SOLVED EXAMPLES

Ex. 1 Stomach acid is a solution of HCl with concentration of $2.2 \times 10^{-3} \mathrm{M}$. what is the pH of stomach acid :
(A) 3.92
(B) 2.65
(C) 4.92
(D) 1.92

Sol. (B)
HCl is 100% ionised so
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.2 \times 10^{-3} \mathrm{M}$
$\mathrm{pH}=-\log \left(2.2 \times 10^{-3} \mathrm{M}\right)$ or $\mathrm{pH}=2.65$
Ex. 2 Calculate the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of blood, the pH of which is 7.2 (slightly basic).
(A) $5 \times 10^{-8} \mathrm{M}$
(B) $6.3 \times 10^{-8} \mathrm{M}$
(C) $5 \times 10^{-9} \mathrm{M}$
(D) $4 \times 10^{-7} \mathrm{M}$

Sol. (B)
As $\mathrm{pH}=7.2$ so $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\operatorname{antilog}(-7.2)=6.3 \times 10^{-8} \mathrm{M}$
Ex. 3 The pH of an aqueous solution at $25^{\circ} \mathrm{C}$ made up to 0.3 M , with respect to NaOH and 0.5 M , with respect to acetic acid ($\mathrm{pK}_{\mathrm{a}}=4.76$) would be nearly :
(A) 4.25
(B) 4.93
(C) 4.75
(D) 5.05

Sol. (B)
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}-\log \frac{\text { [acid] }}{[\text { salt] }}$
0.3 MNaOH will react with acid to form $0.3 \mathrm{MCH}_{3} \mathrm{COONa}$ and therefore $\mathrm{CH}_{3} \mathrm{COOH}$ concentration will be reduced to 0.2 M .
$\mathrm{pH}=4.76-\log \frac{0.2}{0.3}=4.93$
Ex. 4 Calculate the pOH and pH of a $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COO}^{-}$solution $\left(\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}\right)$.
$\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}$
(A) $6.12,7.88$
(B) $4.12,9.88$
(C) $5.13,8.87$
(D) none of the above

Sol. (C)
$\mathrm{pH} \quad=7+\frac{1}{2} \mathrm{pK}_{\mathrm{a}}+\frac{1}{2} \log \mathrm{C}$

$$
=7+\frac{1}{2} \times 4.74+\frac{1}{2} \log (0.1)
$$

$\mathrm{pH}=8.87$
$\mathrm{pOH} \quad=14-8.87=5.13$
Ex. 5 The pH of a solution of NH_{3} is 5.806 . If its concentration is 0.95 M then what is the value of its dissociation constant ?
(A) anti $\log [28+\log (0.95)-23.242]$
(B) anti $\log [11.612-\log (0.95)-28]$
(C) anti $\log [11.612-\log (0.95)-14]$
(D) anti $\log [14+\log (0.95)-11.612]$

Sol. (B)
Since $\mathrm{pH}=14-\mathrm{pOH}$ and $\mathrm{pOH}=\frac{1}{2} \mathrm{pK}_{\mathrm{b}}-\frac{1}{2} \log \mathrm{C}$
or $\quad \mathrm{pH}=14-\frac{1}{2} \mathrm{pK}_{\mathrm{b}}+\frac{1}{2} \log \mathrm{C}$
or $\quad \mathrm{pK}_{\mathrm{b}}=2\left(14+\frac{1}{2} \log \mathrm{C}-\mathrm{pH}\right)$
or $\quad \mathrm{K}_{\mathrm{b}}=\operatorname{antilog}[11.612-\log (0.95)-28]$

Ex. 6 The solubility product of BaSO_{4} is 1.5×10^{-9}. The precipitation in a $0.01 \mathrm{M} \mathrm{Ba}^{2+}$ ions solution will start on adding $\mathrm{H}_{2} \mathrm{SO}_{4}$ of concentration :
(A) $10^{-9} \mathrm{M}$
(B) $10^{-8} \mathrm{M}$
(C) $10^{-7} \mathrm{M}$
(D) $10^{-6} \mathrm{M}$

Sol. (D)
$\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right]=1.5 \times 10^{-9}\left(\mathrm{~K}_{\mathrm{sp}}\right)$ and $\left[\mathrm{Ba}^{2+}\right]=0.01 \mathrm{M}$
so \quad Required $\left[\mathrm{SO}_{4}^{2-}\right]=\frac{1.5 \times 10^{-9}}{0.01}=1.5 \times 10^{-7}$
so $\quad\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]>1.5 \times 10^{-7}$ for precipitation of BaSO_{4}.

Ex. 7 pH of a saturated solution of $\mathrm{Ca}(\mathrm{OH})_{2}$ is 12 . Its solubility product is :
(A) 10^{-6}
(B) 4×10^{-6}
(C) 5×10^{-7}
(D) None of these

Sol. (C)
$\mathrm{pH}=12 \quad$ so $\quad\left[\mathrm{OH}^{-}\right]=10^{-2} \mathrm{M}$
Now $\mathrm{Ca}(\mathrm{OH})_{2(\mathrm{~s})} \rightleftharpoons \mathrm{Ca}^{2+}+2 \mathrm{OH}^{-}$
$5 \times 10^{-3} \mathrm{M} \quad 10^{-2} \mathrm{M}$
so $\mathrm{K}_{\text {sp }}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}$
$=\left(5 \times 10^{-3}\right)\left(10^{-2}\right)^{2}=5 \times 10^{-7}$
Ex. 8 A sample of 100 ml of 0.10 M acid $\mathrm{HA}\left(\mathrm{K}_{\mathrm{a}}=1 \times 10^{-7}\right)$ is titrated with standard 0.10 M KOH . How many mL of KOH will have to be added when the pH in the titration flask will be 7.00 ?
(A) 0
(B) 10
(C) 100
(D) 50

Sol. (D)

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { Salt }]}{[\text { Acid }]}
$$

$$
7=7+\log \frac{\left[\mathrm{N}_{2} \mathrm{~V}_{2}\right]}{\left[\mathrm{N}_{1} \mathrm{~V}_{1}-\mathrm{N}_{2} \mathrm{~V}_{2}\right]}
$$

$$
1=\frac{0.1 \times \mathrm{V}_{2}}{0.1 \times 100-0.1 \times \mathrm{V}_{2}}
$$

or $\quad 10-0.1 \mathrm{~V}_{2}=0.1 \mathrm{~V}_{2}$
or $\quad V_{2}=50 \mathrm{~mL}$
Ex. 9 If the solubility of lithium sodium hexafluoroaluminate, $\mathrm{Li}_{3} \mathrm{Na}_{3}\left(\mathrm{AlF}_{6}\right)_{2}$ is 's' $\mathrm{mol} \mathrm{L}^{-1}$, its solubility product is equal to:
(A) s^{8}
(B) $12 \mathrm{~s}^{3}$
(C) $18 \mathrm{~s}^{3}$
(D) $2916 \mathrm{~s}^{8}$

Sol. (D)
$\mathrm{Li}_{3} \mathrm{Na}_{3}\left(\mathrm{AlF}_{6}\right)_{2(\mathrm{~s})} \rightleftharpoons 3 \mathrm{Li}^{+}+3 \mathrm{Na}^{+}+2 \mathrm{AlF}_{6}^{6-}$
Let solubility of salt is ' s ' $\mathrm{mol} \mathrm{L}^{-1}$
so $\left[\mathrm{Li}^{+}\right]=3 \mathrm{~s}=\left[\mathrm{Na}^{+}\right]$
$\left[\mathrm{AlF}_{6}^{6-}\right]=2 \mathrm{~s}$
so $\quad \mathrm{K}_{\text {sp }}=\left[\mathrm{Li}^{+}\right]^{3}\left[\mathrm{Na}^{+}\right]^{3}\left[\mathrm{AlF}_{6}^{6-}\right]^{2}$
$=(3 \mathrm{~s})^{3}(3 \mathrm{~s})^{3}(2 \mathrm{~s})^{2}$
$=2916 \mathrm{~s}^{8}$

Ex. 10 pH of a buffer containing 6.0 g of $\mathrm{CH}_{3} \mathrm{COOH}$ and 8.2 g of $\mathrm{CH}_{3} \mathrm{COONa}$ in 1 L of water is $\left(\mathrm{pK}_{\mathrm{a}}=4.74\right)$:
(A) 7.5
(B) 4.74
(C) 5.5
(D) 6.5

Sol. (B)
$\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=\frac{6.0}{60} \times 1=0.1 \mathrm{M}$
$\left[\mathrm{CH}_{3} \mathrm{COONa}\right]=\frac{8.2}{82} \times 1=0.1 \mathrm{M}$
so

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { Salt }]}{[\text { Acid }]} \text { or } \mathrm{pH}=4.74+\log \left(\frac{0.1}{0.1}\right)=4.74
$$

Ex. 11 For the hydrolytic equilibrium ; $\mathrm{B}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{BOH}+\mathrm{H}^{+}$
$\mathrm{K}_{\mathrm{b}}=1 \times 10^{-5}$. Calculate the hydrolysis constant :
(A) 10^{-5}
(B) 10^{-19}
(C) 10^{-10}
(D) 10^{-9}

Sol. (D)
$\mathrm{K}_{\mathrm{h}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{b}}}=\frac{10^{-14}}{1 \times 10^{-5}}=10^{-9}$
Ex. 12 The solution of a salt of a weak acid and weak base will have pH : $\left(\mathrm{K}_{\mathrm{b}}=10^{-4} ; \mathrm{K}_{\mathrm{a}}=10^{-6}\right)$
(A) 7
(B) 8
(C) 6
(D) 4

Sol. (B)
$\mathrm{pH}=7+\frac{1}{2} \mathrm{pK}_{\mathrm{a}}-\frac{1}{2} \mathrm{pK}_{\mathrm{b}}=7+3-2=8$

Ex. 13 Determine the effect on the concentrations of $\mathrm{NH}_{3}, \mathrm{NH}_{4}^{+}$and OH^{-}when small amounts of each of the following is added to a solution of NH_{3} in water.
(A) HCl
(B) NH_{3}
(C) NaOH
(D) $\mathrm{NH}_{4} \mathrm{Cl}$
(E) KNO_{3}

Sol. The equilibria of NH_{3} in water will be
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}$(aq.) $+\mathrm{OH}^{-}$(aq.)
(A) If HCl is added it will furnish H^{+}and Cl^{-}ions as it is a strong electrolyte. Now H^{+}will form $\mathrm{H}_{2} \mathrm{O}$ with OH^{-}ions (neutralisation) so $\left[\mathrm{NH}_{3}\right]$ will decrease, $\left[\mathrm{NH}_{4}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$increase since equilibria will shift in forward direction.
(B) If more NH_{3} is added, then $\left[\mathrm{NH}_{3}\right],\left[\mathrm{NH}_{4}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$will increase.
(C) If NaOH is added it will furnish $\left[\mathrm{Na}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$ions since it is a strong electrolyte and $\left[\mathrm{OH}^{-}\right]$will suppress the ionisation of weak base NH_{3} so $\left[\mathrm{NH}_{3}\right]$ increases, $\left[\mathrm{NH}_{4}^{+}\right]$decreases and $\left[\mathrm{OH}^{-}\right]$increases.
(D) $\quad \mathrm{NH}_{4} \mathrm{Cl}$ will also apply common ion effect on $\mathrm{NH}_{4} \mathrm{OH}$ but now $\left[\mathrm{NH}_{3}\right]$ increases, $\left[\mathrm{NH}_{4}^{+}\right]$increases but $\left[\mathrm{OH}^{-}\right]$ decreases.
(E) NO effect expected.

Ex. 14 The pH of 0.0516 M solution of HCN is 2.34 , what is K_{a} for HCN ?
Sol. For weak acid.

$$
\begin{aligned}
& \mathrm{pH}=\frac{1}{2} \mathrm{pK}_{\mathrm{a}}-\frac{1}{2} \log \mathrm{C} \\
& 2.34=\frac{1}{2} \mathrm{pK}_{\mathrm{a}}-\frac{1}{2} \log (0.0516) \\
& \mathrm{pK}_{\mathrm{a}}=3.3926 \quad \text { or } \quad \mathrm{K}_{\mathrm{a}} \quad=\operatorname{anti} \log (-3.3926) \\
& \mathrm{K}_{\mathrm{a}}=4.04 \times 10^{-4}
\end{aligned}
$$

Ex. 15 A buffer with pH 10 is to prepared by mixing $\mathrm{NH}_{4} \mathrm{Cl}^{2}$ and $\mathrm{NH}_{4} \mathrm{OH}$. Calculate the number of moles of $\mathrm{NH}_{4} \mathrm{Cl}$ that should be added to one litre of $1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH} .\left(\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}\right)$:
Sol. Handerson equation for base buffer may be given as :

$$
\begin{align*}
& \mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \frac{[\text { Salt }]}{[\text { Base }]} \\
& 14-\mathrm{pH}=\mathrm{pK}_{\mathrm{b}}+\log \frac{[\text { Salt }]}{[\text { Base }]} \tag{i}
\end{align*}
$$

Given, pH

$$
=10
$$

$$
\text { [Base }]=\left[\mathrm{NH}_{4} \mathrm{OH}\right]=1 \mathrm{M}
$$

$$
\mathrm{pK}_{\mathrm{b}} \quad=-\log \mathrm{K}_{\mathrm{b}}
$$

$$
=-\log \left[1.8^{\circ} \times 10^{-5}\right]=4.7447
$$

Hence, from Eq. (i), we get

$$
\begin{aligned}
& 14-10=4.7447+\log \frac{[\text { Salt }]}{1} \\
& {[\text { Salt }]=0.18 \mathrm{M}}
\end{aligned}
$$

No. of moles of $\mathrm{NH}_{4} \mathrm{Cl}=0.18$
Ex. 16 Fluoroacetic acid has a K_{a} of 3.6×10^{-3}. What concentration of the acid is needed so that $\left[\mathrm{H}^{+}\right]$is 2.0×10^{-3} ?
Sol. $\mathrm{HC}_{2} \mathrm{H}_{2} \mathrm{FO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{FO}_{2}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{FO}_{2}^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{2} \mathrm{FO}_{2}\right]}=\frac{\left(2.0 \times 10^{-3}\right)^{2}}{\left[\mathrm{HC}_{2} \mathrm{H}_{2} \mathrm{FO}_{2}\right]}=3.6 \times 10^{-3}$
Thus $\quad\left[\mathrm{HC}_{2} \mathrm{H}_{2} \mathrm{FO}_{2}\right]=\frac{\left(2.0 \times 10^{-3}\right)^{2}}{\left(3.6 \times 10^{-3}\right)}=1.11 \times 10^{-3} \mathrm{M}$ remaining in solution.
Total concentration

$$
=\left(2.0 \times 10^{-3}\right)+\left(1.1 \times 10^{-3}\right)=3.1 \times 10^{-3} \mathrm{M}
$$

Ex. $17 \mathrm{~K}_{\mathrm{b}}$ of base imidazole at $25^{\circ} \mathrm{C}$ is 8.8×10^{-8}.
(A) In what amounts should 0.02 M HCl and 0.02 M imidazole be mixed 100 mL of a buffer at $\mathrm{pH}=7$?
(B) When the resulting buffer is diluted to one litre, calculate pH of the diluted buffer.

Sol. (A) $\mathrm{As} \mathrm{pH}=7, \mathrm{pOH}=14-7=7\left(\right.$ at $\left.25^{\circ} \mathrm{C}\right), \mathrm{pK}_{\mathrm{b}}=-\log \mathrm{K}_{\mathrm{b}}=-\log \left(8.8 \times 10^{-8}\right)=7.0555$
Applying
$\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \frac{[\text { Salt }]}{[\text { Base }]}$
$7=7.0555+\log \frac{[\text { Salt }]}{[\text { Base }]}$
$\log \frac{[\text { Salt }]}{[\text { Base }]}=-0.0555$
Taking antilog, $\frac{[\text { Base }]}{[\text { Salt }]}=1.14$
or $\quad \frac{\text { millimole of base }}{\text { millimole of salt }}=1.14$

CHEMISTRY FOR JEE MAIN \& ADVANCED

Suppose $\mathrm{V}_{1} \mathrm{ml}$ of HCl is mixed with $\mathrm{V}_{2} \mathrm{ml}$ of imidazole (base) to make the buffer. millimole of $\mathrm{HCl} \quad=0.02 \mathrm{~V}_{1}$ millimole of imidazole $=0.02 \mathrm{~V}_{2}$
As the buffer is of the base and its salt, 0.02 millimole of HCl will combine with 0.02 millimole of base to give 0.02 millimole of salt.
$\therefore \quad$ millimole of salt $=$ millimole of HCl

$$
=0.02 \mathrm{~V}_{1}
$$

and m.m. of base left $=0.02 \mathrm{~V}_{2}-0.02 \mathrm{~V}_{1}$
$\therefore \quad$ From (1), we get, $\frac{0.02\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)}{0.02 \mathrm{~V}_{1}}=1.14$
or $\quad \frac{V_{2}-V_{1}}{V_{1}}=1.14$
Given that $\mathrm{V}_{1}+\mathrm{V}_{2}=100 \mathrm{~mL}$
From (2) and (3) we get, $\mathrm{V}_{1}=31.84 \mathrm{~mL}$ and $\mathrm{V}_{2}=68.15 \mathrm{~mL}$
(B) pH shall remain the same on dilution as both K_{b} and [salt]/[base] will not change.

Ex. 18 A solution is prepared by mixing 200 mL of $0.025 \mathrm{CaCl}_{2}$ and 400 mL of $0.15 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$. Should CaSO_{4} precipitate from a solution?

Given $K_{\text {sp }}=2.4 \times 10^{-5}$
Sol. The equation for the equilibrium is

$$
\mathrm{CaSO}_{4}(\mathrm{~s}) \rightleftharpoons \mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(\mathrm{aq})
$$

and the solubility product expression is

$$
\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right]=2.4 \times 10^{-5}
$$

If we assume that the volumes of the solutions that are mixed are additive, the final solution will have a volume of 600 ml . This total volume contains the equivalent of 200 mL of CaCl_{2}, so the concentration of Ca^{2+} ions is

$$
\begin{aligned}
& {\left[\mathrm{Ca}^{2+}\right]=\left(\frac{200 \mathrm{mLCaCl}_{2} \text { solution }}{600 \mathrm{~mL} \text { total volume }}\right) \times(0.025 \mathrm{M})=8.33 \times 10^{-3} \mathrm{M} \text { and the concentration of } \mathrm{SO}_{4}^{2-} \text { ions is }} \\
& {\left[\mathrm{SO}_{4}^{2-}\right]=\left(\frac{400 \mathrm{~mL} \mathrm{Na}_{2} \mathrm{SO}_{4} \text { solution }}{600 \mathrm{~mL} \text { total volume }}\right) \times(0.15 \mathrm{M})=0.1 \mathrm{M}}
\end{aligned}
$$

The ionic product is

$$
\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right]=\left(8.33 \times 10^{-3}\right)\left(1.0 \times 10^{-1}\right)=8.33 \times 10^{-4}
$$

Which is larger than K_{sp}, so CaSO_{4} should precipitate from the solution.

Ex. 19 Calculate the pH of a solution of 0.10 M acetic acid. Calculate the pH after 100 mL of this solution is treated with 50.0 mL of $0.10 \mathrm{M} \mathrm{NaOH} .\left(\mathrm{K}_{\mathrm{a}} \mathrm{CH}_{3} \mathrm{COOH}=1.8 \times 10^{-5}\right)$

Sol. $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}=1.8 \times 10^{-5}
$$

Before treatment:

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]=\mathrm{X}} \\
& {\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]=0.10-\mathrm{X} \approx 0.10} \\
& \frac{\mathrm{x}^{2}}{0.10}=1.8 \times 10^{-5} \text { thus } \\
& \mathrm{x}=1.35 \times 10^{-3}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \text {and } \mathrm{pH}=2.87 \\
& \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \longrightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O} \\
& 100 \times 0.1 \quad 50 \times 0.1 \\
& =10
\end{aligned} \quad-5 \quad-\quad-\quad 5
$$

this is the buffer solution

$$
\mathrm{pH}=\mathrm{pk}_{\mathrm{a}}+\log \frac{[\text { salt }]}{[\text { acid }]}=4.74+\log \frac{[5]}{[5]}=4.74
$$

Ex. 20 Ionic product of water and ionization constant of acetic acid at $25^{\circ} \mathrm{C}$ are 1×10^{-14} and 1.75×10^{-5} respectively. Calculate the hydrolysis constant of sodium acetate and its degree of hydrolysis in $10^{-3} \mathrm{M}$ solution. Also calculate the pH of the solution?
Sol. $\mathrm{CH}_{3} \mathrm{COONa}$ is salt of weak acid and strong base ; its degree of hydrolysis may be calculated using the formula :

$$
\begin{equation*}
\mathrm{h}=\sqrt{\left(\frac{\mathrm{K}_{\mathrm{h}}}{\mathrm{C}}\right)}=\sqrt{\left(\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{CK}_{\mathrm{a}}}\right)} \tag{i}
\end{equation*}
$$

Hence, from Eq. (i)

$$
\mathrm{h}=\sqrt{\frac{10^{-14}}{10^{-3} \times 1.75 \times 10^{-5}}}=7.55 \times 10^{-4}
$$

$\mathrm{K}_{\mathrm{h}}($ hydrolysis constant $)=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}}}=\frac{10^{-14}}{1.75 \times 10^{-5}}=5.7 \times 10^{-10}$
pH after salt hydrolysis may be calculated as -
$\mathrm{pH}=\frac{1}{2}\left[\mathrm{pK}_{\mathrm{w}}+\mathrm{pK}_{\mathrm{a}}+\log \mathrm{C}\right]$
$\mathrm{pK}_{\mathrm{w}}=-\log \mathrm{K}_{\mathrm{w}}=-\log 10^{-14}=14$
$\mathrm{pK}_{\mathrm{a}} \quad=-\log \mathrm{K}_{\mathrm{a}}=-\log \left(1.75 \times 10^{-5}\right)=4.7569$
$\log \mathrm{C}=\log 10^{-3}=-3$
Substituting the values in Eq.(ii), we get
$\mathrm{pH}=\frac{1}{2}[14+4.7569-3]$
or $\quad \mathrm{pH}=7.88$

CHEMISTRY FOR JEE MAIN \& ADVANCED

Ex. 21 If $\left[\mathrm{Cd}^{2+}\right]=\left[\mathrm{Zn}^{2+}\right]=0.1 \mathrm{M}$ initially, what $\left[\mathrm{H}^{+}\right]$must be maintained in a saturated $\mathrm{H}_{2} \mathrm{~S}(0.1 \mathrm{M})$ to precipitate CdS but not ZnS ?

$$
\begin{array}{ll}
\mathrm{K}_{\text {sp }}(\mathrm{CdS}) & =8 \times 10^{-27} \\
\mathrm{~K}_{\text {sp }}(\mathrm{ZnS}) & =1 \times 10^{-21} \\
\mathrm{~K}_{\mathrm{a}}\left(\mathrm{H}_{2} \mathrm{~S}\right) & =1.1 \times 10^{-21}
\end{array}
$$

Sol. In order to prevent precipitation of ZnS ,

$$
\left[\mathrm{Zn}^{2+}\right]\left[\mathrm{S}^{2-}\right]<\mathrm{K}_{\mathrm{sp}}(\mathrm{ZnS})=1 \times 10^{-21}
$$

(Ionic product)
or

$$
\begin{gathered}
(0.1) \cdot\left[\mathrm{S}^{2-}\right]<1 \times 10^{-21} \\
{\left[\mathrm{~S}^{2-}\right]<1 \times 10^{-20}}
\end{gathered}
$$

This is the maximum value of $\left[\mathrm{S}^{2-}\right]$ before ZnS will precipitate. Let $\left[\mathrm{H}^{+}\right]$to maintain this $\left[\mathrm{S}^{2-}\right]$ be x .
Thus for $\quad \mathrm{H}_{2} \mathrm{~S} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{S}^{2-}$,

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{~S}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]}=\frac{\mathrm{x}^{2}\left(1 \times 10^{-20}\right)}{0.1}=1.1 \times 10^{-21}
$$

or $\quad \mathrm{x}=\left[\mathrm{H}^{+}\right]=0.1 \mathrm{M}$.
$\therefore \quad$ No ZnS will precipitate at a concentration of H^{+}greater than 0.1 M .
Ex. 22 If $0.10 \mathrm{M} \mathrm{KH}_{2} \mathrm{BO}_{3}$ is titrated with 0.10 M HCl , what indicator should be used for this titration? $\left[\mathrm{K}_{\mathrm{a}} 7.3 \times 10^{-10}\right]$
Sol. $\mathrm{H}_{2} \mathrm{BO}_{3}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \longrightarrow \mathrm{H}_{3} \mathrm{BO}_{3}+\mathrm{H}_{2} \mathrm{O}$
At the equivalence point, $0.050 \mathrm{MH}_{3} \mathrm{BO}_{3}$ would be produced. Only the first ionization step of $\mathrm{H}_{3} \mathrm{BO}_{3}$ is important to the pH .

$$
\mathrm{H}_{3} \mathrm{BO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{BO}_{3}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{H}_{2} \mathrm{BO}_{3}^{-}\right]}{\left[\mathrm{H}_{3} \mathrm{BO}_{3}\right]}=\frac{\mathrm{x}^{2}}{0.050}$

$$
=7.3 \times 10^{-10} \text { thus } \mathrm{x}=6.0 \times 10^{-6} \text { and } \mathrm{pH}=5.22
$$

pH 5.22 is in the middle of the range of methyl red, which would therefore be suitable.
Ex. 23 In an attempted determination of the solubility product constant of $\mathrm{T} \ell_{2} \mathrm{~S}$, the solubility of this compound in pure CO_{2} free water was determined as $6.3 \times 10^{-6} \mathrm{~mol} / \mathrm{L}$. Assume that the dissolved sulphide hydrolysis almost completely to HS^{-}and that the further hydrolysis to $\mathrm{H}_{2} \mathrm{~S}$ can be neglected. What is the computed $\mathrm{K}_{\mathrm{sp}} ?\left(\mathrm{~K}_{2}=1.0 \times 10^{-14}\right)$
Sol. $\quad \mathrm{T} \ell_{2} \mathrm{~S} \rightleftharpoons 2 \mathrm{~T} \ell^{+}+\mathrm{S}^{2-}, \mathrm{K}_{\mathrm{sp}}=\left[\mathrm{T} \ell^{+}\right]^{2}\left[\mathrm{~S}^{2-}\right]$
$\mathrm{S}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HS}^{-}+\mathrm{OH}^{-}$

$$
\mathrm{K}_{\mathrm{h}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{2}}=\frac{1.0 \times 10^{-14}}{1.0 \times 10^{-14}}=1.0
$$

$\left[\mathrm{T} \ell^{+}\right]=2\left(6.3 \times 10^{-6}\right) \mathrm{M},\left[\mathrm{S}^{-2}\right]=6.3 \times 10^{-6} \mathrm{M}$, and since $\left[\mathrm{HS}^{-}\right]=\left[\mathrm{S}^{-2}\right]$

$$
\begin{aligned}
\mathrm{K}_{\mathrm{h}} & =\frac{\left(6.3 \times 10^{-6}\right)^{2}}{\left[\mathrm{~S}^{-2}\right]}=1.0 \\
{\left[\mathrm{~S}^{2-}\right] } & =\left(6.3 \times 10^{-6}\right)^{2} \\
\mathrm{~K}_{\mathrm{sp}} & =\left(6.3 \times 10^{-6}\right)^{2}\left[2\left(6.3 \times 10^{-6}\right)\right]^{2} \\
& =6.3 \times 10^{-21}
\end{aligned}
$$

Ex. 24

Sol. $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+} \rightleftharpoons \mathrm{Cu}^{2+}+4 \mathrm{NH}_{3}$
$\mathrm{K}_{\mathrm{d}}=\frac{\left[\mathrm{Cu}^{2+}\right]\left[\mathrm{NH}_{3}\right]^{4}}{\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\right]}=1.0 \times 10^{-12}$
since the sum of the concentration of copper in the complex and in the free ionic state must equal $0.0010 \mathrm{~mol} / \mathrm{L}$, and since the amount of the free ion is very small, the concentration of the complex is taken to be $0.0010 \mathrm{~mol} / \mathrm{L}$.

Let $\mathrm{x}^{4}=\left[\mathrm{NH}_{3}\right]$
Then $\frac{\left(10^{-12}\right)\left(\mathrm{x}^{4}\right)}{0.0010}=1.0 \times 10^{-3}$
or $\quad \mathrm{x}^{4}=1.0 \times 10^{-2}$
or $\quad \mathrm{x}=0.178$
The concentration of NH_{3} at equilibrium is $0.178 \mathrm{~mol} / \mathrm{L}$. The amount of NH_{3} used up in forming $0.0010 \mathrm{~mol} / \mathrm{L}$ of complex is $0.0040 \mathrm{~mol} / \mathrm{L}$, an amount negligible compared with the amount remaining at equilibrium. Hence the amount of NH_{3} to be added is $0.178 \mathrm{~mol} / \mathrm{L}$.

Ex. 25 The solubility of $\mathrm{Pb}(\mathrm{OH})_{2}$ in water is $7.6 \times 10^{-6} \mathrm{M}$. Calculate the solubility of $\mathrm{Pb}(\mathrm{OH})_{2}$ in buffer solution of $\mathrm{pH}=8$.
Sol.

Ex. 26 Calculate pH of the following mixtures. Given that $\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}$ and $\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}$:
(A) 50 mL of $0.05 \mathrm{M} \mathrm{NaOH}+50 \mathrm{~mL}$ of $0.10 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$
(B) 50 mL of $0.10 \mathrm{M} \mathrm{NaOH}+50 \mathrm{~mL}$ of $0.10 \mathrm{MCH}_{3} \mathrm{COOH}$

Sol. (A)
(A)

$$
\mathrm{K}_{\mathrm{sp}_{\left(\mathrm{Pb} /(\mathrm{OH})_{2}\right)}}=4 \mathrm{~S}^{3}=4 \times\left(7.6 \times 10^{-6}\right)^{3}=1.755 \times 10^{-15}
$$

The pH of buffer solution $=8, \mathrm{pOH}=6$
$\therefore \quad\left[\mathrm{OH}^{-}\right]=10^{-6}$
For left solubility of $\mathrm{Pb}(\mathrm{OH})_{2}$
$\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=\mathrm{K}_{\text {sp }}$
$\Rightarrow \quad(\mathrm{S})\left(2 \mathrm{~S}+10^{-6}\right)^{2}=1.755 \times 10^{-15}$
$\Rightarrow \quad \mathrm{S}=\frac{1.755 \times 10^{-15}}{10^{-12}}$
$\left(2 \mathrm{~S}+10^{-6} \approx 10^{-6}\right)$
$\Rightarrow \quad \mathrm{S}=1.755 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$

Initial
Millimoles
Millimoles
$\begin{array}{lllll}\text { after reaction } & 2.5 & 0 & 2.5 & 2.5\end{array}$

CHEMISTRY FOR JEE MAIN \& ADVANCED

The solution consists of $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$ and thus for buffer

Finally concentration of $\mathrm{CH}_{3} \mathrm{COONa}=\frac{5}{100}$, and pH is decided by salt hydrolysis.

$\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH}$		
C	0	0
$\mathrm{C}(1-\mathrm{h})$	Ch	Ch

$$
\begin{aligned}
& {\left[\mathrm{OH}^{-}\right]=\mathrm{Ch}=\mathrm{C} \sqrt{\frac{\mathrm{~K}_{\mathrm{h}}}{\mathrm{C}}}=\sqrt{\frac{\mathrm{K}_{\mathrm{w}} \times \mathrm{C}}{\mathrm{~K}_{\mathrm{a}}}}=\sqrt{\frac{10^{-14}}{1.8 \times 10^{-5}} \times \frac{5}{100}}=5.27 \times 10^{-6} \mathrm{M}} \\
& {\left[\mathrm{H}^{+}\right]=\frac{10^{-14}}{5.27 \times 10^{-6}}=\frac{10^{-8}}{5.27}=0.189 \times 10^{-8} \text { or } \mathrm{pH}=8.72}
\end{aligned}
$$

Ex. 27 Calculate the pH of an aqueous solution of 0.2 M ammonium formate assuming complete dissociation (pK_{a} of formic $\mathrm{acid}=3.8$ and pK_{b} of ammonia $=4.8$)

Sol. $\quad \mathrm{HCOONH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCOOH}+\mathrm{NH}_{4} \mathrm{OH}$
The pH of the salt of weak acid and weak base is given by
$\mathrm{pH}=\frac{1}{2}\left[\mathrm{pK}_{\mathrm{w}}+\mathrm{pK}_{\mathrm{a}}-\mathrm{pK}_{\mathrm{b}}\right] \Rightarrow \mathrm{pH}=\frac{1}{2}[14+3.8-4.8]=6.5$

Ex. 28
Should $\mathrm{Mg}(\mathrm{OH})_{2}$ precipitate from a solution that is $0.001 \mathrm{M} \mathrm{MgCl}_{2}$ if the solution is also made 0.10 M in $\mathrm{NH}_{3}\left[\mathrm{~K}_{\mathrm{sp}\left[\mathrm{Mg}(\mathrm{OH})_{2}\right]}=1.8 \times 10^{-11}, \mathrm{~K}_{\mathrm{b}\left(\mathrm{NH}_{4} \mathrm{OH}\right)}=1.8 \times 10^{-5}\right]$.

Sol.

$$
\begin{aligned}
{\left[\mathrm{OH}^{-}\right] \text {in } 0.10 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH} } & =\sqrt{\mathrm{K}_{\mathrm{b}} \mathrm{C}} \quad \text { (Ostwald's d } \\
& =\sqrt{1.8 \times 10^{-5} \times 0.1}=1.34 \times 10^{-3} \mathrm{M} \\
\Rightarrow \quad\left[\mathrm{Mg}^{2+}\right] \quad & =0.001 \mathrm{M} \\
\text { Ionic product } & =\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=(0.001) \times\left(1.34 \times 10^{-3}\right)^{2} \\
& =1.8 \times 10^{-9}>\mathrm{Ksp}
\end{aligned}
$$

(Ostwald's dilution law)

As, Ionic product is greater than $\mathrm{K}_{\text {sp }}$ of $\mathrm{Mg}(\mathrm{OH})_{2}$, hence precipitation should occur.

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\text { [Salt }]}{[\text { Acid }]} \\
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{CH}_{3} \mathrm{COONa}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]} \\
& \Rightarrow \quad \mathrm{pH}=-\log 1.8 \times 10^{-5}+\log \frac{2.5 / 100}{2.5 / 100} \Rightarrow \mathrm{pH}=4.7447 \\
& \text { (B) }
\end{aligned}
$$

Ex. 29

Sol. For indicator dissociation equilibrium

$$
\mathrm{Hl}_{\mathrm{n}} \rightleftharpoons \mathrm{H}^{+}+\mathrm{I}_{\mathrm{n}}^{-}
$$

Colour A Colour B

$K_{\mathrm{ln}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{l}_{\mathrm{n}}^{-}\right]}{\left[\mathrm{Hl}_{\mathrm{n}}\right]}$
The mid - point of the colour change of an indicator Hl_{n} is the point at which
$\left[\ln ^{-}\right]=\left[\mathrm{Hl}_{\mathrm{n}}\right]$,
$\mathrm{K}_{\mathrm{ln}}=\left[\mathrm{H}^{+}\right]=1 \times 10^{-5}$
$\therefore \mathrm{pH}=5$
Thus, at $\mathrm{pH}=5$ the indicator will change its colour.
$\mathrm{K}_{\mathrm{ln}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{l}_{\mathrm{n}}^{-}\right]}{\left[\mathrm{Hl}_{\mathrm{n}}\right]} \Rightarrow 1 \times 10^{-5}=\frac{\left[\mathrm{H}^{+}\right] \times 60 / 100}{20 / 100}$
$\therefore\left[\mathrm{H}^{+}\right]=0.666 \times 10^{-5}$
$\therefore \mathrm{pH}=5.1760$
Ex. 30 A solution has $0.1 \mathrm{M} \mathrm{Mg}^{2+}$ and $0.05 \mathrm{M} \mathrm{NH}_{3}$. Calculate the concentration of $\mathrm{NH}_{4} \mathrm{Cl}$ required to prevent the formation of $\mathrm{Mg}(\mathrm{OH})_{2}$ in solution. $\mathrm{K}_{{\text {sp }\left[\mathrm{Mas}_{8}\left(\mathrm{OH} \mathrm{H}_{2}\right]\right.}}=18.0 \times 10^{-12}$ and ionisation constant of NH_{3} is 1.8×10^{-5}.
Sol. The minimum $\left[\mathrm{OH}^{-}\right]$at which there will be no precipitation of $\mathrm{Mg}(\mathrm{OH})_{2}$ can be obtained by $\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}$

$$
\begin{array}{ll}
\Rightarrow & 18.0 \times 10^{-12}=(0.1) \times\left[\mathrm{OH}^{-}\right]^{2} \\
\therefore & {\left[\mathrm{OH}^{-}\right]=1.34 \times 10^{-5} \mathrm{M}}
\end{array}
$$

Thus, solution having $\left[\mathrm{OH}^{-}\right]=1.34 \times 10^{-5} \mathrm{M}$ will not show precipitation of $\mathrm{Mg}(\mathrm{OH})_{2}$ in $0.1 \mathrm{M} \mathrm{Mg}^{2+}$. These hydroxyl ions are to be derived by basic buffer of $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{4} \mathrm{OH}$.

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{b}}+\log \frac{[\text { Salt }]}{[\text { Base }]} \Rightarrow \mathrm{pH}=\mathrm{pK}_{\mathrm{b}}+\log \frac{\left[\mathrm{NH}_{4}^{+}\right]}{\left[\mathrm{NH}_{4} \mathrm{OH}\right]} \\
& \mathrm{NH}_{4} \mathrm{OH} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
\end{aligned}
$$

In presence of $\left[\mathrm{NH}_{4} \mathrm{Cl}\right]$, all the NH_{4}^{+}ions provided by $\mathrm{NH}_{4} \mathrm{Cl}$ as due to common ion effect, dissociation of $\mathrm{NH}_{4} \mathrm{OH}$ will be suppressed.

$$
\begin{aligned}
& -\log \left[\mathrm{OH}^{-}\right]=-\log 1.8 \times 10^{-5}+\log \frac{\left[\mathrm{NH}_{4}^{+}\right]}{[0.05]} \\
\therefore & {\left[\mathrm{NH}_{4}^{+}\right]=0.067 \mathrm{M} \text { or } \quad\left[\mathrm{NH}_{4} \mathrm{Cl}\right]=0.067 \mathrm{M} }
\end{aligned}
$$

Ex. 31 What is pH of $1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ solution? To what volume must one litre of this solution be diluted so that the pH of resulting solution will be twice the original value. Given : $\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}$
Sol.

$$
\begin{array}{r}
\mathrm{K}_{\mathrm{a}}=\frac{\mathrm{x}^{2}}{1-\mathrm{x}} \approx \frac{\mathrm{x}^{2}}{1} \therefore \mathrm{x}=\sqrt{\mathrm{K}_{\mathrm{a}}}=4.2 \times 10^{-3}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left\{4.2 \times 10^{-3}\right\}=3-\log 4.2=2.37
\end{array}
$$

Now, let 1 L of 1 M AcOH solution be diluted to V L to double the pH and the conc. of diluted solution be C .

CHEMISTRY FOR JEE MAIN \& ADVANCED

New $\mathrm{pH}=2 \times$ Old $\mathrm{pH}=2 \times 2.37=4.74$
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=4.74$
$\therefore\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.8 \times 10^{-5}$

Initial

$$
-1.8 \times 10^{-5} \quad 1.8 \times 10^{-5} \quad 1.8 \times 10^{-5}
$$

Final

$$
\mathrm{C}-1.8 \times 10^{-5} \quad 1.8 \times 10^{-5} \quad 1.8 \times 10^{-5}
$$

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right] \times\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}
$$

$1.8 \times 10^{-5}=\frac{1.8 \times 10^{-5} \times 1.8 \times 10^{-5}}{\mathrm{C}-1.8 \times 10^{-5}}$
$\therefore \mathrm{C}=3.6 \times 10^{-5} \mathrm{M}$
On dilution,
$\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$
$1 \mathrm{M} \times 1 \mathrm{~L}=3.6 \times 10^{-5} \mathrm{M} \times \mathrm{V}_{2}$
$\therefore \mathrm{V}_{2}=2.78 \times 10^{4} \mathrm{~L}$
Ex. 32 A sample of AgCl was treated with 10 mL of $1.7 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution to give $\mathrm{Ag}_{2} \mathrm{CO}_{3}$. The remaining solution

Sol. $\quad\left[\mathrm{CO}_{3}{ }^{2-}\right]=\left[\mathrm{Na}_{2} \mathrm{CO}_{3}\right]=1.7 \mathrm{M}$
At eqm., $\left[\mathrm{Cl}^{-}\right]=[\mathrm{NaCl}]=\frac{0.0026}{35.5}=7.32 \times 10^{-5} \mathrm{M}$

$\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CO}_{3}^{2-}\right]=\mathrm{K}_{\mathrm{sp}_{\left(\mathrm{Ag}_{2} \mathrm{CO}_{3}\right)}}$
$\therefore\left[\mathrm{Ag}^{+}\right]=\sqrt{\frac{\mathrm{K}_{\mathrm{sp}_{\left(\mathrm{ABC}_{2} 2 \mathrm{C}_{3}\right)}}}{\left[\mathrm{CO}_{3}^{2-}\right]}}=\sqrt{\frac{8.2 \times 10^{-12}}{1.7}}=2.1963 \times 10^{-6} \mathrm{M}$
$\therefore \mathrm{K}_{\mathrm{sp}_{(\mathrm{AgCl})}}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]=\left(2.1963 \times 10^{-6}\right) \times\left(7.32 \times 10^{-5}\right)=1.61 \times 10^{-10}$

Ex. $33 \quad$ Given $\mathrm{Ag}^{+}\left(\mathrm{NH}_{3}\right)_{2} \rightleftharpoons \mathrm{Ag}^{+}+2 \mathrm{NH}_{3}, \mathrm{~K}_{\mathrm{c}}=8.2 \times 10^{-8}$ and $\mathrm{K}_{\mathrm{sp}_{\mathrm{Ag} \mathrm{Cl})}}=2.378 \times 10^{-10}$ at 298 K . Calculate the concentration of the complex in 1.0 M aqueous ammonia.

Sol. $\quad\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{Ag}^{+}(\mathrm{aq})+2 \mathrm{NH}_{3}(\mathrm{aq})$

$$
x+y \quad 2 x
$$

$\mathrm{AgCl}(\mathrm{s}) \rightleftharpoons \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$

$$
x+y \quad y
$$

In case of simultaneous solubility, Ag^{+}remains same in both the equilibrium

$$
\left.\begin{array}{rl}
\mathrm{K}_{\mathrm{c}} & =\frac{(\mathrm{x}+\mathrm{y}) \times(2 \mathrm{x})^{2}}{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}} \\
\mathrm{K}_{\mathrm{sp}} & =(\mathrm{x}+\mathrm{y}) \times \mathrm{y} \\
\therefore \quad & \frac{\mathrm{~K}_{\mathrm{c}}}{\mathrm{~K}_{\mathrm{sp}}}
\end{array}=\frac{(2 \mathrm{x})^{2}}{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+} \times \mathrm{y}} \text { Given, }\left[\mathrm{NH}_{3}\right]=2 \mathrm{x}=1 \mathrm{M}\right)
$$

$\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}=\left[\mathrm{Cl}^{-}\right]=y$ because Ag^{+}obtained from AgCl passes in $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$state.

$$
\frac{\mathrm{K}_{c}}{\mathrm{~K}_{\text {sp }}}=\frac{1}{\mathrm{y} \times \mathrm{y}} \Rightarrow \mathrm{y}^{2}=\frac{2.378 \times 10^{-10}}{8.2 \times 10^{-8}}=0.29 \times 10^{-2} \therefore \mathrm{y}=0.539 \times 10^{-1}=0.0539 \mathrm{M}
$$

That is, $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}=0.539 \mathrm{M}$
Ex. 34 How many moles of NH_{3} must be added to 1 litre of $0.1 \mathrm{M} \mathrm{AgNO}_{3}$ solution to reduce Ag^{+}concentration to $2 \times 10^{-7} \mathrm{M} . \mathrm{K}_{\mathrm{d}}\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}=7.2 \times 10^{-8}$

Sol. $\quad \operatorname{As~K}_{\mathrm{f}}\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}=\frac{1}{7.2 \times 10^{-8}}=$ very-very large
Hence, almost all Ag^{+}ions will be converted to $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$

$$
\begin{array}{ll}
\therefore \quad & {\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+} \approx 0.1 \mathrm{M}} \\
& {\left[\mathrm{Ag}^{+}\right]=2 \times 10^{-7}} \\
& \mathrm{~K}=\frac{\left[\mathrm{Ag}^{+}\right]\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}} \Rightarrow 7.2 \times 10^{-8}=\frac{2 \times 10^{-7} \times\left[\mathrm{NH}_{3}\right]^{2}}{0.1}
\end{array}
$$

$\left[\mathrm{NH}_{3}\right]=0.189 \mathrm{M}$
It is the concentration of free NH_{3}.
$\left[\mathrm{NH}_{3}\right]_{\text {total }}=\left[\mathrm{NH}_{3}\right]_{\text {friee }}+\left[\mathrm{NH}_{3}\right]_{\text {complexed }}=0.189+2 \times 0.1=0.389 \mathrm{M}$
Ex. 35 (i) What mass of Pb^{2+} ion is left in solution when 50 mL of $0.2 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ is added to 50.0 mL of $1.5 \mathrm{M} \mathrm{NaCl} ?\left(\mathrm{~K}_{\mathrm{sp}} \mathrm{PbCl}_{2}=1.7 \times 10^{-4}\right)$
(ii) 0.16 g of $\mathrm{N}_{2} \mathrm{H}_{4}$ is dissolved in water and the total volume made up to 500 mL . Calculate the percentage of $\mathrm{N}_{2} \mathrm{H}_{4}$ that has reacted with water at this dilution. The K_{b} for $\mathrm{N}_{2} \mathrm{H}_{4}$ is $9.0 \times 10^{-6} \mathrm{M}$.
Sol. (i) Millimoles of Pb^{2+} before precipitation $=50 \times 0.2=10$
Millimoles of Cl^{-}before precipitation $=50 \times 1.5=75$
Assuming complete precipitation of PbCl_{2} followed by establishment of equilibrium.
Millimoles of Cl^{-}left after precipitation
$=75-20=55$ in 100 mL .
After precipitation $\left[\mathrm{Cl}^{-}\right]=0.55 \mathrm{M}$
That means, we have to find out solubility of PbCl_{2} in $0.55 \mathrm{M} \mathrm{Cl}^{-}$ion solution.
$\mathrm{PbCl}_{2} \rightleftharpoons \mathrm{~Pb}^{2+}+2 \mathrm{Cl}^{-}, \mathrm{K}_{\text {sp }}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{Cl}^{-}\right]^{2}$
$\left[\mathrm{Pb}^{2+}\right]=\frac{\mathrm{K}_{\text {sp }}}{\left[\mathrm{Cl}^{-}\right]^{2}}=\frac{1.7 \times 10^{-4}}{(0.55)^{2}}=5.6 \times 10^{-4} \mathrm{M}$

CHEMISTRY FOR JEE MAIN \& ADVANCED

$$
\begin{aligned}
& \text { Mass of } \mathrm{Pb}^{2+} \text { in solution }=\frac{5.6 \times 10^{-4}}{1000} \times 100 \times 208=1165 \mathrm{mg} \\
& \text { (ii) }\left[\mathrm{N}_{2} \mathrm{H}_{4}\right]=\frac{0.16}{32} \times \frac{1000}{500}=0.01 \mathrm{M} \\
& \mathrm{~N}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{~N}_{2} \mathrm{H}_{5}^{+}+\mathrm{OH}^{-} \\
& 1 \\
& (1-\alpha) \\
& \mathrm{K}_{\mathrm{b}}=\mathrm{Ca}^{2}, \\
& \alpha^{2}=\frac{\mathrm{K}_{\mathrm{b}}}{\mathrm{C}}=\frac{9.0 \times 10^{-6}}{0.01}=9 \times 10^{-4} \\
& \Rightarrow \quad \alpha=\sqrt{9.0 \times 10^{-4}}=3 \times 10^{-2}=3 \%
\end{aligned}
$$

Ex. 36 If very small amount of phenolphthalein is added to 0.15 M solution of sodium benzoate, what fraction of the indicator will exist in the coloured form?

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}(\text { Benzoic acid) }}=6.2 \times 10^{-5} \\
& \mathrm{~K}_{\mathrm{w}\left(\mathrm{H}_{2} \mathrm{O}\right)}=1 \times 10^{-14} \\
& \mathrm{~K}_{\ln (\text { Phenolphthalein })}=3.16 \times 10^{-10}
\end{aligned}
$$

Sol. Formula for pH of solution due to hydrolysis of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}$

$$
\mathrm{pH}=\frac{1}{2}\left[\mathrm{pK}_{\mathrm{w}}+\mathrm{pK}_{\mathrm{a}}+\log \mathrm{C}\right]=\frac{1}{2}\left[14-\log 6.2 \times 10^{-5}+\log 0.15\right]=8.6918
$$

Formula for pH of indicator
$\mathrm{pH}=\mathrm{pK}_{\mathrm{In}}+\log \frac{\left[\mathrm{In}^{-}\right]}{\left[\mathrm{H}_{\mathrm{In}}\right]} \Rightarrow 8.6918=-\log \left(3.16 \times 10^{-10}\right)+\log \frac{\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}$
$\therefore \frac{\left[\mathrm{In}^{-}\right]}{\left[\mathrm{H}_{\mathrm{In}}\right]}=0.16$ (Fraction of indicator in coloured form $=0.16$)

Ex. 37 What will be the Ag^{+}ion concentration in a solution of 0.2 M solution of $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$?

$$
\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+} \rightleftharpoons \mathrm{Ag}^{+}+2 \mathrm{NH}_{3} ; \quad \mathrm{K}_{\mathrm{dis}}=5.8 \times 10^{-8}
$$

Sol. Let, concentration of Ag^{+}at equilibrium be C
$\therefore\left[\mathrm{NH}_{3}\right]=2 \mathrm{C}$
$\mathrm{K}_{\mathrm{dis}}=\frac{\left[\mathrm{Ag}^{+}\right]\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}\right]} \Rightarrow 5.8 \times 10^{-8}=\frac{\mathrm{C} \times 4 \mathrm{C}^{2}}{0.2}$
$\therefore \mathrm{C}=0.0014 \mathrm{M}$.

A solution contains $0.1 \mathrm{M} \mathrm{Cl}^{-}$and $0.001 \mathrm{M} \mathrm{CrO}_{4}^{2-}$. If solid AgNO_{3} is gradually added to this solution which will precipitate first, AgCl or $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$? Assume that the addition causes no change in volume. Given $\mathrm{K}_{\mathrm{sp}(\mathrm{AgCl})}=1.6 \times$ $10^{-10} \mathrm{M}^{2}$ and $\mathrm{K}_{\mathrm{sp}\left(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\right)}=1.79 \times 10^{-12} \mathrm{M}^{3}$. What $\%$ of Cl^{-}remains in solution when CrO_{4}^{2-} starts precipitating ?
Sol. $\quad \mathrm{Ag}^{+}$ion concentration required for precipitation
For $\mathrm{AgCl},\left[\mathrm{Ag}^{+}\right]=\frac{\mathrm{K}_{\mathrm{sp}(\mathrm{AgCl})}}{\left[\mathrm{Cl}^{-}\right]}=\frac{1.6 \times 10^{-10}}{0.1}=1.6 \times 10^{-10} \mathrm{M}$
For $\mathrm{Ag}_{2} \mathrm{CrO}_{4},\left[\mathrm{Ag}^{+}\right]^{2}=\frac{\mathrm{K}_{\text {sp }\left(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\right)}}{\left[\mathrm{CrO}_{4}^{2-}\right]}=\frac{1.79 \times 10^{-12}}{(0.001)}$
$\therefore\left[\mathrm{Ag}^{+}\right]=\left[1.79 \times 10^{-9} \mathrm{M}^{2}\right]^{1 / 2}=4.23 \times 10^{-5} \mathrm{M}$
AgCl will precipitate first because it requires low concentration of Ag^{+}. Remaining concentration of Cl^{-}when
$\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ starts precipitating $=\frac{\mathrm{K}_{\mathrm{sp}(\mathrm{AgCl})}}{\left[\mathrm{Ag}^{+}\right]}=\frac{1.6 \times 10^{-10}}{4.23 \times 10^{-5}}=3.78 \times 10^{-6} \mathrm{M}$.
$\%$ of remaining concentration of $\mathrm{Cl}^{-}=\frac{3.78 \times 10^{-6}}{0.1} \times 100=3.78 \times 10^{-3} \%$

Ex. 39 Determine the concentration of NH_{3} solution whose one litre can dissolve $0.10 \mathrm{molof} \mathrm{AgCl} . \mathrm{K}_{\text {sp(AgCl) }}$ and $\mathrm{K}_{\mathrm{f}\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{]}}$are $10^{-9} \mathrm{M}^{2}$ and $1.6 \times 10^{6} \mathrm{M}^{-2}$ respectively.

Sol.

$$
\left.\left.\begin{array}{ll}
\mathrm{AgCl}(\mathrm{~s}) \rightleftharpoons \mathrm{Ag}^{+}+\mathrm{Cl}^{-} & \begin{array}{l}
\mathrm{K}_{1}=\mathrm{K}_{\mathrm{sp}} \\
\mathrm{Ag}^{+}+2 \mathrm{NH}_{3} \rightleftharpoons \mathrm{Ag}^{+}\left(\mathrm{NH}_{3}\right)_{2}
\end{array} \\
\hline \mathrm{AgCl}(\mathrm{~s})+2 \mathrm{NH}_{3} \rightleftharpoons \mathrm{~K}_{\mathrm{f}}
\end{array}\right] \begin{array}{ll}
\rightleftharpoons \mathrm{Ag}^{+}\left(\mathrm{NH}_{3}\right)_{2}+\mathrm{Cl}^{-} & \mathrm{K}=\mathrm{K}_{\mathrm{sp}} \times \mathrm{K}_{\mathrm{f}}
\end{array}\right] \begin{aligned}
& \therefore \mathrm{K}=\frac{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}\left[\mathrm{Cl}^{-}\right]}{\left[\mathrm{NH}_{3}\right]^{2}}(\text { Given solubility of } \mathrm{AgCl}=0.10) \\
& \therefore\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}=0.10 \mathrm{M}, \\
& \mathrm{Also},\left[\mathrm{Cl}^{-}\right]=0.1 \\
& 1 \times 10^{-9} \times 1.6 \times 10^{6}=\frac{0.1 \times 0.1}{\left[\mathrm{NH}_{3}\right]^{2}} \\
& \therefore\left[\mathrm{NH}_{3}\right]^{2}=6.25 \Rightarrow\left[\mathrm{NH}_{3}\right]=2.5 \mathrm{M}
\end{aligned}
$$

Thus, $\left[\mathrm{NH}_{3}\right]$ at equilibrium $=2.5 \mathrm{M}$
Also 0.2 M of NH_{3} must have been used to dissolve 0.1 M AgCl
$\therefore\left[\mathrm{NH}_{3}\right]_{\text {Total }}=2.5+0.2=2.7 \mathrm{M}$

Exercise \# 1 $>$ [Single Correct Choice Type Questions]

1. In the following reaction $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}(\mathrm{aq})+\mathrm{PO}_{4}^{3-}(\mathrm{aq}) \rightleftharpoons \mathrm{HPO}_{4}^{2-}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}(\mathrm{aq})$, which are the two Bronsted bases?
(A) $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$and PO_{4}^{3-}
(B) $\mathrm{HPO}_{4}{ }^{2-}$ and $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$
(C) $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$and $\mathrm{HPO}_{4}{ }^{2-}$
(D) PO_{4}^{3-} and $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$
2. Boric acid $\mathrm{H}_{3} \mathrm{BO}_{3}$ is a :
(A) Arrhenius acid
(B) Bronsted acid
(C) Lewis acid
(D) All of these
3. The following equilibrium is established when HClO_{4} is dissolved in weak acid HF .

$$
\mathrm{HF}+\mathrm{HClO}_{4} \rightleftharpoons \mathrm{ClO}_{4}^{-}+\mathrm{H}_{2} \mathrm{~F}^{+}
$$

Which of the following is correct set of conjugate acid base pair ?
(A) HF and HClO_{4}
(B) HF and ClO_{4}^{-}
(C) HF and $\mathrm{H}_{2} \mathrm{~F}^{+}$
(D) $\mathrm{HClO}_{4} \& \mathrm{H}_{2} \mathrm{~F}^{+}$
4. Identify the amphoteric species from the following :
(I) $\mathrm{H}_{2} \mathrm{O}$
(II) NH_{3}
(III) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
(IV) HCO_{3}^{-}
(A) I, II
(B) III, IV
(C) I, II, III
(D) I, II, III, IV
5. The following equilibrium is established when hydrogen chloride is dissolved in acetic acid

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \rightleftharpoons \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COOH}_{2}^{+}(\mathrm{aq}) .
$$

The set that characterises the conjugate acid-base pairs is
(A) $\left(\mathrm{HCl}, \mathrm{CH}_{3} \mathrm{COOH}\right)$ and $\left(\mathrm{CH}_{3} \mathrm{COOH}_{2}^{+}, \mathrm{Cl}^{-}\right)$
(B) $\left(\mathrm{HCl}, \mathrm{CH}_{3} \mathrm{COOH}_{2}^{+}\right)$and $\left(\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{Cl}^{-}\right)$
(C) $\left(\mathrm{CH}_{2} \mathrm{COOH}_{2}^{+}, \mathrm{HCl}\right)$ and $\left(\mathrm{Cl}^{-}, \mathrm{CH}_{3} \mathrm{COOH}\right)$
(D) $\left(\mathrm{HCl}, \mathrm{Cl}^{-}\right)$and $\left(\mathrm{CH}_{3} \mathrm{COOH}_{2}^{+}, \mathrm{CH}_{3} \mathrm{COOH}\right)$.
6. Which of the following relations is correct?
(A) $\Delta \mathrm{G}^{\mathrm{o}}=\mathrm{RT} \ln \mathrm{K}_{\text {eq }}$
(B) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{\mathrm{pH}}$
(C) $\log \frac{\mathrm{Kw}_{2}}{\mathrm{Kw}_{1}}=\frac{\Delta \mathrm{H}^{\circ}}{2.303 \mathrm{R}}\left(\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right)$
(D) $\left[\mathrm{OH}^{-}\right]=10^{-7}$, for pure water at all temperatures.
7. pOH of $\mathrm{H}_{2} \mathrm{O}$ is 7.0 at 298 K . If water is heated at 350 K , which of the following statement should be true?
(A) pOH will decrease.
(B) pOH will increase.
(C) pOH will remain 7.0.
(D) concentration of H^{+}ions will increase but that of OH^{-}will decrease.
8. K_{w} of $\mathrm{H}_{2} \mathrm{O}$ at 373 K is 1×10^{-12}. Identify which of the following is incorrect.
(A) pK_{w} of $\mathrm{H}_{2} \mathrm{O}$ is 12
(B) pH of $\mathrm{H}_{2} \mathrm{O}$ is 6
(C) $\mathrm{H}_{2} \mathrm{O}$ is neutral
(D) $\mathrm{H}_{2} \mathrm{O}$ is acidic
9. Which of the following expression is not true ?
(A) $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=\sqrt{\mathrm{K}_{\mathrm{W}}}$ for a neutral solution at all temperatures.
(B) $\left[\mathrm{H}^{+}\right]>\sqrt{\mathrm{K}_{\mathrm{W}}} \&\left[\mathrm{OH}^{-}\right]<\sqrt{\mathrm{K}_{\mathrm{W}}}$ for an acidic solution
(C) $\left[\mathrm{H}^{+}\right]<\sqrt{\mathrm{K}_{\mathrm{W}}} \&\left[\mathrm{OH}^{-}\right]>\sqrt{\mathrm{K}_{\mathrm{W}}}$ for an alkaline solution
(D) $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=10^{-7} \mathrm{M}$ for a neutral solution at all temperatures .
10. Which of the following is incorrect ?
(A) K_{a} (weak acid). K_{b} (conjugate weak base) $=\mathrm{K}_{\mathrm{w}}$
(B) K_{a} (strong acid). K_{b} (conjugate weak base) $=\mathrm{K}_{\mathrm{w}}$
(C) K_{a} (weak acid). $\mathrm{K}_{\mathrm{b}}($ weak base $)=\mathrm{K}_{\mathrm{w}}$
(D) K_{a} (weak acid). $\mathrm{K}_{\mathrm{b}}($ conjugate strong base $)=\mathrm{K}_{\mathrm{w}}$
11. In pure liquid of HCOOH , concentration of $\mathrm{HCOO}^{-}=10^{-3} \mathrm{M}$ at $27^{\circ} \mathrm{C}$. What is the self ionisation constant $\left(\mathrm{K}=\left[\mathrm{HCOOH}_{2}^{+}\right]\left[\mathrm{HCOO}^{-}\right]\right)$
(A) 10^{-3}
(B) 10^{3}
(C) 10^{6}
(D) 10^{-6}
12. Pure water ionise as

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

At $25^{\circ} \mathrm{C}$ the pH of pure water is approximately $7.0 \mathrm{At} 37^{\circ} \mathrm{C}$ its pH is :
(A) More than 7.0
(B) Less than 7.0
(C) Equal to 7.0
(D) None of these
13. K_{a} for the acid HA is 1×10^{-6}. The value of K for the reaction $\mathrm{A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightleftharpoons \mathrm{HA}+\mathrm{H}_{2} \mathrm{O}$ is
(A) 1×10^{-6}
(B) 1×10^{12}
(C) 1×10^{-12}
(D) 1×10^{6}
14. The pK_{a} value of NH_{4}^{+}is 9 . The pK_{b} value of $\mathrm{NH}_{4} \mathrm{OH}$ would be :
(A) 9
(B) 5
(C) 7
(D) 8
15. $\quad \mathrm{K}_{\mathrm{b}_{1}}$ of $\mathrm{N}_{2} \mathrm{H}_{4}$ is 4.0×10^{-6}. Then what is the acid dissociation constant of $\mathrm{N}_{2} \mathrm{H}_{5}^{+}$and $\mathrm{N}_{2} \mathrm{H}_{6}^{+2}$ respectively.
(A) data insufficient, 4×10^{-6}
(B) data insufficient, 2.5×10^{-8}
(C) 2.5×10^{-9}, data insufficient
(D) $2.5 \times 10^{-9}, 4 \times 10^{-6}$
16. Given $\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{K}_{\mathrm{a}}}{\rightleftharpoons} \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{F}^{-}$

$$
\mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{~K}_{\mathrm{b}}}{\rightleftharpoons} \mathrm{HF}+\mathrm{OH}^{-}
$$

Which relation is correct.
(A) $\mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}}$
(B) $\mathrm{K}_{\mathrm{a}} \cdot \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}}$
(C) $\mathrm{K}_{\mathrm{b}}=\frac{1}{\mathrm{~K}_{\mathrm{w}}}$
(D) $\frac{\mathrm{K}_{\mathrm{a}}}{\mathrm{K}_{\mathrm{a}}}=\mathrm{K}_{\mathrm{w}}$
17. How many moles of NaOH must be removed from one litre of aqueous solution to change its pH from 12 to 11 ?
(A) 0.009
(B) 0.01
(C) 0.02
(D) 0.1
18. Which of the following solution will have a pH exactly equal to 8 ?
(A) $10^{-8} \mathrm{M} \mathrm{HCl}$ solution at $25^{\circ} \mathrm{C}$
(B) $10^{-8} \mathrm{M} \mathrm{H}^{+}$solution at $25^{\circ} \mathrm{C}$
(C) $2 \times 10^{-6} \mathrm{MBa}(\mathrm{OH})_{2}$ solution at $25^{\circ} \mathrm{C}$
(D) $10^{-5} \mathrm{M} \mathrm{NaOH}$ solution at $25^{\circ} \mathrm{C}$
19. The $\left[\mathrm{OH}^{-}\right]$in 100.0 ml of $0.016 \mathrm{M}-\mathrm{HCl}(\mathrm{aq})$ is :
(A) $5 \times 10^{12} \mathrm{M}$
(B) $3 \times 10^{-10} \mathrm{M}$
(C) $6.25 \times 10^{-13} \mathrm{M}$
(D) $2.0 \times 10^{-9} \mathrm{M}$.
20. 0.1 mol HCl is dissolved in distilled water of volume V then at $\lim _{\mathrm{V} \rightarrow \infty}(\mathrm{pH})_{\text {solution }}$ is equal to
(A) zero
(B) 1
(C) 7
(D) 14
21. The pH of a solution obtained by mixing 50 ml of 0.4 N HCl and 50 ml of 0.2 N NaOH is :
(A) 13
(B) 12
(C) 1.0
(D) 2.0
22. Which of the following solution will have pH close to 1.0 ?
(A) 100 ml of $\mathrm{M} / 10 \mathrm{HCl}+100 \mathrm{ml}$ of $\mathrm{M} / 10 \mathrm{NaOH}$
(B) 55 ml of $\mathrm{M} / 10 \mathrm{HCl}+45 \mathrm{ml}$ of $\mathrm{M} / 10 \mathrm{NaOH}$
(C) 10 ml of $\mathrm{M} / 10 \mathrm{HCl}+90 \mathrm{ml}$ of $\mathrm{M} / 10 \mathrm{NaOH}$
(D) 75 ml of $\mathrm{M} / 5 \mathrm{HCl}+25 \mathrm{ml}$ of $\mathrm{M} / 5 \mathrm{NaOH}$.
23. Concentration of the anion will be $3 \mathrm{c} . \alpha$ for the following weak electrolytes.
(A) AB_{2}
(B) AB
(C) AB_{3}
(D) $\mathrm{A}_{3} \mathrm{~B}_{4}$
24. Ostwald's dilution law gives satisfactory results with the solution of which electrolyte ?
(A) HCl
(B) HNO_{3}
(C) $\mathrm{CH}_{3} \mathrm{COOH}$
(D) NaOH
25. Dissociation constant of mono basic acids A, B, C and D are $6 \times 10^{-4}, 5 \times 10^{-5}, 3.6 \times 10^{-6}$ and 7×10^{-10} respectively. The pH values of their 0.1 M aqueous solution are in the order.
(A) D $>$ C $>$ B $>$ A
(B) A $>$ B $>$ C $>$ D
(C) D $>$ C $>$ A $>$ B
(D) None
26. Which of the following has the highest degree of ionisation?
(A) $1 \mathrm{MNH}_{3}$
(B) $0.001 \mathrm{M} \mathrm{NH}_{3}$
(C) $0.1 \mathrm{M} \mathrm{NH}_{3}$
(D) $0.0001 \mathrm{M} \mathrm{NH}_{3}$.
27. At infinite dilution the percentage dissociation of both weak acid and weak base is:
(A) 1%
(B) 20%
(C) 50%
(D) 100%
28. One litre of solution contains 10^{-5} moles of H^{+}ions at $25^{\circ} \mathrm{C}$. Percentage ionisation of water in solution is :
(A) $1.8 \times 10^{-7} \%$
(B) $1.8 \times 10^{-9} \%$
(C) $3.6 \times 10^{-9} \%$
(D) $1.8 \times 10^{-11} \%$.
29. Which statement/relationship is correct?
(A) pH of $0.1 \mathrm{M} \mathrm{HNO}_{3}, 0.1 \mathrm{M} \mathrm{HCl}, 0.1 \mathrm{M} \mathrm{HI}$ is not equal.
(B) $\mathrm{pH}=-\log \frac{1}{\left[\mathrm{H}^{+}\right]}$
(C) At $25^{\circ} \mathrm{C}$ the pH of pure water is 7 .
(D) The value of pK_{w} at $25^{\circ} \mathrm{C}$ is 7 .
30. In a solution of $0.1 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ acid, (given $\mathrm{K}_{\mathrm{a}_{2}}=10^{-3}, \mathrm{~K}_{\mathrm{a}_{2}}=10^{-7}, \mathrm{~K}_{\mathrm{a}_{3}}=10^{-12}$)
(i) Concentration of $\mathrm{H}_{3} \mathrm{PO}_{4}$ is :
(A) 0.01
(B) 0.09
(C) 0.05
(D) 0.1
(ii) Concentration of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is :
(A) 0.01
(B) 0.09
(C) 0.02
(D) 0.04
(iiii) Concentration of $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{2-}$ is :
(A) 10^{-7}
(B) 10^{-8}
(C) 10^{-3}
(D) 10^{-4}
(iv) Concentration of $\mathrm{PO}_{4}{ }^{3-}$ is :
(A) 10^{-20}
(B) 10^{-17}
(C) 10^{-15}
(D) 10^{-12}
(v) pH of solution is :
(A) 1
(B) 2
(C) 4
(D) 5
31. For ortho phosphoric acid,
$\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq}) ; \quad \mathrm{K}_{\mathrm{a}}$ $\mathrm{H}_{2} \mathrm{PO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HPO}_{4}^{2-}(\mathrm{aq}) ; \quad \mathrm{K}_{\mathrm{a}_{2}}$ $\mathrm{HPO}_{4}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{PO}_{4}^{3-}(\mathrm{aq}) ; \quad \mathrm{K}_{\mathrm{a}_{3}}$
The correct order of K_{a} values is :
(A) $\mathrm{K}_{\mathrm{a}_{1}}>\mathrm{K}_{\mathrm{a}_{2}}<\mathrm{K}_{\mathrm{a}_{3}}$
(B) $\mathrm{K}_{\mathrm{a}_{1}}<\mathrm{K}_{\mathrm{a}_{2}}<\mathrm{K}_{\mathrm{a}_{3}}$
(C) $\mathrm{K}_{\mathrm{a}_{1}}>\mathrm{K}_{\mathrm{a}_{2}}>\mathrm{K}_{\mathrm{a}_{3}}$
(D) $\mathrm{K}_{\mathrm{a}_{1}}<\mathrm{K}_{\mathrm{a}_{2}}>\mathrm{K}_{\mathrm{a}_{3}}$
32. Approximate pH of 0.1 M aqueous $\mathrm{H}_{2} \mathrm{~S}$ solution when K_{1} and K_{2} for $\mathrm{H}_{2} \mathrm{~S}$ at $25^{\circ} \mathrm{C}$ are 1×10^{-7} and 1.3×10^{-13} respectively:
(A) 4
(B) 5
(C) 6
(D) 8
33. Consider an aqueous solution, 0.1 M each in $\mathrm{HOCN}, \mathrm{HCOOH},(\mathrm{COOH})_{2}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$, for HOCN , we can write $\mathrm{K}_{\mathrm{a}}(\mathrm{HOCN})=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OCN}^{-}\right]}{[\mathrm{HOCN}]} \cdot\left[\mathrm{H}^{+}\right]$in this expression refers to
(A) H^{+}ions released by HOCN
(B) Sum of H^{+}ions released by all monoprotic acids
(C) Sum of H^{+}ions released only the first dissociation of all the acids.
(D) Overall H^{+}ion concentration in the solution.
34. The dissociation constant of acetic acid at a given temperature is 1.69×10^{-5}. The degree of dissociation of 0.01 M acetic acid in the presence of 0.01 M HCl is equal to
(A) 0.41
(B) 0.13
(C) 1.69×10^{-3}
(D) 0.013 .
35. The pH of a solution obtained by mixing 100 ml of $0.2 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ with 100 ml of 0.2 M NaOH would be : $\left(\mathrm{pK}_{\mathrm{a}}\right.$ for $\left.\mathrm{CH}_{3} \mathrm{COOH}=4.74\right)$
(A) 4.74
(B) 8.87
(C) 9.10
(D) 8.57
36. $\quad \mathrm{pH}$ of $0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}$ and $0.2 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4}$ are respectively : pK for $\mathrm{H}_{3} \mathrm{PO}_{4}$ are 2.2, 7.2 and 12.0.
(A) 4.7, 9.6
(B) $9.6,4.7$
(C) $4.7,5.6$
(D) 5.6,4.7
37. The pH of 0.1 M solution of the following salts increases in the order :
[JEE-1999]
(A) $\mathrm{NaCl}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCN}<\mathrm{HCl}$
(B) $\mathrm{HCl}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCl}<\mathrm{NaCN}$
(C) $\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCl}<\mathrm{HCl}$
(D) $\mathrm{HCl}<\mathrm{NaCl}<\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{Cl}$
38. A pair of salts are given in a solution each in 0.1 M concentration. Which solution has a higher pH ?
(A) NaCN and NaOBr
(B) NaF and NaOCl
(C) NaF and NaOBr
(D) NaCN and NaOCl
39. Which of the following salts undergoes anionic hydrolysis?
(A) CuSO_{4}
(B) $\mathrm{NH}_{4} \mathrm{Cl}$
(C) AlCl_{3}
(D) $\mathrm{K}_{2} \mathrm{CO}_{3}$.
40. The sodium salt of a certain weak monobasic organic acid is hydrolysed to an extent of 3% in its 0.1 M solution at $25^{\circ} \mathrm{C}$. Given that the ionic product of water is 10^{-14} at this temperature, what is the dissociation constant of the acid?
$(A) \approx 1 \times 10^{-10}$
$(B) \approx 1 \times 10^{-9}$
(C) 3.33×10^{-9}
(D) 3.33×10^{-10}
41. Consider following statements :

I: $\mathrm{CH}_{3} \mathrm{COOH}$ (a weak acid) behaves as a strong acid in NH_{3}.
II : HNO_{3} (strong acid) behaves as a base in HF (anhydrous).
III : $\mathrm{H}_{2} \mathrm{SO}_{4}$ dissociates to a very small extent in glacial $\mathrm{CH}_{3} \mathrm{COOH}$.
Select correct alternate for these statements.
(A) I, III
(B) II, III
(C) I, II
(D) I, II, III
42. When 0.1 mole solid NaOH is added in 1 lt of $0.1 \mathrm{M} \mathrm{NH}_{3}(\mathrm{aq})$ then which statement is wrong? $\left(\mathrm{K}_{\mathrm{b}}=2 \times 10^{-5}, \log 2=0.3\right)$
(A) degree of dissociation of NH_{3} approaches to zero.
(B) change in pH by adding NaOH would be 1.85
(C) In solution, $\left[\mathrm{Na}^{+}\right]=0.1 \mathrm{M},\left[\mathrm{NH}_{3}\right]=0.1 \mathrm{M},\left[\mathrm{OH}^{-}\right]=0.2 \mathrm{M}$.
(D) on addition of $\mathrm{OH}^{-}, \mathrm{K}_{\mathrm{b}}$ of NH_{3} does not changes.
43. At what molar concentration of HCl will its aqueous solution have an $\left[\mathrm{H}^{+}\right]$to which equal contributions come from HCl and $\mathrm{H}_{2} \mathrm{O}$.
(A) $\sqrt{60} \times 10^{-7} \mathrm{M}$
(B) $\sqrt{50} \times 10^{-8} \mathrm{M}$
(C) $\sqrt{40} \times 10^{-9} \mathrm{M}$
(D) $\sqrt{30} \times 10^{-8}$
44. The correct relationship between the pH of isomolar solutions of $\mathrm{Na}_{2} \mathrm{O}\left(\mathrm{pH}_{1}\right), \mathrm{Na}_{2} \mathrm{~S}\left(\mathrm{pH}_{2}\right) \mathrm{Na}_{2} \mathrm{Se}\left(\mathrm{pH}_{3}\right)$ and $\mathrm{Na}_{2} \mathrm{Te}\left(\mathrm{pH}_{4}\right)$ is:
(A) $\mathrm{pH}_{1}>\mathrm{pH}_{2}>\mathrm{pH}_{3}>\mathrm{pH}_{4}$
(B) $\mathrm{pH}_{1}<\mathrm{pH}_{2}<\mathrm{pH}_{3}<\mathrm{pH}_{4}$
(C) $\mathrm{pH}_{1}<\mathrm{pH}_{2}<\mathrm{pH}_{3}=\mathrm{pH}_{4}$
(D) $\mathrm{pH}_{1}>\mathrm{pH}_{2}=\mathrm{pH}_{3}>\mathrm{pH}_{4}$
45. The pH of which salt is independent of its concentration :

1. $\left(\mathrm{CH}_{3} \mathrm{COO}\right) \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}$
2. $\mathrm{NaH}_{2} \mathrm{PO}_{4}$
3. $\mathrm{Na}_{2} \mathrm{HPO}_{4}$
4. $\mathrm{NH}_{4} \mathrm{CN}$
(A) $1,2,3,4$
(B) 1,4
(C) 2,3
(D) 1, 2, 3
5. A certain mixture of HCl and $\mathrm{CH}_{3}-\mathrm{COOH}$ is 0.1 M in each of the acids. 20 ml of this solution is titrated against 0.1 M NaOH . By how many units does the pH change from the start to the stage when the HCl is almost completely neutralised and acidic acid remains unreacted? K_{a} for acetic $\mathrm{acid}=2 \times 10^{-5}$.
(A) 1.5
(B) 3
(C) 2
(D) 3.25
6. For a weak electrolyte (HA) dissociation as $\lim \mathrm{c} \rightarrow 0$, then:
(A) Electrolyte is assumed to be 100% ionised
(B) Its dissociation constant remains same
(C) The interionic attractions diminishe to zero
(D) All of these
7. An acid with molelcular formula $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}$ forms three types of sodium salts. i.e., $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3} \mathrm{Na}_{1} \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{3} \mathrm{Na}_{2}$ and $\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{O}_{3} \mathrm{Na}_{3}$. The basicity of the acid:
(A) One
(B) Two
(C) Three
(D) Four
8. In water, the acid $\mathrm{HCIO}_{4} . \mathrm{HCI}, \mathrm{H}_{2} \mathrm{SO}_{4}$ and HNO_{3} exhibit the same strength as they are completely ionised in water (a base). This is called.......of the solvent water.
(A) Strength
(B) Capacity
(C) Buffer effect
(D) Levelling effect
9. The conjugate base of $\left[\mathrm{AI}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}\right]$ is :
(A) $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{2}\right]^{+}$
(B) $\left[\mathrm{AI}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{2} \mathrm{O}\right]$
(C) $\left[\mathrm{AI}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}\right]^{-}$
(D) $\left[\mathrm{AI}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{OH})_{4}\right]^{-}$
10. Which of the following is not correct :
(A) $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=\sqrt{\mathrm{K}_{\mathrm{w}}}$ for a neutral solution at all temperatures
(B) $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=10^{-7}$ for a neutral solution at all temperatures
(C) $\left[\mathrm{H}^{+}\right]>\sqrt{\mathrm{K}_{\mathrm{w}}}$ and $\left[\mathrm{OH}^{-}\right]<\sqrt{\mathrm{K}_{\mathrm{w}}}$ for an acidic solution
(D) $\left[\mathrm{H}^{+}\right]<\sqrt{\mathrm{K}_{\mathrm{w}}}$ and $\left[\mathrm{OH}^{-}\right]>\sqrt{\mathrm{K}_{\mathrm{w}}}$ for an alkaline solution
11. Which of the following correctly explains the nature of boric acid in aqueous medium:
(A) $\mathrm{H}_{3} \mathrm{BO}_{3} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{H}_{3}^{+} \mathrm{O}+\mathrm{H}_{2} \mathrm{BO}_{3}^{-}$
(B) $\mathrm{H}_{3} \mathrm{BO}_{3} \xrightarrow{2 \mathrm{H}_{2} \mathrm{O}} 2 \mathrm{H}_{3}^{+} \mathrm{O}+\mathrm{HBO}_{3}^{2-}$
(C) $\mathrm{H}_{3} \mathrm{BO}_{3} \xrightarrow{3 \mathrm{H}_{2} \mathrm{O}} 3 \mathrm{H}_{3}^{+} \mathrm{O}+\mathrm{BO}_{3}^{3-}$
(D) $\mathrm{H}_{3} \mathrm{BO}_{3} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{B}(\mathrm{OH})_{4}^{-}+\mathrm{H}^{+}$
12. pH for the solution of salt undergoing anionic hydrolysis (say $\mathrm{CH}_{3} \mathrm{COONa}$) is given by:
(A) $\mathrm{pH}=1 / 2\left[\mathrm{pK}_{\mathrm{w}}+\mathrm{pK}_{\mathrm{a}}+\operatorname{logC}\right]$
(B) $\mathrm{pH}=1 / 2\left[\mathrm{pK}_{\mathrm{w}}+\mathrm{pKa}-\operatorname{logC}\right]$
(C) $\mathrm{pH}=1 / 2\left[\mathrm{pK}_{\mathrm{w}}+\mathrm{pK}_{\mathrm{b}}-\operatorname{logC}\right]$
(D) None of these
13. The pH of 0.1 M solution of the following salts increases in the order:
(A) $\mathrm{NaCI}<\mathrm{NH}_{4} \mathrm{CI}<\mathrm{NaCN}<\mathrm{HCI}$
(B) $\mathrm{HCI}<\mathrm{NH}_{4} \mathrm{CI}<\mathrm{NaCI}<\mathrm{NaCN}$
(C) $\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{CI}<\mathrm{NaCI}<\mathrm{HCI}$
(D) $\mathrm{HCI}<\mathrm{NaCl}<\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{CI}$
14. The pH of the solution obtanied by mixing 10 mL of $10^{-1} \mathrm{~N} \mathrm{HCI}$ and 10 mL of $10^{-1} \mathrm{~N} \mathrm{NaOH}$ is:
(A) 8
(B) 2
(C) 7
(D) None of these
15. pH of water is 7.0 at $25^{\circ} \mathrm{C}$. If water is heated to $70^{\circ} \mathrm{C}$, the:
(A) pH will decrease and solution becomes acidic
(B) pH will increase
(C) pH will remain constant as 7
(D) pH will decrease but solution will be neutral
16. The ratio of dissociation constant of two weak acids HA and HB is 4. At what moar concentration ratio, the two acids will have same pH in separate solutions:
(A) 2
(B) 0.5
(C) 4
(D) 0.25
17. The reverse process of neutralisation is:
(A) Hydrolysis
(B) Decomposition
(C) Dehydration
(D) Synthesis
18. $10^{-6} \mathrm{M} \mathrm{HCI}$ is diluted to 100 times. Its pH is:
(A) 6.0
(B) 8.0
(C) 6.95
(D) 9.5
19. Which solution will have pH closer to 1.0:
(A) 100 mL of $(\mathrm{M} / 10) \mathrm{HCI}+100 \mathrm{~mL}$ of $(\mathrm{M} / 10) \mathrm{NaOH}$
(B) 55 mL of $(\mathrm{M} / 10) \mathrm{HCI}+45 \mathrm{~mL}$ of $(\mathrm{M} / 10) \mathrm{NaOH}$
(C) 10 mL of $(\mathrm{M} / 10) \mathrm{HCI}+90 \mathrm{~mL}$ of $(\mathrm{M} / 10) \mathrm{NaOH}$
(D) 75 mL of $(\mathrm{M} / 5) \mathrm{HCI}+25 \mathrm{~mL}$ of $(\mathrm{M} / 5) \mathrm{NaOH}$
20. $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ is insoluble in water. On adding a few drops of HCI to solid $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ in contact with water, the solid dissolves. The reason is:
(A) The solvent becomes more polar on adding HCI
(B) $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ combines with HCI to form soluble CaCI_{2} and $\mathrm{H}_{3} \mathrm{PO}_{4}$
(C) $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$ is formed, which dissolves
(D) $\mathrm{H}_{3} \mathrm{PO}_{4}$, a weak acid is formed and the solubility product of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ decrease
21. A certain weak acid has a dissociation contant 1.0×10^{-4}. The equilibrium constant for its reaction with a strong base is:
(A) 1.0×10^{-4}
(B) 1.0×10^{-10}
(C) 1×10^{-10}
(D) 1.0×10^{-14}
22. K_{a} for the acid HA is 1×10^{-6}. The value of K for the reaction $\mathrm{A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightleftharpoons \mathrm{HA}+\mathrm{H}_{2} \mathrm{O}$ is
(A) 1×10^{-6}
(B) 1×10^{12}
(C) 1×10^{-12}
(D) 1×10^{6}
23. The degree of hydrolysis of a salt of weak acid and weak base in its 0.1 M solution is found to be 50%. If the molarity of the solution is 0.2 M , the percentage hydrolysis of the salt should be:
(A) 100%
(B) 50%
(C) 25%
(D) None of these
24. Precentage ionisation of weak acid can be calculated using the formula:
(A) $100 \sqrt{\frac{K_{a}}{C}}$
(B) $\frac{100}{1+10^{\left(\mathrm{pK}_{\mathrm{a}}-\mathrm{pH}\right)}}$
(C) Both (A) and (B)
(D) None of these
25. pH of $0.01 \mathrm{M} \mathrm{HS}^{-}$will be:
(A) $\mathrm{pH}=7+\frac{\mathrm{pK}_{\mathrm{a}}}{2}+\frac{\log \mathrm{C}}{2}$
(B) $\mathrm{pH}=7-\frac{\mathrm{pK}_{\mathrm{a}}}{2}+\frac{\log \mathrm{C}}{2}$
(C) $\mathrm{pH}=7+\frac{\mathrm{pK}_{1}+\mathrm{pK}_{2}}{2}$
(D) $\mathrm{pH}=7+\left(\frac{\mathrm{pK}_{\mathrm{a}}+\mathrm{pK}_{\mathrm{b}}}{2}\right)$
26. 10 mL of $10^{-6} \mathrm{M} \mathrm{HCI}$ solution is mixed with $90 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$. pH will change approximately:
(A) By one unit
(B) By 0.3 unit
(C) By 0.7 unit
(D) By 0.1 unit
27. Number of H^{+}ions present in 10 mL of solution of $\mathrm{pH}=3$ are:
(A) 10^{13}
(B) 6.02×10^{18}
(C) 6.02×10^{13}
(D) 6.02×10^{10}
28. For pure water :
(A) pH increases and pOH decreases with rise in temperature
(B) pH decreases and pOH increases with rise in temperature
(C) Both pH and pOH increase with rise in temperature
(D) Both pH and pOH decrease with rise in temperature
29. The self ionisation constant for pure formic acid, $\mathrm{K}=\left[\mathrm{HCOOH}_{2}^{+}\right]\left[\mathrm{HCOO}^{-}\right]$has been estimated as 10^{-6} at room temperature. The density of formic acid is $1.15 \mathrm{~g} / \mathrm{cm}^{3}$. The percentage of formic acid molecules in pure fomic acid are converted to formate ion:
(A) 0.002%
(B) 0.004%
(C) 0.006%
(D) 0.008%
30. 10 mL , of a strong acid solution of $\mathrm{pH}=2.000$ are mixed with 990 mL of another strong acid solution of $\mathrm{pH}=4.000$. The pH of the resulting solution will be:
(A) 4.002
(B) 4.000
(C) 4.200
(D) 3.7
31. At infinite dilution the percentage dissociation of both weak acid and weak base is:
(A) 1%
(B) 20%
(C) 50%
(D) 100%
32. An acid solution with $\mathrm{pH}=6$ at $25^{\circ} \mathrm{C}$ is diluted by 10^{2} times. The pH of solution will:
(A) Decrease by 2
(B) Increase by 2
(C) Decrease by 0.95 approximately
(D) Increase by 0.95 approximately
33. When 0.1 mole solid NaOH is added in 1 lt of $0.1 \mathrm{M} \mathrm{NH}_{3}(\mathrm{aq})$ then which statement is going to wrong? $\left(\mathrm{K}_{\mathrm{b}}=2 \times 10^{-5}, \log 2=0.3\right)$
(A) degree of dissociation of NH_{3} approaches to zero.
(B) change in pH would be 1.85
(C) conc of $\left[\mathrm{Na}^{+}\right]=0.1 \mathrm{M},\left[\mathrm{NH}_{3}\right]=0.1 \mathrm{M},\left[\mathrm{OH}^{-}\right]=0.2 \mathrm{M}$
(D) on addition of $\mathrm{OH}^{-}, \mathrm{K}_{\mathrm{b}}$ of NH_{3} does not changes.
34. Match list I (Solutions of salts of ...) with list II (pH of the solution is given by) and select the correct answer using the codes given below the lists:

List I

(A) Weak acid and strong base
(B) Strong acid and weak base
(C) Weak acid and weak base
(D) Strong acid and strong base

Code:	A	B	C	D
(A)	1	2	3	4
(C)	4	3	1	2

List II

1. $\frac{1}{2} \mathrm{pK}_{\mathrm{w}}$
2. $\frac{1}{2}\left(\mathrm{pK}_{\mathrm{w}}-\mathrm{pK}_{\mathrm{b}}+\mathrm{pK}_{\mathrm{a}}\right)$
3. $\frac{1}{2}\left(\mathrm{pK}_{\mathrm{w}}-\mathrm{pK}_{\mathrm{b}}-\log \mathrm{C}\right)$
4. $\quad \frac{1}{2}\left(\mathrm{pK}_{\mathrm{w}}+\mathrm{pK}_{\mathrm{a}}+\log \mathrm{C}\right)$

Which of the following is true
(A) pK_{b} for OH^{-}is -1.74 at $25^{\circ} \mathrm{C}$
(B) The equilibrium constant for the reaction between $\mathrm{HA}\left(\mathrm{pK}_{\mathrm{a}}=4\right)$ and NaOH at $25^{\circ} \mathrm{C}$ will be equal to 10^{10}.
(C) The pH of a solution containing $0.1 \mathrm{M} \mathrm{HCOOH}\left(\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-4}\right)$ and 0.1 MHOCN .
$\left(K_{a}=3.2 \times 10^{-4}\right)$ will be nearly $(3-\log 7)$.
(D) all the above are correct.
77. $\quad \mathrm{K}_{\mathrm{a}}$ for formic acid and acetic acid are 2.1×10^{-4} and 1.1×10^{-5} respectively. The relative strenth of acids is:
(A) $19: 1$
(B) $2.3: 1$
(C) $1: 2.1$
(D) $4.37: 1$
78. At $25^{\circ} \mathrm{C} \mathrm{K}_{\mathrm{b}}$ for $\mathrm{BOH}=1.0 \times 10^{-12} .0 .01 \mathrm{M}$ solution of BOH has $\left[\mathrm{OH}^{-}\right]$:
(A) $1.0 \times 10^{-6} \mathrm{M}$
(B) $1.0 \times 10^{-7} \mathrm{M}$
(C) $1.0 \times 10^{-5} \mathrm{M}$
(D) $2.0 \times 10^{-6} \mathrm{M}$
79. $\quad \mathrm{K}_{\mathrm{a}}$ for HCN is 5×10^{-10} at $25^{\circ} \mathrm{C}$. For maintaining a constant pH of 9, the volume of 5 M KCN solution required to be added to 10 ml of 2 M HCN solution is $(\log 2=0.3)$
(A) 4 ml
(B) 8 ml
(C) 2 ml
(D) 10 ml
80. A buffer solution is prepared by mixing 'a' moles of $\mathrm{CH}_{3} \mathrm{COONa}$ and ' b ' moles of $\mathrm{CH}_{3} \mathrm{COOH}$ such that $(a+b)=1$, into water to make 1 L buffer solution. If the instantaneous (differantial) buffer capacity of this buffer solution is plotted against moles of salt $\mathrm{CH}_{3} \mathrm{COONa}(\mathbf{A})$ then the plot obtained will be (to the scale) approximately. (As shown in figure in options)
(A)

(B)

(C)

(D)

81. What $\%$ of the carbon in the $\mathrm{H}_{2} \mathrm{CO}_{3}-\mathrm{HCO}_{3}^{-}$buffer should be in the form of HCO_{3}^{-}so as to have a neutral solution? $\left(\mathrm{K}_{\mathrm{a}}=4 \times 10^{-7}\right)$
(A) 20%
(B) 40%
(C) 60%
(D) 80%
82. Buffer capacity of a buffer solution is x, the volume of 1 M NaOH added to 100 mL of this solution if change the pH by 1 is
(A) $0.1 x \mathrm{~mL}$
(B) $10 x \mathrm{~mL}$
(C) $100 x \mathrm{~mL}$
(D) $x \mathrm{~mL}$
83. A solution is $0.1 \mathrm{MCH}_{3} \mathrm{COOH}$ and $0.1 \mathrm{MCH}_{3} \mathrm{COONa}$. Which of the following solution will change its pH significantly?
(A) Addition of water
(B) Addition of small amount of $\mathrm{CH}_{3} \mathrm{COONa}$ with out change in volume
(C) Addition of small amount of $\mathrm{CH}_{3} \mathrm{COOH}$ with out change in volume
(D) None will change the pH significantly.
84. The best indicator for the detection of end point in titration of a weak acid and a strong base is :
(A) Methyl orange (3 to 4)
(B) Methyl red (5 to 6)
(C) Bromothymol blue (6 to 7.5)
(D) Phenolphthalein (8 to 9.6).
85. What fraction of an indicator HIn is in basic form at a pH of 6 if the pK_{a} of the indicator is 5 ?
(A) $\frac{1}{2}$
(B) $\frac{1}{11}$
(C) $\frac{10}{11}$
(D) $\frac{1}{10}$
86. A certain indicator (an organic dye) has $\mathrm{pK}_{\mathrm{a}}=5$. For which of the following titrations may it be suitable.
(A) acetic acid against NaOH
(B) aniline hydrochloride against NaOH
(C) sodium carbonate against HCl
(D) barium hydroxide against oxalic acid
87. Which is/are correct statements :
(i) In any strong acid's solution, the concentration of $\left[\mathrm{OH}^{-}\right]$will be zero.
(ii) If $\Delta \mathrm{G}^{\mathrm{o}}$ of a reaction is positive, then the reaction will not proceed at all, in the forward direction for any concentrations of reactants and products.
(iii) Titration curves are drawn for (about the figure shown)
(a) $1 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$ with 1 M NaOH and
(b) $0.01 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$ with 0.01 M NaOH on the same graph paper they look like:

(A) i \& ii
(B) iii only
(C) ii only
(D) i \& iii
88. Which is/are correct statements :
(a) When 100 ml of 0.1 M NaCN solution is titrated with 0.1 M HCl solution the variation of pH of solution with volume of HCl added will be (as shown in figure):

(b) Variation of degree of dissociation α with concentration for a weak electrolyte at a particular temperature is best represented by (as shown in figure) :

(c) 0.1 M acetic acid solution is titrated against 0.1 M NaOH solution. The difference in pH between $1 / 4$ and $3 / 4$ stages of neutralization of acid will be $2 \log 3$.
(A) a \& c
(B) $\mathrm{b} \& \mathrm{c}$
(C) a, b \& c
(D) b only
89. If 50 ml of 0.2 M KOH is added to 40 ml of 0.5 M HCOOH . the pH of the resulting solution is: $\left(\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-4}, \log 18=1.26\right)$
(A) 3.74
(B) 5.64
(C) 7.57
(D) 3.42
90. When 100 ml of $0.4 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ are mixed with 100 ml of 0.2 M NaOH , the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in the solution is approximately: $\left[\mathrm{K}_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=1.8 \times 10^{-5}\right]$
(A) $1.8 \times 10^{-6} \mathrm{M}$
(B) $1.8 \times 10^{-5} \mathrm{M}$
(C) $9 \times 10^{-6} \mathrm{M}$
(D) $9 \times 10^{-5} \mathrm{M}$.
91. Which of the following solutions would have same pH ?
(A) 100 ml of $0.2 \mathrm{M} \mathrm{HCl}+100 \mathrm{ml}$ of $0.4 \mathrm{M} \mathrm{NH}_{3}$
(B) 50 ml of $0.1 \mathrm{M} \mathrm{HCl}+50 \mathrm{ml}$ of $0.2 \mathrm{M} \mathrm{NH}_{3}$
(C) 100 ml of $0.3 \mathrm{M} \mathrm{HCl}+100 \mathrm{ml}$ of $0.6 \mathrm{M} \mathrm{NH}_{3}$
(D) All will have same pH .
92. To a 200 ml of 0.1 M weak acid HA solution 90 ml of 0.1 M solution of NaOH be added. Now, what volume of 0.1 M NaOH be added into above solution so that pH of resulting solution be 5 . $\quad\left[\left(\mathrm{K}_{\mathrm{a}}(\mathrm{HA})=10^{-5}\right]\right.$
(A) 2 ml
(B) 20 ml
(C) 10 ml
(D) 15 ml
93. 50 mL of 0.1 M NaOH is added to 60 mL of $0.15 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ solution $\left(\mathrm{K}_{1}, \mathrm{~K}_{2}\right.$ and K_{3} for $\mathrm{H}_{3} \mathrm{PO}_{4}$ are $10^{-3}, 10^{-8}$ and 10^{-13} respectively). The pH of the mixture would be about $(\log 2=0.3)$
(A) 3.1
(B) 5.5
(C) 4.1
(D) 6.5
94. 100 mL of 0.02 M benzoic acid $(\mathrm{pKa}=4.2)$ is titrated using $0.02 \mathrm{M} \mathrm{NaOH} . \mathrm{pH}$ after 50 mL and 100 mL of NaOH have been added are
(A) $3.50,7$
(B) $4.2,7$
(C) 4.2, 8.1
(D) 4.2, 8.25
95. Aniline behaves as a weak base. When $0.1 \mathrm{M}, 50 \mathrm{ml}$ solution of aniline was mixed with $0.1 \mathrm{M}, 25 \mathrm{ml}$ solution of HCl the pH of resulting solution was 8 . Then the pH of 0.01 M solution of aniliniumchloride will be $\left(\mathrm{K}_{\mathrm{w}}=10^{-14}\right)$
(A) 6
(B) 6.5
(C) 5
(D) 5.5
96. 1 M benzoic acid $\left(\mathrm{pK}_{\mathrm{a}}=4.20\right)$ and $1 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}$ solutions are given separately. What is the volume of benzoic acid required to prepare a 300 ml buffer solution of $\mathrm{pH}=4.5 ?[\log 2=0.3]$
(A) 200 ml
(B) 150 ml
(C) 100 ml
(D) 50 ml
97. To prepare a buffer of pH 8.26 amount of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ to be added to 500 mL of $0.01 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$ solution $\left[\mathrm{pK}_{\mathrm{a}}\left(\mathrm{NH}_{4}^{+}\right)=9.26\right]$ is
(A) 0.05 mole
(B) 0.025 mole
(C) 0.10 mole
(D) 0.005 mole
98. Pure water is added into the following solutions causing a 10% increase in volume of each. The greatest $\%$ change in pH would be observed in which case (A), (B), (C) or (D)?
(A) $0.1 \mathrm{M} \mathrm{NaHCO}_{3}$
(B) 0.2 M NaOH
(C) $0.3 \mathrm{M} \mathrm{NH}_{3}-0.2 \mathrm{M} \mathrm{NH}_{4}^{+}$system
(D) $0.4 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONH}_{4}$
99. An acid-base indicator which is a weak acid has a $\mathrm{pK}_{\mathrm{In}}$ value $=5.45$. At what cocentration ratio of sodium acetate to acetic acid would the indicator show a colour half-way between those of its acid and conjugate base forms? [pK ${ }_{\mathrm{a}}$ of acetic acid $=4.75, \log 2=0.3$]
(A) $4: 1$
(B) $6: 1$
(C) $5: 1$
(D) $3: 1$
100. What will be the pH at the equivalence point during the titration of a 100 mL 0.2 M solution of $\mathrm{CH}_{3} \mathrm{COONa}^{2}$ with 0.2 M solution of HCl ? $\mathrm{K}_{\mathrm{a}}=2 \times 10^{-5}$.
(A) $3-\log \sqrt{2}$
(B) $3+\log \sqrt{2}$
(C) $3-\log 2$
(D) $3+\log 2$
101. 20 mL of a weak monobasic acid (HA) requires 20 mL 0.2 M NaOH for complete titration. If pH of solution upon addition of 10 mL of this alkali to 25 mL of the above solution of HA is 5.8. The pK_{a} of the weak acid is
(A) 6.1
(B) 5.8
(C) 5.98
(D) 5.58
102. What is the difference in pH for $1 / 3$ and $2 / 3$ stages of neutralisation of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ with 0.1 M NaOH .
(A) $2 \log 3$
(B) $2 \log (1 / 4)$
(C) $2 \log (2 / 3)$
(D) $2 \log 2$
103. A weak acid (HA) after treatment with 12 mL of 0.1 M strong base (BOH) has a pH of 5 . At the end point, the volume of same base required is $27 \mathrm{~mL} . \mathrm{K}_{\mathrm{a}}$ of acid is $(\log 2=0.3)$
(A) 1.8×10^{-5}
(B) 8×10^{-6}
(C) 1.8×10^{-6}
(D) 8×10^{-5}
104. A buffer solution contains 1 mole of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ and 1 mole of $\mathrm{NH}_{4} \mathrm{OH}\left(\mathrm{K}_{\mathrm{b}}=10^{-5}\right)$. The pH of solution will be :
(A) 5
(B) 9
(C) 5.3
(D) 8.7
105. The total number of different kind of buffers obtained during the titration of $\mathrm{H}_{3} \mathrm{PO}_{4}$ with NaOH are:
(A) 3
(B) 1
(C) 2
(D) Zero
106. Which may be added to one litre of water to act a buffer:
(A) One mole of $\mathrm{CH}_{3} \mathrm{COOH}$ and one mole of HCI
(B) One mole of $\mathrm{NH}_{4} \mathrm{OH}$ and one mole of NaOH
(C) One mole of $\mathrm{NH}_{4} \mathrm{CI}$ and one mole of HCI
(D) One mole of $\mathrm{CH}_{3} \mathrm{COOH}$ and 0.5 mole of NaOH

Exercise \# $2>$ Part \# I [Multiple Correct Choice Type Questions]

1. If $\mathrm{K}_{\mathrm{a} 1}$ and $\mathrm{K}_{\mathrm{a} 2}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$ are 10^{-2} and 10^{-6} respectively then
(A) $\mathrm{K}_{\mathrm{a} 1}>\mathrm{K}_{\mathrm{a} 2}$ because it is easy to abstract H^{+}from $\mathrm{H}_{2} \mathrm{SO}_{4}$ and less easy to abstract H^{+}from HSO_{4}^{-}.
(B) $\mathrm{K}_{\mathrm{a} 1}$ and $\mathrm{K}_{\mathrm{a} 2}$ may be measured in acetic acid.
(C) $\mathrm{K}_{\mathrm{a} 1}$ and $\mathrm{K}_{\mathrm{a} 2}$ are measured in $\mathrm{H}_{2} \mathrm{O}$.
(D) the H^{+}ion conc. of $0.01 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ will be less than 0.02 M .
2. Which of the following solutions when added to 1 L of a $0.01 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ solution will cause no change in the degree of dissociation of $\mathrm{CH}_{3} \mathrm{COOH}$ and pH of the solution? $\mathrm{K}_{\mathrm{a}}=1.6 \times 10^{-5}$ for $\mathrm{CH}_{3} \mathrm{COOH}$?
(A) $0.6 \mathrm{mM} \mathrm{HCOOH}\left(\mathrm{K}_{\mathrm{a}}=8 \times 10^{-4}\right)$
(B) $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}$
(C) 0.4 mM HCl
(D) $0.01 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$
3. K_{a} values for HA, HB and HD are $10^{-5}, 10^{-7}$ and 10^{-9} respectively. Which of the following will be correct for decimolar aqueous solutions of $\mathrm{NaA}, \mathrm{NaB}$ and NaD at $25^{\circ} \mathrm{C}$?
(A) $(\mathrm{pH})_{\mathrm{NaA}}<(\mathrm{pH})_{\mathrm{NaB}}$
(B) $(\mathrm{pH})_{\mathrm{NaD}}<(\mathrm{pH})_{\mathrm{NaB}}$
(C) $(\mathrm{pH})_{\mathrm{NaA}}<(\mathrm{pH})_{\mathrm{NaD}}$
(D) $(\mathrm{pH})_{\mathrm{NaB}}=7$
4. $\quad 0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ is diluted at $25^{\circ} \mathrm{C}\left(\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}\right)$, then which of the following will be found correct
(A) $\left[\mathrm{H}^{+}\right]$will increase
(B) pH will increase
(C) number of H^{+}will increase
(D) all the above are correct
5. Degree of hydrolysis for a salt of strong acid and weak base is
(A) independent of dilution
(B) increases with dilution
(C) increases with decrease in K_{b} of the bases
(D) decreases with decrease in temperature.
6. Equal volumes of following solutions are mixed, in which case the pH of resulting solution will be average value of pH of two solutions.
(A) Aqeous HCl of $\mathrm{pH}=2$, aqueous NaOH of $\mathrm{pH}=12$
(B) Aqeous HCl of $\mathrm{pH}=2$, aqueous HCl of $\mathrm{pH}=4$
(C) Aqeous NaOH of $\mathrm{pH}=12$, aqueous NaOH of $\mathrm{pH}=10$
(D) Aqeous $\mathrm{CH}_{3} \mathrm{COOH}$ of $\mathrm{pH}=5$, aqueous NH_{3} of $\mathrm{pH}=9$. $\left[\mathrm{K}_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=\mathrm{K}_{\mathrm{b}}\left(\mathrm{NH}_{3}\right)\right]$
7. Which statement is/are correct:
(A) All Bronsted bases are also Lewis bases
(B) All Bronsted acids are not Lewis acids
(C) All cations are acids and anions are bases
(D) All of these
8. Acetic acid and propionic acid have K_{a} values 1.75×10^{-5} and 1.3×10^{-5} respectively at a certain temperature. An equimolar solution of a mixture, of the two acids is partially neutralised by NaOH . How is the ratio of the contents of acetate and propionate ions related to the K_{a} values and the molarity:
(A) $\left(\frac{\alpha}{1-\alpha}\right)=\frac{1.75}{1.3} \times\left(\frac{\beta}{1-\beta}\right)$, where α and β are ionised fractions of their acids
(B) The ratio is unrelated to the K_{a} values.
(C) The ratio is unrelated to the molarity of acid.
(D) The ratio is unrelated to the pH of the solution.
9. For two different acids with same concentration
(A) the relative strength is expressed as $\frac{\alpha_{1}}{\alpha_{2}}$
(B) relative strength is expressed as $\frac{\mathrm{K}_{\alpha_{1}}}{\mathrm{~K}_{\alpha_{2}}}$
(C) relative strength is expressed as $\sqrt{\frac{\mathrm{K}_{\alpha_{1}}}{\mathrm{~K}_{\alpha_{2}}}}$
(D) $\frac{\mathrm{pH}_{1}}{\mathrm{pH}_{2}}$
10. Which one is the correct graph (figure) for the corresponding acid base titration?
(A)

(B)

Titration curve of strong acid
(HCl with a strong base (NaOH)
(C)

Volume of strong base added to a weak dibasic acid

Volume of strong acid added to a weak diacidic base
11. Which of the following are true for an acid-base titration?
(A) Indicators catalyse the acid base reactions by releasing or accepting H^{+}ions.
(B) Indicators do not significantly affect the pH of the solution to which they are added.
(C) Acid-base reactions do not occur in absence of indicators.
(D) Indicators have different colours in dissociated and undissociated forms.
12. A buffer solution can be prepared from a mixture of
[JEE-1999]
(A) Sodium acetate and acetic acid in water
(B) Sodium acetate and hydrochloric acid in water
(C) Ammonia and ammonium chloride in water
(D) Ammonia and soldium hydroxide in water
13. Which of the following is/are correct regarding buffer solution?
(A) It contains weak acid and its conjugate base
(B) It contains weak base and its conjugate acid
(C) It shows large change in pH on adding small amount of acid or base.
(D) All of the above.
14. A weak acid (or base) is titrated against a strong base (or acid), volume v of strong base (or acid) is plotted against pH of the solution (as shown in figure). The weak electrolyte (i.e. acid or base) could be
(A) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(B) $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
(C) $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
(D) $\mathrm{CH}_{2}(\mathrm{COOH})_{2}$

Volume of strong base added to a weak dibasic acid
15. When weak base solution $\left(50 \mathrm{ml}\right.$ of $\left.0.1 \mathrm{~N} \mathrm{NH}_{4} \mathrm{OH}\right)$ is titrated with strong acid 0.1 N HCl , the pH of solution initially decreases fast and then decreases slowly till near equivalence point (as shown) in the figure. Which of the following is true.
(A) The slow decrease of pH is due to formation of an acidic buffer solution after addition of some HCl
(B) The slope of shown pH graph magnitude only will be minimum when 25 ml of 0.1 N HCl is added
(C) The slow decrease of pH is due to formation of a basic buffer solution
(D) The initial fast decrement in pH is due to fast consumption of free

OH^{-}ions by HCl .
16. Which of the following is incorrect statement.
(A) If K_{1} and K_{2} for dissociation of $\mathrm{H}_{2} \mathrm{~A}$ is 10^{-7} and 10^{-14} then A^{2-} concentration in $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{~A}$ solution is 10^{-7}.
(B) A solution of $\mathrm{pH}=1$ has H^{+}ion concentration 3 times than that of a solution of $\mathrm{pH}=3$.
(C) If a salt solution of weak acid \& weak base is diluted upto limited extent then its pH will decrease.
(D) pH of acidic buffer solution depends upon pK_{a} and relative molar amount of weak acid and its conjugate base.
17. Choose the correct statement
(A) pH of acidic buffer solution decrease if more salt is added.
(B) pH of acidic buffer solution increases if more salt is added.
(C) pH of basic buffer decreases if more salt is added.
(D) pH of basic buffer increases if more salt is added.
18. Which of following can act as buffer?
(A) $\mathrm{NaCl}+\mathrm{NaOH}$
(B) $\mathrm{NaHCO}_{3}+\mathrm{H}_{2} \mathrm{CO}_{3}$
(C) $\mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{Na}_{2} \mathrm{HPO}_{4}$
(D) $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NH}_{4} \mathrm{OH}$.
19. Which of the following will show common ion effect and form a buffer solution?
(A) $\mathrm{CH}_{3} \mathrm{COONH}_{4}$ and $\mathrm{CH}_{3} \mathrm{COOH}$
(B) $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NH}_{4} \mathrm{OH}$
(C) $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NaHSO}_{4}$
(D) $\mathrm{NaCl}+\mathrm{NaOH}$.
20. Which of the following mixtures will act as buffer?
(A) $\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{NaOH}$ (1.5: 1 molar ratio)
(B) $\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{NaOH}$ (1.5:2 molar ratio)
(C) $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{HCl}$ (5:4 molar ratio)
(D) $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{HCl}(4: 5$ molar ratio)
21. Let the colour of the indicator HIn (colourless) will be visible only when its ionised form (pink) is 25% or more in a solution. Suppose $\mathrm{HIn}\left(\mathrm{pK}_{\mathrm{a}}=9.0\right)$ is added to a solution of $\mathrm{pH}=9.6$ predict what will happen.
(Take $\log 2=0.3$)
(A) pink colour will be visible
(B) pink colour will not be visible
(C) $\%$ of ionised form will be less than 25%
(D) $\%$ of ionised form will be more than 25%
22. Titration curves for 0.1 M solutions of three weak acids $\mathrm{HA}_{1}, \mathrm{HA}_{2}$ and HA_{3} with ionization constants $\mathrm{K}_{1}, \mathrm{~K}_{2}$ and K_{3} respectively are plotted as shown in the figure. Which of the following is/are true?
(A) $\mathrm{K}_{2}=\left(\mathrm{K}_{1}+\mathrm{K}_{3}\right) / 2$
(B) $\mathrm{K}_{1}<\mathrm{K}_{3}$
(C) $\mathrm{K}_{1}>\mathrm{K}_{2}$
(D) $\mathrm{K}_{2}>\mathrm{K}_{3}$

23. A 0.1 M sodium acetate solution was prepared. The $\mathrm{K}_{\mathrm{h}}=5.6 \times 10^{-10}$
(A) The degree of hydrolysis is 7.48×10^{-5}
(B) The $\left[\mathrm{OH}^{-}\right]$concentration is $7.48 \times 10^{-3} \mathrm{M}$
(C) The $\left[\mathrm{OH}^{-}\right]$concentration is $7.48 \times 10^{-6} \mathrm{M}$
(D) The pH is approximately 8.88 .
24. In which of the following solutions, the solubility of AgCN will be greater than that in pure water :

Given $\mathrm{K}_{\text {sp }}(\mathrm{AgCN})=4 \times 10^{-16}, \mathrm{~K}_{\mathrm{a}}(\mathrm{HCN})=5 \times 10^{-10}$
(A) $0.01 \mathrm{M} \mathrm{Ag} \mathrm{NO}_{3}$ solution
(B) A buffer solution of $\mathrm{pH}=12$
(C) $0.2 \mathrm{M} \mathrm{NH}_{3}$ solution
(D) A buffer solution of $\mathrm{pH}=5$
25. The solubility of a sparingly soluble salt $\mathrm{A}_{\mathrm{x}} \mathrm{B}_{\mathrm{y}}$ in water at $25^{\circ} \mathrm{C}=1.4 \times 10^{-4} \mathrm{M}$. The solubility product is 1.1×10^{-11}. The possibilities are
(A) $x=1, y=2$
(B) $x=2, y=1$
(C) $x=1, y=3$
(D) $\mathrm{x}=3, \mathrm{y}=1$
26. Select the correct statements :
(A) pH of NaHCO_{3} solution can be given by $\frac{\mathrm{pK}_{\mathrm{H}_{2} \mathrm{CO}_{3}}+\mathrm{pK}_{\mathrm{HCO}_{3}^{-}}}{2}$
(B) AI^{3+} ion is amphoteric
(C) K_{SP} values of metal nitrates are very-very high
(D) $\mathrm{Na}^{+}(\mathrm{aq})$. is conjugate acid of $\mathrm{NaOH}(\mathrm{aq})$.
27. The pH of an acidic buffer mixture is:
(A) >7
(B) <7
$(C)=7$
(D) Depends upon K_{a} of acid
28. From separate solutions of for sodium salts $\mathrm{NaW}, \mathrm{NaX}, \mathrm{NaY}$ and NaZ has $\mathrm{pH} 7.0,9.010 .0$ and 11.0 respectively. When each solution was 0.1 M , the strongest acid is:
(A) HW
(B) HX
(C) HY
(D) HZ
29. pH of a mixture containing $0.10 \mathrm{M} \mathrm{X}^{-}$and 0.20 M HX is: $\left[\mathrm{pK}_{\mathrm{b}}\left(\mathrm{X}^{-}\right)=4\right]$
(A) $4+\log 2$
(B) $4-\log 2$
(C) $10+\log 2$
(D) $10-\log 2$
30. Solution of aniline hydrochloride is X due to hydrolysis of Y. X and Y are :
(A) Basic, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}$
(B) Acidic, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}$
(C) Basic, CI^{-}
(D) Acidic, CI^{-}
31. Strong acids are generally used as standard solution in acid-base titrations because:
(A) The pH at equivalence point will be 7
(B) They titrate both strong and weak base
(C) They form more stable solutions than weak acids
(D) The salts of strong acids do not hydrolyse
32. The pK_{a} of acetylasliclic acid (aspirin) is 3.5. The pH of gastric juice in human stomach is about 2-3 and the pH in the small intestine is about 8 . Aspirin will be:
(A) Unionised in the small intestine and in the stomach
(B) Completely ionised in the small intestine and in the stomach
(C)Ionised in the stomach and almost unisonised in the small intestine
(D) Ionised in the small intestine and almost unionized in the stomach
33. Fear or excitement, generally cause one to breathe rapidly and it results in the decrease of concentration of CO_{2} in blood. In what way it will change pH of blood.
(A) pH will increase
(B) pH will decrease
(C) No change
(D) pH will be 7
34. The composition of an acidic buffer mixture made up of HA and NaA of total molarity 0.29 having $\mathrm{pH}=4.4$ and $\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}$ in terms of concentration of salt and acid respectively is :
(A) 0.09 M and 0.20 M
(B) 0.20 M and 0.09
(C) 0.1 M and 0.19 M
(D) 0.19 M and 010 M
35. A weak acid HA after treatment with 12 mL of 0.1 M strong base BOH has a pH of 5 . At the end point the volume of same base required is 26.6 mL . Calculate K_{a} of acid is :
(A) 1.8×10^{-5}
(B) 8.22×10^{-6}
(C) 1.8×10^{-6}
(D) 8.2×10^{-5}
36. In which of the following combinations, is buffer action expected?

1. $\mathrm{NH}_{3}+\mathrm{NH}_{4} \mathrm{CI}$ in $1: 1$ mole ratio
2. $\mathrm{HCI}+\mathrm{NaCI}$ in $1: 1$ mole ratio
3. $\mathrm{NH}_{3}+\mathrm{HCI}$ in $2: 1$ mole ratio

Select the correct answer using the code given below:
(A) 1 and 2
(B) 1 and 3
(C) 2 and 3
(D) 1,2 and 3
37. A certain buffer solution contains equal concentration of X^{-}and HX . The K_{b} for X^{-}is 10^{-10}. The pH of the buffer is:
(A) 4
(B) 7
(C) 10
(D) 14
38. 50 mL of 2 N acetic acid mixed with 10 mL of 1 N sodium acetate solution will have an approximate pH of $\left(\mathrm{K}_{\mathrm{a}}=10^{-5}\right)$
(A) 4
(B) 5
(C) 6
(D) 7
39. The solubility of $\mathrm{CaF}_{2}\left(\mathrm{~K}_{\text {sp }}=3.4 \times 10^{-11}\right)$ in 0.1 M solution of NaF would be
(A) $3.4 \times 10^{-12} \mathrm{M}$
(B) $3.4 \times 10^{-10} \mathrm{M}$
(C) $3.4 \times 10^{-9} \mathrm{M}$
(D) $3.4 \times 10^{-13} \mathrm{M}$.
40. The solubility of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ in water at $25^{\circ} \mathrm{C}$ is $1 \times 10^{-4} \mathrm{~mole} /$ litre. What is its solubility in $0.01 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution? Assume no hydrolysis of $\mathrm{CO}_{3}{ }^{2-}$ ion.
(A) $6 \times 10^{-6} \mathrm{~mole} /$ litre
(B) $4 \times 10^{-5} \mathrm{~mole} /$ litre
(C) $10^{-5} \mathrm{~mole} / \mathrm{litre}$
(D) $2 \times 10^{-5} \mathrm{~mole} / \mathrm{litre}$
41. In a saturated solution of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$, silver ion concentration is $2 \times 10^{-4} \mathrm{M}$. Its solubility product is
(A) 4×10^{-12}
(B) 3.2×10^{-11}
(C) 8×10^{-12}
(D) 10^{-12}
42. Let the solubilities of AgCl in pure water, $0.01 \mathrm{M} \mathrm{CaCl}_{2}, 0.01 \mathrm{M} \mathrm{NaCl} \& 0.05 \mathrm{MAgNO}_{3}$ be $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3} \& \mathrm{~s}_{4}$ respectively what is the correct order of these quantities. Neglect any complexation.
(A) $\mathrm{S}_{1}>\mathrm{S}_{2}>\mathrm{S}_{3}>\mathrm{s}_{4}$
(B) $\mathrm{s}_{1}>\mathrm{s}_{2}=\mathrm{s}_{3}>\mathrm{s}_{4}$
(C) $\mathrm{s}_{1}>\mathrm{S}_{3}>\mathrm{S}_{2}>\mathrm{S}_{4}$
(D) $\mathrm{s}_{4}>\mathrm{S}_{2}>\mathrm{S}_{3}>\mathrm{s}_{1}$
43. If the solubility of lithium sodium hexafluorido aluminate, $\mathrm{Li}_{3} \mathrm{Na}_{3}\left(\mathrm{AlF}_{6}\right)_{2}$ is ' s ' $\mathrm{mol} \mathrm{lt}^{-1}$, its solubility product is equal to
(A) $729 \mathrm{~s}^{8}$
(B) $12 \mathrm{~s}^{8}$
(C) $3900 \mathrm{~s}^{8}$
(D) $2916 \mathrm{~s}^{8}$
44. The solubility product of BaCrO_{4} is $2.4 \times 10^{-10} \mathrm{M}^{2}$. The maximum concentration of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ possible without precipitation in a $6 \times 10^{-4} \mathrm{M} \mathrm{K}_{2} \mathrm{CrO}_{4}$ solution is
(A) $4 \times 10^{-7} \mathrm{M}$
(B) $1.2 \times 10^{10} \mathrm{M}$
(C) $6 \times 10^{-4} \mathrm{M}$
(D) $3 \times 10^{-4} \mathrm{M}$.
45. What is the solubility of $\mathrm{Al}(\mathrm{OH})_{3},\left(\mathrm{~K}_{\mathrm{sp}}=1 \times 10^{-33}\right)$ in a buffer solution $\mathrm{pH}=4$?
(A) $10^{-3} \mathrm{M}$
(B) $10^{-6} \mathrm{M}$
(C) $10^{-4} \mathrm{M}$
(D) $10^{-10} \mathrm{M}$.
46. The solubility of $\mathrm{Fe}(\mathrm{OH})_{3}$ would be maximum in
(A) 0.1 M NaOH
(B) 0.1 M HCl
(C) 0.1 M KOH
(D) $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$.
47. The best explanation for the solubility of MnS in dilute HCl is that :
(A) Solubility product of MnCl_{2} is less than that of MnS
(B) Concentration of Mn^{2+} is lowered by the formation of complex ions with chloride ions
(C) Concentration of sulphide ions is lowered by oxidation to free sulphur
(D) Concentration of sulphide ions is lowered by formation of weak acid $\mathrm{H}_{2} \mathrm{~S}$
48. The solubility product of AgCl is 1.8×10^{-10}. Precipitation of AgCl will occur only when equal volumes of solutions of
(A) $10^{-4} \mathrm{M} \mathrm{Ag}^{+}$and $10^{-4} \mathrm{M} \mathrm{Cl}^{-}$are mixed.
(B) $10^{-7} \mathrm{M} \mathrm{Ag}^{+}$and $10^{-7} \mathrm{M} \mathrm{Cl}^{-}$are mixed.
(C) $10^{-5} \mathrm{M} \mathrm{Ag}^{+}$and $10^{-5} \mathrm{M} \mathrm{Cl}^{-}$are mixed.
(D) $2 \times 10^{-5} \mathrm{M} \mathrm{Ag}^{+}$and $2 \times 10^{-5} \mathrm{M} \mathrm{Cl}^{-}$are mixed.
49. Arrange in increasing order of solubility of AgBr in the given solutions.
(i) $0.1 \mathrm{MNH}_{3}$
(ii) $0.1 \mathrm{M} \mathrm{AgNO}_{3}$
(iii) 0.2 M NaBr
(iv) pure water
(A) (iii) $<$ (ii) $<$ (iv) $<$ (i)
(B) (iii) < (ii) < (i) < (iv)
(C) (iii) $<$ (ii) $=$ (i) $<$ (iv)
(D) (ii) $<$ (iii) $<$ (iv) $<$ (i)
50. A solution containing a mixture of 0.05 M NaCl and 0.05 M NaI is taken $\left(\mathrm{K}_{\text {sp }}\right.$ of $\mathrm{AgCl}=10^{-10}$ and $\mathrm{K}_{\text {sp }}$ of $\left.\mathrm{AgI}=4 \times 10^{-16}\right)$. When AgNO_{3} is added to such a solution.
(A) the concentration of Ag^{+}required to precipitate $\mathrm{Cl}^{-}=4 \times 10^{-9} \mathrm{~mol} / \mathrm{L}$.
(B) the concentration of Ag^{+}required to precipitate $\mathrm{I}^{-}=8 \times 10^{-15} \mathrm{~mol} / \mathrm{L}$.
(C) AgCl and AgI will be precipitated together.
(D) None of these
51. Which of the following statements is correct for a solution saturated with AgCl and AgBr if their solubilities in moles per litre in separate solutions are x and y respectively?
(A) $\left[\mathrm{Ag}^{+}\right]=\mathrm{x}+\mathrm{y}$
(B) $\left[\mathrm{Ag}^{+}\right]=\left[\mathrm{Br}^{-}\right]+\left[\mathrm{Cl}^{-}\right]$
(C) $\left[\mathrm{Br}^{-}\right]=\mathrm{y}$
(D) $\left[\mathrm{Cl}^{-}\right]>\mathrm{x}$.
52. At $25^{\circ} \mathrm{C}$, the solubility product values of AgCl and AgCNS are 1.8×10^{-10} and 1.6×10^{-11} respectively. When a solution is saturated with both solids, calculate the ratio $\left[\mathrm{Cl}^{-}\right] /\left[\mathrm{CNS}^{-}\right]$and also $\left[\mathrm{Ag}^{+}\right]$in the solution.
(A) $1.125,4 \times 10^{-6} \mathrm{M}$
(B) $11.25,1.4 \times 10^{-5} \mathrm{M}$
(C) $1.25,4 \times 10^{-5} \mathrm{M}$
(D) $1.25,4 \times 10^{-6} \mathrm{M}$
53. What is the minimum pH when $\mathrm{Fe}(\mathrm{OH})_{3}$ starts precipitating from a solution containing $0.1 \mathrm{M} \mathrm{FeCl}_{3}$? $\mathrm{K}_{\text {sp }}$ of $\mathrm{Fe}(\mathrm{OH})_{3}$ $=8 \times 10^{-13} \mathrm{M}^{3}$
(A) 3.7
(B) 5.7
(C) 10.3
(D) 8.3
54. A solution prepared by dissolving 2.8 g of lime (CaO) in enough water to make 1.00 L of lime water $\left(\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}).\right)$. If solubility of $\mathrm{Ca}(\mathrm{OH})_{2}$ in water is $1.48 \mathrm{gm} / \mathrm{lt}$. The pH of the solution obtained will be:
$[\log 2=0.3, \mathrm{Ca}=40, \mathrm{O}=16, \mathrm{H}=1]$
(A) 12.3
(B) 12.6
(C) 1.3
(D) 13
55. The solubility product of AgCl is 10^{-10}. The minimum volume (in L) of water required to dissolve 1.722 mg of AgCl is (molecular weight of $\mathrm{AgCl}=143.5$).
(A) 10 lt .
(B) 2.2 lt .
(C) 1.2 lt .
(D) 20 lt .
56. 0.1 millimole of CdSO_{4} are present in 10 mL acid solution of 0.08 N HCl . Now $\mathrm{H}_{2} \mathrm{~S}$ is passed to precipitate all the Cd^{2+} ions. The pH of the solution after filtering off precipitate, boiling off $\mathrm{H}_{2} \mathrm{~S}$ and making the solution 100 mL by adding $\mathrm{H}_{2} \mathrm{O}$ is
(A) 2
(B) 4
(C) 6
(D) 8
57. A well is dug in a bed of rock containing fluorspar $\left(\mathrm{CaF}_{2}\right)$. If the well contains 20000 L of water, what is the amount of F^{-}in it? $\mathrm{K}_{\text {sp }}=4 \times 10^{-11}\left(10^{1 / 3}=2.15\right)$
(A) 4.3 mol
(B) 6.8 mol
(C 8.6 mol
(D) 13.6 mol
58. When different types of salts have nearly same solubility product constant K_{SP} which are less than one. The most soluble salt is that.
(A) Which produces maximum number of ions
(B) Which produces minimum number of ions
(C) Which produces more charge on ion
(D) None of these
59. Solubility of BaF_{2} in a solution of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ will be represented by the concentration term:
(A) $\left[\mathrm{Ba}^{2+}\right]$
(B) $\left[\mathrm{F}^{-}\right]$
(C) $1 / 2\left[\mathrm{~F}^{-}\right]$
(D) $2\left[\mathrm{NO}_{3}^{-}\right]$
60. Which of the following is most soluble in water:
(A) $\mathrm{MnS}\left(\mathrm{K}_{\mathrm{SP}}=8 \times{ }^{-37}\right)$
(B) $\mathrm{ZnS}\left(\mathrm{K}_{\mathrm{SP}}=7 \times 10^{-16}\right)$
(C) $\mathrm{Bi}_{2} \mathrm{~S}_{3}\left(\mathrm{~K}_{\mathrm{SP}}=\times 10^{-70}\right)$
(D) $\mathrm{Ag}_{2} \mathrm{~S}\left(\mathrm{~K}_{\mathrm{SP}}=6 \times 10^{-51}\right)$
61. When pure water is saturated with CaCO_{3} and $\mathrm{CaC}_{2} \mathrm{O}_{4}$, the concentration of calcium ion in the solution under equilibrium is $8 \times 10^{-5} \mathrm{M}$. If the ratio of the solubility product of CaCO_{3} to that of $\mathrm{CaC}_{2} \mathrm{O}_{4}$ is 3 , what is the solubility product of CaCO_{3} in pure water?
(A) 4.80×10^{-8}
(B) 9.60×10^{-9}
(C) 9.60×10^{-8}
(D) 4.80×10^{-9}
62. A solution is a mixture of 0.05 M KCI and 0.05 M NaI . The concentration of I^{-}in the solution when AgCI just starts to precipitate is equal to: $\left(\mathrm{K}_{\mathrm{SP}} \mathrm{AgCI}=10^{-10} \mathrm{M}^{2} ; \mathrm{K}_{\mathrm{SP}} \mathrm{AgI}=4 \times 10^{-16} \mathrm{M}^{2}\right)$
(A) $4 \times 10^{-6} \mathrm{M}$
(B) $2 \times 10^{-8} \mathrm{M}$
(C) $2 \times 10^{-7} \mathrm{M}$
(D) $8 \times 10^{-15} \mathrm{M}$
63. The solubility products of $\mathrm{Al}(\mathrm{OH})_{3}$ and $\mathrm{Zn}(\mathrm{OH})_{2}$ are 8.5×10^{-23} and 1.8×10^{-14} respectively. If $\mathrm{NH}_{4} \mathrm{OH}$ is added to a solution containing 0.01 M concentraion of AI^{3+} and Zn^{2+} ions, then substance precipitated first is:
(A) $\mathrm{AI}(\mathrm{OH})_{3}$
(B) $\mathrm{Zn}(\mathrm{OH})_{2}$
(C) Both together
(D) None at all
64. At $30^{\circ} \mathrm{C}$ the solubility of $\mathrm{Ag}_{2} \mathrm{CO}_{3}\left(\mathrm{~K}_{\mathrm{SP}}=8 \times 10^{-12}\right)$ would be greatest in one litre of:
(A) $0.05 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$
(B) $0.05 \mathrm{M} \mathrm{AgNO}_{3}$
(C) Pure water
(D) $0.05 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$
65. A solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is added drop by drop to litre of a solution containing 10^{-4} mole of Ba^{2+} and $10^{-5} \mathrm{~mole}^{\text {of }} \mathrm{Ag}^{+}$, if K_{SP} for BaCO_{3} is 8.1×10^{-9} and K_{SP} for $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ is 6.9×10^{-12} then which is not true:
(A) No precipitate of BaCO_{3} will appear until $\left[\mathrm{CO}_{3}^{2-}\right]$ reaches $8.1 \times 10^{-5} \mathrm{~mol}$ per litre
(B) A precipitate of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ will appear when $\left[\mathrm{CO}_{3}^{2-}\right]$ reaches $6.9 \times 10^{-5} \mathrm{~mol} \mathrm{litre}{ }^{-1}$
(C) No precipitate of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ will appear until $\left[\mathrm{CO}_{3}^{2-}\right]$ reaches 6.9×10^{-2} mole per litre
(D) BaCO_{3} will be precipitated first
66. The solubility of PbCI_{2} in water is $0.01 \mathrm{M} 25^{\circ} \mathrm{C}$. Its maximum concentration in 0.1 M NaCI will be:
(A) $2 \times 10^{-3} \mathrm{M}$
(B) $1 \times 10^{-4} \mathrm{M}$
(C) $1.6 \times 10^{-2} \mathrm{M}$
(D) $4 \times 10^{-4} \mathrm{M}$
67. The volume of the water needed to dissolve 1 g of $\mathrm{BaSO}_{4}\left(\mathrm{~K}_{\mathrm{SP}}=1.1 \times 10^{-10}\right)$ at $25^{\circ} \mathrm{C}$ is:
(A) 280 litre
(B) 410 litre
(C) 205 litre
(D) None of these
68. $\quad \mathrm{M}(\mathrm{OH})_{\mathrm{x}}$ has $\mathrm{K}_{\mathrm{SP}} 4 \times 10^{-12}$ and solubility $10^{-4} \mathrm{M}$. The value of x is:
(A) 1
(B) 2
(C) 3
(D) 4
69. Slaked lime, $\mathrm{Ca}(\mathrm{OH})_{2}$ is used extensively in sewage treatment. What is the maximum pH that can be established in $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})$:
$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \quad ; \quad \mathrm{K}_{\mathrm{SP}}=5.5 \times 10^{-6}$
(A) 1.66
(B) 12.35
(C) 7.0
(D) 14.0
70. K_{SP} if $\mathrm{Mg}(\mathrm{OH})_{2}$ is $1 \times 10^{-12} .0 .01 \mathrm{M} \mathrm{MgCI}_{2}$ will show precipitation in a solution of pH greater than:
(A) 3
(B) 9
(C) 12
(D) 8
71. Silver nitrate solution is gradually added to an aqueous solution containing 0.01 M each of chloride, bromide and iodide ions. The correct sequence in which the halides will be precipitated is:
(A) Bromide, chloride iodide
(B) Iodide, chloride, bromide
(C) Iodide, bromide, chloride
(D) Brodide chloride
72. Which set is not correct for the solubility product $\left(\mathrm{K}_{\mathrm{SP}}\right)$, solubility ($\left.\mathrm{sg} / \mathrm{litre}\right)$ of sparingly soluble salt $\mathrm{A}_{3} \mathrm{~B}_{2}$ (mol. wt. M) in water:

1. $\mathrm{K}_{\mathrm{SP}}=108 \mathrm{~s}^{5}$
2. $K_{S P}=\left[\frac{3 s}{M}\right]^{2}\left[\frac{2 s}{M}\right]^{2}$
3. $\mathrm{K}_{\mathrm{SP}}=\left[1 \mathrm{~A}^{2+}\right]^{3}\left[2 \mathrm{~B}^{3-}\right]^{2}$
4. $\left[\mathrm{B}^{3-}\right]=\frac{2 \mathrm{~s}}{\mathrm{M}}$
5. $\frac{\left[\mathrm{B}^{3-}\right]}{\mathrm{K}_{\mathrm{SP}}}=\frac{1}{54} \frac{\mathrm{M}^{4}}{\mathrm{~s}^{4}}$
(A) 1,3
(B) $1,3,5$
(C) 2, 3, 4
(D) $2,4,5$
6. The solubility products of $\mathrm{MA}, \mathrm{MB}, \mathrm{MB}$ and MD are $1.8 \times 10^{-10}, 4 \times 10^{-3}, 4 \times 10^{-8}$ and 6×10^{-5} respectively. If a solution of MX is added dropwise to a mixture containing 0.01 M each of $\mathrm{A}^{-}, \mathrm{B}^{-}, \mathrm{C}^{-}$and D^{-}ions, then the one which precipitated first will be:
(A) MA
(B) MB
(C) MC
(D) MD
7. Which of the following statements are true for a solution saturated with AgCI and AgBr if their solubilities in mol per litre in separate solution are x and y mole respectively:
(A) $\left[\mathrm{Ag}^{+}\right]=\left[\mathrm{Br}^{-}\right] \times\left[\mathrm{Cl}^{-}\right]$
(B) $\left[\mathrm{CI}^{-}\right]>[\mathrm{Br}]$
(C) $\left[\mathrm{Br}^{-}\right]>y$
(D) $\left[\mathrm{Ag}^{+}\right]=\mathrm{x}+\mathrm{y}$
8. Which of the following species is more soluble in water:
(A) $\mathrm{M}(\mathrm{OH})_{3}$
$\left(\mathrm{K}_{\mathrm{SP}}=1 \times 10^{-35}\right)$
(B) $\mathrm{M}(\mathrm{OH})_{2}$
$\left(\mathrm{K}_{\mathrm{SP}}=1 \times 10^{-30}\right)$
(C) MOH
$\left(\mathrm{K}_{\mathrm{SP}}=1 \times 10^{-28}\right)$
(D) MOH
$\left(\mathrm{K}_{\mathrm{SP}}=1 \times 10^{-26}\right)$
9. The concentration of hydroxyl ion in a solution left after mixing 100 mL of $0.1 \mathrm{M} \mathrm{MgCI}_{2}$ and 100 mL of 0.2 M NaOH $\left(\mathrm{K}_{\mathrm{SP}}\right.$ of $\left.\mathrm{Mg}(\mathrm{OH})_{2}=1.2 \times 10^{-11}\right)$:
(A) 2.88×10^{-3}
(B) 2.88×10^{-2}
(C) 2.88×10^{-4}
(D) 2.88×10^{-5}

Part \# II
 [Assertion \& Reason Type Questions]

Each question has 5 choices (A), (B), (C), (D) and (E) out of which only one is correct.
(A) Statement-1 is true, Statement-2 is true and Statement-2 is correct explanation for Statement-1.
(B) Statement-1 is true, Statement-2 is true and Statement-2 is not correct explanation for Statement-1.
(C) Statement-1 is true, Statement-2 is false
(D) Statement-1 is false, Statement-2 is true
(E) Both Statements are false

1. Statement-1: Aqueous solutions of all strong acids contain only the same acid, the hydronium ion.

Statement-2 : Hydronium ion is the strongest acid that can exist in any significant concentration in dilute aqueous solution.
2. Statement-1 : Acids that have more than one proton that can be donated to base are called polyprotic acids.

Statement-2 : For all diprotic acids, the equilibrium constant $K_{a 2}$, for the second stage of ionisation is smaller than the equilibrium constant, $\mathrm{K}_{\mathrm{a} 1}$, for the first stage of ionisation.
3. Statement-1: 0.20 M solution of NaCN is more basic than 0.20 M solution of NaF .

Statement-2: K_{a} of HCN is very much less than that of HF.
4. Statement-1 : A substance that can either act as an acid as well as a base is called ampholyte.

Statement-2 : Bisulphide ion $\left(\mathrm{HS}^{-}\right)$and biscarbonate ion $\left(\mathrm{HCO}_{3}^{-}\right)$are ampholytes.
5. Statement-1: The $\mathrm{H}_{3} \mathrm{O}^{+}$has additional water molecules closely associated with it.

Statement-2 : In solid state the species $\mathrm{H}_{5} \mathrm{O}_{2}^{+}$and $\mathrm{H}_{9} \mathrm{O}_{4}^{+}$have been found to exist.
6. Statement-1: The proton transfer reaction between NH_{3} and $\mathrm{H}_{2} \mathrm{O}$ proceeds only to a slight extent.

Statement-2 : Proton transfer reaction is virtually complete in the case of HCl in dilute solution.
7. Statement-1 : Addition of $\mathrm{HCl}(\mathrm{aq})$ to $\mathrm{HCOOH}(\mathrm{aq})$, decrease the ionization of $\mathrm{HCOOH}(\mathrm{aq})$

Statement-2 : Due to common ion effect of H^{+}, ionization of HCOOH decreased.
8. Statement-1: pH of $10^{-7} \mathrm{M} \mathrm{HCl}$ is less than 7 at $25^{\circ} \mathrm{C}$.

Statement-2 : At very low concentration of HCl , contribution of H^{+}from water is considerable.
9. Statement-1 : In a titration of weak monoprotic acid with strong base, the pH at the half equivalent point is pK_{a}. Statement-2 : At half equivalence point, it will form acidic buffer at it's maximum capacity where [acid] $=[$ salt $]$.
10. Statement-1: Solubility of AgCl in $\mathrm{NH}_{3}(\mathrm{aq})$ is greater than in pure water.

Statement-2: When AgCl dissolve in $\mathrm{NH}_{3}(\mathrm{aq})$, complex ion $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}\right]$formation takes place and solubility equilibrium of AgCl shifted in forward direction.
11. Statement-I : On dilution of a concentrated solution of $\mathrm{CH}_{3} \mathrm{COOH}$, the concentration of $\left[\mathrm{H}^{+}\right]$decreases

Statement-III : Because increase in the volume is more than the increase in degree of ionisation
12. Statement-I : pH of boiling water is less than the water at $4{ }^{\circ} \mathrm{C}$

Statement-III : Because density of water is maximum at $4^{\circ} \mathrm{C}$
13. Statement-I : Solubility of BaSO_{4} in $0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ is $10^{-9} \mathrm{M}$ hence its $\mathrm{K}_{\text {sp }}$ is 10^{-18}

Statement-III : Because for $\mathrm{BaSO}_{4} \mathrm{~K}_{\mathrm{sp}}=(\mathrm{s})^{2}$
14. Statement-I : Aqueous solution of $\mathrm{CH}_{3} \mathrm{COONH}_{4}$ is found to be neutral

Statement-II : because this salt does not undergo hydrolysis
15. Statement-I : An aqueous solution of HCl is a much better conductor of electricity than an aqueous solution of $\mathrm{CH}_{3} \mathrm{COOH}$ of the same concentration.
Statement-III : The freezing point depression and the boiling point elevation of weak electrolytes are significantly less than for strong electrolytes of the same concentration.
16. Statement-I : $\mathrm{CH}_{3} \mathrm{NH}_{3}^{+} \mathrm{CH}_{3} \mathrm{NH}_{2}$ is acid base conjugate pair.

Statement-III: $\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{OH}^{-}$is acid base conjugate pair.
17. Statement-I : The equilibrium constant for the reaction,

$$
\mathrm{HONO}(\text { aq. })+\mathrm{CN}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{HCN} \text { (aq.) }+\mathrm{ONO}^{-} \text {(aq.) is } 1.1 \times 10^{6}
$$

Statement-II : This shows that CN^{-}is stronger base than ONO^{-}

Exercise \# 3 Part \# I [Matrix Match Type Questions]

1. $\quad\left(\right.$ Use $\log 1.8=0.26, \mathrm{Ka}$ of formic acid $=1.8 \times 10^{-4}, \mathrm{Ka}$ of acetic $\mathrm{acid}=1.8 \times 10^{-5}, \mathrm{~K}_{\mathrm{b}}$ of ammonia $=1.8 \times 10^{-5}, \mathrm{Ka}_{1}$ of $\mathrm{H}_{2} \mathrm{~S}=10^{-7}$ and Ka_{2} of $\mathrm{H}_{2} \mathrm{~S}=10^{-14}$, for the following matchings)
Match the entries of column II for which the equality or inequality given in the column I are satisfied.

Column I
(A) $10^{-5} \mathrm{M} \mathrm{HCl}$ solution $>0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{~S}$ solution
(B) $\mathrm{CH}_{3} \mathrm{COOH}$ solution at pH equal to 4.74
$=\mathrm{NH}_{4} \mathrm{OH}$ solution at pH equal to 9.26
(C) $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ solution $=1.0 \mathrm{M} \mathrm{HCOOH}$ solution
(D) 0.1 M of a weak acid $\mathrm{HA}_{1}\left(\mathrm{Ka}=10^{-5}\right)$ solution $<0.01 \mathrm{M}$ of a weak acid $\mathrm{HA}_{2}\left(\mathrm{Ka}=10^{-6}\right)$ solution

Column II
(p) $\alpha_{\text {water }}$ (degree of dissociation of water)
(q) $\left[\mathrm{OH}^{-}\right]$
(r) α (degree of dissociation)
(s) pH
2. Match the effect of addition of 1 M NaOH to 50 ml of $1 \mathrm{M} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ (diprotic acid) in column I with column II (Given: $\mathrm{Ka}_{1}=10^{-4}, \mathrm{Ka}_{2}=10^{-9}$)

Column I
(A) 25 mL of NaOH
(B) 50 mL of NaOH
(C) 75 mL of NaOH
(D) 100 mL of NaOH

Column II

(p) Buffer solution
(q) pH is independent of concentration of species present in the solution.
(r) anionic hydrolyisis
(s) $\mathrm{pH}>7$
3. Match the correct value of Ksp expression in term of solubility (s)

Column-I
Column-II
(A) $\mathrm{Al}_{2} \mathrm{O}_{3}$
(p) $4 \mathrm{~s}^{3}$
(B) CaO
(q) $27 \mathrm{~s}^{4}$
(C) $\mathrm{Al}(\mathrm{OH})_{3}$
(r) $108 \mathrm{~s}^{5}$
(D) CaF_{2}
(s) s^{2}
4. Match the effect of addition of 1 M NaOH to $100 \mathrm{~mL}_{1} \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ (in Column I) with pH (in Column II) :

Column-I
(A) 25 mL of NaOH
(B) 50 mL of NaOH
(C) 75 mL of NaOH
(D) 100 mL of NaOH
(p) pK_{a}
(q) $\mathrm{pK}_{\mathrm{a}}+\log 3$

Column-II

(r) $\mathrm{pK}_{\mathrm{a}}-\log 3$
(s) $\frac{1}{2}\left[\mathrm{pK}_{\mathrm{w}}+\mathrm{pK}_{\mathrm{a}}-\log 2\right]$
5. When we titrate sodium carbonate solution (in beaker) with hydrochloric acid.

Column-I
(A) At the start of titration
(B) Before the first equivalent point
(C) At the first equivalent point
(D) Between the first and second equivalent points

Column-II

(p) Buffer solution of HCO_{3}^{-}and CO_{3}^{2-}
(q) Buffer solution of $\mathrm{H}_{2} \mathrm{CO}_{3}$ and HCO_{3}^{-}
(r) Amphiprotic anion,

$$
\mathrm{pH}=1 / 2\left(\mathrm{pK}_{\mathrm{a}_{1}}+\mathrm{pK}_{\mathrm{a}_{2}}\right)
$$

(s) Hydrolysis of CO_{3}^{2-}

Part \# II \geq [Comprehension Type Questions]

Comprehension \# 1

Consider a solution of $\mathrm{CH}_{3} \mathrm{COONH}_{4}$ which is a salt of weak acid \& weak base.
The equilibrium involved in the solutions are :

$$
\begin{align*}
& \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-} \tag{1}\\
& \mathrm{NH}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}^{+} \tag{2}\\
& \mathrm{H}^{+}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{O} \tag{3}
\end{align*}
$$

If we add these three reactions, then the net reaction is

$$
\begin{equation*}
\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{4} \mathrm{OH} \tag{4}
\end{equation*}
$$

Both $\mathrm{CH}_{3} \mathrm{COO}^{-}$and NH_{4}^{+}get hydrolysed independently and their hydrolysis depends on
(i) their initial concentration
(ii) the value of K_{h} which is $\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}}}$ for $\mathrm{CH}_{3} \mathrm{COO}^{-}$and $\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{b}}}$ for NH_{4}^{+}.

Since both of the ions were produced from the same salt, their initial concentrations are same. Therefore unless \&
untial the value of $\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}}}$ and $\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{b}}}$ or K_{a} and K_{b} is same, the degree of hydrolysis of ion can't be same.
To explain why we assume that degree of hydrolysis of cation and anion is same, we need to now look at the third reaction i.e., combination of H^{+}and OH^{-}ions. It is obvious that this reaction happens only because one reaction produced H^{+}ion and the other produced OH^{-}ions. We can also note that this reaction causes both the hydrolysis reaction to occur more since their product ions are being consumed. Keep this thing in mind that the equilibrium which has smaller value of equilibrium conxtant is affected more by the common ion effect. For the same reason if for any reason a reaction is made to occur to a greater extent by the comsumption of any one of the product ion, the reaction with the smaller value of equilibrium constant tends to get affected more.

Therefore we conclude that firstly the hydrolysis of both the ions ocurs more in the presence of each other (due to consumption of the product ions) than in each other is absence. Secondly the hydrolysis of the ion which occurs to a lesser extent (due to smaller value of K_{h}) is affected more than the one whose K_{h} is greater. Hence we can see that the degree of hydrolysis of both the ions would be close to each other when they are getting hydrolysed in the presence of each other.

1. In the hydrolysis of salt of weak acid \& weak base :
(A) degree of hydrolysis of cation and anion is different
(B) degree of hydrolysis of cation and anion is same
(C) degree of hydrolysis of cation and anion is different and they can never be assumed same.
(D) degree of hydrolysis of cation and anion is different but they are very close to each other when they are getting hydrolysed in the presence of each other.
2. For $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONH}_{4}$ salt solution given, $\mathrm{K}_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=\mathrm{K}_{\mathrm{b}}\left(\mathrm{NH}_{4} \mathrm{OH}\right)=2 \times 10^{-5}$.

In this case : degree of hydrolysis of cation and anion are
(A) exactly same
(B) slightly different
(C) can't say
(D) different but can be take approximatly same

CHEMISTRY FOR JEE MAIN \& ADVANCED

Comprehension \# 2

The pH basic buffer mixtures is given by : $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { Base }]}{[\text { Salt }]}$, whereas pH of acidic buffer mixtures is given by : $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { Salt }]}{[\text { Acid }]}$. Addition of little acid or base although shows no appreciable change in pH for all practical purposes, but since the ratio $\frac{[\text { Base }]}{[\text { Salt }]}$ for $\frac{[\text { Salt }]}{[\text { Acid }]}$ changes, a slight decrease or increase in pH results.

1. The amount of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ to be added to 500 mL of $0.01 \mathrm{M} \mathrm{H}_{4} \mathrm{OH}$ solution $\left(\mathrm{pK}_{\mathrm{a}}\right.$ for NH_{4}^{+}is 9.26$)$ prepare a buffer of pH 8.26 is:
(A) 0.05 mole
(B) 0.025 mole
(C) 0.10 mole
(D) 0.005 mole
2. A solution containing 0.2 mole of dichloroacetic acid $\left(\mathrm{K}_{\mathrm{a}}=5 \times 10^{-2}\right)$ and 0.1 mole sodium dichloroacetate in one litre solution has $\left[\mathrm{H}^{+}\right]$:
(A) 0.05 M
(B) 0.025 M
(C) 0.10 M
(D) 0.005 M
3. The volume of 0.2 M NaOH needed to prepare a buffer of pH 4.74 with 50 mL of 0.2 M acetic acid $\left(\mathrm{pK}_{\mathrm{b}}\right.$ of $\mathrm{CH}_{3} \mathrm{COO}^{-}=9.26$) is:
(A) 50 mL
(B) 25 mL
(C) 20 mL
(D) 10 mL
4. The ratio of pH of solution(I) containing 1 mole of $\mathrm{CH}_{3} \mathrm{COONa}$ and 1 mole of HCl and solution(II) containing 1 mole of $\mathrm{CH}_{3} \mathrm{COONa}$ and 1 mole of acetic acid in one litre is:
(A) $1: 2$
(B) $2: 1$
(C) $1: 3$
(D) $3: 1$

Comprehension \#3

Strontium fluoride (SrF_{2}) is a sparingly soluble salt. Let s_{1} be its solubility (in mol/lt.) in pure water at $25^{\circ} \mathrm{C}$, assuming no hydrolysis of F^{-}ions. Also, let s_{2} be its solubility (in mol/lt.) in 0.1 M NaF solution at $25^{\circ} \mathrm{C}$, assuming no hydrolysis of F^{-}ions and no complex formation.
However, it is known that $\mathrm{s}_{1}: \mathrm{s}_{2}=10^{6}: 256$. Now, answer the following questions.

1. \quad The $\mathrm{K}_{\text {sp }}$ value of SrF_{2} at $25^{\circ} \mathrm{C}$ is :
(A) 2.048×10^{-9}
(B) 1.372×10^{-9}
(C) 1.864×10^{-9}
(D) 2.916×10^{-9}
2. The mass of NaF to be added to 100 ml solution of $0.0011 \mathrm{M} \mathrm{Sr}^{+2}$ ions to reduce its concentration to $2 \times 10^{-4} \mathrm{M}$ is : [Assume no hydrolysis of F^{-}ions]
(A) 0.42 g
(B) 0.063 g
(C) 0.021 g
(D) 0.084 g
3. The solubility of $\mathrm{SrF}_{2}($ in $\mathrm{mol} / \mathrm{L})$ in a buffer solution of $\mathrm{pH}=5$ at $25^{\circ} \mathrm{C}$ is: [Given : K_{a} for $\left.\mathrm{HF}=\frac{1}{7} \times 10^{-5}\right]$
(A) 1.6×10^{-3}
(B) 3.2×10^{-3}
(C) 4.8×10^{-3}
(D) 6.4×10^{-3}

Comprehension \# 4

The importance of $\mathbf{p H}$ maintenance in Blood

Maintenance of the pH in blood and in intracellular fluids is absolutely crucial to the processes that occur in living organisms. This primarily because the functioning of enzymes-catalysts for these processes - is sharply pH dependent. The normal pH value of blood plasma is 7.4. Severe illness or death can result from sustained variations of a few tenths of pH unit.

Among the factors that lead to a condition of acidosis, in which there is decreases in the pH of blood are heart failure, kidney failure diabetes mellitus, persistent diarrhoea or a long term high protein diet. A temporary condition acidosis may result from prolonged, intensive exercise. Alkalosis, which causes increase in pH of blood, may occur as a result of severe vomiting overbreathing or exposure to high altitudes.
Several factors are involved in the control of the pH of blood. A particularly important one is the ratio of dissolved HCO_{3}^{-}to $\mathrm{H}_{2} \mathrm{CO}_{3} . \mathrm{CO}_{2}(\mathrm{~g})$ is moderately soluble in water and in aqueous solution reacts only to a limited extent to produce $\mathrm{H}_{2} \mathrm{CO}_{3}$.

$$
\begin{array}{ll}
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) & \\
\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCO}_{3}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}, & \mathrm{pK}_{\mathrm{a}_{1}}=6.11 \\
\mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CO}_{3}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+} ; & \mathrm{pK}_{\mathrm{a}_{2}}=10.25
\end{array}
$$

In the $\mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{HCO}_{3}^{-}$buffer system we deal only with the first ionisation step $\left(\mathrm{K}_{\mathrm{a}_{1}}\right): \mathrm{H}_{2} \mathrm{CO}_{3}$ is weak acid and HCO_{3}^{-}is the conjugate base (salt). CO_{2} enters the blood from tissues as the by - product of metabolic reaction. In lungs, $\mathrm{CO}_{2}(\mathrm{~g})$ is exchanged for $\mathrm{O}_{2}(\mathrm{~g})$, which is transported throughout the body by the blood.

1. The pH of blood stream is maintained by a proper balance of $\mathrm{H}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} concentration. What volume of $5 \mathrm{M} \mathrm{NaHCO}_{3}$ solution should be mixed with a 10 mL sample of blood which is 2 M in $\mathrm{H}_{2} \mathrm{CO}_{3}$ in order to maintain its pH ? :
(A) 40 mL
(B) 38 mL
(C) 50 mL
(D) 78 mL
2. Important diagnostic analysis in the blood is:
(A) $\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right] /\left[\mathrm{HPO}_{4}^{-}\right]$
(B) $\left[\mathrm{HCO}_{3}^{-}\right] /\left[\mathrm{CO}_{2}\right]$
(C) $\left[\mathrm{CO}_{3}^{2-}\right] /\left[\mathrm{HCO}_{3}^{2-}\right]$
(D) $\left[\mathrm{PO}_{4}^{3-}\right] /\left[\mathrm{HPO}_{4}^{2-}\right]$
3. Following reaction occurs in the body :

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}
$$

If CO_{2} escapes from the system :
(A) pH will decreases
(B) pH will increases
(C) $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$ remains unchanged
(D) forward reaction is promoted

Comprehension \# 5

Phosphoric acid is of great importance in fertilizer production. Besides, phosphoric acid and its various salts have a number of application in metal treatment, food, detergent and toothpaste industries.

$$
\mathrm{pK}_{\mathrm{a}_{1}}=2.12, \mathrm{pK}_{\mathrm{a}_{2}}=7.21, \mathrm{pK}_{\mathrm{a}_{3}}=12.32
$$

Small quantities of phosphoric acid are extensively used to impart the sour or tart taste to many soft drinks such as colas and roots beers, in which a density of $1.00 \mathrm{~g} \mathrm{~mL}^{-1}$ contains 0.05% by weight of phosphoric acid.
Phosphoric acid is used as a fertiliser for agriculture and an aqueous soil digesting. $1.00 \times 10^{-3} \mathrm{M}$ phosphoric acid is found to have $\mathrm{pH}=7$. Zinc is an essential micronutrient for plant growth. Plants can absorb zinc in water soluble from only. In the given soil, zinc phosphate is only the source of zinc and phosphate ions, $\mathrm{K}_{\text {sp }}$ $($ zinc phosphate $)=9.1 \times 10^{-33}$.

1. Phosphoric acid is a tribasic acid with three-step ionisation constants. Thus, its structure is :
(A)

(B)

(C)

(D)

2. What is the pH of the cola assuming that the acidity of the cola arises only from phosphoric acid and second and third ionisation constants are of no importance ?
(A) 2.2
(B) 3.3
(C) 4.4
(D) 1.8
3. Molar concentration of phosphate ion in the soil with pH 7 is :
(A) $1.2 \times 10^{-4} \mathrm{M}$
(B) $2.2 \times 10^{-4} \mathrm{M}$
(C) $1 \times 10^{-3} \mathrm{M}$
(D) $1.1 \times 10^{-10} \mathrm{M}$
4. Concentration of $\left[\mathrm{Zn}^{2+}\right]$ in the soil is :
(A) $9.1 \times 10^{-5} \mathrm{M}$
(B) $5.7 \times 10^{-9} \mathrm{M}$
(C) $4.0 \times 10^{-10} \mathrm{M}$
(D) $3.0 \times 10^{-6} \mathrm{M}$

Exercise \# 4

[Subjective Type Questions]

1. Calculate the change in pH when 4 gm of solid $\mathrm{NaOH} \& 10 \mathrm{mmol}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$ are added to a solution of volume 5 litre, which was prepared by mixing 20 mmol of $\mathrm{HCl}, 40 \mathrm{mmol}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and 2 gm of NaOH and sufficient water. Ignore the volume change. $(\log 2=0.3, \log 3=0.48)$
2. If both the functional groups of salicylic acid, $\mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{COOH}$, ionise in water, with $\mathrm{K}_{\mathrm{a}}=1 \times 10^{-3}$ for the - COOH group and 4.2×10^{-13} for the -OH group, calculate pH of the saturated solution of the acid. (Solubility of salicylic acid in water $=1.725 \mathrm{~g} / \mathrm{L}, \log 2=0.3$).
3. A solution is prepared by mixing of acetic acid $\left(\mathrm{K}_{\mathrm{a}}=2 \times 10^{-5}\right)$ and HCl . In the mixture acetic acid is 0.2 M and HCl is 0.1 M. Calculate
(i) pH of 0.2 M acetic acid and its degree of dissociation.
(ii) pH of final solution.
(iii) $\mathrm{CH}_{3} \mathrm{COO}^{-}$ion concentration in final solution.
(iv) $\%$ decrease of α of acetic acid due to common ion effect.
4. If the acid-base reaction $\mathrm{HA}(\mathrm{aq})+\mathrm{B}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{HB}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})$ has a $\mathrm{K}_{\text {eq. }}=10^{-4}$, which of the following statements are true?
(i) HB is stronger acid than HA
(ii) HA is stronger acid than HB
(iii) HA and HB have the same acidity
(iv) B^{-}is stronger base than A^{-}
(v) A^{-}is stronger base than B^{-}
(vi) B^{-}and HB are conjugate acid-base pair
(vii) the acid and base strengths connot be compared
5. A 1 litre solution of $\mathrm{pH}=6$ (solution of a strong acid) is added to the $7 / 3$ litre of water. What is the pH of resulting solution. ($\log 2=0.3$) (Neglect the common ion effect on $\left.\mathrm{H}_{2} \mathrm{O}\right)$.
6. If the equilibrium constant for the reaction of weak acid HA with strong base is 10^{9}, then pH of 0.1 M Na A is
7. $\quad \mathrm{K}_{\mathrm{a}}$ for ascorbic acid (HAsc) is 5×10^{-5}. Calculate the hydrogen ion concentration and percentage hydrolysis in an aqueous solution in which concentration of Asc^{-}ions is 0.02 M .
8. The ionization constant of nitrous acid is 4.5×10^{-4}. Calculate the pH of 0.04 M sodiums nitrite solution and also its degree of hydrolysis.
9. Consider a solution of monoprotic weak acid having dissociation constant K_{a}. What is the minimum concentration C in terms of K_{a}, such that the concentration of the undissociated acid can be equated to C within a 10% limit of error. Assume that activity coefficient corrections are negligigible.
10. How many mole of $\mathrm{Ca}(\mathrm{OH})_{2}$ must be dissolved to produce 250 mL of an aqueous solution of pH 10.65 , assuming complete dissociation?
11. A typical aspirin tablet contains 324 mg of aspirin (acetyl salicylic acid $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$) a monoprotic acid having $\mathrm{K}_{\mathrm{a}}=3.0 \times 10^{-4}$. What is the degree of dissociation and pH of the solution if two aspirin tables are dissolved to prepare 300 mL solution in water.
12. The ionization constant of dimethyl amine is 5.4×10^{-4}. Calculate its degree of ionization in its 0.02 M solution. What percentage of dimethyl amine is ionized if the solution is also 0.1 M in NaOH ?
13. Calculate the degree of ionization of 0.05 M acetic acid if its pK_{a} value is 4.74 . How is the degree of dissociation affected when its solution is also (a) 0.01 M and (b) 0.1 M in hydrochloric acid?
14. Phenol $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}, \mathrm{K}_{\mathrm{a}}=1.3 \times 10^{-10}\right)$ is a weak acid used in mouth washes and pyridine $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, \mathrm{~K}_{\mathrm{b}}=1.8 \times 10^{-9}\right)$ is a weak base used as a solvent. Calculate the value of K_{n} for neutralizatin of phenol by pyridine. Does the neutralisation reaction proceed veryfar towards completion?
15. A 50 mL solution of 0.125 M HCOONa (aq.) is mixed with 10 mL of 0.025 M HCl (aq.). Calculate the pH and the molarity of HCOOH in the mixture. pK_{a} for $\mathrm{HCOOH}=3.75$.
16. Calculate $\left[\mathrm{H}^{+}\right]$in a 0.20 M solution of dichloroacetic acid $\left[\mathrm{K}_{\mathrm{a}}=5 \times 10^{-2}\right]$ that also contains 0.1 M sodium dichloroacetate. Neglect hydrolysis of sodium salt.
17. An aqueous solution contains 10% ammonia by mass and has a density of $0.952 \mathrm{~g} \mathrm{~cm}^{-3}$. Calculate hydroxyl and hydrogen ion concentration in this solution. K_{a} for $\mathrm{NH}_{4}^{+}=5.0 \times 10^{-10} \mathrm{M}$.
[Roorkee-95]
18. A solution contains $0.10 \mathrm{M} \mathrm{H}_{2} \mathrm{~S}$ and 0.2 M HCl . Calculate the concentration of [S^{2-}] and [HS^{-}] ions in the solution For $\mathrm{H}_{2} \mathrm{~S}, \mathrm{~K}_{\mathrm{a} 1}=1.0 \times 10^{-7}, \mathrm{~K}_{\mathrm{a} 2}=1.3 \times 10^{-13}$
[Roorkee-92]
19. Prove that degree of dissociation of a weak acid is given by :

$$
\alpha=\frac{1}{1+10^{\left(\mathrm{pK}_{\mathrm{a}}-\mathrm{pH}\right)}}
$$

where K_{a} is its dissociation constant.
20. Calculate the concentration of fluoroacetic acid which is required to get $\left[\mathrm{H}^{+}\right]=1.50 \times 10^{-3} \mathrm{M} . \mathrm{K}_{\mathrm{a}}$ of acid $=$ 2.5×10^{-3}
21. Diborane, $\mathrm{B}_{2} \mathrm{H}_{6}$ reacts with water to form boric acid and hydrogen. What is the pH of solution which results when $1.0 \mathrm{~g} \mathrm{~B}_{2} \mathrm{H}_{6}$ reacts with 100 mL water. Assume that final volume be 100 mL water.
K_{a} for $\mathrm{H}_{3} \mathrm{BO}_{3}=7.3 \times 10^{-10} .(\mathrm{B}=10.8)$
22. Calculate the pH of solution obtained by mixing 10 mL of 0.1 M HCl and 40 mL of $0.2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$.
23. Calculate the pH of a solution which contains 100 mL of 0.1 M HCl and 9.9 mL of 1.0 M NaOH .
24. $\quad 100 \mathrm{~mL}$ of HCl gas at $25^{\circ} \mathrm{C}$ and 740 mm pressure were dissolved in one litre of water. Calculate the pH of solution. Given, V.P. of $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$ is 23.7 mm .
25. An aqueous solution of aniline of concentration 0.24 M is prepared. What concentration of sodium hydroxide is needed in this solution so that anilinium ion concentration remains at $1 \times 10^{-8} \mathrm{M}$?
$\left[\mathrm{K}_{\mathrm{a}}\right.$ for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}=2.4 \times 10^{-5} \mathrm{M}$]
[Roorkee-96]
26. What volume of concentrated $\mathrm{HCl}(\mathrm{aq})$ that is $36.5 \% \mathrm{HCl}$ by mass, and has a density $1.25 \mathrm{~g} \mathrm{~cm}^{-3}$ is required to produce 2.5 L of a solution of $\mathrm{pH}=1$.
27. Calculate the concentrations of all species present in $0.1 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ solution. $\mathrm{K}_{1}=7.5 \times 10^{-3}$, $\mathrm{K}_{2}=6.2 \times 10^{-8}, \mathrm{~K}_{3}=3.6 \times 10^{-13}$.
28. For an organic monoprotic acid solution of concentration $C o$ mole litre $^{-1}$, if K_{a} has a value comparable to K_{w}, show that the hydronium ion concentration is given by :

$$
\left[\mathrm{H}^{+}\right]=\left[\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]}+\frac{\mathrm{K}_{\mathrm{a}} \cdot \mathrm{C}_{\mathrm{o}}}{\left[\mathrm{~K}_{\mathrm{a}}+\mathrm{H}^{+}\right]}\right]
$$

If $\left[\mathrm{H}^{+}\right]=10^{-3} \mathrm{M}$ and $\mathrm{C}_{0}=10^{-1} \mathrm{M}$ in a solution of some organic monoprotic acid, what, according to the above equation, must be the order of magnitude of K_{a} ?
29. Calculate $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{CHCl}_{2} \mathrm{COO}^{-}\right]$in a solution that is 0.01 M in HCl and 0.01 M in $\mathrm{CCl}_{2} \mathrm{COOH}$. Take $\left(\mathrm{K}_{\mathrm{a}}=2.0 \times 10^{-2}\right)$.
30. K_{1} and K_{2} for oxalic acid, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$, are 5.6×10^{-2} and 5.0×10^{-6}. What is [$\left.\mathrm{OH}^{-}\right]$in a 0.5 mM solution of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$?
31. Calculate the pH of a 0.15 M aquesous solution of AlCl_{3}. Given : $\log 2=0.3, \log 3=0.48$
$\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{H}_{2} \mathrm{O}(\ell) \rightleftharpoons\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}\right]^{2+}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}), \mathrm{K}_{\mathrm{a}}=1.5 \times 10^{-5}$
32. The dissociation constant for hydrogen sulphide (dissociated into $2 \mathrm{H}^{+}$and S^{2-}) is 1.1×10^{-22} at $18^{\circ} \mathrm{C}$. What is the concentration of sulphide ion in a 0.1 N hydrochloric acid solution which is saturated with hydrogen sulphide at $18^{\circ} \mathrm{C}$, assuming that the concentration of $\mathrm{H}_{2} \mathrm{~S}$ is 0.1 M ?
33. The artificial sweetener saccharin is a weak organic acid that can be represented by HSac. On adding in a drink, it ionizes to give H^{+}ions \& Sac^{-}ions. Calculate [Sac^{-}] ions if 0.002 mole of saccharin is added in a 250 mL glass of black tea containing lemon juice having an initial pH of $2.0 . \mathrm{K}_{\mathrm{a}}(\mathrm{HSac})=2 \times 10^{-12}$
34. The ionization constant of phenol is 1.0×10^{-10}. What is the concentration of phenolate ion in 0.05 M solution of phenol? What will be its degree of ionization if the solution is also 0.01 M in sodium phenolate ?
35. Phosphoric acid ionizes according to the equations

$\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq}) ;$	$\mathrm{K}_{1}=7 \times 10^{-3}$
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HPO}_{4}^{2-}(\mathrm{aq}) ;$	$\mathrm{K}_{2}=6 \times 10^{-8}$
$\mathrm{HPO}_{4}^{2-}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{PO}_{4}^{3-}(\mathrm{aq}) ;$	$\mathrm{K}_{3}=4.5 \times 10^{-13}$

(a) If you are asked to prepare a buffer with a $\mathrm{pH}=7.00$, identify the species that should be used in the solution and calculate their molar ratio.
(b) Assume 50 mL of the buffer prepared in part (a) is available in which more abundant species has a concentration of 0.10 M . If to this solution 20 mL 0.1 M NaOH is added further, what will be the new pH ?
$(\log 2=0.3, \log 3=0.48)$
36. 0.98 gm of $\mathrm{H}_{3} \mathrm{PO}_{4}$ is dissolved in 100 ml of buffer solution $(\mathrm{pH}=5)$. Calculate the equilibrium concentrations of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{HPO}_{4}^{2-}, \mathrm{PO}_{4}^{3-}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$ in the solution. $\mathrm{Ka}_{1}=10^{-3}, \mathrm{Ka}_{2}=10^{-8}, \mathrm{Ka}_{3}=0^{-12}$.
37. A 0.252 g sample of unknown organic base is dissolved in water and titrated with a 0.14 M HCl solution. After the addition of 20 mL of acid, a pH of 10.7 is recorded. The equivalence point is reached when a total of 40 mL of HCl is added. The base and acid combine in a $1: 1$ ratio.
(a) What is the molar mass of the organic base ?
(b) What is the K_{b} value for the base ?
38. $\mathrm{An} \mathrm{NH}_{4}^{+}-\mathrm{NH}_{3}$ buffer is supposed to keep the pH of the solution constant within 0.3 pH unit during the reaction.

$$
\mathrm{CH}_{3} \mathrm{COOCH}_{3}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \longrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{OH}(\mathrm{aq})
$$

If this solution had initial concentrations : $\left[\mathrm{NH}_{4}^{+}\right]_{0}=0.1 \mathrm{M},\left[\mathrm{NH}_{3}\right]_{0}=0.06 \mathrm{M},\left[\mathrm{CH}_{3} \mathrm{COOCH}_{3}\right]_{0}=0.02 \mathrm{M}$.
What would be the initial and final pH of the solution ? Is this a satisfactory buffer ? $\left[\mathrm{K}_{\mathrm{b}}\left(\mathrm{NH}_{3}\right)=1.8 \times 10^{-5}\right.$, $\log 2=0.3, \log 3=0.48]$.
39. A certain solution has a hydrogen ion concentration $4 \times 10^{-3} \mathrm{M}$. At $\mathrm{pH}=2$, half of the indicator, thymol blue is in unionised form. Find the $\%$ of indicator in unionised form in the solution with $\left[\mathrm{H}^{+}\right]=4 \times 10^{-3} \mathrm{M}$.
40. How much of 0.3 M ammonium hydroxide should be mixed with 30 mL of 0.2 M solution of ammonium chloride to give buffer solutions of pH 8.65 and 10 . (Given pK_{b} of $\mathrm{NH}_{4} \mathrm{OH}=4.75, \log 2=0.3, \log 0.18=-0.75$)
41. Calculate the change in pH of one litre of buffer solution containing 0.10 mole each of $\mathrm{NH}_{3} \& \mathrm{NH}_{4} \mathrm{Cl}$ upon addition of, (i) 0.02 mole of dissolved gaseous HCl (ii) 0.02 mole of dissolved NaOH .
Assume no change in solution volume . $\left(\mathrm{K}_{\mathrm{b}}\right.$ for $\left.\mathrm{NH}_{3}=1.8 \times 10^{-5}\right)$
[Roorkee-92]
42. What volume of 0.10 M sodium formate solution should be added to 50 ml of 0.05 M formic acid to produce a buffer solution of pH 4 . [pK_{a} for formicacid is 3.7]
[Roorkee-90]
43. Calculate the amount of NH_{3} and $\mathrm{NH}_{4} \mathrm{CI}$ required to prepare a buffer solution of pH 9.0 when total concentration of buffering reagents is $0.6 \mathrm{~mol} \mathrm{~L}^{-1}$. $\left(\mathrm{pK}_{\mathrm{b}}\right.$ for $\left.\mathrm{NH}_{3}=4.7, \log 2=0.30\right)$.
[Roorkee-97]
44. Calculate the pH of a buffer solution prepared by dissolving 31.8 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in 500 mL of an aqueous solution containing 150 mL of 1 M HCl . K_{a} for $\mathrm{HCO}_{3}^{-}=5 \times 10^{-11}$.
45. A 0.1 M solution of weak acid HA is 1% dissociated at $25^{\circ} \mathrm{C}$. What is its K_{a} ? If this solution is dissociated with respect to NaA 0.2 M , what will be the new degree of dissociation of HA and pH ?
46. $\quad 0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ solution is titrated against 0.05 M NaOH solution. Calculate pH at $1 / 4$ th and $3 / 4$ stages of neutralization of acid. The pH for $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ is 3 .
47. How many mole of HCI will be required to prepare one litre of buffer solution (containing $\mathrm{NaCN}+\mathrm{HCN}$) of pH 8.5 using 0.01 g formula weight of NaCN ? $\quad \mathrm{K}_{\mathrm{HCN}}=4 \times 10^{-10}$
[IIT-98]
48. A 40.0 ml solution of a weak base BOH is titrated with 0.1 N HCl solution. The pH of the solution is found to be 10.04 and 9.14 after adding 5.0 ml and 20.0 ml of the acid respectively. Find out the dissociation constant of the base.
[IIT-91]
49. 25 ml of a dilute aqueous solution of p-hydroxy benzoic acid is titrated with NaOH (aq), the solution has $\mathrm{pH}=4.7$ when 8.12 ml of 0.02 M NaOH had been added, and $\mathrm{pH}=7.5$ after 16.24 ml had been added (the equivalence point). Use these data to determine $\mathrm{K}_{\mathrm{a} 1}$ and $\mathrm{K}_{\mathrm{a} 2}$ for p -hydroxy benzoic acid. $(\log 2=0.3)$
50. How many mmole HCI should be added to 100 ml of a 0.1 M solution of an ampholyte $\left(\mathrm{pK}_{\mathrm{a}}=9.7\right.$ and $\mathrm{pK}_{\mathrm{b}}=11.7$) to make a solution of $\mathrm{pH}=2.6$? The volume change is neglected. $\mathrm{pK}_{\mathrm{w}}=14.0$.
51. All enviremental chemist needs a carbonate buffer of pH 10.00 to study the effects of the acidification of limestonerich soils. How many grams of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ must be added to 1.5 L of freshly prepared $0.20 \mathrm{M} \mathrm{NaHCO}_{3}$ to make the buffer? K_{a} of $\mathrm{HCO}_{3}{ }^{-}=4.7 \times 10^{-11} .(\log 4.7=0.672)$
52. To a solution of acetic acid, solid sodium acetate is added gradually. When x mole of salt is added, the pH has a certain value. If y mole of salt is added, the pH at this time changes by 0.6 units to previous pH . What is the ratio of x and y. Given that $y>x$.
53. Calculate the pH at the equivalence point when a solution of 0.10 M acetic acid is titrated with a solution of 0.10 M of NaOH . [K_{a} for acetic acid is 1.9×10^{-5}]
[Roorkee-90]
54. A 0.50 gram mixture containing $\mathrm{NaHCO}_{3}, \mathrm{Na}_{2} \mathrm{CO}_{3}$ and KCl was dissolved in 50.00 mL water and titrated with 0.15 M HCl resulting in the following titration curve.

Determine weight percentage of $\mathrm{NaHCO}_{3}, \mathrm{Na}_{2} \mathrm{CO}_{3}$ and KCl in the mixture.

55. 0.2 moles of $\mathrm{MgCl}_{2}(\mathrm{~s})$ is mixed with 0.2 moles of $\mathrm{NaOH}(\mathrm{s})$ in a total volume of 1.0 litre. ($\log 2=0.3, \log 3=0.48$)
(a) Calculate pH of this solution. K_{sp} of $\mathrm{Mg}(\mathrm{OH})_{2}$ is 1.6×10^{-12}.
(b) Also determine pH when 0.04 moles of NaOH (s) is added in the solution (a).
(c) Also determine pH of solution obtained after adding 0.04 mole of $\mathrm{HCl}(\mathrm{g})$ to solution (a).
56. The solubility product $\mathrm{Mg}(\mathrm{OH})_{2}$ in water at $25^{\circ} \mathrm{C}$ is $2.56 \times 10^{-13}(\mathrm{~mol} / \mathrm{lt})^{3}$ while that of $\mathrm{Al}(\mathrm{OH})_{3}$ is $4.32 \times 10^{-34}(\mathrm{~mol} / \mathrm{lt})^{4}$. If s_{1} and s_{2} are the solubilities of $\mathrm{Mg}(\mathrm{OH})_{2}$ and $\mathrm{Al}(\mathrm{OH})_{3}$ in water in $\mathrm{mol} / \mathrm{lt}$ at $25^{\circ} \mathrm{C}$, what is the approximate ratio, $\mathrm{s}_{1} / \mathrm{s}_{2}$?
57. Silver ion forms $\mathrm{Ag}(\mathrm{CN})_{2}^{-}$in the presence of excess CN^{-}. How much solid KCN should be added to 1 litre of a 0.0009 $\mathrm{M} \mathrm{Ag}^{+}$solution in order to reduce $\left[\mathrm{Ag}^{+}\right]$to $1 \times 10^{-19} .\left[\mathrm{K}_{\text {diss }}\right.$ of $\left.\mathrm{Ag}(\mathrm{CN})_{2}^{-}=1 \times 10^{-21}\right]$
58. A buffer solution is $0.25 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ and $0.15 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}$, saturated with $\mathrm{H}_{2} \mathrm{~S}(0.1 \mathrm{M})$ and has $\left[\mathrm{Mn}^{2+}\right]=0.015 \mathrm{M}$. Given : $\mathrm{K}_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=1.8 \times 10^{-5}, \mathrm{~K}_{\mathrm{a}}\left(\mathrm{H}_{2} \mathrm{~S}\right)=9 \times 10^{-21}, \mathrm{~K}_{\mathrm{sp}}(\mathrm{MnS})=2.4 \times 10^{-13}$.
(a) Will MnS precipitate
(b) Which buffer component should be increased in concentration and to which minimium value to just start precipition of MnS ?
59. Calculate the solubility of $\mathrm{CaC}_{2} \mathrm{O}_{4}$ in a solution with a fixed $\mathrm{H}_{3} \mathrm{O}^{+}$concentration of $10^{-4} \mathrm{M}$. The oxalate containing species $\left(\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}, \mathrm{HC}_{2} \mathrm{O}_{4}^{-}, \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ exist in solution $\&$ the relevant equilibria are,

$$
\begin{aligned}
& \mathrm{CaC}_{2} \mathrm{O}_{4}(\mathrm{~s}) \rightleftharpoons \mathrm{Ca}^{2+}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \quad \mathrm{K}_{\text {sp }}=2.7 \times 10^{-9} \\
& \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HC}_{2} \mathrm{O}_{4}^{-} \mathrm{K}_{1}=5 \times 10^{-2} \\
& \mathrm{HC}_{2} \mathrm{O}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \mathrm{K}_{2}=5 \times 10^{-5}
\end{aligned}
$$

60. 0.01 mole of AgNO_{3} is added to 1 litre of a solution which is $0.1{\mathrm{M} \mathrm{in} \mathrm{Na}_{2} \mathrm{CrO}_{4} \text { and } 0.005 \mathrm{M} \mathrm{in} \mathrm{NaIO}_{3} \text {. Calculate the }}^{2}$ mole of precipiate formed at equilibrium and the concentrations of $\mathrm{Ag}^{+}, \mathrm{IO}_{3}{ }^{-}$and $\mathrm{CrO}_{4}{ }^{2-} \cdot\left(\mathrm{K}_{\mathrm{SP}}\right.$ values of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ and AgIO_{3} are 10^{-8} and 10^{-13} respectively)
61. The solubility of $\mathrm{Sr}(\mathrm{OH})_{2}$ at 298 K is $19.23 \mathrm{~g} / \mathrm{L}$ of solution. Calculate the concentrations of strontium and hydroxyl ions and the pH of the saturated solution.
62. A solution made up to be $0.0100 \mathrm{M} \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}$ and $0.0200 \mathrm{M}_{2} \mathrm{H}_{4}$ was found to have an equilibrium concentration of $\left[\mathrm{Co}^{2+}\right]$ is $6 \times 10^{-3} \mathrm{M}$. Assuming that the only complex formed was $\mathrm{Co}\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)^{2+}$, what is the apparent K_{f} for complex formation?
63. In an excess of $\mathrm{NH}_{3(\text { aq. })}$, Cu^{2+} ion forms a deep blue complex ion $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ having formation constant $\mathrm{K}_{\mathrm{f}}=5.6 \times 10^{11}$. Calculate the concentration of Cu^{2+} ion a solution prepared by adding $5.0 \times 10^{-3} \mathrm{~mol}^{\text {of } \mathrm{CuSO}_{4} \text { to } 0.50}$ litre of $0.40 \mathrm{M} \mathrm{NH}_{3}$.
64. K_{SP} of BaSO_{4} is 1.6×10^{-9}. Calculate its solubility in :
(i) pure water
(ii) $0.10 \mathrm{M} \mathrm{BaCl}_{2}$.
65. K_{SP} for PbCl_{2} is 10^{-13}. What will be $\left[\mathrm{Pb}^{2+}\right]$ in a solution prepared by mixing 100 mL of $0.1 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and 1 mL of 1 M HCl ?
66. $\quad \mathrm{BaSO}_{4}$ and BaCrO_{4} have solubility product values in the ratio $1: 2.5$ at $25^{\circ} \mathrm{C}$. When pure water is saturated with both solids simultaneously, the total concentration of Ba^{2+} ion in the solution is $1.4 \times 10^{-5} \mathrm{M}$. Calculate the solubility product of BaCrO_{4}. Calculate also the solubility of BaSO_{4} in $0.01 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ solution.
67. A particular water sample has $136 \mathrm{ppm} \mathrm{CaSO}_{4}$. What fraction of the water must be evaporated in a container before solid CaSO_{4} begins to deposit K_{SP} of $\mathrm{CaSO}_{4}=9.0 \times 10^{-6}$?
68. To a solution of $0.1 \mathrm{M} \mathrm{Mg}^{2+}$ and $0.8 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$, an equal volume of NH_{3} is added which just gives precipitate. Calculate $\left[\mathrm{NH}_{3}\right]$ in solution. K_{SP} of $\mathrm{Mg}(\mathrm{OH})_{2}=1.25 \times 10^{-11}$ and K_{b} of $\mathrm{NH}_{4} \mathrm{OH}=2 \times 10^{-5}$.
69. 10 mL of $0.3 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ are mixed with 20 mL solution having initially $0.1 \mathrm{M} \mathrm{Ca}^{2+}$ and $0.1 \mathrm{M} \mathrm{Sr}^{2+}$ in it. What are the final concentration of $\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}$ and SO_{4}^{2-} in solution ? Given K_{SP} of $\mathrm{SrSO}_{4}=7.6 \times 10^{-7}$ and K_{SP} of $\mathrm{CaSO}_{4}=2.4 \times 10^{-5}$.
70. 100.0 mL of a clear saturated solution of $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ is added to 250.0 mL of a clear saturated solution of PbCrO_{4}. Will any precipitate form and if so what? Given K_{SP} values for $\mathrm{Ag}_{2} \mathrm{SO}_{4}, \mathrm{Ag}_{2} \mathrm{CrO}_{4}, \mathrm{PbCrO}_{4}$ and PbSO_{4} are $1.4 \times 10^{-5}, 2.4 \times 10^{-12}$, 2.8×10^{-13} and 1.6×10^{-8} respectively.
71. What is the minimum volume of water required to dissolve 1 g of calcium sulphate at 298 K . For calcium sulphate, K_{SP} is 9×10^{-6}.
72. 50 mL of a sample of clear saturated solutions of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ requires 20 mL of a $\left.\left.\mathrm{X} \mathrm{M} \mathrm{Pb(NO}\right)_{2}\right)_{2}$ for its titration. What is the value of X . K_{SP} for $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ is 3.2×10^{-12}.
73. Calculate pH of a saturated solution of $\mathrm{Mg}(\mathrm{OH})_{2} . \mathrm{K}_{\mathrm{SP}}$ for $\mathrm{Mg}(\mathrm{OH})_{2}$ is 8.9×10^{-12}.
74. 0.00050 mole of NaHCO_{3} is added to a large volume of a solution buffered at $\mathrm{pH}=8.00$. How much material will exist in each of the three forms, $\mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{HCO}_{3}{ }^{-}$and $\mathrm{CO}_{3}{ }^{2-} \mathrm{K}_{1}$ and K_{2} for $\mathrm{H}_{2} \mathrm{CO}_{3}$ are 4.9×10^{-7} and 10^{-12} respectively.
75. K_{SP} of PbBr_{2} is 2.56×10^{-7}. If the salt is 80% dissociated in solution, calculate the solubility of salt in g per litre.
76. 25.0 mL clear saturated solution of $\mathrm{PbI}_{2}(\mathrm{aq})$ requires 13.3 mL of $\mathrm{AgNO}_{3}(\mathrm{aq})$ solution for complete precipitation. What is molarity of AgNO_{3} solution? K_{SP} of PbI_{2} is 7.1×10^{-9}.
77. K_{SP} for $\mathrm{SrF}_{2}=2.8 \times 10^{-9}$ at $25^{\circ} \mathrm{C}$. How much NaF should be added to 100 mL of solution having $0.016 \mathrm{M}^{\text {in }} \mathrm{Sr}^{2+}$ ions to reduce its concentration to $2.5 \times 10^{-3} \mathrm{M}$?
78. 0.10 mole of $\mathrm{AgCl}(\mathrm{s})$ is added to 1 litre of $\mathrm{H}_{2} \mathrm{O}$. Next crystal of NaBr are added until 75% of the AgCl is converted to $\mathrm{AgBr}(\mathrm{s})$, the less soluble silver halide. What is Br^{-}at this point? K_{SP} of AgCl is 1.75×10^{-10} and K_{SP} of AgBr is 5.25×10^{-13}.
79. \quad The K_{SP} of $\mathrm{Ca}(\mathrm{OH})_{2}$ is 4.42×10^{-5} at $25^{\circ} \mathrm{C}$. A 500 mL of saturated solution $\mathrm{Ca}(\mathrm{OH})_{2}$ is mixed with equal volume of 0.4 M NaOH . How much $\mathrm{Ca}(\mathrm{OH})_{2}$ in mg is precipitated?
[IIT-92]
80. A sample of hard water contains 0.005 moles of CaCl_{2} per litre. What is the minimum concentration of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ which must be added for removing Ca^{2+} ions from the water sample. $\mathrm{K}_{\text {sp }}$ for CaSO_{4} is 2.4×10^{-5} at $25^{\circ} \mathrm{C}$.
81. The solubility of CaCO_{3} is 7 mg / litre. Calculate the solubility product of BaCO_{3} from this information and from the fact that when $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is added slowly to a solution containing equimolar concentration of Ca^{+2} and Ba^{+2}, no precipitate of CaCO_{3} is formed until 90% of Ba^{+2} has been precipitated as BaCO_{3}
82. Determine solubility of $\mathrm{CaF}_{2}\left(\mathrm{~K}_{\mathrm{sp}}=4 \times 10^{-11}\right)$
(a) at $\mathrm{pH}=7$,
(b) at $\mathrm{pH}=5$.
$\mathrm{K}_{\mathrm{a}}=3.45 \times 10^{-4}$
83. Equal volumes of $0.02 \mathrm{M} \mathrm{AgNO}_{3}$ and 0.02 M HCN were mixed. Calculate $\left[\mathrm{Ag}^{+}\right]$at equilibrium. Take $\mathrm{K}_{\mathrm{a}}(\mathrm{HCN})=4 \times 10^{-10}, \mathrm{~K}_{\text {sp }}(\mathrm{AgCN})=4 \times 10^{-16}$
84. An aqueous solution of a metal bromide $\mathrm{MBr}_{2}(0.05 \mathrm{M})$ is saturated with $\mathrm{H}_{2} \mathrm{~S}$. What is the minimum pH at which MS will precipitate ? K_{sp} for $\mathrm{MS}=6.0 \times 10^{-21}$, concentration of saturated $\mathrm{H}_{2} \mathrm{~S}=0.1 \mathrm{M}, \mathrm{K}_{1}=10^{-7}$ and $\mathrm{K}_{2}=1.3 \times 10^{-13}$ for $\mathrm{H}_{2} \mathrm{~S}$.
[IIT-93]
85. Calculate pH at which $\mathrm{Mg}(\mathrm{OH})_{2}$ begins to precipitate from a solution containing $0.10 \mathrm{M} \mathrm{Mg}^{2+}$ ions. K_{SP} of $\mathrm{Mg}(\mathrm{OH})_{2}=1 \times 10^{-11}$.
[Roorkee-92]
86. A solution has $0.05 \mathrm{M} \mathrm{Mg}^{2+} \& 0.05 \mathrm{M} \mathrm{NH}_{3}$. Calculate the concentration of $\mathrm{NH}_{4} \mathrm{Cl}$ required to prevent the formation of $\mathrm{Mg}(\mathrm{OH})_{2}$ in this solution. $\mathrm{K}_{\text {sp }}$ of $\mathrm{Mg}(\mathrm{OH})_{2}=9.0 \times 10^{-12} \&$ ionization constant of $\mathrm{NH}_{3}=1.8 \times 10^{-5}$. [Roorkee-93]
87. Determine the number of moles of AgI which may be dissolved in 1.0 litres of $1.0 \mathrm{M} \mathrm{CN}^{-}$solution. $\mathrm{K}_{\text {sp }}$ for $\mathrm{AgI} \& \mathrm{~K}_{\mathrm{f}}$ for $\left[\mathrm{Ag}\left(\mathrm{CN}_{2}\right]^{-}\right.$are $1.2 \times 10^{-17} \mathrm{M}^{2} \& 7.1 \times 10^{19} \mathrm{M}^{-2}$ respectively.
[Roorkee-98]
88. Calculate the Simultaneous solubility of AgCl and AgI .
$\mathrm{K}_{\text {sp }}(\mathrm{AgCl})=1 \times 10^{-10}, \mathrm{~K}_{\text {sp }}(\mathrm{AgI})=8.5 \times 10^{-17}$
89. The solubility of $\mathrm{Pb}(\mathrm{OH})_{2}$ in water is $6.7 \times 10^{-6} \mathrm{M}$. Calculate the solubility of $\mathrm{Pb}(\mathrm{OH})_{2}$ in a buffer solution of $\mathrm{pH}=8$.
[JEE-1999]
90. (a) At what minimum pH will $1.0 \times 10^{-3} \mathrm{~mol}$ of $\mathrm{Al}(\mathrm{OH})_{3}$ go into 1 L solution as $\left[\mathrm{Al}(\mathrm{OH})_{4}^{-}\right]$.
(b) At what maximum pH will $5.0 \times 10^{-3} \mathrm{~mol}$ of $\mathrm{Al}(\mathrm{OH})_{3}$ go into 1 L solution at Al^{3+} ?

Given $\mathrm{K}_{\mathrm{sp}}\left[\mathrm{Al}(\mathrm{OH})_{3}\right]=5.0 \times 10^{-33}$ and for $\left[\mathrm{Al}(\mathrm{OH})_{4}^{-}\right] \rightleftharpoons \mathrm{Al}^{3+}+4 \mathrm{OH}^{-} . \mathrm{K}=1.0 \times 10^{-34}$.
91. At what concentration of OH^{-}, is the solubility of $\mathrm{Zn}(\mathrm{OH})_{2}$ minimum ? What is the minimum solubility ? Given $\mathrm{K}_{\text {sp }}$ $\left[\mathrm{Zn}(\mathrm{OH})_{2}\right]$ and $\mathrm{K}_{\mathrm{f}}\left[\mathrm{Zn}(\mathrm{OH})_{4}{ }^{2-}\right]$ are 1.2×10^{-17} and 10^{16} respectively.

Exercise \# 5 Part \# I > [Previous Year Questions] [AIEEE/JEE-MAIN]

1. The conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is
[AIEEE-2004]
(1) PO_{4}^{3-}
(2) $\mathrm{P}_{2} \mathrm{O}_{5}$
(3) $\mathrm{H}_{3} \mathrm{PO}_{4}$
(4) $\mathrm{HPO}_{4}{ }^{2-}$
2. The molar solubility (in $\mathrm{mol} \mathrm{L}^{-1}$) of a sparingly soluble salt MX_{4} is s . The corresponding solubility product is $\mathrm{K}_{\text {sp. }}$. s is given in terms of K_{sp} by the relation
[AIEEE-2004]
(1) $\mathrm{s}=\left(\mathrm{K}_{\mathrm{sp}} / 128\right)^{1 / 4}$
(2) $\mathrm{s}=\left(128 \mathrm{~K}_{\mathrm{sp}}\right)^{1 / 4}$
(3) $s=\left(256 \mathrm{~K}_{\text {sp }}\right)^{1 / 5}$
(4) $s=\left(K_{\text {sp }} / 256\right)^{1 / 5}$
3. The solubility product of a salt having general formula MX_{2}, in water is: 4×10^{-12}. The concentration of M^{2+} ions in the saturated aqueous solution of the salt is :
[AIEEE-2005]
(1) $2.0 \times 10^{-6} \mathrm{M}$
(2) $1.0 \times 10^{-4} \mathrm{M}$
(3) $1.6 \times 10^{-4} \mathrm{M}$
(4) $4.0 \times 10^{-10} \mathrm{M}$
4. What is the conjugate base of OH^{-}?
[AIEEE-2005]
(1) O_{2}
(2) $\mathrm{H}_{2} \mathrm{O}$
(3) O^{-}
(4) O^{2-}
5. Hydrogen ion concentration in $\mathrm{mol} / \mathrm{L}$ in a solution of $\mathrm{pH}=5.4$ will be
[AIEEE-2005]
(1) 3.98×10^{8}
(2) 3.88×10^{6}
(3) 3.68×10^{-6}
(4) 3.98×10^{-6}
6. The first and second dissociation constants of an acid $\mathrm{H}_{2} \mathrm{~A}$ are 1.0×10^{-5} and 5.0×10^{-10} respectively. The overall dissociation constant of the acid will be
[AIEEE-2007]
(1) 5.0×10^{-15}
(2) 0.2×10^{5}
(3) 5.0×10^{-5}
(4) 5.0×10^{15}
7. The pK_{a} of a weak acid (HA) is 4.5. The pOH of an aqueous buffered solution of HA , in which 50% of the acid is ionized, is :
[AIEEE-2007]
(1) 9.5
(2) 7.0
(3) 4.5
(4) 2.5
8. In a saturated solution of the sparingly soluble strong electrolyte $\mathrm{AgIO}_{3}($ Molecular mass $=283)$ the equilibrium which sets in is

$$
\mathrm{AgIO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{IO}_{3}^{-}(\mathrm{aq})
$$

If the solubility product constant $\mathrm{K}_{\text {sp }}$ of AgIO_{3} at a given temperature is 1.0×10^{-8}, what is the mass of AgIO_{3} contained in 100 ml of its saturated solution?
[AIEEE-2007]
(1) $1.0 \times 10^{-7} \mathrm{~g}$
(2) $1.0 \times 10^{-4} \mathrm{~g}$
(3) $28.3 \times 10^{-2} \mathrm{~g}$
(4) $2.83 \times 10^{-3} \mathrm{~g}$
9. The pK_{a} of a weak acid, HA , is 4.80 . The pK_{b} of a weak base, BOH , is 4.78 . The pH of an aqueous solution of the corresponding salt, BA , will be
[AIEEE-2008]
(1) 4.79
(2) 7.01
(3) 9.22
(4) 9.58
10. Solid $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ is gradually dissolved in $1.0 \times 10^{-4} \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution. At what concentration of Ba^{2+} will a precipitate begin to form? ($\mathrm{K}_{\text {sp }}$ for $\mathrm{BaCO}_{3}=5.1 \times 10^{-9}$):
[AIEEE-2009]
(1) $5.1 \times 10^{-5} \mathrm{M}$
(2) $8.1 \times 10^{-8} \mathrm{M}$
(3) $8.1 \times 10^{-7} \mathrm{M}$
(4) $4.1 \times 10^{-5} \mathrm{M}$
11. Solubility product of silver bromide is 5.0×10^{-13}. This quantity of potassium bromide (molar mass taken as 120 g mol^{-1}) to be added to 1 litre of 0.05 M solution of silver nitrate to start the precipitation of AgBr is : [AIIEEE-2010]
(1) $1.2 \times 10^{-10} \mathrm{~g}$
(2) $1.2 \times 10^{-9} \mathrm{~g}$
(3) $6.2 \times 10^{-5} \mathrm{~g}$
(4) $5.0 \times 10^{-8} \mathrm{~g}$
12. At $25^{\circ} \mathrm{C}$, the solubility product of $\mathrm{Mg}(\mathrm{OH})_{2}$ is 1.0×10^{-11}. At Which pH , will Mg^{2+} ions start precipitating in the form of $\mathrm{Mg}(\mathrm{OH})_{2}$ from a solution of $0.001 \mathrm{M} \mathrm{Mg}^{2+}$ ions ?
[AIEEE-2010]
(1) 9
(2) 10
(3) 11
(4) 8
13. Three reactions involving $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$are given below :
[AIEEE-2010]
(i) $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
(ii) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}$
(iii) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{O}^{2-}$

In which of the above does $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$act as an acid?
(1) (ii) only
(2) (i) and (ii)
(3) (iii) only
(4) (i) only
14. In aqueous solution the ionization constants for carbonic acid are
[AIEEE-2010]

$$
\mathrm{K}_{1}=4.2 \times 10^{-7} \text { and } \mathrm{K}_{2}=4.8 \times 10^{-11}
$$

Select the correct statement for a saturated 0.034 M solution of the carbonic acid.
(1) The concentration of $\mathrm{CO}_{3}{ }^{2-}$ is 0.034 M .
(2) The concentration of $\mathrm{CO}_{3}{ }^{2-}$ is greater than that of HCO_{3}^{-}.
(3) The concentration of H^{+}and $\mathrm{HCO}_{3}{ }^{-}$are approximately equal.
(4) The concentration of H^{+}is double that of CO_{3}^{2-}.
15. How many litres of water must be added to 1 litre an aqueous solution of HCl with a pH of 1 to create an aqueous solution with pH of 2 ?
[JEE(Main) 2013]
(1) 0.1 L
(2) 0.9 L
(3) 2.0 L
(4) 9.0 L
16. Which of the following salts is the most basic in aqueous solution?
[JEE(Main) 2018]
(1) $\mathrm{CH}_{3} \mathrm{COOK}$
(2) FeCl_{3}
(3) $\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$
(4) $\mathrm{Al}(\mathrm{CN})_{3}$
17. An aqueous solution contains $0.10 \mathrm{M} \mathrm{H}_{2} \mathrm{~S}$ and 0.20 M HCl . If the equilibrium constants for the formation of HS^{-}from $\mathrm{H}_{2} \mathrm{~S}$ is 1.0×10^{-7} and that of S^{2-} from HS^{-}ions is 1.2×10^{-13} then the concentration of S^{2-} ions in aqueous solution is:
[JEE(Main) 2018]
(1) 3×10^{-20}
(2) 6×10^{-21}
(3) 5×10^{-19}
(4) 5×10^{-8}

Part \# II [Previous Year Questions][ITT-JEE ADVANCED]

1. A weak acid HX has the dissociation constant $1 \times 10^{-5} \mathrm{M}$. It forms a salt NaX on reaction with alkali. The percentage hydrolysis of 0.1 M solution of NaX is :
[JEE-2004]
(A) 0.0001%
(B) 0.01%
(C) 0.1%
(D) 0.15%
2. $\quad 0.1 \mathrm{M} \mathrm{NaOH}$ is titrated with 0.1 M HA till the end point; K_{a} for HA is 5.6×10^{-6} and degree of hydrolysis is less compared to 1 . Calculate pH of the resulting solution at the end point.
[JEE-2004]
3. 0.1 mole of $\mathrm{CH}_{3} \mathrm{NH}_{2}\left(\mathrm{~K}_{\mathrm{b}}=5 \times 10^{-4}\right)$ is mixed with 0.08 mole of HCl and diluted to one litre. What will be the H^{+} concentration in the solution? What will be the H^{+}concentration in the solution?
[JEE-2005]
(A) $8 \times 10^{-2} \mathrm{M}$
(B) $8 \times 10^{-11} \mathrm{M}$
(C) $1.6 \times 10^{-11} \mathrm{M}$
(D) $8 \times 10^{-5} \mathrm{M}$
4. $\quad 2.5 \mathrm{~mL}$ of $\frac{2}{5} \mathrm{M}$ weak monoacidic base $\left(\mathrm{K}_{\mathrm{b}}=1 \times 10^{-12}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$ is titrated with $\frac{2}{15} \mathrm{M} \mathrm{HCl}$ in water at $25^{\circ} \mathrm{C}$. The concentration of H^{+}at equivalence point is $\left(\mathrm{K}_{\mathrm{w}}=1 \times 10^{-14}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$
[JEE-2008]
(A) $3.7 \times 10^{-14} \mathrm{M}$
(B) $3.2 \times 10^{-7} \mathrm{M}$
(C) $3.2 \times 10^{-2} \mathrm{M}$
(D) $2.7 \times 10^{-2} \mathrm{M}$
5. Solubility product constant $\left(\mathrm{K}_{\text {sp }}\right)$ of salts of types $\mathrm{MX}, \mathrm{MX}_{2}$ and $\mathrm{M}_{3} \mathrm{X}$ at temperature T are $4.0 \times 10^{-8}, 3.2 \times 10^{-14}$ and 2.7×10^{-15}, respectively. Solubilities $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$ of the salts at temperature T are in the order:
[JEE-2008]
(A) $\mathrm{MX}>\mathrm{MX}_{2}>\mathrm{M}_{3} \mathrm{X}$
(B) $\mathrm{M}_{3} \mathrm{X}>\mathrm{MX}_{2}>\mathrm{MX}$
(C) $\mathrm{MX}_{2}>\mathrm{M}_{3} \mathrm{X}>\mathrm{MX}$
(D) $\mathrm{MX}>\mathrm{M}_{3} \mathrm{X}>\mathrm{MX}_{2}$
6. The dissociation constant of a substituted benzoic acid at $25^{\circ} \mathrm{C}$ is 1.0×10^{-4}. The pH of 0.01 M solution of its sodium salt is
[JEE-2009]
7. Amongst the following, the total number of compounds whose aqueous solution turns red litmus paper blue is :
[JEE-2010]
$\mathrm{KCN} \quad \mathrm{K}_{2} \mathrm{SO}_{4} \quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4} \quad \mathrm{NaCl} \quad \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$
FeCl_{3}
$\mathrm{K}_{2} \mathrm{CO}_{3}$
$\mathrm{NH}_{4} \mathrm{NO}_{3}$
LiCN
8. Aqueous solutions of $\mathrm{HNO}_{3}, \mathrm{KOH}, \mathrm{CH}_{3} \mathrm{COOH}$, and $\mathrm{CH}_{3} \mathrm{COONa}$ of identical concentrations are provided. The pair (s) of solutions which form a buffer upon mixing is (are) :
[JEE-2010]
(A) HNO_{3} and $\mathrm{CH}_{3} \mathrm{COOH}$
(B) KOH and $\mathrm{CH}_{3} \mathrm{COONa}$
(C) HNO_{3} and $\mathrm{CH}_{3} \mathrm{COONa}$
(D) $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$
9. In 1 L saturated solution of $\mathrm{AgCl}\left[\mathrm{K}_{\mathrm{sp}}(\mathrm{AgCl})=1.6 \times 10^{-10}\right], 0.1 \mathrm{~mol}$ of $\mathrm{CuCl}\left[\mathrm{K}_{\mathrm{sp}}(\mathrm{CuCl})=1.0 \times 10^{-6}\right]$ is added. The resultant concentation of Ag^{+}in the solution is $1.6 \times 10^{-\mathrm{x}}$. The value of " x " is :
[JEE-2011]
10. The initial rate of hydrolysis of methyl acetate (1M) by a weak acid (HA, 1M) is $1 / 100^{\text {th }}$ of that of a strong acid (HX, 1 M), at $25^{\circ} \mathrm{C}$. The K_{a} of HA is :
[JEE(Advanced) -2013]
(A) 1×10^{-4}
(B) 1×10^{-5}
(C) 1×10^{-6}
(D) 1×10^{-3}
11. MX_{2} dissociates into M^{2+} and X^{-}ions in an aqueous solution, with a degree of dissociation (A) of 0.5 . The ratio of the observed depression of freezing point of the aqueous solution to the value of the depression of freezing point in the absence of ionic dissociation is
[JEE(Advanced) -2014]
12. The correct statement(s) about the oxoacids, HClO_{4} and HClO , is(are)
[JEE(Advanced) -2017]
(A) The central atom in both HClO_{4} and HClO is $s p^{3}$ hybridized
(B) HClO_{4} is formed in the reaction between Cl_{2} and $\mathrm{H}_{2} \mathrm{O}$
(C) The conjugate base of HClO_{4} is weaker base than $\mathrm{H}_{2} \mathrm{O}$
(D) HClO_{4} is more acidic than HClO because of the resonance stabilization of its anion
13. The solubility of a salt of weak acid (AB) at pH 3 is $\mathrm{Y} \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$. The value of Y is \qquad .
(Given that the value of solubility product of $\mathrm{AB}\left(\mathrm{K}_{\mathrm{sp}}\right)=2 \times 10^{-10}$ and the value of ionization constant of HB $\left(\mathrm{K}_{\mathrm{a}}\right)=1 \times 10^{-8}$)
[JEE(Advanced) -2018]
14. Dilution processes of different aqueous solutions, with water, are given in LIST-I. The effects of dilution of the solution on $\left[\mathrm{H}^{+}\right]$are given in LIST-II.
(Note : degree of dissociation (α) of weak acid and weak base is $\ll 1$; degree of hydrolysis of salt $\ll 1$; $\left[\mathrm{H}^{+}\right]$ represents the concentration of H^{+}ions)
[JEE(Advanced) -2018]

LIST - I
(P) $(10 \mathrm{~mL}$ of $0.1 \mathrm{M} \mathrm{NaOH}+20 \mathrm{~mL}$ of 0.1 M acetic acid) diluted to 60 mL
(Q) $(20 \mathrm{~mL}$ of $0.1 \mathrm{M} \mathrm{NaOH}+20 \mathrm{~mL}$ of 0.1 M acetic dilution acid) diluted to 80 mL
(R) $(20 \mathrm{~mL}$ of $0.1 \mathrm{M} \mathrm{HCl}+20 \mathrm{~mL}$ of 0.1 M ammonia solution) diluted to 80 mL
(S) 10 mL saturated solution of $\mathrm{Ni}(\mathrm{OH})_{2}$ in
equilibrium with excess solid $\mathrm{Ni}(\mathrm{OH})_{2}$ is diluted to 20 mL ($\operatorname{solid~} \mathrm{Ni}(\mathrm{OH})_{2}$ is still present after dilution).

LIST-II

(1) The value of $\left[\mathrm{H}^{+}\right]$does not change on dilution
(2) The value of $\left[\mathrm{H}^{+}\right]$changes to held of its initial value on dilution
(3) The value of $\left[\mathrm{H}^{+}\right]$changes to two times of its initial value on dilution
(4) The value of $[\mathrm{H}]^{+}$changes to $\frac{1}{\sqrt{2}}$ times of its initial value on dilution
(5) The value of $\left[\mathrm{H}^{+}\right]$changes to $\sqrt{2}$ times of its initial value on dilution

Match each process given in LIST-I with one or more effect(s) in LIST-II, the correct option is
(A) $\mathrm{P} \rightarrow 4,5 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 3 ; \mathrm{S} \rightarrow 1$
(B) $\mathrm{P} \rightarrow 4,4 ; \mathrm{Q} \rightarrow 3 ; \mathrm{R} \rightarrow 2 ; \mathrm{S} \rightarrow 3$
(C) $\mathrm{P} \rightarrow 1 ; \mathrm{Q} \rightarrow 4 ; \mathrm{R} \rightarrow 5 ; \mathrm{S} \rightarrow 3$
(D) $\mathrm{P} \rightarrow 1,5 ; \mathrm{Q} \rightarrow 5 ; \mathrm{R} \rightarrow 4 ; \mathrm{S} \rightarrow 1$

MOCK TVEST

SECTION-I : STRAIGHT OBJECTIVE TYPE

1. The following equilibrium is established when hydrogen chloride is dissolved in acetic acid

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \rightleftharpoons \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COOH}_{2}^{+}(\mathrm{aq}) .
$$

The set that characterises the conjugate acid-base pairs is
(A) $\left(\mathrm{HCl}, \mathrm{CH}_{3} \mathrm{COOH}\right)$ and $\left(\mathrm{CH}_{3} \mathrm{COOH}_{2}{ }^{+}, \mathrm{Cl}^{-}\right)$
(B) $\left(\mathrm{HCl}, \mathrm{CH}_{3} \mathrm{COOH}_{2}^{+}\right)$and $\left(\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{Cl}^{-}\right)$
(C) $\left(\mathrm{CH}_{2} \mathrm{COOH}_{2}^{+}, \mathrm{HCl}\right)$ and $\left(\mathrm{Cl}^{-}, \mathrm{CH}_{3} \mathrm{COOH}\right)$
(D) $\left(\mathrm{HCl}, \mathrm{Cl}^{-}\right)$and $\left(\mathrm{CH}_{3} \mathrm{COOH}_{2}{ }^{+}, \mathrm{CH}_{3} \mathrm{COOH}\right)$.
2. The following equilibrium is established when HClO_{4} is dissolved in weak acid HF.

$$
\mathrm{HF}+\mathrm{HClO}_{4} \rightleftharpoons \mathrm{ClO}_{4}^{-}+\mathrm{H}_{2} \mathrm{~F}^{+}
$$

Which of the following is correct set of conjugate acid base pair ?
(A) HF and HClO_{4}
(B) HF and ClO_{4}^{-}
(C) HF and $\mathrm{H}_{2} \mathrm{~F}^{+}$
(D) $\mathrm{HClO}_{4} \& \mathrm{H}_{2} \mathrm{~F}^{+}$
3. Identify the amphoteric species from the following :
(I) $\mathrm{H}_{2} \mathrm{O}$
(II) NH_{3}
(III) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
(IV) HCO_{3}^{-}
(A) I, II
(B) III, IV
(C) I, II, III
(D) I, II, III, I
4. Which of the following relations is correct?
(A) $\Delta \mathrm{G}^{\mathrm{o}}=\mathrm{RT} \ln \mathrm{K}_{\mathrm{eq}}$
(B) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{\mathrm{pH}}$
(C) $\log \frac{K w_{2}}{K w_{1}}=\frac{\Delta H^{\circ}}{2.303 \mathrm{R}}\left(\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right)$
(D) $\left[\mathrm{OH}^{-}\right]=10^{-7}$, for pure water at all temperatures.
5. Which of the following is incorrect?
(A) K_{a} (weak acid). K_{b} (conjugate weak base) $=\mathrm{K}_{\mathrm{w}}$
(B) K_{a} (strong acid). $\mathrm{K}_{\mathrm{b}}($ conjugate weak base $)=\mathrm{K}_{\mathrm{w}}$
(C) K_{a} (weak acid). $\mathrm{K}_{\mathrm{b}}($ weak base $)=\mathrm{K}_{\mathrm{w}}$
(D) K_{a} (weak acid). $\mathrm{K}_{\mathrm{b}}($ conjugate strong base $)=\mathrm{K}_{\mathrm{w}}$
6. K_{a} for the acid HA is 1×10^{-6}. The value of K for the reaction $\mathrm{A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightleftharpoons \mathrm{HA}+\mathrm{H}_{2} \mathrm{O}$ is
(A) 1×10^{-6}
(B) 1×10^{12}
(C) 1×10^{-12}
(D) 1×10^{6}
7. The pK_{a} value of NH_{4}^{+}is 9 . The pK_{b} value of $\mathrm{NH}_{4} \mathrm{OH}$ would be :
(A) 9
(B) 5
(C) 7
(D) 8
8. Which of the following solution will have a pH exactly equal to 8 ?
(A) $10^{-8} \mathrm{M} \mathrm{HCl}$ solution at $25^{\circ} \mathrm{C}$
(B) $10^{-8} \mathrm{M} \mathrm{H}^{+}$solution at $25^{\circ} \mathrm{C}$
(C) $2 \times 10^{-6} \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ solution at $25^{\circ} \mathrm{C}$
(D) $10^{-5} \mathrm{M} \mathrm{NaOH}$ solution at $25^{\circ} \mathrm{C}$
9. Which of the following solution will have pH close to 1.0 ?
(A) 100 ml of $\mathrm{M} / 10 \mathrm{HCl}+100 \mathrm{ml}$ of $\mathrm{M} / 10 \mathrm{NaOH}$
(B) 55 ml of $\mathrm{M} / 10 \mathrm{HCl}+45 \mathrm{ml}$ of $\mathrm{M} / 10 \mathrm{NaOH}$
(C) 10 ml of $\mathrm{M} / 10 \mathrm{HCl}+90 \mathrm{ml}$ of $\mathrm{M} / 10 \mathrm{NaOH}$
(D) 75 ml of $\mathrm{M} / 5 \mathrm{HCl}+25 \mathrm{ml}$ of $\mathrm{M} / 5 \mathrm{NaOH}$.
10. 0.1 mol HCl is dissolved in distilled water of volume V then at $\lim _{\mathrm{v} \rightarrow \infty}(\mathrm{pH})_{\text {solution }}$ is equal to
(A) zero
(B) 1
(C) 7
(D) 14
11. Dissociation constant of mono basic acids $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are $6 \times 10^{-4}, 5 \times 10^{-5}, 3.6 \times 10^{-6}$ and 7×10^{-10} respectively. The pH values of their 0.1 M aqueous solution are in the order.
(A) D $>$ C $>$ B $>$ A
(B) A $>$ B $>$ C $>$ D
(C) D $>$ C $>$ A $>$ B
(D) None
12. Which statement/relationship is correct?
(A) pH of $0.1 \mathrm{M} \mathrm{HNO}_{3}, 0.1 \mathrm{M} \mathrm{HCl}, 0.1 \mathrm{M} \mathrm{HI}$ is not equal. (B) $\mathrm{pH}=-\log \frac{1}{\left[\mathrm{H}^{+}\right]}$
(C) At $25^{\circ} \mathrm{C}$ the pH of pure water is $7 . \quad$ (D) The value of pK_{w} at $25^{\circ} \mathrm{C}$ is 7 .
13. Approximate pH of 0.1 M aqueous $\mathrm{H}_{2} \mathrm{~S}$ solution when K_{1} and K_{2} for $\mathrm{H}_{2} \mathrm{~S}$ at $25^{\circ} \mathrm{C}$ are 1×10^{-7} and 1.3×10^{-13} respectively :
(A) 4
(B) 5
(C) 6
(D) 8

SECTION - II : MULTIPLE CORRECT ANSWER TYPE

14. Which of the following solutions when added to 1 L of a $0.01 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ solution will cause no change in the degree of dissociation of $\mathrm{CH}_{3} \mathrm{COOH}$ and pH of the solution ? $\mathrm{K}_{\mathrm{a}}=1.6 \times 10^{-5}$ for $\mathrm{CH}_{3} \mathrm{COOH}$?
(A) $0.6 \mathrm{mM} \mathrm{HCOOH}\left(\mathrm{K}_{\mathrm{a}}=8 \times 10^{-4}\right)$
(B) $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}$
(C) 0.4 mM HCl
(D) $0.01 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$
15. Equal volumes of following solutions are mixed, in which case the pH of resulting solution will be average value of pH of two solutions.
(A) Aqeous HCl of $\mathrm{pH}=2$, aqueous NaOH of $\mathrm{pH}=12$
(B) Aqeous HCl of $\mathrm{pH}=2$, aqueous HCl of $\mathrm{pH}=4$
(C) Aqeous NaOH of $\mathrm{pH}=12$, aqueous NaOH of $\mathrm{pH}=10$
(D) Aqeous $\mathrm{CH}_{3} \mathrm{COOH}$ of $\mathrm{pH}=5$, aqueous NH_{3} of $\mathrm{pH}=9 .\left[\mathrm{K}_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=\mathrm{K}_{\mathrm{b}}\left(\mathrm{NH}_{3}\right)\right]$
16. K_{a} values for HA, HB and HD are $10^{-5}, 10^{-7}$ and 10^{-9} respectively. Which of the following will be correct for decimolar aqueous solutions of $\mathrm{NaA}, \mathrm{NaB}$ and NaD at $25^{\circ} \mathrm{C}$?
(A) $(\mathrm{pH})_{\mathrm{NaA}}<(\mathrm{pH})_{\mathrm{NaB}}$
$(\mathrm{B})(\mathrm{pH})_{\mathrm{NaD}}<(\mathrm{pH})_{\mathrm{NaB}}$
(C) $(\mathrm{pH})_{\mathrm{NaA}}<(\mathrm{pH})_{\mathrm{NaD}}$
(D) $(\mathrm{pH})_{\mathrm{NaB}}=7$
17. $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ is diluted at $25^{\circ} \mathrm{C}\left(\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}\right)$, then which of the following will be found correct
(A) $\left[\mathrm{H}^{+}\right]$will increase
(B) pH will increase
(C) number of H^{+}will increase
(D) all the above are correct

SECTION - III : ASSERTION AND REASON TYPE

Each question has 5 choices (A), (B), (C), (D) and (E) out of which only one is correct.
(A) Statement-1 is true, Statement-2 is true and Statement-2 is correct explanation for Statement-1.
(B) Statement-1 is true, Statement-2 is true and Statement-2 is not correct explanation for Statement-1.
(C) Statement-1 is true, Statement-2 is false
(D) Statement-1 is false, Statement-2 is true
(E) Both Statements are false
18. Statement-1 : Aqueous solutions of all strong acids contain only the same acid, the hydronium ion.

Statement-2 : For all diprotic acids, the equilibrium constant $\mathrm{K}_{\mathrm{a} 2}$, for the second stage of ionisation is smaller than the equilibrium constant, $\mathrm{K}_{\mathrm{a} 1}$, for the first stage of ionisation.
19. Statement-1: 0.20 M solution of NaCN is more basic than 0.20 M solution of NaF .

Statement-2 : K_{a} of HCN is very much less than that of HF.
20. Statement-1 : A substance that can either act as an acid as well as a base is called ampholyte.

Statement-2 : Bisulphide ion (HS^{-}) and biscarbonate ion $\left(\mathrm{HCO}_{3}^{-}\right)$are ampholytes.
21. Statement-1 : Addition of $\mathrm{HCl}(\mathrm{aq})$ to $\mathrm{HCOOH}(\mathrm{aq})$, decrease the ionization of $\mathrm{HCOOH}(\mathrm{aq})$

Statement-2 : Due to common ion effect of H^{+}, ionization of HCOOH decreased.

SECTION - IV : COMPREHENSION TYPE

Read the following comprehensions carefully and answer the questions.

Comprehension \# 1

Consider a solution of $\mathrm{CH}_{3} \mathrm{COONH}_{4}$ which is a salt of weak acid \& weak base.
The equilibrium involved in the solutions are :

$$
\begin{align*}
& \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-} \tag{1}\\
& \mathrm{NH}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}^{+} \tag{2}\\
& \mathrm{H}^{+}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{O} \tag{3}
\end{align*}
$$

If we add these three reactions, then the net reaction is

$$
\begin{equation*}
\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{4} \mathrm{OH} \tag{4}
\end{equation*}
$$

Both $\mathrm{CH}_{3} \mathrm{COO}^{-}$and NH_{4}^{+}get hydrolysed independently and their hydrolysis depends on their initial concentration the value of K_{h} which is $\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}}}$ for $\mathrm{CH}_{3} \mathrm{COO}^{-}$and $\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{b}}}$ for NH_{4}^{+}.

Since both of the ions were produced from the same salt, their initial concentrations are same. Therefore unless \& untial the value of $\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}}}$ and $\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{b}}}$ or K_{a} and K_{b} is same, the degree of hydrolysis of ion can't be same.
To explain why we assume that degree of hydrolysis of cation and anion is same, we need to now look at the third reaction i.e., combination of H^{+}and OH^{-}ions. It is obvious that this reaction happens only because one reaction produced H^{+}ion and the other produced OH^{-}ions. We can also note that this reaction causes both the hydrolysis reaction to occur more since their product ions are being consumed. Keep this thing in mind that the equilibrium which has smaller value of equilibrium conxtant is affected more by the common ion effect. For the same reason if for any reason a reaction is made to occur to a greater extent by the comsumption of any one of the product ion, the reaction with the smaller value of equilibrium constant tends to get affected more.
Therefore we conclude that firstly the hydrolysis of both the ions ocurs more in the presence of each other (due to consumption of the product ions) than in each other is absence. Secondly the hydrolysis of the ion which occurs to a lesser extent (due to smaller value of K_{h}) is affected more than the one whose K_{h} is greater. Hence we can see that the degree of hydrolysis of both the ions would be close to each other when they are getting hydrolysed in the presence of each other.
22. In the hydrolysis of salt of weak acid \& weak base :
(A) degree of hydrolysis of cation and anion is different
(B) degree of hydrolysis of cation and anion is same
(C) degree of hydrolysis of cation and anion is different and they can never be assumed same.
(D) degree of hydrolysis of cation and anion is different but they are very close to each other when they are getting hydrolysed in the presence of each other.
23. For $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONH}_{4}$ salt solution given, $\mathrm{K}_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=\mathrm{K}_{\mathrm{b}}\left(\mathrm{NH}_{4} \mathrm{OH}\right)=2 \times 10^{-5}$.

In this case : degree of hydrolysis of cation and anion are
(A) exactly same
(B) slightly different
(C) can't say
(D) different but can be take approximatly same

SECTION - V : MATRIX - MATCH TYPE

24. (Use log $1.8=0.26$, Ka of formic acid $=1.8 \times 10^{-4}, \mathrm{Ka}$ of acetic $\mathrm{acid}=1.8 \times 10^{-5}, \mathrm{~K}_{\mathrm{b}}$ of ammonia $=1.8 \times 10^{-5}, \mathrm{Ka}_{1}$ of $\mathrm{H}_{2} \mathrm{~S}$ $=10^{-7}$ and Ka_{2} of $\mathrm{H}_{2} \mathrm{~S}=10^{-14}$, for the following matchings)
Match the entries of column II for which the equality or inequality given in the column I are satisfied.

Column I
(A) $10^{-5} \mathrm{M} \mathrm{HCl}$ solution $>0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{~S}$ solution
(B) $\mathrm{CH}_{3} \mathrm{COOH}$ solution at pH equal to 4.74
$=\mathrm{NH}_{4} \mathrm{OH}$ solution at pH equal to 9.26
(C) $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ solution $=1.0 \mathrm{M} \mathrm{HCOOH}$ solution
(D) 0.1 M of a weak acid $\mathrm{HA}_{1}\left(\mathrm{Ka}=10^{-5}\right)$ solution $<0.01 \mathrm{M}$ of a weak acid $\mathrm{HA}_{2}\left(\mathrm{Ka}=10^{-6}\right)$ solution

Column II
(p) $\alpha_{\text {water }}$ (degree of dissociation of water)
(q) $\left[\mathrm{OH}^{-}\right]$
(r) α (degree of dissociation)
(s) pH

SECTION-VI : SUBJECTIVE TYPE

25. If both the functional groups of salicylic acid, $\mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{COOH}$, ionise in water, with $\mathrm{K}_{\mathrm{a}}=1 \times 10^{-3}$ for the-COOH group and 4.2×10^{-13} for the -OH group, calculate pH of the saturated solution of the acid. (Solubility of salicylic acid in water $=1.725 \mathrm{~g} / \mathrm{L}, \log 2=0.3$).
26. A solution is prepared by mixing of acetic acid $\left(\mathrm{K}_{\mathrm{a}}=2 \times 10^{-5}\right)$ and HCl . In the mixture acetic acid is 0.2 M and HCl is 0.1 M. Calculate
(i) pH of 0.2 M acetic acid and its degree of dissociation.
(ii) pH of final solution.
(iii) $\mathrm{CH}_{3} \mathrm{COO}^{-}$ion concentration in final solution.
(iv) $\%$ decrease of α of acetic acid due to common ion effect.
27. If the equilibrium constant for the reaction of weak acid HA with strong base is 10^{9}, then pH of 0.1 M Na A is
28. The ionization constant of nitrous acid is 4.5×10^{-4}. Calculate the pH of 0.04 M sodiums nitrite solution and also its degree of hydrolysis.
29. $\quad \mathrm{K}_{\mathrm{a}}$ for ascorbic acid (HAsc) is 5×10^{-5}. Calculate the hydrogen ion concentration and percentage hydrolysis in an aqueous solution in which concentration of Asc^{-}ions is 0.02 M .

ANSWER KEY

EXERCISE - 1

1. D
2. C
3. C
4. D
5. D
6. C
7. A
8. D
9. D
10. C
11. D
12. B
13. D
14. B
15. C 16. B
16. A
17. B
18. C
19. C
20. C
21. D
22. C
23. C
24. A
25. D
26. D
27. B
28. C
29. (i)
B (ii)
(iii) C
$\begin{array}{ll}\mathrm{C} & \text { (iv) } \\ \text { 41. } \mathrm{D}\end{array}$
30. C
31. B
32. C
33. A
34. D
35. C
36. B
37. B
38. B
39. A
40. D
41. A
42. C
43. D
44. A
45. A
46. C
47. D
48. C
49. C
50. D
51. B
52. C
53. A
54. C
55. B
56. D
57. D
58. A
59. C
60. D
61. C
62. B
63. D
64. D
65. B
66. C
67. B
68. D
69. C
70. B
71. D
72. D
73. D
74. B
75. C
76. A
77. B
78. D
79. C
80. A
81. C
82. C
83. D
84. D
85. C
86. C
87. A
88. C
89. D
90. B
91. D
92. A
93. D

EXERCISE - 2 : PART \# I

1. $\mathrm{A}, \mathrm{B}, \mathrm{D}$	2. $\mathrm{A}, \mathrm{C}, \mathrm{D}$	3 A, C	4	B, C	5 B	B, C, D	6 A, D	7	D	$8 \mathrm{~A}, \mathrm{C}, \mathrm{D}$
$9 \mathrm{~A}, \mathrm{C}$	10 A, B, C, D	$11 \mathrm{~B}, \mathrm{D}$	12	A, B, C	13	A, B	14 C, D	15	B, C, D	16 A, B, C
17 B, C	18 B, C, D	19 A, B	20	A, B, C	21	A, D	22 C, D	23	A, C, D	24 C, D
25 A, B 26	A, C, D 27. D	28. A	29. D	30. B	31. B	B 32. D	33. A	34. A	35. B	36. B
37. A 38. A	39. C 40. C	41. A	42. C	43. D	44. A	A 45. A	46. D	47. D	48. A	49. A
50. B 51. B	52. B 53. C	54. B	55. C	56. A	57. C	- 58. A	59. C	60. B	61. D	62. C
63. A 64. C	65. B 66. D	67. B	68. B	69. B	70. B	-71. C	72. A	73. A	74. B	75. A

PART \# II

1. A
2. B
3. A
4. B
5. B
6. B
7. A
8. A
9. A
10. A
11. A
12. B
13. D
14. C
15. B
16. C
17. A

EXERCISE - 3 : PART \# I

1. $\mathrm{A} \rightarrow(\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}), \mathrm{B} \rightarrow(\mathrm{p}, \mathrm{r}), \mathrm{C} \rightarrow(\mathrm{r}), \mathrm{D} \rightarrow(\mathrm{p}, \mathrm{q}, \mathrm{s})$
2. $\mathrm{A} \rightarrow(\mathrm{r}), \mathrm{B} \rightarrow(\mathrm{s}), \mathrm{C} \rightarrow(\mathrm{q}), \mathrm{D} \rightarrow(\mathrm{p})$
3. $\mathrm{A} \rightarrow(\mathrm{s}), \mathrm{B} \rightarrow(\mathrm{p}), \mathrm{C} \rightarrow(\mathrm{r}), \mathrm{D} \rightarrow(\mathrm{q})$
4. $\mathrm{A} \rightarrow(\mathrm{p}, \mathrm{q}), \mathrm{B} \rightarrow(\mathrm{q}, \mathrm{r}), \mathrm{C} \rightarrow(\mathrm{p}, \mathrm{q}, \mathrm{s}), \mathrm{D} \rightarrow(\mathrm{r}, \mathrm{s})$
5. $\mathrm{A} \rightarrow(\mathrm{r}), \mathrm{B} \rightarrow(\mathrm{p}), \mathrm{C} \rightarrow(\mathrm{q}), \mathrm{D} \rightarrow(\mathrm{s})$

PART \# II

Comprehension \#2 :

1. B 2. A
2. B
3. A

Comprehension \# 3 :

1. A 2. C 3. B

Comprehension \# 4 :

1. D 2. B 3. B

Comprehension \# 5 :

1. C
2. A
3. B
4. B

EXERCISE - 5 : PART \# I

1. 4
2. 4
3. 3
4. 4
5. 4
6. 1
7. 1
8. 4
9. 2
10. 1
11. 2
12. 2
13. 1
14. 3
15. 4
16. 1
17. 1
PART \# II
18. B 2. $8.98 \approx 9$
19. B
20. D 5. D
21. 8
22. 3
23. C,D
24. 7
25. A
26. 2
27. A, C, D
28. 4.47×10^{-3}
29. D

MOCK TEST

1. D
2. B
3. (A, D)
4. D
5. (A,C)
6. A
7. D
8. $\mathrm{A} \rightarrow(\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}) ; \mathrm{B} \rightarrow(\mathrm{p}, \mathrm{r}) ; \mathrm{C} \rightarrow(\mathrm{r}) ; \mathrm{D} \rightarrow(\mathrm{p}, \mathrm{q}, \mathrm{s})$
