INTRODUCTION

Chemical Reaction : Symbolic representation of any chemical change in terms of reactants and products is called chemical reaction.

Ex. $\quad \mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
Types of Chemical Reaction
On The Basis of Physical State

Homogeneous Reaction	Heterogeneous Reaction
All reactants and products are in same phase	Reactants and products are in more than one phase
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$	$\mathrm{Zn}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{ZnO}(\mathrm{s})+\mathrm{CO}(\mathrm{g})$

On The Basis of Direction

	Reversible Reaction	Irreversible Reaction
(i)	Chemical reaction in which products can be converted back into reactants $\begin{aligned} & \mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3} \\ & 3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2} \\ & \mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI} \end{aligned}$	(i) Chemical reaction in which products cannot be converted back into reactants. $\begin{aligned} & \mathrm{AgNO}_{3}+\mathrm{NaCl} \longrightarrow \mathrm{AgCl}+\mathrm{NaNO}_{3} \\ & \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{NaHSO}_{4}+\mathrm{HCl} \\ & \mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{ZnSO}_{4}+\mathrm{H}_{2} \\ & 2 \mathrm{KClO}_{3} \longrightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2} \end{aligned}$
(ii)	Proceed in forward as well as backward direction.	(ii) Proceed only in one direction (forward).
(iii)	To obtain reverisible reactions, if anyone of the reactant or product is in gaseous state, then the reaction should be carried out in closed vessel. $\mathrm{CaCO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \uparrow$	(iii) Generally possible in open container.
(iv)	These attain equilibrium.	(iv) These do not attain equilibrium.
(v)	Reactants are never completely converted into products.	(v) Reactants are completely converted into products.
(vi)	Generally thermal decomposition in closed vessel.	(vi) Generally thermal decomposition in open vessel.
	$\mathrm{PCl}_{5(\mathrm{~g})} \rightleftharpoons \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2}(\mathrm{~g})$	$\mathrm{PCl}_{5(\mathrm{~g})} \longrightarrow \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2}(\mathrm{~g})$

On The Basis of Speed

Fast Reactions		Slow Reactions
(i)	These reactions are completed in a very short interval of time.	(i) These reactions take long time to complete.
$\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$ Acid Base \quad Salt Water	$\mathrm{H}_{2}+\mathrm{I}_{2} \rightarrow 2 \mathrm{HI}$	

On The Basis of Heat

	Exothermic Reaction	Endothermic Reaction
(i)	Heat is evolved in these chemical reaction $\mathrm{R} \rightarrow \mathrm{P}+\mathrm{x} \text { kcal }$ Change in enthalpy $\Delta \mathrm{H}=(-) \mathrm{ve}$ $\Delta \mathrm{H}=-\mathrm{x}$ Ex. : Formation reaction Exception $\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO} / \mathrm{N}_{2} \mathrm{O} / \mathrm{NO}_{2}$ $\mathrm{O}_{2}+\mathrm{F}_{2} \rightarrow \mathrm{O}_{2} \mathrm{~F}_{2} / \mathrm{OF}_{2}$	(i) Heat is absorbed in these chemical reaction $\mathrm{R}+\mathrm{x} \text { kcal } \rightarrow \mathrm{P}$ or $\mathrm{R} \rightarrow \mathrm{P}-\mathrm{xkcal}$ (ii) Change in enthalpy $\Delta \mathrm{H}=(+) \mathrm{ve}$ Ex. Dissociation reaction

Active Mass : The term active mass means the concentration of the reactants \& products expressed in moles per litre (molar concentration). Active mass is usually expressed by enclosing the symbol of the reactant in square bracket []

$$
\begin{aligned}
\text { Active mass } & =\frac{\text { moles }}{\text { Volume in litres }} \\
& =\frac{\operatorname{grams}(\mathrm{w})}{\operatorname{mol} . \mathrm{wt} .\left(\mathrm{M}_{\mathrm{w}}\right) \times \text { Volume in litres }(\mathrm{V})}=\frac{\mathrm{w} \times 1000}{\mathrm{M}_{\mathrm{w}} \times \mathrm{V}(\mathrm{~mL})}
\end{aligned}
$$

- The active mass of solids and pure liquids is a constant quantity (unity) and solvent (excess) is considered as one. Because there is no change in activity with the change in quantity or volume of vessel.

$$
\begin{array}{r}
\text { Molar concentration }=\frac{w}{M_{w} \times V_{\text {lit. }}}=\frac{\rho}{M_{w}}(\rho=\text { density in } g / \text { lit }) \\
=\frac{\text { density of the substance }}{\text { molecular mass of the substance }}
\end{array}
$$

as density of pure solids and liquids is constant and molecular mass is also constant.
But this is not applicable to the substance in aqueous solution or gaseous state because their amount in a given volume can vary.
Following other names of active mass can also be use :
(i) mole/lit.
(ii) gram mole/lit.
(iii) gram molecules/lit.
(iv) molarity
(v) Concentration
(vi) Effective concentration
(vii) active quantity
(viii) n / v
(ix) C
(x) $\quad \mathrm{M}$
(xi) []
Ex.
(a) 25.4 g of iodine is present in 2 litres of solution
then $\quad\left[\mathrm{I}_{2}\right]=\frac{25.4}{254 \times 2}=0.05 \mathrm{~mole} / \mathrm{litre}$
(b) 8.5 g ammonia is present in a vessel of 0.5 litre capacity then

$$
\left[\mathrm{NH}_{3}\right]=\frac{8.5}{17 \times 0.5}=1 \text { mole } / \text { litre }
$$

(c) Active mass of $\mathrm{C}(\mathrm{s})$ or $\mathrm{S}(\mathrm{s})$ or $\mathrm{Zn}(\mathrm{s})$ is equal to 1 .

RATE OF REACTION

The change in concentration of reactants or products per mole in unit time is known as rate of the reaction.

$$
\begin{aligned}
\text { Rate of reaction } & =\frac{(\mathrm{n}) \text { change in concentration of rectants }}{\text { time }} \\
& =-\left(\frac{\mathrm{dc}}{\mathrm{dt}}\right) \text { reactants. }
\end{aligned}
$$

Here negative sign indicate that concentration of reactants decrease with time.

$$
\text { Rate of reaction }=+\frac{\text { change in concentration of products }}{\text { time }}=+\left(\frac{\mathrm{dc}}{\mathrm{dt}}\right) \text { products }
$$

FACTORS AFFECTING RATES OF REACTIONS

(a) State of Matter : The decreasing order of rate of reaction in gas, liquid and solid state are-

$$
\mathrm{g}>\ell>\mathrm{s}
$$

(b) Temperature : Rate of reaction α temperature
(c) Concentration : Rate of reaction α concentration.
(d) Catalyst : Positive catalyst increases the rate of reaction.

CHEMICAL EQUILIBRIUM

The state of the reversible chemical reaction at which rate of forward reaction becomes equal to rate of backward reaction.

or The state of the reversible chemical reaction at which the measurable properties of the system like temperature, concentration, colour, density etc. don't undergo any change with time at the given set of conditions is said to be chemical equilibrium conditions. Rate of forward reaction decreases as the concentration of products increases, rate of backward reaction also starts increasing.

At a certain stage, rate of forward reaction becomes equal to rate of backward reaction called equilibrium state.

AT EQUILIBRIUM STATE

Rate of forward reaction = Rate of backward reaction

- At this state of equilibrium forward and backward reactions proceeds with same speed.
- The stage of the reversible reaction at which the concentrations of the reactants and products do not change with time is called the equilibrium state.
- The equilibrium state is dynamic in nature.
- The reaction does not stop, but both the opposing reactions are going on continously with same speeds.

CHARACTERISTICS OF EQUILIBRIUM

(a) Chemical equilibrium is dynamic in nature means the reaction, although appears to be stopped, but actually takes place in both the directions with the same speed.
(b) To obtain equilibrium, if anyone of the reactant or product is in gaseous state then the reaction should be carried out in closed vessel.
(c) At a given temperature and pressure of equilibrium the properties like concentration, colour, density remains constant.
(d) In a reversible chemical reaction the equilibrium state can be attained in lesser time by the use of positive catalyst.
A catalyst doesn't change the equilibrium state becuase it increases the rate of both forward and backward reaction simaltaneously by changing the path of reaction and it helps in attaining equilibrium rapidly.
(e) In order to prevent escape of products, equilibrium is reached in only in closed vessels in reversible reactions.
(f) Homogeneous equilibrium is the equilibrium in which the reactants and products are in the same phase.

$$
\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\ell)+\mathrm{H}_{2} \mathrm{O}(\ell) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}(\ell)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\ell)
$$

(g) Heterogeneous equilibrium is the equilibrium in which the reactants and products are in two or more phases.

$$
\mathrm{Zn}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{ZnO}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g})
$$

KEY POINTS

(i) Whenever question doesn't ask about direction, then we take forward direction only.
(ii) In a reversible reaction if forward reaction is exothermic then the backward reaction will be endothermic and vice versa.

TYPES OF EQUILIBRIA

There is two types of equilibria :

1. Physical Equilibria

If in a system only physical state (phase) is changed and then equilibrium is established, (i.e. there is no chemical change) the equilibrium is called physical equilibrium.

Ex. Fusion of ice, evaporation of water, dissolution of salts and absorption of gases in liquid etc.
Following are the types of common physical equilibria :-
(i) Liquid-Vapour Equilibria : In a closed vessel, the vapours above the liquid are in equilibrium at given temperature.

Ex. $\quad \mathrm{H}_{2} \mathrm{O}(\ell) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(ii) Solid-Liquid Equilibria : This equilibrium can be established only at melting point of solid. At this stage solid and liquid phases exist simultaneously in equilibrium.

Ex. $\quad \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\ell)$ at melting point
(iii) (Solute-Solvent), Saturated Solution Equilibria : If the rate of dissolution of solids in liquid is equal to the rate of crystallization of solid from solution i.e. solution is saturated with respect to solid then saturated solution equilibria established, provided temperature is constant.

Ex. $\quad \mathrm{NaI}(\mathrm{s}) \stackrel{\mathrm{H}_{2} \mathrm{O}}{\rightleftharpoons} \mathrm{Na}^{+}$(aq.) $+\mathrm{I}^{-}$(aq.)

Note: Above example is of solubility of sparingly soluble salt, which only depends on temperature.
(iv) (Gas + Solvent), Saturated Solution Equilibria : In such equilibriums, solvents is saturated with respect to gas i.e. rate of entering of gas molecules in solvent is equal to rate of escaping of gas molecules from solvents. Above phenomenon can be observed in closed container at definite temperature.
Ex. Dissolved CO_{2} in cold drinks. Dissolved O_{2} in water etc.
Note
(i) The solubilities of gases in liquid is a function of pressure of gas over liquid.
(ii) Henry's Law can be applied on such system, that states, the mass of gas dissolved in a given mass of solvent at any temperature is proportional to the pressure of the gas above the solvent.
where

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{g}} \propto \mathrm{P}_{\mathrm{g}} \quad \text { or } \quad \mathrm{C}_{\mathrm{g}}=\mathrm{k} \mathrm{P}_{\mathrm{g}} \\
& \mathrm{k}=\text { Henry's constant } \\
& \mathrm{C}_{\mathrm{g}}=\text { Solubility of gas in the solution }\left(\mathrm{mol} \mathrm{~L}^{-1}\right) \\
& \mathrm{P}_{\mathrm{g}}=\text { Pressure of the gas }
\end{aligned}
$$

(iii) One should not compare it with liquid vapour equilibria.

2. Chemical Equilibria

When chemical change occur in a reversible reaction i.e. reactants convert into products and products also convert into reactants under similar conditions of pressure and temperature, the reaction is said to be in chemical equilibria.
(i) $\quad \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ (formation of HI)
(ii) $\quad \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})$ (formation of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$)
(iii) $\quad \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{5}(\mathrm{~g})\left(\right.$ formation of $\left.\mathrm{PCl}_{5}\right)$
(iv) $\quad 2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})\left(\right.$ Decomposition of $\left.\mathrm{NH}_{3}\right)$

Ex. Chemical equilibrium is a condition :
(A) where all species have same concentration
(B) where all species have constant concentration with respect to time.
(C) where all species have concentration $=1$
(D) all of above

Sol. (B)
Chemical equilibrium defined as when all species have constant concentration with respect to time.
Ex. Example of physical equilibria, is :
$(\mathrm{A}) \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
(B) $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
$(\mathrm{C}) \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\ell)$
(D) $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$

Sol. (C)
Physical equilibria does not include any chemical change.
Ex. At equilibrium :
(A) the energy of system is minimum
(B) the entropy of system is maximum
(C) the energy of system is maximum
(D) the entropy of system is minimum

Sol. (A,B)
It is the compromising stage of minimum energy and maximum entropy.

Ex. Consider the following cases-
(I)

$\mathrm{H}_{2}+\mathrm{I}_{2}$
$\rightleftharpoons 2 \mathrm{HI}$

\rightleftharpoons
$\begin{aligned} & \text { Equilibrium state has } \\
& \text { been attained }\end{aligned}$

(III)

The nature of flow of energy in case (I) is same as that in-
(A) II
(B) III
(C) II and III
(D) None

Sol. (D) None, Because in II and III, the flow of energy or matter is taking place only in one direction. While in equilibrium state, the flow of energy takes place in both directions equally. Thus (I) is a dynamic equilibrium while states in II and III are called steady state (static equilibrium).

Law of Mass Action or Law of Chemical Equilibrium

The law of mass action is given by Guldberg and Waage.
According to them at a given temperature rate of reaction is proportional to product of active masses of reactants at that instant raised to the powers which are numerically equal to the number of their respective molecule in the stoichiometric equation describing the reaction.

- Derivation of Equilibrium Constant

Consider a reversible homogeneous reaction which has attained equilibrium state at particular temperature :
$\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D}$
Let the active masses of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D be $[\mathrm{A}][\mathrm{B}][\mathrm{C}] \&[\mathrm{D}]$ are respectively.

- According to Law of Mass Action
rate of forward reaction $\alpha[\mathrm{A}][\mathrm{B}]$
rate of backward reaction $\alpha[C][D]$
$\mathrm{R}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}}[\mathrm{A}][\mathrm{B}] \quad \mathrm{R}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}}[\mathrm{C}][\mathrm{D}]$
Where K_{f} and K_{b} are forward and backward rate constants respectively.
At equilibrium
$\mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{b}}$
$\mathrm{K}_{\mathrm{f}}[\mathrm{A}][\mathrm{B}]=\mathrm{K}_{\mathrm{b}}[\mathrm{C}][\mathrm{D}]$
$\frac{\mathrm{K}_{\mathrm{f}}}{\mathrm{K}_{\mathrm{b}}}=\frac{[\mathrm{C}][\mathrm{D}]}{[\mathrm{A}][\mathrm{B}]}$
$\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}][\mathrm{D}]}{[\mathrm{A}][\mathrm{B}]}$
$\because \mathrm{K}_{\mathrm{c}}=\frac{\mathrm{K}_{\mathrm{f}}}{\mathrm{K}_{\mathrm{b}}}$
K_{c} is known as equilibrium constant K_{c} has a definite value for every chemical reaction at particular tempera ture.

For a general reaction
$\mathrm{m}_{1} \mathrm{~A}+\mathrm{m}_{2} \mathrm{~B}+\mathrm{m}_{3} \mathrm{C} \rightleftharpoons \mathrm{n}_{1} \mathrm{M}+\mathrm{n}_{2} \mathrm{~N}+\mathrm{n}_{3} \mathrm{O}$
$r_{f} \propto[A]^{m_{1}}[B]^{m_{2}}[C]^{m_{3}}$
$\mathrm{r}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}}[\mathrm{A}]^{\mathrm{m}_{1}}[B]^{\mathrm{m}_{2}}[\mathrm{C}]^{\mathrm{m}_{3}} \quad\left[\mathrm{~K}_{\mathrm{f}}=\right.$ forward rate (velocity) constant $]$
$\mathrm{r}_{\mathrm{b}} \propto[\mathrm{M}]^{\mathrm{n}_{1}}[\mathrm{~N}]^{\mathrm{n}_{2}}[\mathrm{O}]^{\mathrm{n}_{3}}$
$\mathrm{r}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}}[\mathrm{M}]^{\mathrm{n}_{1}}[\mathrm{~N}]^{\mathrm{n}_{2}}[\mathrm{O}]^{\mathrm{n}_{3}} \quad\left[\mathrm{~K}_{\mathrm{b}}=\right.$ backward rate (velocity) constant $]$
At equilibrium $\quad r_{f}=r_{b}$
$K_{f}[A]^{m_{1}}[B]^{m_{2}}[C]^{m_{3}}=K_{b}[M]^{n_{1}}[N]^{n_{2}}[O]^{n_{3}}$

$$
\mathrm{K}_{\mathrm{c}}=\frac{\mathrm{K}_{\mathrm{f}}}{\mathrm{~K}_{\mathrm{b}}}=\frac{[\mathrm{M}]^{\mathrm{n}_{1}}[\mathrm{~N}]^{\mathrm{n}_{2}}[\mathrm{O}]^{\mathrm{n}_{3}}}{[\mathrm{~A}]^{\mathrm{m}_{1}}[\mathrm{~B}]^{\mathrm{m}_{2}}[\mathrm{C}]^{\mathrm{m}_{3}}}
$$

The equilibrium constant, at a given temperature, is the ratio of the rate constants of forward and backward reactions.
Ex. Write down the equilibrium constant for the following reactions.
(a) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
(b) $\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$
(c) $3 \mathrm{~A}+2 \mathrm{~B} \rightleftharpoons \mathrm{C}+4 \mathrm{D}$
(d) $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
(e) $2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$
(f) $\mathrm{CH}_{3} \mathrm{COOH}(\ell)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\ell) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\ell)+\mathrm{H}_{2} \mathrm{O}(\ell)$
(g) $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
(h) $\mathrm{H}_{2} \mathrm{O}(\ell) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Ans.
(a) $\mathrm{K}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$
(b) $\quad \mathrm{K}=\frac{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{PCl}_{5}\right]}$
(c) $\quad \mathrm{K}=\frac{[\mathrm{C}][\mathrm{D}]^{4}}{[\mathrm{~A}]^{3}[\mathrm{~B}]^{2}}$
(d) $\mathrm{K}=\left[\mathrm{CO}_{2}\right]$ (Active mass of solid is 1)
(e) $\mathrm{K}=\left[\mathrm{O}_{2}\right]^{3}$
(f) $\quad \mathrm{K}=\frac{\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]}$ (here $\mathrm{H}_{2} \mathrm{O}$ is not in excess)
(g) $\mathrm{K}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}$ (here $\mathrm{H}_{2} \mathrm{O}$ is in excess (solvent) so its concentration doesn't change.)
(h) $\mathrm{K}=\left[\mathrm{H}_{2} \mathrm{O}\right]_{(\mathrm{g})}$

- Possible Value of K

When $\mathrm{K}=1$
When $\mathrm{K}>1$
When $\mathrm{K}<1$
$[0<\mathrm{K}<\infty]$
[Product] $=[$ Reactant $]$
[Product] $>$ [Reactant]
[Product] $<$ [Reactant]
As $\mathrm{K} \uparrow$ stability of products \uparrow stability of reactant \downarrow time to attain equilibrium \downarrow $t \propto 1 / K$
Stability of reactants and products
$2 \mathrm{XO}(\mathrm{g}) \rightleftharpoons \mathrm{X}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) ;$

$$
\mathrm{K}_{1}=1 \times 10^{24}
$$

$2 \mathrm{XO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{X}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})$;
$\mathrm{K}_{2}=2.5 \times 10^{10}$
$\because \mathrm{K}_{1}>\mathrm{K}_{2} \quad$ So the stability of $\mathrm{XO}_{2}>\mathrm{XO}$

For reactants, stability increases when value of K decreases.
For products, stability increases when value of K increases.
(more is the value of equilibrium constant, more is the formation of product means more is the stability of product.)
Time taken to attain equilibrium increases when value of K decreases.

Forms of Equilibrium Constant

There are two forms.
(i) Concentration form $\left(\mathrm{K}_{\mathrm{C}}\right)$
(ii) Partial pressure form $\left(\mathrm{K}_{\mathrm{p}}\right)$

Partial Pressure : The individual pressure exerted by the gases substance of the total pressure is called partial pressure of the gases substance.

Closed vessel
Gaseous

$$
\text { Partial pressure }=\frac{\text { Moles of substance }}{\text { Total moles }} \times \mathrm{P}_{\text {total }} \quad \Rightarrow \quad\left[\frac{\text { Moles of substance }}{\text { Total moles }}=\text { Mole fraction }\right]
$$

$$
=\text { mole fraction } \times P_{\text {total }}
$$

let $\mathrm{n}_{1}+\mathrm{n}_{2}+\mathrm{n}_{3}+\mathrm{n}_{4}=\mathrm{N}$

$$
P_{A}=\frac{n_{1}}{N} P_{t}, \quad P_{B}=\frac{n_{2}}{N} P_{t}, \quad P_{C}=\frac{n_{3}}{N} P_{t}, \quad \frac{n_{4}}{N} P_{t}
$$

$$
\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{C}}+\mathrm{P}_{\mathrm{D}}=\mathrm{P}_{\text {total }}
$$

Ex. A vessel contains 5 mole of A \& 10 moles of B. If total pressure is 18 atm . Find out partial pressure of gases.
Sol. $\mathrm{P}_{\mathrm{A}}=\frac{5}{15} \times 18=6 \mathrm{~atm}$
$P_{B}=\frac{10}{15} \times 18=12 \mathrm{~atm}$
When the reactants and products are in gaseous state then partial pressure can be used instead of concentration. At a definite temperature, as the partial pressure of a substance is proportional to its concentration in the gas phase.

$$
\mathrm{m}_{1} \mathrm{~A}+\mathrm{m}_{2} \mathrm{~B} \rightleftharpoons \mathrm{n}_{1} \mathrm{C}+\mathrm{n}_{2} \mathrm{D}
$$

If partial pressure of A, B, C and D at equilibrium are P_{A}, P_{B}, P_{C} and P_{D} respectively, then

$$
\mathrm{K}_{\mathrm{P}}=\frac{\left(\mathrm{P}_{\mathrm{c}}\right)^{\mathrm{n}_{1}} \times\left(\mathrm{P}_{\mathrm{D}}\right)^{\mathrm{n}_{2}}}{\left(\mathrm{P}_{\mathrm{A}}\right)^{\mathrm{m}_{1}} \times\left(\mathrm{P}_{\mathrm{B}}\right)^{\mathrm{m}_{2}}}
$$

Relation Between K_{p} and K_{C}
This relation can be established for reaction not involving liquids because kp is not defined for liquids.
Consider a reversible reaction
$\mathrm{m}_{1} \mathrm{~A}+\mathrm{m}_{2} \mathrm{~B} \rightleftharpoons \mathrm{n}_{1} \mathrm{C}+\mathrm{n}_{2} \mathrm{D}$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{C}}=\frac{[\mathrm{C}]^{\mathrm{n}_{1}}[\mathrm{D}]^{\mathrm{n}_{2}}}{[\mathrm{~A}]^{\mathrm{m}_{1}}[\mathrm{~B}]^{\mathrm{m}_{2}}} \\
& \mathrm{~K}_{\mathrm{P}}=\frac{\left(\mathrm{P}_{\mathrm{C}}\right)^{\mathrm{n}_{1}}\left(\mathrm{P}_{\mathrm{D}}\right)^{\mathrm{n}_{2}}}{\left(\mathrm{P}_{\mathrm{A}}\right)^{\mathrm{m}_{1}}\left(\mathrm{P}_{\mathrm{B}}\right)^{\mathrm{m}_{2}}}
\end{aligned}
$$

For an ideal gas $\quad \mathrm{PV}=\mathrm{nRT}$

$$
\mathrm{P}=\frac{\mathrm{n}}{\mathrm{~V}} \mathrm{RT}=\text { active mass } \times \mathrm{RT}
$$

$\because \quad \mathrm{n}=$ number of mole and $\mathrm{V}=$ Volume in litre
So $\quad \frac{\mathrm{n}}{\mathrm{V}}=$ molar concentration or active mass

$$
\mathrm{P}=[] \mathrm{RT}
$$

at constant temperature $\mathrm{P} \propto[$]

$$
\mathrm{P}_{\mathrm{A}}=[\mathrm{A}] \mathrm{RT}, \quad \mathrm{P}_{\mathrm{B}}=[\mathrm{B}] \mathrm{RT}, \quad \mathrm{P}_{\mathrm{C}}=[\mathrm{C}] \mathrm{RT}, \quad \mathrm{P}_{\mathrm{D}}=[\mathrm{D}] \mathrm{RT}
$$

So

$$
\begin{aligned}
K_{p} & =\frac{[C]^{n_{1}}(R T)^{n_{1}}[D]^{n_{2}}(R T)^{n_{2}}}{[A]^{m_{1}}(R T)^{m_{1}} \times[B]^{m_{2}}(R T)^{m_{2}}} \\
K_{p} & =\frac{[C]^{n_{1}}[D]^{n_{2}}}{[A]^{m_{1}}[B]^{m_{2}}} \times \frac{(R T)^{n_{1}+n_{2}}}{(R T)^{m_{1}+m_{2}}} \\
K_{P} & =K_{C}(R T)^{\left(n_{1}+n_{2}\right)-\left(m_{1}+m_{2}\right)} \\
\Delta n & =\left(n_{1}+n_{2}\right)-\left(m_{1}+m_{2}\right) \\
& =\text { total number of gaseous molecules of products }- \text { total number of gaseous molecules of reactants. } \\
K_{P} & =K_{C}(R T)^{\Delta n_{g}}
\end{aligned}
$$

Ex. Find the values of K_{c} for each of the following equilibria from the value of K_{p}.
(a) $2 \mathrm{NOCl}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{p}}=1.8 \times 10^{-2}$ at 600 K
(b) $\mathrm{CaCO}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{p}}=167$ at 1173 K

Sol. (a) $2 \mathrm{NOCl}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{p}}=1.8 \times 10^{-2} \\
& \Delta \mathrm{n}_{\mathrm{g}}=3-2=1 \\
& \mathrm{~K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}_{\mathrm{g}}} \\
& \therefore \mathrm{~K}_{\mathrm{c}}=\frac{\mathrm{K}_{\mathrm{p}}}{\mathrm{RT}}=\frac{1.8 \times 10^{-2}}{0.0821 \times 600}=3.65 \times 10^{-4}
\end{aligned}
$$

(b) $\mathrm{K}_{\mathrm{p}}=167$
$\Delta \mathrm{n}_{\mathrm{g}}=1$
$\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{ng}_{\mathrm{g}}}=\mathrm{K}_{\mathrm{c}} \times(\mathrm{RT})$

$$
K_{c}=\frac{K_{p}}{R T}=\frac{167}{0.0821 \times 1173}=1.734
$$

Ex. At $540 \mathrm{~K}, 0.10$ moles of PCl_{5} are heated in 8 litre flask. The pressure of the equilibrium mixture is found to be 1.0 atm . Calculate K_{p} and K_{c} for the reaction.

Sol. $\quad \mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$

0.1	0	0
$(0.1-x)$	x	x

$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{PCl}_{5}\right]}=\frac{\mathrm{x} / 8 \times \mathrm{x} / 8}{\left(\frac{0.1-\mathrm{x}}{8}\right)}=\frac{\mathrm{x}^{2}}{8(0.1-\mathrm{x})}$
From gas law
$\mathrm{PV}=\mathrm{nRT}$
$\Rightarrow 1 \times 8=(0.1+\mathrm{x}) \times 0.082 \times 540$
$\therefore \mathrm{x}=0.08$
From eqs. (i) and (ii)

$$
\begin{aligned}
\mathrm{K}_{\mathrm{c}} & =\frac{0.08 \times 0.08}{8 \times(0.1-0.08)}=4 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} \\
\mathrm{~K}_{\mathrm{p}} & =\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}_{\mathrm{g}}} \quad\left(\Delta \mathrm{n}_{\mathrm{g}}=+1\right) \\
& =4 \times 10^{-2} \times(0.082 \times 540)=1.77 \mathrm{~atm}
\end{aligned}
$$

Ex. At a given temperature and a total pressure of 1.0 atm for the homogeneous gaseous reaction, $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$, the partial pressure of NO_{2} is 0.5 atm .
(a) Calculate the value of K_{p}.
(b) If the volume of the vessel is decreased to half of its original volume, at constant temperature, what are the partial pressures of the components of the equilibrium mixture?

Sol. For equilibrium system, $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$, the total pressure is 1.0 atm
\Rightarrow The total pressure $=\mathrm{P}_{\mathrm{N}_{2} \mathrm{O}_{4}}+\mathrm{P}_{\mathrm{NO}_{2}}=1$
$\Rightarrow \quad \mathrm{P}_{\mathrm{N}_{2} \mathrm{O}_{4}}=0.5 \mathrm{~atm}$ and $\mathrm{P}_{\mathrm{NO}_{2}}=0.5 \mathrm{~atm}$
(i) $\mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{P}_{\mathrm{NO}_{2}}\right)^{2}}{\mathrm{P}_{\mathrm{N}_{2} \mathrm{O}_{4}}}=\frac{(0.5)^{2}}{0.5}=0.5 \mathrm{~atm}$
(ii) As volume is decreased to half its original volume, equilibrium is disturbed and the new initial conditions for the re-establishment of new equilibrium are

$$
\mathrm{P}_{\mathrm{N}_{2} \mathrm{O}_{4}}=1.0 \mathrm{~atm} \text { and } \mathrm{P}_{\mathrm{NO}_{2}}=1.0 \mathrm{~atm}
$$

According to Le Chatelier's principal, when volume is decreased, the system moves in that direction where there is decrease in number of moles. Hence, the system (here will moves in reverse direction, as there is a decrease in mole ($\Delta \mathrm{n}=2-1=1$), i.e. NO_{2} will be converted into $\mathrm{N}_{2} \mathrm{O}_{4}$. Let, the decrease in pressure of NO_{2} be x atm.

	$\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons$	$2 \mathrm{NO}_{2}$
Initial pressure (atm)	1.0	
At equilibrium	$1+\mathrm{x} / 2$	
		$1-\mathrm{x}$

$\Rightarrow \quad \mathrm{K}_{\mathrm{p}}=\frac{(1-\mathrm{x})^{2}}{(1+\mathrm{x} / 2)}=0.5 \Rightarrow 4 \mathrm{x}^{2}-9 \mathrm{x}+2=0$
$\Rightarrow \mathrm{x}=2$ or $0.25(\mathrm{x} \neq 2$ as initial pressure $=1.0) \Rightarrow \mathrm{x}=0.25$
$\mathrm{P}_{\mathrm{N}_{2} \mathrm{O}_{4}}=1+\frac{\mathrm{x}}{2}=1.125 \mathrm{~atm}$ and $\mathrm{P}_{\mathrm{NO}_{2}}=1-\mathrm{x}=0.75 \mathrm{~atm}$

Ex. At temperature T , a compound $\mathrm{AB}_{2}(\mathrm{~g})$ dissociates according to the reaction, $2 \mathrm{AB}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB}(\mathrm{g})+\mathrm{B}_{2}(\mathrm{~g})$ with degree of dissociation α, which is small compared to unity. Deduce the expression for α in terms of the equilibrium constant K_{p} and the total pressure P.

Sol.
Initial (mole)
At eq. (mole)

At eq. (p.p)

$2 \mathrm{AB}_{2}(\mathrm{~g})$	$2 \mathrm{AB}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g})$	
1	0	0
$1-\alpha$	α	$\alpha / 2$
$\mathrm{P}\left(\frac{1-\alpha}{1+\alpha / 2}\right)$	$\frac{\mathrm{P} . \alpha}{1+\alpha / 2}$	$\frac{\mathrm{P} . \alpha / 2}{(1+\alpha / 2)}$

$$
\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{AB}}^{2} \mathrm{P}_{\mathrm{Br}^{2}}}{\mathrm{P}_{\mathrm{AB}_{2}}^{2}}
$$

$K_{p}=\frac{\left(\frac{P . \alpha}{1+\alpha / 2}\right)^{2}\left(\frac{P . \alpha / 2}{1+\alpha / 2}\right)}{P^{2}\left(\frac{1-\alpha}{1+\alpha / 2}\right)^{2}} \Rightarrow K_{p}=\frac{P \alpha^{3}}{2(1-\alpha)^{2}(1+\alpha / 2)}$

But $1 \gg \alpha \therefore K_{p}=\frac{P \alpha^{3}}{2}$
$\alpha=\left(\frac{2 \mathrm{~K}_{\mathrm{p}}}{\mathrm{P}}\right)^{1 / 3}$
The K_{C} is expressed by the units (mole lit ${ }^{-1}$) ${ }^{\Delta n}$ and K_{p} by (atm) ${ }^{\Delta n}$. In terms of mole fraction, equilibrium constant is denoted by K_{x}.

For general reaction $\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{mC}+\mathrm{nD}$
$\mathrm{K}_{\mathrm{X}}=\frac{\left(\mathrm{X}_{\mathrm{C}}\right)^{\mathrm{m}}\left(\mathrm{X}_{\mathrm{D}}\right)^{\mathrm{n}}}{\left(\mathrm{X}_{\mathrm{A}}\right)^{\mathrm{a}}\left(\mathrm{X}_{\mathrm{B}}\right)^{\mathrm{b}}}$
$\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{x}}(\mathrm{RT})^{\Delta \mathrm{n}_{\mathrm{g}}}$
$\Delta \mathrm{n}_{\mathrm{g}}=(\mathrm{m}+\mathrm{n})-(\mathrm{a}+\mathrm{b})$
When $\Delta \mathrm{n}_{\mathrm{g}}=0, \mathrm{~K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{C}}=\mathrm{K}_{\mathrm{X}}$

CALCULATION OF EQUILIBRIUM CONSTANT

(a)

	$\mathrm{H}_{2}(\mathrm{~g})$	+	$\mathrm{I}_{2}(\mathrm{~g})$	\rightleftharpoons	$2 \mathrm{HI}(\mathrm{g})$
Initially	a		b		0
At equilibrium	$(\mathrm{a}-\mathrm{x})$		$(\mathrm{b}-\mathrm{x})$		2 x

$$
\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=\frac{(2 \mathrm{x})^{2}}{(\mathrm{a}-\mathrm{x})(\mathrm{b}-\mathrm{x})}=\frac{4 \mathrm{x}^{2}}{(\mathrm{a}-\mathrm{x})(\mathrm{b}-\mathrm{x})}
$$

$$
\mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{p}_{\mathrm{HI}}\right)^{2}}{\mathrm{p}_{\mathrm{H}_{2}} \times \mathrm{p}_{\mathrm{I}_{2}}}=\frac{\frac{(2 \mathrm{x})^{2}}{(\mathrm{a}+\mathrm{b})^{2}} \mathrm{P}^{2}}{\left(\frac{\mathrm{a}-\mathrm{x}}{\mathrm{a}+\mathrm{b}} \cdot \mathrm{P}\right)\left(\frac{\mathrm{b}-\mathrm{x}}{\mathrm{a}+\mathrm{b}} \cdot \mathrm{P}\right)}=\frac{4 \mathrm{x}^{2}}{(\mathrm{a}-\mathrm{x})(\mathrm{b}-\mathrm{x})}
$$

So $K_{c}=K_{p}$

$$
(\Delta \mathrm{n}=0)
$$

(b)

| | $2 \mathrm{NO}(\mathrm{g})$ | \rightleftharpoons | $\mathrm{N}_{2}(\mathrm{~g})$ |
| :--- | :---: | :---: | :---: |$+\mathrm{O}_{2}(\mathrm{~g})$

$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right]}{[\mathrm{NO}]^{2}}=\frac{\mathrm{x} / 2 \times \mathrm{x} / 2}{(\mathrm{a}-\mathrm{x})^{2}}=\frac{\mathrm{x}^{2}}{4(\mathrm{a}-\mathrm{x})^{2}}=\mathrm{K}_{\mathrm{p}} \quad(\Delta \mathrm{n}=0)$
(c)

Initially

$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]}=\frac{\mathrm{x}^{2}}{(\mathrm{a}-\mathrm{x})(\mathrm{b}-\mathrm{x})}$
K_{p} should not be given for this reaction
(d)

Initially	a		0
Atequilibrium	$(a-x)$	x	x
Active mass	$\frac{(a-x)}{v}$	$\frac{x}{v}$	$\frac{x}{v}$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{PCl}_{5}\right]}=\frac{\frac{\mathrm{x}}{\mathrm{v}} \times \frac{\mathrm{x}}{\mathrm{v}}}{\frac{(\mathrm{a}-\mathrm{x})}{\mathrm{v}}}=\frac{\mathrm{x}^{2}}{(\mathrm{a}-\mathrm{x}) \mathrm{v}} \\
& \mathrm{~K}_{\mathrm{p}}=\frac{\mathrm{p}_{\mathrm{PCl}_{3}} \times \mathrm{p}_{\mathrm{Cl}_{2}}}{\mathrm{p}_{\mathrm{PCl}_{5}}}=\frac{\left(\frac{\mathrm{x}}{\mathrm{a}+\mathrm{x}} \cdot \mathrm{P}\right) \times\left(\frac{\mathrm{x}}{\mathrm{a}+\mathrm{x}} \cdot \mathrm{P}\right)}{\left(\frac{\mathrm{a}-\mathrm{x}}{\mathrm{a}+\mathrm{x}}\right) \mathrm{P}}=\frac{\mathrm{x}^{2} \mathrm{P}}{(\mathrm{a}+\mathrm{x})(\mathrm{a}-\mathrm{x})}=\frac{x^{2} \mathrm{P}}{\mathrm{a}^{2}-\mathrm{x}^{2}}
\end{aligned}
$$

(e)

$$
\begin{array}{lcc}
\mathrm{N}_{2}(\mathrm{~g}) & + & 3 \mathrm{H}_{2}(\mathrm{~g}) \\
\mathrm{a} & \mathrm{~b} & 2 \mathrm{NH}_{3}(\mathrm{~g}) \\
(\mathrm{a}-\mathrm{x}) & & (\mathrm{b}-3 \mathrm{x}) \\
\frac{(\mathrm{a}-\mathrm{x})}{\mathrm{v}} & & \left(\frac{\mathrm{~b}-3 \mathrm{x}}{\mathrm{v}}\right)
\end{array}
$$

Initially
At equilibrium

Active mass

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}=\frac{\left(\frac{2 x}{\mathrm{v}}\right)^{2}}{\left(\frac{a-x}{\mathrm{v}}\right)\left(\frac{\mathrm{b}-3 \mathrm{x}}{\mathrm{v}}\right)^{3}}=\frac{4 x^{2} \mathrm{~V}^{2}}{(\mathrm{a}-\mathrm{x})(\mathrm{b}-3 \mathrm{x})^{3}} \\
& \mathrm{~K}_{\mathrm{p}}=\frac{\left(p_{\mathrm{NH}_{3}}\right)^{2}}{\mathrm{p}_{\mathrm{N}_{2}} \times\left(\mathrm{p}_{\mathrm{H}_{2}}\right)^{3}}=\frac{\left[\frac{2 x P}{\mathrm{a}+\mathrm{b}-2 \mathrm{x}}\right]^{2}}{\left[\frac{(a-x) P}{(a+b-2 x)}\right]\left[\frac{(b-3 x) P}{(a+b-2 x)}\right]^{3}}=\frac{4 x^{2}(a+b-2 x)^{2}}{(a-x)(b-3 x)^{3} P^{2}}
\end{aligned}
$$

Ex. In the reaction, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ the concentration of $\mathrm{H}_{2}, \mathrm{I}_{2}$ and HI at equilibrium are $10.0,6.0$ and 28 moles per litre respectively. What will be the equilibrium constant?
(A) 30.61
(B) 13.066
(C) 29.40
(D) 20.90

Sol. (B)
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
Applying law of mass action,
$\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}$
Given

$$
\begin{aligned}
& {\left[\mathrm{H}_{2}\right]=10 \mathrm{~mol} \mathrm{~L}^{-1}} \\
& {\left[\mathrm{I}_{2}\right]=6.0 \mathrm{~mol} \mathrm{~L}^{-1}} \\
& {[\mathrm{HI}]=28.0 \mathrm{~mol} \mathrm{~L}^{-1}}
\end{aligned}
$$

So, $\quad \mathrm{K}_{\mathrm{c}}=\frac{(28.0)^{2}}{(10) \times(6.0)}=13.066$

Ex. For a gas phase reaction at equilibrium,
$3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$, the partial pressures of H_{2} and N_{2} are 0.4 and 0.8 atmosphere respectively. The total pressure of the entire system is 2.4 atmosphere. What will be the value of K_{p} if all the pressures are given in atmosphere ?
(A) $32 \mathrm{~atm}^{-2}$
(B) $20 \mathrm{~atm}^{-2}$
(C) $28.125 \mathrm{~atm}^{-2}$
(D) $80 \mathrm{~atm}^{-2}$

Sol. (C)
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$,
Partial pressures at equilibrium
$0.8 \quad 0.4 \quad[2.4-(0.8+0.4)=1.2]$
Applying law of mass action,

$$
\mathrm{K}_{\mathrm{P}}=\frac{\left[\mathrm{P}_{\mathrm{NH}_{3}}\right]^{2}}{\left[\mathrm{P}_{\mathrm{N}_{2}}\right]\left[\mathrm{P}_{\mathrm{H}_{2}}\right]^{3}}=\frac{1.2 \times 1.2}{0.8 \times 0.4 \times 0.4 \times 0.4} \Rightarrow \mathrm{~K}_{\mathrm{P}}=28.125 \mathrm{~atm}^{-2}
$$

Ex. When ethanol and acetic acid were mixed together in equilimolecular proportion 66.6% are converted into ethyl acetate. Calculate K_{c}. Also calculate quantity of ester produced if one mole of acetic acid is treated with 0.5 mole and 4 mole of alcohol respectively.
(A) $4,0.93,0.43$
(B) $0.93,4,0.43$
(C) $0.43,0.93,4$
(D) $4,0.43,0.93$

Sol. (D)

(A) Let x moles of ester is formed from 1 mole of acid and 0.5 mole of alcohol, then

$$
\begin{aligned}
& K_{c}=\frac{x^{2}}{(1-x)(0.5-x)} \Rightarrow \frac{x^{2}}{(1-x)(0.5-x)}=4 \Rightarrow x=0.43 \\
& \text { (B) } K_{c}=\frac{x^{2}}{(1-x)(4-x)} \text { or } 4=\frac{x^{2}}{(1-x)(4-x)} \Rightarrow x=0.93
\end{aligned}
$$

Ex. Starting with 3:1 mixture of H_{2} and N_{2} at $450^{\circ} \mathrm{C}$, the equilibrium mixture is found to be $9.6 \% \mathrm{NH}_{3} ; 22.6 \% \mathrm{~N}_{2}$ and 67.8 $\% \mathrm{H}_{2}$ by volume. The total pressure is 50 atm . What will be the value of K_{p}. The reaction is -
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
(A) $3.25 \times 10^{-5} \mathrm{~atm}^{-2}$
(B) $5.23 \times 10^{-5} \mathrm{~atm}^{-2}$
(C) $6.23 \times 10^{-5} \mathrm{~atm}^{-2}$
(D) $8 \times 10^{-5} \mathrm{~atm}^{-2}$

Sol. (B)
The ratio of number of moles will be the same as the ratio of volume. According to Dalton's law, the partial pressure of a gas in a mixture is given by the product of its volume fraction and the total pressure. Therefore, the equilibrium pressure of each gas is,
$\mathrm{P}_{\mathrm{NH}_{3}}=\frac{9.6}{100} \times 50 \mathrm{~atm}=4.8 \mathrm{~atm}$
$\mathrm{P}_{\mathrm{N}_{2}}=\frac{22.6}{100} \times 50 \mathrm{~atm}=11.3 \mathrm{~atm}$
$\mathrm{P}_{\mathrm{H}_{2}}=\frac{67.6}{100} \times 50 \mathrm{~atm}=33.9 \mathrm{~atm}$

Total pressure $=50 \mathrm{~atm}$
$\mathrm{K}_{\mathrm{P}}=\frac{\left[\mathrm{P}_{\mathrm{NH}_{3}}\right]^{2}}{\left[\mathrm{P}_{\mathrm{N}_{2}}\right]\left[\mathrm{P}_{\mathrm{H}_{2}}\right]^{3}}$; Substituting the values of partial pressures,
$\mathrm{K}_{\mathrm{p}}=\frac{(4.80 \mathrm{~atm})^{2}}{(11.3 \mathrm{~atm})(33.9 \mathrm{~atm})^{3}}=5.23 \times 10^{-5} \mathrm{~atm}^{-2}$

Ex. $\quad \mathrm{K}_{\mathrm{P}}$ for the reaction $\mathrm{A}(\mathrm{g})+2 \mathrm{~B}(\mathrm{~g}) \rightleftharpoons 3 \mathrm{C}(\mathrm{g})+\mathrm{D}(\mathrm{g})$; is 0.01 atm . What will be its K_{c} at 1000 K in terms of R ?
(A) $\frac{1.0 \times 10^{-5}}{\mathrm{R}}$
(B) $\frac{\mathrm{R}}{5 \times 10^{-5}}$
(C) $5 \times 10^{-5} \mathrm{R}$
(D) none of these

Sol. (A)
We know that
$K_{p}=K_{c}(R T)^{\Delta n}$ or $K_{c}=\frac{K_{p}}{(R T)^{\Delta n}}$
Here $\Delta \mathrm{n}=4-3=1$
$\mathrm{T}=1000 \mathrm{~K}, \mathrm{~K}_{\mathrm{p}}=0.01$
$K_{c}=\frac{0.01}{(\mathrm{R} \times 1000)^{1}}=\frac{1.0 \times 10^{-5}}{\mathrm{R}}$

Ex. 0.5 mole of H_{2} and 0.5 mol of I_{2} react in 200 L flask at $448^{\circ} \mathrm{C}$. The equilibrium constant K_{c} is 50 for $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$,
(a) What is the K_{p} ?
(b) Calculate mol of I_{2} at equilibrium.

Sol. $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$
$\begin{array}{llll}0.5 & 0.5 & 0 & \text { Initial }\end{array}$
(0.5-x) $\quad(0.5-x) \quad 2 \mathrm{x}$ at equili.
(a) Since $\Delta \mathrm{n}=0 \Rightarrow \mathrm{~K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}$
(b) $50=\frac{4 x^{2}}{(0.5-x)^{2}}$ or $\frac{2 x}{0.5-x}=\sqrt{50}$
$\mathrm{x}=0.39$
$\therefore \mathrm{mol} \mathrm{of}_{2}=0.5-0.39=0.11 \mathrm{~mol}$

- Three cases may arise :
(a) When $\Delta \mathrm{n}=0$
$\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{C}}(\mathrm{RT})^{0}=\mathrm{K}_{\mathrm{C}}$
For example:
$\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO} \quad \mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$
- $\quad K_{C}$ and K_{p} are unit less in this case.
(b) When $\Delta \mathrm{n}=+\mathrm{ve}$
$\mathrm{K}_{\mathrm{p}}>\mathrm{K}_{\mathrm{C}}$
For example:
$\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2} \rightleftharpoons \quad\left(\begin{array}{c}\mathrm{K}_{\mathrm{C}} \rightarrow \text { mole lit } \\ \\ \mathrm{K}_{\mathrm{P}} \rightarrow \mathrm{atm}\end{array}\right)$
$(\Delta \mathrm{n}=1)$
$2 \mathrm{NH}_{3} \rightleftharpoons \mathrm{~N}_{2}+3 \mathrm{H}_{2} \quad\binom{\mathrm{~K}_{\mathrm{C}} \rightarrow \mathrm{mole}^{2}$ lit $^{-2}}{\mathrm{~K}_{\mathrm{P}} \rightarrow \mathrm{atm}^{2}}$
($\Delta \mathrm{n}=2$)
(c) When $\Delta \mathrm{n}=-\mathrm{ve}$

$$
\mathrm{K}_{\mathrm{p}}<\mathrm{K}_{\mathrm{C}}
$$

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3} \quad\binom{\mathrm{~K}_{\mathrm{C}} \rightarrow \mathrm{~mole}^{-2} \mathrm{lit}^{2}}{\mathrm{~K}_{\mathrm{P}} \rightarrow \mathrm{~atm}^{-2}}
$$

$$
(\Delta \mathrm{n}=-2)
$$

Factors Affecting Equilibrium Constant
(a) Mode of Representation of The Reaction

$$
\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D}
$$

The equilibrium constant for the reaction

$$
\mathrm{K}_{\mathrm{C}}=\frac{[\mathrm{C}][\mathrm{D}]}{[\mathrm{A}][\mathrm{B}]}
$$

If the reaction is reversed

$$
\mathrm{C}+\mathrm{D} \rightleftharpoons \mathrm{~A}+\mathrm{B}
$$

then, $\quad \mathrm{K}_{\mathrm{c}}^{1}=\frac{[\mathrm{A}][\mathrm{B}]}{[\mathrm{C}][\mathrm{D}]}$
The two equilibrium constant related as $\rightarrow \mathrm{K}_{\mathrm{c}}=\frac{1}{\mathrm{~K}_{\mathrm{c}}^{1}}$
Ex. For $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$ if $\mathrm{K}_{\mathrm{C}}=5$ then find K_{C} ' for reverse reaction.
Ans. $K_{C}{ }^{\prime}=1 / 5=0.2$
(b) Stoichiometry of The Reaction

When a reversible reaction can be written with the help of two or more stoichiometric equation, the value of equilibrium constant will be numerically different.

For reaction $\quad 2 \mathrm{NO}_{2} \rightleftharpoons \mathrm{~N}_{2}+2 \mathrm{O}_{2}$

$$
\mathrm{K}_{\mathrm{C}}=\frac{\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right]^{2}}{\left[\mathrm{NO}_{2}\right]^{2}}
$$

For reaction $\mathrm{NO}_{2} \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}+\mathrm{O}_{2}$

$$
\mathrm{K}_{\mathrm{c}}^{1}=\frac{\left[\mathrm{N}_{2}\right]^{\frac{1}{2}}\left[\mathrm{O}_{2}\right]}{\left[\mathrm{NO}_{2}\right]} \quad \text { The two constants are related as } \mathrm{K}_{\mathrm{c}}^{1}=\sqrt{\mathrm{K}_{\mathrm{C}}}
$$

(c) Temperature : The value of equilibrium constant changes with the change of temperature.

If K_{1} and K_{2} be the equilibrium constants of a reaction at absolute temperatures T_{1} and T_{2} and ΔH is the heat of reaction at constant volume, then :

$$
\begin{aligned}
& \frac{\mathrm{d}(\ell \mathrm{nk})}{\mathrm{dT}}=\frac{\Delta \mathrm{H}}{\mathrm{RT}^{2}} \\
& \log \frac{\mathrm{~K}_{2}}{\mathrm{~K}_{1}}=\log \mathrm{K}_{2}-\log \mathrm{K}_{1}=\frac{-\Delta \mathrm{H}}{2.303 \mathrm{R}}\left[\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{1}}\right] \text { (According to Vant Hoff equation) }
\end{aligned}
$$

(i) $\quad \Delta \mathrm{H}=0$ (neither heat is absorbed or evolved)

$$
\begin{gathered}
\log \mathrm{K}_{2}-\log \mathrm{K}_{1}=0 \\
\log \mathrm{~K}_{1}=\log \mathrm{K}_{2} \\
\mathrm{~K}_{1}=\mathrm{K}_{2}
\end{gathered}
$$

Thus, equilibrium constant remains the same at all temperatures
If temp. T_{2} is higher than T_{1}

$$
\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{1}}<0, \log \mathrm{~K}_{2}-\log \mathrm{K}_{1}=\frac{+\mathrm{ve} \mathrm{\Delta H}}{2.303 \mathrm{R}}
$$

(ii) When $\Delta \mathrm{H}=+\mathrm{ve}$ (endothermic reaction)

$$
\log K_{2}-\log K_{1}>0
$$

or $\quad \log \mathrm{K}_{2}>\log \mathrm{K}_{1}$

$$
\mathrm{K}_{2}>\mathrm{K}_{1}
$$

The value of equilibrium constant is higher at higher temperature in case of endothermic reactions.

$$
\mathrm{K}_{\mathrm{C}} \propto \mathrm{~T}
$$

(iii) When $\Delta \mathrm{H}=-\mathrm{ve}$ (exothermic reaction)

$$
\begin{aligned}
\log \mathrm{K}_{2} & -\log \mathrm{K}_{1}<0 \\
\log \mathrm{~K}_{2} & <\log \mathrm{K}_{1} \\
\mathrm{~K}_{2} & <\mathrm{K}_{1}
\end{aligned}
$$

The value of equilibrium constant is lower at higher temperature in the case of exothermic reactions.

$$
\mathrm{K}_{\mathrm{C}} \propto 1 / \mathrm{T}
$$

The value of equilibrium constant is independent of the following factors :-
(a) Initial concentrations of reactants.
(b) The presence of a catalyst.
(c) The direction from which the equilibrium has been attained.
(d) Presence of inert materials.

Ex. For the reaction,
$\mathrm{A} \rightleftharpoons \mathrm{B}, \Delta \mathrm{H}$ for the reaction is $-33.0 \mathrm{~kJ} / \mathrm{mol}$.
Calculate:
(i) Equilibrium constant K_{c} for the reaction at 300 K
(ii) If $E_{a}(f)$ and $E_{a}(r)$ in the ratio of $20: 31$, calculate $E_{a}(f)$ and $E_{a}(r)$ at 300 K .

Assuming pre-exponential factor same for forward and reverse reaction.
Sol.

$$
\text { (i) } \begin{aligned}
& \Delta \mathrm{H}=\mathrm{E}_{\mathrm{a}(\mathrm{f}}-\mathrm{E}_{\mathrm{a}(\mathrm{r})}=-33 \mathrm{~kJ} \\
& \mathrm{k}_{\mathrm{f}}=\mathrm{A} e^{-\mathrm{E}_{\mathrm{a}(\mathrm{f}) / \mathrm{RT}}} \\
& \mathrm{k}_{\mathrm{b}}=\mathrm{Ae} \\
& \therefore \quad \mathrm{E}_{\mathrm{a}(\mathrm{r}) / \mathrm{RT}} \\
& \therefore \quad \mathrm{k}_{\mathrm{c}}=\frac{\mathrm{k}_{\mathrm{f}}}{\mathrm{k}_{\mathrm{b}}}=\mathrm{e}^{\left.\left[\mathrm{E}_{\mathrm{a}(f)}-\mathrm{E}_{\mathrm{a}(\mathrm{r})}\right]\right]_{\mathrm{RT}}} \Rightarrow \mathrm{e}^{\frac{33 \times 10^{3}}{8.314300}}=5.572 \times 10^{5} \text { at } 300 \mathrm{~K}
\end{aligned}
$$

(ii) $\frac{\mathrm{E}_{\mathrm{a}(\mathrm{f})}}{\mathrm{E}_{\mathrm{a}(\mathrm{r})}}=\frac{20}{31} \quad \mathrm{E}_{\mathrm{a}(\mathrm{f})}-\mathrm{E}_{\mathrm{a}(\mathrm{r})}=-33 \mathrm{~kJ}$
$\therefore \mathrm{E}_{\mathrm{a}(\mathrm{r})}-\frac{31}{20} \times \mathrm{E}_{\mathrm{a}(\mathrm{f})}=-33 \mathrm{~kJ}$
$\therefore \mathrm{E}_{\mathrm{a}(\mathrm{f})}=\frac{33 \times 20}{11}=60 \mathrm{~kJ}$
$\mathrm{E}_{\mathrm{a}(\mathrm{r})}=+93 \mathrm{~kJ}$
Ex. The equilibrium constant for the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{s}) \rightleftharpoons \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$; is 18.5 at 925 K and 9.25 at 1000 K respectively. The enthalpy of the reaction will be :
(A) $-68000.05 \mathrm{~J} \mathrm{~mol}^{-1}$
(B) $-71080.57 \mathrm{~J} \mathrm{~mol}^{-1}$
(C) $-80071.75 \mathrm{~J} \mathrm{~mol}^{-1}$
(D) $57080.75 \mathrm{~J} \mathrm{~mol}^{-1}$

Sol. (B)
Using the relation,
$\log \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\frac{\Delta \mathrm{H}}{2.303 \mathrm{R}}\left[\frac{\mathrm{T}_{2}-\mathrm{T}_{1}}{\mathrm{~T}_{1} \mathrm{~T}_{2}}\right]$
$\log \frac{9.25}{18.5}=\frac{\Delta \mathrm{H}}{2.303 \times 8.314} \times \frac{75}{925 \times 1000}$
$-0.301=\frac{\Delta \mathrm{H} \times 75}{2.303 \times 8.314 \times 925 \times 1000} \Rightarrow \Delta \mathrm{H}=-71080.57 \mathrm{~J} \mathrm{~mol}^{-1}$.

Ex. The reaction $\mathrm{CuSO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightleftharpoons \mathrm{CuSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$; the dissociation pressure is 7×10^{-3} atm at $25^{\circ} \mathrm{C}$ and $\Delta \mathrm{H}^{\circ}=2750$ cal. What will be the dissociation pressure at $127^{\circ} \mathrm{C}$?

Sol. For given reaction
$\mathrm{K}_{\mathrm{p}}=\left(\mathrm{p}_{\mathrm{H}_{2} \mathrm{O}}\right)^{2}$
so $\mathrm{K}_{\mathrm{p}}\left(25^{\circ} \mathrm{C}\right)=\left(7 \times 10^{-3}\right)^{2} \mathrm{~atm}^{2}$

$$
=4.9 \times 10^{-5} \mathrm{~atm}^{2}
$$

Since $\Delta \mathrm{H}^{\circ}=2750 \mathrm{cal}$, so using Vant Hoff eq.
$\log \left[\frac{\mathrm{K}_{\mathrm{P}}\left(127^{\circ} \mathrm{C}\right)}{\mathrm{K}_{\mathrm{P}}\left(25^{\circ} \mathrm{C}\right)}\right]=\frac{\Delta \mathrm{H}^{\circ}}{2.303 \times \mathrm{R}}\left[\frac{400-298}{400 \times 298}\right]$
$\log \left[\frac{\mathrm{K}_{\mathrm{P}}\left(127^{\circ} \mathrm{C}\right)}{4.9 \times 10^{-5}}\right]=\frac{2750}{2.303 \times 2}\left[\frac{102}{119200}\right]$
$\mathrm{K}_{\mathrm{p}}\left(127^{\circ} \mathrm{C}\right)=3.2426 \times 4.9 \times 10^{-5}=1.58 \times 10^{-4}$
so $\mathrm{p}_{\mathrm{H}_{2} \mathrm{O}}$ at $127^{\circ}=\sqrt{\mathrm{K}_{\mathrm{p}}\left(127^{\circ} \mathrm{C}\right)}=\sqrt{1.58 \times 10^{-4}}=1.26 \times 10^{-2} \mathrm{~atm}$.

Law of Mass Action as Applied to Heterogeneous Equilibrium
In such cases the active mass of pure solid and pure liquid is taken as unity and the value of equilibrium constant is determined by the gaseous substances only.

For Example : The dissociation of CaCO_{3} in closed vessel.

$$
\begin{aligned}
& \mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \\
& \mathrm{K}_{\mathrm{C}}=\left[\mathrm{CO}_{2}\right], \quad \mathrm{K}_{\mathrm{p}}=\mathrm{p}_{\mathrm{CO}_{2}}
\end{aligned}
$$

$\mathrm{PCl}_{5}(\mathrm{~s}) \rightleftharpoons \mathrm{PCl}_{3}(\ell)+\mathrm{Cl}_{2}(\mathrm{~g})$

$$
\mathrm{K}_{\mathrm{C}}=\left[\mathrm{Cl}_{2}\right], \quad \mathrm{K}_{\mathrm{P}}=\mathrm{p}_{\mathrm{Cl}_{2}}
$$

$$
\begin{aligned}
& 2 \mathrm{H}_{2} \mathrm{O}(\ell) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \\
& \quad \mathrm{K}_{\mathrm{C}}=\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{O}_{2}\right], \mathrm{K}_{\mathrm{P}}=\left(\mathrm{p}_{\mathrm{H}_{2}}\right)^{2}\left(\mathrm{p}_{\mathrm{O}_{2}}\right)
\end{aligned}
$$

$3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})$

$$
\mathrm{K}_{\mathrm{C}}=\frac{\left[\mathrm{H}_{2}\right]^{4}}{\left[\mathrm{H}_{2} \mathrm{O}\right]^{4}}, \mathrm{~K}_{\mathrm{P}}=\frac{\left(\mathrm{p}_{\mathrm{H}_{2}}\right)^{4}}{\left(\mathrm{p}_{\mathrm{H}_{2} \mathrm{O}}\right)^{4}}
$$

Ex. One mole of ammonium carbamate dissociate as shown below at 500 K .
$\mathrm{NH}_{2} \mathrm{COONH}_{4}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$
If the pressure exerted by the released gases is 6.0 atm , the value of K_{P} is -
(A) 7 atm
(B) 3 atm
(C) 32 atm
(D) 8 atm

Sol. (C)
Applying the law of chemical equilibrium, we get
$\mathrm{K}_{\mathrm{p}}=\left(\mathrm{P}_{\mathrm{NH}_{3}}\right)^{2}\left(\mathrm{P}_{\mathrm{CO}_{2}}\right)$

Since total pressure is 6 atm , the partial pressures of $\mathrm{NH}_{3}(\mathrm{~g})$ and $\mathrm{CO}_{2}(\mathrm{~g})$ are
$\left(\mathrm{P}_{\mathrm{NH}_{3}}\right)=6 \times \frac{2}{3}=4 \mathrm{~atm}$
$\left(\mathrm{P}_{\mathrm{CO}_{2}}\right)=6 \times \frac{1}{3}=2 \mathrm{~atm}$
$\mathrm{K}_{\mathrm{p}}=[4.0]^{2}[2.0]=32.0 \mathrm{~atm}$
Ex. For the reaction.
$\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) ; \mathrm{K}_{\mathrm{p}}=1.16 \mathrm{~atm}$. at $800^{\circ} \mathrm{C}$. If 40 g of CaCO_{3} was put into a 20 L container and heated to $800^{\circ} \mathrm{C}$, what percent of CaCO_{3} would remain unreacted at equilibrium.
Sol. $\quad \mathrm{K}_{\mathrm{p}}=\mathrm{P}_{\mathrm{CO}_{2}}=1.16 \mathrm{~atm}$
$\mathrm{n}\left(\mathrm{CO}_{2}\right)=\mathrm{PV} / \mathrm{RT}=\frac{1.16 \times 20}{0.0821 \times 1073}=0.26335 \mathrm{~mol}$
moles of CaCO_{3} initially present
$=40 / 100=0.4 \mathrm{~mol}$
So $\%$ decomposition of $\mathrm{CaCO}_{3}=\frac{0.26335}{0.4} \times 100=65.83 \%$ decomposed
Hence 34.17 \% remain unreacted.
Ex. For the reaction :
$\mathrm{SnO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{Sn}(\mathrm{s})$
Calculate K_{p} at 900 K where the equilibrium steam hydrogen mixture was $35 \% \mathrm{H}_{2}$ by volume.
Sol. $\quad \mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}\right)^{2}}{\left(\mathrm{P}_{\mathrm{H}_{2}}\right)^{2}}$
given H_{2} is 35% by volume at constant temperature in closed vessel $(\mathrm{P} \propto \mathrm{V})$
so $\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}=0.65 \mathrm{~atm}$ and $\mathrm{P}_{\mathrm{H}_{2}}=0.35 \mathrm{~atm}$
$\mathrm{K}_{\mathrm{p}}=\left(\frac{0.65}{0.35}\right)^{2}=3.448$

LE-CHATELIER'S PRINCIPLE

According to this principle. If a system at equilibrium is subjected to a change of concentration, pressure or temperature, the equilibrium is shifted in such a way as to nullify the effect of change.
(a) Change in Concentration : In an equilibrium increasing the concentrations of reactants results in shifting the equilibrium in favour of products while increasing concentrations of the products results in shifting the equilibrium in favour of the reactants.
(b) Change of Pressure : When the pressure on the system is increased, the volume decreases proportionately. The total number of moles per unit volume increases. According to Le-Chatelier's principle, the equilibrium shift in the direction in which there is decrease in number of moles.

If there is no change in number of moles of gases in a reaction, a pressure change does not affect the equilibrium.

CHEMISTRY FOR JEE MAIN \& ADVANCED

(c) Change in Temperature :- If the temperature at equilibrium is increased reaction will proceed in the direction in which heat can be used. Thus increase in temperature will favour the forward reaction for endothermic reaction.

Similarly, increase in temperature will favour the backward reaction in exothermic reactions.

APPLICATION OF LE-CHATELIER'S PRINCIPLE

(A) Chemical Equilibria
(a) Formation of HI

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})+3000 \mathrm{Cals}
$$

(i) Effect of Concentration: When concentration of H_{2} or I_{2} is increased at equilibrium, the system moves in a direction in which decreases the concentration. Thus the rate of forward reaction increases thereby increasing the concentration of HI.
(ii) Effect of Pressure :- In formation of HI , there is no change in the number of moles of reactants and products $(\Delta \mathrm{n}=0)$. Thus it is not affected by the change in pressure or volume.
(iii) Effect of Temperature :- The formation of HI is exothermic reaction. Thus the backward reaction moves faster when temperature is increased. i.e. formation of HI is less.

In short favourable conditions for greater yield of HI :
High concentration of H_{2} and I_{2}.
Low temperature.
No effect of pressure
(b) Formation of NO

$$
\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}-43200 \text { cals. }
$$

(i) Effect of Concentration : When concentration of N_{2} or O_{2} is increased, the system moves in a direction in which N_{2} or O_{2} is used up or rate of forward increases.
(ii) Effect of Pressure : The formation of NO is not affected by change in pressure.

$$
(\Delta \mathrm{n}=0) .
$$

(iii) Temperature : The formation of NO is endothermic. Thus increase in temperature favours to forward reaction.
Favourable conditions for greater yield of NO :
High concentration of N_{2} and O_{2}.
High temperature.
No effect of pressure
(c) Dissociation of PCl_{5}

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})-15000 \text { cals }
$$

(i) Effect of Concentration : When concentration of PCl_{5} is increased at equilibrium, the rate of forward reaction increases as to decrease the added concentration. Thus dissociation of PCl_{5} increases.
(ii) Effect of Pressure : The volume increases in the dissociation of PCl_{5} when pressure is increased, the system moves in the direction in which there is decrease in volume. Thus high pressure does not favour dissociation of PCl_{5}.
(iii) Effect of Temperature :- The dissociation of PCl_{5} is an endothermic reaction. Thus increase of temperature favours the dissociation.

Favourable conditions for dissociation of PCl_{5} are :-
High concentration of PCl_{5}.
Low pressure.
High temperature.
(d) Synthesis of Ammonia
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+22400$ Cals.
The favourable conditions for greater yield of NH_{3} are :-
High concentration of N_{2} and H_{2}.
High pressure.
Low temperature.
(e) Formation of SO_{3}
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}+45200$ Cals.
The favourable conditions for greater yield of SO_{3} are :-
High concentration of SO_{2} and O_{2}.
High pressure.
Low temperature.
Ex. In reaction,
$\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g}) \quad \Delta \mathrm{H}^{\circ}=-92 \mathrm{~kJ} / \mathrm{mol}^{-1}$
concentrations of hydrogen, carbon monoxide and methanol become constant at equilibrium. What willhappen if :
(A) volume of the reaction vessel in which reactants and products are contained is suddenly reduced to half?
(B) partial pressure of hydrogen is suddenly doubled?
(C) an inert gas is added to the system at constant pressure?
(D) the temperature is increased?

Sol. For the equilibrium,
$\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2}\right]^{2}} \Rightarrow \mathrm{~K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{CH}_{3} \mathrm{OH}}}{\mathrm{P}_{\mathrm{CO}} \times \mathrm{P}_{\mathrm{H}_{2}}^{2}}$
(A) When the volume of the vessel is suddenly reduced to half, the partial pressures of various species gets
doubled. Therefore, $\mathrm{Q}_{\mathrm{p}}=\frac{2 \mathrm{P}_{\mathrm{CH}_{3} \mathrm{OH}}}{2 \mathrm{P}_{\mathrm{CO}} \times\left(2 \mathrm{P}_{\mathrm{H}_{2}}\right)^{2}}=\frac{1}{4} \mathrm{~K}_{\mathrm{p}}$
Since Q_{p} is less than K_{p}, the equilibrium shift in the forward direction producing more $\mathrm{CH}_{3} \mathrm{OH}$.
(B) When partial pressure of hydrogen is suddenly doubled, Q_{p} changes and is no longer equal to K_{p}.
$\mathrm{Q}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{CH}_{3} \mathrm{OH}}}{\mathrm{P}_{\mathrm{CO}} \times\left(2 \mathrm{P}_{\mathrm{H}_{2}}\right)^{2}}=\frac{1}{4} \mathrm{~K}_{\mathrm{p}}$

Equilibrium will shift from left to right.
(C) When an inert gas is added to the system at constant pressure, equilibrium shifts from lower number of moles to higher number of moles (in backward direction).
(D) By increasing the temperature, K_{p} will decrease and equilibrium will shift from right to left.

KEY POINTS

(1) Irreversible reaction proceeds in one direction and completed with time while reversible reaction proceeds in both direction and are never completed.
(2) Equilibrium is defined as the point at which the rate of forward reaction is equal to the rate of backward reaction.
(3) Chemical equilibrium is dynamic in nature and equilibrium state can be approached from both sides.
(4) Active mass is molar concentration of the substance. Active mass of solid and pure liquid is taken as unity.
(5) Equilibrium constant has definite value for every chemical reaction at a given temperature. It is independent of concentration and catalyst.
(6) If a reaction can be expressed as the sum of two or more reactions then overall K_{C} will be equal to the product of the equilibrium constant of individual reaction.

Ex.

$$
\begin{aligned}
& \mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g}) \rightarrow \mathrm{K}_{1} \\
& \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{K}_{2} \\
& \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g}) \rightarrow \mathrm{K} \\
& \mathrm{~K}=\mathrm{K}_{1} \times \mathrm{K}_{2}
\end{aligned}
$$

then
So
(7) Change in temperature, pressure or concentration favours one of the reactions and thus shift the equilibrium point in one direction.
(8) A catalyst ables the system to reach a state of equilibrium more quickly.
(9) Pressure and volume has no effect on the reaction in which there is no change in the number of moles.
(10) If the concentration of reactants is increased and product is removed, the reaction will take place in forward direction.
(11) Free energy change
$\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+2.303 \mathrm{RT} \log \mathrm{Q}$ At equilibrium $\Delta \mathrm{G}=0$, (T is in Kelvin), $\mathrm{Q}=\mathrm{K}$ so
$\Delta \mathrm{G}^{\circ}=-2.303 \mathrm{RT} \log \mathrm{K}$, where K is equilibrium constant.

Ex. $\Delta \mathrm{G}^{\circ}$ for $1 / 2 \mathrm{~N}_{2}+3 / 2 \mathrm{H}_{2} \rightleftharpoons \mathrm{NH}_{3}$ is $-16.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Find out K_{P} for the reaction at $25^{\circ} \mathrm{C}$. Also report K_{P} and $\Delta \mathrm{G}^{\circ}$ for $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$ at $25^{\circ} \mathrm{C}$.

Sol. $\quad \log \mathrm{K}_{\mathrm{P}}=-\frac{\Delta \mathrm{G}^{\circ}}{2.303 \mathrm{RT}}=\frac{+16.5 \times 10^{3}}{2.303 \times 8.314 \times 298}=2.8917$
$\mathrm{K}_{\mathrm{p}}=\operatorname{antilog}(2.8917)=779.41$
Now given reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$ can be obtained by multiplying eq. $1 / 2 \mathrm{~N}_{2}+3 / 2 \mathrm{H}_{2} \rightleftharpoons \mathrm{NH}_{3}$ by 2 . so $K_{p}^{\prime}=(779.41)^{2}=6.07 \times 10^{5}$
and $\Delta \mathrm{G}^{\circ}=-2.303 R T \log \mathrm{~K}_{\mathrm{p}}^{\prime}=-2.303 \times 8.314 \times 298 \log \left(6.07 \times 10^{5}\right) \mathrm{J}$
$\Delta \mathrm{G}^{\circ}=-32.998 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

Ex. For the gaseous reaction $\mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CO}_{2}+\mathrm{H}_{2}$ the following thermodynamics data are given.
$\Delta \mathrm{H}_{300 \mathrm{~K}}^{\circ}=-41.16 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \Delta \mathrm{S}_{300 \mathrm{~K}}^{\circ}=-0.0424 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
$\Delta \mathrm{H}_{1200 \mathrm{~K}}^{\circ}=-32.93 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \Delta \mathrm{S}^{\circ}{ }_{1200 \mathrm{~K}}=-0.0296 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
Assuming partial pressure of each component at 1 atm . determine the direction of spontaneous reaction at (i) 300 K
(ii) 1200 K . Also calculate K_{p} for the reaction at each temperature.

Sol. Using $\Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{S}^{\circ}$
$\Delta \mathrm{G}^{\circ}{ }_{300 \mathrm{~K}}=-41.16-300(-0.0424)$
$=-28.44 \mathrm{~kJ} \mathrm{~mol}^{-1}$
so reaction is spontaneous in given direction since $\Delta \mathrm{G}^{\circ}$ is negative
$\mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CO}_{2}+\mathrm{H}_{2}$
at 1200 K
$\Delta \mathrm{G}^{\circ}{ }_{1200 \mathrm{~K}}=-32.93-1200(-0.0296)$

$$
=2.56 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

so reaction will not be spontaneous in given direction, but reverse reaction spontaneous ie.

$$
\mathrm{CO}+\mathrm{H}_{2} \rightleftharpoons \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}
$$

We know $\Delta \mathrm{G}^{\circ}=-2.303 \mathrm{RT} \log \mathrm{K}_{\mathrm{p}}$
so $K_{p}(300 K)$

$$
\begin{aligned}
& =\operatorname{antilog}\left(\frac{-28.44 \times 10^{3}}{-2.303 \times 8.314 \times 300}\right)=8.8 \times 10^{4} \\
\mathrm{~K}_{\mathrm{p}} & =(1200 \mathrm{~K}) \\
& =\operatorname{antilog}\left(\frac{+2.59 \times 10^{3}}{-2.303 \times 8.314 \times 1200}\right)=0.77
\end{aligned}
$$

Ex. Variation of equilibrium constant K with temperature T is given by van't Hoff equation,

$$
\log \mathrm{K}=\log \mathrm{A}-\frac{\Delta \mathrm{H}^{\circ}}{2.303 \mathrm{RT}}
$$

$$
12=A \cdot e^{-\frac{D H}{R T}}
$$

A graph between $\log \mathrm{K}$ and T^{-1} was a straight line as shown in the figure and having $\theta=\tan ^{-1}(0.5)$ and $\mathrm{OP}=10$. Calculate:
(a) $\Delta \mathrm{H}^{\circ}$ (standard heat of reaction) when $\mathrm{T}=300 \mathrm{~K}$,
(b) A (pre-exponential factor),
(c) Equilibrium constant K , at 300 K ,
(d) K at 900 K if $\Delta \mathrm{H}^{\circ}$ is independent of temperature.

Sol.
(a) $\quad \log _{10} \mathrm{~K}=\log _{10} \mathrm{~A}-\frac{\Delta \mathrm{H}^{\circ}}{2.303 \mathrm{RT}}$

It is an equation of a straight line of the type $y=c+m x$
Slope ' m ' $=\tan \theta=\frac{\Delta H^{\circ}}{2.303 \mathrm{R}}$
$0.5=\frac{\Delta \mathrm{H}^{\circ}}{2.303 \times 8.314}$
$\Delta \mathrm{H}^{\circ}=9.574 \mathrm{~J} \mathrm{~mol}^{-1}$
(b) Intercept ' c ' $=\log _{10} \mathrm{~A}=10 \quad \therefore \quad \mathrm{~A}=10^{10}$
(c) $\quad \log \mathrm{K}=10-\frac{9.574}{2.303 \times 8.314 \times 298}$

$$
\mathrm{K}=9.96 \times 10^{9}
$$

(d) $\log \left(\frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}\right)=\frac{\Delta \mathrm{H}}{2.303 \mathrm{R}}\left\{\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right\}$
$\log \frac{\mathrm{K}_{2}}{9.96 \times 10^{9}}=\frac{9.574}{2.303 \times 8.314}\left\{\frac{1}{298}-\frac{1}{798}\right\}$
On solving $\quad K_{2}=9.98 \times 10^{9}$
Ans. (a) $9.574 \mathrm{~J} \mathrm{~mol}-1$;
(b) $A=1010$;
(c) 9.96×109;
(d) 9.98×109

REACTION QUOTIENTAND EQUILIBRIUM CONSTANT

Consider the follwong reversible reaction

$$
\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D}
$$

The reaction quotient $\left(\mathrm{Q}_{\mathrm{C}}\right)$ is ratio of the product of active masses of the products and product of active masses of the reactants, at any given time.
$\therefore \mathrm{Q}_{\mathrm{C}}=\frac{[\mathrm{C}][\mathrm{D}]}{[\mathrm{A}][\mathrm{B}]}$
The concentration are not necessarily equilibrium concentration.
[At equilibrium $\mathrm{Q}_{\mathrm{C}}=\mathrm{K}_{\mathrm{C}}$]
Case I
If $\mathrm{Q}_{\mathrm{C}}<\mathbf{K}_{\mathrm{C}}$ Then : [Reactants] $>$ [Products]
then the system is not at equilibrium

The value of $\frac{\text { [Product }]}{[\text { Reactant }]}$ is small
\therefore For establishment of equilibrium the reaction will go in forward direction. [Reactants \rightarrow Products]
Case II
If $\mathrm{Q}_{\mathrm{C}}=K_{\mathrm{C}}$ Then : The system is at equilibrium and the concentration of the species C,D,B,A are at equilibrium.
Case III
If $\mathbf{Q}_{\mathrm{C}}>\mathbf{K}_{\mathrm{C}}$ Then : [Product] $>$ [Reactants $]$
The system is not at equilibrium.

The value of $\frac{\text { [Product }]}{[\text { Reactant }]}$ is large
\therefore For establishment of equilibrium the reaction will go in backward direction. [Products \rightarrow Reactants]

Ex. A mixture of 4.2 moles of $\mathrm{N}_{2}, 2.0$ moles of H_{2} and 10.0 moles of NH_{3} is introduced into a 10.0 L reaction vessel at 500
K. At this temperature, equilibrium constant K_{c} is 1.7×10^{2}, for the reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
(i) is the reaction mixture at equilibrium?
(ii) if not, what is the direction of the reaction?

Sol. $\quad\left[\mathrm{N}_{2}\right]=\frac{4.2}{10}=0.42 \mathrm{M}$
$\left[\mathrm{H}_{2}\right]=\frac{2.0}{10}=0.2 \mathrm{M}$
$\left[\mathrm{NH}_{3}\right]=\frac{10}{10}=0.1 \mathrm{M}$
For these concentration, reaction quotient (Q) for the reaction
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$ is
$\mathrm{Q}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}=\frac{(0.1)^{2}}{(0.42) \times(0.2)^{3}}=2.976$
But $\mathrm{K}_{\mathrm{c}}=1.7 \times 10^{2}$
(i) Since $\mathrm{Q} \neq \mathrm{K}_{\mathrm{c}}$, hence reaction is not at equilibrium.
(ii) Also $\mathrm{Q}<\mathrm{K}_{c}$, the reaction will proceed from left to right.

Ex. For the reaction $\operatorname{NOBr}(\mathrm{g}) \rightleftharpoons \mathrm{NO}(\mathrm{g})+\frac{1}{2} \mathrm{Br}_{2}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{P}}=0.15 \mathrm{~atm}$ at $90^{\circ} \mathrm{C}$. If $\mathrm{NOBr}, \mathrm{NO}$ and Br_{2} are mixed at this temperature having partial pressures $0.5 \mathrm{~atm}, 0.4 \mathrm{~atm}$ and 0.2 atm respectively, will Br_{2} be consumed or formed?

Sol. $\quad \mathrm{Q}_{\mathrm{P}}=\frac{\left[\mathrm{P}_{\mathrm{Br}_{2}}\right]^{1 / 2}\left[\mathrm{P}_{\mathrm{NO}}\right]}{\left[\mathrm{P}_{\mathrm{NOBr}}\right]}=\frac{[0.2]^{1 / 2}[0.4]}{[0.50]}=0.36$
$\mathrm{K}_{\mathrm{p}}=0.15$
$\therefore \quad \mathrm{Q}_{\mathrm{P}}>\mathrm{K}_{\mathrm{P}}$
Hence, reaction will shift in backward direction
$\therefore \quad \mathrm{Br}_{2}$ will be consumed
Predicting The Extent of The Reaction

$$
K=\frac{[\text { Product }]_{\mathrm{eq}}}{[\text { Reactan }]_{\mathrm{eq}}}
$$

CHEMISTRY FOR JEE MAIN \& ADVANCED

Case-I

If K is large $\left(\mathrm{K}>10^{3}\right)$ then product concentration is very very larger than the reactant ([Product] \gg Reactant $\left.]\right)$ Hence concentration of reactant can be neglected with respect to the product. In this case, the reaction is product favourable and equilibrium will be more in forward direction than in backward direction.

Case-II
If K is very small $\left(\mathrm{K}<10^{-3}\right)$
[Product] \ll [Reactant]
Hence concentration of Product can be neglected as compared to the reactant.
In this case, the reaction is reactant favourable.
Ex. The K_{p} values for three reactions are $10^{-5}, 20$ and 300 then what will be the correct order of the percentage composition of the products.

Sol. Since K_{p} order is $10^{-5}<20<300$ so the percentage composition of products will be greatest for $K_{\mathrm{p}}=300$.

CALCULATION OF DEGREE OF DISSOCIATION FROM VAPOUR DENSITY MEASUREMENT :

Degree of Dissociation

Degree of dissociation of a substance at a particular temperature is defined as the fraction of total number of moles dissociated into simpler molecules at that particular temperature.

Degree of dissociation $(\alpha)=\frac{\text { No. of moles dissociated }}{\text { Total no. of moles taken }}$
Degree of dissociation can be calculated from vapour density measurements for those substance which are accompanied by change in the number of moles.e.g.

	$\mathrm{PCl}_{5} \longrightarrow \mathrm{PCl}_{3}$	$+\mathrm{Cl}_{2}$	
Initial moles	1	0	0
No. of moles after	$(1-\alpha)$	α	α

dissociation
Total number of moles $=1-\alpha+\alpha+\alpha=(1+\alpha)$
Let, volume occupied by the vapour per mole $=\mathrm{V}$ litres.
Initial vapour density $=\mathrm{D}$
Vapour density after dissociation $=\mathrm{d}$
As, vapour density $\propto \frac{1}{\mathrm{~V}}$
$\therefore \mathrm{D} \propto \frac{1}{\mathrm{~V}}$
$d \propto \frac{1}{(1+\alpha) V}$
$\therefore \frac{\mathrm{D}}{\mathrm{d}}=\frac{1 / \mathrm{V}}{1 /(1+\alpha) \mathrm{V}}=(1+\alpha)$
$\Rightarrow \alpha=\frac{\mathrm{D}}{\mathrm{d}}-1=\frac{(\mathrm{D}-\mathrm{d})}{\mathrm{d}}$
As, mol. wt. $=2 \times$ vapour density
Also, $\alpha=\frac{M_{t}-M_{0}}{M_{o}}$
$M_{t}=$ theoretical molecular mass
$M_{o}=$ observed (experimental) molecular mass
M_{o} can be calculated from the mass of definite volume of the vapour at particular temperature.
Also, $\mathrm{PV}={ }_{\mathrm{nRT}}=\frac{\mathrm{W}}{\mathrm{M}_{\mathrm{o}}}$ RT
$M_{o}=\frac{W}{V} \times \frac{R T}{P}=\frac{\rho R T}{P}$
where $\rho=$ density of the vapour.
In general, if one mole dissociates to give n moles of products, then
$\begin{array}{ll}\mathrm{A} & \longrightarrow \\ 1 & \mathrm{nB} \\ (1-\alpha) & \\ 0 & \mathrm{n} \alpha\end{array}$
Total no. of moles $=1-\alpha+n \alpha=1+(n-1) \alpha$
$\therefore \frac{D}{d}=1+(n-1) \times \alpha \Rightarrow \alpha=\frac{(D-d)}{(n-1) \times d}$
Also, $\alpha=\frac{M_{t}-M_{o}}{(\mathrm{n}-1) \times \mathrm{M}_{\mathrm{o}}}$
Let us, consider the reaction, $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
If the initial moles of $\mathrm{NH}_{3}(\mathrm{~g})$ be 'a' and x moles of NH_{3} dissociated at equilibrium.

$$
2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

Initial moles

a

$0 \quad 0$
At equilibrium

$$
a-x \quad \frac{x}{2} \quad \frac{3 x}{2}
$$

Degree of dissociation (α) of NH_{3} is defined as the number of moles of NH_{3} dissociated per mole of NH_{3}.
\therefore If x moles dissociate from 'a' moles of NH_{3} then, the degree of dissociation of NH_{3} would be $\frac{\mathrm{x}}{\mathrm{a}}$.
We can also look at the reaction in the following manner.

$$
2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

Initial moles
At equilibrium
or

a

00
$\mathrm{a}(1-\alpha) \quad \frac{\mathrm{a} \alpha}{2} \quad \frac{3 \mathrm{a} \alpha}{2}$
where $\alpha=\frac{2 \mathrm{x}^{\prime}}{\mathrm{a}}$
Here, total number of moles at equilibrium is a $-2 x^{\prime}+x^{\prime}+3 x^{\prime}=a+2 x^{\prime}$
Mole fraction of $\mathrm{NH}_{3}=\frac{a-2 x^{\prime}}{a+2 x^{\prime}}$
Mole fraction of $N_{2}=\frac{x^{\prime}}{a+2 x^{\prime}}$
Mole fraction of $H_{2}=\frac{3 x^{\prime}}{a+2 x^{\prime}}$
The expression of K_{p} is

$$
K_{p}=\frac{\left(\frac{x^{\prime}}{a+2 x^{\prime}}\right) P_{T} \times\left(\frac{3 x^{\prime}}{a+2 x^{\prime}}\right)^{3} \times P_{T}^{3}}{\left(\frac{a-2 x^{\prime}}{a+2 x^{\prime}}\right)^{2} \times P_{T}^{2}}=\frac{27 x^{\prime 4}}{\left(a-2 x^{\prime}\right)^{2}} \times \frac{P_{T}^{2}}{\left(a+2 x^{\prime}\right)^{2}}
$$

In this way, you should find the basic equation. So, it is advisable to follow the below mentioned steps while solving the problems.
Write the balanced chemical reaction (mostly it will be given).
Under each component write the initial number of moles.
Do the same for equilibrium condition.
Then derive the expression for K_{p} and K_{c} accordingly.
Ex. Vapour density of the equilibrium mixture NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ is found to be 42 for the reaction,
$\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$. Find
(a) Abnormal molecular weight
(b) Degree of dissociation
(c) Percentage of NO_{2} in the mixture

Sol. (a) For the reaction, $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$
Observed value of vapour density $=42$
Abnormal molecular weight $=42 \times 2$
(b) Theoretical molecular weight $=92$

$$
2 \times D=92
$$

$\therefore \mathrm{D}=\frac{92}{2}=46$
$\therefore \alpha=\frac{D-d}{d}=\frac{46-42}{42}=0.095$
(c) $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$

1	0
$(1-\alpha)$	2α
0.905	0.19

Total moles at equilibrium $=1+\alpha=1+0.095$

$$
\therefore \% \text { of } \mathrm{NO}_{2}=\frac{2 \alpha}{(1+\alpha)} \times 100=\frac{0.19}{1.095} \times 100=17.35 \%
$$

Ex. The equilibrium constant of the reaction $\mathrm{A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB}(\mathrm{g})$ at $50^{\circ} \mathrm{C}$ is 50 . If one litre flask containing one mole of A_{2} is connected to a two litre flask containing two moles of B_{2}, how many moles of AB will be formed at 323 K .

Sol.

$$
\mathrm{A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB}(\mathrm{~g}) ; \mathrm{K}_{\mathrm{c}}=50
$$

Initial mole
At eq. mole

At eq. conc.

1	2	0
$1-\mathrm{x}$	$2-\mathrm{x}$	2 x
$\frac{1-\mathrm{x}}{3}$	$\frac{2-\mathrm{x}}{3}$	$\frac{2 \mathrm{x}}{3}$

$\mathrm{K}_{\mathrm{c}}=\frac{\left(\frac{2 \mathrm{x}}{3}\right)^{2}}{\left(\frac{1-\mathrm{x}}{3}\right)\left(\frac{2-\mathrm{x}}{3}\right)}=50 \Rightarrow 23 \mathrm{x}^{2}-75 \mathrm{x}+50=0$
$\mathrm{x}=0.934$ or 2.326
Only 0.934 values is permissible
So, moles of $A B=1.868$

Ex. Calculate the $\%$ age dissociation of $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ if 0.1 mole of $\mathrm{H}_{2} \mathrm{~S}$ is kept in a 0.4 L vessel at 900 K . The value of K_{c} for the reaction, $2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g})$, is 1.0×10^{4}.

Sol. $2 \mathrm{H}_{2} \mathrm{~S} \rightleftharpoons 2 \mathrm{H}_{2}+\mathrm{S}_{2}$
Volume of vessel $=\mathrm{V}=0.4 \mathrm{~L}$
Let, x be the degree of dissociation

Moles	$2 \mathrm{H}_{2} \mathrm{~S} \rightleftharpoons$	$2 \mathrm{H}_{2}+$	S_{2}
Initially	0.1	0	0
At equilibrium	$0.1-0.1 \mathrm{x}$	0.1 x	$0.1 \mathrm{x} / 2$

$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{~S}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]^{2}}=\frac{\left(\frac{0.01 \mathrm{x}}{\mathrm{v}}\right)^{2}\left(\frac{0.01}{2 \mathrm{v}}\right)}{\left(\frac{0.01-0.01 \mathrm{x}}{\mathrm{v}}\right)^{2}}=10^{4} \Rightarrow \quad \mathrm{x}=0.02$ or 2% dissociation of $\mathrm{H}_{2} \mathrm{~S}$

Ex. The degree of dissociation of HI at a particular temperature is 0.8 . Find the volume of 1.5 M sodium thiosulphate solution required to react completely with the iodine present at equilibrium in acidic condition, when 0.135 mol each of H_{2} and I_{2} are heated at 440 K in a closed vessel of capacity 2.0 L .

Sol. First find the value of K_{c} for dissociation of HI from its degree of dissociation
$2 \mathrm{HI} \rightleftharpoons \mathrm{H}_{2}+\mathrm{I}_{2}$ (degree of dissociation is 0.8)

| Concentrations | $2 \mathrm{HI} \rightleftharpoons$ | $\mathrm{H}_{2}+$ | I_{2} |
| :--- | :--- | :--- | :--- | :--- |
| Initially | 1.0 | 0 | 0 |
| At new equilibrium | $1.0-0.8$ | 0.4 | 0.4 |

$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}{[\mathrm{HI}]^{2}}=\frac{(0.4)(0.4)}{(0.2)^{2}}=4$
Now, we have to start with 0.135 mol each of H_{2} and I_{2} and the following equilibrium will be established.
$\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$ with $\mathrm{K}_{\mathrm{c}}=1 / 4$

Concentrations	$\mathrm{H}_{2}+$	I_{2}	\rightleftharpoons	2 HI
Initially	0.135	0.135	0	
At new equilibrium	$0.135-\mathrm{x}$	$0.135-\mathrm{x}$		2 x

$\Rightarrow \mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=\frac{(2 \mathrm{x})^{2}}{(0.135-\mathrm{x})(0.135-\mathrm{x})}=\frac{1}{4}$
$\Rightarrow \mathrm{x}=0.135 / 5=0.027$ moles
Now, find the moles of I_{2} left unreacted at equilibrium.
$\mathrm{n}_{\mathrm{I}_{2}}=0.135-0.027=0.108$ moles
I_{2} reacts with sodium thiosulphate $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)$ as follows :
$2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \rightleftharpoons \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI}$
Applying mole concept, we have 2 moles of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \equiv 1$ mole of I_{2}
$\Rightarrow 0.108$ moles of $\mathrm{I}_{2} \equiv 2 \times 0.108=0.216$ moles of $\mathrm{Na}_{2} \mathrm{~S}_{3} \mathrm{O}_{3}$ are used up
\Rightarrow Moles $=\mathrm{MV}_{\mathrm{n}}\left(\mathrm{M}=\right.$ Molarity, $\mathrm{V}_{\mathrm{n}}=$ volume in litres $)$
$\Rightarrow 0.216=1.5 \mathrm{~V}$
$\Rightarrow \mathrm{V}=0.144 \mathrm{lt}=144 \mathrm{~mL}$.

Ex. $\quad 102 \mathrm{~g}$ of solid $\mathrm{NH}_{4} \mathrm{HS}$ is taken in the 2 L evacuated flask at $57^{\circ} \mathrm{C}$. Following two equilibrium exist simultaneously

$$
\begin{aligned}
& \mathrm{NH}_{4} \mathrm{HS}(\mathrm{~s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \\
& \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g})
\end{aligned}
$$

one mole of the solid decomposes to maintain both the equilibrium and 0.75 mole of H_{2} was found at the equilibrium then find the equilibrium concentration of all the species and K_{C} for both the reaction.

Sol. Moles of $\mathrm{NH}_{4} \mathrm{HS}=\frac{102}{51}=2$

$$
\begin{array}{cc}
\mathrm{NH}_{4} \mathrm{HS}(\mathrm{~s}) & \rightleftharpoons \\
2 & \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})
\end{array} \mathrm{K}_{\mathrm{C}_{1}}
$$

Given that moles of $\mathrm{H}_{2}=\frac{3 \mathrm{x}}{2}=0.75 \Rightarrow \mathrm{x}=\frac{1}{2}$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{C}_{1}}=\frac{1}{2} \frac{(1-\mathrm{x})}{2}=\frac{1}{8} \quad[\text { Since } \mathrm{V}=2 \mathrm{~L}] \\
& \mathrm{K}_{\mathrm{C}_{2}}=\frac{\left(\frac{3 \mathrm{x}}{4}\right)^{3 / 2}\left(\frac{\mathrm{x}}{4}\right)^{1 / 2}}{\left(\frac{1-\mathrm{x}}{2}\right)}=\frac{\left(\frac{3}{8}\right)^{3 / 2}\left(\frac{1}{8}\right)^{1 / 2}}{\frac{1}{4}}=(3)^{3 / 2} \frac{1}{64} \times \frac{4}{1}=\frac{(3)^{3 / 2}}{16}
\end{aligned}
$$

		耍	．	\％	O			
	$\frac{\overline{2}}{5}$			唇		－	E	
＝	$\stackrel{\square}{\square}$	\％	$\stackrel{5}{8}$	8	$\stackrel{0}{8}$	\％	\cdots	$\stackrel{\%}{1}$
		雱	晨	苞	家	8		婁
		P	\＄	\％	\％			
	2	3	$1-149$	－15	L－－15			
	2	\％	$3 \quad 3$	$]_{3} 3$	38	${ }^{\top}$	${ }^{1} \times 8$	${ }_{8}^{4}$
			\％	$\stackrel{\text { c }}{4}$	$\stackrel{3}{\square}$	$\stackrel{3}{8}$	$\stackrel{8}{8}$	$\stackrel{8}{8}$
						＊¢	$\times 5$	
z			Q	\％	\％	\％	\％	\％
	$\stackrel{\square}{8}$	\％	諒	呂		愛	复	营
			2	$\stackrel{1}{2}$	－	$\stackrel{ }{2}$	$\stackrel{1}{2}$	$\underline{\sim}$
			E	E	E	\＃	！	I
			\＄	s	\leqslant	\leq	\leq	\leq
			${ }_{T}$	T	${ }^{+}$	${ }_{\square}$	＝	$=$
	$\stackrel{\square}{8}$	？	${ }_{6}$	－	$\frac{8}{8}$	\bigcirc	${ }^{\bar{L}}$	${ }_{5}$
	7	7	$\stackrel{1}{8}$	厚	E	，	E	$\stackrel{1}{ }$
			\％	E	$\stackrel{\square}{\square}$	缲	\％	${ }_{5}$
					$\stackrel{\infty}{+}$			
	$\frac{8}{1}$				$\stackrel{\sim}{2}$	容		
	－	\％			$\frac{2}{4} \frac{\pi}{x}$	\cdots	x	$\underset{x}{x}{ }^{2}$
	炎	\cdots	${ }_{\sim}^{2}$	－	N	$\underset{\sim}{*}$	$1{ }^{\infty}$	$1 \times$
					\pm	\cdots	$\underset{\sim}{x}$	$\stackrel{y}{*}$
					－			
en	\％							
	≥ 8	$\frac{\sim}{8}$			$=\frac{3}{x}$	\cdots	$\frac{1}{x}$	䇣
	子	± 1	\cdots	等	${ }^{\star} \stackrel{x}{*}$	等	$\vec{\chi} 1$	\cdots
		$\stackrel{\square}{7}$	${ }_{5}$	＋	\cdots	＋		
	E				\％	ก		
	4	צ1	\triangle	y	7	y	\checkmark	9
	－	雨	\triangle	\pm	$\stackrel{3}{\square}$	\pm	\pm	\pm
	\％	E	E	E	E	E	6	E
	\％	\＃	$\underline{3}$	4	\％	\pm	\pm	\％
	2	2	\pm	\％	\％	先	\％	\％
\％	\bigcirc	ω	\mp	7	\％	τ	\checkmark	T
皆								
			8		～	$\underset{\sim}{7}$	2	8
	匃	$\stackrel{7}{+}$	\pm	8	＋	1	1.	1.
	1	T	11	1	7	2	E	¢＇
	$\stackrel{7}{+}$	1.	$\stackrel{\square}{8}$	¢	\％	$\stackrel{+}{+}$	\bigcirc	δ
	尔	플	2	Z	z	Z	E	\％
	－	\sim	m	＋	in	ω	r－	∞

tips

1. Law of Mass Action. It was put forward by Guldberg and Waage. It states that the rate at which a substance reacts is directly proportional to its active mass and hence the rate at which substances react together is directly proportional to the product of their active masses. Active mass means molar concentration.
2. Law of Chemical Equilibrium. For the reaction $a A+b B \rightleftharpoons x X+y Y, \frac{[X]^{x}[Y]^{y}}{[A]^{a}[B]^{b}}=K$, called equilibrium constant which is constant for a reaction at constant temperature.
3. Equilibrium Constant in Terms of Concentrations (Kc) is $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{X}]^{\mathrm{x}}[\mathrm{Y}]^{\mathrm{y}}}{[\mathrm{A}]^{a}[\mathrm{~B}]^{\mathrm{b}}}$.

It has units $=\left(\mathrm{molL}^{-1}\right)^{(\mathrm{x}+\mathrm{y})-(\mathrm{a}+\mathrm{b})}$
Equilibrium Constant in Terms of Pressures is $K_{p}=\frac{P_{X}^{x} \mathrm{P}_{Y}^{y}}{\mathrm{P}_{\mathrm{A}}^{\mathrm{a}} \mathrm{P}_{\mathrm{B}}^{\mathrm{b}}}$
It has units $=(\mathrm{atm})^{(\mathrm{x}+\mathrm{y})-(\mathrm{a}+\mathrm{b})}$
Expressed in terms of activities (in place of molar concentration), equilibrium constant is dimensionless.
4. Relation between $K p$ and $K c . K_{p}$ and K_{c} are related to each other as $K_{p}=K_{c}(R T)^{\Delta n_{g}}$ Where $\Delta \mathrm{n}_{\mathrm{g}}=\left(\mathrm{n}_{\mathrm{p}}-\mathrm{n}_{\mathrm{r}}\right)$ gaseous
5. Concentration Quotient Condition or Reaction Quotient (Q). For the reaction $a A+b B \rightleftharpoons x X+y Y$, at any other than the stage of equilibrium, the expression $\frac{[\mathrm{X}]^{\mathrm{x}}[\mathrm{Y}]^{\mathrm{y}}}{[\mathrm{A}]^{a}[\mathrm{~B}]^{\mathrm{b}}}=\mathrm{Q}$ is called concentration quotient or reaction quotient.
(i) If $\mathrm{Q}=\mathrm{K}$, the reaction is in equilibrium.
(ii) If $\mathrm{Q}<\mathrm{K}, \mathrm{Q}$ will tend to increase till it becomes equal to K . Hence, reaction proceeds in the forward direction.
(iii) If $\mathrm{Q}>\mathrm{K}, \mathrm{Q}$ will tend to decrease. As a result, the reaction will proceed in the backward direction.
6. Effect of Temperature on K. For $a A+b B \underset{k_{b}}{\stackrel{k_{f}}{\rightleftharpoons}} C+D, K=\frac{k_{f}}{k_{b}}$.

For exothermic reaction, k_{f} decreases with increase of temperature, so K decreases.
For endothermic reaction, k_{f} increases with increase of temperature, so K increases.
7. Effect of Adding Inert Gas at Equilibrium.
(i) For reactions in which $\mathrm{n}_{\mathrm{p}}=\mathrm{n}_{\mathrm{r}}$, there is no effect of adding an inert gas at constant volume or at constant pressure on the equilibrium.
(ii) For reaction in which $\mathrm{n}_{\mathrm{p}}>\mathrm{n}_{\mathrm{r}}$ (e.g. $\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$), there is no effect of adding inert gas on the equilibrium at constant volume but at constant pressure, equilibrium shifts in the forward direction.
8. Le Chatelier's Principle states that "if a system in equilibrium is subjected to a change of concentration, temperature or pressure, the equilibrium shifts in a direction so as to undo the effect of the change imposed."
9. Van't Hoff Reaction Isotherm. It is an equation which gives the relationship between standard free energy change ($\Delta \mathrm{G}^{\circ}$) of a reaction and its equilibrium constant $\left(\mathrm{K}_{\mathrm{p}}\right)$,
i.e. $\Delta \mathrm{G}^{\circ}=-\mathrm{RT} \ln \mathrm{K}_{\mathrm{p}}$

This equation helps to calculate $\Delta \mathrm{G}^{\circ}$ of a reaction at temperature T if its equilibrium constant at this temperature is known or vice-versa.
10. Van't Hoff Equation. This equation gives the variation of equilibrium constant of a reaction with temperature. The equation is

$$
\frac{\mathrm{d} \ln ^{\mathrm{p}}}{\mathrm{dT}}=\frac{\Delta \mathrm{H}^{\circ}}{\mathrm{RT}^{2}}
$$

The integrated form of this equation is

$$
\log \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\frac{\Delta \mathrm{H}^{\circ}}{2.303 \mathrm{R}}\left[\frac{\mathrm{~T}_{2}-\mathrm{T}_{1}}{\mathrm{~T}_{1} \mathrm{~T}_{2}}\right]
$$

where $\Delta \mathrm{H}^{\circ}=$ enthalpy change of the reaction (assumed to the constant in the temperature range T_{1} to T_{2}).
11. Units of equilibrium const. $=\left(\mathrm{mol} \mathrm{L}^{-1}\right)^{(\mathrm{x}+\mathrm{y})-(\mathrm{a}+\mathrm{b})}$ or $(\mathrm{atm})^{(\mathrm{x}+\mathrm{y})-(\mathrm{a}+\mathrm{b})}$
12. Degree of dissociation of PCl_{5} or $\mathrm{N}_{2} \mathrm{O}_{4}$ is given by $\propto=\frac{D-d}{d}=\frac{M_{t}-M_{0}}{M_{o}}$
where $\mathrm{D}=$ theoretical vapour density and $\mathrm{d}=$ vapour density after dissociation (observed V.D.), $\mathrm{M}_{\mathrm{t}}=$ theoretical (calculated) molecular mass and $\mathrm{M}_{\mathrm{o}}=$ observed molecular mass.
13. From integrated form of van't Hoff equation, viz.

$$
\log \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\frac{\Delta \mathrm{H}^{\circ}}{2.303 \mathrm{R}}\left[\frac{\mathrm{~T}_{2}-\mathrm{T}_{1}}{\mathrm{~T}_{1} \mathrm{~T}_{2}}\right]
$$

We may conclude that
(i) If $\Delta \mathrm{H}^{\circ}=0$, i.e. no heat is evolved or absorbed in the reaction.
$\log \left(\mathrm{K}_{2} / \mathrm{K}_{1}\right)=0$, i.e. $\mathrm{K}_{2} / \mathrm{K}_{1}=1$ or $\mathrm{K}_{2}=\mathrm{K}_{1}$.
So, equilibrium constant does not change with temperature.
(ii) If $\Delta \mathrm{H}^{\circ}=+\mathrm{ve}$, i.e. heat is absorbed in the reaction, then
$\log \left(\mathrm{K}_{2} / \mathrm{K}_{1}\right)=+\mathrm{ve}$ or $\log \mathrm{K}_{2}>\log \mathrm{K}_{1}$ or $\mathrm{K}_{2}>\mathrm{K}_{1}$.
So, equilibrium constant increases with increase in temperature.
(iii) If $\Delta \mathrm{H}^{\circ}=-\mathrm{ve}$, i.e. heat is evolved in the reaction, then
$\log \left(\mathrm{K}_{2} / \mathrm{K}_{1}\right)=-$ ve, i.e. $\log \mathrm{K}_{2}<\log \mathrm{K}_{1}$ or $\mathrm{K}_{2}<\mathrm{K}_{1}$.
So, equilibrium constant decreases with increase in temperature.

