of P is :
(A) $\mathrm{K}_{\mathrm{p}}=\frac{2}{3^{3 / 2}} \mathrm{p}^{3 / 2}$
(B) $\mathrm{K}_{\mathrm{p}}=\frac{2}{3^{1 / 2}} \mathrm{p}^{1 / 2}$
(C) $\mathrm{K}_{\mathrm{p}}=\frac{1}{3^{2 / 3}} \mathrm{p}^{3 / 2}$
(D) $\mathrm{K}_{\mathrm{p}}=\frac{1}{3^{2 / 3}} \mathrm{p}$
4. The average person can see the red colour imparted by the complex $[\mathrm{Fe}(\mathrm{SCN})]^{2+}$ to an aqueous solution if the concentration of the complex is $6 \times 10^{-6} \mathrm{M}$ or greater. What minimum concentration of KSCN would be required to make it possible to detect 1 ppm (part per million) of Fe (III) in a natural water sample? The instability constant for

$$
\mathrm{Fe}(\mathrm{SCN})^{2+} \rightleftharpoons \mathrm{Fe}^{3+}+\mathrm{SCN}^{-} \text {is } 7.142 \times 10^{-3} .
$$

(A) 0.0036 M
(B) 0.0037 M
(C) 0.0035 M
(D) None of these
5. $\quad \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}_{2}(\mathrm{~g}) \quad \ldots \mathrm{K}_{1}$
$2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \quad . . \mathrm{K}_{2}$
Given that above reactions have equilibrium constants K_{1} and K_{2} respectively. What would be the expression for the equilibrium constant K for the following reaction in terms of K_{1} and K_{2} ?
(A) $\mathrm{K}_{1} \mathrm{~K}_{2}$
(B) $\frac{1}{\mathrm{~K}_{1}\left(\mathrm{~K}_{2}\right)^{2}}$
(C) $\frac{1}{\mathrm{~K}_{2}\left(\mathrm{~K}_{1}\right)^{2}}$
(D) $\frac{1}{\mathrm{~K}_{1} \mathrm{~K}_{2}}$
6. The value of K_{p} for the reaction at $27^{\circ} \mathrm{C}$

$$
\mathrm{Br}_{2}(\ell)+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{BrCl}(\mathrm{~g})
$$

is ' 1 atm '. At equilibrium in a closed container partial pressure of BrCl gas ia 0.1 atm and at this temperature the vapour pressure of $\mathrm{Br}_{2}(\ell)$ is also 0.1 atm . Then what will be minimum moles of $\mathrm{Br}_{2}(\ell)$ to be added to 1 mole of Cl_{2}, to get above equilibrium situation :
(A) $\frac{10}{6}$ moles
(B) $\frac{5}{6}$ moles
(C) $\frac{15}{6}$ moles
(D) 2 moles
7. The two equilibria, $\mathrm{AB}(\mathrm{aq}) \rightleftharpoons \mathrm{A}^{+}(\mathrm{aq})+\mathrm{B}^{-}(\mathrm{aq})$ and $\mathrm{AB}(\mathrm{aq})+\mathrm{B}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{AB}_{2}^{-}(\mathrm{aq})$ are simultaneously maintained in a solution with equilibrium constants, K_{1} and K_{2} respectively. If [$\left.\mathrm{A}^{+}\right]$and $\left[\mathrm{AB}_{2}{ }^{-}\right.$] are y and x respectively, under equilibrium produced by adding the substance $A B$ to the solvents, then K_{1} / K_{2} is equal to
(A) $\frac{y}{x}(y-x)^{2}$
(B) $\frac{y^{2}(x+y)}{x}$
(C) $\frac{y^{2}(x+y)}{x}$
(D) $\frac{y}{x}(x-y)$
[Note: Use the information of the preceding problem]
8. $5 \mathrm{~mol} \mathrm{PCl}_{5}(\mathrm{~g})$ and one mole N_{2} gas is placed in a closed vessel. At equilibrium $\mathrm{PCl}_{5}(\mathrm{~g})$ decomposes 20% and total pressure in to the container is found to be 1 atm . the k_{p} for equilibrium $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
(A) $\frac{1}{24} \mathrm{~atm}$
(B) $\frac{1}{4} \mathrm{~atm}$
(C) $\frac{1}{16} \mathrm{~atm}$
(D) $\frac{1}{28} \mathrm{~atm}$
9. Degree of association can be defined as the number of moles of a particular substance associated per mole of the substance taken.

For example : If out of 10 mole of $\mathrm{N}_{2}, 3$ mol of N_{2} combine with H_{2} to form NH_{3}, then degree of association of $\mathrm{N}_{2}=0.3$. Consider the equilibrium situation :

$$
\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}
$$

Initially $\mathrm{N}_{2} \& \mathrm{H}_{2}$ were mixed in $1: 3$ molar ratio and after long time the mean molar mass of the mixture was found to be $\frac{23}{3} \mathrm{~g}$. The degree of association of N_{2} is
(A) 0.5
(B) 0.4
(C) 0.9
(D) 0.25

SECTION - II : MULTIPLE CORRECT ANSWER TYPE

10. For the equilibrium

$$
\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

Which of the following sketch may represent above equilibrium. Assume equilibrium can be achieved from either side and by taking any one or more components initially. (Given K_{c} for the reaction <2).
(A)

(B)

(C)

(D)

11. $138 \mathrm{gm}_{\mathrm{gm}}$ of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ is placed in 8.2 L container at 300 K . The equilibrium vapour density of mixtue was found to be 30.67. Then $\left(\mathrm{R}=0.82 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$
(A) $\alpha=$ degree of dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}=0.25$
(B) K_{p} of $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$ will be 9 atm .
(C) Total pressure at equilibrium $=6.75 \mathrm{~atm}$.
(D) The density of equilibrium mixture will be $16.83 \mathrm{gm} / \mathrm{litre}$.
12. Solid ammonium carbamate dissociate to give ammonia and carbon dioxide as follows
$\mathrm{NH}_{2} \mathrm{COONH}_{4}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$
which of the following graph incorrectly represents the equilibrium.
(A)

(B)

(C)

(D)

13. $\quad 2 \mathrm{CaSO}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CaO}(\mathrm{s})+2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}), \quad \Delta \mathrm{H}>0$

Above equilibrium is established by taking sufficient amount of $\mathrm{CaSO}_{4}(\mathrm{~g})$ in a closed container at 1600 K .
Then which of the following may be correctoption (Assume that solid CaSO_{4} is present in the container in each case)
(A) moles of CaO (s) will increase with the increase in temperature
(B) If the volume of the container is doubled at equilibrium then partial pressure of $\mathrm{SO}_{2}(\mathrm{~g})$ will change at new equilibrium.
(C) If the volume of the container is halved partial pressure of $\mathrm{O}_{2}(\mathrm{~g})$ at new equilibrium will remain same
(D) If two moles of the He gas is added at constant pressure then the moles of CaO (s) will increase.
14. For a reversible reaction $\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD}$; the variation of K with temperature is given by \log
$\frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\frac{-\Delta \mathrm{H}^{\circ}}{2.303 \mathrm{R}}\left[\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{1}}\right]$ then,
(A) $\mathrm{K}_{2}>\mathrm{K}_{1} \quad$ if $\quad \mathrm{T}_{2}>\mathrm{T}_{1}$ for an endothermic change
(B) $\mathrm{K}_{2}<\mathrm{K}_{1} \quad$ if $\quad \mathrm{T}_{2}>\mathrm{T}_{1}$ for an endothermic change
(C) $\mathrm{K}_{2}>\mathrm{K}_{1}$ if $\mathrm{T}_{2}>\mathrm{T}_{1}$ for an exothermic change
(D) $\mathrm{K}_{2}<\mathrm{K}_{1} \quad$ if $\quad \mathrm{T}_{2}>\mathrm{T}_{1}$ for an exothermic change

CHEMISTRY FOR JEE MAIN \& ADVANCED

15. The following reaction attains equilibrium at high temperature.

$$
\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\text { heat } \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g})
$$

The yield of NO is affected by
(A) increasing the nitrogen concentration
(B) decreasing the hydrogen concentration
(C) compressing the reaction mixture
(D) none of these

SECTION - III : ASSERTION AND REASON TYPE

16. Statement-1: $\mathrm{A}(\mathrm{s}) \rightleftharpoons \mathrm{B}(\mathrm{g})+\mathrm{C}(\mathrm{g}) ; \mathrm{Kp}_{1}$

$$
\mathrm{X}(\mathrm{~s}) \rightleftharpoons \mathrm{B}(\mathrm{~g})+\mathrm{Y}(\mathrm{~g}) ; \mathrm{Kp}_{2}=3 \mathrm{Kp}_{1}
$$

Total pressure of B over the mixture of solid A and X is greater than pressure of B either over excess solid A or over excess solid X But less then their directly sumup value when excess of solid A and excess of solid B kept in different container.

Statement - 2 : In presence of each other, degree of dissociation of both solids decreases.
(A) Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1.
(B) Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1
(C) Statement-1 is True, Statement-2 is Fasle
(D) Statement-1 is False, Statement-2 is True
17. Statement-1 : For the equilibrium $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}_{2(\mathrm{~g})}$ then mean molar mass of the equilibrium mixture is always more than 46 and less than 92.

Statement-2 : Addition of $\mathrm{Xenon}_{(\mathrm{g})}$, at constant volume to the equilibrium mixtue will result in decrease in the mean molar mass of the mixture.
(A) Statement -1 is True, Statement- 2 is True, Statement-2 is a correct explanation for Statement-1.
(B) Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
(C) Statement-1 is True, Statement-2 is False
(D) Statement-1 is False, Statement-2 is True
18. Statement-1 : Ice melts at $0^{\circ} \mathrm{C}$ under normal conditions, it would melt at lower temperature under higher pressure. Statement-2 : Formation of ice is an exothermic process.
(A) Statement -1 is True, Statement- 2 is True, Statement-2 is a correct explanation for Statement-1.
(B) Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1.
(C) Statement-1 is True, Statement-2 is False
(D) Statement-1 is False, Statement-2 is True

SECTION - IV : COMPREHENSION TYPE

Read the following comprehensions carefully and answer the questions.

Comprehension \# 1

Le chatelier's principle

If a system at equilibrium is subjected to a change of any one of the factors such as concentration, pressure or temperature, the system adjusts itself in such a way as to (Nulify) the effect of that change.

Change of pressure : If a system in equilibrium consists of gases, then the concentrations of all the components can be altered by changing the pressure. When the pressure on the system is increased, the volume decreases proportionately. The The total number of mols per unit volume will now be more and the equilibrium will shift in the direction in which there is decrease in number of moles i.e., towards the direction in which there is decrease in volume.

Effect of pressure on melting point : There are two types of solids :
(a) Solids whose volume decreases on melting, e.g. ice, diamond, carborundum, magnesium nitride and quartz. Solid (higher volume) \rightleftharpoons Liquid (lower volume)

The process of melting is facilitated at high pressure, thus melting point is lowered.
(b) Solids whose volume increase on melting, e.g., $\mathrm{Fe}, \mathrm{Cu}, \mathrm{Ag}, \mathrm{Au}$, etc.

Solid (lower volume) \rightleftharpoons Liquid (higher volume)
In this case the process of melting become difficult at high pressure; thus meltingpoint becomes high.
(c) Solubility of substances : When solid substance are dissolved in water, either heat is evolved (exothermic) or heat is absorbed (endothermic).
$\mathrm{KCl}+\mathrm{aq} \rightleftharpoons \mathrm{KCl}(\mathrm{aq})-$ heat
In susch cases, solubility increase with increase in temperature. Consider the case of KOH ; when this is dissolved, heat is evolved.
$\mathrm{KOH}+\mathrm{aq} \rightleftharpoons \mathrm{KOH}(\mathrm{aq})+$ heat
In such cases, solubility decrease with increase in temperature.
(d) Solubility of gases in liquids: When a gas dissolves in liquid, there is decrease in volume. Thus, increase of pressure will favour the dissolution of gas in liquid.
Effect of temperature : Le-Chatelier's principle predicts a system at equilibrium will tend to shift in the endothermic direction when temperature is raised, for then energy is absorbed as heat and the rise in temperature is opposed. Conversely, an equilibrium will shift in the exothermic direction if the temperature is lowered, for then that energy is released and the reduction in temperature is opposed.
Van't Hoff equation shows the dependence of equilibrium constant K on temperature as :

$$
\frac{\mathrm{d}}{\mathrm{dT}} \ell \mathrm{nK}=\frac{\Delta \mathrm{H}^{\circ}}{\mathrm{RT}^{2}} \text { or } \ell \mathrm{nK}=\text { constant }-\frac{\Delta \mathrm{H}^{\circ}}{\mathrm{R}} \cdot \frac{1}{\mathrm{~T}}
$$

19. A gas ' X ' when dissolved in water heat is evolved. Then solubility of ' X ' will increase
(A) Low pressure, high temperature
(B) Low pressure, low temperature
(C) High pressure, high temperature
(D) High pressure, low temperatue
20. $\quad \mathrm{Au}(\mathrm{s}) \rightleftharpoons \mathrm{Au}(\ell)$

Above equilibrium is favoured at
(A) High pressure low temperature
(B) High pressure high temperature
(C) Low pressure, high temperature
(D) Low pressure, low temperature
21. For the reaction
$\frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}(\mathrm{g})$
If pressure is increased by reducing the volume of the container then
(A) Total pressure at equilibrium will change
(B) Concentration of all the component at equilibrium will change
(C) Concentration of all the component at equilibrium will remain same
(D) Equilibrium will shift in the forward direction

CHEMISTRY FOR JEE MAIN \& ADVANCED

22. The plot of $\log \mathrm{K}$ against $\frac{1}{\mathrm{~T}}$ is a straight line with positive slope (K being the equilibrium constant of a reaction), which of the following is then correct?
(A) The reaction is endothermic in nature
(B) The reaction will be exothermic in nature
(C) The reaction goes to farther extent on raising the temperature
(D) None of these

Comprehension \# 2

The rate of chemical reaction at a particular temperature is proportional to the product of the molar concentration of reactants with each concentration term raised to the power equal to the number of molecules of the respective reactant taking part in the reaction. $\mathrm{aA}+\mathrm{bB} \longrightarrow$ products, rate of reaction $\alpha[A]^{a}[B]^{b}=k[A]^{a}[B]^{b}$, where k is the rate constant of the reaction.

Equilibrium constant (k)

For a general reaction $\mathrm{a} A+\mathrm{bB} \Leftrightarrow \mathrm{cC}+\mathrm{dD}$, forward rate $\mathrm{r}_{\mathrm{f}}=\mathrm{k}_{\mathrm{f}}[\mathrm{A}]^{a}[B]^{b}$, backward rate $\mathrm{r}_{\mathrm{b}}=\mathrm{k}_{\mathrm{b}}[\mathrm{C}]^{c}[\mathrm{D}]^{d}$, concentrations of reactants \& bproducts at equilibrium are related by $\frac{\mathrm{K}_{\mathrm{f}}}{\mathrm{K}_{\mathrm{b}}}=\mathrm{K}_{\mathrm{C}}=\frac{[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}}$ where all the concentrations are expressed in mole/liter.

$$
\text { e.g. } \quad \mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

$$
\mathrm{K}_{\mathrm{C}}=\frac{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{PCl}_{5}\right]}
$$

In the expression of equilibrium constant those components are kept whose concentration changes with time. If equilibrium is estabilished by taking all the components in the reaction then to predict the direction of reactions we calculate the reaction quotient (Q).

The values of expression $Q=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$
at any time during reaction is called reaction quotient
if $\mathrm{Q}>\mathrm{K}_{\mathrm{c}}$ reaction proceed in backward direction until equilibrium in reached
if $\mathrm{Q}<\mathrm{K}_{\mathrm{c}}$ reaction will proceed in forward direction until equilibrium is established
if $\mathrm{Q}=\mathrm{K}_{\mathrm{c}}$ Reaction is at equilibrium
23. $\quad \mathrm{A}(\mathrm{g})+\mathrm{B}(\mathrm{g}) \rightleftharpoons 2 \mathrm{C}(\mathrm{g})$

Initial concentration of ' A ' is twice the initial concentration of ' B '. At equilibrium concentration of ' A ' and ' C ' are same then equilibrium constant for the reaction is
(A) $\frac{4}{3}$
(B) $\frac{4}{9}$
(C) $\frac{16}{9}$
(D) 4
24. $\quad \mathrm{A}(\mathrm{g})+\mathrm{B}(\mathrm{g}) \rightleftharpoons \mathrm{C}(\mathrm{g})+\mathrm{D}(\mathrm{g})$

Above homogeneous reaction is carried out in a 2 litre container at a particular temperature by taking 1 mole each of A, B, C and D respectively. If K_{C} for the reaction is $\frac{1}{4}$ ten equilibrium concentration of C is.
(A) $\frac{1}{3} \mathrm{M}$
(B) $\frac{2}{3} \mathrm{M}$
(C) $\frac{4}{3} \mathrm{M}$
(D) $\frac{1}{2} \mathrm{M}$
25. When $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{COOH}$ are mixed in equivalent proportion equilibrium is reached when $2 / 3$ of acid and alcohol are used. How much ester will be present when 2 moles of acid were to react with 2 moles of alcohol?
(A) 1.33
(B) 1
(C) 2.33
(D) 2

SECTION - V : MATRIX - MATCH TYPE

26. Match List I (equilibrium) with List II (conditio for reaction) and select the correct answer using the option below the lists.

Column I

 (equilibrium)$(\mathrm{A}) \mathrm{A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \xlongequal{\text { endothermic }} 2 \mathrm{AB}(\mathrm{g})$
$(\mathrm{B}) 2 \mathrm{AB}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \xlongequal{\text { exothermic }} 2 \mathrm{AB}_{3}(\mathrm{~g})$
(C) $2 \mathrm{AB}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \xlongequal{\text { exothermic }} \mathrm{A}_{2}(\mathrm{~g})+3 \mathrm{~B}_{2}(\mathrm{~g})$

Column II
(condition for reaction)
(p) High Temperature
(q) Low Temperature
(r) High Pressure
(s) Low Pressure
(t) Independent of Pressure
27. Match the following (multiple)

Left column : Represents an equilibrium situation through a chemical equation and below each equation a stimulus is given which may or may not disturb the equilibrium situation.
Right column : Represents the responses immediately after the disturbance is created.

$$
\text { With } \quad \begin{aligned}
& \mathrm{R}_{1}: \text { Rate of forward reaction } \\
& \\
& \mathrm{R}_{2}: \text { Rate of backward reaction } \\
& \\
& \mathrm{R}_{3}: \text { Reaction quotient } \\
& \\
& \mathrm{K}: \text { Equilibrium constant }
\end{aligned}
$$

(A) $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \leftrightharpoons 2 \mathrm{HI}_{(\mathrm{g})}$
(p) $\quad \mathrm{R}_{1}$ increases

Pressure is increased
(B) $\frac{1}{2} \mathrm{~N}_{2(\mathrm{~g})}+\frac{3}{4} \mathrm{H}_{2(\mathrm{~g})} \leftrightharpoons \mathrm{NH}_{3(\mathrm{~g})}$
(q) R_{b} increases
(C) $\mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \leftrightharpoons \mathrm{PCl}_{5(\mathrm{~g})}$
(r) $\quad \mathrm{R}_{1}=\mathrm{R}_{\mathrm{b}}$
PCl_{5} is added
(D) $2 \mathrm{SO}_{3(\mathrm{~g})} \leftrightharpoons 2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$
(s) $\quad \mathrm{Q} \neq \mathrm{K}$ Inert gas added at court volume
28. Match the following :

Column I
(A) For the equilibrium
$\mathrm{NH}_{4} \mathrm{I}(\mathrm{s}) \leftrightharpoons \mathrm{NH} 3(\mathrm{~g})+\mathrm{HI}(\mathrm{g})$, if pressurel is increased at equilibrium
(B) For the equilibrium
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \leftrightharpoons 2 \mathrm{NH}_{3}$ at equilibrium volume is increased at equilibrium
(C) For the equilibrium
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g}) \leftrightharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$ inert gas is added at constant pressure at equilibrium
(D) For the equilibrium
$\mathrm{PCl}_{5} \leftrightharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2} \mathrm{Cl}_{2}$ is removed at equilibrium
(q) No change
(r) Backward shift
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g})$
(s) Final pressure is more than initial pressure

Column II
(p) Forward shift

SECTION-VI: SUBJECTIVE TYPE

29. At certain temperature, the equilibrium constant for the gaseous reaction of CO with O_{2} to produce CO_{2} is 5.0×10^{3} lit/mole. Calculate [CO] at equilibrium, if 1.0 mol each of CO and O_{2} are placed in a 2.0 L vessel and allowed to come to equilibrium .
30. At $827^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{p}}$ for the reaction between $\mathrm{CO}_{2}(\mathrm{~g})$ and excess hot graphites(s) is 10 atm. Calculate the equilibrium concentration of gases at $827^{\circ} \mathrm{C}$ and total equilibrium pressure equal to 5.6 atm

CHEMISTRY FOR JEE MAIN \& ADVANCED

31. The equilibrium consant for the following reaction, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{HBr}(\mathrm{g})$ is 1.6×10^{5} at 1024 K . Find the equilibrium pressure of all gases if 10 bar of HBr is introduced into a sealed container at 1024 K .
or
The equilibrium constant for the following reaction is 1.6×10^{5} at 1024 K ,

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HBr}(\mathrm{~g})
$$

Find the equilibrium pressure of all gases if 10.0 bar of HBr is introduced into a sealed container at 1024 K .
32. A container of volume V litre contains an equilibrium mixture which consists of 2 mol each of $\mathrm{PC} \ell_{5}, \mathrm{PC} \ell_{3}$ and $\mathrm{C} \ell_{2}$ (all gases). The equilibrium pressure is 3 atm . and tempereature is TK . A certain amont of $\mathrm{C} \ell_{2}(\mathrm{~g})$ is now introduced into the container keeping the pressure and temperature constant, until the equilibrium volume becomes 2 V litre. Calculate the number of moles of $\mathrm{C} \ell_{2}$ that were added.
[Fill your answer in the multiple of 10^{-2}, for example if your answer is 2.53 then fill 253 as your answer.]
33. $\quad \mathrm{NH}_{3}$ is heated initialy at 15 atm from $27^{\circ} \mathrm{C}$ to $127^{\circ} \mathrm{C}$ at constant volume. At $127^{\circ} \mathrm{C}$ equilibrium is established. The new pressue at equilibrium at $127^{\circ} \mathrm{C}$ becomes 30 atm for the reaction $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$. Then find the $\%$ of moles of NH_{3} actually decomposed.
34. For the equilibrium :

$$
\mathrm{LiCl} .3 \mathrm{NH}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{LiCl} . \mathrm{NH}_{3}(\mathrm{~s})+2 \mathrm{NH}_{3}(\mathrm{~g}) \quad\left[\mathrm{K}_{\mathrm{p}}=9 \mathrm{~atm}^{3}\right]
$$

at $40^{\circ} \mathrm{C}$. A 5 litre vessel contains 0.1 mole of $\mathrm{LiCl} . \mathrm{NH}_{3}$. How many mole of Nh 3 should be added to the flask at this temperature to derive the backward reaction for completion?
35. In a container of constant volume at a particular temparature N_{2} and H_{2} are mixed in the molar ratio of 9:13. The following two equilibria are found to be coexisting inthe container

$$
\begin{aligned}
& \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \\
& \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g})
\end{aligned}
$$

The total equilibrium pressure is found to be 3.5 atm while partial pressure of $\mathrm{NH}_{3}(\mathrm{~g})$ and $\mathrm{H}_{2}(\mathrm{~g})$ are 0.5 atm and 1 atm respectively. Calculate of equilibrium constants of the two reactions given above.

ANSWER KEY

EXERCISE - 1

| 1. B | 2. B | 3. B | 4. B | 5. A | 6. A | 7. | A | 8. | A | 9. | A | 10. C | 11. B | 12. B | 13. B | |
| :--- |
| 14. B | 15. A | 16. A | 17. A | 18. B | 19. D | 20. B | 21. C | 22. A | 23. B | 24. D | 25. A | 26. B | | | | |
| 27. A | 28. B | 29. B | 30. A | 31. B | 32. C | 33. B | 34. D | 35. B | 36. A | 37. A | 38. C | 39. B | | | | |
| 40. C | 41. B | 42. D | 43. D | 44. C | 45. B | 46. D | 47. B | 48. B | 49. A | 50. C | 51. D | 52. A | | | | |
| 53. B | 54. C | 55. A | 56. D | 57. D | 58. D | 59. A | 60. B | 61. C | 62. C | 63. C | 64. B | 65. A | | | | |
| 66. D | 67. A | 68. B | 69. B | 70. B | 71. C | 72. B | 73. C | 74. D | 75. A | 76. C | 77. B | 78. C | | | | |
| 79. B | 80. B | 81. A | 82. B | 83. A | 84. B | 85. A | 86. D | 87. B | 88. C | 89. C | 90. B | 91. B | | | | |
| 92. A | 93. C | 94. D | 95. C | 96. C | | | | | | | | | | | | |

EXERCISE - 2 : PART \# I

1. $\mathrm{A}, \mathrm{B}, \mathrm{C}$
2. A, D
3. A, B
4. A, C, D
5. A, B, C, D, E
6. $\mathrm{A}, \mathrm{B}, \mathrm{C}$
7. $\mathrm{A}, \mathrm{B}, \mathrm{D}$
8. $\mathrm{B}, \mathrm{C}, \mathrm{D}$
9. A, C, D
10. B, D
11. A, C
12. C, D
13. B, D
14. A, B, C, D
15. A, B, C
16. A, C, E
17. A, B, C, D
18. B, C, D
19. A
20. A
21. A
22. A
23. B 24. B
24. C 26. D
25. C
26. A
27. B
28. D
29. A
30. B
31. C
32. B
33. B
34. A
35. B
36. D 39. A
37. A
38. D
39. A
40. B
41. B
42. A
43. B
44. B
45. D
46. A
47. C
48. A
49. B
50. D
51. C
52. C
53. A
54. A
55. D 59. B

PART \# II

1. A
2. B
3. A
4. A
5. D
6. A
7. D
8. A
9. C
10. A
11. B
12. A
13. A

EXERCISE - 3 : PART \# I

1. $\mathrm{A} \rightarrow(\mathrm{r}), \mathrm{B} \rightarrow(\mathrm{r}), \mathrm{C} \rightarrow(\mathrm{q}), \mathrm{D} \rightarrow(\mathrm{p})$
2. $\mathrm{A} \rightarrow(\mathrm{q}, \mathrm{s}), \mathrm{B} \rightarrow(\mathrm{p}), \mathrm{C} \rightarrow(\mathrm{p}), \mathrm{D} \rightarrow(\mathrm{r})$
3. $\mathrm{A} \rightarrow(\mathrm{s}), \mathrm{B} \rightarrow(\mathrm{p}, \mathrm{q}, \mathrm{s}), \mathrm{C} \rightarrow(\mathrm{p}, \mathrm{q}, \mathrm{r}), \mathrm{D} \rightarrow(\mathrm{r})$
4. $\mathrm{A} \rightarrow(\mathrm{p}), \mathrm{B} \rightarrow(\mathrm{s}), \mathrm{C} \rightarrow(\mathrm{q}), \mathrm{D} \rightarrow(\mathrm{r})$

PART \# II

Comprehension \# 1 :

1. B 2. B 3. B

Comprehension \# 2 :

1. D 2. C
2. A, B

Comprehension \# 3 :

1. C
2. D
3. B

Comprehension \# 4 :

1. A
2. B

Comprehension \# 5 :

1. B
2. C
3. A

EXERCISE - 5 : PART \# I

1. 2
2. 1
3. 4
4. 4
5. 1
6. 1
7. 1
8. 1
9. 2
10. 4
11. 4
12. 1
13. 4
14. 4
15. 4
16. 2
17. 3

PART \# II

1.
2.

B
3.
D
4.
BCD
5. B
6. C

MOCK TEST

1. A
2. D
3. A
4. A
5. C
6. C
7. A
8. D
9. A
10. (B, D)
11. (B, C, D)
12. (A, B, D)
13. (A, C, D)
14. (A, D)
15. (A, B, C)
16. A
17. C
18. B
19. D
20. C
21. (A, B)
22. B
23. D
24. A
25. A
26. $\mathrm{A} \rightarrow(\mathrm{p}, \mathrm{t}) ; \mathrm{B} \rightarrow(\mathrm{q}, \mathrm{r}) ; \mathrm{C} \rightarrow(\mathrm{q}, \mathrm{s})$
27. $\mathrm{A} \rightarrow(\mathrm{p}, \mathrm{q}, \mathrm{r}) ; \mathrm{B} \rightarrow(\mathrm{p}, \mathrm{q}, \mathrm{s}) ; \mathrm{C} \rightarrow(\mathrm{q}, \mathrm{s}) ; \mathrm{D} \rightarrow(\mathrm{p}, \mathrm{q}, \mathrm{r})$
28. $\mathrm{A} \rightarrow(\mathrm{r}, \mathrm{s}) ; \mathrm{B} \rightarrow(\mathrm{r}) ; \mathrm{C} \rightarrow(\mathrm{q}) ; \mathrm{D} \rightarrow(\mathrm{p}, \mathrm{s})$
29. $\mathrm{A} \rightarrow(\mathrm{q}, \mathrm{s}) ; \mathrm{B} \rightarrow(\mathrm{p}) ; \mathrm{C}-\mathrm{q}, \mathrm{s}) ; \mathrm{D} \rightarrow(\mathrm{r})$
