HINTS \& SOLUTIONS

EXERCISE - 1

Single Choice

4. Molar conc. $=\frac{\text { no. of moles of } \mathrm{O}_{2}}{\text { volume }(\text { in litre })}=\frac{96}{32} \times \frac{1}{2}=1.5 \mathrm{M}$
5. At equilibrium rates of backward and forward reactions become equal.
6. $\mathrm{K}_{\mathrm{C}}=\frac{\left[\frac{\mathrm{C}}{\mathrm{V}}\right]^{2}}{\left[\frac{B}{V}\right]\left[\frac{\mathrm{A}}{\mathrm{V}}\right]^{3}} \Rightarrow 9=\frac{\left[\frac{2}{\mathrm{~V}}\right]^{2}}{\left[\frac{2}{\mathrm{~V}}\right]\left[\frac{2}{\mathrm{~V}}\right]^{3}} \Rightarrow \mathrm{~V}=6 \mathrm{~L}$
7. $\mathrm{A} \stackrel{\mathrm{K}_{1}}{\stackrel{\mathrm{~K}_{2}}{\rightleftharpoons}} \mathrm{~B} \quad \mathrm{~K}_{\mathrm{c}}=\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}=\frac{\mathrm{b}+\mathrm{x}}{\mathrm{a}-\mathrm{x}}$
$a-x b+x \quad x=\frac{K_{1} a-K_{2} b}{K_{1}+K_{2}}$
Therefore, (A) option is correct.
8.

$$
\left.\begin{array}{clll}
A+ & B \rightleftharpoons & C+D & \\
3 n & n & 0 & 0
\end{array}\right)
$$

$$
(n-x)=x
$$

$$
\mathrm{n}=2 \mathrm{x} \quad \mathrm{x}=\frac{\mathrm{n}}{2}
$$

10.

	A	$+\mathrm{B} \rightleftharpoons$	$\mathrm{C}+\mathrm{D}$
Initial	1	1	0
At equili.	$(1-\mathrm{x})$	$(1-\mathrm{x})$	x
a			

$$
\therefore \quad \mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}][\mathrm{D}]}{[\mathrm{A}][\mathrm{B}]}=9
$$

$$
\therefore \quad \frac{x \cdot x}{(1-x)^{2}}=9 \text { or } \quad x^{2}=9+9 x^{2}-18 x \quad \text { or }
$$

$$
8 x^{2}-18 x+9=0
$$

$$
\therefore \quad x=\frac{3}{2} \quad \text { or } \quad \frac{3}{4}
$$

Hence, among the given options, the option (3) i.e., 0.75 is correct.
13.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

At equilibrium

$$
\frac{P}{3} \quad P, \quad \frac{P}{3}+P+P_{N H_{3}}=2 P
$$

$$
\mathrm{P}_{\mathrm{NH}_{3}}=\frac{2 \mathrm{P}}{3} \quad \mathrm{~K}_{\mathrm{p}}=\frac{\frac{2 \mathrm{P}}{3} \times \frac{2 \mathrm{P}}{3}}{\frac{\mathrm{P}}{3} \times \mathrm{P}^{3}}=\frac{1}{\mathrm{P}^{2}} \cdot \frac{4}{3}
$$

$$
\Rightarrow K_{p}=\frac{4}{3 P^{2}}
$$

14. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$
$\mathrm{Kp}=4.0 \mathrm{~atm}^{-2}$
$\mathrm{Kp}=\frac{\left(\mathrm{SO}_{3}\right)^{3}}{\left(\mathrm{SO}_{2}\right)^{2}\left(\mathrm{O}_{2}\right)}$
Given that at equilibrium the amount of SO_{2} and SO_{3} is the same so
$\frac{\left(\mathrm{SO}_{3}\right)^{2}}{\left(\mathrm{SO}_{2}\right)^{2}\left(\mathrm{o}_{2}\right)}=4 \Rightarrow\left[\mathrm{O}_{2}\right]=\frac{1}{4}=0.25 \mathrm{~atm}$.
15. $\mathrm{A}_{2}(\mathrm{~g})+2 \mathrm{~B}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{C}_{2}(\mathrm{~g})$
$\mathrm{P}_{\mathrm{A}_{2}}=0.80 \mathrm{~atm}$., $\quad \mathrm{P}_{\mathrm{B}_{2}}=0.4 \mathrm{~atm}$.
Total pressure of the system $=2.8 \mathrm{~atm}$.
$\therefore \mathrm{P}_{\mathrm{C}_{2}}=2.8-0.8-0.4=1.6$
$\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{C}_{2}}^{2}}{\mathrm{P}_{\mathrm{A}_{2}} \times \mathrm{P}_{\mathrm{B}_{2}}^{3}}=\frac{(1.6)^{2}}{0.8 \times(0.4)^{2}}=20$
16. $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{p}}=0.03 \mathrm{~T}=427^{\circ} \mathrm{C}=700 \mathrm{~K}$
$\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{C}}(\mathrm{RT})^{1}$
$K_{C}=\frac{K_{P}}{R T}=\left[\frac{0.03}{0.082 \times 700}\right]$
$\mathrm{K}_{\mathrm{C}}=5.23 \times 10^{-4}$
17. Using $K_{P}=K_{C}(R T)^{\Delta n_{g}}$
so, $\log \frac{\mathrm{K}_{\mathrm{P}}}{\mathrm{K}_{\mathrm{C}}}=\Delta \mathrm{n}_{\mathrm{g}} \log \mathrm{RT}$
so , $\Delta \mathrm{n}_{\mathrm{g}}=-1$.

CHEMISTRY FOR JEE MAIN \& ADVANCED

19. $\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{p}}=4 \times 10^{-3}$
$\mathrm{SO}_{3} \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{p}}^{\prime}=\frac{1}{\mathrm{Kp}}$
$\mathrm{K}_{\mathrm{p}}^{\prime}=\left(\frac{1}{4 \times 10^{-3}}\right)$
$2 \mathrm{SO}_{3} \rightleftharpoons 2 \mathrm{SO}_{2}+\mathrm{O}_{2}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{p}}^{\prime \prime}=\left(\mathrm{K}_{\mathrm{p}}^{\prime}\right)^{2}=\left[\frac{1}{4 \times 10^{-3}}\right]^{2}=\left[\frac{1000}{4}\right]^{2}=6250=625 \times 10^{2}$

$6.25 \times 104 \mathrm{~atm}$.

20. (i) $2 \mathrm{NO}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}_{2}$
(ii) $\mathrm{NO}_{2}+\mathrm{SO}_{2} \rightleftharpoons \mathrm{SO}_{3}+\mathrm{NO}$
(iii) $2 \mathrm{SO}_{3} \rightleftharpoons 2 \mathrm{SO}_{2}+\mathrm{O}_{2}$

Now, -2 (iii) $=($ i $)+($ (iii)
so, $\mathrm{K}_{\mathrm{C}_{3}} \times \mathrm{K}_{\mathrm{C}_{1}}=1 / \mathrm{K}^{2} \mathrm{C}_{2}$
22. $\mathrm{S}(\mathrm{s})+\mathrm{S}^{2-}(\mathrm{aq}) \rightleftharpoons \mathrm{S}_{2}{ }^{2-}(\mathrm{aq}) \quad \mathrm{K}_{1}=12$
$2 \mathrm{~S}(\mathrm{~s})+\mathrm{S}^{2-}(\mathrm{aq}) \rightleftharpoons \mathrm{S}_{3}{ }^{2-}(\mathrm{aq}) \quad \mathrm{K}_{2}=132$
Now, $\mathrm{S}_{2}{ }^{2-}(\mathrm{aq})+\mathrm{S}(\mathrm{s}) \rightleftharpoons \mathrm{S}_{3}{ }^{2-}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{eq}}=\frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\frac{132}{12}$

$$
=11
$$

23. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}(\ell)$.

a	a	0	0
a 0.33 a	$\mathrm{a}-0.33 \mathrm{a}$	0.33 a	0.33 a

$$
K_{C}=\frac{(0.33 a) \times(0.33 a)}{(0.67 a) \times(0.67 a)}=K_{C}=1 / 4
$$

26. $\alpha=\left[\frac{\mathrm{D}-\mathrm{d}}{\mathrm{d}}\right] ; \alpha=\left[\frac{\mathrm{D}}{\mathrm{d}}-1\right] . \quad ;\left(\frac{\mathrm{D}}{\mathrm{d}}\right)=\alpha+1$.
$\alpha=\frac{D-d}{(n-1) d} \quad ; \quad \alpha=\frac{D-d}{d} ; \quad \alpha=\left(\frac{D}{d}\right)-1$.

The point at which $\alpha=0$.
$\left[\frac{\mathrm{D}}{\mathrm{d}}-1\right]=0 \quad ; \quad$ So, $\left(\frac{\mathrm{D}}{\mathrm{d}}\right)=1$.
29.

$\mathrm{t}=0$	a	0	0
$\mathrm{t}=\mathrm{t}_{\text {eq. }}$	$\mathrm{a}(1-\alpha)$	$\mathrm{a} \alpha$	$a\left(\frac{\alpha}{2}\right)$

Total mole at eq. $=\mathrm{a}\left(1+\frac{\alpha}{2}\right)$
$\mathrm{P}_{\mathrm{SO}_{3}}=\left(\frac{1-\alpha}{1+(\alpha / 2)}\right) \mathrm{P}_{0}=\left[\frac{2(1-\alpha)}{2+\alpha}\right] \times \mathrm{P}_{0} \quad ;$
$\mathrm{P}_{\mathrm{SO}_{2}}=\left(\frac{\alpha}{1+(\alpha / 2)}\right) \mathrm{P}_{0}=\left(\frac{2 \alpha}{2+\alpha}\right) \times \mathrm{P}_{0}$
$\mathrm{PO}_{2}=\left(\frac{\alpha / 2}{1+(\alpha / 2)}\right) \mathrm{P}_{0}$

$$
\mathrm{K}_{\mathrm{p}}=\frac{\frac{4 \alpha^{2}\left(\mathrm{P}^{\mathrm{o}}\right)^{2}}{(2+\alpha)^{2}} \times\left(\frac{\alpha}{2+\alpha}\right) \times \mathrm{P}^{\mathrm{o}}}{\frac{4(1-\alpha)^{2}}{[2+\alpha]^{2}} \times\left(\mathrm{P}_{0}\right)^{2}}=\left[\frac{\alpha^{3} \mathrm{P}^{\mathrm{o}}}{(2+\alpha)(1-\alpha)^{2}}\right]
$$

30. $\mathrm{K}_{\mathrm{C}}=\left[\mathrm{CO}_{2}\right]=0.05 \mathrm{~mole} /$ litre
so moles of $\mathrm{CO}_{2}=6.50 \times 0.05 \mathrm{moles}=0.3250 \mathrm{moles}$

$$
\mathrm{CaCO}_{3} \rightleftharpoons \mathrm{CaO}+\mathrm{CO}_{2}
$$

1 mole of $\mathrm{CO}_{2}=1$ mole of CaCO_{3}
0.3250 moles of $\mathrm{CO}_{2}=0.3250$ moles of CaCO_{3}
$=0.3250 \times 100 \mathrm{gm}$ of $\mathrm{CaCO}_{3}=32.5 \mathrm{gm}$ of CaCO_{3}
31. $\mathrm{C}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})$
$\mathrm{P}-\mathrm{P} / 2 \quad \mathrm{P}=\frac{3 \mathrm{P}}{2}=12$
so, $K_{P}=\frac{P^{2}}{(P / 2)}=2 \mathrm{P}=2 \times 8=16 \mathrm{~atm}$.
33. (I)
$\begin{array}{ll}\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2} & \mathrm{~K}_{\mathrm{c}}=4 \\ \text { at point }-\mathrm{A} & \\ \mathrm{Q}=\frac{[\text { Product }]}{[\text { Reactant }]}=0 & \end{array}$
So, Q have minimum value at point A .
(III) at point $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=\left[\mathrm{NO}_{2}\right]=0.1 \mathrm{M}$

$$
\begin{aligned}
& \mathrm{Q}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=\frac{0.1 \times 0.1}{0.1}=0.1 \\
& \mathrm{Q}<\mathrm{K}_{\mathrm{c}}
\end{aligned}
$$

So, reaction proceeds left to right
(IIII) $\mathrm{K}_{\mathrm{c}}=\mathrm{Q}$ at point [D \& F].
34. $\mathrm{SO}_{3}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \quad 9=\left(\frac{2+\mathrm{x}}{2-\mathrm{x}}\right)^{2}$

$$
\begin{array}{cccc}
2 & 2 & 2 & 2 \\
2+\mathrm{x} & 2+\mathrm{x} & 2-\mathrm{x} & 2-\mathrm{x}
\end{array} \quad \mathrm{x}=1 .
$$

Therefore, (D) option is correct.
35. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
$\log \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\frac{\Delta \mathrm{H}}{2.303 \mathrm{R}}\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right] ;$
$\log \frac{50}{66.9}=\frac{\Delta \mathrm{H}}{2.303 \mathrm{R}}\left[\frac{1}{623}-\frac{1}{721}\right]$
After calculation negative value of $\Delta \mathrm{H}$ is obtained.
37. $\log \mathrm{K}_{2} / \log \mathrm{K}_{1}=\frac{-\Delta \mathrm{H}}{2.303}\left[\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{1}}\right]$
$\Delta \mathrm{H}=$ Positive.
41. $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightleftharpoons \mathrm{CuSO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\mathrm{K}_{\mathrm{p}}=2.25 \times 10^{-4}$
$\mathrm{K}_{\mathrm{P}}=\mathrm{p}_{\mathrm{H}_{2} \mathrm{O}}^{2}=2.25 \times 10^{-4}$
$\mathrm{p}_{\mathrm{H}_{2} \mathrm{O}}=1.5 \times 10^{-2}$
Vapour pressure $=\frac{22.8}{760}=3 \times 10^{-2} \quad$ R.H. $=\frac{\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}}{\text { V.P. }} \times 100$

$$
=50 \%
$$

Therefore, (B) option is correct.
42. $\mathrm{Na}_{2} \mathrm{HPO}_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightleftharpoons \mathrm{Na}_{2} \mathrm{HPO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})+5 \mathrm{H}_{2} \mathrm{O}$
(g) $\quad \mathrm{K}_{\mathrm{P}}=31.25 \times 10^{-13}$
$\mathrm{K}_{\mathrm{P}}=\left(\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}\right)^{5}$
$\left(\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}\right)^{5}=31.25 \times 10^{-13}$
$\left(\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}\right)=(3125)^{1 / 5} \times\left(10^{-15}\right)^{1 / 5}$
$\left(\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}\right)=5 \times 10^{-3}$
44. High temperature will favour backward reaction as reaction is exothermic. While on increasing pressure reaction will shift in direction higher density.
45. For constant volume, reaction quotient (Q) will remain constant.
For constant pressure, reaction quotient (Q) will remain constant when $\Delta \mathrm{n}_{\mathrm{g}}=0$.
47. On adding inert gas at constant pressure effect on equilibrium will be similar to as if volume of container has been increased.
49. $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$

1mole 2mole 3mole

$$
K_{C}=\frac{(3)^{2}}{1 \times 2}=\left(\frac{9}{2}\right) .
$$

Let a mole of O_{2} is added, Then,

$$
\begin{aligned}
& \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g}) \\
& \text { 1mole } 2 \text { mole } 3 \text { mole } \\
& \mathrm{t}=0 \begin{array}{llll}
0 & 1 & (2+\mathrm{a}) & 3
\end{array} \\
& (1-x) \quad(2+a)-x \quad(3+2 x) \\
& {[\mathrm{NO}]=\left[\frac{3+2 \mathrm{x}}{100}\right]=0.04 \quad ; \quad(3+2 \mathrm{x})=4 .} \\
& 2 \mathrm{x}=1, \quad \mathrm{x}=0.5 . \\
& K_{C}=\frac{(3+2 x)^{2}}{(1-x)(2+a-x)}=\frac{9}{2} . \\
& \mathrm{K}_{\mathrm{C}}=\frac{(4)^{2}}{0.5[(1.5)-\mathrm{a}]}=\frac{9}{2} \text {. } \\
& =\frac{16}{0.5(1.5+a)}=\frac{9}{2} \text {. } \\
& =\frac{35}{4.5}=[1.5+\mathrm{a}] \\
& 7.11=1.5+\mathrm{a} \text {. } \\
& \mathrm{a}=\frac{101}{18}=5.61
\end{aligned}
$$

52. $\mathrm{AB} \rightleftharpoons \mathrm{A}^{+}+\mathrm{B}^{-} \quad \mathrm{AB}+\mathrm{B}^{-} \rightleftharpoons \mathrm{AB}_{2}^{-}$
$a-x-y \quad y \quad(y-x) \quad(a-x-y) \quad y-x \quad x$
$K_{1}=\frac{y(y-x)}{(a-x-y)} \quad K_{2}=\frac{x}{(a-x-y)(y-x)}$

$$
\frac{K_{1}}{K_{2}}=\frac{\frac{\left[\frac{y(y-x)}{(a-x-y)}\right]}{x}}{(a-x-y)(y-x)} \quad \Rightarrow \frac{K_{1}}{K_{2}}=\frac{y}{x}(y-x)^{2}
$$

CHEMISTRY FOR JEE MAIN \& ADVANCED

53.

Initial
At Eq. $2-\frac{1}{2}$
$4-\frac{1}{2}$
$2 \times \frac{1}{2}=1 \mathrm{~mol}$
Molar concentration of NO at equilibrium $=\frac{1}{2.5}=0.4$
54.

$$
\mathrm{A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB}(\mathrm{~g})
$$

Moles at eqm $2-x \quad 4-x \quad 2 x$

$$
\begin{aligned}
\mathrm{K}_{\mathrm{C}}= & \frac{4 \mathrm{x}^{2}}{(2-\mathrm{x})(4-\mathrm{x})} \Rightarrow \mathrm{x}=\frac{32}{24}=1.33 \text { mole } \\
& {[\mathrm{AB}(\mathrm{~g})]=\frac{2 \times 1.33}{4}=0.66 \mathrm{M} }
\end{aligned}
$$

55. $\mathrm{X}_{2}+\mathrm{Y}_{2} \rightleftharpoons 2 \mathrm{XY}$

$$
\begin{array}{ll}
\frac{1}{3}-x \quad \frac{2}{3}-x & 2 x \\
{\left[x_{2}\right]=\frac{1}{3}-0.3} & {\left[y_{2}\right]=\frac{2}{3}-0.3}
\end{array}
$$

Therefore, (A) option is correct.
60. $2 \mathrm{O}_{3}(\mathrm{~g}) \rightleftharpoons 3 \mathrm{O}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{p}}=4 \times 10^{14} \quad \mathrm{p}_{\mathrm{O}_{2}} \gg \mathrm{p}_{\mathrm{O}_{3}}$

$$
\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{p}_{\mathrm{o}_{2}}^{3}}{\mathrm{p}_{\mathrm{o}_{3}}^{2}} \quad \mathrm{p}_{\mathrm{O}_{2}}+\mathrm{P}_{\mathrm{O}_{3}}=8 \Rightarrow \mathrm{P}_{\mathrm{o}_{2}} \simeq 8 \mathrm{~atm}
$$

$4 \times 10^{14}=\frac{8^{3}}{\mathrm{p}_{\mathrm{O}_{3}}^{2}} \quad \mathrm{p}_{\mathrm{O}_{3}}^{2}=11.3 \times 10^{-7}$
Therefore, (B) option is correct.
62. $2 \mathrm{NO}_{2} \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \quad ; \quad \mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{p}_{\mathrm{NO}}\right)^{2}\left(\mathrm{p}_{\mathrm{O}_{2}}\right)}{\left(\mathrm{p}_{\mathrm{NO}_{2}}\right)^{2}}$
given, $\quad \mathrm{P}_{\mathrm{O}_{2}}=0.25 \quad ; \quad \mathrm{P}_{\mathrm{NO}}=0.5$

$$
\begin{aligned}
& 100=\frac{(0.5)^{2}(0.25)}{\left(\mathrm{p}_{\mathrm{NO}_{2}}\right)^{2}} \\
& \left(\mathrm{P}_{\mathrm{NO}_{2}}\right)^{2}=\frac{(0.5)^{2}(0.25)}{100}
\end{aligned}
$$

$$
\mathrm{P}_{\mathrm{NO}_{2}}=0.025
$$

63. $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \mathrm{K}_{\mathrm{p}}=\frac{\frac{\alpha \operatorname{Po}}{2(1+\alpha)}\left\{\frac{3 \alpha \mathrm{Po}}{2(1+\alpha)}\right\}^{3}}{\left\{\frac{1-\alpha}{1+\alpha} \mathrm{Po}\right\}^{2}}$
$1-\alpha \quad \frac{\alpha}{2} \quad \frac{3 \alpha}{2}$
$1-\alpha \simeq 1$ and $1+\alpha \simeq 1 \Rightarrow 27 \times 10^{-8} \mathrm{P}_{\mathrm{o}}^{2}=\frac{27}{16} \mathrm{P}_{\mathrm{o}}{ }^{2} \times \alpha^{4}$ $\alpha=2 \times 10^{-2}$
64. $\mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$

$$
\begin{array}{ccc}
1-\alpha & \alpha & \frac{\alpha}{2} \\
\mathrm{M}_{\text {mix }}=\frac{0.9 \times 0.082 \times 1000}{1.23}=60
\end{array}
$$

$\mathrm{M}_{\text {mix }}=\frac{\alpha \cdot \mathrm{M}_{\mathrm{SO}_{2}}+\frac{\alpha}{2} \cdot \mathrm{M}_{\mathrm{O}_{2}}+(1-\alpha) \mathrm{M}_{\mathrm{SO}_{3}}}{1+\frac{\alpha}{2}}$
$1+\frac{\alpha}{2}=\frac{80}{60} \quad \frac{\alpha}{2}=\frac{20}{60}$
$\alpha=\frac{2}{3}$
67. $2 \mathrm{AB}_{4}(\mathrm{~g}) \rightleftharpoons \mathrm{A}_{2}(\mathrm{~g})+4 \mathrm{~B}_{2}(\mathrm{~g}) \quad \sum \mathrm{n}=1+\frac{3 \alpha}{2} \simeq 1$
$1-\alpha \quad \frac{\alpha}{2} \quad 2 x \quad 1-\alpha \simeq 1$
$K_{P}=\frac{\left(\frac{\alpha}{2} P\right)\left(\frac{2 \alpha}{1} \times P\right)^{4}}{(P)^{2}}=8 P^{3} \alpha^{5}$
70. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}, \mathrm{~K}_{\mathrm{p}}=4.28 \times 10^{-5} \mathrm{~atm}^{-2}$

Reaction Quotient, $\mathrm{Q}_{\mathrm{P}}=\frac{\mathrm{P}_{\mathrm{NH}_{3}}^{2}}{\mathrm{P}_{\mathrm{N}_{2}}\left(\mathrm{PH}_{2}\right)^{3}}=\frac{3^{2}}{1 \times(2)^{3}}=\frac{9}{8}$
$\mathrm{Q}_{\mathrm{P}}>\mathrm{K}_{\mathrm{P}}, \quad \therefore$ Reaction will go Backward.
72. $\mathrm{P}_{1}=15 \mathrm{~atm} ; \quad \mathrm{T}_{1}=300 \mathrm{~K}$.

Equilibrium temperature is $300^{\circ} \mathrm{C}$ that is 573 K .
So first of all we have to calculate pressure of NH_{3} at 573 K .

$$
\begin{gathered}
\quad \frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}=\frac{15}{300}=\frac{P_{2}}{573} \\
P_{2}=28.65 \mathrm{~atm} \text { at } 300^{\circ} \mathrm{C} . \\
\\
\mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \\
\mathrm{t}=0 \quad 28.65 \mathrm{~atm} \quad \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g}) . \\
\mathrm{t}=\mathrm{t}_{\mathrm{eq} .} \quad[28.65-\mathrm{x}] \frac{\mathrm{x}}{2} \mathrm{~atm} \quad \frac{3}{2} \mathrm{x}
\end{gathered}
$$

But according to question.

$$
\begin{aligned}
P_{\text {total }} & =28.65-x+\frac{x}{2}+\frac{3}{2} x \quad \text { or } \quad 28.65+x=40.11 . \\
x & =11.46
\end{aligned}
$$

Degree of dissociation of $\mathrm{NH}_{3}=\frac{11.46}{28.65}=0.4$.
76. $\mathrm{Br}_{2}(\ell)+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{BrCl}(\mathrm{g})$
$\mathrm{t}=0 \quad 1 \quad 0$
$(1-x) \quad 2 x$

$$
\mathrm{k}_{\mathrm{p}}=\frac{\left(\mathrm{P}_{\mathrm{BrCl}}\right)^{2}}{\mathrm{P}_{\mathrm{Cl}_{2}}}=1 \text { so, } \mathrm{P}_{\mathrm{Cl}_{2}}=\left(\mathrm{P}_{\mathrm{BrCl}}\right)^{2}=0.01 \mathrm{~atm}
$$

then at equilibrium, $\quad \frac{\mathrm{n}_{\mathrm{BrCl}}}{\mathrm{n}_{\mathrm{Cl}_{2}}}=\frac{0.1}{0.01}=10=\frac{2 \mathrm{x}}{1-\mathrm{x}}$
So, $10-10 x=2 x$ or $x=\frac{10}{12}=\frac{5}{6}$ moles
Moles of $\operatorname{Br}_{2}(\ell)$ required for maintaining vapour pressure of 0.1 atm

$$
=2 \times \frac{5}{6} \text { moles }=\frac{10}{6} \text { moles }=\text { moles of } \operatorname{BrCl}(\mathrm{g}) .
$$

Moles required for taking part in reaction $=$ moles of Cl_{2} used up $=\frac{5}{6}$ moles.

Hence total moles required $=\frac{5}{6}+\frac{10}{6}=\frac{15}{6}$ moles.
77. $\mathrm{H}_{2} \mathrm{O}(\ell) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\mathrm{K}_{\mathrm{P}}=\left(\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}\right)$
When neon is added at constant pressure, we have to increase volume of the container. So more water will evaporate to mantain equilibrium.
80. $\mathrm{K}=\mathrm{A} \mathrm{e}^{-\Delta \mathrm{H} / \mathrm{RT}}$
$\log \mathrm{K}=\log \mathrm{A}-\frac{\Delta \mathrm{H}}{2.303 R T}$.
$\log K=\log A-\frac{\Delta H}{2.303 R} \times \frac{1}{T}$.
$\log \mathrm{K}=\left[-\frac{\Delta \mathrm{H}}{2.303 \mathrm{R}}\right] \times \frac{1}{\mathrm{~T}}+\log \mathrm{A}$.
$\frac{-\Delta H}{2.303 R}=1$.
$\Delta \mathrm{H}=-2.303 \mathrm{R}=-4.606 \mathrm{cal}$.
81. $\log \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\frac{\Delta \mathrm{H}^{\circ}}{2.303 \mathrm{R}}\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right]$
$\log \frac{\mathrm{K}_{2}}{0.0118}=\frac{597.4 \times 10^{3}}{2.303 \times 8.314}\left[\frac{1}{1300}-\frac{1}{1200}\right]$
$\log \mathrm{K}_{2}=-2+\log (0.0118)=-3.928 \Rightarrow \mathrm{~K}_{2}=1.18 \times 10^{-4}$
Therefore, (A) option is correct.

(2) $\mathrm{B}(\mathrm{s}) \rightleftharpoons \mathrm{E}(\mathrm{g})+\mathrm{F}(\mathrm{g})$
$\mathrm{K}_{\mathrm{p}}=(30)^{2}$
$30 \mathrm{~atm} \quad 30 \mathrm{~atm}$
(3) container Kp is same so on doubling the volume partial pressure does not change but moles of C, D, E, F will change to maintain their partial pressure. So total pressure $=40+60=100 \mathrm{~atm}$.
85. $\mathrm{A}(\mathrm{s}) \rightleftharpoons \mathrm{X}+\mathrm{Y}$

$\mathrm{B}(\mathrm{s}) \rightleftharpoons$| α | $\alpha+\beta$ |
| :---: | :---: |
| $\mathrm{Y}+$ | Z |
| $\beta+\alpha$ | β |

$\Rightarrow \mathrm{K}_{\mathrm{P}_{1}}=\alpha(\alpha+\beta)$
$\mathrm{K}_{\mathrm{P}_{2}}=\beta(\alpha+\beta)$
$P_{\text {total }}=(\alpha+\beta)+\alpha+\beta=2(\alpha+\beta)$
$\Rightarrow 2(\alpha+\beta)=50 \Rightarrow \alpha+\beta=25$
$\Rightarrow 250=25 \alpha \Rightarrow \alpha=10, \beta=15$
$\Rightarrow K_{P_{2}}=\beta(\alpha+\beta)=15 \times 25=375$

CHEMISTRY FOR JEE MAIN \& ADVANCED

87. Let x is partial pressure of A and y is partial pressure of C when both equilibrium simultaneously established in a vessel
$\mathrm{X}(\mathrm{s}) \rightleftharpoons \begin{aligned} & \rightleftharpoons \\ & \mathrm{A}(\mathrm{g}) \\ & \mathrm{x}\end{aligned} \quad+\begin{aligned} & 2 \mathrm{~B}(\mathrm{~g}) \\ & (2 \mathrm{x}+2 \mathrm{y}) ;\end{aligned}$
$\mathrm{Y}(\mathrm{s}) \rightleftharpoons \begin{aligned} & \mathrm{C}(\mathrm{g}) \\ & \mathrm{y}\end{aligned} \quad+\begin{aligned} & 2 \mathrm{~B}(\mathrm{~g}) \\ & (2 \mathrm{y}+2 \mathrm{x}) ;\end{aligned}$
$\frac{\mathrm{K}_{\mathrm{P}_{1}}}{\mathrm{~K}_{\mathrm{P}_{2}}}=\frac{\mathrm{x}}{\mathrm{y}} \Rightarrow \mathrm{x}=2 \mathrm{y}$

$$
K_{P_{1}}=x(2 x+2 y)^{2}
$$

$\Rightarrow \mathrm{x}=0.1 \mathrm{~atm}$;
$\therefore \quad \mathrm{y}=0.05 \mathrm{~atm}$
Total pressure of gases $=P_{A}+P_{B}+P_{C}$

$$
\begin{aligned}
& =3(\mathrm{x}+\mathrm{y}) \\
& =0.45 \mathrm{~atm} .
\end{aligned}
$$

88. At equilibrium, $r_{f}=r_{b}$
$\therefore \mathrm{K}_{\mathrm{f}}[\mathrm{A}]_{\mathrm{en}}=\mathrm{K}_{\mathrm{b}}[\mathrm{B}]_{\mathrm{en}}$
$[\mathrm{B}]_{\mathrm{eq}}=\mathrm{K}_{\mathrm{f}} \mathrm{K}_{\mathrm{b}}^{-1}[\mathrm{~A}]_{\mathrm{eq}}$
89. $\mathrm{K}=\frac{\mathrm{r}_{\mathrm{f}}}{\mathrm{r}_{\mathrm{b}}} \Rightarrow 1.5=\frac{\mathrm{r}_{\mathrm{f}}}{7.5 \times 10^{-4}} \Rightarrow \quad \mathrm{r}_{\mathrm{f}}=1.12 \times 10^{-3}$.
90. $\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{CO}(\mathrm{g})} \cdot \mathrm{P}_{\mathrm{H}_{2}(\mathrm{~g})}}{\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}(\mathrm{g})}}=\frac{\left(\mathrm{P}_{\mathrm{H}_{2}(\mathrm{~g})}\right)^{2}}{\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}(\mathrm{g})}}$ (as $\left.\mathrm{P}_{\mathrm{CO}(\mathrm{g})}=\mathrm{P}_{\mathrm{H}_{2}(\mathrm{~g})}\right)$
91. Because reaction is exothermic.
92. Concentration of reactant \& product remains const. w.r.t time.
And, rate of [AT EQUILIBRIUM] forward reaction $\left(r_{f}\right)$ $=$ rate of backward reaction $\left(r_{b}\right)$.
93. Equilibrium const. is temp. dependent only.
94. $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}}, \Delta \mathrm{n}=4-3=1$
$0.05=\mathrm{K}_{\mathrm{c}} \mathrm{R} \times 1000$
$\mathrm{K}_{\mathrm{c}}=5 \times 10^{-5} \times \mathrm{R}^{-1}$
95. Since, K_{p} is temperature dependent only.
96. 4×10^{4}, Since Equilibrium const. is temp. dependent only.

EXERCISE-2

Part \# I : Multiple Choice

6. (A) $\Rightarrow\left[\mathrm{CH}_{4}\right]=\frac{16}{16 \times 10}=0.1 \mathrm{M}$
(B) $\Rightarrow\left[\mathrm{H}_{2} \mathrm{O}\right]=\frac{18}{18 \times 10}=0.1 \mathrm{M}$
(C) $\Rightarrow\left[\mathrm{Cl}_{2}\right]=\frac{35.5}{71 \times 10}=0.05 \mathrm{M}$
(D) $\Rightarrow\left[\mathrm{CO}_{2}\right]=\frac{44}{44 \times 10}=0.1 \mathrm{M}$
7. According to $\mathrm{K}_{\mathrm{P}}=\frac{\mathrm{P}_{\mathrm{PCl}_{3}(\mathrm{~g})} \times \mathrm{P}_{\mathrm{Cl}_{2}(\mathrm{~g})}}{\mathrm{P}_{\mathrm{PCl}_{5}(\mathrm{~g})}}$
$=\frac{\left(\mathrm{n}_{\mathrm{PCl}_{3}(\mathrm{~g})}\right)_{\text {eq. }} \times\left(\mathrm{n}_{\mathrm{Cl}_{2}(\mathrm{~g})}\right)_{\text {eq. }}}{\mathrm{V} \times\left(\mathrm{n}_{\mathrm{PCl}_{5}(\mathrm{~g})}\right)_{\text {eq. }} .}$
and on adding inert gas at constant pressure effect on equilibrium will be similar to as if volume of container has been increased.
8. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
(A) For changing pressure volume has to be changed, though number of moles of $\mathrm{HI}(\mathrm{g})$ do not get changed but its concentration will get changed.
(B) Temperature change will change K_{P} and hence concentration.
(C) Volume change will change concentration, not the number of moles.
(D) Same equilibrium will be attained from either direction.
(E) Catalyst does not change equilibrium concentrations.
9. Let reactions is started with a mole of AB_{2} and b mole of $\mathrm{B}_{2} \mathrm{C}$
$\Rightarrow \mathrm{AB}_{2}(\mathrm{~g})+\mathrm{B}_{2} \mathrm{C}(\mathrm{g}) \longrightarrow \mathrm{AB}_{3}(\mathrm{~g})+\mathrm{BC}(\mathrm{g})$

a	b	0	0
$a-x$	$b-x-y$	x	$x-y$

$$
\mathrm{BC}(\mathrm{~g})+\mathrm{B}_{2} \mathrm{C}(\mathrm{~g}) \longrightarrow \mathrm{B}_{3} \mathrm{C}_{2}(\mathrm{~g})
$$

$$
x-y \quad b-x-y \quad y \quad \text { As } y>x
$$

Clearly $\left[\mathrm{AB}_{3}\right]_{\mathrm{eq}}>\left[\mathrm{B}_{3} \mathrm{C}_{2}\right]_{\mathrm{eq}}$ and $\left[\mathrm{AB}_{3}\right]_{\mathrm{eq}}>[\mathrm{BC}]_{\mathrm{eq}}$
17. Adding inert gas at constant volume does not affect state of equilibrium
19. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$ as the reaction is exothermic so more NH_{3} will be obtained at lower temperature.
20.

| |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{t}=0$ | | 2 NO |
| :--- |
| $4-.4$ | $\mathrm{~N}_{2}+\mathrm{O}_{2} \quad \alpha=10 \%$

$\Delta \mathrm{n}=0$,
$\therefore K_{p}=K_{C}, \quad K_{C}=\frac{(.2 / V)^{2}}{(3.6 / V)^{2}}=\frac{4}{36 \times 36}$
21. $\alpha=\frac{D-d}{d}=\frac{46-30}{30}=0.533=53.3 \%$
22. $\mathrm{A}(\mathrm{g}) \rightleftharpoons \mathrm{B}(\mathrm{g})+\mathrm{C}(\mathrm{g})$
$\mathrm{M}_{\mathrm{Ob}}=\frac{\mathrm{M}_{\mathrm{th}}}{\mathrm{M}+(\mathrm{n}-1) \alpha} \quad 80=\frac{100}{1+\alpha} \quad \alpha=\frac{1}{4}=0.25$
23. At equilibrium $\Delta \mathrm{G}=0$

Given $\Delta \mathrm{G}^{0}=0$
Gibbs equation $\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}-\mathrm{RT} \ln \mathrm{K}$
$0=0-\mathrm{RT} \ln \mathrm{K} \quad \Rightarrow \mathrm{K}=\mathrm{e}^{0}=1$
$24.2 \mathrm{~A}(\mathrm{~s})+3 \mathrm{~B}(\mathrm{~g}) \rightleftharpoons 3 \mathrm{C}(\mathrm{g})+\mathrm{D}(\mathrm{g})+\mathrm{O}_{2}$
If pressure on system is reduced to half its original value then equilibrium will shift in forward direction to increase no.of moles of gas to compensate reduction of pressure.
\therefore Amounts of C \& D will increase.
25. $\mathrm{T} \downarrow$, then $\mathrm{V} \downarrow$, then $\mathrm{P} \uparrow$, equilibrium shift in such direction so as to dec. pressure, i.e., Backward direction.
26. $\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD}$

At high temp. \& low pressure equilibrium is shifting in backward direction. It means $(a+b)>(c+d) \&$ heat will reaction in the formation of producers is $\Delta \mathrm{H}<0$.
27.

$$
\begin{aligned}
& \text { at } t=0 \quad \text { a } \quad 0 \quad 0 \\
& t=t q \quad a-x \quad x \quad x \\
& \mathrm{P}_{\mathrm{PCl}_{3}}=\mathrm{X}_{\mathrm{PCl}_{3}} \times \mathrm{P}_{\mathrm{T}}=.25 \times 2=.5 \mathrm{~atm} \\
& \mathrm{P}_{\mathrm{PCl}_{3}}=\mathrm{P}_{\mathrm{Cl}_{2}}=.5 \mathrm{~atm} \\
& 28 .
\end{aligned}
$$

29. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
$\begin{array}{llll}\mathrm{t}=0 & 1.5 & 1.5 & 0\end{array}$
$\mathrm{t}=\mathrm{tev} \quad 1.5-\mathrm{x} \quad 1.5-\mathrm{x} \quad 2 \mathrm{x}$
We know, $1.5-\mathrm{x}=1.25$, or $\mathrm{x}=.25$
$\mathrm{K}_{\mathrm{c}}=\frac{(.5)^{2}}{(1.25)^{2}}=.16$
30. Since inert gas addition has no effect at const. volume.
31. $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~s})$
at eq, mole of $\mathrm{PCl}_{3}=$ mole of Cl_{2}
So $\mathrm{K}=\frac{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{PCl}_{5}\right]}=\frac{\left[\frac{0.2}{10}\right]\left[\frac{0.2}{10}\right]}{\frac{0.1}{[10]}}=0.04$
32. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
$\mathrm{t}=0 \quad 1$ mole $\quad 2$ mole 0
$\mathrm{t}=\mathrm{eq} \quad 1-\mathrm{x} \quad 2-3 \mathrm{x} \quad 2 \mathrm{x}=0.8$
$\mathrm{x}=0.4$
mole of $\mathrm{N}_{2}=0.6$
mole of $\mathrm{H}_{2}=0.8$
33.

at equilibrium, only CO_{2} has ($1+\mathrm{x}$) moles.
37. $\mathrm{A}+\mathrm{D} \rightleftharpoons \mathrm{AD} ; \mathrm{K}_{1}$
$\mathrm{AD}+\mathrm{D} \rightleftharpoons \mathrm{AD}_{2} ; \mathrm{K}_{2}$
$\mathrm{AD}_{2}+\mathrm{D} \rightleftharpoons \mathrm{AD}_{3} ; \mathrm{K}_{3}$
$\mathrm{A}+3 \mathrm{D} \rightleftharpoons \mathrm{AD}_{3} ; \mathrm{K}$
As we know that $\mathrm{K}=\mathrm{K}_{1} \cdot \mathrm{~K}_{2} \cdot \mathrm{~K}_{3}$
Or, $\log \mathrm{K}=\log \mathrm{K}_{1}+\log \mathrm{K}_{2}+\log \mathrm{K}_{3}$
38. $\mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{p}_{\mathrm{CO}}\right)^{2}}{\mathrm{p}_{\mathrm{CO}}^{2}}=\frac{(2)^{2}}{4}=1$.
39.

$$
\begin{array}{llccc}
& 2 \mathrm{~A}_{8} \rightleftharpoons & 2 \mathrm{~A}_{3}+3 \mathrm{~A}_{2} & + & \mathrm{A}_{4} \\
\mathrm{t}=0 & 2 & 0 & 0 & 0 \\
\mathrm{t}=\mathrm{t}_{\mathrm{eq}} & 2-2 \alpha & 2 \alpha & 3 \alpha & \alpha \\
\mathrm{n}_{\mathrm{T}}=2+4 \alpha & & &
\end{array}
$$

given mole fraction of A_{2} is $=0.36$.

$$
\begin{aligned}
& 0.36=\frac{3 \alpha}{2+4 \alpha} \\
& \alpha=0.46
\end{aligned}
$$

Mole fraction of $\mathrm{A}_{8}=\frac{2-2 \alpha}{2+4 \alpha}=\frac{2-2 \times 0.46}{2+4 \times 0.46}=0.28$

CHEMISTRY FOR JEE MAIN \& ADVANCED

$44.2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{C}}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]} \quad$ Concentration in gram mole/litre, therefore
$\left[\mathrm{SO}_{3}\right]=\frac{48}{80 \times 1} \quad$ (Where 80 is molecular weight of SO_{3})
$\left[\mathrm{SO}_{2}\right]=\frac{128}{64 \times 1} \quad$ (Where 64 is molecular weight of SO_{2})
$\left[\mathrm{O}_{2}\right]=\frac{9.6}{32 \times 1} \quad$ (Where 32 is molecular weight of O_{2})

Thus, $\mathrm{K}_{\mathrm{C}}=\frac{\left(\frac{48}{80}\right)^{2}}{\left(\frac{12.8}{64}\right)^{2}\left(\frac{9.6}{32}\right)}=0.30$
45. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$

$$
\begin{array}{ll}
\mathrm{K}_{\mathrm{C}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]} & \text { if }\left[\mathrm{H}_{2}\right]=\left[\mathrm{I}_{2}\right] \\
\mathrm{K}_{\mathrm{C}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{I}_{2}\right]^{2}} & {[\mathrm{HI}]^{2}=\mathrm{K}_{\mathrm{C}} \times\left[\mathrm{I}_{2}\right]^{2}} \\
\text { or } \frac{[\mathrm{HI}]^{2}}{\left[\mathrm{I}_{2}\right]^{2}}=\mathrm{K}_{\mathrm{C}} & \text { or } \frac{[\mathrm{HI}]}{\left[\mathrm{I}_{2}\right]}=\sqrt{\mathrm{K}_{\mathrm{C}}}=\sqrt{49}=7
\end{array}
$$

46. A	+2 B	\rightleftharpoons	2 C	+	D
Initial mole	1.1	2.2		0	0
At Eq.	$1.1-\mathrm{x}$	$2.2-2 \mathrm{x}$		2 x	x
	$1.1-0.1$	$2.2-0.2$	0.2	0.1	
	1	2	0.2	0.1	
	Active mass	$\frac{1}{1}$	$\frac{2}{1}$	0.2	0.1

$$
\mathrm{K}_{\mathrm{C}}=\frac{[\mathrm{C}]^{2}[\mathrm{D}]}{[\mathrm{A}][\mathrm{B}]^{2}}=\frac{\frac{2}{10} \times \frac{2}{10} \times \frac{1}{10}}{1 \times 2 \times 2}=\frac{1}{1000}=0.001
$$

49. At room temperature, $K=4.32$
and at $425^{\circ} \mathrm{C}$, equilibrium constant become 1.24×10^{-4} i.e. it is decreases with increase in temperature. So, it is exothermic reaction.
50. $\mathrm{P}_{\mathrm{NH}_{3}}=\mathrm{P}_{\mathrm{H}_{2} \mathrm{~S}}=\frac{\mathrm{P}}{2}$

Hence $K_{p}=P_{N H_{3}} \times P_{H_{2} S}=\frac{P}{2} \times \frac{P}{2}=\frac{P^{2}}{4}$
51. $\mathrm{Fe}^{3+}+\mathrm{SCN}^{-} \rightleftharpoons[\mathrm{Fe}(\mathrm{SCN})]^{2+} \mathrm{K}=\frac{10^{3}}{7.142}$

Initial conc. $\frac{10^{-3}}{56} \quad b \quad 0$
Final conc. $\frac{10^{-3}}{56}-6 \times 10^{-6} \mathrm{~b}-6 \times 10^{-6} \quad 6 \times 10^{-6}$ on solving $\mathrm{b}=0.0036 \mathrm{M}$.
52. Total moles at equilibrium $=1-\alpha+\alpha / n=1+\left[\frac{1}{n}-1\right] \alpha$

So using $\frac{d_{i}}{d_{f}}=1+\left[\frac{1}{n}-1\right] \alpha$.
53. $\frac{\mathrm{K}_{\mathrm{A}}}{\mathrm{K}_{\mathrm{B}}}=\frac{[\mathrm{PQ}]}{[\mathrm{P}][\mathrm{Q}]} \ldots .$. (i) $\quad ; \quad \frac{\mathrm{K}_{\mathrm{C}}}{\mathrm{K}_{\mathrm{D}}}=\frac{[\mathrm{R}]}{[\mathrm{PQ}]}$

On multiply equation (i) and (ii) we get
$\frac{\mathrm{K}_{\mathrm{A}} \cdot \mathrm{K}_{\mathrm{C}}}{\mathrm{K}_{\mathrm{B}} \cdot \mathrm{K}_{\mathrm{D}}}=\frac{[\mathrm{R}]}{[\mathrm{P}][\mathrm{Q}]}$
55. Catalyst can't disturb the state of the equilibrium.
56. PCl_{5}

Cl_{2}

1	0	0	Initial mole
$\frac{1-0.7}{5}$		$\frac{0.7}{5}$	$\frac{0.7}{5}$

Total mole of $\mathrm{PCl}_{3}=0.7$
Concentration $=0.14$
$K_{C}=\frac{x^{2}}{(1-x) V}=\frac{0.7 \times 0.7}{0.3 \times 5}=\frac{49}{150}$
57. K_{p} depends only on temperature so α will change on changing pressure and $\mathrm{P}_{\mathrm{H}_{2}}>\mathrm{P}_{\mathrm{N}_{2}}$.
58. $\quad \mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{C}}(\mathrm{RT})^{\Delta \mathrm{n}_{\mathrm{g}}}=\mathrm{K}_{\mathrm{C}}(\mathrm{RT})$
so, $\quad \mathrm{T}=\frac{\mathrm{K}_{\mathrm{P}}}{\mathrm{K}_{\mathrm{C}}} \frac{1}{\mathrm{R}}=\frac{1}{0.0821}=12.18 \mathrm{~K}$
59. $\mathrm{K}_{\mathrm{P}}=0.667 \mathrm{~atm}=\frac{2}{3} \operatorname{atm}=\frac{4 \alpha^{2}}{1-\alpha^{2}} \cdot \mathrm{P}=\frac{4 \alpha^{2}}{1-\alpha^{2}} \cdot \frac{1}{2}$

$$
\begin{array}{ll}
\text { so, } \frac{4 \alpha^{2}}{1-\alpha^{2}}=\frac{4}{3} & \Rightarrow 3 \alpha^{2}=1-\alpha^{2} \\
\text { so, } \alpha^{2}=\frac{1}{4} & \Rightarrow \alpha=\frac{1}{2}
\end{array}
$$

Part \# II : Assertion \& Reason

2. By definitions.
3. Value of equilibrium constant is not dependent on concentration of any species.

EXERCISE - 3

Part \# I : Matrix Match Type

1. (A) Δn_{g} is $+v e$ so as P is increased, backward shifting will take place. Total pressure even after shifting will remain same.
(B) $\Delta \mathrm{n}_{\mathrm{g}}$ is -ve so as V is increased, backward shifting will take place. But $\mathrm{P}_{\text {final }}<\mathrm{P}_{\text {initial }}$.
(C) No change but $\mathrm{P}_{\text {final }}<\mathrm{P}_{\text {initial }}$ as volume has increased. (D) Forward shifting will take place and $\mathrm{P}_{\text {final }}<\mathrm{P}_{\text {initial }}$.

Part \# II : Comprehension

Comprehension \# 1 :

1. Slope $=\frac{-\Delta \mathrm{H}^{\circ}}{2.3 \mathrm{R}}=-\frac{230}{2.3 \times 2}=-50$
2. Using equation, $\log \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\frac{\Delta \mathrm{H}^{\mathrm{o}}}{2.30 \mathrm{R}}\left(\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right)$

Comprehension \#2 :

3. Number of moles will remain unchanged but due to decreased volume pressure will get increased and also the concentrations.

Comprehension \#3:
Sol. (1 to 3)

$$
\begin{aligned}
& 2 \mathrm{~A}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{A}_{4}(\mathrm{~g}) \\
& 3 \mathrm{p}-\mathrm{x}-\mathrm{y} \\
& \mathrm{x} / 2
\end{aligned}
$$

$$
\begin{array}{lll}
\mathrm{A}_{2}+ & 2 \mathrm{C} & \rightleftharpoons \\
3 \mathrm{p}-\mathrm{y}-\mathrm{x} & \mathrm{P}-2 \mathrm{y} & \mathrm{y}-\mathrm{z}
\end{array}
$$

$$
\begin{gathered}
\mathrm{A}_{2} \mathrm{C}_{2} \rightleftharpoons 2 \mathrm{AC} \\
\mathrm{y}-\mathrm{z}
\end{gathered}
$$

$$
\frac{\mathrm{P}_{\mathrm{A}_{4}}}{\mathrm{P}_{\mathrm{A}_{2}}^{2}}=\mathrm{K}_{\mathrm{P}_{1}} \quad \Rightarrow \quad\left(\mathrm{P}_{\mathrm{A}_{2}}\right)^{2}=\frac{\mathrm{P}_{\mathrm{A}_{4}}}{\mathrm{~K}_{\mathrm{P}_{1}}}=\frac{\frac{1}{2}}{2 / 81}=\frac{81}{4}
$$

$$
\Rightarrow \quad \mathrm{P}_{\mathrm{A}_{2}}=\frac{9}{2} \mathrm{~atm}
$$

$$
\begin{equation*}
\Rightarrow 3 p-x-y=\frac{9}{2} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\frac{x}{2}=\frac{1}{2} \tag{iii}
\end{equation*}
$$

$\Rightarrow \mathrm{x}=1 \mathrm{~atm}$
also given $2 Z=\frac{1}{2}$

$$
\begin{aligned}
& Z=\frac{1}{4} \operatorname{atm} \\
P_{\text {total }}= & 3 p-x-y+x / 2+p-2 y+y-z+2 z=4 p-x / 2-2 y+z \\
= & 4 \times p-\frac{1}{2}-2 \times \frac{1}{2}+\frac{1}{4}=\frac{27}{4} \text { atm. } \Rightarrow \quad P=2
\end{aligned}
$$

atm.
Sol. $1 \quad 3 P-x-y=\frac{9}{2}$

$$
6-\frac{1}{2}-y=\frac{9}{2}
$$

$$
\mathrm{y}=1 \mathrm{~atm} .
$$

$$
\mathrm{P}_{\mathrm{A}_{2} \mathrm{C}_{2}}=\mathrm{y}-\mathrm{z}=1-\frac{1}{4}=\frac{3}{4} \mathrm{~atm} .
$$

Sol. $2 \quad \frac{\mathrm{n}_{\mathrm{A}_{2}}}{\mathrm{n}_{\mathrm{AC}}}=\frac{\mathrm{P}_{\mathrm{A}_{2}}}{\mathrm{P}_{\mathrm{AC}}}=\frac{3 \mathrm{P}-\mathrm{x}-\mathrm{y}}{2 \mathrm{z}}=\frac{\frac{9}{2}}{1 / 2}=9$
Sol. $3 \quad K_{p}=\frac{P_{\mathrm{A}_{2} \mathrm{C}_{2}}}{\mathrm{P}_{\mathrm{AC}}^{2}}=\frac{3 / 4}{\left(\frac{1}{2}\right)^{2}}=3$

CHEMISTRY FOR JEE MAIN \& ADVANCED

Comprehension \#5:

1. $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{CaSO}_{4} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{s})+\frac{3}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\Delta \mathrm{H}^{\circ}=\frac{3}{2}(-241.8)+(-1575)-(-2021)$
For $1 \mathrm{~kg} \mathrm{CaSO}_{4} .2 \mathrm{H}_{2} \mathrm{O}=\frac{\Delta \mathrm{H}^{\circ}}{172} \times 100=484 \mathrm{~kJ}$
2. $\Delta \mathrm{S}^{\circ}=\frac{3}{2}(188.6)+130.5-194$
$\Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}-(298) \Delta \mathrm{S}^{\circ}=-8.314 \times 298 \ln \left(\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}\right)^{3 / 2}$
$\Rightarrow \mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}=8.1 \times 10^{-3}$ bar
EXERCISE - 4
Subjective Type
3. $\mathrm{n}=\frac{5.6}{22.4}=0.25$

Active mass $=\frac{0.25}{5.6}=0.044 \mathrm{M}$.
5. Forward reaction rate $\left(r_{f}\right)=K_{1}[A][B]$

Backward reaction rate $\left(r_{f}\right)=K_{2}[C][D]$
At equilibrium, $\mathrm{r}_{\mathrm{f}}=\mathrm{r}_{\mathrm{b}}$
$\therefore \mathrm{K}_{1}[\mathrm{~A}][\mathrm{B}]=\mathrm{K}_{2}[\mathrm{C}][\mathrm{D}]$
The concentration of reactents \& products at equilibrium are related by

$$
\begin{aligned}
\mathrm{K} & =\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}=\frac{[\mathrm{C}][\mathrm{D}]}{[\mathrm{A}][\mathrm{B}]} \\
\therefore \quad \mathrm{K} & =\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}
\end{aligned}
$$

6.

$\begin{array}{lll}\text { No. of mole } 2 & 1\end{array}$
$\begin{array}{llll}\text { conc. } & \frac{2}{4} & \frac{1}{4} & \frac{4}{4} .\end{array}$

$$
\begin{aligned}
\mathrm{K}_{\mathrm{C}}= & \frac{\left[\mathrm{SO}_{3}\right]}{\left[\mathrm{SO}_{2}\right]\left[\mathrm{O}_{2}\right]^{1 / 2}}=\frac{1}{(1 / 2)(1 / 4)^{1 / 2}} \\
& =\frac{1}{(1 / 2) \times(1 / 2)}=4 \mathrm{Ans} .
\end{aligned}
$$

	$\begin{aligned} & 2 \mathrm{SO}_{2} \\ & \mathrm{a} \end{aligned}$	O^{2}	$2 \mathrm{SO}_{3}$0	
	$a-2 x$	$\mathrm{b}-\mathrm{X}$	2 x	
	$\frac{\mathrm{a}}{2}$	$b-\frac{a}{4}$	$\frac{\mathrm{a}}{2}$	ding to data given)

But according to question.
No. of mole of $\mathrm{SO}_{2}=$ No. of mole of SO_{3}.

$$
\begin{aligned}
= & a-2 x^{2}=2 x . \\
a & =4 x . \\
x & =\frac{a}{4} .
\end{aligned}
$$

Now, $\mathrm{K}_{\mathrm{C}}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}$
But No. of mole of SO_{3} and SO_{2} are equal at eq. so.

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{C}}=\frac{1}{\left[\mathrm{O}_{2}\right]} \\
& {\left[\mathrm{O}_{2}\right]=\frac{1}{\mathrm{~K}_{\mathrm{C}}} \quad ; \quad\left[\mathrm{O}_{2}\right]=\frac{1}{100} .}
\end{aligned}
$$

$\operatorname{But}\left[\mathrm{O}_{2}\right]=\frac{\text { mole of } \mathrm{O}_{2} \text { at eq. }}{10}=\frac{1}{100}$.
So No. of mole of $\mathrm{O}_{2}=\frac{1}{10}=\mathbf{0 . 1}$.
(b) $\underline{\mathrm{K}}_{\mathrm{C}}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}=\frac{\left(\frac{2 \mathrm{SO}_{2}}{\mathrm{~V}}\right)}{\left(\frac{\mathrm{n}_{\mathrm{SO}_{2}}}{\mathrm{~V}}\right)^{2} \times\left(\frac{\mathrm{n}_{\mathrm{O}_{2}}}{\mathrm{~V}}\right)}$
$\mathrm{K}_{\mathrm{C}}=\frac{4}{\left(\frac{\mathrm{n}_{\mathrm{O}_{2}}}{\mathrm{~V}}\right)} ;$
$\mathrm{n}_{\mathrm{O}_{2}}=\frac{4 \times \mathrm{V}}{\mathrm{K}_{\mathrm{C}}}=\frac{4 \times 10}{100}=0.4$.

$t=t_{e q} \quad 2 a-x \quad a-x \quad x \quad x$
$a-x=x \Rightarrow x=\frac{a}{2}$
$\Rightarrow \mathrm{K}_{\mathrm{C}}=\frac{\frac{\mathrm{a}}{2} \times \frac{\mathrm{a}}{2}}{\left(2 \mathrm{a}-\frac{\mathrm{a}}{2}\right) \times \frac{\mathrm{a}}{2}}=\frac{1}{3} \Rightarrow \frac{1}{\mathrm{~K}_{\mathrm{C}}}=3$
Ans. 3

$$
\begin{aligned}
& \text { 9. } \mathrm{A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{C}}=50 \\
& \begin{array}{ccc}
1 & 2 & 0 \\
\frac{1-\mathrm{x}}{3} & \frac{2-\mathrm{x}}{3} & \frac{2 \mathrm{x}}{3}
\end{array} \\
& 50=\frac{\frac{2 \mathrm{x}}{3} \cdot \frac{2 \mathrm{x}}{3}}{\frac{1-\mathrm{x}}{3} \cdot \frac{2-\mathrm{x}}{3}}=\frac{4 \mathrm{x}^{2}}{(1-\mathrm{x})(2-\mathrm{x})}=\frac{4 \mathrm{x}^{2}}{2-3 \mathrm{x}+\mathrm{x}^{2}} \\
& \Rightarrow \quad 100-150 \mathrm{x}+50 \mathrm{x}^{2}=4 \mathrm{x}^{2} \\
& \therefore \text { no. of mol of } \mathrm{AB}=\frac{2 \mathrm{x}}{3}=1.868 \text {. } \\
& \text { 11. } \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})(\Delta \mathrm{n}<0) \\
& 1 \mathrm{~mol} 3 \mathrm{~mol} 0 \\
& \text { (} 1-\mathrm{x}) \quad(3-3 \mathrm{x}) \quad 2 \mathrm{x} \\
& \mathrm{P}_{\text {eq }}=1 \mathrm{~atm}, \mathrm{~T}=400 \mathrm{~K} \\
& \mathrm{~K}_{\mathrm{C}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}=\frac{(2 \mathrm{x})^{2}}{(3-3 \mathrm{x})^{3}(1-\mathrm{x})}=\frac{4}{27} \\
& \frac{x^{2}}{(1-x)^{4}}=1 \Rightarrow x=(1-x)^{2} \Rightarrow x^{2}-3 x+1=0 \\
& \Rightarrow \mathrm{x}=\frac{3 \pm \sqrt{9-4}}{2} \Rightarrow \mathrm{x}=\frac{3 \pm \sqrt{5}}{2} \\
& \mathrm{x}=\frac{3+2.24}{2} \text { or } \mathrm{x}=\frac{3-2.24}{2} \\
& \mathrm{x}=\frac{5.24}{2}=2.62 \text { or, } \mathrm{x}=\frac{0.76}{2}
\end{aligned}
$$

$\Rightarrow \mathrm{x}=0.38$ (since x cannot be greater than 1)
$\therefore \quad\left[\mathrm{NH}_{3}\right]=0.38 \times 2=0.76$
12. $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
$\mathrm{t}=0 \quad \mathrm{n} \quad \mathrm{n} \quad \mathrm{n}$
teq. $\quad(\mathrm{n}-\mathrm{y}) \quad(\mathrm{n}+\mathrm{y}) \quad(\mathrm{n}+\mathrm{y} / 2) \quad \mathrm{n}_{\mathrm{T}}=(3 \mathrm{n}+\mathrm{y} / 2)$
so, $\mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{P}_{\mathrm{H}_{2}(\mathrm{~g})}\right)_{\text {eq. }}^{2} \cdot\left(\mathrm{P}_{\mathrm{O}_{2}(\mathrm{~g})}\right)_{\text {eq. }}}{\left(\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}(\mathrm{g})}\right)_{\text {eq. }}^{2}}=\frac{(\mathrm{n}+\mathrm{y})^{2}(\mathrm{n}+\mathrm{y} / 2) \mathrm{P}}{(\mathrm{n}-\mathrm{y})^{2}(3 \mathrm{n}+\mathrm{y} / 2)}$

0.15

$$
\begin{array}{lc}
0.15-x \quad a-2 x \\
0.15-x+a-2 x+x=0.5
\end{array} \quad x \quad \Rightarrow \quad \begin{gathered}
x=0.08 \\
P V=n R T
\end{gathered}
$$

$$
\mathrm{a}-2 \mathrm{x}=0.35 \quad \mathrm{n}=\frac{8.2 \times 2.5}{0.082 \times 500}=0.5
$$

$$
\mathrm{K}_{\mathrm{c}}=\frac{\frac{0.08}{2.5}}{\frac{0.07}{2.5} \times\left(\frac{0.35}{2.5}\right)^{2}}=\frac{20000}{343}=58.3
$$

$\mathrm{K}_{\mathrm{p}}=58.3 \times(\mathrm{RT})^{-2}=\frac{58.3}{(0.082 \times 500)^{2}}=\frac{58.3}{41 \times 41}=0.035$
(ii) Total pressure will remain 8.2 atm as catalyst reduces only time taken to achieve equilibrium, does not affect equilibrium condition / concentrations.
15. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$

At $t=0 \quad a \quad b \quad 0$
$\mathrm{t}_{\mathrm{eq}}^{(\mathrm{t}} \underset{(\Delta \mathrm{n}<0)}{(\mathrm{x})} \underset{(\mathrm{P}, \mathrm{T}, \mathrm{V} \text { given })}{(\mathrm{b}-3 \mathrm{x})} \quad 2 \mathrm{x}$
$\left[\mathrm{N}_{2}\right]=\frac{\mathrm{a}-\mathrm{x}}{\mathrm{V}}, \quad\left[\mathrm{H}_{2}\right]=\frac{\mathrm{b}-3 \mathrm{x}}{\mathrm{V}}, \quad\left[\mathrm{NH}_{3}\right]=\frac{2 \mathrm{x}}{\mathrm{V}}$
$K_{C}=\frac{\left(\frac{2 x}{V}\right)^{2}}{\left(\frac{a-x}{V}\right)\left(\frac{b-3 x}{V}\right)^{3}}=\frac{4 x^{2} V^{2}}{(a-x)(b-3 x)^{3}}$
Total no. of moles at equilibrium $=a+b-2 x$

$$
\begin{aligned}
& {\left[P_{N_{2}}\right]=\frac{(a-x)}{a+b-2 x} \cdot P,\left[P_{H_{2}}\right]=\frac{(b-3 x)}{a+b-2 x} \cdot P, } \\
& {\left[P_{N_{3}}\right]=\frac{(2 x) \cdot P}{a+b-2 x} } \\
\therefore \quad & K_{P}=\frac{\left[P_{N_{3}}\right]^{2}}{\left[P_{N_{2}}\right]\left[P_{H_{2}}\right]^{3}} \\
& =\frac{\left(\frac{2 x}{a+b-2 x} \cdot P\right)^{2}}{\left[\left(\frac{a-x}{a+b-2 x}\right) \cdot P\right]\left[\frac{(b-3 x) P}{a+b-2 x}\right]^{3}} \\
K_{P}= & \frac{\frac{4 x^{2} \cdot P^{2}}{(a+b-2 x)^{2}}}{P^{4} \cdot \frac{(a-x)(b-3 x)^{3}}{(a+b-2 x)^{4}}=\frac{(a+b-2 x)^{2} \cdot 4 x^{2}}{P^{2}(a-x)(b-3 x)^{3}}}
\end{aligned}
$$

19. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\ell)+\mathrm{H}_{2} \mathrm{O}(\ell)$

Initial	1	1	0	1
At eq. $1-\mathrm{x}$	$1-\mathrm{x}$	x	$1+\mathrm{x}$	
	$1-0.543$	$1-0.543$	0.543	$1+0.543$

$\left(54.3 \%\right.$ of 1 mole $=\frac{1 \times 54.3}{100}=0.543$ mole $)$
Hence given $\mathrm{x}=0.543$ mole
Applying law of mass action :
$\mathrm{K}_{\mathrm{C}}=\frac{[\text { ester }][\text { water }]}{[\text { acid }][\text { alcohol }]}=\frac{0.543 \times 1.543}{0.457 \times 0.457}=4.0$
21. $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$

1	0
$1-.25$.50

$.75 \quad .50 \quad n_{\text {total }}=1.25$
$\mathrm{P}_{\mathrm{N}_{2} \mathrm{O}_{4}}=\left(\frac{.75}{1.25}\right) ; \quad \mathrm{P}_{\mathrm{NO}_{2}}=\left(\frac{.50}{1.25}\right)$
$\mathrm{K}_{\mathrm{P}}=\frac{\left(\mathrm{P}_{\mathrm{NO}_{2}}\right)^{2}}{\left(\mathrm{P}_{\mathrm{N}_{2} \mathrm{O}_{4}}\right)}=\frac{(.50 / 1.25)^{2}}{(.75 / 1.25)}=\frac{.50 \times .50}{1.25 \times .75}$
$=\frac{4}{15}=0.266$.
At pressure 0.1 atm ,

$\mathrm{N}_{2} \mathrm{O}_{4}$	$2 \mathrm{NO}_{2}$
1	0
(1- α)	2a

$\mathrm{P}_{\mathrm{N}_{2} \mathrm{O}_{4}}=\left(\frac{1-\alpha}{1+\alpha}\right) \times 0.1 \quad ; \quad \mathrm{P}_{\mathrm{NO}_{2}}=\left(\frac{2 \alpha}{1+\alpha}\right) \times 0.1$
$\mathrm{K}_{\mathrm{P}}=\frac{\left(\frac{2 \alpha}{1+\alpha} \times 0.1\right)^{2}}{\left(\frac{1-\alpha}{1+\alpha}\right) \times 0.1} \quad ; \quad \mathrm{K}_{\mathrm{P}}=\frac{4 \alpha^{2} \times 0.1}{(1+\alpha)(1-\alpha)}$
$0.266=\frac{0.1 \times 4 \alpha^{2}}{1-\alpha^{2}}$
$0.665=(1+0.665) \alpha^{2} . \quad \Rightarrow \alpha=63.25 \%$.
22
2. $\begin{array}{cc}2 \mathrm{AB}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB}(\mathrm{g}) & + \\ \mathrm{t}=0 & \mathrm{~B}_{2}(\mathrm{~g}) \\ \mathrm{a} & 0 \\ \mathrm{a}(1-\alpha) & (\mathrm{a} \alpha)\end{array}$

Total mole $=\mathrm{a}\left[1-\alpha+\alpha+\frac{\alpha}{2}\right] \quad \frac{\mathrm{a}[2+\alpha]}{2}$
$P_{A B_{2}}=\frac{a(1-\alpha) \times 2}{a(2+\alpha)} \times P \quad ; \quad P_{A B}=\frac{a \alpha \times 2}{a(2+\alpha)} \times P$
$P_{B_{2}}=\frac{\left(\frac{a \alpha}{2}\right)}{\frac{a(2+\alpha)}{2}}=\left[\frac{\alpha}{2+\alpha}\right] \times P$.
$\mathrm{K}_{\mathrm{P}}=\frac{\left(\frac{2 \alpha}{2+\alpha} \times \mathrm{P}\right)^{2}\left(\frac{\alpha}{2+\alpha} \times \mathrm{P}\right)}{\left(\frac{2(1-\alpha)}{2+\mathrm{P}} \times \mathrm{P}\right)^{2}}$
$\alpha \ll 1$.
$\mathrm{K}_{\mathrm{P}}=\frac{\alpha^{3} \mathrm{P}}{2} \quad ; \quad \alpha=\left(\frac{2 \mathrm{~K}_{\mathrm{P}}}{\mathrm{P}}\right)^{1 / 3} \quad$ i.e. $\mathrm{x}=\left(\frac{2 \mathrm{~K}_{\mathrm{P}}}{\mathrm{P}}\right)^{1 / 3}$
24.

$$
\begin{array}{cc}
\mathrm{S}_{8}(\mathrm{~g}) & \rightleftharpoons \\
\mathrm{latm} & 4 \mathrm{~S}_{2}(\mathrm{~g}) \\
(1-\mathrm{x}) & 0 \\
4 \mathrm{x}
\end{array}
$$

time $\mathrm{t}=0$
At. eq.
Pressure of eq. $1-0.29 \quad 4 \times 0.29$.

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{P}}=\frac{\left(\mathrm{P}_{\mathrm{S}_{2}}\right)^{4}}{\mathrm{P}_{\mathrm{S}_{8}}}=\frac{(4 \times 0.29)^{4}}{0.71} . \\
& \mathbf{K}_{\mathrm{P}}=\mathbf{2 . 5 5} \mathbf{~ a t m 3} .
\end{aligned}
$$

26.

$\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	$\rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$		
$\mathrm{t}=0$	-	1	2

carbon solid will start forming when there will be equilibrium in the container

$$
\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{co}} \cdot \mathrm{P}_{\mathrm{H}_{2}}}{\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}}=3 \mathrm{~atm}=\frac{(2 \mathrm{P})(3 \mathrm{P})}{\mathrm{P}}=6 \mathrm{P}=3 \mathrm{~atm}
$$

So $P=\frac{1}{2} \mathrm{~atm}$
So Total pressure in the container will be

$$
\mathrm{P}_{\mathrm{T}}=\mathrm{P}+2 \mathrm{P}+3 \mathrm{P}=6 \mathrm{P}=3 \mathrm{~atm}
$$

Ans. 3
28. $\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}(\mathrm{g})+\mathrm{SO}_{3}(\mathrm{~g})$
$\begin{array}{llcc}0.04 & 0.04 & 0.3 & 0.3 \\ 0.04-\mathrm{x} & 0.04-\mathrm{x} & 0.3+\mathrm{x} & 0.3+\mathrm{x}\end{array}$
$\mathrm{Q}_{\mathrm{c}}=\frac{(0.3)^{2}}{(0.04)^{2}}=56.25$
Here, $\mathrm{Q}_{\mathrm{c}}<\mathrm{K}_{\mathrm{c}}$ hence reaction will proceed in forward direction to reach at state of equilibrium
$K_{c}=\frac{(0.3+x)^{2}}{(0.04-x)^{2}}=81$
$x=0.006$
30. Equation (iii) $=-[2 \times$ (i) + (iii) $]$
$\therefore \mathrm{K}_{2000}$ (iii) $=\frac{1}{\mathrm{~K}_{1}^{2} \mathrm{~K}_{2}}=\frac{1}{(4.4)^{2} \times 5.31 \times 10^{-10}}=9.7 \times$
10^{7}
$\because \mathrm{T} \uparrow \mathrm{K} \downarrow \Rightarrow$ reaction is exothermic.
31. $\mathrm{T}=445^{\circ} \mathrm{C}=445+273=718 \mathrm{~K}$
$\mathrm{P}=207 \mathrm{~atm}$
$\mathrm{n}=1$ mole
$\mathrm{Ag}_{2} \mathrm{O} \rightleftharpoons 2 \mathrm{Ag}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{p}}=\sqrt{\mathrm{P}_{\mathrm{O}_{2}}}=(207)^{1 / 2}=14.39$
$\Delta \mathrm{G}^{0}=\Delta \mathrm{G}^{0}+2.303 R T \log \mathrm{~K}_{\text {eq }}$.
But at eq. $\Delta \mathrm{G}=0$,
$\Delta \mathrm{G}^{0}=-2.303 \mathrm{RT} \log \mathrm{K}_{\mathrm{eq}}$.
But for formation,

$\mathrm{K}_{\mathrm{p}}=\frac{1}{\left(\mathrm{Po}_{2}\right)^{1 / 2}}=\frac{1}{(207)^{1 / 2}}$
$\Delta \mathrm{G}^{0}=-2.303 \times 8.312 \times 718 \log \frac{1}{(207)^{1 / 2}}$
$\Delta \mathrm{G}^{0}=\frac{2.303 \times 8.312 \times 718}{2} \times \log 207$
$\Delta \mathrm{G}^{0}=6872.17 \log 207$
$\Delta \mathrm{G}^{0}=15915.75 \mathrm{~J}$
$\Delta \mathrm{G}^{0}=3789.46 \mathrm{Cal}$
$\Delta \mathrm{G}^{0}=3.789 \mathrm{KCal}$
$\Delta \mathrm{G}^{0}=\mathbf{3 . 8} \mathrm{KCaI}$
33. $\mathrm{SrCI}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightleftharpoons \mathrm{SrCI}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\mathrm{K}_{\mathrm{p}}=16 \times 10^{-12}$
$\left(\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}\right)^{4}=\mathrm{K}_{\mathrm{P}} \quad \mathrm{p}_{\mathrm{H}_{2} \mathrm{O}}=\left(\mathrm{K}_{\mathrm{P}}\right)^{1 / 4}=2 \times 10^{-3} \mathrm{~atm}$
$\mathrm{H}_{2} \mathrm{O}(\ell) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \mathrm{p}_{\mathrm{H}_{2} \mathrm{O}}=\frac{7.6}{760}=1.0 \times 10^{-2}$
$\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{10^{-2} \times 1}{0.082 \times 274}=4.45 \times 10^{-4}$
$\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}=\frac{2 \times 10^{-3}}{0.082 \times 274}=8.9 \times 10^{-5}$
$\therefore \mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}$ absorbed $=3.56 \times 10^{-4}$
$\therefore \mathrm{wt}$ absorbed $=6.4 \mathrm{mg}$.
36. (a) $\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{p}_{\mathrm{CO}} \times \mathrm{p}_{\mathrm{H}_{2}}^{3}}{\mathrm{p}_{\mathrm{CH}_{4}} \times \mathrm{p}_{\mathrm{H}_{2} \mathrm{O}}}$
(b) (i) The value of K_{p} remains unchanged on increasing the pressure. When pressure is increased then according to Le-Chatelier's principle the equilibrium shifts in the direction where there is less number of moles of gases i.e., backward direction in case of the given reaction.
(ii) In case of endothermic reactions the value of K_{p} increases with increases in temperature. With increases in temperature, the equilibrium shift in the endothermic direction i.e., forward direction in case of the given reaction.
(iii) K_{p} will remain undisturbed. Equilibrium composition will remain unchanged. However, in the presence of catalyst, the equilibrium would be attained quickly.
37.. (i) In this case n_{p} is equal to n_{r}

This reaction will not be affected by increase of pressure.

CHEMISTRY FOR JEE MAIN \＆ADVANCED

（iii） $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})$
In this reaction，moles of gases on product side $\left(\mathrm{n}_{\mathrm{p}}=2\right)$ is more than that on reactant side $\left(\mathrm{n}_{\mathrm{r}}=1\right)$ ．This reaction will be affected by increase in pressure．Increase in pressure shifts the equilibrium in that direction where there is less no．of moles gases．In this reaction，increase in pressure will cause the reaction to go into the the left direction．
（iii） $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
The reaction would be affected by increase in pressure because n_{p} is different from n_{r} ．
Increase in pressure shifts the equilibrium in left direction because n_{r} is less than n_{p} ．
（iv） $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$
The reaction would be affected by increase in pressure． Increase in pressure will shift the equilibrium towards right because n_{p} is less than n_{r} ．

$$
\begin{aligned}
& 38 . \\
& \begin{array}{lll}
\mathrm{A}(\mathrm{~s}) & \rightleftharpoons \mathrm{B}(\mathrm{~g})+\mathrm{C}(\mathrm{~g}) & \mathrm{K}_{\mathrm{pl}}=300 \\
- & \mathrm{P}_{1} & \left(\mathrm{P}_{1}+\mathrm{P}_{2}\right)
\end{array} \quad \mathrm{K}_{\mathrm{pl}}=\mathrm{P}_{1}\left(\mathrm{P}_{1}+\mathrm{P}_{2}\right) \\
& \mathrm{D}(\mathrm{~s}) \rightleftharpoons \underset{\mathrm{P}}{\mathrm{E}(\mathrm{~g})+\underset{\mathrm{C}}{2}(\mathrm{~g})} \\
& \mathrm{K}_{\mathrm{p} 2}=600 \\
& \mathrm{~K}_{\mathrm{p} 2}=\mathrm{P}_{2}\left(\mathrm{P}_{1}+\mathrm{P}_{2}\right) \\
& \left(\frac{K p_{1}}{K p_{2}}\right)=\frac{\mathrm{P}_{1}\left(\mathrm{P}_{1+} \mathrm{P}_{2}\right)}{\mathrm{P}_{2}\left(\mathrm{P}_{1}+\mathrm{P}_{2}\right)} \\
& \frac{300}{600}=\left(\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}\right) \\
& \frac{P_{1}}{P_{2}}=\frac{1}{2} P_{2}=2 P_{1} \\
& \mathrm{~K}_{\mathrm{pl}}=\mathrm{P}_{1}\left(\mathrm{P}_{1}+\mathrm{P}_{2}\right) \\
& \mathrm{K}_{\mathrm{p} 1}=\mathrm{P}_{1}\left(\mathrm{P}_{1}+2 \mathrm{P}_{1}\right) \\
& 300=\mathrm{P}_{1}\left(3 \mathrm{P}_{1}\right) \\
& \mathrm{P}_{1}{ }^{2}=100 \quad\left(\mathrm{P}_{1}=10\right) \\
& \mathrm{P}_{2}=20 \mathrm{~atm} \\
& \text { Now Total pressure } \\
& P_{B}+P_{E}+P_{C} \\
& \left(\mathrm{P}_{1}+\mathrm{P}_{2}\right)+\left(\mathrm{P}_{1}+\mathrm{P}_{2}\right)=(10+20)+(30)=\mathbf{6 0} \mathbf{~ a t m} .
\end{aligned}
$$

39． $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$

given $\quad 9 P-x-y+13 P-3 x-2 y+2 x+y=7 P$ 。
$\Rightarrow \quad 22 \mathrm{P}-2 \mathrm{x}-2 \mathrm{y}=7 \mathrm{P}$ 。
then $\quad 2 \mathrm{x}=\mathrm{P}$ 。
and $\quad 13 P-3 x-2 y=2 P$ 。

$$
\begin{gather*}
\begin{aligned}
22 P-2 y=5 P_{0} \\
13 P-2 y=\frac{7}{2} P_{\circ} \\
-1
\end{aligned} \quad P=\frac{P_{0}}{2} \tag{3}\\
9 P-x-y=\frac{9 P_{0}}{2}-\frac{P_{0}}{2}-\frac{3 P_{0}}{2}=\frac{5 P_{0}}{2}
\end{gather*}
$$

$2 \mathrm{y}=\frac{13-7}{2} \mathrm{P}_{0}=3 \mathrm{P}$.
$13 P-3 x-2 y=\frac{13 P_{o}}{2}-\frac{3 P_{o}}{2}-\frac{6 P_{o}}{2}=2 P_{o} y=\frac{3}{2} P_{o}$
$K_{1}=\frac{(2 x)^{2}}{(9 p-x-y)(13 p-3 x-2 y)^{3}}$
$=\frac{\mathrm{P}_{\mathrm{o}}{ }^{2}}{\frac{5}{2} \mathrm{P}_{\mathrm{o}} \cdot\left(2 \mathrm{P}_{\mathrm{o}}\right)^{3}}=\frac{1}{20 \mathrm{P}_{\mathrm{o}}{ }^{2}}$
$\mathrm{K}_{2}=\frac{\frac{3}{2} \mathrm{P}_{\mathrm{o}}}{\left(\frac{5}{2} \mathrm{P}_{\mathrm{o}}\right)\left(2 \mathrm{P}_{\mathrm{o}}\right)^{2}}=\frac{3}{20 \mathrm{P}_{\mathrm{o}}{ }^{2}}$

41． $\mathrm{A}(\mathrm{g}) \rightleftharpoons \mathrm{B}(\mathrm{g})+\mathrm{C}(\mathrm{g}) \quad \mathrm{K}_{\mathrm{c}}=4$

1	2	2	
0.5	1	1	$\mathrm{Q}_{\mathrm{c}}=2<\mathrm{Kc}$
$0.5-\mathrm{x}$	$1+\mathrm{x}$	$1+\mathrm{x}$	$4=\frac{(1+\mathrm{x})^{2}}{0.5-\mathrm{x}}$
			$\mathrm{x}=0.162[\mathrm{~A}]=0.338$
			$[\mathrm{~B}]=[\mathrm{C}]=1.162$

42． $2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$
$\begin{array}{llll}t=0 & a & 0 & 0 \\ t & (a-2 x) & x & x\end{array}$
Given：$\frac{x^{2}}{(a-2 x)^{2}}=\frac{1}{54.8}$
so，$\frac{a-2 x}{x}=\sqrt{54.8}$ and $(a-2 x)=0.5 M$
so，$x=\frac{0.5}{\sqrt{54.8}}=\frac{0.5}{7.40}=0.0675 \mathrm{M}$
45.

Initial moles

PCl_{5}	\rightleftharpoons	$\mathrm{PCl}_{3}+$	Cl_{2}
0.1	0	0	
$0.1-\mathrm{x}$	x	x	

Total number of moles at equilibrium $=(0.1-x)+x+x=0.1+x$
But total number of moles，
$\mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{1 \mathrm{bar} \times 8 \mathrm{~L}}{0.083 \mathrm{~L} \mathrm{bar} \mathrm{mol}^{-1} \mathrm{~K}^{-1} \times 540 \mathrm{~K}}=0.18$
$0.1+x=0.18$
$\mathrm{x}=0.08$

CHEMICAL EQUILIBRIUM

$\left[\mathrm{PCl}_{5}\right]=\frac{0.1-0.08}{8} \mathrm{M}=2.5 \times 10^{-3} \mathrm{M}$
$\left[\mathrm{PCl}_{3}\right]=\frac{0.08}{8} \mathrm{M}=0.01 \mathrm{M}$
$\left[\mathrm{Cl}_{2}\right]=\frac{0.08}{8} \mathrm{M}=0.01 \mathrm{M}$
$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{PCl}_{5}\right]}=\frac{0.01 \times 0.01}{2.5 \times 10^{-3}}=4 \times 10^{-2}$
$\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\mathrm{n} \mathrm{n}}=4 \times 10^{-2} \times(0.083 \times 540)=1.79 \mathrm{bar}$
47. (a) $\mathrm{A}+2 \mathrm{~B} \rightleftharpoons \quad 2 \mathrm{C}$

$$
\begin{array}{lll}
a & 2 a & \\
a-x & 2 a-2 x & 2 x
\end{array}
$$

Total moles at equilibrium $3 a-x$
Mole fraction of $\mathrm{C}=\frac{2 \mathrm{x}}{3 \mathrm{a}-\mathrm{x}}=0.4$

$$
\begin{aligned}
& 2 \mathrm{x}=1.2 \mathrm{a}-0.4 \mathrm{x} \\
& \mathrm{x}=\frac{1.2 \mathrm{a}}{2.4} \\
& \mathrm{x}=\frac{\mathrm{a}}{2}
\end{aligned}
$$

Now $\mathrm{A}+2 \mathrm{~B} \rightleftharpoons 2 \mathrm{C}$

$$
\frac{a}{2} \quad a \quad a
$$

Total moles $=\frac{5 \mathrm{a}}{2}$
$P_{A}=\frac{\frac{a}{2}}{\frac{5 a}{2}} \times 8=\frac{8}{5}$ atm
$P_{B}=\frac{a}{5 a / 2} \times 8=\frac{16}{5} \mathrm{~atm}$
$P_{C}=\frac{a}{5 a / 2} \times 8=\frac{16}{5} \mathrm{~atm}$
$\mathrm{K}_{\mathrm{P}}=\frac{\left(\mathrm{P}_{\mathrm{C}}\right)^{2}}{\left(\mathrm{P}_{\mathrm{B}}\right)^{2} \cdot \mathrm{P}_{\mathrm{A}}}=\frac{5}{8}$
$K_{P}=0.625 \mathrm{~atm}^{-1}$
$\begin{array}{lll} & \mathrm{A}+2 \mathrm{~B} & \rightleftharpoons \\ \text { (b) } & 2 \mathrm{C} \\ \text { Mole fraction } & 0.16 & 0.32 \\ & & 0.52 \\ \text { Partial pressure } & 0.16 \mathrm{P} & 0.32 \mathrm{P} \\ & & 0.52 \mathrm{P}\end{array}$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{P}}=\frac{(0.52 \mathrm{P})^{2}}{0.16 \mathrm{P} \times(0.32 \mathrm{P})^{2}}=\frac{5}{8} \\
& \mathrm{P}=\frac{0.52 \times 0.52 \times 8}{0.16 \times 0.32 \times 0.32 \times 5}=\mathbf{2 6 . 4} \mathbf{~ a t m}
\end{aligned}
$$

Initial

3	0	1
$(3-\mathrm{x})$	x	$1+\mathrm{x}$
2	1	2

Initial total moles $=(3+1)=4$.
Now from Ideal gas equation

$$
\begin{aligned}
& \mathrm{PV}=\mathrm{nRT}=\mathrm{P} \times 100=4 \times 0.082 \times 500 \\
& \mathrm{P}=0.082 \times 20=1.64 \mathrm{~atm} .
\end{aligned}
$$

At equilibrium Total mole $=3-x+x+1+x=(4+x)$

$$
\mathrm{PV}=\mathrm{nRT} .
$$

$2.05 \times 100=(4+x) \times 0.082 \times 500$.
$2.05=(4+x) \times 0.41$.
$5=4+x$.
$\mathrm{x}=1$.
$\alpha=\frac{\text { No.of mole dissociated }}{\text { Initially total mole taken }}=\frac{1}{3}=0.33$.
$\mathrm{P}_{\mathrm{PCl}_{5}}=\frac{2}{5} \times 2.05 ; \quad \mathrm{P}_{\mathrm{PCl}_{3}}=\frac{1}{5} \times 2.05$
$\mathrm{P}_{\mathrm{Cl}_{2}}=\frac{2}{5} \times 2.05$
$\mathrm{K}_{\mathrm{P}}=\frac{\left(\frac{1}{5} \times 2.05\right)\left(\frac{2}{5} \times 2.05\right)}{\left(\frac{2}{5} \times 2.05\right)}=[0.41]$
50. $\quad \mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
$\mathrm{t}=0 \frac{8.34}{208.5} \quad 0 \quad 0$
teq. $\left(\frac{8.34}{208.5}-x\right) \quad x \quad x \quad n_{T}=\left(\frac{8.34}{208.5}+x\right)$
Given, $\quad(1 \mathrm{~atm})(2.05 \mathrm{~L})=\left(\frac{8.34}{208.5}+x\right.$ mole $)(0.082 \mathrm{~L}$
atm mole ${ }^{-1} \mathrm{~K}^{-1}$) (500 K)
so, $\frac{8.34}{208.5}+\mathrm{x}=\frac{2.05}{0.082 \times 500}=0.05 \mathrm{~mole}$

$$
x=0.05-0.04=0.01
$$

so, $\alpha=\frac{0.01}{0.04}=0.25=25 \%$

$$
K_{p}=\frac{\alpha^{2}}{1-\alpha^{2}} \cdot P=\left(\frac{1 / 16}{1-(1 / 16)}\right)=\frac{1}{15} \mathrm{~atm} .
$$

CHEMISTRY FOR JEE MAIN \& ADVANCED

At $300 \mathrm{~K}, \Delta \mathrm{G}^{\mathrm{o}}=[(-41.16)-(300 \times-0.0424)] \times 1000$
$=-28440 \mathrm{~J} / \mathrm{mol}=-\mathrm{RT} \ln \mathrm{Kp}$
At $1200 \mathrm{~K}, \Delta \mathrm{G}^{\mathrm{o}}=[(-32.93)-(1200 \times-0.0296)] \times 1000$
$=+2590 \mathrm{~J} / \mathrm{mol}=-\mathrm{RT} \ln \mathrm{Kp}$
$\mathrm{K}_{\mathrm{p}}(300 \mathrm{~K})=8.935 \times 10^{4}$
$\mathrm{K}_{\mathrm{p}}(1200 \mathrm{~K})=0.7753$
$\mathrm{Q}=1$
at $300 \mathrm{~K}: \quad \mathrm{Q}<\mathrm{K}$, Hence forward direction.
at $1200 \mathrm{~K}: \quad \mathrm{Q}>\mathrm{K}$, Hence backward direction.
53. (i)

$$
\text { i) } \quad \mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2} \quad ; \quad \mathrm{G}^{\circ} \mathrm{N}_{2} \mathrm{O}_{4}=100 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

conc. at $\mathrm{t}=0 \quad 5 \quad 5 \quad \mathrm{G}^{\circ}{ }_{\mathrm{N}_{2} \mathrm{O}_{4}}=50 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta \mathrm{G}^{\mathrm{o}}$ for reaction $=2 \times \mathrm{G}^{\circ} \mathrm{N}_{2} \mathrm{O}_{4}-\mathrm{G}^{\circ}{ }_{\mathrm{N}_{2} \mathrm{O}_{4}}=2 \times 50-100=0$
Now, $\quad \Delta \mathrm{G}=\Delta \mathrm{G}^{\mathrm{o}}+2.303 \mathrm{RT} \log \mathrm{Q}$
$\Delta \mathrm{G}=0+2.303 \times 8.314 \times 10^{-3} \times 298 \log \frac{5^{2}}{5}=+\mathbf{3 . 9 9} \mathbf{k J}$.
(iii) Since $\Delta \mathrm{G}$ is +ve and thus reaction will not proceed in forward direction.

Also for reverse reaction :

$$
\begin{array}{lcc}
& 2 \mathrm{NO}_{2} \rightleftharpoons & \mathrm{~N}_{2} \mathrm{O}_{4} \\
& \text { Mole at } \mathrm{t}=0 \quad 5 & 5 \\
& \text { Mole at eq. } \quad(5-2 \mathrm{x}) \quad(5+\mathrm{x}) \\
\therefore & \Delta \mathrm{G}=-2.303 \mathrm{RT} \log \mathrm{~K}_{\mathrm{C}} . \\
\therefore & \Delta \mathrm{G}^{\mathrm{o}}=0 \quad \therefore \quad \mathrm{~K}_{\mathrm{C}}=1 . \\
\text { or } & 1=\frac{5+\mathrm{x}}{(5-2 \mathrm{x})^{2}} \\
\therefore & \mathrm{x}=1.25 .
\end{array}
$$

Thus, $\quad\left[\mathrm{NO}_{2}\right]_{\text {at eq. }}=5-2.5=\mathbf{2 . 5}$ $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]_{\text {ateq. }}=5+1.25=\mathbf{6 . 2 5}$.
56. $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \mathrm{d}_{\text {mix }}=\frac{\mathrm{PM}_{\text {mix }}}{\mathrm{RT}}$
$M_{\text {mix }}=\frac{1.8 \times 0.082 \times 346}{1}=51.0696$
$1-\alpha \quad 2 \alpha \quad M_{\text {mix }}=51.0696$
$0.2 \quad 0.8 \times 2=1.6$
$M_{\text {mix }}=\frac{92}{1+\alpha} \quad 1+\alpha=\frac{92}{51} \quad \alpha=0.8$
$\mathrm{K}_{\mathrm{p}}=\frac{\left(\frac{1.6}{1.8} \times 1\right)^{2}}{\left(\frac{0.2}{1.8} \times 1\right)}=7.11 \quad \mathrm{~K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}} \mathrm{RT} \quad \mathrm{K}_{\mathrm{c}}=\frac{\mathrm{K}_{\mathrm{p}}}{\mathrm{RT}}$
$\mathrm{K}_{\mathrm{c}}=\frac{7.11}{0.082 \times 346}=0.25$
58. $\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})=\mathrm{NO}(\mathrm{g})$

Suppose x moles of SO_{2} react with x moles of NO_{2} to form x moles of SO_{3} and x moles of No to attain equilibrium.
The equilibrium concentration, therefore woud be

$$
\begin{array}{ll}
{\left[\mathrm{SO}_{2}\right]=(1-\mathrm{x}) \mathrm{mol} \mathrm{~L}^{-1} ;} & {\left[\mathrm{NO}_{2}\right]=(1-\mathrm{x}) \mathrm{mol} \mathrm{~L}^{-1}} \\
{\left[\mathrm{SO}_{3}\right]=(1+\mathrm{x}) \mathrm{mole} \mathrm{~L}^{-1} ;} & {[\mathrm{NO}]=(1+\mathrm{x}) \text { miole } \mathrm{L}^{-}}
\end{array}
$$

$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{SO}_{3}\right][\mathrm{NO}]}{\left[\mathrm{SO}_{2}\right]\left[\mathrm{NO}_{2}\right]}=\frac{(1+\mathrm{x})(1+\mathrm{x})}{(1-\mathrm{x})(1-\mathrm{x})}=16$
$\frac{(1+x)^{2}}{(1-x)^{2}}=16 \quad$ or $\quad \frac{(1+x)}{(1-x)}=4$
$1+x=4-4 x \quad$ or $5 x=3$
or $\quad x=\frac{3}{5}=0.6 \mathrm{~mole}$
$\left[\mathrm{NO}_{2}\right]=(1-\mathrm{x})=(1-0.6)=0.4 \mathrm{~mol} \mathrm{~L}^{-1}$
$[\mathrm{NO}]=(1+\mathrm{x})=(1+0.6)=1.6 \mathrm{~mol} \mathrm{~L}^{-1}$
59. $\mathrm{Ni}(\mathrm{s})+4 \mathrm{CO}(\mathrm{g}) \rightleftharpoons \mathrm{Ni}(\mathrm{CO})_{4}(\mathrm{~g})$

For backward reaction
$\mathrm{Q}_{\mathrm{p}} \geq \mathrm{K}_{\mathrm{p}}$
$\frac{\mathrm{P}}{\mathrm{P}^{4}} \geq \mathrm{K}_{\mathrm{p}}$
$\therefore \quad \frac{1}{\mathrm{P}^{3}} \geq 0.125 \mathrm{~atm}^{-3}$
$\mathrm{P}^{3} \leq 8 \mathrm{~atm}^{3}$
$\mathrm{P} \leq 2 \mathrm{~atm}$
$\mathrm{P}_{\text {Total }}=2 \mathrm{P}=4 \mathrm{~atm}$.
60. $\mathrm{A}(\mathrm{s}) \rightleftharpoons \mathrm{A}^{\prime}(\mathrm{g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
$\mathrm{B}(\mathrm{s}) \rightleftharpoons \mathrm{B}^{\prime}(\mathrm{g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
$\mathrm{A}(\mathrm{s}) \rightleftharpoons \mathrm{A}^{\prime}(\mathrm{g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
$\mathrm{P}=50 \mathrm{~mm} \quad \Rightarrow \quad \mathrm{P}_{\mathrm{H}_{2} \mathrm{~S}}=\mathrm{P}_{\mathrm{A}^{\prime}}=\mathrm{P} / 2=25 \mathrm{~mm}$
$\mathrm{B}(\mathrm{s}) \rightleftharpoons \mathrm{B}^{\prime}(\mathrm{g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
$\mathrm{P}=68 \mathrm{~mm} \quad \Rightarrow \quad \mathrm{P}_{\mathrm{H}_{2} \mathrm{~S}}=\mathrm{P}_{\mathrm{B}},=\mathrm{P} / 2=34 \mathrm{~mm}$
(i) $\mathrm{K}_{\mathrm{p}_{1}}=(25)^{2}=625 \mathrm{~mm}^{2} ; \quad \mathrm{K}_{\mathrm{p}_{2}}=(34)^{2}=1156 \mathrm{~mm}^{2}$
(ii) Ratio of moles is same as that of partial pressure so,

A(s)

$$
\rightleftharpoons \begin{array}{cr}
\mathrm{A}^{\prime}(\mathrm{g}) & +\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \\
& \mathrm{P}_{1}+\mathrm{P}_{2}
\end{array}
$$

CHEMICAL EQUILIBRIUM

$$
\begin{align*}
& \mathrm{B}(\mathrm{~s}) \\
& \rightleftharpoons \underset{\mathrm{P}_{2}(\mathrm{~g})}{\rightleftharpoons}+\underset{\mathrm{P}_{2} \mathrm{~S}(\mathrm{~g})}{\mathrm{P}_{2}+\mathrm{P}_{1}} \tag{i}\\
& \mathrm{~K}_{\mathrm{P}_{1}}=\mathrm{P}_{\mathrm{A}^{\prime} \times} \mathrm{X} \mathrm{P}_{\mathrm{H}_{2} \mathrm{~S}}=\mathrm{P}_{1}\left(\mathrm{P}_{1}+\mathrm{P}_{2}\right) \\
& \mathrm{K}_{\mathrm{P}_{2}}=\mathrm{P}_{\mathrm{B}^{\prime}} \mathrm{X} \mathrm{P}_{\mathrm{H}_{2} \mathrm{~S}}=\mathrm{P}_{2}\left(\mathrm{P}_{1}+\mathrm{P}_{2}\right) \\
& \frac{\mathrm{K}_{\mathrm{P}_{1}}}{\mathrm{~K}_{\mathrm{P}_{2}}}=\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\frac{625}{1156}
\end{align*}
$$

(iii) total pressure $=\mathrm{P}_{1}+\mathrm{P}_{2}+\left(\mathrm{P}_{1}+\mathrm{P}_{2}\right)=2\left(\mathrm{P}_{1}+\mathrm{P}_{2}\right)$
(i) $+\left(\right.$ iii $=\left(\mathrm{P}_{1}+\mathrm{P}_{2}\right)^{2}$
$\sqrt{\mathrm{K}_{\mathrm{p}_{1}}+\mathrm{K}_{\mathrm{p}_{2}}}=\mathrm{P}_{1}+\mathrm{P}_{2}$
$\mathrm{P}_{\mathrm{T}}=2 \times\left(\sqrt{\mathrm{K}_{\mathrm{p}_{1}}+\mathrm{K}_{\mathrm{p}_{2}}}\right)=84.4 \mathrm{~mm}$.
61. For I equilibrium $2 \mathrm{NO}_{2} \rightleftharpoons \mathrm{~N}_{2} \mathrm{O}_{4}$
$\because \quad \mathrm{P}_{\mathrm{N}_{2} \mathrm{O}_{4}}=1.7 \mathrm{~atm} \quad \therefore$ ByEq. (1); $\mathrm{P}_{\mathrm{NO}_{2}}=0.5 \mathrm{~atm}$ The equilibria are maintained using NO and NO_{2} in the ratio $1: 2$

For II equilibrium	$\mathrm{NO}+$	$\mathrm{NO}_{2} \rightleftharpoons$
Initial pressures	N	$\mathrm{N}_{2} \mathrm{O}_{3}$
Pressures at equi.	$(\mathrm{P}-\mathrm{x})$	$(2 \mathrm{P}-\mathrm{x}-3.4)$

$\because \quad 3.4 \mathrm{~atm}$ of NO_{2} are uesed for I equilibrium to have $\mathrm{P}_{\mathrm{N}_{2} \mathrm{O}_{4}}=1.7 \mathrm{~atm}$
Atequilibrium $\quad(\mathrm{P}-\mathrm{x}) \quad 0.5 \quad \mathrm{x}$
($\because \mathrm{P}^{\prime} \mathrm{NO}_{2}$ is same for both the equilibria since both reactions are at equilibrium at a time.)

Total pressure at equilibrium (Given 5.05 atm)

$$
\begin{aligned}
& =\mathrm{P}_{\mathrm{NO}^{\prime}}+\mathrm{P}_{\mathrm{NO}_{2}}^{\prime}+\mathrm{P}_{\mathrm{N}_{2} \mathrm{O}_{3}}^{\prime}+\mathrm{P}_{\mathrm{N}_{2} \mathrm{O}_{4}}^{\prime} \\
& =P-x+0.5+x+1.7 \\
& \therefore \quad 5.05=\mathrm{P}+2.20 \\
& \therefore \quad \mathrm{P}=5.05-2.20 \\
& \therefore \quad \mathrm{P}=2.85 \mathrm{~atm} \\
& \because \quad 2 \mathrm{P}-\mathrm{x}-3.4=0.5 \\
& 2 \times 2.85-x-3.4=0.5 \\
& \therefore \quad \mathrm{x}=5.70-3.90 \\
& \therefore \quad \mathrm{x}=1.80 \mathrm{~atm} \\
& \therefore \quad \mathrm{P}_{\mathrm{NO}}=2.85-1.80=\mathbf{1 . 0 5} \mathbf{~ a t m}
\end{aligned}
$$

Now K_{p} for $\mathrm{NO}+\mathrm{NO}_{2} \rightleftharpoons \mathrm{~N}_{2} \mathrm{O}_{3}$

$$
\mathrm{K}_{\mathrm{P}}=\frac{\mathrm{P}_{\mathrm{N}_{2} \mathrm{O}_{3}}^{\wedge}}{\mathrm{P}_{\mathrm{NO}^{\prime} \times \mathrm{P}_{\mathrm{NO}_{2}}^{\prime}}=\frac{1.80}{1.05 \times 0.5}=\mathbf{3 . 4 3} \mathbf{~ a t m}^{-1}}
$$

$$
\begin{aligned}
& \mathrm{t}=\mathrm{t}_{\mathrm{eq} .} \begin{array}{llll}
0.45-\mathrm{x} & 0.45-\mathrm{x} & \mathrm{x} & \mathrm{x}
\end{array} \\
& \mathrm{~K}_{\mathrm{c}}=0.11 \\
& 0.11=\left(\frac{\mathrm{x} / \mathrm{v}}{\frac{0.45-\mathrm{x}}{\mathrm{v}}}\right)^{2} \quad \frac{\mathrm{x}}{0.45-\mathrm{x}}=0.33 \quad \mathrm{x}=0.11 \\
& \text { (a) } \mathrm{n}_{\mathrm{CO}}=\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}=0.11 \quad \mathrm{n}_{\mathrm{CO}_{2}}=\mathrm{n}_{\mathrm{H}_{2}}=0.34 \\
& \text { (b) } \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& 0.11=\left(\frac{0.11+\mathrm{x}}{0.68-\mathrm{x}}\right)^{2} \quad \frac{0.11+\mathrm{x}}{0.68-\mathrm{x}}=0.33=\frac{1}{3} \\
& 0.33+3 x=0.68-x \\
& 4 \mathrm{x}=0.35 \mathrm{x}=0.0875 \mathrm{n}_{\mathrm{co}}=\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}=0.1975 \\
& \mathrm{n}_{\mathrm{CO}_{2}}=\mathrm{n}_{\mathrm{H}_{2}}=0.5925
\end{aligned}
$$

63. Let initial equilibrium concentration of $\mathrm{C}=\mathrm{x} \mathrm{M}$

$$
\begin{array}{r}
\mathrm{t}=\mathrm{t}_{\mathrm{eq}} \begin{array}{c}
A \\
3
\end{array} \begin{array}{c}
2 B \\
4
\end{array}+\begin{array}{c}
C \\
\mathrm{x} \\
K_{C}= \\
=\frac{x \times 4^{2}}{3}=\frac{16 x}{3}
\end{array} \quad \ldots .
\end{array}
$$

Now on doubling the volume concentrations will become half of initial so
$\begin{array}{rll}\mathrm{A} & \rightleftharpoons 2 \mathrm{~B} & \mathrm{C} \\ \text { after doubling volume } \frac{3}{2} & & 2\end{array}$
$Q_{C}=\frac{x .4 \times 2}{2 \times 3}=\frac{4 x}{3}<K_{C}$
Conc. at new equilibrium $(1.5-\mathrm{a}) \quad 2+2 \mathrm{a}$

$$
\left(\frac{\mathrm{x}}{2}+\mathrm{a}\right) \text { Hence forward shift. }
$$

Now given that $(2+2 a)=3$
so $a=0.5$
so $\quad[\mathrm{A}]=1 \mathrm{M} \quad[\mathrm{B}]=3 \quad[\mathrm{C}]=\frac{1}{2}(\mathrm{x}+1)$
so $\quad K_{C}=\frac{(1+\mathrm{x}) \times 9}{2 \times 1}=\frac{16 \mathrm{x}}{3}$
so $27 x+27=32 x$
so $\mathrm{x}=\frac{27}{5}=5.4$ and $\mathrm{K}_{\mathrm{C}}=\frac{16}{3} \times \frac{27}{5} \times \frac{144}{5}$

$=28.8$. Ans.

CHEMISTRY FOR JEE MAIN \& ADVANCED

EXERCISE-5

Part \# I : AIEEE/JEE-MAIN

1. $\mathrm{P}_{4}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})\right]}{\left[\mathrm{P}_{4}(\mathrm{~s})\right]\left[\mathrm{O}_{2}(\mathrm{~g})\right]^{5}}$
2. $\mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{COCI}_{2}(\mathrm{~g})$
$\Delta \mathrm{n}=1-2=-1 ; \mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}}$
$\therefore \frac{\mathrm{K}_{\mathrm{p}}}{\mathrm{K}_{\mathrm{c}}}=(\mathrm{RT})^{-1}=\frac{1}{\mathrm{RT}}$
3. $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$;
$\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{NO}]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{O}_{2}\right]}=4 \times 10^{-4}$
$\mathrm{NO}(\mathrm{g}) \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) ;$
$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{N}_{2}\right]^{1 / 2}\left[\mathrm{O}_{2}\right]^{1 / 2}}{[\mathrm{NO}]}=\frac{1}{\sqrt{\mathrm{~K}_{\mathrm{c}}}}=\frac{1}{\sqrt{4 \times 10^{-4}}}=\frac{1}{2 \times 10^{-2}}$
$=\frac{100}{2}=50$
4. $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\mathrm{An}} \quad \Delta \mathrm{n}=3-2=1$.
$\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(0.0821 \times 457)^{1} . \mathrm{K}_{\mathrm{p}}>\mathrm{K}_{\mathrm{c}}$.
5. $\mathrm{Cl}_{2}(\mathrm{~g})+3 \mathrm{~F}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CIF}_{3}(\mathrm{~g}) ; \Delta \mathrm{H}=-329 \mathrm{~kJ}$.

Favourable conditions:
(i) Decrease in temperature,
(ii) Addition of reactants,
(iii) Increase in pressure i.e., decrease in volume.
6.

	$\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s})$	\rightleftharpoons	$\mathrm{NH}_{3}(\mathrm{~g})+$
$\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$			
Initial presens	0	0.5	0
At equi.	0	$0.5+\mathrm{x}$	x
Total pressure $=0.5+2 \mathrm{x}=0.84$	\therefore	$\mathrm{x}=0.17 \mathrm{~atm}$	

$\mathrm{K}_{\mathrm{p}}=\mathrm{P}_{\mathrm{NH}_{3}} \times \mathrm{P}_{\mathrm{H}_{2} \mathrm{~S}}=0.11 \mathrm{~atm}^{2}$.
7. Given:

$\mathrm{PCl}_{5}(\mathrm{~g})$	$\rightleftharpoons \mathrm{PCI}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$	
1	0	0
$1-\mathrm{x}$	x	x

Total number of moles $=1-x+x+x=1+x$
Thus partial pressure of $\mathrm{PCI}_{3}=\left(\frac{\mathrm{x}}{1+\mathrm{x}}\right) \mathrm{P}$.
8. $\mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$
$\frac{\left[\mathrm{SO}_{2}\right]\left[\mathrm{O}_{2}\right]^{1 / 2}}{\left[\mathrm{SO}_{3}\right]}=\mathrm{K}_{\mathrm{C}}=4.9 \times 10^{-2}$
$\mathrm{SO}_{3}(\mathrm{~g})+1 / 25 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})$
$\frac{\left[\mathrm{SO}_{3}\right]}{\left[\mathrm{SO}_{2}\right]\left[\mathrm{O}_{2}\right]^{1 / 2}}=\mathrm{K}_{\mathrm{C}}^{\prime}=\frac{1}{4.9 \times 10^{-2}}$
For $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$
$\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}=\mathrm{K}_{\mathrm{C}}{ }^{2}=\frac{1}{4.9 \times 4.9 \times 10^{-4}}=\frac{10000}{24.01}$
$=416.49$
9. $c=a+b$

10

$$
\begin{array}{cccc}
\mathrm{X} & \rightleftharpoons 2 \mathrm{Y} & \mathrm{Z} & \rightleftharpoons \\
1-\alpha & \mathrm{P} & +\mathrm{Q} \\
2 \alpha & 1-\alpha & \alpha & \alpha
\end{array}
$$

$$
\mathrm{K}_{\mathrm{p}_{1}}=\frac{\left(\frac{2 \alpha}{1+\alpha} \mathrm{P}_{\mathrm{T}_{1}}\right)^{2}}{\left(\frac{1-\alpha}{1+\alpha} \mathrm{P}_{\mathrm{T}_{1}}\right)} \quad \mathrm{K}_{\mathrm{p}_{2}}=\frac{\left(\frac{\alpha}{1+\alpha} \mathrm{P}_{\mathrm{T}_{2}}\right)\left(\frac{\alpha}{1+\alpha} \mathrm{P}_{\mathrm{T}_{2}}\right)}{\left(\frac{1-\alpha}{1+\alpha} \mathrm{P}_{\mathrm{T}_{2}}\right)}
$$

$$
\frac{\mathrm{K}_{\mathrm{P}_{1}}}{\mathrm{~K}_{\mathrm{P}_{2}}}=\frac{\left(\frac{2 \alpha}{1+\alpha} \mathrm{P}_{\mathrm{T}_{1}}\right)^{2}}{\left(\frac{1-\alpha}{1+\alpha} \mathrm{P}_{\mathrm{T}_{2}}\right)} \times \frac{\left(\frac{1-\alpha}{1+\alpha} \mathrm{P}_{\mathrm{T}_{2}}\right)}{\left(\frac{\alpha}{1+\alpha} \mathrm{P}_{\mathrm{T}_{2}}\right)\left(\frac{\alpha}{1+\alpha} \mathrm{P}_{\mathrm{T}_{2}}\right)}
$$

$$
\frac{1}{9}=\frac{4 \mathrm{P}_{\mathrm{T}_{1}}}{\mathrm{P}_{\mathrm{T}_{2}}} ; \quad \frac{\mathrm{P}_{\mathrm{T}_{1}}}{\mathrm{P}_{\mathrm{T}_{2}}}=\frac{1}{36}
$$

11. $P V=n R T$
$\mathrm{V}=1 \mathrm{dm}^{3}=10^{-3} \mathrm{~m}^{3}$
$\mathrm{P}=3170 \mathrm{~Pa}$
$\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{T}=300 \mathrm{~K}$
$3170 \times 10^{-3}=\mathrm{n} \times 8.314 \times 300$
$\mathrm{n}=\frac{3170 \times 10^{-3}}{8.314 \times 300}=1.27 \times 10^{-3} \mathrm{~mol}$.
12. $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})$
0.5 atm
$0.5-\mathrm{p} \quad 2 \mathrm{p}$
Total pressure $=0.5-\mathrm{P}+2 \mathrm{P}=0.8$

$$
\mathrm{P}=0.3
$$

$\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{CO}}^{2}}{\mathrm{P}_{\mathrm{CO}_{2}}}=\frac{(2 \mathrm{P})^{2}}{(0.5-\mathrm{P})}=\frac{(0.6)^{2}}{(0.5-0.3)}$
$K_{p}=1.8$
13. $\mathrm{N}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{NO} \quad \mathrm{K}=4 \times 10^{-4}$
$\mathrm{NO} \longrightarrow \frac{1}{2} \mathrm{~N}_{2}+\frac{1}{2} \mathrm{O}_{2} \quad \mathrm{~K}^{\prime}=\frac{1}{\sqrt{\mathrm{~K}}}=\frac{1}{\sqrt{4 \times 10^{-4}}}=50$
14. For reaction :
$\mathrm{SO}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{SO}_{3(\mathrm{~g})}$
$\Delta \mathrm{N}_{\mathrm{g}}=-\frac{1}{2}=\mathrm{x}$
15. $\Delta \mathrm{G}^{\mathrm{o}}$ at $300 \mathrm{~K}=2494.2 \mathrm{~J}$
$2 \mathrm{~A} \rightleftharpoons \mathrm{~B}+\mathrm{C}$
$\Delta \mathrm{G}^{\mathrm{o}}=-\mathrm{RT} \ln \mathrm{K}$
$-2494.2=-8.314 \times 300 \ln K$
$\mathrm{K}=10$
$\mathrm{Q}=\frac{[\mathrm{B}][\mathrm{C}]}{[\mathrm{A}]^{2}}=\frac{2 \times \frac{1}{2}}{\left(\frac{1}{2}\right)^{2}}=4$.
$\mathrm{Q}>\mathrm{K}_{\mathrm{C}} \Rightarrow$ reverse direction.
16. $\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D}$
$\mathrm{K}_{\mathrm{eq}}=100$
$\begin{array}{llll}1 & 1 & 1\end{array}$
$\mathrm{Q}_{\mathrm{c}}=1<\mathrm{K}_{\mathrm{eq}}$
\therefore fore ward shift

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{eq}} \mathrm{n}-\mathrm{x}|(1-\mathrm{x})|(1+\mathrm{x}) \mid(1+\mathrm{x}) \\
& \frac{(1+\mathrm{x})(1+\mathrm{x})}{(1-\mathrm{x})(1-\mathrm{x})}=100 \Rightarrow \frac{1+\mathrm{x}}{1-\mathrm{x}}=10 \\
& 1+\mathrm{x}=10-10 \mathrm{x} \\
& \mathrm{x}=\frac{9}{11} \\
& \therefore[\mathrm{D}]=1+\mathrm{x}=1+\frac{9}{11}=1.818 \text { Ans. }
\end{aligned}
$$

17. $\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) ; \Delta_{\mathrm{r}} \mathrm{H}^{\circ}=890.3$

$$
\Delta_{\mathrm{r}} \mathrm{H}^{\circ}-393.5-285.8 \quad ? \quad 0
$$

$\Delta_{\mathrm{r}} \mathrm{H}^{\circ}=\sum\left(\Delta_{\mathrm{f}} \mathrm{H}^{\circ}\right)_{\text {products }}-\sum\left(\Delta_{\mathrm{f}} \mathrm{H}^{\circ}\right)_{\text {Reactants }}$
$890.3=\left[1 \times\left(\Delta_{\mathrm{f}} \mathrm{H}^{\circ}\right)_{\mathrm{CH}_{4}}+2 \times 0\right]-[1 \times(393.5)+2(285.8)]$
$\left(\Delta_{\mathrm{f}} \mathrm{H}^{\circ}\right)_{\mathrm{CH}_{4}}=890.3-965.1=-74.8 \mathrm{~kJ} / \mathrm{mol}$

$$
\mathrm{C}_{6} \mathrm{H}_{6}(\ell)+\frac{15}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\ell)
$$

Part \# II : IIT-JEE ADVANCED

1. When nitrogen is added at equilibrium condition, the equilibrium will shift according to Le-chatelier principle at equilibrium $\Delta \mathrm{G}=0$ and catalyst changes the rate of forward and backward reactions by equal extent. K_{P} of reaction is a function of temperature only.
2. $\Delta \mathrm{G}^{\mathrm{o}}=\Delta \mathrm{H}^{\mathrm{o}}-\mathrm{T} \Delta \mathrm{S}^{\mathrm{o}}=-54.07 \times 1000-298 \times 10$ $=-54070-2980=-57050$
$\Delta \mathrm{G}^{\mathbf{o}}=-2.303 \mathrm{RT} \log _{10} \mathrm{~K}$
$-57050=-2.303 \times 298 \times 8.314 \log _{10} \mathrm{~K}$
$=-5705 \log _{10} \mathrm{~K}$
$\log _{10} \mathrm{~K}=10$
3. At equilibrium $\Delta \mathrm{G}$ (Gibbs energy) $=0$ but $\Delta \mathrm{G}^{\circ}$ (standard Gibbs energy) $\neq 0$
As $\Delta \mathrm{G}$ (Gibbs energy) is more negative reaction will be more spontaneous.

MOCK TEST

1.

$$
\mathrm{NH}_{2} \mathrm{COONH}_{4}(\mathrm{~S}) \rightleftharpoons \underset{2 \mathrm{P}}{2 \mathrm{NH}_{3}(\mathrm{~g})}+\underset{\mathrm{P}}{\mathrm{CO}_{2}(\mathrm{~g})}
$$

Initial

$$
\begin{aligned}
& \qquad \begin{array}{c}
\mathrm{K}_{\mathrm{p}}=\left(\mathrm{P}_{\mathrm{NH}_{2}}\right)^{2}\left(\mathrm{P}_{\mathrm{CO}_{2}}\right) \\
\mathrm{K}_{\mathrm{p}}=(2 \mathrm{P})^{2}(\mathrm{P}) \ldots(\mathrm{i}) \\
\mathrm{P}_{\mathrm{T}}(\mathrm{initial})=3 \mathrm{P} \\
\mathrm{NH}_{2} \mathrm{COONH}_{4}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \\
\text { Final } \quad 3 \mathrm{P} \quad \mathrm{P}^{\prime}
\end{array}
\end{aligned}
$$

$K p=(3 P)^{2}\left(P^{\prime}\right) \ldots(i i i)$
From eq. (i) and (ii)
$(2 \mathrm{P})^{2}(\mathrm{P})=(3 \mathrm{P}) 2\left(\mathrm{P}^{\prime}\right)$

$$
P^{\prime}=\frac{4 P}{9}
$$

$$
\frac{\mathrm{P}_{\mathrm{T}}(\mathrm{New})}{\mathrm{P}_{\mathrm{T}}(\mathrm{Old})}=\frac{3 \mathrm{P}+\mathrm{P}^{\prime}}{3 \mathrm{P}}=\frac{3 \mathrm{P}+\frac{4 \mathrm{P}}{9}}{3 \mathrm{P}}=\frac{31}{27}
$$

2. Formation of ammonia is an exothermix process therefore it is facourable at lower temperature. But at lower temperature rate of the reaction becomes slow.
3. $\mathrm{HgO}(\mathrm{s}) \rightleftharpoons \mathrm{Hg}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$

$$
\mathrm{K}_{\mathrm{p}}=\mathrm{P}_{\mathrm{Hg}(\mathrm{~g})} \mathrm{x}\left(\mathrm{PO}_{2}\right) \frac{1}{2}{ }^{\mathrm{x}_{2}}
$$

Total moles at equilibrium $=\frac{3 x}{2}$
$\mathrm{P}_{\mathrm{Hg}}=\frac{\mathrm{x}}{3 \mathrm{x} / 2}=\frac{2}{3} \mathrm{P}$
$\mathrm{PO}_{2}=\frac{\mathrm{x} / 2}{3 \mathrm{x} / 2} \mathrm{P}=\frac{1}{3} \mathrm{P}$

$$
\mathrm{K}_{\mathrm{P}}=\frac{2}{3} \mathrm{P}\left(\frac{1}{3} \mathrm{P}\right)^{1 / 2}=\frac{2}{3^{3 / 2}} \mathrm{P}^{3 / 2}
$$

4. $\mathrm{Fe}^{3+}+\mathrm{SCN}^{-} \rightleftharpoons[\mathrm{Fe}(\mathrm{SCN})]^{2+}$

Initial conc. $\frac{10^{-3}}{56} \quad \mathrm{~b} \quad 0$
Final conc. $\quad \frac{10^{-3}}{56}-6 \times 10^{-6} \quad b-6 \times 10^{-6} \quad 6 \times 10^{-6}$

$$
\mathrm{K}=\frac{10^{3}}{7.142}
$$

on solving $\mathrm{b}=0.0036 \mathrm{M}$
5. $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2} \quad \frac{1}{\mathrm{k}_{2}}$

$$
2 \mathrm{NO}_{2} \rightleftharpoons \mathrm{~N}_{2}+2 \mathrm{O}_{2} \quad \frac{1}{\mathrm{k}_{1}^{2}}
$$

6. $\begin{gathered}\mathrm{Br}_{2}(\ell) \\ \mathrm{t}=0\end{gathered}+\underset{2}{ } \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \underset{\sim}{2 \mathrm{BrCl}(\mathrm{g})} \underset{(1-\mathrm{x})}{ } \quad 2 \mathrm{x}$

$$
\mathrm{k}_{\mathrm{p}}=\frac{\left(\mathrm{P}_{\mathrm{BrCl}}\right)^{2}}{\mathrm{P}_{\mathrm{Cl}_{2}}}=1 \mathrm{so}, \mathrm{P}_{\mathrm{Cl}_{2}}=\left(\mathrm{P}_{\mathrm{BrCl}}\right)^{2}=0.01 \mathrm{~atm}
$$

then at equilibrium, $\quad \frac{\mathrm{n}_{\mathrm{BrCl}}}{\mathrm{n}_{\mathrm{Cl}_{2}}}=\frac{0.1}{0.01}=10=\frac{2 \mathrm{x}}{1-\mathrm{x}}$
So, $10-10 x=2 x \quad$ or $\quad x=\frac{10}{12}=\frac{5}{6}$ moles
Moles of $\mathrm{Br}_{2}(\ell)$ required for maintaing vapour pressure of 0.1 atm

$$
=2 \times \frac{5}{6} \text { moles }=\frac{10}{6} \text { moles }=\text { moles of } \operatorname{BrCl}(\mathrm{g})
$$

Moles required for taking part in reaction $=$ moles of Cl_{2} used up $=\frac{5}{6}$ moles.
8.

$$
\begin{array}{cccc}
& \mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons & \mathrm{PCl}_{3}(\mathrm{~g}) & +\mathrm{Cl}_{2}(\mathrm{~g}) \\
\mathrm{t}=0 & 5 & 0 & 0 \\
\mathrm{t}=\mathrm{t}_{\mathrm{eq}} & 5-5 \times 0.2 & 5 \times 0.2 & 5 \times 0.2 \\
& 4 \text { mole } & 1 \text { mole } & 1 \text { mole }
\end{array}
$$

Total moles at equilibrium $=4+1+1+1\left(\mathrm{~N}_{2}\right)$

$$
=7 \text { moles }
$$

$$
\mathrm{k}_{\mathrm{p}}=\frac{\left(\frac{1}{7} \times 1 \mathrm{~atm}\right)\left(\frac{1}{7} \times 1 \mathrm{~atm}\right)}{\left(\frac{4}{7} \times 1 \mathrm{~atm}\right)}=\frac{1}{28} \mathrm{~atm}
$$

10. Given $\mathrm{K}_{\mathrm{C}}<2$ therefore in case of B and $\mathrm{CK}_{\mathrm{C}}=\frac{2 \times 4}{6}=\frac{4}{3}$ and concentrated of PCl_{3} and Cl_{2} together will decrease or increase as reaction can go in the forward or backward direction.
11.

	$\mathrm{N}_{2} \mathrm{O}_{4}$	$\rightleftharpoons 2 \mathrm{NO}_{2}$
$\mathrm{t}=0$	a	0
t	$\mathrm{a}(1-\alpha)$	$2 \mathrm{a} \alpha$

vapour density $=\frac{46}{1+\alpha}=30.67$
so $1+\alpha=1.5=0.5=50 \%$
Total pressure $=\frac{1.5 \times 1.5 \times 0.082 \times 300}{8.2}=6.75 \mathrm{~atm}$
so $\mathrm{k}_{\mathrm{p}}=\frac{4 \alpha^{2}}{1-\alpha^{2}} \mathrm{P}=9 \mathrm{~atm}$
and for density of mixture $=\frac{138}{8.2} \mathrm{gm} / \mathrm{L}=16.83 \mathrm{gm} / \mathrm{L}$.
13. (A) As reactionis endothermic therefore it will go in the
(C) With the increase or decrease of volume particle pressure of the gases will remain same.
(D) Due to the addition of inest gas at constant pressure reaction will proceed in the direct in which more number of gaseous moles are formed.
15. As concentration of reaction (gaseous) are increased at equilibrium reaction will go in the forward direction.
Also above reaction is endothermic therefore increase in temperature will favour it.
19. Solubility of gas is favourable at high pressure and this process is exothermic hence solubility will be more at low temperature.
20. Since density of gold decreases after melting therefore it is favourable at low pressure and high temperature.
22. Since the slpe of the straight line graph between $\log K$ and $\frac{1}{\mathrm{~T}}$ is positive, $\Delta \mathrm{H}_{\text {reaction }}$ would be negative, i.e., the forward reaction would be exothermic.
23.

$$
\begin{array}{rlll}
& A+B & \rightleftharpoons & 2 C \\
\text { at } t=0 & 2 a & a & \\
t=t_{e q} & 2 a-x & a-x & \\
\Rightarrow & 2 \mathrm{a}-=2 \mathrm{x} & \Rightarrow x=\frac{2}{3} a
\end{array}
$$

$$
\Rightarrow \mathrm{K}_{\mathrm{C}}=\frac{(2 \mathrm{x})^{2}}{(29-\mathrm{x})(\mathrm{a}-\mathrm{x})}=\frac{4 \cdot\left(\frac{2}{3}\right)^{2}}{\left(2-\frac{2}{3}\right)\left(1-\frac{2}{3}\right)}=\frac{4 \times 4}{4 \times 1}=4
$$

24. $\quad \mathrm{A}(\mathrm{g})+\mathrm{B}(\mathrm{g}) \rightleftharpoons \mathrm{C}(\mathrm{g})+\mathrm{D}(\mathrm{g})$

	$\mathrm{A}(\mathrm{g})$	$+\mathrm{B}(\mathrm{g})$	\rightleftharpoons	$\mathrm{C}(\mathrm{g})$	+
$\mathrm{at} \mathrm{t}=0$	1		$\mathrm{~g})$		
$\mathrm{t}=\mathrm{t}_{\mathrm{eq}}$	$1+\mathrm{x}$		$1+\mathrm{x}$	1	1

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{C}}=\frac{(1 / 2)(1 / 2)}{(1 / 2)(1 / 2)}=1>\mathrm{K}_{\mathrm{C}} \\
\Rightarrow & \frac{(1-\mathrm{x})(1-\mathrm{x})}{(1+\mathrm{x})(1+4)}=\frac{1}{4} \Rightarrow \\
& \frac{1-\mathrm{x}}{1+\mathrm{x}}=\frac{1}{2} \\
& 2-2 \mathrm{x}=1+\mathrm{x}
\end{aligned}
$$

$$
\Rightarrow \quad \mathrm{x}=\frac{1}{3}
$$

$$
\therefore \quad[\mathrm{C}]=\frac{1-\mathrm{x}}{2}=\frac{1}{3} \mathrm{M}
$$

25. Case - I

	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{COOH}$	$\rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}$	
Mole before	1	1	0

reacton
Mole at equilibrium

$$
\because \quad \mathrm{x}=\frac{2}{3}
$$

\therefore Mole at $\left(1-\frac{2}{3}\right) \quad\left(1-\frac{2}{3}\right) \quad \frac{2}{3} \quad \frac{2}{3}$ equilibrium

$$
\therefore \quad \mathrm{K}_{\mathrm{C}}=\frac{\frac{2}{3} \times \frac{2}{3}}{\frac{1}{3} \times \frac{1}{3}}=4
$$

Note: Volume terms are eliminated

Case - II

$\begin{array}{lcccc} & \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{COOH} & \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O} \\ \begin{array}{l}\text { Mole before } \\ \text { reaction }\end{array} & 1 & 1 & 0 & 0 \\ \begin{array}{l}\text { Mole at } \\ \text { equilibrium }\end{array} & (2-x) & (2-x) & x & x \\ \text { l } & & & & \end{array}$

$$
\mathrm{KC}=4=\frac{\mathrm{x}^{2}}{(2-\mathrm{x})^{2}} \quad \text { or } \quad \therefore \quad \frac{\mathrm{x}}{(2-\mathrm{x})}=2
$$

or $\quad \mathrm{x}=1.33$.
26. $(A-p, t) ;(B-q, r) ;(C-q, s)$
(A) $\Delta \mathrm{ng}=0$ so independent of pressure

Exothermic so high temperature
(B) $\Delta \mathrm{ng}=(-)$ ve High pressure

Exothermic so Low Temperature
(C) $\Delta \mathrm{ng}=(+)$ ve so low pressure

Exothermic so Low Temperature
28. (A) As $\Delta \mathrm{n}>0$ therefore if $\mathrm{P} \uparrow$, reaction will go in the backward direction.

CHEMISTRY FOR JEE MAIN \& ADVANCED

(B) As $\Delta \mathrm{n}<0$ therefore if $\mathrm{V} \uparrow, \mathrm{P} \downarrow$ reaction will go in the direction in which more number of gaseous moles are formed i.e. backward direction.
(C) As $\Delta \mathrm{n}=0$ hence no effect.
(D) If concentrated of product is decreased reaction will go in the forward direction.
30. 195488.

$$
\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{~g})
$$

$\begin{array}{llll}\text { partial pressure at equilibrium } & \mathrm{p}_{1} & - & \mathrm{p}_{2}\end{array}$

$$
\begin{equation*}
\mathrm{k}_{\mathrm{p}}=\frac{\mathrm{P}_{2}^{2}}{\mathrm{P}_{1}}=10 \quad \text { or } \quad \mathrm{P}_{1}=0.1 \mathrm{P}_{2}^{2} \tag{1}
\end{equation*}
$$

but $\mathrm{p}_{1}+\mathrm{p}_{2}=5.6 \mathrm{~atm}$
solving $\mathrm{p}_{1}=1.6 \mathrm{~atm}$ and $\mathrm{p}_{2}=4 \mathrm{~atm}$
using $\mathrm{p}=\mathrm{CRT}$
$\mathrm{C}_{1}\left(\right.$ for $\left.\mathrm{CO}_{2}\right)=\frac{1.6}{0.082 \times 1000}=0.0195 \mathrm{M}$
$\mathrm{C}_{2}($ for CO$)=\frac{4.0}{0.082 \times 1000}=0.0488 \mathrm{M}$.
31.

| | $\mathrm{H}_{2}(\mathrm{~g})$ | $+\mathrm{Br}_{2}(\mathrm{~g})$ | $\rightleftharpoons 2 \mathrm{HBr}(\mathrm{g})$ |
| :--- | :---: | :---: | :---: | :---: |
| Initial pressure | 0 | 0 | 10.0 bar |
| At equilibrium | $\mathrm{p} / 2$ | $\mathrm{p} / 2$ | $(10.0-\mathrm{p})$ |

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{p}}=\frac{\mathrm{p}^{2} \mathrm{HBr}}{\mathrm{P}_{\mathrm{H}_{2}} \times \mathrm{P}_{\mathrm{Br}_{2}}} \\
& 1.6 \times 10^{5}=\frac{(10-\mathrm{p})^{2}}{(\mathrm{p} / 2)(\mathrm{p} / 2)}
\end{aligned}
$$

Taking square root of bith sides

$$
\begin{gathered}
4 \times 10^{2}=\frac{10-\mathrm{p}}{\mathrm{p} / 2} \\
200 \mathrm{p}=10-\mathrm{p} \\
\mathrm{p}=\frac{10}{201} \mathrm{bar} \\
\mathrm{p}_{\mathrm{H}_{2}}=\mathrm{p} / 2=\frac{1}{2}\left(\frac{10}{201}\right) \mathrm{bar}=2.5 \times 10^{-2} \mathrm{bar} \\
\mathrm{p}_{\mathrm{Br}_{2}}=\mathrm{p} / 2=2.5 \times 10^{-2} \mathrm{bar} \\
\mathrm{p}_{\mathrm{HBr}}=10-\mathrm{p} \approx 10 \text { bar }
\end{gathered}
$$

32. $\mathrm{PC} \ell_{5} \rightleftharpoons \mathrm{PC}_{3}+\mathrm{C} \ell_{2}$

222 ; Total moles $=6 ; \mathrm{k}_{\mathrm{p}}=1.0$

Let y moles of C_{2} are introduced then at new equilibrium

$$
\mathrm{PC} \ell_{5} \rightleftharpoons \mathrm{PC} \ell_{3}+\mathrm{C} \ell_{2}
$$

$\therefore 2+x \quad 2-x \quad 2+y-x \quad ; \quad$ Total moles $=12$
Total moles of $\mathrm{PC} \ell_{5}+\mathrm{PC}_{3}=4$ and moles of $\mathrm{C} \ell_{2}=8$
$\therefore \quad \mathrm{P}_{\mathrm{PCl}_{5}}=\frac{(2+\mathrm{x}) 3}{12}=\frac{2+\mathrm{x}}{4}$
$\mathrm{P}_{\mathrm{PCl}_{3}}=\frac{(2-\mathrm{x}) 3}{12}=\frac{2-\mathrm{x}}{4}$
$\mathrm{P}_{\mathrm{PCl}_{2}}=\frac{8 \times 3}{12}=2$
$\therefore \mathrm{k}_{\mathrm{p}}=1=\frac{\frac{(2+\mathrm{x})}{4}\left(\frac{2}{1}\right)}{\left(\frac{2+\mathrm{x}}{4}\right)}$
$\therefore \quad \mathrm{x}=\frac{2}{3}$ and hence from equation (1) $\mathrm{y}=\frac{20}{3}=6.67$ moles
\therefore Ans. is 667 - 666
33. $2 \mathrm{NH}_{3} \rightleftharpoons \mathrm{~N}_{2}+3 \mathrm{H}_{2}$

a	0	0
$a-2 x$	x	$3 x$

$$
\frac{\mathrm{P}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}} \quad \Rightarrow \mathrm{P}_{2}=20 \mathrm{~atm} .
$$

Now $\quad \frac{a+2 x}{a}=\frac{30}{20}$

$$
2 a+4 x=3 a
$$

$$
\Rightarrow \quad \mathrm{x}=\frac{1}{4} \mathrm{a}
$$

$\therefore \quad \%$ of NH_{3} decomposed $=\frac{2 \mathrm{x}}{\mathrm{a}} \times 100=\mathbf{5 0 \%}$
34. $\because \quad \mathrm{LiCl} .3 \mathrm{NH}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{LiCl} . \mathrm{NH}_{3}(\mathrm{~s})+2 \mathrm{NH}_{3}(\mathrm{~g})$
$\left[\mathrm{K}_{\mathrm{p}}=9 \mathrm{~atm}^{2}\right]$
$\therefore \quad \mathrm{LiCl} .3 \mathrm{NH}_{3}(\mathrm{~s})+\quad 2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{LICl} .3 \mathrm{NH}_{3}(\mathrm{~g})$
Initial
0.1
a
0
mole
Final $\quad 0 \quad(a-0.2) \quad 0.1$ mole at eq.

$$
\left[\mathrm{k}_{\mathrm{p}_{1}}=\frac{1}{9}(\mathrm{~atm})^{-2}\right]
$$

Let initial mole of NH_{3} should be a to bring in completed of reaction.

At eq. $K_{p_{1}}=\frac{1}{\left(\mathrm{P}^{\prime}{ }_{\mathrm{NH}_{3}}\right)^{2}}$

$$
\begin{array}{ll}
\hline \text { or } & \frac{1}{9}=\frac{1}{\left(\mathrm{P}^{\prime}{ }_{\mathrm{NH}_{3}}\right)^{2}} \\
\therefore & \mathrm{P}_{\mathrm{NH}_{3}}^{\prime}=3 \mathrm{~atm} \\
\because & \mathrm{PV}=\mathrm{nRT} \\
\therefore & 3 \times 5=\mathrm{n} \times 0.0821 \times 313 \\
\therefore & \mathrm{n}=0.5837 \\
\text { i.e., } & (\mathrm{a}-0.2)=0.5837
\end{array}
$$

\therefore Initial mole of $\mathrm{NH}_{3}=\mathrm{a}=0.5837+0.2=0.7837$ mole.
35. Let the initial partial pressures of N_{2} and H_{2} be 9 P and 13 P respectively

N_{2} (g)	$+$	$3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons$	$2 \mathrm{NH}_{3}(\mathrm{~g})$
$9 P-y-x$		$13 \mathrm{P}-3 \mathrm{x}-2 \mathrm{y}$	2 x
$\mathrm{N}_{2}(\mathrm{~g})$	+	$2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons$	$\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g})$
$9 P-y-x$		$13 P-3 x-2 y$	y

Total pressure $=\mathrm{P}_{\mathrm{N}_{2}}+\mathrm{P}_{\mathrm{H}_{2}}+\mathrm{P}_{\mathrm{NH}_{3}}+\mathrm{P}_{\mathrm{N}_{2} \mathrm{H}_{4}}=3.5 \mathrm{~atm}$

$$
\begin{align*}
& =(9 \mathrm{P}-\mathrm{x}-\mathrm{y})+(13 \mathrm{P}-3 \mathrm{x}-2 \mathrm{y})+2 \mathrm{x}+\mathrm{y}=3.5 \mathrm{~atm} \tag{1}\\
& \mathrm{P}_{\mathrm{NH}_{3}}=2 \mathrm{x}=0.5 \mathrm{~atm} \tag{2}\\
& \mathrm{P}_{\mathrm{H}_{2}}=(13 \mathrm{P}-3 \mathrm{x}-2 \mathrm{y})=1 \mathrm{~atm} \tag{3}\\
& \text { from }(1) \Rightarrow(9 \mathrm{P}-\mathrm{x}-\mathrm{y})+1 \mathrm{~atm}+0.5+\mathrm{y}=3.5 \\
& \quad \Rightarrow(9 \mathrm{P}-\mathrm{x})=2 \mathrm{~atm}
\end{align*}
$$

so

$$
9 \mathrm{P}=2.25
$$

$\mathrm{P}=0.25 \mathrm{~atm}$
from (3) equation $2 \mathrm{y}=1.5$

$$
\mathrm{y}=0.75 \mathrm{~atm}
$$

so $\mathrm{P}_{\mathrm{N}_{2}}=9 \mathrm{P}-\mathrm{x}-\mathrm{y}=1.25 \mathrm{~atm}$
$\mathrm{P}_{\mathrm{H}_{2}}=1 \mathrm{~atm}$
$\mathrm{P}_{\mathrm{NH}_{3}}=0.5 \mathrm{~atm}$
$\mathrm{P}_{\mathrm{N}_{2} \mathrm{H}_{4}}=0.75 \mathrm{~atm}$
So, $\quad \mathrm{K}_{\mathrm{p}_{1}}=\frac{\mathrm{P}_{\mathrm{NH}_{3}}^{2}}{\mathrm{P}_{\mathrm{H}_{2}}^{3} \cdot \mathrm{P}_{\mathrm{N}_{2}}}=\frac{0.5 \times 0.5}{1 \times 1 \times 1 \times 1.25}=0.2 \mathrm{~atm}^{-2}$

$$
\mathrm{K}_{\mathrm{p}_{2}}=\frac{\mathrm{P}_{\mathrm{N}_{2} \mathrm{H}_{4}}}{\mathrm{P}_{\mathrm{N}_{2}} \cdot \mathrm{P}_{\mathrm{H}_{2}}^{2}}=\frac{0.75}{1 \times 1 \times 1.25}=0.6 \mathrm{~atm}^{-2}
$$

