HINTS \& SOLUTIONS

EXERCISE - 1

Single Choice

1. $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}(\mathrm{aq})+\mathrm{PO}_{4}^{3-}(\mathrm{aq}) \rightleftharpoons \mathrm{HPO}_{4}^{2-}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(\mathrm{aq})$

Acid-1 base-2 base-1 acid-2
2.

So it will behave as Lewis acid.
3. Conjugate acid base pair are differ by an proton $\left(\mathrm{H}^{+}\right)$.

7. $\left[\mathrm{OH}^{-}\right]=\sqrt{\mathrm{K}_{\mathrm{w}}}$ in pure water.

So as temperature increases K_{w} decreases
$\Rightarrow\left[\mathrm{OH}^{-}\right]$decreases.
8. $\mathrm{pK}_{\mathrm{w}}=-\log \mathrm{K}_{\mathrm{w}}=-\log 1 \times 10^{-12}=12$.
$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-12}$.
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
$\Rightarrow \quad\left[\mathrm{H}^{+}\right]^{2}=10^{-12} ;\left[\mathrm{H}^{+}\right]=10^{-6} ; \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$ $=-\log 10^{-6}=6$.
$\mathrm{H}_{2} \mathrm{O}$ is neutral because $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$at 373 K even when $\mathrm{pH}=6$.
(D) is not correct at 373 K . Water cannot become acidic.
11. $\mathrm{K}=\left[\mathrm{HCOOH}_{2}^{+}\right]\left[\mathrm{HCOO}^{-}\right]=10^{-3} \times 10^{-3}=10^{-6}$
13. $\mathrm{K}_{\mathrm{a}}=10^{-6}$ for $\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$

Thus K for reverse reaction is $\frac{1}{10^{-6}}=10^{6}$
15. $\mathrm{K}_{\mathrm{a}_{1}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{b}_{1}}}=\frac{10^{-14}}{4 \times 10^{-6}}=2.5 \times 10^{-9}$
17. Inital

Final
$\mathrm{pH}=12$
$\mathrm{pH}=11$
$\left[\mathrm{H}^{+}\right]=10^{-12} \mathrm{M}$
$\left[\mathrm{OH}^{-}\right]=10^{-2} \mathrm{M}$
Inital No. of mole of $\mathrm{OH}^{-}=10^{-2}$
$\left[\mathrm{H}^{+}\right]=10^{-11} \mathrm{M}$
$\left[\mathrm{OH}^{-}\right]=10^{-3} \mathrm{M}$
Final No. of mole of $\mathrm{OH}^{-}=10^{-3}$
So no. of mole of OH^{-}removed $=[.01-0.001]=\mathbf{0 . 0 0 9}$
18. (A) At $25^{\circ} \mathrm{C},\left[\mathrm{H}^{+}\right]$in a solution of $10^{-8} \mathrm{M} \mathrm{HCl}>10^{-7} \mathrm{M}$.
(B) $\left[\mathrm{H}^{+}\right]=10^{-8} \mathrm{M}$.
(C) $\left[\mathrm{OH}^{-}\right]=4 \times 10^{-6} \mathrm{M} \quad \Rightarrow \quad\left[\mathrm{H}^{+}\right]=2.5 \times 10^{-9} \mathrm{M}$.
(D) $\left[\mathrm{H}^{+}\right]=10^{-9} \mathrm{M}$.
21.

	HCI	NaOH
$\mathrm{N}=0.4$	$\mathrm{~N}=0.2$	
$\mathrm{~V}=50 \mathrm{ml}$	$\mathrm{V}=50 \mathrm{ml}$	
Nof milieq $=$	$0.4 \times 50=20$	$0.2 \times 50=10$
	$\left[\mathrm{H}^{+}\right]=0.1 \mathrm{M}, \mathrm{pH}=1$	

22. (a)

HCI
NaOH
No. of mili eq. $=\frac{1}{10} \times 100=10 \quad \frac{1}{10} \times 100=10$
So solution is Neutral
(b) $\frac{1}{10} \times 55=5.5 \quad \frac{1}{10} \times 45=4.5$

$$
\left[\mathrm{H}^{+}\right]=\frac{1}{100}=10^{-2} \mathrm{M}, \mathrm{pH}=2
$$

(c) $\frac{1}{10} \times 10=1 \quad \frac{1}{10} \times 90=9$ Basic
(d) $\frac{1}{5} \times 75=15 \quad \frac{1}{5} \times 25=5$

$$
\left[\mathrm{H}^{+}\right]=0.1 \mathrm{M}, \mathrm{pH}=1
$$

23.

	AB_{3}	\rightleftharpoons	$\mathrm{~A}^{3+}+3 \mathrm{~B}^{-}$
Initial mole 1		0	0
Mole at. Eq. $1-\alpha$		α	3α
If volume is $\mathrm{v}, \frac{1-\alpha}{\mathrm{v}}$		$\frac{\alpha}{\mathrm{v}}$	$\frac{3 \alpha}{\mathrm{v}}$

Therefore, $3 \mathrm{c} . \alpha$
25. Concentration of Solutions are same therefore $\left[\mathrm{H}^{+}\right]$ depends only on Dissociation constant.
28. In this solution, source of OH^{-}is water
$\therefore \quad \mathrm{C} \alpha=\left[\mathrm{OH}^{-}\right]$
$\alpha=\frac{10^{-9}}{1000 / 18}=1.8 \times 10^{-11} \mathrm{M}$
$\%$ ionisation $=1.8 \times 10^{-9} \mathbf{M}$

CHEMISTRY FOR JEE MAIN \& ADVANCED

30. Sol (i) to (v)

$K_{a 1}=\frac{x^{2}}{0.1-x}=10^{-3}$

$$
\mathrm{x}=0.01=\left[\mathrm{H}^{+}\right]=\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]
$$

and $\quad\left[\mathrm{HPO}_{4}{ }^{2-}\right]=10^{-7} \mathrm{M}$

$$
\mathrm{K}_{\mathrm{a} 3}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{PO}_{4}^{3-}\right]}{\left[\mathrm{HPO}_{4}^{2-}\right]} \Rightarrow \quad 10^{-12}
$$

$$
\frac{(0.01)\left[\mathrm{PO}_{4}^{3-}\right]}{10^{-7}}
$$

$$
\left[\mathrm{PO}_{4}^{3-}\right]=10^{-17} \mathrm{M}
$$

$$
\left[\mathrm{OH}^{-}\right]=10^{-12} \mathrm{M}
$$

32. pH of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{~S}$ solution can be derived by :

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{~S} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HS}^{-} ; \mathrm{K}_{1}=1 \times 10^{-7} \\
\therefore & {\left[\mathrm{H}^{+}\right]=\mathrm{C} \alpha=\mathrm{C} \sqrt{\frac{\mathrm{~K}_{1}}{\mathrm{C}}}=\sqrt{\mathrm{K}_{1} \times \mathrm{C}}=\sqrt{1 \times 10^{-7} \times 0.1} } \\
= & \sqrt{10^{-8}}=10^{-4} \quad \therefore \quad \mathrm{pH}=4
\end{aligned}
$$

34.

$$
\begin{array}{lccc}
& \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \rightleftharpoons & \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq}) \\
\mathrm{t}=0 & 0.01 & \\
\mathrm{t}=\mathrm{eq} & 0.01-\mathrm{x} & \mathrm{x} & \mathrm{x}
\end{array}
$$

$$
\left[\mathrm{H}^{+}\right]=\mathrm{x}+0.01 \approx 0.01 \mathrm{M}
$$

$$
\therefore \quad \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}
$$

$$
\Rightarrow \quad 1.69 \times 10^{-5}=\frac{0.01 \times\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{0.01}
$$

$$
\therefore \quad\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=1.69 \times 10^{-5} \mathrm{M}
$$

So, degree of dissociation of $\mathrm{CH}_{3} \mathrm{COOH}=\frac{1.69 \times 10^{-5}}{0.01}$ $=1.69 \times 10^{-3}$
35.

	$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-} \longrightarrow$	$\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}$	
$\mathrm{t}=0$	20	20	
$\mathrm{t}=\mathrm{eq}$	-	-	20

So, $\quad\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=\frac{20}{200}=0.1 \mathrm{M}$
$\mathrm{pH}=7+\frac{1}{2} \mathrm{pK}_{\mathrm{a}}+\frac{1}{2} \log \mathrm{C}=7+2.37+\frac{1}{2} \log 10^{-1}$
$=7+2.37-0.5=8.87$
36. For $\mathrm{Na}_{2} \mathrm{HPO}_{4}, \mathrm{pH}=\frac{\mathrm{pK}_{\mathrm{a}_{2}}+\mathrm{pK}_{\mathrm{a}_{3}}}{2}=\frac{7.28+12}{2}=9.6$.

For $\mathrm{Na}_{2} \mathrm{HPO}_{4}, \mathrm{pH}=\frac{\mathrm{pK}_{\mathrm{a}_{1}}+\mathrm{pK}_{\mathrm{a}_{2}}}{2}=\frac{2.2+7.2}{2}=4.7$.
37. Solution of $\mathrm{HCl} \& \mathrm{NH}_{4} \mathrm{Cl}$ will be acidic, solution of NaCl neutral whereas solution of NaCN will be basic.
40. $\mathrm{h}=0.03$ $\mathrm{C}=0.1 \mathrm{M}$
$\mathrm{K}_{\mathrm{h}}=\mathrm{Ch}^{2}=9 \times 10^{-5}$
$\mathrm{K}_{\mathrm{h}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}}}=9 \times 10^{-5}$
$\Rightarrow \mathrm{K}_{\mathrm{a}}=\frac{10^{-14}}{9 \times 10^{-5}} \quad=1.11 \times 10^{-10} \approx 1 \times 10^{-10}$
42. Initial $\mathrm{pH}=\frac{1}{2}\left(\mathrm{pK}_{\mathrm{b}}-\log \mathrm{C}\right)=\frac{1}{2}(5-\log 2-\log 0.1)$
$=2.85$
After adding $\mathrm{NaOH}, \mathrm{pOH}$ of solution $=1$
Change in $\mathrm{pOH}=1.85$
43. $\mathrm{HCl} \longrightarrow \mathrm{H}^{+}+\mathrm{Cl}$
$\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \begin{gathered}(\mathrm{x}+\mathrm{x}) \\ \mathrm{H}^{+} \\ (\mathrm{x}+\mathrm{x})\end{gathered}+\begin{aligned} & (\mathrm{x}) \\ & \mathrm{OH} \\ & (\mathrm{x})\end{aligned}$
Ionic product $=\mathrm{K}_{\mathrm{w}}=(2 \mathrm{x})(\mathrm{x})=10^{-14}$
$\Rightarrow 2 \mathrm{x}^{2}=10^{-14} \Rightarrow \mathrm{x}=\sqrt{50} \times 10^{-8}$
46. m . moles of $\mathrm{HCl}=0.1 \times 20=2$
m. moles of $\mathrm{CH}_{3} \mathrm{COOH}=0.1 \times 20=2$

After titration of HCl by NaOH
$\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=\frac{2}{40}=\frac{1}{20} \mathrm{M}$
$\therefore \mathrm{pH}=\frac{1}{2}\left(\mathrm{pK}_{\mathrm{a}}-\log \mathrm{C}\right)=\frac{1}{2}\left[5-\log 2-\log \left(\frac{1}{20}\right)\right]=\mathbf{3}$.
47. This is ostwald dilution law.
48. The molecule shows three H atoms are replaceable, i.e., basicity of acid.
49. It is definition of Levelling effect,
50. Acid $\xrightarrow{-\mathrm{H}^{+}}$Conjugate base,

Base $\xrightarrow{+\mathrm{H}^{+}}$Conjugate acid
51. K_{w} changes with temperature.
52. $\mathrm{H}_{3} \mathrm{BO}_{3}$ is weak, Lewis monobasic acid and shows the given equilibrium.
$\mathrm{H}_{3} \mathrm{BO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{B}(\mathrm{OH})_{4}{ }^{-}+\mathrm{H}^{+}$
53. $\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}$
$\therefore\left[\mathrm{OH}^{-}\right]=\mathrm{C} . \mathrm{h}=\mathrm{C} \sqrt{\frac{\mathrm{K}_{\mathrm{H}}}{\mathrm{C}}}=\sqrt{\mathrm{K}_{\mathrm{H}} \cdot \mathrm{C}}=\sqrt{\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}}} \mathrm{C}}$
or $-\log \mathrm{OH}=-\frac{1}{2}\left[\log \mathrm{~K}_{\mathrm{w}}+\log \mathrm{C}-\log \mathrm{K}_{\mathrm{a}}\right] \quad$ or
$\mathrm{pOH}=\frac{1}{2}\left[\mathrm{pK}_{\mathrm{w}}-\log \mathrm{C}-\mathrm{pK}_{\mathrm{a}}\right]$
Now $\quad \mathrm{pH}+\mathrm{pOH}=\mathrm{pK}_{\mathrm{w}}$
$\therefore \quad \mathrm{pH}=\frac{1}{2}\left[\mathrm{pK}_{\mathrm{w}}+\log \mathrm{C}+\mathrm{pK}_{\mathrm{a}}\right]$
54. Higher is pH , lesser is acidic nature. Also $\mathrm{NH}_{4} \mathrm{CI}(\mathrm{aq})$ is acidic and $\mathrm{NaCN}(\mathrm{aq})$ is basic.
55. Meq. of $\mathrm{HCI}=10 \times 10^{-1}=1$

Meq. of $\mathrm{NaOH}==10 \times 10^{-1}=1$
Thus both are neutralised and 1 Meq . of NaCI (a salt of strong acid and strong base) which does not hydrolyse and thus $\mathrm{pH}=7$.
56. On heating water K_{w} increases and thus pH scale for neutrality changes from 7 to some lower value, i.e., 6.8 or 6.9 depending upon K_{w} values.
57. $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HA}]}\left(\therefore\left[\mathrm{H}^{+}\right]=\left[\mathrm{A}^{-}\right]\right) \quad$ and
$\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{B}^{-}\right]}{[\mathrm{HB}]}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HB}]}\left(\therefore\left[\mathrm{H}^{+}\right]=\left[\mathrm{B}^{-}\right]\right)$
Also H^{+}are same $\therefore \frac{\mathrm{K}_{\mathrm{a}}}{\mathrm{K}_{\mathrm{b}}}=\frac{[\mathrm{HB}]}{[\mathrm{HA}]}=\frac{4}{1} \quad \frac{[\mathrm{HA}]}{[\mathrm{HB}]}=\frac{1}{4}$
58. $\mathrm{H}^{+}+\mathrm{OH}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O}$.
59. New concentration of $\mathrm{HCI}=\frac{10^{-6}}{100}=10^{-8} \mathrm{M}$
$\left[\mathrm{H}^{+}\right]=10^{-7}+10^{-8}$ (approximately)
(Little less than 10^{-7} from water).
60. Meq. of $\mathrm{HCI}=75 \times \frac{1}{5}=15$

Meq. of $\mathrm{NaOH}=25 \times \frac{1}{5}=5$
\therefore Meq. of HCI left $=15-5=10$
Now [HCI] left $=\frac{10}{100}=10^{-1}$
$\therefore \mathrm{pH}=1$
61. $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{HCI} \rightarrow \mathrm{CaCI}_{2}+2 \mathrm{H}_{3} \mathrm{PO}_{4}$
soluble
62. $\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-} \rightleftharpoons \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$

Also $\mathrm{HA}+\mathrm{B}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{B}^{+}+\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O}$
Keq. $=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}][\mathrm{OH}]}$
By (i) and (ii), $\frac{\mathrm{K}_{\mathrm{eq}}}{\mathrm{K}_{\mathrm{a}}}=\frac{1}{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]}=\frac{1}{\mathrm{~K}_{\mathrm{w}}}$
$\therefore \quad \mathrm{K}_{\mathrm{eq}}=\frac{\mathrm{K}_{\mathrm{a}}}{\mathrm{K}_{\mathrm{w}}}=\frac{10^{-4}}{10^{-14}}=10^{10}$
63. $\mathrm{K}_{\mathrm{a}}=10^{-6}$ for $\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$

Thus K for reverse reaction is $\frac{1}{10^{-6}}=10^{6}$
64. The degree of hydrolysis of a salt of weak acid and weak base is independent of concentration of salt.
65. $\alpha=\sqrt{\frac{\mathrm{K}_{\mathrm{a}}}{\mathrm{C}}} \quad \therefore \% \alpha=100 \sqrt{\frac{\mathrm{~K}_{\mathrm{a}}}{\mathrm{C}}}$

Also $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=\frac{\left[\mathrm{H}^{+}\right] \cdot \mathrm{C} \alpha}{\mathrm{C}(1-\alpha)}=\frac{\left[\mathrm{H}^{+}\right] \cdot \alpha}{(1-\alpha)}$
$\log \mathrm{K}_{\mathrm{a}}=\log \mathrm{H}^{+}+\log \frac{\alpha}{(1-\alpha)} \quad$ or $\quad \mathrm{pK}_{\mathrm{a}}=\mathrm{pH}+\log \frac{1-\alpha}{\alpha}$
or $\mathrm{pK}_{\mathrm{a}}-\mathrm{pH}=\log \frac{1-\alpha}{\alpha} \quad \therefore \quad \frac{1-\alpha}{\alpha}=10^{\mathrm{pK}_{\mathrm{a}}-\mathrm{pH}}$
or $\quad \frac{1}{\alpha}=10^{\mathrm{pK}_{\mathrm{a}}-\mathrm{pH}}+1 \quad$ or $\quad \alpha=\frac{1}{\left[1+10^{\mathrm{pK}_{\mathrm{a}}-\mathrm{pH}}\right]}$
66.

$$
\mathrm{HS}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{~S}+\mathrm{OH}^{-}
$$

$$
\begin{aligned}
& \therefore \quad\left[\mathrm{OH}^{-}\right]=\mathrm{Ch}=\sqrt{\frac{\mathrm{K}_{\mathrm{w}} \mathrm{C}}{\mathrm{~K}_{\mathrm{a}}}} \\
& \therefore \quad\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{w}}}{\sqrt{\frac{\mathrm{~K}_{\mathrm{w}} \cdot \mathrm{C}}{\mathrm{~K}_{\mathrm{a}}}}}=\sqrt{\frac{\mathrm{K}_{\mathrm{w}} \mathrm{~K}_{\mathrm{a}}}{\mathrm{C}}} \\
& \text { or } \quad \mathrm{pH}=1 / 2\left[\mathrm{pK}_{\mathrm{w}}+\mathrm{pK}_{\mathrm{a}}+\operatorname{logC}\right]
\end{aligned}
$$

67. pH of $10^{-6} \mathrm{M} \mathrm{HCI}=6$; on dilution
$[\mathrm{HCI}]=\frac{10^{-6} \times 10}{100}=10^{-7}$
Thus new pH of HCI is not 7 because it is acid. For new solution pH :
$\left[\mathrm{H}^{+}\right]=10^{-7}+10^{-7}\left(\right.$ from $\left.\mathrm{H}_{2} \mathrm{O}\right)=2 \times 10^{-7}$
$\therefore \mathrm{pH}=6.7$ (approximately)
68. Meq. of $\mathrm{H}^{+}=10^{-3} \times 10=10^{-2}$
$\therefore \quad$ Number of H^{+}ions $=\frac{10^{-2} \times 6.02 \times 20^{23}}{1000}$

$$
=6.02 \times 10^{18}
$$

69. On heating pure water the value of ionic product of water increases i.e., $\mathrm{K}_{\mathrm{w}}=10^{-14}$ at $25^{\circ} \mathrm{C}$ and at $100^{\circ} \mathrm{C}$ $\mathrm{K}_{\mathrm{w}}=10^{-12}$. Thus pH and pOH both becomes 6 at $100^{\circ} \mathrm{C}$ (pH and $\mathrm{pOH}=7$ at $25^{\circ} \mathrm{C}$).
70. Given density of formic acid $=1.15 \mathrm{~g} / \mathrm{cm}^{3}$
\therefore Weight of formic acid in 1 litre solution $=1.15 \times 10^{3} \mathrm{~g}$
Thus, $[\mathrm{HCOOH}]=\frac{1.15 \times 10^{3}}{46}=25 \mathrm{M}$
Since in case of auto ionisation
$\left[\mathrm{HCOOH}_{2}^{+}\right]=\left[\mathrm{HCOO}^{-}\right]$and
$\left[\mathrm{HCOO}^{-}\right]\left[\mathrm{HCOOH}_{2}^{+}\right]=10^{-6} \Rightarrow \quad\left[\mathrm{HCOO}^{-}\right]=10^{-3}$
Now $\%$ dissociation of $\mathrm{HCOOH}=\frac{\left[\mathrm{HCOO}^{-}\right] \times 100}{[\mathrm{HCOOH}]}$
$=\frac{10^{-3}}{25} \times 100=0.004 \%$.
71. $\left[\mathrm{H}^{+}\right]$after mixing $=\frac{10^{-2} \times 10+10^{-4} \times 990}{1000}$
$=\frac{0.1+0.0990}{1000}=\frac{0.1990}{1000}=1.99 \times 10^{-4}$.
$\therefore \mathrm{pH}=4-0.3=3.7$
72. At infinite weak electrolytes are 100% dissociated.
73. $\left[\mathrm{H}^{+}\right]=10^{-6}$ at $\mathrm{pH}=6$

If $\left[\mathrm{H}^{+}\right]$are diluted to 10^{2} times, the new $\left[\mathrm{H}^{+}\right]>10^{-7}$ as we get $\left[\mathrm{H}^{+}\right]$from water. Thus pH of solution will be in between 6 to 7 or approximately 6.95 .
74. Initial $\mathrm{pOH}=\frac{1}{2}\left(\mathrm{pK}_{\mathrm{b}}-\log \mathrm{C}\right)=\frac{1}{2}(4.7-\log 0.1)=2.85$

Final $\mathrm{pOH}=1$
Change in $\mathrm{pOH}=$ Change in $\mathrm{pH}=1.85$
75. Follow text.
76. $(\mathrm{C})\left[\mathrm{H}^{+}\right]=\sqrt{\mathrm{K}_{\mathrm{a} 1} \mathrm{C}_{1}+\mathrm{K}_{\mathrm{a} 2} \mathrm{C}_{2}}=\sqrt{5 \times 10^{-5}}$

$$
\mathrm{pH}=\frac{5-\log 5}{2} \approx 3-\log 7
$$

77. Relative strengths of weak acids $=\sqrt{\left(\frac{\mathrm{K}_{\mathrm{a}_{1}}}{\mathrm{~K}_{\mathrm{a}_{2}}}\right)}$

Assume C_{1} and C_{2} are same (Although not given).
$\therefore \quad$ Relative strength $=\sqrt{\left(\frac{\mathrm{K}_{\mathrm{a}_{1}}}{\mathrm{~K}_{\mathrm{a}_{2}}}\right)}=\sqrt{\left(\frac{2.1 \times 10^{-4}}{1.1 \times 10^{-5}}\right)}$
Relative strength for HCOOH to $\mathrm{CH}_{3} \mathrm{COOH}=4.37: 1$.
78. $\left[\mathrm{OH}^{-}\right]=\mathrm{Ca}=\mathrm{C} \sqrt{\frac{\mathrm{K}_{\mathrm{b}}}{\mathrm{C}}}$
$=\sqrt{\mathrm{K}_{\mathrm{b}} . \mathrm{C}}=\sqrt{1.0 \times 10^{-12} \times 0.01}=1.0 \times 10^{-7} \mathrm{M}$.
79.

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=5 \times 10^{-10} \quad \mathrm{pK}_{\mathrm{a}}=10 \log 5=9.3 \\
& \mathrm{pH}=\mathrm{pK}_{\mathrm{b}}+\log \left[\frac{\mathrm{CN}^{-}}{\mathrm{HCN}}\right] \\
& 9=9.3+\log \left[\frac{5 \times \mathrm{V}_{\mathrm{ml}}}{10 \times 2}\right] \Rightarrow-0.3=\log \left[\frac{\mathrm{V}_{\mathrm{ml}}}{4}\right] \\
& 0.3=\log \left[\frac{4}{\mathrm{~V}_{\mathrm{ml}}}\right] \\
& \Rightarrow \frac{4}{\mathrm{~V}_{\mathrm{ml}}}=2 \Rightarrow \mathrm{~V}_{\mathrm{ml}}=2 \mathrm{ml}
\end{aligned}
$$

81. $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}$

$$
\begin{aligned}
& \Rightarrow 7=7-\log 4+\log \frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]} \\
& \Rightarrow \frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}=4
\end{aligned}
$$

$\%$ ofCarbon in the formof $\mathrm{HCO}_{3}^{-}=\frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]+\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]} \times 100$

$$
=\frac{4}{1+4} \times 100=80 \%
$$

82. Mole of NaOH is required for 1 lit solution $=x$
\therefore Mole of NaOH is required for 100 ml of solution $=0.1 \mathrm{x}$ Now, $\quad 0.1 \mathrm{x}=1 \times \mathrm{V} \Rightarrow \mathrm{V}=0.1 \mathrm{x} \mathrm{lt}=100 \mathrm{x} \mathrm{ml}$.
83. $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\text { [Ionised] }}{\text { [un Ionised] }}$

$$
\begin{aligned}
& \Rightarrow \quad 6=5+\log \frac{\text { [Ionised] }}{\text { [un Ionised] }} \\
& \Rightarrow \quad 1=\log \frac{[\text { Ionised }]}{[\text { un Ionised }]} \\
& \Rightarrow \quad \frac{[\text { Ionised }]}{[\text { un Ionised }]}=10
\end{aligned}
$$

$$
\Rightarrow \frac{[\text { Ionised }]}{[\text { Ionised }]+[\text { un Ionised }]}=\left[\frac{10}{11}\right]
$$

86. $\mathrm{pK}_{\mathrm{HIn}}=5$
(a) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH}$, end point $\mathrm{pH}>7$
(b) Auillne hydrochloride +NaOH , end point $\mathrm{pH}>7$
(c) $\mathrm{NaHCO}_{3}+\mathrm{HCI}$, end point $\mathrm{pH}<7$
(d) $\mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$, end point $\mathrm{pH}>7$
87. (a) Initially pH will decrease fast, then slowly due to buffer formation and then will decrease fast as buffer action diminishes.
(b) For a weak electrolyte
$K_{a}=\frac{C \alpha^{2}}{(1-\alpha)}$
when $\quad \alpha \ll 1$ then $\alpha=\sqrt{\frac{\mathrm{K}_{\mathrm{a}}}{\mathrm{C}}}$
as C increases $\quad \Rightarrow \alpha$ decreases
as C is tending to zero $\Rightarrow \alpha$ will be unity
(c) At $1 / 4^{\text {th }}$ neutralisation

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \longrightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O} \\
& \left(0.1 \times \frac{3}{4}\right) \quad\left(0.1 \times \frac{1}{4}\right)
\end{aligned}
$$

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{1}{3}\right)
$$

At $3 / 4^{\text {th }}$ neutralisation $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log 3$
so difference in $\mathrm{pH}=\Delta(\mathrm{pH})=\log 3-\log \frac{1}{3}=2 \log 3$
89. $\mathrm{HCOOH}+\mathrm{KOH} \longrightarrow \mathrm{HCOOK}+\mathrm{H}_{2} \mathrm{O}$
milimole $20 \quad 10$
$10-10$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{HCOO}^{-}\right]}{[\mathrm{HCOOH}]}=3.74+\log \left(\frac{10}{10}\right)$
$\Rightarrow \mathrm{pH}=3.74$
91
(a) $\begin{array}{lcccc}\mathrm{NH}_{4} \mathrm{OH}+\mathrm{HCI} & \longrightarrow & \mathrm{NH}_{4} \mathrm{CI} & + & \mathrm{H}_{2} \mathrm{O} \\ 0.2 \mathrm{M} & 0.1 & & 0 & 0 \\ 0.1 & 0 & & 0.1 & 0.1\end{array}$
$\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}$
(b) $\underset{0.1}{\mathrm{NH}_{4} \mathrm{OH}+\underset{\mathrm{HCI}}{\mathrm{HCI}} \longrightarrow \underset{0}{\mathrm{H}} \longrightarrow \underset{4}{\mathrm{NH}_{4} \mathrm{CI}}+\underset{2}{\mathrm{H}_{2} \mathrm{O}} \text { (0.05 }}$
$0.05 \quad 0 \quad 0.05$
$\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \left(\frac{0.05}{0.05}\right)=\mathrm{pK}_{\mathrm{b}}$
(c) $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{HCI} \longrightarrow \mathrm{NH}_{4} \mathrm{CI}+\mathrm{H}_{2} \mathrm{O}$
$0.3 \quad 0.15$
$0.15 \quad 0 \quad 0.15$
$\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}} \quad$ So all solution have same pH

95. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{H}^{+} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}$

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{eq}} \quad \begin{array}{l}
2.5 \\
\mathrm{t}_{\mathrm{eq}} \\
\mathrm{pOH}=\mathrm{pK}_{\mathrm{a}}=14-8=6 \\
\therefore \mathrm{pK}_{\mathrm{a}}=6
\end{array}
\end{aligned}
$$

Now for the solution of $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}\right]=0.01 \mathrm{M}$
$\mathrm{pH}=7-\frac{1}{2} \mathrm{pK}_{\mathrm{a}}-\frac{1}{2} \log \mathrm{C}=7-\frac{6}{2}-\frac{1}{2} \log (0.01)=5$
97. For the buffer solution of $\mathrm{NH}_{3} \& \mathrm{NH}_{4}^{+}$

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{NH}_{4}{ }^{+}\right]} \\
& \Rightarrow 8.26=9.26+\log \frac{(500 \times 0.01)}{\text { m.moles of } \mathrm{NH}_{4}{ }^{+}}
\end{aligned}
$$

$\Rightarrow \mathrm{m}$. moles of $\mathrm{NH}_{4}^{+}=50$
$\therefore \quad$ moles of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ required $=\mathbf{0 . 0 2 5}$.
99. $\mathrm{pK}_{\mathrm{a}}=5.45$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{HIn}}+\log \frac{[\text { Base form }]}{[\text { Acid form }]} \Rightarrow \mathrm{pH}=\mathrm{pK}_{\mathrm{HIn}}=5.45$
For a Buffer solution
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{CH}_{3} \mathrm{COONa}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$
$\Rightarrow 5.45=4.75+\log \frac{\left[\mathrm{CH}_{3} \mathrm{COONa}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$
$0.7=\log \frac{\left[\mathrm{CH}_{3} \mathrm{COONa}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]} \quad \Rightarrow \quad \frac{5}{1}=\frac{\left[\mathrm{CH}_{3} \mathrm{COONa}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$

$$
\begin{array}{ccc}
\text { 100. } & \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{HCI} \longrightarrow \mathrm{NaCI} & +\mathrm{CH}_{3} \mathrm{COOH} \\
\mathrm{t}=0 & 20 \text { meq. } & 20 \text { meq. } \\
\mathrm{t}_{\text {eq. }} & - & - \\
20 \text { meq. }
\end{array}
$$

$\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=\frac{20}{200}=0.1 \mathrm{M}$
$\mathrm{pH}=\frac{1}{2}\left[\mathrm{pK}_{\mathrm{a}}-\log \mathrm{C}\right]=\frac{1}{2}[5-\log 2+1]$
$=\frac{1}{2}[6-\log 2]=3-\log \sqrt{2}$
101. meq. of acid $=$ meq of base $\Rightarrow 20 \times M=20 \times 0.2=4$ Molarity of HA $=0.2 \mathrm{M}$
$\mathrm{HA}+\mathrm{OH} \longrightarrow \mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O}$
$52 \quad$ m.mole
3 - 2 m. mole
$\therefore \quad \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \Rightarrow 5.8=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{2}{3}\right)$
$\Rightarrow \mathrm{pK}_{\mathrm{a}}=\mathbf{5 . 9 8}$
103. m . moles of HA taken $=27 \times 0.1=2.7$

$$
\mathrm{HA}+\mathrm{OH}^{-} \longrightarrow \mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

$\mathrm{t}=0 \quad 2.7 \quad 1.2$
$\begin{array}{llll}\mathrm{t}_{\mathrm{eq}} & 1.5 & - & 1.2\end{array}$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$
$\Rightarrow 5=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{1.2}{1.5}\right)=\mathrm{pK}_{\mathrm{a}}+\log \frac{4}{5}$
$\therefore \quad \mathrm{pK}_{\mathrm{a}}=5.1 \Rightarrow \mathrm{~K}_{\mathrm{a}}=\mathbf{8} \times \mathbf{1 0}^{-6}$.
104. $\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \frac{[\text { Salt }]}{[\text { Base }]}=\mathrm{pK}_{\mathrm{b}}+\log \frac{[\text { Cation }]}{[\text { Base }]}$
$\left[\mathrm{NH}_{4}^{+}\right]=2 \times$ mole of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
$\therefore \mathrm{pOH}=5+\log 2=5.3$
or $\mathrm{pH}=8.7$
105. $\mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{H}_{3} \mathrm{PO}_{4} ; \mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{NaHPO}_{4}^{-}$;
$\mathrm{Na}_{2} \mathrm{HPO}_{4}+\mathrm{Na}_{3} \mathrm{PO}_{4}$.
106.

$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{NaOH} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \mathrm{Na}+\mathrm{H}_{2} \mathrm{O}$			
1	0.5	0	0
0.5	0	0.5	0.5

This solution contains weak acid + its salt with strong base. and thus acts as buffer.

EXERCISE - 2

Part \# I : Multiple Choice

2. (A) In 0.6 m M HCOOH solution

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\mathrm{C}-\left[\mathrm{H}^{+}\right]} \Rightarrow 8 \times 10^{-4}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{6 \times 10^{-4}-\left[\mathrm{H}^{+}\right]}
$$

$\therefore \quad\left[\mathrm{H}^{+}\right]=\mathbf{4} \times \mathbf{1 0}^{-4} \mathbf{M}$.
So solution in (A), (C) \& (D) are ISOHYDRIC.
4. On the basis of ostwald dilution law, number of H^{+}ions will increase but increase in volume will be more. Therefore, $\left[\mathrm{H}^{+}\right]$decreases, pH increases.
5. Let BA be this salt $\mathrm{BA} \rightarrow \mathrm{B}^{+}+\mathrm{A}^{-}$
A^{-}does not undergo hydrolysis because HA is strong acid. B^{+}undergoes hydroysis

$$
\mathrm{h}=\sqrt{\frac{\mathrm{K}_{\mathrm{h}}}{\mathrm{c}}} \quad \mathrm{~h}=\text { degree of hydrolysis where }
$$

$\mathrm{K}_{\mathrm{h}}=$ Hydrolysis constant $=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{b}}}$.
$\mathrm{h} \propto \sqrt{\mathrm{K}_{\mathrm{h}}} \quad$ greater the hydrolysis constant greater the h (degree of hydrolysis).
$\mathrm{h} \propto \frac{1}{\sqrt{\mathrm{~K}_{\mathrm{b}}}}$ greater the K_{b} lesser the h .
Hydrolysis is endothermic, K_{h} increases with temperature and h also increase with temperature. $h \propto \sqrt{\mathrm{~V}} \mathrm{~V}=$ volume of salt solution hence h increases with dilution. $\mathrm{K}_{\mathrm{h}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{b}}}$

Both K_{w} and K_{b} change with temperature, hence K_{h} changes with temperature.
Hence, statement((\mathbb{B}) is correct. h increases if K_{b} decreases, statement(C) correct.
It is found that as temperature increase, K_{w} and K_{b} increase but increase in K_{w} is greater than increase in K_{b}. Hence, h increases with increase in temperature. or h decrease in temperature., hence statement.
(D) is correct.
(D) is not correct from explanation of (B).
6. (A) $\left[\mathrm{H}^{+}\right]=10^{-2}$ and $\left[\mathrm{OH}^{-}\right]=10^{-2}$
$\mathrm{H}^{+}+\mathrm{OH}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O}$
This leads complete neutralisation
so, $\mathrm{pH}=7=\frac{2+12}{2}$
(D) $\left[\mathrm{H}^{+}\right]=10^{-5}$ and $\left[\mathrm{OH}^{-}\right]=10^{-5}$
$\left[\mathrm{H}^{+}\right]+\left[\mathrm{OH}^{-}\right] \longrightarrow \mathrm{H}_{2} \mathrm{O}$
This leads complete neutralisation
so, $\mathrm{pH}=7=\frac{5+9}{2}$
7. Bronsted bases are proton acceptor and each Lewis base contain one or more electron pair and thus accept proton. On the other hand Bronsted acids are proton donor and may or may not be capable of accepting lone pair of electron, e.g., $\mathrm{H}_{2} \mathrm{SO}_{4}$ is Bronsted acid but not Lewis acid BF_{3} is Lewis acid but not Bronsted acid. Also each cation is acid an each anion is base.
8. In a given mixture, the ionisation of two acids can be written as: Let α, β be degree of ionisation at same concentration.

$\therefore \quad K_{A . A}=\frac{[\alpha][\alpha+\beta-x] . c}{[1-\alpha]} \quad K_{P . A}=\frac{[\beta][\alpha+\beta-x] . c}{[1-\beta]}$
(where ' x ' is equivalents of NaOH droped).
$\therefore \frac{\mathrm{K}_{\text {A.A }}}{\mathrm{K}_{\mathrm{P} . \mathrm{A}}}=\frac{\alpha}{1-\alpha} \times \frac{1-\beta}{\beta}$
or
$\frac{\alpha}{1-\alpha}=\frac{1.75}{1.3} \times\left[\frac{\beta}{1-\beta}\right]$
Hence, A,C,D.
9. Let α_{1} and α_{2} be the degree of dissociation of two acids and α_{1}, α_{2} are very small when compared to unity.

$$
\begin{aligned}
& \frac{\mathrm{c} \alpha_{1}^{2}}{1-\alpha_{1}}=\mathrm{K}_{\mathrm{a}_{1}} \quad \frac{\mathrm{c} \alpha_{2}^{2}}{1-\alpha_{2}}=\mathrm{K}_{\mathrm{a}_{2}} \\
& \sqrt{\frac{\mathrm{~K}_{\mathrm{a}_{1}}}{\mathrm{~K}_{\mathrm{a}_{2}}}}=\frac{\alpha_{1}}{\alpha_{2}}=\text { relative strength. }
\end{aligned}
$$

Hence choices (A) and (C) are correct while (B) and (D) are incorrect.
13. (A) A buffer solution is a solution which contains weak acid and its conjugate base. it is acidic buffer.
(B) Basic buffer contains weak base and its conjugate acid.
(C) is wrong because it does not show change in pH on adding small amount of acid or base.
(D) is wrong ; all the above statements are not correct.
16. $\left[\mathrm{A}^{2-}\right]=\mathrm{K}_{\mathrm{a}_{2}}=10^{-5}$
$\mathrm{pH}=1 \quad \mathrm{pH}=3$
$\left[\mathrm{H}^{+}\right]_{1}=10^{-1} \quad\left[\mathrm{H}^{+}\right]_{2}=10^{-3}$
$\frac{\left[\mathrm{H}^{+}\right]_{1}}{\left[\mathrm{H}^{+}\right]_{2}}=100$
$\mathrm{pH}=\frac{1}{2}\left(\mathrm{pK}_{\mathrm{w}}+\mathrm{pK}_{\mathrm{a}}-\mathrm{pK}_{\mathrm{b}}\right)$
pH is independent of dilution with in a limit since no concentration term in pH expression.
17. (B) is correct because $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { Salt }]}{[\text { Base }]}$ for acidic buffer.
If [Salt] increases, pH of acidic buffer will increase.

$$
\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \frac{[\text { Salt }]}{[\text { Acid }]} \text { for basic buffer. }
$$

CHEMISTRY FOR JEE MAIN \& ADVANCED

If [Salt] increases, pOH will increase, pH will decrease as $\mathrm{pH}=14-\mathrm{pOH}$.
Therefore (C) is correct but (D) is wrong.
(A) is not correct $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\text { [Salt] }}{\text { [Acid] }}$

If [Salt] increase, pH will increase.
19. (A) is buffer because it contains weak acid and its salt and they will also show common ion effect.
(B) is also a buffer because it contains a weak acid and its salt. They will not show common ion effect.
(C) is not buffer solution because they contains strong acids and its salt. They will not show common ion effect.
(D) is not a buffer solution because it contains strong acids and its salt. They will not show common ion effect.
20. (A)

so it is a buffer solution.
(B) $\quad \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{OH}^{-} \longrightarrow \mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}$ moles 1.5

so it is a buffer solution.
(C) $\quad \mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}^{+} \longrightarrow \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}$
moles 54
$1 \quad-\quad 4$
so it is a buffer solution.
21. HIn $\longrightarrow \mathrm{H}^{+}+\mathrm{In}^{-}$
$\mathrm{K}_{\mathrm{In}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]} \Rightarrow \frac{\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}=\frac{\mathrm{K}_{\mathrm{In}}}{\left[\mathrm{H}^{+}\right]}=\frac{10^{-9}}{10^{-9.6}}=10^{0.6}=4$
$\therefore \%$ of $\left[\mathrm{In}^{-}\right]$in solution $=\frac{4}{5} \times 100=80 \%$
so pink colour will be visible.
23.

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-} . \\
& 0.1(1-\mathrm{h}) \\
\mathrm{K}_{\mathrm{h}}= & \frac{(0.1 \mathrm{~h})(0.1 \mathrm{~h})}{0.1(1-\mathrm{h})}=0.1 \mathrm{~h}^{2} \Rightarrow 5.6 \times 10^{-10}=0.1 \mathrm{~h}^{2} \\
\Rightarrow & \mathrm{~h}=7.48 \times 10^{-5} \\
& {\left[\mathrm{OH}^{-}\right]=\mathrm{ch}=7.48 \times 10^{-5} \times 10^{-1}=7.48 \times 10^{-6} . } \\
& {\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]}=\frac{10^{-14}}{7.48 \times 10^{-6}}=1.33 \times 10^{-9} . } \\
\Rightarrow & \mathrm{pH}=8.8 \text { approx. }
\end{aligned}
$$

25. $\mathrm{K}_{\text {sp }}=1.1 \times 10^{-11}=\left(1.4 \times 10^{-4}\right)^{\mathrm{x}+\mathrm{y}} \mathrm{x}^{\mathrm{x}} \cdot \mathrm{y}^{\mathrm{y}}$
so we have $\mathrm{x}+\mathrm{y}=3$ (by comparing values)
so, $\quad x^{x} \cdot y^{y}=\frac{1.1 \times 10^{-11}}{1.4 \times 1.4 \times 1.4 \times 10^{-12}}=\frac{110}{1.96 \times 1.4}=4$
Hence $x=1, y=2$ or
$y=1, x=2$
26. It is factual.
27. $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { Salt }]}{[\text { Acid }]}$
28. The salt hydrolysis in each case occurs execpt NaW because its. $\mathrm{pH}=7$. Thus HW is strongest acid.
29. $\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \frac{[\text { Salt }]}{[\text { Base }]}=4+\log \frac{0.2}{0.1}$
$\therefore \mathrm{pOH}=4+\log 2$ and $\mathrm{pH}=10-\log 2$
30. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+} \mathrm{CI}^{-} ; \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{OH}+\mathrm{H}^{+}$
y
x
Thus y is $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}$and x is acidic.
31. Aspirin a weak acid is unionised in acid medium due to common ion effect and completely ionised in alkaline medium.
32. $\mathrm{CO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \rightleftharpoons \mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$.
33. $\mathrm{pH}=-\log \mathrm{K}_{\mathrm{a}}+\log \frac{[\text { Salt }]}{[\text { Acid }]}$

Let a mol litre ${ }^{-1}$ be concentration of salt, then concentration of acid $=(0.29-a)$.

$$
\begin{aligned}
& 4.4=-\log 1.8 \times 10^{-5}+\log \frac{\mathrm{a}}{(0.29-\mathrm{a})} . \\
\therefore \quad & \mathrm{a}=0.09 . \\
& {[\text { Salt }]=0.09 \mathrm{M} } \\
& {[\text { Acid }]=0.29-0.09=0.20 \mathrm{M} . }
\end{aligned}
$$

35. For neutralisation :

Total Meq. of acid $=$ Meq. of base $=26.6 \times 0.1=2.66$.
Now for partial neutralisation of acid.

| | $\mathrm{HA}+\mathrm{BOH}$ | \longrightarrow | $\mathrm{BA}+\mathrm{H}_{2} \mathrm{O}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Meq. before reaction | 2.66 | 1.2 | 0 | 0 |
| Meq. after reaction | 1.46 | 0 | 1.2 | 1.2 |

The resultant mixture acts as a buffer and [HA] and [BA] may be placed in terms of Meq. sincen volume of mixture is constant.
$\mathrm{pH}=-\log \mathrm{K}_{\mathrm{a}}+\log \frac{\text { [Salt }]}{[\text { Acid }]}$ or $\quad 5=-\log \mathrm{K}_{\mathrm{a}}+\log \frac{1.2}{1.46}$
$K_{a}=8.22 \times 10^{-6}$.
36. $\mathrm{NH}_{3}+\mathrm{HCl}$ in $2: 1$ will give $\mathrm{NH}_{3}+\mathrm{NH}_{4} \mathrm{Cl}$ in $1: 1$ ratio.
37. $\mathrm{pH}=-\log \mathrm{K}_{\mathrm{a}}+\log \frac{[\text { Salt }]}{[\text { Acid }]} \quad=-\log 10^{-4}+\log \frac{1}{1}=4$
$\left[\right.$ Since $\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}=10^{-14}$ Given $\mathrm{K}_{\mathrm{b}}=10^{-10} \quad \therefore \mathrm{~K}_{\mathrm{a}}=10^{-4}$]
38. Meq. of acetic acid $=50 \times 2=100$

Meq. of $\mathrm{CH}_{3} \mathrm{COONa}=10 \times 1=10$
$\mathrm{pH}=-\log \mathrm{K}_{\mathrm{a}}+\log \frac{[\text { Salt }]}{[\text { Acid }]} \quad$ or $\quad \mathrm{pH}=-\log$
$10^{-5}+\log \frac{10}{100}=4$
39. (a) $\mathrm{NaF} \longrightarrow \mathrm{Na}^{+}+\mathrm{F}^{-}$
0.1
$\left.\mathrm{CaF}_{2} \longrightarrow \mathrm{Ca}^{2+}+\begin{array}{l}0.1 \\ 2 \mathrm{~F}^{-}\end{array}\right]$
$(2 x+0.1) \approx 0.1$
$\mathrm{K}_{\mathrm{sp}}=\mathrm{x}(0.1)^{2}=3.4 \times 10^{-11} \mathrm{x}=3.4 \times 10^{-9}$
40. $\mathrm{Na}_{2} \mathrm{CO}_{3} \rightleftharpoons 2 \mathrm{Na}^{+}+\mathrm{CO}_{3}{ }^{2-}$ $2 \times 0.01 \quad 0.01$
$\mathrm{Ag}_{2} \mathrm{CO}_{3} \rightleftharpoons 2 \mathrm{Ag}^{+}+\mathrm{CO}_{3}{ }^{2-}$
$(x+0.01) \approx 0.01$
$\mathrm{K}_{\mathrm{sp}}=4 \mathrm{x}^{2}(0.01)$
$\mathrm{K}_{\mathrm{sp}}=4 \mathrm{~s}^{3}=4 \times 10^{-12}=4 \mathrm{x}^{2}(0.01) \quad \Rightarrow \mathrm{x}=10^{-5}$
42. Let K_{sp} of $\mathrm{AgCI}=\mathrm{x}$
(a) solubility of AgCl in pure water $=\mathrm{s}_{1}=\sqrt{\mathrm{x}}$
(b) solubility of AgCl in $0.01 \mathrm{M} \mathrm{CaCl}_{2}=\mathrm{s}_{2}=\frac{\mathrm{x}}{0.02}$
(c) solubility of AgCl in $0.01 \mathrm{M} \mathrm{NaCl}=\mathrm{s}_{3}=\frac{\mathrm{x}}{0.01}$
(d) solubility of AgCl in $0.05 \mathrm{M} \mathrm{AgNO}_{3}=\mathrm{s}_{4}=\frac{\mathrm{x}}{0.05}$

So $s_{1}>s_{3}>s_{2}>s_{4}$
45. $\mathrm{pH}=4 \Rightarrow\left[\mathrm{H}^{+}\right]=10^{-4} \mathrm{M} \Rightarrow\left[\mathrm{OH}^{-}\right]=10^{-10} \mathrm{M}$
$\mathrm{Al}(\mathrm{OH})_{3} \rightleftharpoons \mathrm{Al}^{+3}+3 \mathrm{OH}^{-}$
$\mathrm{K}_{\text {sp }}\left(\mathrm{Al}(\mathrm{OH})_{3}\right)=\left[\mathrm{Al}^{+3}\right]\left[\mathrm{OH}^{-}\right]^{3}$
$\left[\mathrm{Al}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3}=1 \times 10^{-33}$
$\left[\mathrm{Al}^{3+}\right]\left(10^{-10}\right)^{3}=1 \times 10^{-33} \quad \Rightarrow \quad\left[\mathrm{Al}^{+3}\right]=10^{-3} \mathrm{M}$
48. $\mathrm{K}_{\text {sp }}=1.8 \times 10^{-10}$

Precipitation of AgCI will occuir only where
$\mathrm{K}_{\mathrm{IP}}(\mathrm{AgCI})>\mathrm{K}_{\mathrm{sp}}$
$\mathrm{K}_{\mathrm{IP}}=\frac{10^{-4}}{2} \times \frac{10^{-4}}{2}=2.5 \times 10^{-9}$
$\mathrm{K}_{\mathrm{IP}}>\mathrm{K}_{\mathrm{SP}} \quad$ precipitate is formed.
50. $\left[\mathrm{Ag}^{+}\right]$ion required to precipitate Cl^{-}ion $=\frac{\mathrm{K}_{\mathrm{sp}}}{\left[\mathrm{Cl}^{-}\right]}$
$=\frac{10^{-10}}{0.05}=2 \times 10^{-9} \mathrm{~mol} / \mathrm{L}$.
$\left[\mathrm{Ag}^{+}\right]$ion required to precipitate I^{-}ion $=\frac{\mathrm{K}_{\mathrm{sp}}}{\left[\mathrm{I}^{-}\right]}$
$=\frac{4 \times 10^{-16}}{0.05}=8 \times 10^{-15} \mathrm{~mol} / \mathrm{L}$.
Since $\left[\mathrm{Ag}^{+}\right]$ion conc. required to precipitate AgI is less than the $\left[\mathrm{Ag}^{+}\right]$ion conc. required to precipitate AgCl , AgI precipitates first.
Hence choices (A),(B) and (D) are correct while (C) is incorrect.
51. $\mathrm{AgCI} \rightleftharpoons \mathrm{Ag}^{+}+\mathrm{CI}^{-} \quad \mathrm{AgBr} \rightleftharpoons \mathrm{Ag}^{+}+\mathrm{Br}$

$$
(x+y) \quad x
$$

So $\left[\mathrm{Ag}^{+}\right]=\left[\mathrm{Br}^{-}\right]+\left[\mathrm{Cl}^{-}\right]$
52. $\mathrm{AgCI} \longrightarrow \mathrm{Ag}^{+}+\mathrm{CI}^{-}$

$$
\left.\begin{array}{c}
(\mathrm{x}+\mathrm{y}) \quad \mathrm{x} \\
\mathrm{AgCNS} \xrightarrow{ } \mathrm{Ag}^{+}+\mathrm{CNS}^{-} \\
(\mathrm{x}+\mathrm{y}) \quad \mathrm{y}
\end{array}\right] \begin{gathered}
\frac{\mathrm{K}_{\mathrm{SP}}(\mathrm{AgCI})}{\mathrm{K}_{\mathrm{SP}}(\mathrm{AgCNS})}=\frac{\mathrm{x}}{\mathrm{y}}=\frac{\left[\mathrm{CI}^{-}\right]}{\left[\mathrm{CNS}^{-}\right]}
\end{gathered}
$$

So $\frac{\left[\mathrm{CI}^{-}\right]}{\left[\mathrm{CNS}^{-}\right]}=\frac{\mathrm{X}}{\mathrm{y}}=\frac{1.8 \times 10^{-10}}{1.6 \times 10^{-11}}$

$$
=1.125 \times 10=11.25
$$

$$
\Rightarrow \frac{x}{y}=11.25 \quad x=11.25
$$

$$
\mathrm{K}_{\mathrm{SP}}(\mathrm{AgCI})=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{CI}^{-}\right]=(\mathrm{x}+\mathrm{y}) \mathrm{x}=1.8 \times 10^{-10}
$$

$$
12.25 \mathrm{y} \times 11.25 \mathrm{y}=1.8 \times 10^{-10}
$$

$$
\mathrm{y}^{2}=\frac{1.8 \times 10^{-10}}{12.25 \times 11.25}
$$

$$
\mathrm{y}^{2}=\frac{180 \times 10^{-12}}{12.25 \times 11.25}
$$

$$
\mathrm{y}^{2}=1.3 \times 10^{-12}
$$

$$
\mathrm{y}=1.14 \times 10^{-6}
$$

$$
\mathrm{x}=11.25 \times 1.14 \times 10^{-6}=12.83 \times 10^{-6}
$$

$$
\left[\mathrm{Ag}^{+}\right]=[\mathrm{x}+\mathrm{y}]
$$

$$
=12.83 \times 10^{-6}+1.14 \times 10^{-6}=13.97 \times 10^{-6}=1.4 \times 10^{-5} \mathrm{M}
$$

54. $\mathrm{Ca}(\mathrm{OH})_{2} \rightleftharpoons \mathrm{Ca}^{2+}+2 \mathrm{OH}^{-}$

$\mathrm{t}=0$	$\frac{1.48}{74}=0.02$	0	0
	0	0.02	0.04
t_{eq}	0	$\mathrm{pOH}=2-\log 4=1.4$	
so,	$\mathrm{pH}=12.6$		

56. $\mathrm{Cd}^{2+}+\mathrm{H}_{2} \mathrm{~S} \longrightarrow \mathrm{CdS} \downarrow \quad+2 \mathrm{H}^{+}$
m.moles 0.1

Total m.moles of H^{+}in solution after the reaction $=0.2+0.8=1$
$\therefore \quad\left[\mathrm{H}^{+}\right]=\frac{1}{100}=0.01 \mathrm{M} \quad \Rightarrow \mathrm{pH}=\mathbf{2}$.
57. $\mathrm{CaF}_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Ca}^{2+}+2 \mathrm{~F}^{-}$

$$
4 \mathrm{~s}^{3}=\mathrm{K}_{\mathrm{sp}}=4 \times 10^{-11} \Rightarrow \mathrm{~s}=2.15 \times 10^{-4} \mathrm{M}
$$

So, amount of F^{-}in 20000 lt of water $=2 \mathrm{~s} \times 20000=8.6 \mathrm{~mol}$.
58. For different salts such as $A B, A_{2}, A B_{3}$, \qquad .etc. $K_{\text {SP }}=s^{2}, 4 s^{3}, 27 s^{4}$. \qquad respectively. If $K_{\text {sp }}$ is same for different salts, then s is more for the salt in which more number of ions.
59. Let S is the solubility of BaF_{2} in a solution of BaNO_{3}

Then $\quad K_{S P}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2}$.
Then $\quad\left[\mathrm{F}^{-}\right]=2 \mathrm{~S}$;
Then $\quad \frac{1}{2}\left[\mathrm{~F}^{-}\right]=\mathrm{S}$
60. Find solubility for each separately by $\mathrm{S}^{2}=\mathrm{K}_{\mathrm{SP}}$ for MnS and $\mathrm{ZnS} .108 \mathrm{~S}^{5}=\mathrm{K}_{\mathrm{SP}}$ for $\mathrm{Bi}_{2} \mathrm{~S}_{3}$ and $4 \mathrm{~S}^{3}=\mathrm{K}_{\mathrm{SP}}$ for $\mathrm{Ag}_{2} \mathrm{~S}$.
61. $\mathrm{CaCO}_{3} \rightleftharpoons \mathrm{Ca}^{+2}+\mathrm{CO}_{3}^{-2}$
$\begin{array}{cc}\mathrm{x} & \mathrm{x} \\ (\mathrm{x}+\mathrm{y}) & \mathrm{x} \\ \mathrm{CaC}_{2} \mathrm{O}_{4} \rightleftharpoons & \mathrm{Ca}^{+2}+ \\ \mathrm{C} & \mathrm{C}_{4}^{-2} \\ (\mathrm{x}+\mathrm{y}) & \mathrm{y} \\ \mathrm{y}\end{array}$
$\frac{\mathrm{K}_{\mathrm{SP}}\left(\mathrm{CaCO}_{3}\right)}{\mathrm{K}_{\mathrm{SP}}\left(\mathrm{CaC}_{2} \mathrm{O}_{4}\right)}=\frac{\mathrm{x}}{\mathrm{y}}=3 \Rightarrow \mathrm{x}=3 \mathrm{y}$
$(x+y)=8 \times 10^{-5}$
$(3 y+y)=8 \times 10^{-5} \Rightarrow y=2 \times 10^{-5} \quad x=6 \times 10^{-5}$
$\mathrm{K}_{\mathrm{SP}}\left(\mathrm{CaCO}_{3}\right)=\left[\mathrm{Ca}^{+2}\right]\left[\mathrm{CO}_{3}^{-2}\right]$
$=8 \times 10^{-5} \times 6 \times 10^{-5}$
$=48 \times 10^{-10}$
$\mathrm{K}_{\mathrm{SP}}\left(\mathrm{CaCO}_{3}\right)=4.8 \times 10^{-9}$
62. For AgCI precipitation

$$
\left[\mathrm{Ag}^{+}\right]=\frac{\mathrm{K}_{\mathrm{SP}} \mathrm{AgCI}}{\left[\mathrm{CI}^{-}\right]}=\frac{10^{-10}}{0.05}=2 \times 10^{-9}
$$

For AgI precipitation
$\left[\mathrm{Ag}^{+}\right]=\frac{\mathrm{K}_{\mathrm{SP}} \mathrm{AgI}}{[\mathrm{I}]}=\frac{4 \times 10^{-16}}{0.05}=8 \times 10^{-15}$
Thus AgI will precipitate first. AgCI will precipitate only when,
$\left[\mathrm{Ag}^{+}\right]=2 \times 10^{-9}$; Thus
$\left[\mathrm{I}^{-}\right]_{\text {Left }}=\frac{4 \times 10^{-16}}{2 \times 10^{-9}}=2 \times 10^{-7} \mathrm{M}$
63. Solubility of $\mathrm{Al}(\mathrm{OH})_{3}$ is lesser than $\mathrm{Zn}(\mathrm{OH})_{2}$.
64. Presence of common ion decreases the solubility of salt.
65. For precipitation of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$.

$$
\left[\mathrm{CO}_{3}^{2-}\right]=\frac{\mathrm{K}_{\mathrm{SP}}}{\left[\mathrm{Ag}^{+}\right]^{2}}=\frac{6.9 \times 10^{-12}}{\left[10^{-5}\right]^{2}}=6.9 \times 10^{-2}
$$

and for precipitation of BaCO_{3}.
$\left[\mathrm{CO}_{3}^{2-}\right]=\frac{\mathrm{K}_{\mathrm{SP}}}{\left[\mathrm{Ba}^{2+}\right]}=\frac{8.1 \times 10^{-9}}{10^{-4}}=8.1 \times 10^{-5}$
66. K_{SP} of $\mathrm{PbCI}_{2}=4 \mathrm{~s}^{3}=4 \times(0.01)^{3}=4 \times 10^{-6}$

In NaCI solution for PbCI_{2};
$\mathrm{K}_{\mathrm{SP}}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{Cl}^{-}\right]^{2}$
or $4 \times 10^{-6}=\left[\mathrm{Pb}^{2+}\right][0.1]^{2}$
$\therefore \quad\left[\mathrm{Pb}^{2+}\right]=4 \times 10^{-4} \mathrm{M}$
67. Solubility of $\mathrm{BaSO}_{4}=\sqrt{\mathrm{K}_{\mathrm{SP}}}=\sqrt{1.1 \times 10^{-10}}$
$=1.05 \times 10^{-5} \mathrm{M}$
$\therefore \quad$ wt. of $\mathrm{BaSO}_{4}=1.05 \times 10^{-5} \times 233=244.37 \times 10^{-5} \mathrm{~g} /$ litre.
$\therefore \quad$ Volume of water needed to dissolve $1 \mathrm{~g} \mathrm{BaSO}_{4}$ is equal to
$\frac{1}{244.37 \times 10^{-5}}=410$ litre
68. $\mathrm{K}_{\mathrm{SP}}=4 \times 10^{-12}=\left[\mathrm{M}^{+}\right]\left[\mathrm{OH}^{-}\right]^{\mathrm{x}}=\left[10^{-4}\right]\left[\mathrm{x} .10^{-4}\right]^{\mathrm{x}}$
$=\mathrm{x}^{\mathrm{x}} .\left(10^{-4}\right)^{1+\mathrm{x}}$
\therefore Thus shows that $\mathrm{x}=2$
69.
K_{SP} of $\mathrm{Ca}(\mathrm{OH})_{2}=4 \mathrm{~s}^{3}=5.5 \times 10^{-6}$
$\therefore \mathrm{s}=3 \sqrt{\frac{5.5 \times 10^{-6}}{4}}=1.11 \times 10^{-2}$
$\therefore \quad\left[\mathrm{OH}^{-}\right]=2 \mathrm{~s}=2 \times 1.11 \times 10^{-2}$
$\therefore \mathrm{pOH}=1.65 \quad \therefore \mathrm{pH}=12.35$
70. $\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=1 \times 10^{-12}$;
$\therefore \quad\left[\mathrm{OH}^{-}\right]=\sqrt{\frac{10^{-12}}{0.01}}=10^{-5}$
or $\mathrm{pOH}=5$.
and thus $\mathrm{pH}=9$.
71. The K_{SP} values are in the order :

$$
\mathrm{AgCl}>\mathrm{AgBr}>\mathrm{AgI}
$$

72. $\mathrm{A}_{3} \mathrm{~B}_{2} \rightleftharpoons 3 \mathrm{~A}^{2+}+2 \mathrm{~B}^{3+}$
$\mathrm{K}_{\mathrm{SP}}=\left[\mathrm{A}^{2+}\right]^{3}\left[\mathrm{~B}^{3+}\right]^{2}$.
$\mathrm{K}_{\mathrm{SP}}=(3 \mathrm{~s})^{3}(2 \mathrm{~s})^{2}=108 \mathrm{~s}^{2}$
73. $\mathrm{K}_{\mathrm{SP}}=\left[\mathrm{M}^{+}\right]$[anion $] ; \quad\left[\mathrm{M}^{+}\right]$required to precipitate MA is less and MA precipitate first.
74. $\mathrm{AgCI} \rightleftharpoons \mathrm{Ag}^{+}+\mathrm{CI}^{-} ; \mathrm{AgBr} \rightleftharpoons \mathrm{Ag}^{+}+\mathrm{Br}^{-}$
$\begin{array}{lll}x & x & y\end{array}$
In simultaneous solubility solution contains $\left[\mathrm{Ag}^{+}\right]=\left[\mathrm{CI}^{-}\right]+[\mathrm{Br}]$
75. Solubility of $\mathrm{M}(\mathrm{OH})_{3}=\sqrt[4]{\frac{\mathrm{K}_{\mathrm{SP}}}{27}}=\sqrt[4]{\frac{10^{-35}}{27}}=7.8 \times 10^{-10}$ Solubility of $\mathrm{M}(\mathrm{OH})_{2}=\sqrt[3]{\frac{\mathrm{K}_{\mathrm{SP}}}{4}}=6.3 \times 10^{-11}$

Solubility of $\mathrm{MOH}=\sqrt{\mathrm{K}_{\mathrm{SP}}}=10^{-14}$
76. $\mathrm{MgCl}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{NaCl}$

mm before	10	20	0	0
reaction	0	0	10	20

Thus, 10 m mole of $\mathrm{Mg}(\mathrm{OH})_{2}$ are formed. The product of $\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}$ is therefore $\left[\frac{10}{200}\right] \times\left[\frac{20}{200}\right]^{2}$
$=5 \times 10^{-4}$ which is more than K_{SP} of $\mathrm{Mg}(\mathrm{OH})_{2}$. Now solubility(s) of $\mathrm{Mg}(\mathrm{OH})_{2}$ can be derived by

$$
\begin{gathered}
\mathrm{K}_{\mathrm{SP}}=4 \mathrm{~s}^{3} \\
\therefore \quad \mathrm{~s}=\sqrt[3]{\frac{\mathrm{K}_{\mathrm{sp}}}{4}}=\sqrt[3]{\left[\frac{1.2 \times 10^{-11}}{4}\right]}=1.4 \times 10^{-4} \mathrm{M}
\end{gathered}
$$

$\therefore \quad\left[\mathrm{OH}^{-}\right]=2 \mathrm{~s}=2.88 \times 10^{-4} \mathrm{M}$

Part \# II : Assertion \& Reason

1. Due to very strong extent of hydration of H^{+}ion.
2. Since K_{a} of HCN is less than that of HF, so CN^{-}is stronger base than F^{-}
3. NH_{3} acts as weak base in aqueous solution. HCl acts as strong acid in aqueous solution.
4. Due to common ion effect, $\left[\mathrm{H}^{+}\right]$increases therefore ionization of HCOOH decreased.
5. At $25^{\circ} \mathrm{C}, \mathrm{pH}$ of any acidic solution can not be 7 .
6. $\mathrm{HA}+\mathrm{OH}^{-} \longrightarrow \mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O}$

At the half equivalent point, $[\mathrm{HA}]=\left[\mathrm{A}^{-}\right] \Rightarrow \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$
10. Due to complex formation solubility of sparingly soluble salt increases.

EXERCISE-3

Part \# I : Matrix Match Type

1. (A) $\left[\mathrm{H}^{+}\right]$in HCl solution $=10^{-5} \mathrm{M}$
$\left[\mathrm{H}^{+}\right]$in $\mathrm{H}_{2} \mathrm{~S}$ solution $=\sqrt{\mathrm{K}_{\mathrm{a}} \times \mathrm{C}}=10^{-4} \mathrm{M}$
so $\left[\mathrm{H}^{+}\right]$in HCl solution $<\left[\mathrm{H}^{+}\right]$in $\mathrm{H}_{2} \mathrm{~S}$ solution
\& $\left[\mathrm{OH}^{-}\right]$in HCl solution $>\left[\mathrm{OH}^{-}\right]$in $\mathrm{H}_{2} \mathrm{~S}$ solution
\& degree of dissociation of water in HCl solution > degree of dissociation of water in $\mathrm{H}_{2} \mathrm{~S}$ solution pH of HCl solution $>\mathrm{pH}$ of $\mathrm{H}_{2} \mathrm{~S}$ solution.
(B) At $\mathrm{pH}=4.74$ in $\mathrm{CH}_{3} \mathrm{COOH}$ solution, $\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$ $=\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$
\therefore degree of dissociation of $\mathrm{CH}_{3} \mathrm{COOH}=\frac{1}{2}$
At $\mathrm{pH}=9.26$ i.e. $\mathrm{pOH}=4.74$ in $\mathrm{NH}_{4} \mathrm{OH}$ solution, $\left[\mathrm{NH}_{4}^{+}\right]=\left[\mathrm{NH}_{4} \mathrm{OH}\right]$
\therefore degree of dissociation of $\mathrm{CH}_{3} \mathrm{COOH}=$ degree of dissociation of $\mathrm{NH}_{4} \mathrm{OH}$
degree of dissociation of water in $\mathrm{CH}_{3} \mathrm{COOH}$ solution $>$ degree of dissociation of water in $\mathrm{NH}_{4} \mathrm{OH}$ solution.
(C) $\left[\mathrm{H}^{+}\right]$in $\mathrm{CH}_{3} \mathrm{COOH}$ solution $=\sqrt{1.8 \times 10^{-5} \times 0.1}$ $=\sqrt{1.8} \times 10^{-3} \mathrm{M}$

$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right] \text {in } \mathrm{HCOOH} \text { solution } } & =\sqrt{1.8 \times 10^{-4} \times 1} \\
& =\sqrt{1.8} \times 10^{-2} \mathrm{M}
\end{aligned}
$$

so, degree of dissociation of $\mathrm{CH}_{3} \mathrm{COOH}=$ degree dissociation of HCOOH .
(D) $\left[\mathrm{H}^{+}\right]$in HA_{1} solution $=\sqrt{10^{-5} \times 0.1}=10^{-3} \mathrm{M}$
$\left[\mathrm{H}^{+}\right]$in HA_{2} solution $=\sqrt{10^{-6} \times 0.01}=10^{-4} \mathrm{M}$
so $\left[\mathrm{OH}^{-}\right]$in solution of $\mathrm{HA}_{1}<\left[\mathrm{OH}^{-}\right]$in solution of HA_{2} pH in solution of $\mathrm{HA}_{1}<\mathrm{pH}$ in solution of HA_{2}
\& degree of dissociation of water $\mathrm{HA}_{1}<$ degree of dissociation of water HA_{2}.
2. (A) $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{OH}^{-} \longrightarrow \mathrm{HC}_{2} \mathrm{O}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}$ $\begin{array}{llll}\text { m.moles } & 50 & 25 & \\ & 25 & - & 25\end{array}$

Buffer solution $\mathrm{pH}=\mathrm{pK}_{\mathrm{a} 1}$
(B) $\quad \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{OH}^{-} \longrightarrow \mathrm{HC}_{2} \mathrm{O}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}$ m.moles 50 50 50

Amphiprotic, $\mathrm{pH}=\frac{\mathrm{pK}_{\mathrm{a} 1}+\mathrm{pK}_{\mathrm{a} 2}}{2}=\frac{13}{2}=6.5$.
(C) $\quad \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{OH}^{-} \longrightarrow \mathrm{HC}_{2} \mathrm{O}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}$
m.moles 50
$\begin{array}{lll}50 & 75 & \\ - & 25 & 50\end{array}$
$\mathrm{HC}_{2} \mathrm{O}_{4}^{-}+\mathrm{OH}^{-} \longrightarrow \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}$
m.moles 50

Buffer solution $\mathrm{pH}=\mathrm{pK}_{\mathrm{a} 2}$.
(D) $\quad \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{OH}^{-} \longrightarrow \mathrm{HC}_{2} \mathrm{O}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}$ m.moles 50

$$
100
$$

$50 \quad 50$
$\mathrm{HC}_{2} \mathrm{O}_{4}^{-}+\mathrm{OH}^{-} \longrightarrow \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O}$ m.moles 50 50

Salt hydrolysis, $\mathrm{pH}>7$.

Part \# II : Comprehension

Comprehension \#1:

2. Since K_{a} of $\mathrm{CH}_{3} \mathrm{COOH} \& \mathrm{~K}_{\mathrm{b}}$ of $\mathrm{NH}_{4} \mathrm{OH}$ are same so degree of hydrolysis of $\mathrm{CH}_{3} \mathrm{COO}^{-} \& \mathrm{NH}_{4}^{+}$are exactly same.

Comprehension \# 2 :

1. $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\text { [Base }]}{[\text { Salt }]}$
$[$ Base $]=\frac{0.01 \times 500}{500}=0.01$.
$\left[\mathrm{NH}_{4}^{+}\right]=\frac{\mathrm{a} \times 2}{500} ;$ Let a millimole of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ are added.
$\therefore \quad[$ Salt $]=\left[\mathrm{NH}_{4}^{+}\right]$.

$$
\begin{aligned}
& \mathrm{pH}=9.26+\log \left[\frac{0.01}{2 \mathrm{a} / 500}\right] \\
& 8.26=9.26+\log \frac{0.01 \times 500}{2 \mathrm{a}} .
\end{aligned}
$$

$\therefore \quad a=25$.
$\therefore \quad$ Mole of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ added $=0.025$.
3. Let V mL of NaOH be needed to give $\mathrm{CH}_{3} \mathrm{COONa}$.

| $\mathrm{NaOH}+\mathrm{CH}_{3} \mathrm{COOH}$ | | |
| :--- | :---: | :---: | :---: |
| $0.2 \times \mathrm{V}$ | 50×0.2 | $\mathrm{CH}_{3} \mathrm{COONa}$ |$+\mathrm{H}_{2} \mathrm{O}$

$\therefore \quad \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { Salt }]}{[\text { Acid }]}=\mathrm{pK}_{\mathrm{w}}-\mathrm{pK}_{\mathrm{b}}+\log \frac{[\text { Salt }]}{[\text { Acid }]}$
$=14-9.26+\log \frac{[\text { Salt }]}{[\text { Acid }]}$
$=14-9.26+\log \frac{\left[\frac{0.2 \mathrm{~V}}{50+\mathrm{V}}\right]}{\left[\frac{10-0.2 \mathrm{~V}}{50+\mathrm{V}}\right]}$
$4.74=4.74+\log \left[\frac{0.2 \mathrm{~V}}{10-0.2 \mathrm{~V}}\right] \quad \therefore \mathrm{V}=\frac{10}{0.4}=25 \mathrm{~mL}$.
4. $\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{HCl} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaCl}$

1	1	0	0
0	0	1	1

$\therefore \quad\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=\frac{1}{1}=1$.
$\therefore \quad\left[\mathrm{H}^{+}\right]=\mathrm{C} \alpha=\mathrm{C} \sqrt{\frac{\mathrm{K}_{\mathrm{a}}}{\mathrm{C}}}=\sqrt{\mathrm{K}_{\mathrm{a}} \cdot \mathrm{C}}=\sqrt{\mathrm{K}_{\mathrm{a}}} \quad$ or
$\mathrm{pH}_{1}=-\frac{1}{2} \log \mathrm{~K}_{\mathrm{a}}=\frac{1}{2} \mathrm{pK}_{\mathrm{a}}$.
$\underset{1}{\mathrm{CH}_{3} \mathrm{COOH}}+\underset{3}{\mathrm{CH}_{3} \mathrm{COONa}}$
$\therefore \quad \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{1}{1}$.
$\mathrm{pH}_{2}=\mathrm{pK}_{\mathrm{a}}$.
$\therefore \quad \frac{\mathrm{pH}_{1}}{\mathrm{pH}_{2}}=\frac{1}{2}$.

Comprehension \#3:

1. For SrF_{2} in pure water

$$
4 \mathrm{~s}_{1}{ }^{3}=\mathrm{K}_{\mathrm{sp}}
$$

For SrF_{2} in 0.1 M NaF solution

$$
\begin{aligned}
& \mathrm{s}_{2}(0.1)^{2}=\mathrm{K}_{\mathrm{sp}} \\
\Rightarrow & 4 \mathrm{~s}_{1}^{3}=\mathrm{s}_{2}(0.01) \\
\Rightarrow & 4 \mathrm{~s}_{1}^{3}=\mathrm{s}_{1} \times \frac{256}{10^{6}}(0.01) \\
\Rightarrow & \mathrm{s}_{1}=8 \times 10^{-4} \mathrm{M} \\
\therefore & \mathrm{~K}_{\mathrm{sp}}=4 \mathrm{~s}_{1}^{3}=2.048 \times 10^{-9}
\end{aligned}
$$

2. $\left[\mathrm{Sr}^{2+}\right]_{\mathrm{i}}=0.0011=11 \times 10^{-4} \mathrm{M}$

$$
\left[\mathrm{Sr}^{2+}\right]_{\mathrm{f}}=2 \times 10^{-4} \mathrm{M}
$$

$\therefore \quad\left[\mathrm{Sr}^{2+}\right]$ precipitated $=(11-2) \times 10^{-4} \mathrm{M}$

$$
=9 \times 10^{-4} \mathrm{M}
$$

[F^{-}] needed for this precipitation $=2 \times 9 \times 10^{-4}=18 \times 10^{-4} \mathrm{M}$
Also, $\quad\left[\mathrm{Sr}^{2+}\right]_{\mathrm{f}}\left[\mathrm{F}^{-}\right]_{\mathrm{f}}^{2}=\mathrm{K}_{\text {sp }}=2.048 \times 10^{-9}$
But, $\left[\mathrm{Sr}^{2+}\right]_{\mathrm{f}}=2 \times 10^{-4} \mathrm{M}$
$\therefore \quad\left[\mathrm{F}^{-}\right]_{\mathrm{f}}=3.2 \times 10^{-3} \mathrm{M}$
\therefore Total $\left[\mathrm{F}^{-}\right]$needed $=3.2 \times 10^{-3}+18 \times 10^{-4}=5 \times 10^{-3} \mathrm{M}$
$\therefore \quad \mathrm{NaF}$ needed for 100 ml solution $=\frac{5 \times 10^{-3} \times 42}{10}=0.021 \mathrm{~g}$
3. $\mathrm{SrF}_{2} \longrightarrow \mathrm{Sr}^{2+}+\underset{\mathrm{S}}{2 \mathrm{~F}^{-}}$
F^{-}will react with H^{+}to produce HF
$\mathrm{F}^{-}+\mathrm{H}^{+} \rightleftharpoons \mathrm{HF}$
$\mathrm{K}=\frac{1}{\mathrm{~K}_{\mathrm{a}}}=\frac{[\mathrm{HF}]}{\left[\mathrm{H}^{+}\right]\left[\mathrm{F}^{-}\right]}=\frac{7}{10^{-5}}$
$\therefore \quad[\mathrm{HF}]=7 \times 10^{5}\left[\mathrm{~F}^{-}\right]\left[\mathrm{H}^{+}\right] \quad\left(\because\left[\mathrm{H}^{+}\right]=10^{-5} ; \mathrm{pH}=5\right)$

$$
=7 \times 10^{5}\left[\mathrm{~F}^{-}\right] \times 10^{-5}=7\left[\mathrm{~F}^{-}\right]
$$

Here, $\quad\left[\mathrm{F}^{-}\right]+[\mathrm{HF}]=2 \mathrm{~s}$
$\therefore \quad\left[\mathrm{F}^{-}\right]=\frac{\mathrm{s}}{4}$
$\mathrm{K}_{\mathrm{sp}}=\mathrm{s}\left(\frac{\mathrm{s}}{4}\right)^{2}=2.048 \times 10^{-9}$
$\therefore \quad \mathrm{s}=3.2 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$

Comprehension \# 4 :

1. Suppose volume of $\mathrm{HCO}_{3}^{-}=\mathrm{V} \mathrm{mL}$
millimoles of $\mathrm{HCO}_{3}^{-}=5 \mathrm{~V}$
millimoles of $\mathrm{H}_{2} \mathrm{CO}_{3}=20$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}$
$7.40=6.11+\log \frac{V}{4}, \quad V=78 \mathbf{m L}$
2. If CO_{2} escapes, $\left[\mathrm{H}^{+}\right]$decreases, hence pH increases.

Comprehension \# 5 :

1. Phosphoric acid with three ionisable hydrogens ions is a tribasic acid. H -atoms are attached to O -atoms,
2. If first step is only taken
$\mathrm{pH}=\frac{1}{2}\left[\mathrm{pK}_{\mathrm{a}_{1}}-\log \mathrm{c}\right] \mathrm{c}=\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]=0.05 \%$
$=\frac{0.05 \times 10}{98} \mathrm{~mol} \mathrm{~L}^{-1}(\mathrm{M})=5.1 \times 10^{-3} \mathrm{M}$
$-\log \mathrm{c}=2.3, \mathrm{pK}_{\mathrm{a}_{1}}=2.12 \mathrm{pH}=2.21$
$\frac{\left[\mathrm{H}^{+}\right]^{3}\left[\mathrm{PO}_{4}^{3-}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}=\mathrm{K}_{\mathrm{a}_{1}} \mathrm{~K}_{\mathrm{a}_{2}} \mathrm{~K}_{\mathrm{a}_{3}}$
$3 \log \left[\mathrm{H}^{+}\right]+\log \left[\mathrm{PO}_{4}^{3-}\right]$
$=\log \mathrm{K}_{\mathrm{a}_{1}}+\log \mathrm{K}_{\mathrm{a}_{2}}+\log \mathrm{K}_{\mathrm{a}_{3}}-\log \left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]$
$3 \mathrm{pH}-\log \left[\mathrm{PO}_{4}^{3-}\right]=\log \left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]=\mathrm{pK}_{\mathrm{a}_{1}}+\mathrm{pK}_{\mathrm{a}_{2}}+\mathrm{pK}_{\mathrm{a}_{3}}$
$21-\log \left[\mathrm{PO}_{4}^{3-}\right]-3=2.12+7.21+12.32$
$\log \left[\mathrm{PO}_{4}^{3-}\right]=-3.65$
$\left[\mathrm{PO}_{4}^{3-}\right]=2.24 \times 10^{-4} \mathrm{M}$
3. $\mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2} \rightleftharpoons 3 \mathrm{Zn}^{2+}+2 \mathrm{PO}_{4}^{3-}$
$\therefore \quad \mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Zn}^{2+}\right]^{3}\left[\mathrm{PO}_{4}^{3-}\right]^{2}$
$9.1 \times 10^{-33}=\left[\mathrm{Zn}^{2+}\right]^{3}\left(2.2 \times 10^{-4}\right)^{2}$
$\left[\mathrm{Zn}^{2+}\right]^{3}=1.88 \times 10^{-25} \quad\left[\mathrm{Zn}^{2+}\right]=5.73 \times 10^{-9} \mathrm{M}$
EXERCISE - 4

Subjective Type

1.

$\begin{array}{lll}\mathrm{HCI} & \mathrm{H}_{2} \mathrm{SO}_{4} & \mathrm{NaOH}\end{array}$
$\begin{array}{llll}\text { milimole } & 20 & 40 & \frac{2}{40} \times 1000=50 \\ \text { milieq } & 20 & 80 & 50\end{array}$
$\begin{array}{llll}\text { milieq. } & 20 & 80 & 50\end{array}$
remain milieq. of Acid $=50$
$\left[\mathrm{H}^{+}\right]=\frac{50 \times 10^{-3}}{5}=10^{-2} \quad \mathrm{M} \Rightarrow \mathrm{pH}_{1}=2$
Now Total milieq. of Acid $=(50+10 \times 2)=70$
milieq. of $\mathrm{NaOH}=\frac{4 \times 10^{3}}{40}=100$
As milieq of Base is greater than milieq. of Acid so resulting solution is Basic
Remaining milieq. of Base $=30$
$\left[\mathrm{OH}^{-}\right]=\frac{30 \times 10^{3}}{5}=6 \times 10^{-3} \mathrm{M}$

CHEMISTRY FOR JEE MAIN \& ADVANCED

$\mathrm{pOH}=3-\log 6=2.22 \Rightarrow \mathrm{pH}_{2}=11.78$
So change in $\mathrm{pH}=11.78-2=\mathbf{9 . 7 8}$
3. (i) $\mathrm{CH}_{3} \mathrm{COOH}=0.2 \mathrm{M}$
$\left[\mathrm{H}^{+}\right]=\sqrt{\mathrm{K}_{\mathrm{a}} \times \mathrm{C}}=\sqrt{2 \times 10^{-5} \times 0.2}=\sqrt{4 \times 10^{-6}}$
$=2 \times 10^{-3}$
$\mathrm{pH}=3-\log 2=\mathbf{2 . 7}$
$\mathrm{C} \alpha=\left[\mathrm{H}^{+}\right] \Rightarrow \alpha=\frac{2 \times 10^{-3}}{2 \times 10^{-1}} \Rightarrow \alpha=\mathbf{0 . 0 1}$
(ii) $\mathrm{HCI} \longrightarrow \mathrm{H}^{+}+\mathrm{CI}^{-}$
$0.1 \quad 0.1 \quad 0.1$
$\left[\mathrm{H}^{+}\right]=0.1 \quad \mathrm{pH}=1$
$\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$
$0.2 \quad \mathrm{O} \quad 0.1$
$0.2(1-\alpha) \quad 0.2 \alpha \quad 0.1+0.2 \alpha=0.1$
$\mathrm{K}_{\mathrm{a}}=\frac{0.2 \alpha \times 0.1}{0.2}=2 \times 10^{-5} \quad \alpha=2 \times 10^{-4}$
(iii) $\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=0.2 \times 2 \times 10^{-4}=\mathbf{4} \times \mathbf{1 0}^{-5}$
(iv) $\%$ change in $\alpha=\frac{1 \times 10^{-2}-2 \times 10^{-4}}{1 \times 10^{-2}} \times 100$
$=\left|1-\frac{2}{100}\right| \times 100=\mathbf{9 8} \%$
5. $\mathrm{pH}=6$
$\left[\mathrm{H}^{+}\right]=10^{-6}$
$\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{1} \mathrm{~V}_{2}$
$\Rightarrow 10^{-6} \times 1=\mathrm{N}_{2}\left[1+\frac{7}{3}\right] \quad \Rightarrow \quad 10^{-6}=\mathrm{N}_{2} \times \frac{10}{3}$
$\mathrm{N}_{2}=\frac{3}{10} \times 10^{-6} \quad \Rightarrow \mathrm{~N}_{2}=3 \times 10^{-7}$
$\left[\mathrm{H}^{+}\right]<10^{-6}$
So $\left[\mathrm{H}^{+}\right]$of water is also added. as common ion effect on $\mathrm{H}_{2} \mathrm{O}$ is neglected so
$\left[\mathrm{H}^{+}\right]=3 \times 10^{-7}+10^{-7}=4 \times 10^{-7} \mathrm{M}$
$\Rightarrow \mathrm{pH}=7-\log 4=7-0.60=\mathbf{6 . 4}$
6. $\mathrm{HA}+\mathrm{NaOH} \rightarrow \mathrm{NaA}+\mathrm{H}_{2} \mathrm{O} ; \quad$ or
$\mathrm{HA}+\mathrm{OH}^{-} \rightarrow \mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{K}_{\mathrm{eq}}{ }^{-}=10^{9}=\frac{\left[\mathrm{A}^{-}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{[\mathrm{HA}]\left[\mathrm{OH}^{-}\right]}$

Also

$$
\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-} \quad \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

$\therefore \quad \frac{\mathrm{K}_{\mathrm{eq}}}{\mathrm{K}_{\mathrm{a}}}=\frac{1}{\mathrm{~K}_{\mathrm{w}}}$ or $\mathrm{K}_{\mathrm{a}}=10^{9} \times 10^{-14}=10^{-5} \quad$ Thus for
$\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HA}+\mathrm{OH}$
$\left[\mathrm{OH}^{-}\right]=\mathrm{Ch}=\mathrm{C} \sqrt{\frac{\mathrm{K}_{\mathrm{H}}}{\mathrm{C}}}=\sqrt{\frac{\mathrm{K}_{\mathrm{w}} \mathrm{C}}{\mathrm{K}_{\mathrm{a}}}}=\sqrt{\frac{10^{-14} \times 0.1}{10^{-5}}}=10^{-5} \mathrm{M}$
$\therefore \quad\left[\mathrm{H}^{+}\right]=10^{-}$and $\mathrm{pH}=9$
7. $\mathrm{Asc}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HAsc}+\mathrm{OH}^{-}$

$$
\begin{aligned}
& \therefore \quad\left[\mathrm{OH}^{-}\right]=\mathrm{C} \cdot \mathrm{~h}=\mathrm{C} \sqrt{\frac{\mathrm{~K}_{\mathrm{h}}}{\mathrm{C}}}=\sqrt{\mathrm{K}_{\mathrm{h}} \cdot \mathrm{C}}=\sqrt{\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{a}}} \cdot \mathrm{C}} \\
& \quad=\sqrt{\frac{10^{-14} \times 0.02}{5 \times 10^{-5}}}=2 \times 10^{-6}
\end{aligned}
$$

$\therefore \quad\left[\mathrm{H}^{+}\right]=\frac{1 \times 10^{-14}}{2 \times 10^{-6}}=5 \times 10^{-9} \mathrm{M}$
Also $\quad \mathrm{h}=\sqrt{\left[\frac{\mathrm{K}_{\mathrm{h}}}{\mathrm{C}}\right]}=\sqrt{\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}} \times \mathrm{C}}}=\sqrt{\frac{10^{-14}}{5 \times 10^{-5} \times 0.02}}$ $=10^{-4}$ or $\mathbf{0 . 0 1} \%$
9. $\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3}^{+} \mathrm{O}+\mathrm{A}^{-}$

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=\frac{\mathrm{C}^{2} \alpha^{2}}{\mathrm{C}(1-\alpha)}
$$

with in an error of $10 \% \quad \mathrm{C}(1-\alpha)$ or $\mathrm{C}-\mathrm{C} \alpha=0.90 \mathrm{C}$. or $\mathrm{C} \alpha=0.10 \mathrm{C}$.

$$
\mathrm{K}_{\mathrm{a}}=\frac{(0.10 \mathrm{C})^{2}}{0.90 \mathrm{C}}=\frac{\mathrm{C}}{90} \quad \text { or } \quad \mathrm{C}=\mathbf{9 0} \mathbf{K}_{\mathrm{a}} .
$$

10. Let a mole of $\mathrm{Ca}(\mathrm{OH})_{2}$ be dissoved in 250 mL solution to have $\mathrm{pH}=10.65$.

$$
\begin{array}{r}
{\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]=\frac{\mathrm{a} \times 1000}{250}=4 \mathrm{a} \mathrm{M}} \\
\mathrm{Ca}(\mathrm{OH})_{2} \longrightarrow \mathrm{Ca}^{2+}+2 \mathrm{OH}^{-}
\end{array}
$$

Complete ionization
Initial moles 4a $0 \quad 0$
Final moles $0 \quad 4 \mathrm{a} \quad 2 \times 4 \mathrm{aM}$
$\therefore \quad\left[\mathrm{OH}^{-}\right]=8 \mathrm{a} \mathrm{M}$
$\left[\mathrm{H}^{+}\right]=\frac{10^{-14}}{8 \mathrm{a}} \quad \Rightarrow \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$\therefore \quad 10.65=-\log \frac{10^{-14}}{8 \mathrm{a}} \Rightarrow \frac{10^{-14}}{8 \mathrm{a}}=2.238 \times 10^{-11}$.
$\therefore \quad \mathrm{a}=\mathbf{5 . 5 8} \times \mathbf{1 0}^{-5}$ mole.
11. $\mathrm{K}_{\mathrm{a}}=\frac{\mathrm{C} \alpha^{2}}{1-\alpha}$
$40 \alpha^{2}+\alpha-1=0$
$\alpha=0.146$
$\left[\mathrm{H}^{+}\right]=\mathrm{C} \alpha=1.75 \times 10^{-3} \mathrm{M}$
$\mathrm{pH}=\mathbf{2 . 7 6}$
12. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{3}^{+}+\mathrm{OH}^{-}$ base acid

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{b}}=\frac{\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{3}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}\right]}=\frac{\mathrm{c} \alpha . \mathrm{c} \alpha}{\mathrm{c}(1-\alpha)}=\frac{\mathrm{c} \alpha^{2}}{(1-\alpha)} \\
& 5.4 \times 10^{-4}=0.02 \times \alpha^{2} . \\
\therefore \quad & \alpha=0.164 .
\end{aligned}
$$

Since $\quad \alpha>0.1$, we will use $K_{b}=\frac{c \alpha^{2}}{(1-\alpha)} \quad$ or

$$
5.4 \times 10^{-4}=\frac{0.02 \times \alpha^{2}}{(1-\alpha)}
$$

Now $\quad \alpha=0.151$
In presence of NaOH , the dissociation of diethylamine will decrease due to common ion effect. Thus $0.1+\mathrm{ca}=0.1+\mathrm{c} \alpha \simeq$ and $0.1 \&(1-\alpha) \simeq 1$

Thus $\quad \mathrm{K}_{\mathrm{b}}=5.4 \times 10^{-4}=\frac{\mathrm{c} \alpha \times(0.1+\mathrm{c} \alpha)}{\mathrm{c}(1-\alpha)}=\alpha \times 0.1$.
or $\quad \alpha=5.4 \times 10^{-3}=\mathbf{0 . 0 0 5 4}$.
13.

Always calculate a first by $\mathrm{K}_{\mathrm{b}}=\mathrm{c} \alpha^{2}$, if $\alpha>10 \%$ then use again.

$$
\mathrm{K}=\frac{\mathrm{c} \alpha^{2}}{(1-\alpha)}
$$

(a) If H^{+}are already present (due to HCl)

$\mathrm{CH}_{3} \mathrm{COOH}$	$\rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}$	+
1	0	H^{+}
$\mathrm{c}(1-\alpha)$	$\mathrm{c} \alpha$	0.01
		$[0.01+\mathrm{c} \alpha]$.

$$
\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=\frac{\mathrm{c} \alpha \times(0.01+\mathrm{c} \alpha)}{\mathrm{c}(1-\alpha)}
$$

Since prsence of H^{+}will favour the reverse reaction or α will decrease.
i.e., $\quad 0.01+c \alpha=0.01$ and $1-\alpha=1$
(due to common ion effect).
$\therefore \quad 1.82 \times 10^{-5}=\frac{0.05 \times \alpha \times 0.01}{0.05}$.
$\therefore \quad \alpha=1.82 \times 10^{-3}=\mathbf{0 . 0 0 1 8}$.
(b) Similarly solve for 0.1 M HCl
$\alpha=0.00018$.
14. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N} \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}+\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$
$\mathrm{K}_{\mathrm{n}}=\frac{\mathrm{K}_{\mathrm{a}} \mathrm{K}_{\mathrm{b}}}{\mathrm{K}_{\mathrm{w}}}=2.34 \times 10^{-5}$
K_{n} being small and thus neutralisation does not proceed very far towards completion.
$\begin{array}{lcccc}\text { 15. } & \mathrm{HCOONa} & +\mathrm{HCl} & \rightleftharpoons & \mathrm{HCOOH}+\mathrm{NaCl} \\ \text { Initially } \mathrm{mM} & 6.25 & 0.25 & 0 & 0 \\ \text { Finally } \mathrm{mM} & 6 & 0 & 0.25 & 0.25\end{array}$
$\therefore \mathrm{pH}=3.75+\log \frac{6}{0.25}=3.75+\log 24=5.13$
Also $\quad[\mathrm{HCOOH}]=\frac{0.25}{60}=\mathbf{4 . 1 7} \times \mathbf{1 0}^{-\mathbf{3}} \mathbf{M}$
16. $\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$
$\begin{array}{llll} & \mathrm{HA} \rightleftharpoons & \mathrm{H} & \mathrm{A} \\ \mathrm{t}=0 & 0.2 & & 0.1 \\ \mathrm{t}_{\text {eq. }} & 0.2-\mathrm{x} & \mathrm{x} & 0.1+\mathrm{x}\end{array}$
$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=\frac{\mathrm{x}(0.1+\mathrm{x})}{(0.2-\mathrm{x})}$
$\Rightarrow 0.05=\frac{\mathrm{x}^{2}+0.1 \mathrm{x}}{0.2-\mathrm{x}}$
$\Rightarrow 0.01-0.05 \mathrm{x}=\mathrm{x}^{2}+0.1 \mathrm{x}$
$x^{2}+0.15 x-0.01=0$
$\mathrm{x}=\mathbf{0 . 0 5} \mathrm{M}$
17. Given, $\frac{\text { wt. of } \mathrm{NH}_{3}}{\text { wt. of solution }}=\frac{10}{100}$
$\therefore \quad 100 \mathrm{~g}$ dsolution contains $10 \mathrm{~g} \mathrm{NH}_{3}$
$\therefore \quad \mathrm{M}_{\mathrm{NH}_{3}}=(10 \times 1000) /[17 \times(100 / 0.99)]$
$\left(\therefore V^{3}=\right.$ mass $/$ density $)$
$\begin{array}{lccc}\text { Now } \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4} \mathrm{OH} & \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \\ \text {Before dissociation } & 1 & 0 & 0 \\ \text { After dissociation } & (1-\alpha) & \alpha & \alpha\end{array}$

$$
\begin{array}{ll}
\therefore & \quad\left[\mathrm{OH}^{-}\right]=\mathrm{C} . \alpha=\mathrm{C} \sqrt{\left(\mathrm{~K}_{\mathrm{b}} / \mathrm{C}\right)}=\sqrt{\left(\mathrm{K}_{\mathrm{b}} . \mathrm{C}\right)} \\
& {\left[\therefore \mathrm{C}=5.82 \mathrm{M} \text { and } \mathrm{K}_{\mathrm{b}}=\mathrm{k}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a}}=10^{-14} /\left(5 \times 10^{-10}\right)\right.} \\
& \left.=2 \times 10^{-5}\right] \\
\therefore & {\left[\mathrm{OH}^{-}\right]=\sqrt{\left[2 \times 10^{-5} \times 5.82\right]}=\mathbf{1 . 0 7} \times \mathbf{1 0}^{-2} \mathbf{M}} \\
\therefore & {\left[\mathrm{H}^{+}\right]=10^{-14} / 1.07 \times 10^{-2}} \\
& \\
\therefore & \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log 0.9268 \times 10^{-12} \mathbf{~ M} \\
\therefore & \mathbf{1 2 . 0 3 3 0}
\end{array}
$$

18. Dissociation of $\mathrm{H}_{2} \mathrm{~S}$ can be represented as
(a) $\mathrm{H}_{2} \mathrm{~S} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HS}^{-}$
(b) $\mathrm{HS}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{S}^{2-}$

From the first ionisation of $\mathrm{H}_{2} \mathrm{~S}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HS}^{-1}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]}=\mathrm{K}_{\mathrm{a}_{1}}$
Since $\mathrm{H}_{2} \mathrm{~S}$ is weakly ionised and its ionisation is further decreased in presence of highly ionised HCl , concentration of H^{+}in solution will be mainly due to HCl . Thus $\left[\mathrm{H}^{+}\right]=0.2 \mathrm{M}$.
Substituting the value in the above reaction

$$
\frac{0.2\left[\mathrm{HS}^{-}\right]}{0.1}=1 \times 10^{-7}
$$

$\left[\mathrm{HS}^{-}\right]=5 \times 10^{-8} \mathrm{M}$
From the second ionisation of $\mathrm{H}_{2} \mathrm{~S}$,

$$
\begin{aligned}
& \frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{S}^{2-}\right]}{\left[\mathrm{HS}^{-}\right]}=\mathrm{Ka}_{2} \text { or } \frac{0.2 \times\left[\mathrm{S}^{2-}\right]}{5 \times 10^{-8}}=1.3 \times 10^{-13} \\
& {\left[\mathrm{~S}^{2-}\right]=3.25 \times 10^{-20} \mathrm{M}}
\end{aligned}
$$

19. $\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$
$c(1-\alpha) \quad c \alpha \quad c \alpha$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\mathrm{c} \alpha}{\mathrm{c}(1-\alpha)}$
$\Rightarrow \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{\alpha}{1-\alpha}\right)=\mathrm{pK}_{\mathrm{a}}-\log \left(\frac{1-\alpha}{\alpha}\right)$
$\Rightarrow \log \left(\frac{1-\alpha}{\alpha}\right)=\mathrm{pK}_{\mathrm{a}}-\mathrm{pH}$.
$\Rightarrow\left(\frac{1-\alpha}{\alpha}\right)=10^{\left(\mathrm{pK}_{\mathrm{a}}-\mathrm{pH}\right)}$
$\Rightarrow \quad \alpha=\frac{1}{1+10^{\left(\mathrm{pK}_{\mathrm{a}}-\mathrm{pH}\right)}}$
20. $\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$
$\mathrm{c}-\mathrm{x} \quad \mathrm{x} \quad \mathrm{x}$
$\left[\mathrm{H}^{+}\right]=\mathrm{x}=1.5 \times 10^{-3} \mathrm{M}$
$K_{a}=\frac{x^{2}}{c-x}$
$2.5 \times 10^{-3}=\frac{\left(1.5 \times 10^{-3}\right)^{2}}{\mathrm{c}-1.5 \times 10^{-3}}$.
$\mathrm{c}=2.4 \times 10^{-3} \mathrm{M}$.
21. $\mathrm{B}_{2} \mathrm{H}_{6}+6 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{H}_{3} \mathrm{BO}_{3}+6 \mathrm{H}_{2}$.
concentration $\mathrm{H}_{3} \mathrm{BO}_{3}=\mathrm{c}=2 \times \frac{1}{27.6} \times \frac{1000}{100}=0.725$
$\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$
$\left[\mathrm{H}^{+}\right]=\sqrt{\mathrm{K}_{\mathrm{a}} \mathrm{c}}=\sqrt{7.3 \times 10^{-10} \times 0.725}=2.3 \times 10^{-5}$.
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=4.64$.
22. meq. of $\mathrm{H}^{+}=10 \times 0.1+40 \times 0.2 \times 2=17$.
$\left[\mathrm{H}^{+}\right]=\frac{17}{50}=0.34$.
$\mathrm{pH}=\mathbf{0 . 4 7}$
23. $\left[\mathrm{H}^{+}\right]=\frac{10-9.9}{109.9}=\frac{0.1}{109.9}=9.1 \times 10^{-4}$
$\mathrm{pH}=4.0-\log 9.1=\mathbf{3 . 0 4}$
24. $\mathrm{pV}=\mathrm{nRT}$

$$
\begin{aligned}
& \mathrm{n}=\frac{(740-23.7)}{760} \times 100 \times \frac{1}{0.0821 \times 298} \times 10^{-3} \\
& =3.85 \times 10^{-3} \mathrm{M} \\
& {[\mathrm{HCl}]=3.85 \times 10^{-3} \mathrm{M}=\left[\mathrm{H}^{+}\right] .} \\
& \mathrm{pH}=3-\log 3.85=\mathbf{2 . 4 1}
\end{aligned}
$$

25.

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}+\mathrm{OH}^{-}
$$

Thus, $\quad \mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\right]}$

$$
\frac{10^{-14}}{2.4 \times 10^{-5}}=\frac{10^{-8} \times\left[\mathrm{OH}^{-}\right]}{0.24}
$$

$\therefore \quad\left[\mathrm{OH}^{-}\right]=10^{-2} \mathrm{M}$
26. pH of Final Solution $=1$

$$
\begin{aligned}
& \mathrm{pH}=1 \\
& {\left[\mathrm{H}^{+}\right]=10^{-1}}
\end{aligned}
$$

Initial $\rightarrow M=\frac{P \times d \times 10}{M . W}=\frac{36.5 \times 10 \times 1.25}{36.5} \quad M=12.5$
$\mathrm{N}_{1} \mathrm{~V}_{1} \quad=\mathrm{N}_{2} \mathrm{~V}_{2} \quad \Rightarrow 12.5 \times \mathrm{V}_{1} \quad=10^{-1} \times 2.5$
$\mathrm{V}_{1}=\frac{2.5}{125} \quad \mathrm{~V}_{1}=.02$ lit $\quad=20 \mathrm{ml}$
27. $\mathrm{H}_{3} \mathrm{PO}_{4} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}^{+}$.
$0.1-x \quad x-y \quad x+y+z$.
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \rightleftharpoons \mathrm{HPO}_{4}^{2-}+\mathrm{H}^{+}$.
$x-y \quad y-z \quad y+x+z$.
$\mathrm{HPO}_{4}^{2-} \rightleftharpoons \mathrm{PO}_{4}^{2-}+\mathrm{H}^{+}$.
$y-z \quad z \quad x+y+z$.
$K_{a 1}=\frac{(x-y)(x+y+z)}{0.1-x}=\frac{x^{2}}{0.1-x}$
$(y+z$ are very small compared to $x)$
$7.5 \times 10^{-3}=\frac{x^{2}}{0.1-x} \Rightarrow x=0.024 M$
$K_{a 2}=\frac{(y-z)(x+y+z)}{x-y}=\frac{y \cdot x}{x}=y$.
$y=6.2 \times 10^{-8}$
$K_{a 3}=\frac{z(x+y+z)}{y-z}=\frac{z \cdot x}{y}$.
$\mathrm{z}=\mathrm{K}_{\mathrm{a} 3} \cdot \frac{\mathrm{y}}{\mathrm{x}} \cdot=9.3 \times 10^{-19} \mathrm{M}$
$\therefore\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]=0.1-\mathrm{x}=0.076 \mathrm{M}$
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]=\mathrm{x}=0.024 \mathrm{M}$
$\left[\mathrm{HPO}_{4}^{2-}\right]=6.2 \times 10^{-8} \mathrm{M}$
$\left[\mathrm{PO}_{4}^{3-}\right]=\mathrm{z}=9.3 \times 10^{-19} \mathrm{M}$
$\left[\mathrm{OH}^{-}\right]=\frac{\mathrm{K}_{\mathrm{W}}}{\left[\mathrm{H}^{+}\right]}=4.17 \times 10^{-13} \mathrm{M}$
28. $\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$

Co $-x \quad x+y \quad x$
$\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \underset{\substack{\mathrm{H}+\mathrm{y}} \underset{\mathrm{y}}{+}+\mathrm{OH}^{-}}{\mathrm{H}^{+}}$
$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right] \mathrm{x}}{\mathrm{c}_{0}-\mathrm{x}}, \quad\left[\mathrm{H}^{+}\right] \mathrm{y}=10^{-14}=\mathrm{K}_{\mathrm{w}}$
Where $\left[\mathrm{H}^{+}\right]=\mathrm{x}+\mathrm{y}$.
$y=\frac{\mathrm{K}_{\mathrm{W}}}{\left[\mathrm{H}^{+}\right]}, \mathrm{x}=\frac{\mathrm{K}_{\mathrm{a}} \mathrm{c}_{0}}{\mathrm{~K}_{\mathrm{a}}+\left[\mathrm{H}^{+}\right]}$.
$\left[\mathrm{H}^{+}\right]=x+y=\frac{\mathrm{K}_{\mathrm{W}}}{\left[\mathrm{H}^{+}\right]}+\frac{\mathrm{K}_{\mathrm{a}} \mathrm{c}_{0}}{\mathrm{~K}_{\mathrm{a}}+\left[\mathrm{H}^{+}\right]}$.
$10^{-3}=10^{-11}+\frac{0.1 \mathrm{~K}_{\mathrm{a}}}{\mathrm{K}_{\mathrm{a}}+10^{-3}}$
$\mathrm{K}_{\mathrm{a}}+10^{-3}=100 \mathrm{~K}_{\mathrm{a}}$
$\mathrm{K}_{\mathrm{a}}=\frac{10^{-3}}{99} \approx 10^{-5} .24$
29. $\mathrm{HCI} \longrightarrow \mathrm{H}^{+}+\mathrm{CI}^{-}$
$0.01 \quad 0.01 \quad 0.01$

$\mathrm{CHCI}_{2} \mathrm{COOH}$	$\mathrm{CHCI}_{2} \mathrm{COO}^{-}+$	H^{+}
0.01	0	0.01
$0.01(1-\alpha)$	0.01α	$0.01+0.01 \alpha$

$$
\mathrm{K}_{\mathrm{a}}=\frac{0.01 \alpha[0.01+0.01 \alpha]}{0.01(1-\alpha)}=2 \times 10^{-2}
$$

$0.01 \alpha^{2}+0.01 \alpha=2 \times 10^{-2}$
$10^{-2} \alpha^{2}+10^{-2} \alpha=2 \times 10^{-2}$
$\alpha^{2}+\alpha-2=0$
$\alpha=\frac{-2 \pm \sqrt{1+8}}{2}=\frac{-2+3}{2} \Rightarrow \alpha=0.56$
$\left[\mathrm{H}^{+}\right]=10^{-2}+10^{-2} \times 0.56=\mathbf{1 . 5 6} \times \mathbf{1 0}^{-2} \mathbf{M}$
$\left[\mathrm{CHCl}_{2} \mathrm{COO}^{-}\right]=0.01 \alpha=\mathbf{5 . 6}^{\mathbf{1}} \mathbf{1 0}^{-\mathbf{3}} \mathbf{M}$
30. pH of $\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right) \quad \mathrm{C}=0.5 \times 10^{-3}$

$$
\mathrm{pH}=7+\frac{1}{2} \mathrm{pK}_{\mathrm{a} 2}+\frac{1}{2} \log \mathrm{C}
$$

Here $\quad \mathrm{pK}_{\mathrm{a} 2}=[6-\log 5]$

$$
\begin{aligned}
\mathrm{pH} & =7+\frac{1}{2}[6-\log 5]+\frac{1}{2}\left[\log 5 \times 10^{-4}\right] \\
& =7+\frac{1}{2}[6-\log 5]+\frac{1}{2}[\log 5-4]=8
\end{aligned}
$$

$\left[\mathrm{H}^{+}\right]=10^{-8} \quad$ So $\quad\left[\mathrm{OH}^{-}\right]=\mathbf{1 0}^{-6} \mathbf{M}$
31. $\mathrm{AlCI}_{3} \quad \mathrm{C}=0.15 \mathrm{M} \quad\left(\mathrm{AlCI}_{3}\right.$ is SAWB$)$
$\left[\mathrm{A} \ell\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left[\mathrm{A} \ell\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}\right]^{2+}+\mathrm{H}_{3} \mathrm{O}^{+}$
$\begin{array}{lllll}\text { At } \mathrm{t}=0 & 0.15 & - & \mathrm{O} & \mathrm{O}\end{array}$
At $\mathrm{t}=\mathrm{t}_{\mathrm{eq}} \quad 0.15 \quad(1-\alpha) \quad 0.15 \alpha \quad 0.15 \alpha$
$\mathrm{K}_{\mathrm{a}}=1.5 \times 10^{-5}$
$\mathrm{K}_{\mathrm{a}}=\frac{0.15 \alpha \times 0.15 \alpha}{0.15[1-\alpha]}=1.5 \times 10^{-5}$
$\Rightarrow \quad 1.5 \times 10^{-1} \alpha^{2}=1.5 \times 10^{-5}$
$\Rightarrow \quad \alpha^{2}=10^{-4}$
$\Rightarrow \alpha=10^{-2}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.15 \times 10^{-2}=1.5 \times 10^{-3} \mathrm{M}$
$\Rightarrow \mathrm{pH}=3-\log 1.5=3-0.18=2.82$
32. $\mathrm{HCI} \longrightarrow \mathrm{H}^{+}+\mathrm{CI}^{-}$
$0.1 \quad 0.1 \quad 0.1$
$\mathrm{H}_{2} \mathrm{~S} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{S}^{2-}$
$0.1 \quad 0.1 \quad 0$
$0.1-\mathrm{x} \quad 0.1+2 \mathrm{x} \quad \mathrm{x}$
≈ 0.1
$\mathrm{K}_{\mathrm{a}}=1.1 \times 10^{-22}=\frac{\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{~S}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]}$
$\left[\mathrm{S}^{-2}\right]=1.1 \times 10^{-21} \mathrm{M}$
33. $\mathrm{HSac} \rightleftharpoons \mathrm{H}^{+}+\mathrm{Sac}$
$\frac{0.002 \times 10^{3}}{250} \quad 10^{-2} \quad 0$
$8 \times 10^{-3} \quad 10^{-2} \quad 0$
$8 \times 10^{-3}(1-\alpha) \quad 10^{-2} \quad 8 \times 10^{-3} \alpha$
$\mathrm{K}_{\mathrm{a}}=\frac{10^{-2}\left[8 \times 10^{-3} \alpha\right]}{8 \times 10^{-3}(1-\alpha)}=2 \times 10^{-12} \Rightarrow \alpha=2 \times 10^{-10}$
$\left[\right.$ Sac $\left.^{-}\right]=8 \times 10^{-3} \times 2 \times 10^{-10}=16 \times 10^{-13}=1.6 \times 10^{-12} \mathrm{M}$
34. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ (Phenol) \longrightarrow Weak acid $\mathrm{K}_{\mathrm{a}}=1 \times 10^{-10}$ $\underset{\mathrm{C}}{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}} \rightleftharpoons \begin{gathered}\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-} \\ 0\end{gathered}+\begin{gathered}\mathrm{H}^{+} \\ 0\end{gathered}$
$\mathrm{C}-\mathrm{C} \alpha \quad \mathrm{C} \alpha \quad \mathrm{C} \alpha$
$\mathrm{K}_{\mathrm{a}}=\mathrm{C} \alpha^{2}=1 \times 10^{-10}$
$\alpha=\sqrt{\frac{1 \times 10^{-10}}{0.05}}=\sqrt{20 \times 10^{-10}} \quad \alpha=4.47 \times 10^{-5}$
$\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}\right]=4.47 \times 10^{-5} \times 0.05 \quad=2.42 \times 10^{-6}$
$\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ONa}\right]=0.01 \mathrm{M}$
$\begin{array}{ll}\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ONa} \longrightarrow & \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}- \\ 0.01 & \mathrm{Na}^{+} \\ 0.01 & 0.01 \\ \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH} & \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}+ \\ 0.05 & \mathrm{H}^{+} \\ 0.05(1-\alpha) & 0.01 \\ \mathrm{O} \\ 0.01 & 0.05 \alpha\end{array}$

$$
\frac{[0.05 \alpha] 0.01}{0.05}=1 \times 10^{-10} \quad \alpha=10^{-8}
$$

36. $\mathrm{H}_{3} \mathrm{PO}_{4}=\frac{0.98}{98}=10^{-2}$ Mole
$\Rightarrow\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]=\frac{10^{-2}}{100} \times 10^{3}=0.1 \mathrm{M}$
$\mathrm{pH}=5 \quad\left[\mathrm{H}^{+}\right]=10^{-5}$
$\mathrm{H}_{3} \mathrm{PO}_{4} \& \mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a} 1}+\log \frac{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}$
$\Rightarrow 5=3+\log \frac{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]} \quad \Rightarrow 10^{2}=\frac{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}$
$\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]=10^{2}\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right] \Rightarrow$ But $\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]+\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]=0.1$
$\mathrm{H}_{3} \mathrm{PO}_{4}+10^{2}\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]=0.1 \Rightarrow\left[1+10^{2}\right]\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]=0.1$
$\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]=\mathbf{1 0}^{-3} \mathbf{M} \quad \Rightarrow \quad\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]=0.1 \mathrm{M}$
For $\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \& \mathrm{HPO}_{4}^{2-} \Rightarrow \mathrm{pH}=\mathrm{pK}_{\mathrm{a} 2}+\log \frac{\left[\mathrm{HPO}_{4}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{1}\right]}$
$5=8+\log \frac{\left[\mathrm{HPO}_{4}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-1}\right]} \Rightarrow-3=\log \frac{\left[\mathrm{HPO}_{4}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{1}\right]}$
$\frac{\left[\mathrm{HPO}_{4}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{1}\right]}=10^{-3} \Rightarrow\left[\mathrm{H} \mathrm{PO}_{4}^{2-}\right]=10^{-3}\left[\mathrm{H}_{2} \mathrm{PO}_{2}^{-}\right]$
$\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]+\left[\mathrm{HPO}_{4}^{2-}\right]=0.1 \Rightarrow\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]+10^{-3}\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]$ $=0.1$
$\left[1+10^{-3}\right]\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]=0.1 \quad \Rightarrow \quad\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]=\mathbf{0 . 1} \mathbf{~ M} \Rightarrow$ $\left[\mathrm{HPO}_{4}{ }^{2-}\right]=\mathbf{1 0}^{-4} \mathbf{M}$

Again
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a} 3}+\log \frac{\left[\mathrm{PO}_{4}^{-3}\right]}{\left[\mathrm{HPO}_{4}^{-2}\right]} \Rightarrow 5=12+\log \frac{\left[\mathrm{PO}_{4}^{-3}\right]}{\left[\mathrm{HPO}_{4}^{-2}\right]}$
$10^{-7}=\frac{\left[\mathrm{PO}_{4}^{-3}\right]}{\left[\mathrm{HPO}_{4}^{-2}\right]} \quad \Rightarrow\left[\mathrm{PO}_{4}^{-3}\right]=10^{-7}\left[\mathrm{H} \mathrm{PO}_{4}^{-2}\right]$
$\left[\mathrm{H} \mathrm{PO}_{4}^{-2}\right]+\left[\mathrm{PO}_{4}^{-3}\right]=10^{-4} \Rightarrow\left[1+10^{-7}\right]\left[\mathrm{HPO}_{4}^{-2}\right]=10^{-4}$
$\left[\mathrm{PO}_{4}^{-3}\right]=10^{-7} \Rightarrow\left[\mathrm{H} \mathrm{PO}_{4}^{-2}\right]=\mathbf{1 0}^{-11} \mathbf{M}$
37. (a) At eq. point

No. of milieq. of Base $=$ No. of milieq. of HCI

$$
\frac{0.252 \times 1000}{\text { Molarmass }}=0.14 \times 40
$$

\therefore Molar mass of base $=\mathbf{4 5}$
(b) $\mathrm{BOH}+\mathrm{HCI} \longrightarrow \mathrm{BCI}+\mathrm{H}_{2} \mathrm{O}$

$\mathrm{t}=0$	5.6	0.14×20		
	5.6	2.8	0	0
	2.8	0	2.8	

Basic buffer

$$
\mathrm{pH}=10.7 \quad \text { So } \mathrm{pOH}=3.3
$$

$\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}=3.3$
$\mathrm{K}_{\mathrm{b}}=$ Anti $\log (-3.3)=$ Anti $\log (1-0.3) \times 10^{-4}=\mathbf{5} \times \mathbf{1 0}^{-4}$
38. $\mathrm{K}_{\mathrm{b}}\left(\mathrm{NH}_{3}\right)=1.8 \times 10^{-5}$

$$
\begin{array}{r}
\mathrm{CH}_{3} \mathrm{COOCH}_{3}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \longrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq}) \\
+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{OH}(\mathrm{aq})
\end{array}
$$

$\left[\mathrm{NH}_{4}^{+}\right]_{0}=0.1 \mathrm{M},\left[\mathrm{NH}_{3}\right]=0.06 \mathrm{M},\left[\mathrm{CH}_{3} \mathrm{COOCH}_{3}\right]_{0}=0.02 \mathrm{M}$

$$
(\mathrm{pOH})_{\mathrm{final}}=4.74+\log \frac{0.12}{0.04}=4.74+\log \left(\frac{0.12}{0.04}\right)
$$

$$
=4.74+\log 3=4.74+0.48=5.22
$$

$$
\therefore \quad(\mathrm{pH})_{\text {final }}=\mathbf{8 . 7 8}
$$

$$
\Delta \mathrm{pH}=9.04-8.78=0.26
$$

Yes this is satisfactory buffer.
40. Let V mL of $\mathrm{NH}_{4} \mathrm{OH}$ be mixed with $\mathrm{NH}_{4} \mathrm{Cl}$ to have a buffer of pH 8.65 .
The total volume after mixing becomes $(\mathrm{V}+30) \mathrm{mL}$. m mole of $\mathrm{NH}_{4} \mathrm{OH}=0.3 \times \mathrm{V}$
$\therefore\left[\mathrm{NH}_{4} \mathrm{OH}\right]=\frac{0.3 \times \mathrm{V}}{(\mathrm{V}+30)}$
m mole of $\mathrm{NH}_{4} \mathrm{Cl}=0.2 \times 30$
$\therefore \quad\left[\mathrm{NH}_{4} \mathrm{Cl}\right]=\frac{0.2 \times 30}{(\mathrm{~V}+30)}$
Also pOH of buffer mixture is given by :

$$
\begin{gathered}
\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \frac{[\text { Salt }]}{[\text { Base }]} \text { or } \\
14-8.65=4.74+\log \frac{(0.2 \times 30) /(\mathrm{V}+30)}{(0.3 \times \mathrm{V}) /(\mathrm{V}+30)}(\mathrm{pOH}=14-\mathrm{pH}) .
\end{gathered}
$$

$$
0.6=\log \frac{6}{0.3 \mathrm{~V}}
$$

$\therefore \mathrm{V}=\mathbf{5} \mathbf{m L}$.
Similarly calculate
$\left(14-10=4.74+\log \frac{0.2 \times 30 /\left(\mathrm{V}_{1}+30\right)}{0.3 \times \mathrm{V}_{1} /\left(\mathrm{V}_{1}+30\right)}\right)$ for $\mathrm{pH}=10 ;$
$\mathrm{V}=\mathbf{1 1 1 . 1 1 \mathrm { mL } .}$

$$
\begin{aligned}
& \mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \frac{\left[\mathrm{NH}_{4}^{+}\right]}{\left[\mathrm{NH}_{3}\right]}=4.74+\log \left(\frac{0.1}{0.06}\right) \\
& (\mathrm{pOH})_{\text {initial }}=4.74+0.22=4.96 \quad \therefore \quad(\mathrm{pH})_{\text {initial }}=\mathbf{9 . 0 4} \\
& \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \longrightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq}) \\
& \begin{array}{llll}
0.06 & 0.02 & 0.1 & \text { mole } \\
0.04 & - & 0.12 & \text { mole }
\end{array}
\end{aligned}
$$

41. Initial pH of solution when,

$$
\begin{aligned}
& {\left[\mathrm{NH}_{3}\right]=\frac{0.1}{1} \quad \text { and } \quad\left[\mathrm{NH}_{4} \mathrm{CI}\right]=\frac{0.1}{1}} \\
& \mathrm{pOH}=-\log 1.8 \times 10^{-5}+\log \frac{[\text { Salt }]}{[\text { Base }]} \\
& \quad=-\log 1.8 \times 10^{-5}+\log \frac{0.1}{0.1}=4.74 \\
& \therefore \quad \mathrm{pH}=\mathbf{9 . 2 6}
\end{aligned}
$$

(i) Now 0.02 mole of HCI are added then

	$\mathrm{HCI}+\mathrm{NH}_{4} \mathrm{OH} \longrightarrow \mathrm{NH}_{4} \mathrm{CI}+\mathrm{H}_{2} \mathrm{O}$		
Mole before reaction	0.02	0.1	0.1
Mole after	0	0.08	$(0.1+0.02)$

$\therefore \quad$ Volume $=1$ litre
$\therefore \quad\left[\mathrm{NH}_{4} \mathrm{OH}\right]=\frac{0.08}{1} \quad$ and $\quad\left[\mathrm{NH}_{4} \mathrm{CI}\right]=\frac{0.12}{1}$
$\therefore \quad \mathrm{pOH}_{1}=-\log 1.8 \times 10^{-5}+\log \frac{0.12}{0.08}=4.92$
$\therefore \quad \mathrm{pH}_{1}=\mathbf{9 . 0 8}$
Change in $\mathrm{pH}=\mathrm{pH}-\mathrm{pH}_{1}=9.26-9.08=+0.18$
$\therefore \quad$ Change in $\mathrm{pH}=\mathbf{0 . 1 8}$ and pH decreases
(ii) Now 0.02 mole of NaOH are added

	$\mathrm{NaOH}+\mathrm{NH}_{4} \mathrm{CI} \longrightarrow$		$\mathrm{NaCI}+\mathrm{NH}_{4} \mathrm{OH}$	
Mole before reaction	0.02	0.1	0	0.1
Mole after reaction	0	0.08	0.02	0.12

$\therefore \quad \mathrm{pOH}_{2}=-\log 1.8 \times 10^{-5}+\log \frac{0.08}{0.12}=4.57$
$\therefore \quad \mathrm{pH}_{2}=\mathbf{9 . 4 3}$
Change in $\mathrm{pH}=\mathrm{pH}-\mathrm{pH} 2=9.26-9.43=-0.18$
$\therefore \quad$ Change in $\mathrm{pH}=\mathbf{0 . 1 8}$ unit i.e., pH increases.
42. Let V mL of 0.1 M HCOONa be mixed to 50 mL of 0.05 M HCOOH.
$\therefore \quad$ In mixture $[\mathrm{HCOONa}]=\frac{0.1 \times \mathrm{V}}{(\mathrm{V}+50)}$

$$
\begin{array}{ll}
& {[\mathrm{HCOOH}]=\frac{50 \times 0.05}{\mathrm{~V}+50}} \\
\therefore \quad & \mathrm{pH}=-\log \mathrm{K}_{\mathrm{a}}+\log \frac{[\text { Salt }]}{[\text { Acid }]} \\
\therefore & 4.0=3.7+\log \frac{(0.1 \times \mathrm{V}) /(\mathrm{V}+50)}{2.5 /(\mathrm{V}+50)} \\
\therefore \quad & \mathrm{V}=\mathbf{5 0} \mathbf{~ m L}
\end{array}
$$

43. We know, $\mathrm{pOH}=-\log \mathrm{K}_{\mathrm{b}}+\log \frac{[\text { Salt }]}{[\text { Base }]}$

$$
\begin{aligned}
& 5=4.7+\log \frac{a}{b} \\
& \frac{a}{b}=2
\end{aligned} \quad \therefore \quad a=2 b
$$

$$
\begin{array}{ll}
\text { Given } & \begin{array}{l}
a+b=0.6 \\
\\
\\
\\
2 b+b=0.6 \\
\therefore
\end{array} \\
3 b=0.6
\end{array}
$$

$$
\text { or } b=0.2 \text { mole } \quad \text { or } \quad 0.2 \times 17=3.4 \mathrm{~g} / \mathrm{L}
$$

$$
\therefore \quad \mathrm{a}=0.4 \text { mole } \quad \text { or } \quad 0.4 \times 53.5=21.4 \mathrm{~g} / \mathrm{L}
$$

$$
\text { Thus, } \quad[\text { Salt }]=0.4 \mathbf{M} \quad \text { and } \quad[\text { Base }]=0.2 \mathbf{M}
$$

44. m . mole of $\mathrm{CO}_{3}^{2-}=\frac{31.8}{106} \times 1000=300$
m . mole of $\mathrm{H}^{+}=150 \times 1=150$

$\mathrm{t}=0$ | $\mathrm{CO}_{3}{ }^{2-}$ | $+\mathrm{H}^{+} \longrightarrow \mathrm{HCO}_{3}^{-}$ | |
| :---: | :---: | :---: |
| 300 | 150 | |
| 150 | - | 150 |

so $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{CO}_{3}{ }^{2-}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]}=10.3$.
45. $\mathrm{K}_{\mathrm{a}}=\mathrm{c} \alpha^{2}=0.1 \times(0.01)^{2}=10^{-5}$.

$$
\begin{gathered}
\mathrm{HA} \\
0.1(1-\alpha)
\end{gathered} \rightleftharpoons \mathrm{H}^{+} \quad+\quad \begin{aligned}
& \mathrm{A}^{-} . \\
& 0.1 \alpha
\end{aligned} \quad 0.1 \alpha+0.2 .
$$

$$
10^{-5}=\frac{0.1 \alpha \times(0.1 \alpha+0.2)}{0.1}
$$

$\alpha=5 \times 10^{-5}$
(Therefore, 0.1α is neglected).
46. pH of $\mathrm{CH}_{3} \mathrm{COOH}=\frac{1}{2}\left(\mathrm{pK}_{\mathrm{a}}-\log \mathrm{c}\right)$
$3=\frac{1}{2}\left(\mathrm{pK}_{\mathrm{a}}-\log 0.1\right) \quad \therefore \quad \mathrm{pK}_{\mathrm{a}}=5$
$\frac{1}{4}$ stage of neutralisation : $\mathrm{pH}=5+\log \frac{1 / 4}{3 / 4}=\mathbf{4 . 5 2}$
$\frac{3}{4}$ stage of neutralisation : $\mathrm{pH}=5+\log \frac{3 / 4}{1 / 4}=\mathbf{5 . 4 8}$
47. $\mathrm{NaCN}+\mathrm{HCl}$ is not a buffer but if HCI is in less amount then, it gives a buffer as it produces HCN.

	$\mathrm{NaCN}+$	$\mathrm{HCI} \rightarrow$	NaCI	+HCN	
Mole added	0.01	a	0	0	
Mole after	$(0.01-\mathrm{a})$	0	a		a

This is buffer of $\mathrm{HCN}+\mathrm{NaCN}$
Let a mole of HCI be used for this purpose
$\therefore \quad \mathrm{pH}=-\log \mathrm{K}_{\mathrm{a}}+\log \frac{0.01-\mathrm{a}}{\mathrm{a}}$

$$
8.5=-\log \left(4 \times 10^{-10}\right)+\log \frac{0.01-a}{a}
$$

$\therefore \quad \mathrm{a}=\mathbf{8 . 8 9} \times \mathbf{1 0}^{-3}$ mole of HCI
$\begin{array}{lcll}\text { 48. } \begin{array}{l}\text { Case II: } \\ \text { Millimole before } \\ \mathrm{a}\end{array} \mathrm{BOH}+\underset{\mathrm{HCI}}{\mathrm{HCl}} \rightarrow \quad \mathrm{BCI}+\underset{2}{\mathrm{H}_{2} \mathrm{O}} \\ 0.1 \times 5=0.5 & 0 & 0\end{array}$ reaction
Millimole after $\begin{array}{ccccc}(a-0.5) & 0 & 0.5 & 0.5\end{array}$ reaction
$\therefore \mathrm{pH}=10.04$
$\therefore \quad \mathrm{pOH}=-\log \mathrm{K}_{\mathrm{b}}+\log \frac{[\mathrm{BCI}]}{[\mathrm{BOH}]}$
$\therefore \quad \mathrm{pOH}=3.96$
$\therefore \quad 3.96=-\log \mathrm{K}_{\mathrm{b}}+\log \frac{0.5}{(\mathrm{a}-0.5)}$
Case III: $\quad \mathrm{BOH}+\mathrm{HCI} \rightarrow \mathrm{BCI}+\mathrm{H}_{2} \mathrm{O}$ Millimole before \quad a $\quad 0.1 \times 20=2$ reaction
Millimole after $\begin{array}{ccccc}(a-2) & 0 & 2 & 2\end{array}$ reaction
$\therefore \mathrm{pH}=9.14$
$\therefore \quad \mathrm{pOH}=-\log \mathrm{K}_{\mathrm{b}}+\log \frac{[\mathrm{BCI}]}{[\mathrm{BOH}]}$
$\therefore \quad \mathrm{pOH}=4.86$
$\therefore \quad 4.86=-\log \mathrm{K}_{\mathrm{b}}+\log \frac{2}{\mathrm{a}-2}$

$$
\mathrm{K}_{\mathrm{b}}=1.81 \times 10^{-5}
$$

49. Let Molarity of $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH}) \mathrm{COOH}=\mathrm{M}_{1}$
$\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH}) \mathrm{COOH}+\mathrm{NaOH} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{OH}) \mathrm{COONa}$
At end point
No. of eq. of $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH}) \mathrm{COOH}=\quad$ No. of eq. of NaOH $=16.24 \times .02$

$$
25 \times \mathrm{M}_{1}=0.3248 \Rightarrow \mathrm{M}_{1}=\frac{0.3248}{25}=0.013
$$

Half neutrilazation
$\begin{array}{lccc}\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH}) \mathrm{COOH} \\ 0.3248 & \mathrm{NaOH} & \mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{OH}) \mathrm{COONa} \\ 0.1624 & 0.1624 & 0 & 0 \\ & 0 & 0.1624 & \end{array}$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}_{1}}+\log \frac{\left[\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{OH}) \mathrm{COONa}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{OH}) \mathrm{COOH}\right]} \Rightarrow 4.7=\mathrm{pK}_{\mathrm{a}_{1}}$
$\Rightarrow \mathrm{K}_{\mathrm{a}_{1}}=2 \times 10^{-5}$

Complate Neutrilization
$\begin{array}{ccc}\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{OH}) \mathrm{COOH} \\ 0 . \mathrm{NaOH} \\ 0.3248 & 0.3248 & \mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{OH}) \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O} \\ 0 & 0 & 0 \\ 0 & 0.3248\end{array}$
$\left[\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{OH}) \mathrm{COONa}\right]=\frac{0.3248}{41.24}=7.88 \times 10^{-3}$
$\mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{OH}) \mathrm{COONa}$ This species is amphiprotic species.
So $\mathrm{pH}=\frac{\mathrm{pK}_{\mathrm{a} 1}+\mathrm{pK}_{\mathrm{a} 2}}{2} \Rightarrow 7.5=\frac{4.7+\mathrm{pK}_{\mathrm{a} 2}}{2}$
$15-4.7=\mathrm{pK}_{\mathrm{a} 2} \quad \Rightarrow \mathrm{pK}_{\mathrm{a} 2}=10.3$
$\Rightarrow \mathrm{K}_{\mathrm{a} 2}=5 \times 10^{-11}$
50. Let

Acid is $\mathrm{H}_{2} \mathrm{~A}$
$\mathrm{H}_{2} \mathrm{~A} \xrightarrow{\mathrm{~K}_{\mathrm{a} 1}} \mathrm{HA}^{-} \xrightarrow{\mathrm{K}_{\mathrm{a} 2}} \mathrm{~A}^{-2}$
For $\mathrm{HA}^{-}, \quad \mathrm{pK}_{\mathrm{a} 2}=9.7$
and $\quad \mathrm{pK}_{\mathrm{b}}=11.7 \quad$ So pK $_{\mathrm{al}}=14-11.7=2.3$
$\left.\mathrm{t}=0 \begin{array}{lll} & \mathrm{HA}^{-}+ & \mathrm{HCI} \\ 10 \text { milimole } & \mathrm{x} \text { milimole } & \mathrm{H}_{2} \mathrm{~A} \\ (10-\mathrm{x}) & 0 & \mathrm{CI}^{-} \\ & 0 & \mathrm{x}\end{array}\right) \mathrm{x}$
This solution Act as Buffer solution
So $\mathrm{pH}=\mathrm{pK}_{\mathrm{al}}+\log \frac{\left[\mathrm{HA}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{~A}\right]} \Rightarrow 2.6=2.3+\log \frac{\left[\mathrm{HA}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{~A}\right]}$
$0.3=\log \frac{(10-\mathrm{x})}{\mathrm{x}} \Rightarrow 2=\left[\frac{10-\mathrm{x}}{\mathrm{x}}\right] \Rightarrow 2 \mathrm{x}=10$
-x
$3 x=10 \quad \Rightarrow \quad x=3.33$ milimole
51. $\mathrm{pK}_{\mathrm{a}}=11-\log 4.7=11-\log 4.7 \quad=11-0.672=10.328$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{\mathrm{n}_{\mathrm{Na}_{2} \mathrm{CO}_{3}}}{0.3}\right)$
$10=10.328+\log \left(\frac{\mathrm{n}_{\mathrm{Na}_{2} \mathrm{CO}_{3}}}{0.3}\right)$
$\log \frac{0.3}{\mathrm{n}_{\mathrm{Na}_{2} \mathrm{CO}_{3}}}=0.328 \Rightarrow \frac{0.3}{\mathrm{n}_{\mathrm{Na}_{2} \mathrm{CO}_{3}}}=2.13$
$\mathrm{W}_{\mathrm{Na}_{2} \mathrm{CO}_{3}}=\left[\frac{0.3}{2.13}\right] \times 106=14.94 \approx 15$ gram
52. $\mathrm{pH}_{1}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\mathrm{x}}{\mathrm{a}}$
$\mathrm{pH}_{2}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\mathrm{y}}{\mathrm{a}}$.
$\mathrm{pH}_{2}-\mathrm{pH}_{1}=0.6=\log \frac{\mathrm{y}}{\mathrm{x}}$.
$y=x 10^{0.6}=4 x$.
$x: y=1: 4$.
53. We know that pH of a mixture of solution containing weak acid and strong base can be calculated as below

$$
\begin{aligned}
\mathrm{pH} & =7+\frac{1}{2} \mathrm{pK}_{\mathrm{a}}+\frac{1}{2} \log \mathrm{c} \\
& =7+\frac{1}{2} \times 4.72+\frac{1}{2} \log 0.05=7+2.36-0.65=8.71
\end{aligned}
$$

54. Let $\mathrm{NaHCO}_{3}+\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{KCl}$
$\mathrm{xg} \quad \mathrm{yg}$
At Ist equivalent point
$\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{HCI} \longrightarrow \mathrm{NaHCO}_{3}+\mathrm{NaCI}$
Milimole HCI consumed $=0.15 \times 10=1.5$
$\left[\frac{Y}{106}\right] \times 1 \times 10^{3}=1.5 \quad y=\frac{1.5 \times 106}{1000}=0.159 \mathrm{~g}$
At IInd equivalent point
m.eq. of $\mathrm{Na}_{2} \mathrm{CO}_{3}+$ m. eq. of $\mathrm{NaHCO}_{3}=$ m. eq. of $\mathrm{HCl}=35 \times 0.15$

$$
\begin{aligned}
& \Rightarrow\left[\frac{\mathrm{x}}{84}\right]+\left[\frac{\mathrm{y}}{106}\right] \times 2=0.15 \times 35 \times 10^{-3} \\
& \Rightarrow \frac{\mathrm{x}}{84}+\left(1.5 \times 10^{-3}\right) \times 2=5.25 \times 10^{-3} \\
& \Rightarrow x=\frac{(2.25 \times 84)}{1000}=0.189 \mathrm{~g}
\end{aligned}
$$

$$
\text { mass of } \mathrm{KCI}=0.152 \mathrm{~g}
$$

$$
\operatorname{mass} \% \text { of } \mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{0.159 \times 100}{0.5}=31.8 \%
$$

$$
\text { mass } \% \text { of } \mathrm{NaHCO}_{3}=\frac{0.189 \times 100}{0.5}=37.8 \%
$$

$$
\operatorname{mass} \% \text { of KCI }=\frac{0.152 \times 100}{0.5}=30.4 \%
$$

55. As the value of $K_{\text {sp }}$ is very law so we.
(a) can assume that almost all the $\mathrm{Mg}(\mathrm{OH})_{2}$ will Present in solid state.

At the end of reaction $\left[\mathrm{Mg}^{+2}\right]=0.1$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{sp}}\left[\mathrm{Mg}(\mathrm{OH})_{2}\right]=\left[\mathrm{Mg}^{+2}\right]\left[\mathrm{OH}^{-}\right]^{2}=1.6 \times 10^{-12} \\
& \Rightarrow\left[\mathrm{OH}^{-}\right]^{2}=\frac{1.6 \times 10^{-12}}{0.1} \Rightarrow\left[\mathrm{OH}^{-}\right]=4 \times 10^{-6} \mathrm{M} \\
& \Rightarrow \mathrm{pOH}=6-\log 4 \Rightarrow \mathrm{pH}=14-6+0.6=\mathbf{8 . 6}
\end{aligned}
$$

(b) $\mathrm{Mg}^{+2}+2 \mathrm{OH}^{-} \longrightarrow \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})$

$$
\begin{array}{ll}
0.1 & 0.04
\end{array}
$$

At the end of reaction $\left[\mathrm{Mg}^{+2}\right]=0.1-\frac{0.04}{2}=0.08$
$\mathrm{K}_{\text {sp }}\left(\mathrm{Mg}(\mathrm{OH})_{2}\right)=\left[\mathrm{Mg}^{+2}\right]\left[\mathrm{OH}^{-}\right]^{2}=1.6 \times 10^{-12}$
$\left[\mathrm{OH}^{-}\right]^{2}=\frac{1.6 \times 10^{-12}}{0.08} \Rightarrow\left[\mathrm{OH}^{-}\right]=4.47 \times 10^{-6}$
$\therefore \mathrm{pOH}=6-\log 4.47=5.35$
$\mathrm{pH}=14-5.35=\mathbf{8 . 6 5}$
(c) $\mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{HCI} \longrightarrow \mathrm{Mg}^{+2}+2 \mathrm{CI}^{-}+2 \mathrm{H}_{2} \mathrm{O}$
$0.1 \quad 0.04$
0.1
0.1-0.02 0
$0.1+0.02$
$\left[\mathrm{Mg}^{+2}\right]=0.12 \mathrm{M}$

$$
\mathrm{K}_{\mathrm{sp}}\left[\mathrm{Mg}(\mathrm{OH})_{2}\right]=\left[\mathrm{Mg}^{+2}\right]\left[\mathrm{OH}^{-}\right]^{2}=1.6 \times 10^{-12}
$$

$\left[\mathrm{OH}^{-}\right]^{2}=\frac{1.6 \times 10^{-12}}{0.12}=\frac{4}{3} \times 10^{-11} \mathrm{M}^{2}$
$\Rightarrow\left[\mathrm{OH}^{-}\right]=\sqrt{\frac{4}{3} \times 10^{-11}} \mathrm{M}$
$\Rightarrow \mathrm{pOH}=5.44 \quad \Rightarrow \mathrm{pH}=14-\mathbf{5 . 4 4}=\mathbf{8 . 5 6}$
58. (a) $\mathrm{pK}_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=4.74$
$\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=0.25 \mathrm{M}$,
$\left[\mathrm{CH}_{3} \mathrm{COONa}\right]=0.15 \mathrm{M}$
$\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{a}}\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}$
$=\frac{1.8 \times 10^{-5} \times 0.25}{0.15}=3 \times 10^{-5} \mathrm{M}$
$\mathrm{H}_{2} \mathrm{~S} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{S}^{-2} \quad \Rightarrow \quad \mathrm{~K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{~S}^{-2}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]}$
$\left[\mathrm{S}^{2-}\right]=\frac{9 \times 10^{-21} \times 0.1}{9 \times 10^{-10}}=10^{-12} \mathrm{M}$
$\mathrm{IP}(\mathrm{MnS})=\left[\mathrm{Mn}^{+2}\right]\left[\mathrm{S}^{-2}\right]=1.5 \times 10^{-2} \times 10^{-12}=1.5 \times 10^{-14}$ $\mathrm{IP}<\mathrm{K}_{\text {sp }} \rightarrow$ So No PPT is formed.
(b) For precipitation of MnS the minimum concentration of [S^{2-}]
$\left[\mathrm{Mn}^{+2}\right]\left[\mathrm{S}^{2-}\right]=\mathrm{K}_{\text {sp }}$
$1.5 \times 10^{-2} \times\left[\mathrm{S}^{2-}\right]=2.4 \times 10^{-13} \Rightarrow\left[\mathrm{~S}^{2-}\right]=1.6 \times 10^{-11} \mathrm{M}$ For this [S^{2-}]
$\left[\mathrm{H}^{+}\right]^{2}=\frac{\mathrm{K}_{\mathrm{a}}\left[\mathrm{H}_{2} \mathrm{~S}\right]}{\left[\mathrm{S}^{2-}\right]}=\frac{9 \times 10^{-21} \times 0.10}{1.6 \times 10^{-11}}=7.5 \times 10^{-6} \mathrm{M}$
$\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{a}}\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]} \Rightarrow 7.5 \times 10^{-6}$

$$
=\frac{1.8 \times 10^{-5} \times 0.25}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}
$$

$\left[\mathrm{CH}_{3} \mathrm{COONa}\right]=\mathbf{0 . 6 0} \mathbf{M}$
59. Let solubility of $\mathrm{CaC}_{2} \mathrm{O}_{4}$ is s mole/lit
$\mathrm{CaC}_{2} \mathrm{O}_{4}(\mathrm{~s}) \rightleftharpoons \mathrm{Ca}^{+2}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}(\mathrm{aq})$ $\mathrm{s} \quad \mathrm{s}$
$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ react with H^{+}to produce $\mathrm{HC}_{2} \mathrm{O}_{4}^{-} \& \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$

$$
\mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightleftharpoons \mathrm{HC}_{2} \mathrm{O}_{4}^{-} \quad \mathrm{K}_{1}^{\prime}=\frac{1}{\mathrm{~K}_{2}}
$$

$\frac{1}{\mathrm{~K}_{2}}=\frac{\left[\mathrm{HC}_{2} \mathrm{O}_{4}^{-}\right]}{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\right]} \Rightarrow\left[\mathrm{HC}_{2} \mathrm{O}_{4}^{-}\right]=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\right]}{\mathrm{K}_{2}}$
Again this $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$react with H^{+}as.

$$
\begin{aligned}
& \mathrm{HC}_{2} \mathrm{O}_{4}^{-}+\mathrm{H}^{+} \rightleftharpoons \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \mathrm{~K}_{1}^{\prime}=\frac{1}{\mathrm{~K}_{1}} \\
& \frac{1}{\mathrm{~K}_{1}}=\frac{\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right]}{\left[\mathrm{HC}_{2} \mathrm{O}_{4}^{-}\right]\left[\mathrm{H}^{+}\right]} \\
& \Rightarrow\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right]=\frac{\left[\mathrm{HC}_{2} \mathrm{O}_{4}^{-}\right]\left[\mathrm{H}^{+}\right]}{\mathrm{K}_{1}}
\end{aligned}
$$

Puting the value of $\left[\mathrm{HC}_{2} \mathrm{O}_{4}^{-}\right]$
$\Rightarrow\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right]=\frac{\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\right]}{\mathrm{K}_{1} \mathrm{~K}_{2}}$
Now $\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]+\left[\mathrm{HC}_{2} \mathrm{O}_{4}^{-}\right]+\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right]=\mathrm{s}$
$\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]\left[1+\frac{\left[\mathrm{H}^{+}\right]^{+}}{\mathrm{K}_{2}}+\frac{\left[\mathrm{H}^{+}\right]^{2}}{\mathrm{~K}_{1} \mathrm{~K}_{2}}\right]=\mathrm{s}$
$\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]\left[1+\frac{10^{-4}}{5 \times 10^{-5}}+\frac{10^{-8}}{25 \times 10^{-7}}\right]=\mathrm{s}$
$\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]=\left(\frac{\mathrm{s}}{3}\right) \Rightarrow \mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ca}^{+2}\right]\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]=2.7 \times 10^{-9}$
$\frac{\mathrm{s}^{2}}{3}=2.7 \times 10^{-9} \quad \Rightarrow \mathrm{~s}=\mathbf{9} \times \mathbf{1 0}^{-5} \mathbf{M}$
60. Initial moles of $\mathrm{Ag}^{+}=0.01$; Initial moles of $\mathrm{IO}_{3}^{-}=0.005$ Initial moles of $\mathrm{CrO}_{4}{ }^{2-}=0.1$
Ksp of $\mathrm{AgIO}_{3} \ll \mathrm{Ksp}$ of $\mathrm{CrO}_{4}{ }^{2-}$
Ag^{+}first combined with IO_{3}^{-}
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{IO}_{3}^{-}(\mathrm{aq}) \longrightarrow \mathrm{AgIO}_{3}(\mathrm{~s})$
moles of Ag^{+}left after the above reaction $=0.01-0.005$

$$
=0.005
$$

Now
$2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{CrO}_{4}^{2-}(\mathrm{aq}) \longrightarrow \mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s})$
$0.005 \quad 0.1$
moles of $\mathrm{CrO}_{4}{ }^{2-}$ left after the above reaction $=0.1-0.0025$ $=0.0975$
At equilibrium
$\left[\mathrm{CrO}_{4}{ }^{2-}\right]=\mathbf{0 . 0 9 7 5} \mathbf{~ M}$
$\left[\mathrm{Ag}^{+}\right]=\sqrt{\frac{\mathrm{Ksp} \text { of } \mathrm{Ag}_{2} \mathrm{CrO}_{4}}{\left[\mathrm{CrO}_{4}^{2-}\right]}}=\sqrt{\frac{10^{-8}}{0.0975}}=\mathbf{3 . 2} \times \mathbf{1 0}^{-4} \mathbf{M}$
$\left[\mathrm{IO}_{3}^{-}\right]=\frac{\mathrm{Ksp} \text { of } \mathrm{AgIO}_{3}}{\left[\mathrm{Ag}^{+}\right]}=\frac{10^{-13}}{3.2 \times 10^{-4}}=\mathbf{3 . 1 2 5} \times \mathbf{1 0}^{-\mathbf{1 0}} \mathbf{M}$
Total moles of precipitate formed $=0.005+0.0025$

$$
=0.0075
$$

61. $\left[\mathrm{Sr}(\mathrm{OH})_{2}\right] \longrightarrow \mathrm{Sr}^{2+}+2 \mathrm{OH}^{-}$

$$
\begin{aligned}
& {\left[\mathrm{Sr}(\mathrm{OH})_{2}\right]=\frac{19.23}{121.62 \times 1}=0.158 \mathrm{M} } \\
\therefore & {\left[\mathrm{OH}^{-}\right]=2 \times 0.158 \mathrm{M}=\mathbf{0 . 3 1 6} \mathbf{M} } \\
\text { or } & \mathrm{pOH}=0.5 . \\
& {\left[\mathrm{Sr}^{2+}\right]=\mathbf{0 . 1 5 8} \mathbf{~ M .} }
\end{aligned} \quad \therefore \quad \mathbf{p H}=\mathbf{1 3 . 5} .
$$

62. $\mathrm{Co}^{2+}+\mathrm{N}_{2} \mathrm{H}_{4} \rightleftharpoons \mathrm{Co}\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)^{2+}$
$\mathrm{t}=0 \quad 0.01 \quad 0.02$
$\mathrm{t}_{\text {eq. }} \quad 0.01-\mathrm{x} \quad 0.02-\mathrm{x} \quad \mathrm{x}$
$=0.06$
$\therefore \quad \mathrm{x}=4 \times 10^{-3} \mathrm{M}$
$\therefore \quad\left[\mathrm{N}_{2} \mathrm{H}_{4}\right]=0.016 \mathrm{M}$
$\therefore \quad \mathrm{K}_{\mathrm{f}}=\frac{\left(4 \times 10^{-3}\right)}{(0.006)(0.016)}=41.67$
63.

Initial mole

$$
\mathrm{Cu}^{2+}+4 \mathrm{NH}_{3}(\ell) \rightleftharpoons\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}
$$ $0.005 \quad 0.5 \times 0.4$

$$
=0.2
$$

$\mathrm{K}_{f}=5.6 \times 10^{11}$
K_{f} is large and thus all the Cu^{2+} will give $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
Let Cu^{2+} left is a, than
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}=0.005$ mole $=\frac{0.005}{0.5} \mathrm{M}$
($0.005 \gg \mathrm{a})$

$$
\begin{aligned}
& {\left[\mathrm{Cu}^{2+}\right]=\frac{\mathrm{a}}{0.5} \mathrm{M}} \\
& {\left[\begin{array}{c}
\left.\mathrm{NH}_{3}\right]
\end{array}=0.2-4 \times 0,005+2 \mathrm{a}\right.} \\
& \quad=0.2-0.02+2 \mathrm{a} \\
& \quad=0.18 \text { mole }=\frac{0.18}{0.5} \mathrm{M}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \quad \mathrm{K}_{f}=5.6 \times 10^{11}=\frac{\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}}{\left[\mathrm{Cu}^{2+}\right]\left[\mathrm{NH}_{3}\right]^{4}} \\
& =\frac{\frac{0.005}{0.5}}{\left[\mathrm{Cu}^{2+}\right] \times\left[\frac{0.18}{0.5}\right]^{4}} \\
& \therefore \quad\left[\mathrm{Cu}^{2+}\right]=\mathbf{1 . 0 6} \times \mathbf{1 0}^{-12} \mathbf{M}
\end{aligned}
$$

64. $\quad \mathrm{BaSO}_{4} \rightleftharpoons \mathrm{Ba}^{2+}+\mathrm{SO}_{4}{ }^{2-}$
(where s $\mathrm{M} /$ litre is soluble of BaSO_{4})
(i) $\mathrm{K}_{\mathrm{SP}}=\mathrm{s} \times \mathrm{s}$
$\therefore \mathrm{s}=\sqrt{\mathrm{K}_{\mathrm{SP}}}=\sqrt{1.6 \times 10^{-9}}=\mathbf{4} \times \mathbf{1 0}^{-5} \mathbf{~ m o l ~ l i t r e}{ }^{-1}$
(ii) In presence of $0.10 \mathrm{M} \mathrm{BaCl}_{2}$, let s $\mathrm{mol} /$ litre BaSO_{4} is disolved
$\mathrm{K}_{\mathrm{SP}}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right]$
$1.6 \times 10^{-9}=(0.1+\mathrm{s})(\mathrm{s}) \quad[(0.1+\mathrm{s})=0.1$ as $\mathrm{s} \lll 0.1]$
$\therefore \quad \mathrm{s}=\mathbf{1 . 6} \times \mathbf{1 0}^{-8} \mathrm{M}$
65. $\mathrm{Pb}^{2+}+2 \mathrm{Cl}^{-} \longrightarrow \mathrm{PbCl}_{2}$.
$\frac{10}{101}-\mathrm{x} \quad \frac{1}{101}-2 \mathrm{x} \approx 0$.
$\left[\mathrm{Pb}^{2+}\right]=\left(10-\frac{1}{2}\right) \times \frac{1}{101}=\frac{9.5}{101}=\mathbf{9 . 4} \times \mathbf{1 0}^{-\mathbf{2}} \mathbf{M}$.
66. $\mathrm{BaSO}_{4} \rightleftharpoons \mathrm{Ba}^{2+}+\mathrm{SO}_{4}^{2-}$.
$\mathrm{s}+\mathrm{s}^{\prime} \quad \mathrm{s}$
$\mathrm{BaCrO}_{4} \rightleftharpoons \mathrm{Ba}^{2+}+\mathrm{CrO}_{4}{ }^{2-}$
$\mathrm{s}+\mathrm{s}^{\prime} \quad \mathrm{s}^{\prime}$
$\left[\mathrm{Ba}^{2+}\right]=1.4 \times 10^{-5}=\sqrt{\mathrm{K}_{\mathrm{sp} 1}+\mathrm{K}_{\mathrm{sp} 2}}$
$\therefore \quad \mathrm{K}_{\text {spl }}+\mathrm{K}_{\text {sp1 }}=\left(1.4 \times 10^{-5}\right)^{2}$
$\& \quad \frac{\mathrm{~K}_{\mathrm{sp} 1}}{\mathrm{~K}_{\mathrm{sp} 2}}=\frac{1}{2.5}$
On solving, $\mathrm{K}_{\text {sp1 }}=\mathbf{5 . 6} \times \mathbf{1 0}^{-11}$

$$
\mathrm{K}_{\mathrm{sp} 2}=\mathbf{1 . 4} \times \mathbf{1 0}^{-10}
$$

Solubility of BaSO_{4} in $0.01 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}=\frac{5.6 \times 10^{-11}}{0.01}$
$=5.6 \times 10^{-9} \mathrm{M}$.

CHEMISTRY FOR JEE MAIN \& ADVANCED

67. Taking density of water to be $1 \mathrm{~g} / \mathrm{cc}$.
$\left[\mathrm{CaSO}_{4}\right]=\frac{136}{10^{6}} \times \frac{1000}{136}=10^{-10} \mathrm{M}$.
Concentration of CaSO_{4} in saturated solution.
$=\sqrt{\mathrm{K}_{\mathrm{SP}}}=3 \times 10^{-3}$.
$\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$
$10^{-10} \times V_{1}=3 \times 10^{-3} \times V_{2}$.
$\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=\frac{1}{3} \quad \Rightarrow \frac{\mathrm{~V}_{1}-\mathrm{V}_{2}}{\mathrm{~V}_{1}}=0.67$.
68. For the precipitation of $\mathrm{Mg}(\mathrm{OH})_{2}$
$\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=\mathrm{K}_{\text {sp }}$
$\left[\mathrm{OH}^{-}\right]=5 \times 10^{-5}$.
For $\mathrm{NH}_{3}-\mathrm{NH}_{4}^{+}$buffer solution,
$\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{NH}_{4}^{+}\right]}{\left[\mathrm{NH}_{3}\right]} \Rightarrow\left[\mathrm{NH}_{3}\right]=\frac{\left(5 \times 10^{-6}\right)(0.4)}{2 \times 10^{-5}}=0.1 \mathrm{M}$.
69. Let final concentration of $\mathrm{SO}_{4}{ }^{2-}$ in solution $=\left[\mathrm{SO}_{4}^{2-}\right]_{\mathrm{left}}=\mathrm{x}$

Mole balance equation for SO_{4}^{2-}
$\left[\mathrm{SO}_{4}{ }^{2-}\right]_{\text {initial }}=\left[\mathrm{SO}_{4}{ }^{2-}\right]_{\text {left }}+\left[\mathrm{SO}_{4}{ }^{2-}\right]_{\text {combined }}$
$\frac{0.3 \times 10}{30}=0.1=\left[\mathrm{SO}_{4}^{2-}\right]_{\text {left }}+\left[\mathrm{SO}_{4}^{2-}\right]_{\text {combined }}$
$0.1=\mathrm{x}+\left[\mathrm{Ca}^{2+}\right]_{\text {combined }}+\left[\mathrm{Sr}^{2+}\right]_{\text {combined }}$
$\Rightarrow 0.1=\mathrm{x}+\left(\left[\mathrm{Ca}^{2+}\right]_{\text {intitial }}-\left[\mathrm{Ca}^{2+}\right]_{\text {left }}\right)+\left(\left[\mathrm{Sr}^{2+}\right]_{\text {initial }}-\left[\mathrm{Sr}^{2+}\right]_{\text {left }}\right)$
$\Rightarrow 0.1=\mathrm{x}+\left(\frac{0.2}{3}-\frac{\mathrm{K}_{\text {sp }} \text { of } \mathrm{CaSO}_{4}}{\left[\mathrm{SO}_{4}{ }^{2-}\right]_{\text {left }}}\right)+$
$\left(\frac{0.2}{3}-\frac{\mathrm{K}_{\mathrm{sp}} \text { of } \mathrm{SrSO}_{4}}{\left[\mathrm{SO}_{4}{ }^{2-}\right]_{\mathrm{left}}}\right)$
$\Rightarrow 0.1=\mathrm{x}+\left(\frac{0.2}{3}-\frac{2.4 \times 10^{-5}}{\mathrm{x}}\right)+\left(\frac{0.2}{3}-\frac{7.6 \times 10^{-7}}{\mathrm{x}}\right)$
$\Rightarrow 3 \mathrm{x}^{2}+0.1 \mathrm{x}+7.428 \times 10^{-5}=0$
on solving, $x=\left[\mathrm{SO}_{4}{ }^{2-}\right]_{\text {left }}=\mathbf{7 . 2 6} \times \mathbf{1 0}^{-4} \mathbf{M}$

$$
\begin{aligned}
& {\left[\mathrm{Ca}^{2+}\right]_{\text {left }}=\frac{2.4 \times 10^{-5}}{7.26 \times 10^{-4}}=\mathbf{0 . 0 3 3} \mathbf{M}} \\
& {\left[\mathrm{Sr}^{2+}\right]_{\text {left }}=\frac{7.6 \times 10^{-7}}{7.26 \times 10^{-4}}=\mathbf{1 . 0 5} \times \mathbf{1 0}^{-\mathbf{3}} \mathbf{M}}
\end{aligned}
$$

70. $\left[\mathrm{Ag}^{+}\right]$concentration $=\frac{100}{350} \times 2 \times \sqrt[3]{\frac{1.4 \times 10^{-5}}{4}}$

$$
=8.68 \times 10^{-3} .
$$

$\left[\mathrm{SO}_{4}{ }^{2-}\right]$ concentration $=\frac{100}{350} \times \sqrt[3]{\frac{1.4 \times 10^{-5}}{4}}$

$$
=4.34 \times 10^{-3} .
$$

$\left[\mathrm{Pb}^{2+}\right]=\frac{250}{350} \times \sqrt{2.8 \times 10^{-13}}=3.78 \times 10^{-7}$.
$\left[\mathrm{CrO}_{4}^{2-}\right]=3.78 \times 10^{-7}$.
$\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}_{4}^{2-}\right]=2.85 \times 10^{-11}>\mathrm{K}_{\mathrm{SP}}$ of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$.
$\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right]=1.64 \times 10^{-9}<\mathrm{K}_{\mathrm{SP}}$ of PbSO_{4}.
Only $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ will precipitate.
71. For CaSO_{4}, Let solubility be $\mathrm{s} \mathrm{mol} /$ litre

Them $\mathrm{s}=\sqrt{\mathrm{K}_{\mathrm{SP}}}=\sqrt{9 \times 10^{-6}}=3 \times 10^{-3} \mathrm{~mol} \mathrm{litre}{ }^{-1}$
Thus, 3×10^{-3} mole of CaSO_{4} is soluble in water $=1$ litre
$\therefore \frac{1}{136}$ mole $(1 \mathrm{~g})$ of CaSO_{4} is soluble in
$=\frac{1}{136 \times 3 \times 10^{-3}}=\mathbf{2} .45$ litre water
72. For $\quad \mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{Ag}^{+}+\mathrm{CrO}_{4}{ }^{2-}$

$$
\mathrm{K}_{\mathrm{SP}}=4 \mathrm{~s}^{3} \Rightarrow \mathrm{~s}=2 \times 10^{-4} \mathrm{~mol} / \mathrm{lt} .
$$

Now,

$$
\mathrm{CrO}_{4}^{2-}+\mathrm{Pb}^{2+} \longrightarrow \mathrm{PbCrO}_{4}(\mathrm{~s})
$$

m . moles of $\mathrm{CrO}_{4}^{2-}=\mathrm{m}$. moles of Pb^{2+}

$$
50 \times 2 \times 10^{-4}=20 \mathrm{X}
$$

$$
\therefore \quad \mathrm{X}=5 \times 10^{-4} \mathrm{M}
$$

73. Let solubility of $\mathrm{Mg}(\mathrm{OH})_{2}$ be s mol litre $^{-1}$

$$
\begin{array}{ll}
& \mathrm{Mg}(\mathrm{OH})_{2} \rightleftharpoons \mathrm{Mg}^{2+}+2 \mathrm{OH}^{-} \\
\therefore & {\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=\mathrm{K}_{\mathrm{SP}}} \\
& 4 \mathrm{~s}^{3}=8.9 \times 10^{-12} \\
\therefore & \mathrm{~s}=1.305 \times 10^{-4} \mathrm{~mol} \mathrm{litre}^{-1} \\
\therefore & {\left[\mathrm{OH}^{-}\right]=2 \times 1.305 \times 10^{-4} \mathrm{~mol} \mathrm{litre}^{-1}} \\
\therefore & \mathrm{pOH}=3.58 \\
\therefore & \mathrm{pH}=\mathbf{1 0 . 4 2}
\end{array}
$$

74. Mole balance equation
$\left[\mathrm{HCO}_{3}^{-}\right]_{0}=\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]+\left[\mathrm{HCO}_{3}^{-}\right]+\left[\mathrm{CO}_{3}{ }^{2-}\right]$
$\Rightarrow\left[\mathrm{HCO}_{3}^{-}\right]_{0}$

$$
\begin{aligned}
& =\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]+\frac{\mathrm{K}_{\mathrm{a} 1}\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}{\left[\mathrm{H}^{+}\right]}+\frac{\mathrm{K}_{\mathrm{a} 1} \mathrm{~K}_{\mathrm{a} 2}\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}{\left[\mathrm{H}^{+}\right]^{2}} \\
& \Rightarrow\left[\mathrm{HCO}_{3}^{-}\right]_{0}=\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]\left(1+\frac{\mathrm{K}_{\mathrm{a} 1}}{\left[\mathrm{H}^{+}\right]}+\frac{\mathrm{K}_{\mathrm{a} 1} \mathrm{~K}_{\mathrm{a} 2}}{\left[\mathrm{H}^{+}\right]^{2}}\right) \\
& \Rightarrow\left[\mathrm{HCO}_{3}^{-}\right]_{0} \\
& =\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]\left(1+\frac{4.9 \times 10^{-7}}{10^{-8}}+\frac{4.9 \times 10^{-7} \times 10^{-12}}{\left(10^{-8}\right)^{2}}\right) \\
& \Rightarrow\left[\mathrm{HCO}_{3}^{-}\right]_{0}=\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]\left(1+49+4.9 \times 10^{-3}\right) \\
& \therefore \quad\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]=\frac{\left[\mathrm{HCO}_{3}^{-}\right]_{0}}{50} \\
& \Rightarrow \quad \mathrm{n}_{\mathrm{H}_{2} \mathrm{CO}_{3}}=\frac{0.0005}{50}=\mathbf{1 0}^{-5} \text { mole. } \\
& {\left[\mathrm{HCO}_{3}^{-}\right]=\frac{\mathrm{K}_{\mathrm{a} 1}\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}{\left[\mathrm{H}^{+}\right]}} \\
& \Rightarrow \mathrm{n}_{\mathrm{HCO}_{3}}=\frac{4.9 \times 10^{-7} \times 10^{-5}}{10^{-8}}=\mathbf{4 . 9} \times \mathbf{1 0}^{-4} \mathbf{~ m o l e} \\
& {\left[\mathrm{CO}_{3}{ }^{2-}\right]=\frac{\mathrm{K}_{\mathrm{a} 1} \mathrm{~K}_{\mathrm{a} 2}\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}{\left[\mathrm{H}^{+}\right]^{2}}} \\
& \mathrm{n}_{\mathrm{CO}_{3}}{ }^{2-}=\frac{4.9 \times 10^{-7} \times 10^{-12} \times 10^{-5}}{\left(10^{-8}\right)^{2}} \\
& =4.9 \times 10^{-8} \text { mole }
\end{aligned}
$$

75. $\mathrm{PbBr}_{2} \rightleftharpoons \mathrm{~Pb}^{2+}+2 \mathrm{Br}^{-}$.
$0.8 \mathrm{~s} \quad 2 \times 0.8 \mathrm{~s}$
$8 \times 10^{-5}=4 \times(0.8)^{3} \times \mathrm{s}^{3} \Rightarrow \mathrm{~s}=5 \times 10^{-3} \mathrm{~mol} / \mathrm{lt}$.
solubility of salt $=5 \times 10^{-3} \times 368=\mathbf{1 . 8 4} \mathbf{g} / \mathbf{l t}$.
76. milli moles of $\mathrm{I}^{-}=25 \times 2 \times \sqrt[3]{\frac{7.1 \times 10^{-9}}{4}}$.
milli moles of $\mathrm{Ag}^{+}=13.3 \times \mathrm{M}$.
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq}) \longrightarrow \mathrm{AgI}(\mathrm{s})$
Equatiing both $\mathrm{M}=4.55 \times 10^{-3}$.
77. $\left[\mathrm{F}^{-}\right]$concentration when $\left[\mathrm{Sr}^{2+}\right]$ is 2.5×10^{-3} $=\sqrt{\frac{2.8 \times 10^{-9}}{2.5 \times 10^{-3}}}=1.058 \times 10^{-3} \mathrm{M}$.
Total m . moles of F^{-}added $=100 \times\left[1.058 \times 10^{-3}+2(0.016\right.$ -0.0025)] $=2.8$
Mass of NaF added $=2.8 \times 10^{-3} \times 42=0.1776 \mathrm{~g}$.
78. $\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]=1.75 \times 10^{-10}$
$\left[\mathrm{Ag}^{+}\right][\mathrm{Br}]=5.25 \times 10^{-13}$

$$
\begin{aligned}
\Rightarrow \quad\left[\mathrm{Br}^{-}\right] & =\frac{5.25 \times 10^{-13}}{1.75 \times 10^{-10}} \times\left[\mathrm{Cl}^{-}\right] \\
& =\frac{5.25 \times 10^{-13}}{1.75 \times 10^{-10}} \times(0.075)=2.25 \times 10^{-4} \mathrm{M}
\end{aligned}
$$

79. 500 mL of 0.4 M NaOH are mixed with 500 mL of $\mathrm{Ca}(\mathrm{OH})_{2}$ a saturated solution having $\mathrm{Ca}(\mathrm{OH})_{2}$ solubility as s M .
For

$$
\begin{gathered}
\mathrm{Ca}(\mathrm{OH})_{2} \rightleftharpoons \mathrm{Ca}^{2+}+2 \mathrm{OH}^{-} \\
\mathrm{K}_{\mathrm{SP}}=\mathrm{s} \times(2 \mathrm{~s})^{2}=4 \mathrm{~s}^{3} \\
4 \mathrm{~s}^{3}=4.42 \times 10^{-5}
\end{gathered}
$$

Then,
$\therefore \quad \mathrm{s}=\sqrt[3]{\left(\frac{4.42 \times 10^{-5}}{4}\right)}=0.0223 \mathrm{M}$
Now $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{NaOH}$ are mixed
\therefore Solution has Ca^{2+} and OH^{-}out of which some Ca^{2+} are precipiated
On mixing, $\quad\left[\mathrm{Ca}^{2+}\right]=\frac{0.0223 \times 500}{1000}=0.01115$

$$
=111.5 \times 10^{-4} \mathrm{M}
$$

$\left[\mathrm{OH}^{-}\right]=\frac{0.0223 \times 2 \times 500}{1000}+\frac{500 \times 0.4}{1000}=0.2223 \mathrm{M}$
[from $\left.\mathrm{Ca}(\mathrm{OH})_{2}\right][$ from NaOH$]$
$\therefore \quad\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=\mathrm{K}_{\mathrm{SP}}$ $\left[\mathrm{Ca}^{2+}\right]_{\text {left }}[0.2223]^{2}=4.42 \times 10^{-5}$
$\left[\mathrm{Ca}^{2+}\right]_{\text {left }}=\frac{4.42 \times 10^{-5}}{[0.2223]^{2}}=8.94 \times 10^{-1} \mathrm{~mol} \mathrm{litre}{ }^{-1}$
$\therefore \quad$ Mole of $\mathrm{Ca}(\mathrm{OH})_{2}$ precipitated $=$ Mole of $\left[\mathrm{Ca}^{2+}\right]$ precipitated

$$
=111.5 \times 10^{-4}-8.94 \times 10^{-4}=102.46 \times 10^{-4}
$$

$\therefore \quad$ Wt. of $\mathrm{Ca}(\mathrm{OH})_{2}$ precipitated from $\mathrm{Ca}(\mathrm{OH})_{2}$ solution $=102.46 \times 10^{-4} \times 74=7582.04 \times 10^{-4} \mathrm{~g}=759 \mathrm{mg}$
80. For $\mathrm{CaSO}_{4} \rightleftharpoons \mathrm{Ca}^{2+}+\mathrm{SO}_{4}^{2-}$

$$
\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right]=\mathrm{K}_{\mathrm{SP}}
$$

Let $\left[\mathrm{SO}_{4}^{2-}\right]=\mathrm{a}$, just sufficient to precipitate CaSO_{4} from a solution having $\left[\mathrm{Ca}^{2+}\right]=0.005 \mathrm{M}$
Then, $\quad[0.005][\mathrm{a}]=2.4 \times 10^{-5} \quad \therefore \mathrm{a}=\frac{2.4 \times 10^{-5}}{0.005}$
$\left[\mathrm{SO}_{4}^{2-}\right]=\mathbf{4 . 8} \times \mathbf{1 0}-\mathbf{3} \mathbf{~ m o l ~ l i t r e}{ }^{-1}$
81. Concentration of $\mathrm{CaCO}_{3}=\left[\frac{7 \times 10^{-3}}{100}\right]$ mole/lit
$=7 \times 10^{-5} \mathrm{~mole} / \mathrm{lit}$
$\mathrm{K}_{\text {sp }}$ of $\mathrm{CaCO}_{3}=49 \times 10^{-5}$ mole/lit
when only $\left[\mathrm{Ba}^{+2}\right]$ is 90% precipitated then only CaCO_{3} starts precipitation
then if \& solution contain a mole/lit of $\mathrm{Ca}^{+2} \& \mathrm{Ba}^{+2}$
$\left[\mathrm{Ca}^{+2}\right]\left[\mathrm{CO}_{3}^{-2}\right]=49 \times 10^{-10}\left[\mathrm{CO}_{3}^{-2}\right]=\left[\frac{49 \times 10^{-10}}{\mathrm{a}}\right]$
Now for $\mathrm{BaCO}_{3} \mathrm{~K}_{\mathrm{sp}}=\left[\mathrm{Ba}^{+2}\right]\left[\mathrm{CO}_{3}^{-2}\right]$
$=\frac{\mathrm{a} \times 10}{100} \times \frac{49 \times 10^{-10}}{\mathrm{a}}=4.9 \times 10^{-10}$
82. $\mathrm{CaF}_{2} \rightleftharpoons \mathrm{Ca}^{+2}+2 \mathrm{~F}^{-}$

Let Solubility is s mole/lit
$\mathrm{CaF}_{2} \rightleftharpoons \underset{\mathrm{~s}}{\rightleftharpoons} \mathrm{Ca}^{+2}+\underset{2 \mathrm{~s}}{2 \mathrm{~F}^{-}}$
The F^{-}react with H^{+}to produce HF
$\mathrm{F}^{-}+\mathrm{H}^{+} \rightleftharpoons \mathrm{HF}$

$$
\begin{aligned}
& \mathrm{K}_{1}=\frac{1}{\mathrm{~K}_{\mathrm{a}}}=\frac{[\mathrm{HF}]}{\left[\mathrm{F}^{-}\right]\left[\mathrm{H}^{+}\right]} \\
& \Rightarrow[\mathrm{HF}]=\frac{\left[\mathrm{F}^{-}\right]\left[\mathrm{H}^{+}\right]}{\mathrm{K}_{\mathrm{a}}}=\frac{\left[\mathrm{F}^{-}\right]\left[\mathrm{H}^{+}\right]}{3.45 \times 10^{-4}} \\
& {[\mathrm{HF}]=2.9 \times 10^{3}\left[\mathrm{~F}^{-}\right]\left[\mathrm{H}^{+}\right]} \\
& \text {(A) at } \mathrm{pH}=7[\mathrm{HF}]=2.9 \times 10^{-4}\left[\mathrm{~F}^{-}\right] \\
& \text {But the solution contain }\left[\mathrm{HF}+\mathrm{F}^{-}\right]=2\left[\mathrm{Ca}^{+2}\right] \\
& {\left[2.9 \times 10^{-4}+1\right][\mathrm{F}]=2 \mathrm{~s} \quad[\mathrm{~F}]=2 \mathrm{~s}} \\
& \mathrm{~K}_{\text {sp }}=4 \mathrm{~s}^{3}=0.4 \times 10^{-11} \quad \mathrm{~s}=\left(10 \times 10^{-12}\right)^{1 / 3}=2.15 \times 10^{-4} \\
& (\mathrm{~b}) \mathrm{At} \mathrm{pH}=\mathrm{s}=\mathrm{s} \\
& {[\mathrm{HF}]=2.9 \times 10^{3}[\mathrm{~F}] \times 10^{-5}=2.9 \times 10^{-2}[\mathrm{~F}]} \\
& {[\mathrm{F}]+\mathrm{HF}=2 \mathrm{~s} \quad \Rightarrow \quad[\mathrm{~F}]+0.029[\mathrm{~F}]=2 \mathrm{~s}} \\
& {[\mathrm{~F}][1.029]=2 \mathrm{~s} \Rightarrow\left[\mathrm{~F}^{-}\right]=\left(\frac{1}{1.029}\right) \times 2 \mathrm{~s}} \\
& \mathrm{~K}=4 \mathrm{~s}^{3}\left(\frac{1}{1.029}\right)^{2}=4 \times 10^{-11} \Rightarrow \mathrm{~s}^{3}=(1.29)^{2} \times 10^{-11} \\
& \mathrm{~s}=\left(10.6 \times 10^{-12}\right)^{\frac{1}{3}}=2.2 \times 10^{-4}
\end{aligned}
$$

83. Volume of both $\mathrm{AgNO}_{3} \& \mathrm{HCN}$ are equal so. There concentration is half
$\left[\mathrm{AgNO}_{3}\right]=0.01 \mathrm{M}$
$[\mathrm{HCN}]=0.01 \mathrm{M}$
$\mathrm{HCN} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CN}^{-}$
$\mathrm{K}_{\mathrm{a}}=4 \times 40^{-10}$
\qquad
$\mathrm{Ag}^{+}+\mathrm{CN}^{-} \rightleftharpoons \mathrm{AgCN} \mathrm{K}=\frac{1}{\mathrm{~K}_{\mathrm{a}}}$
on adding equation (i) \& equation (ii)
$\mathrm{Ag}^{+}+\mathrm{HCN} \rightleftharpoons \mathrm{H}^{+}+\mathrm{AgCN} \quad \mathrm{K}^{\prime}=10^{6}$
As the volue of K^{\prime} is very high so almost all $\mathrm{Ag}^{+} \& \mathrm{HCN}$ converted in product
$\mathrm{Ag}^{+}+\mathrm{HCN} \rightleftharpoons \mathrm{H}^{+}+\mathrm{AgCN}(\mathrm{s}) \quad \mathrm{K}^{\prime}=\frac{\mathrm{K}_{\mathrm{a}}}{\mathrm{K}_{\mathrm{sp}}}=1 \times 10^{6}$
$\begin{array}{cccc}0.01 & 0.01 & 0 & 0 \\ \mathrm{x} & \mathrm{x} & \approx 0.01 & \approx 0.01\end{array}$
$\mathrm{K}^{\prime}=\frac{0.01}{(\mathrm{x})^{2}}=10^{6}$
$X^{2}=10^{-8} \Rightarrow X=10^{-4}$
Conc. of $\left[\mathrm{Ag}^{+}\right]=\mathbf{1 0}^{-4}$
84. Given,

$$
\begin{aligned}
& \mathrm{MBr}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{MBr}_{2(\mathrm{aq})} \rightarrow \mathrm{M}^{2+}+2 \mathrm{Br} \\
& \mathrm{MBr}_{2}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{MS}+2 \mathrm{HBr} \\
& \mathrm{~K}_{\mathrm{SP}} \text { of } \mathrm{MS}=\left[\mathrm{M}^{2+}\right]\left[\mathrm{S}^{2-}\right] \\
& 6 \times 10^{-21}=[0.05]\left[\mathrm{S}^{2-}\right]
\end{aligned}
$$

$\therefore \quad\left[\mathrm{S}^{-2}\right]=1.2 \times 10^{-19} \mathrm{M}$
Thus, MS will be precipitated if $\mathrm{H}_{2} \mathrm{~S}$ provides 1.2×10^{-19} M ions of S^{2}
Now for $\mathrm{H}_{2} \mathrm{~S} \quad \mathrm{H}_{2} \mathrm{~S} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{S}^{2-}$

$$
\begin{gathered}
\mathrm{K}_{1} \times \mathrm{K}_{2}=\frac{\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{~S}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]} \\
10^{-7} \times 1.3 \times 10^{-13}=\frac{\left[\mathrm{H}^{+}\right]^{2}\left[1.2 \times 10^{-19}\right]}{[0.1]} \\
\therefore \quad
\end{gathered} \quad\left[\mathrm{H}^{+}\right]=1.04 \times 10^{-1} \text { and } \mathrm{pH}=\mathbf{0 . 9 8 3} 8 .
$$

85. When $\mathrm{Mg}(\mathrm{OH})_{2}$ starts precipitation, then,

$$
\begin{array}{lc}
& {\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=\mathrm{K}_{\mathrm{SP}} \text { of } \mathrm{Mg}(\mathrm{OH})_{2}} \\
& {[0.1]\left[\mathrm{OH}^{-}\right]^{2}=1 \times 10^{-11}} \\
\therefore & {\left[\mathrm{OH}^{-}\right]=10^{-5} \mathrm{M}} \\
\therefore & \mathrm{pOH}=5 \\
\therefore & \mathrm{pH}=14-\mathrm{pOH} \\
& \mathrm{pH}=14-5=9
\end{array}
$$

86. The minimum $\left[\mathrm{OH}^{-}\right]$at which there will be no precipitation of $\mathrm{Mg}(\mathrm{OH})_{2}$ obtained by

$$
\begin{array}{ll}
& \mathrm{K}_{\mathrm{SP}}=\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2} \\
& 6.0 \times 10^{-12}=[0.05]\left[\mathrm{OH}^{-}\right]^{2} \\
\therefore \quad & {\left[\mathrm{OH}^{-}\right]=1.34 \times 10^{-5} \mathrm{M}}
\end{array}
$$

Thus, a solution having $\left[\mathrm{OH}^{-}\right]=1.34 \times 10^{-5} \mathrm{M}$ will not show precipitation of $\mathrm{Mg}(\mathrm{OH})_{2}$ in $0.05 \mathrm{M} \mathrm{Mg}^{2+}$ solution. These hydroxyl ions are to be derived by a buffer of $\mathrm{NH}_{4} \mathrm{CI}$ and $\mathrm{NH}_{4} \mathrm{OH}$ i.e.,

$$
\begin{aligned}
& \mathrm{NH}_{4} \mathrm{OH} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \\
& \mathrm{NH}_{4} \mathrm{CI} \longrightarrow \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}
\end{aligned}
$$

For $\mathrm{NH}_{4} \mathrm{OH}$

$$
\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{4} \mathrm{OH}\right]}
$$

In presence of $\mathrm{NH}_{4} \mathrm{CI}$; all the $\left[\mathrm{NH}_{4}^{+}\right]$are provided by $\mathrm{NH}_{4} \mathrm{CI}$ since common ion effect decreases dissociation of $\mathrm{NH}_{4} \mathrm{OH}$.
$\therefore \quad 1.8 \times 10^{-5}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[1.34 \times 10^{-5}\right]}{[0.05]}$
$\therefore \quad\left[\mathrm{NH}_{4}^{+}\right]=0.067 \mathrm{M}$ or $\quad\left[\mathrm{NH}_{4} \mathrm{CI}\right]=\mathbf{0 . 0 6 7} \mathbf{~ M}$
87. Given,

$$
\begin{align*}
& \mathrm{AgI}_{(\mathrm{s})} \rightleftharpoons \mathrm{Ag}_{(\mathrm{aq})}^{+}+\mathrm{I}_{(\mathrm{aq})}^{-}, \\
& \mathrm{K}_{\mathrm{SP}}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{I}^{-}\right]=1.2 \times 10^{-17} \\
& \mathrm{Ag}_{(\mathrm{aq})}^{+}+2 \mathrm{CN}_{(\mathrm{aq})}^{-} \rightleftharpoons \ldots \ldots . .(1) \\
& \mathrm{K}_{\mathrm{f}}=\frac{\left[\mathrm{Ag}(\mathrm{CN})_{2}^{-}\right]}{\left[\mathrm{Ag}^{+}\right]\left[\mathrm{CN}^{-}\right]^{2}}=7.1 \times 10^{19} \ldots \ldots \ldots . .(2) \tag{2}
\end{align*}
$$

Let x mole of AgI be dissolved in CN^{-}solution then,

Now	$\mathrm{AgI}_{(\mathrm{s})}+2 \mathrm{CN}^{-} \rightleftharpoons$	\rightleftharpoons	$\left.\mathrm{Ag}(\mathrm{CN})_{2}^{-}\right]+\mathrm{I}^{-}$
mole before reaction	I	0	0
mole after reaction	$(1-2 \mathrm{x})$	x	x

By Eqs. (1) and (2), $\quad \mathrm{K}_{\mathrm{eq}}=\mathrm{K}_{\mathrm{SP}} \times \mathrm{K}_{\mathrm{f}}$

$$
\begin{align*}
& \quad \frac{\left[\mathrm{Ag}(\mathrm{CN})_{2}^{-}\right]\left[\mathrm{I}^{-}\right]}{\left[\mathrm{CN}^{-}\right]^{2}}=1.2 \times 10^{-17} \times 7.1 \times 10^{19} \\
& \mathrm{~K}_{\mathrm{eq}}=8.52 \times 10^{2} \tag{3}
\end{align*}
$$

$$
\therefore \quad \mathrm{K}_{\mathrm{eq}}=8.52 \times 10^{2}=\frac{\mathrm{x} . \mathrm{x}}{(1-2 \mathrm{x})^{2}}=\frac{\mathrm{x}^{2}}{(1-2 \mathrm{x})^{2}} \quad \text { or }
$$

$$
\frac{x^{2}}{1-2 x}=29.2
$$

Thus, $x=29.2-52.4 x \quad$ or $x=0.49$ mole
88. $\begin{aligned} & \mathrm{AgCI} \rightleftharpoons \mathrm{Ag}^{+}+\mathrm{CI}^{-} \quad \mathrm{AgI} \rightleftharpoons \\ &(\mathrm{x}+\mathrm{y}) \\ & \mathrm{x} \\ & \approx \mathrm{x}\end{aligned} \quad \begin{aligned} & \mathrm{Ag}^{+}+\mathrm{I}^{-} \\ & (\mathrm{x}+\mathrm{y}) \mathrm{y} \\ & \\ & \approx \mathrm{x}\end{aligned}$
$\frac{\mathrm{K}_{\mathrm{sp}}(\mathrm{AgCI})}{\mathrm{K}_{\mathrm{sp}}(\mathrm{AgI})}=\frac{\mathrm{x}}{\mathrm{y}}=\frac{1 \times 10^{-10}}{8.5 \times 10^{-17}}=\frac{10}{8.5} \times 10^{+6}$
$\mathrm{x}=1.8 \times 10^{6} \mathrm{y}$
$\mathrm{AgCI} \rightleftharpoons \underset{(\mathrm{x}+\mathrm{y})}{\mathrm{Ag}^{+}}+\underset{\mathrm{x}}{\mathrm{CI}^{-}} \quad \mathrm{AgI} \rightleftharpoons \underset{\mathrm{x}+\mathrm{y} \text { y }}{\mathrm{Ag}^{+}+\mathrm{I}^{-}}$
$(x+y) \quad x$
x
$\mathrm{x}^{2}=10^{-10} \quad \mathrm{xy}=8.5 \times 10^{-17}$
$\mathrm{x}=10^{-5}$
$y=8.5 \times 10^{-12}$
89. $\mathrm{K}_{\text {sp }}=4 \times\left(6.7 \times 10^{-6}\right)^{3}=1.203 \times 10^{-15}$
$\mathrm{s} \times\left(10^{-6}\right)^{2}=1.203 \times 10^{-15}$
$\mathrm{s}=1.203 \times 10^{-3} \mathrm{M}$
90. $\mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{Al}^{+3}+3 \mathrm{OH}^{-} \mathrm{K}_{\mathrm{SP}}=5 \times 10^{-33}$
$\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-} \rightleftharpoons \mathrm{Al}^{+3}+4 \mathrm{OH}^{-} \mathrm{K}_{\mathrm{d}}=1 \times 10^{-34}$
$\mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+\mathrm{OH}^{-} \rightleftharpoons\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-}, \quad \mathrm{K}_{1}=\frac{\mathrm{K}_{\text {sp }}}{\mathrm{K}_{\mathrm{d}}}$
$1 \times 10^{-3} \quad 0$
$0 \quad 1 \times 10^{-3}$
$\mathrm{K}_{1}=\frac{\left[\mathrm{A} \ell(\mathrm{OH})_{4}\right]^{-}}{\left[\mathrm{OH}^{-}\right]}=\frac{5 \times 10^{-33}}{1 \times 10^{-34}}=50 \Rightarrow\left[\mathrm{OH}^{-}\right]$
$=\frac{1 \times 10^{-3}}{50}=2 \times 10^{-5}$
$\mathrm{pOH}=5-\log 2=4.7 \Rightarrow \mathrm{pH}=14-4.7=9.3$
$\Rightarrow \mathrm{pH}=9.3$
(b) $\mathrm{Al}(\mathrm{OH})_{3} \longrightarrow \mathrm{Al}^{+3}+3 \mathrm{OH}^{-}$ 5×10^{-3}
$\left[\mathrm{Al}^{+3}\right]\left[\mathrm{OH}^{-}\right]^{3}=\mathrm{K}_{\mathrm{SP}}$
$\left[\mathrm{OH}^{-}\right]^{3}=\frac{5 \times 10^{-33}}{5 \times 10^{-3}}$
$\left[\mathrm{OH}^{-}\right]^{3}=1 \times 10^{-30}$
$\left[\mathrm{OH}^{-}\right]=10^{-10}$
$\mathrm{pOH}=10$
$\mathrm{pH}=4$
91. $\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Zn}^{+2}$ (aq. $)+2 \mathrm{OH}^{-}($aq. $)$
$\mathrm{K}_{\text {sp }}=1.2 \times 10^{-17}$
$\mathrm{Zn}^{2+}+4 \mathrm{OH}^{-} \rightleftharpoons\left[\mathrm{Zn}(\mathrm{OH})_{4}\right]^{2-} \quad \mathrm{K}_{\mathrm{f}}=10^{16}$
$2 \times$ [eq.(i) \& eq.(ii)]
$2 \mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Zn}^{+2}+\left[\mathrm{Zn}(\mathrm{OH})_{4}\right]^{2-}$
$\mathrm{K}^{\prime}=\left(\mathrm{K}_{\mathrm{sp}}\right)^{2} \mathrm{~K}_{\mathrm{f}} \Rightarrow \mathrm{K}^{\prime}=1.44 \times 10^{-18}$
$2 \mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Zn}^{+2}($ aq. $)+\left[\mathrm{Zn}(\mathrm{OH})_{2}\right]^{2-}$

$$
\begin{aligned}
\left(\frac{\mathrm{s}}{2}\right) & \left(\frac{\mathrm{s}}{2}\right) \\
\left(\frac{\mathrm{s}^{2}}{4}\right)=1.44 \times 10^{-18} & \mathrm{~K}^{\prime}=1.44 \times 10^{-18} \\
\mathrm{~s}^{2}=4 \times 144 \times 10^{-20} \Rightarrow & \mathrm{~s}=\mathbf{2 . 4} \times \mathbf{1 0}^{-9} \mathrm{M}
\end{aligned}
$$

But $\mathrm{K}_{\text {sp }}\left[\mathrm{Zn}(\mathrm{OH})_{2}\right]=\left[\mathrm{Zn}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=1.2 \times 10^{-17}$
$\Rightarrow\left(1.2 \times 10^{-9}\right)\left[\mathrm{OH}^{-}\right]^{2}=1.2 \times 10^{-17}$ $\left[\mathrm{OH}^{-}\right]=\mathbf{1 0}^{-4} \mathrm{M}$

EXERCISE-5

Part \# I : AIEEE/JEE-MAIN

1. Conjugate base is formed by the removal of H^{\prime} from acid

$$
\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \rightarrow \mathrm{HPO}_{4}^{2-}+\mathrm{H}^{+}
$$

2. $\mathrm{MX}_{4}($ solid $) \rightleftharpoons \mathrm{M}^{4+}{ }_{(\mathrm{aq})}+4 \mathrm{X}^{-}{ }_{(\mathrm{aq})}$ Solubility product, $\mathrm{K}_{\mathrm{sp}}=\mathrm{s} \times(4 \mathrm{~s})^{4}=256 \mathrm{~s}^{5}$
$\therefore \quad \mathrm{s}=\left(\frac{\mathrm{K}_{\mathrm{ps}}}{256}\right)^{1 / 5}$
3. $\mathrm{MX}_{2(\mathrm{~s})} \rightleftharpoons \mathrm{M}^{2+}(\mathrm{aq})+2 \mathrm{X}^{-}(\mathrm{aq})$
$\mathrm{K}_{\mathrm{sp}}=\mathrm{s} \cdot(2 \mathrm{~s})^{2}=4 \mathrm{~s}^{3} \Rightarrow 4 \times 10^{-12}=4 \mathrm{~s}^{3}$
$\Rightarrow \mathrm{s}^{3}=1 \times 10^{-12}$
$\Rightarrow \mathrm{s}=1 \times 10^{-4} \mathrm{M} \Rightarrow\left[\mathrm{M}^{2+}\right]=1 \times 10^{-4} \mathrm{M}$
4. Conjugate base of $\mathrm{OH}^{-} \quad \mathrm{OH}^{-} \rightleftharpoons \mathrm{O}^{2-}+\mathrm{H}^{+}$
5. $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \quad \Rightarrow \quad\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-\mathrm{pH})$ $=\operatorname{antilog}(-5.4)=3.98 \times 10^{-6}$
6. $\mathrm{H}_{2} \mathrm{~A} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HA}^{-} ; \quad \mathrm{K}_{1}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HA}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{~A}\right]}=1 \times 10^{-5}$
$\mathrm{HA}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{2-} ; \quad \mathrm{K}_{2}=5 \times 10^{-10}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{H}^{2-}\right]}{\left[\mathrm{HA}^{-}\right]}$
$\mathrm{K}=\frac{\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{H}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{~A}\right]}=\mathrm{K}_{1} \times \mathrm{K}_{2}=1 \times 10^{-5} \times 5 \times 10^{-15}$
7. For acidic buffer, $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$
when the acid is 50% ionised, $\left[\mathrm{A}^{-}\right]=[\mathrm{HA}]$
or
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log 1$ or $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$
given $\mathrm{pK}_{\mathrm{a}}=4.5 \quad \therefore \mathrm{pH}=4.5$
$\therefore \quad \mathrm{pOH}=14-4.5=9.5$.
8. $\mathrm{AgIO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{IO}_{3}^{-}(\mathrm{aq}) \quad[\mathrm{s}=$ Solubility $]$

$$
\mathrm{K}_{\mathrm{sp}}=\mathrm{s}^{2}
$$

or
$\mathrm{s}=1.0 \times 10-4 \mathrm{~mol} / \mathrm{lit}=1.0 \times 10^{-4} \times 283 \mathrm{~g} / \mathrm{lt}=2.83 \times 10^{-3}$ $\mathrm{gm} / 100 \mathrm{ml}$.
9. $\mathrm{pH}=7+\frac{1}{2} \mathrm{pK}_{\mathrm{a}}-\frac{1}{2} \mathrm{pK}_{\mathrm{b}}=7+\frac{4.8}{2}-\frac{4.78}{2}=7.01$
10. $\mathrm{Na}_{2} \mathrm{CO}_{3} \longrightarrow 2 \mathrm{Na}^{+}+\mathrm{CO}_{3}{ }^{2-}$
$1 \times 10^{-4} \mathrm{M} \quad 1 \times 10^{-4} \mathrm{M} \quad 1 \times 10^{-4} \mathrm{M}$
$\mathrm{K}_{\mathrm{sp}}\left[\mathrm{BaCO}_{3}\right]=\left[\mathrm{Ba}^{+2}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right]$
$5.1 \times 10^{-9}=\left[\mathrm{Ba}^{+2}\right] \times 1 \times 10^{-4}$
$\left[\mathrm{Ba}^{+2}\right]=5.1 \times 10^{-5} \mathrm{M}$
11. $\mathrm{K}_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Br}^{-}\right]=5.0 \times 10^{-13}$
$\left[\mathrm{Ag}^{+}\right]=0.05 \mathrm{M}$
$[0.05][\mathrm{Br}]=5.0 \times 10^{-13}$
$\left[\mathrm{Br}^{-}\right]=\frac{5.0 \times 10^{-13}}{0.05}=1 \times 10^{-11} \mathrm{M}$
moles of $\mathrm{KBr}=\mathrm{M} \times \mathrm{V}=1 \times 10^{-11} \times 1=1 \times 10^{-11}$
weight of $\mathrm{KBr}=1 \times 10^{-11} \times 120=1.2 \times 10^{-9} \mathrm{~g}$
12. $\mathrm{K}_{\mathrm{SP}}=1.0 \times 10^{-11}=\left(\mathrm{Mg}^{+2}\right)\left(\mathrm{OH}^{-}\right)^{2}$
$1.0 \times 10^{-11}=(0.001)\left(\mathrm{OH}^{-}\right)^{2}$
$\left(\mathrm{OH}^{-}\right)=10^{-4}$
$\mathrm{P}^{\mathrm{OH}}=4$
$\mathrm{P}^{\mathrm{H}}=14-4=10$.
13. In $\mathrm{II}^{\text {nd }}$ equation $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$give H^{+}ion to the $\mathrm{H}_{2} \mathrm{O}$ therefore in the $\mathrm{I}^{\text {nd }}$ equation it act as an acid.
14. $\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$
$\mathrm{K}_{1}=4.2 \times 10^{-7}$
$\mathrm{HCO}_{3}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CO}_{3}^{2-}$
$\mathrm{K}_{2}=4.8 \times 10^{-11}$
$\mathrm{K}_{1} \gg \mathrm{~K}_{2}$
$\therefore \quad\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCO}_{3}^{-}\right]$
$\mathrm{K}_{2}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CO}_{3}^{2-}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]}$
but $\quad\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCO}_{3}^{-}\right]$
$\left[\mathrm{CO}_{3}{ }^{2-}\right]=\mathrm{K}_{2}=4.8 \times 10^{-11}$
15. $\mathrm{pH}=1 \quad\left[\mathrm{H}^{+}\right]=10^{-1}=0.1 \mathrm{M}$;
$\mathrm{pH}=2 \quad\left[\mathrm{H}^{+}\right]=10^{-2}=0.01 \mathrm{M}$
for dilution of $\mathrm{HCl} \mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$

$$
\begin{aligned}
& 0.1 \times 1=0.01 \times \mathrm{V}_{2} \\
& \mathrm{~V}_{2}=10 \mathrm{lt}
\end{aligned}
$$

Volume of water added $=10-1=9$ litre
16. $\mathrm{CH}_{3} \mathrm{COOK}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{KOH}$

Weak acid Strong base
Hence nature of solution is basic
17. $\left[\mathrm{H}_{2} \mathrm{~S}\right]=0.10 \mathrm{M}$
$[\mathrm{HCl}]=0.20 \mathrm{M} \quad \Rightarrow \quad\left[\mathrm{H}^{+}\right]=0.2 \mathrm{M}$
(1) $\mathrm{H}_{2} \mathrm{~S} \rightleftharpoons \mathrm{HS}^{-}+\mathrm{H}^{+} \quad \mathrm{K}_{1}=1.0 \times 10^{-7}$
(2) $\mathrm{HS}^{-} \rightleftharpoons \mathrm{S}^{2-}+\mathrm{H}^{+} \quad \mathrm{K}_{2}=1.2 \times 10^{-13}$

So,
$\mathrm{H}_{2} \mathrm{~S} \rightleftharpoons \mathrm{~S}^{2-}+2 \mathrm{H}^{+} \quad=\mathrm{K}_{1} \times \mathrm{K}_{2}$

$$
=1.2 \times 10^{-20}
$$

So,
$\left[\mathrm{S}^{2}\right]=\frac{1.2 \times 10^{-20} \times\left[\mathrm{H}_{2} \mathrm{~S}\right]}{\left[\mathrm{H}^{+}\right]^{2}}$

$$
=\frac{1.2 \times 10^{-20} \times 10^{-1}}{4 \times 10^{-2}}=3 \times 10^{-20} \mathrm{M}
$$

* All the $\left[\mathrm{H}^{+}\right]$will come from strong acid $[\mathrm{HCl}]$ only.

Part \# II : IIT-JEE ADVANCED

1. $\mathrm{NaX}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NaOH}+\mathrm{HX}$

In it HX is weak acid, so NaX is a salt of weak acid and strong base.
\therefore Hydrolysis constant of NaX is $\mathrm{K}_{\mathrm{h}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}}}=\frac{1 \times 10^{-14}}{10^{-5}}$

$$
=1 \times 10^{-9}
$$

For this type of salt $\mathrm{K}_{\mathrm{h}}=\mathrm{Ch}^{2}$
$\mathrm{C}=$ molar concentration, $\mathrm{h}=$ degree of hydrolysis
$\therefore 1 \times 10^{-9}=0.1 \times \mathrm{h}^{2}$
or $\mathrm{h}^{2}=\frac{1 \times 10^{-9}}{0.1}=1 \times 10^{-8} \quad \mathrm{~h}=1 \times 10^{-4}$
\therefore percentage hydrolysis of NaX salt $=1 \times 10^{-4} \times 100$ $=1 \times 10^{-2}=0.01 \%$
2. $\mathrm{HA}+\mathrm{OH}^{-} \longrightarrow \mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O}$
0.1 V
0.1 V
0.1 V
$\left[\mathrm{A}^{-}\right]=\frac{0.1 \mathrm{~V}}{2 \mathrm{~V}}=\frac{0.1}{2} \mathrm{M}$,
$\mathrm{pH}=7+\frac{1}{2}\left(\mathrm{pK}_{\mathrm{a}}+\log \mathrm{c}\right)=7+\frac{1}{2}(6-\log 5.6)+$ $\frac{1}{2} \log \left(\frac{0.1}{2}\right) \approx 9$
3.

	$\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{HCI} \longrightarrow \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}+\mathrm{CI}^{-}$.	
Initial moles	0.1	0.08
moles after	0.02	0

0.08 mole in 1 lt reaction

or, $5 \times 10^{-4}=\frac{\left[\mathrm{OH}^{-}\right] \times 0.08}{0.02}$ or, $\left[\mathrm{OH}^{-}\right]=\frac{5}{4} \times 10^{-4}$.
$\because \quad\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]}$or,
$\left[\mathrm{H}^{+}\right]=\frac{10^{-14} \times 4}{5 \times 10^{-4}}=8 \times 10^{-11} \mathrm{M}$.
4. $\mathrm{BOH}+\mathrm{HCl} \longrightarrow \mathrm{BCl}+\mathrm{H}_{2} \mathrm{O}$ (in titration)
$\mathrm{B}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{BOH}+\mathrm{H}^{+}$
For titration

$$
\begin{aligned}
& \mathrm{N}_{\text {acid }} \mathrm{V}_{\text {acid }}=\mathrm{N}_{\text {base }} \mathrm{V}_{\text {base }} \\
& \frac{2}{15} \times \mathrm{V}=2.5 \times \frac{2}{5} \\
& \mathrm{~V}=3 \times 2.5=7.5 \mathrm{~mL}
\end{aligned}
$$

In resulting solution
$\left[\mathrm{B}^{+}\right]=\frac{\frac{2}{5} \times 2.5}{10}=\frac{2}{20}=0.1$
$\mathrm{K}_{\mathrm{h}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{b}}}=\frac{10^{-14}}{10^{-12}}=10^{-2}$
or $K_{h}=\frac{0.1 \mathrm{~h}^{2}}{(1-\mathrm{h})}=10^{-2}$ (solve quadratic equation to get ' h ', as we can't write $1-h \approx 1$ since h is >0.1)
or $\mathrm{h}=0.27$

$$
\left[\mathrm{H}^{+}\right]=0.1 \times 0.27=2.7 \times 10^{-2}
$$

5.

$$
\begin{aligned}
& \text { MX } \quad \mathrm{MX}_{2} \quad \mathrm{M}_{3} \mathrm{X} \\
& \mathrm{~s}_{1}{ }^{2}=4 \times 10^{-8} \quad 4 \mathrm{~s}_{2}{ }^{3}=3.2 \times 10^{-14} \quad 27 \mathrm{~s}_{3}{ }^{4}=2.7 \times 10^{-15} \\
& \mathrm{~s}_{1}=2 \times 10^{-4} \quad \mathrm{~s}_{2}{ }^{3}=8 \times 10^{-15} \quad \mathrm{~s}_{3}{ }^{4}=10^{-16} \\
& \mathrm{~s}_{2}=2 \times 10^{-5} \quad \mathrm{~s}_{3}=10^{-4} \\
& \Rightarrow \quad \mathrm{~s}_{1}>\mathrm{s}_{3}>\mathrm{s}_{2} \\
& \Rightarrow \quad M X>M_{3} \mathrm{X}>\mathrm{MX}_{2} \\
& \text { 6. Given } \mathrm{K}_{\mathrm{a}}=10^{-4} \\
& \mathrm{pK}_{\mathrm{a}}=4 \\
& \mathrm{C}=0.01 \mathrm{M} \\
& \mathrm{pH}=7+\frac{1}{2} \mathrm{pK}_{\mathrm{a}}+\frac{1}{2} \log \mathrm{C}=7+\frac{1}{2}(4)+\frac{1}{2}(-2) \\
& =8 \text { Ans. }
\end{aligned}
$$

7. Basic solutions will convert red litmus blue.

8. (C) $\mathrm{HNO}_{3}+\mathrm{CH}_{3} \mathrm{COONa}$ mixture can act as buffer solution if volume of HNO_{3} solution taken is lesser than volume of $\mathrm{CH}_{3} \mathrm{COONa}$ solution because of following reaction : $\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{HNO}_{3} \longrightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaNO}_{3}$
(D) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONa}$ - mixture will act as buffer.
9. $\operatorname{AgCl}(\mathrm{s}) \rightleftharpoons \mathrm{Ag}^{+}+\mathrm{Cl}^{-} \quad \mathrm{K}_{\text {sp }}(\mathrm{AgCl})=1.6 \times 10^{-10}$
$\mathrm{CuCl}(\mathrm{s}) \rightleftharpoons \underset{\mathrm{Y}}{\mathrm{Cu}^{+}+\mathrm{Cl}^{-}} \quad \mathrm{K}_{\mathrm{sp}}(\mathrm{CuCl})=10^{-6}$ Y $\quad \mathrm{Z}+\mathrm{Y}$

$$
\begin{aligned}
& \mathrm{Z}(\mathrm{Z}+\mathrm{Y})=1.6 \times 10^{-10} \\
& \mathrm{Y}(\mathrm{Z}+\mathrm{Y})=10^{-6} \\
\Rightarrow & (\mathrm{Z}+\mathrm{Y})^{2}=1.6 \times 10^{-10}+10^{-6} \Rightarrow(\mathrm{Z}+\mathrm{Y})^{2} \approx 10^{-6} \\
\Rightarrow & \mathrm{Z}+\mathrm{Y}=10^{-3} \\
\Rightarrow & \mathrm{Z} \times 10^{-3}=1.6 \times 10^{-10} \quad \Rightarrow \mathrm{Z}(\mathrm{Z}+\mathrm{Y})=1.6 \times 10^{-10} \\
\Rightarrow & 1.6 \times 10^{-\mathrm{x}}=1.6 \times 10^{-7} \quad \Rightarrow \mathrm{Z}=1.6 \times 10^{-7} \\
& \Rightarrow \mathrm{x}=7
\end{aligned}
$$

10. As ester hydrolysis is first order with respect to $\left[\mathrm{H}^{+}\right]$.
$\frac{\mathrm{R}_{\mathrm{HA}}}{\mathrm{R}_{\mathrm{HX}}}=\frac{\left[\mathrm{H}^{+}\right]_{\mathrm{HA}}}{\left[\mathrm{H}^{+}\right]_{\mathrm{HX}}}$
$\frac{1}{100}=\left[\mathrm{H}^{+}\right]_{\mathrm{HA}}$
$\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$
$\begin{array}{lll}1-0.01 & 0.01 & 0.01\end{array}$
≈ 1

$$
\mathrm{K}_{\mathrm{a}}=\frac{0.01 \times 0.01}{1}=10^{-4}
$$

11. $\mathrm{MX}_{2} \rightleftharpoons \mathrm{M}^{2+}+2 \mathrm{X}^{-}$
$\mathrm{m}_{0}(1-\alpha) \quad \mathrm{m}_{0} \alpha 2 \mathrm{~m}_{0} \alpha \quad ; \quad \mathrm{m}=\mathrm{m}_{0}(1+2 \alpha)$
$\frac{\left(-\Delta \mathrm{T}_{\mathrm{f}}\right)_{\text {observed }}}{\left(-\Delta \mathrm{T}_{\mathrm{f}}\right)_{\text {undissociated }}}=\mathrm{i}=\frac{\mathrm{m}}{\mathrm{m}_{0}}=2$
12. A, C, D
(A)

(C)

(D)

13.

$$
\mathrm{AB} \rightleftharpoons \mathrm{~A}^{+}+\mathrm{B}^{-}
$$

Solubility

$$
\begin{align*}
& x \quad x \quad x-y \\
& 2 \times 10^{-10}=x(x-y) \tag{1}\\
& B^{-}+H^{+} \rightleftharpoons \mathrm{HB} \\
& x-y \quad 10^{-3} \quad y \\
& 10^{8}=\frac{y}{(x-y) 10^{-3}} \\
& \frac{y}{x-y}=10^{5} \\
& x-y=10^{-5} y \tag{2}
\end{align*}
$$

From(1) \& (2)

$$
\begin{aligned}
& 2 \times 10^{-10}=x^{2}-2 \times 10^{-5} \\
& \mathrm{x}^{2}=2 \times 10^{-5} \\
& \mathrm{x}=\sqrt{20} \times 10^{-3} \\
&=4.47 \times 10^{-3}
\end{aligned}
$$

14.

(P) $\quad \mathrm{NaOH}+\mathrm{CH}_{3} \mathrm{COOH} \longrightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$
M.Mole 1

Now solution contains 1 m mole $\mathrm{CH}_{3} \mathrm{COOH} \& 1 \mathrm{~m}$. mole $\mathrm{CH}_{3} \mathrm{COONa}$ in 30 ml solution. It is a Buffer solution
$\therefore \quad\left[\mathrm{H}^{+}\right]$does not charge with dilution.
(Q) $\mathrm{NaOH}+\mathrm{CH}_{3} \mathrm{COOH} \longrightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$ M.Mole 2

Now solution contains 2 m mole $\mathrm{CH}_{3} \mathrm{COONa}$ in 40 ml solution (salt of weak acid strong base)
$\left[\mathrm{H}^{+}\right]_{\text {initial }}=\sqrt{\frac{\mathrm{K}_{\mathrm{w}} \mathrm{Ka}}{\mathrm{C}}}$
Now on dilution upto 80 ml , now can. Becomes $\frac{C}{2}$
$\therefore \quad\left[\mathrm{H}^{+}\right]_{\text {new }}=\sqrt{\frac{\mathrm{K}_{\mathrm{w}} \mathrm{K}_{\mathrm{a}}}{\mathrm{C} / 2}}=\left[\mathrm{H}^{+}\right]_{\text {initial }} \times \sqrt{2}$

$$
\text { (R) } \quad \mathrm{HCl}+\mathrm{NH}_{3} \longrightarrow \mathrm{NH}_{4} \mathrm{Cl}
$$

M.Mole 2

Now solution contain 2 m . mole of $\mathrm{NH}_{4} \mathrm{Cl}$ in 40 ml solution (salt of SA \& WB)
$\left[\mathrm{H}^{+}\right]_{\text {initial }}=\sqrt{\frac{\mathrm{K}_{\mathrm{w}} \mathrm{C}}{\mathrm{K}_{\mathrm{b}}}}$
Now on dilution upto 80 ml , new conc. becomes $\frac{\mathrm{C}}{2}$
$\therefore \quad\left[\mathrm{H}^{+}\right]_{\text {new }}=\sqrt{\frac{\mathrm{K}_{\mathrm{w}} \mathrm{C}}{\mathrm{K}_{\mathrm{b}} 2}}=\frac{\left[\mathrm{H}^{+}\right]_{\text {initial }}}{\sqrt{2}}$
(S) $\mathrm{Ni}(\mathrm{OH}) 2(\mathrm{~s}) \longrightarrow \mathrm{Ni}^{2+} \quad+2 \mathrm{OH}^{-}$
\because it is sparingly soluble salt
\therefore on dilution $\left[\mathrm{OH}^{-}\right]$conc. is saturated solution of $\mathrm{Ni}(\mathrm{OH}) 2$ remains const.

$$
\therefore\left[\mathrm{H}^{+}\right]_{\text {new }}=\left[\mathrm{H}^{+}\right]_{\text {initial }}
$$

MOCK TEST

2. Conjugate acid base pair are differ by an proton $\left(\mathrm{H}^{+}\right)$.
$\underset{\text { (acid) }}{\mathrm{HF}^{+}} \xrightarrow{-\mathrm{H}^{+}} \underset{\text { (base) }}{\mathrm{HF}}$
3. $\mathrm{K}=\left[\mathrm{HCOOH}_{2}^{+}\right]\left[\mathrm{HCOO}^{-}\right]=10^{-3} \times 10^{-3}=10^{-6}$
4. $\mathrm{K}_{\mathrm{a}}=10^{-6}$ for $\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$

Thus K for reverse reaction is $\frac{1}{10^{-6}}=10^{6}$
9. (A) At $25^{\circ} \mathrm{C},\left[\mathrm{H}^{+}\right]$in a solution of $10^{-8} \mathrm{M} \mathrm{HCl}>10^{-7} \mathrm{M}$.
(B) $\left[\mathrm{H}^{+}\right]=10^{-8} \mathrm{M}$.
(C) $\left[\mathrm{OH}^{-}\right]=4 \times 10^{-6} \mathrm{M} \quad \Rightarrow \quad\left[\mathrm{H}^{+}\right]=2.5 \times 10^{-9} \mathrm{M}$.
(D) $\left[\mathrm{H}^{+}\right]=10^{-9} \mathrm{M}$.
10. (a) HCI

NaOH
No. of mili eq. $=\frac{1}{10} \times 100=10 \quad \frac{1}{10} \times 100=10$
So solution is Neutral
(b) $\frac{1}{10} \times 55=5.5 \quad \frac{1}{10} \times 45=4.5$
$\left[\mathrm{H}^{+}\right]=\frac{1}{100}=10^{-2} \mathrm{M}, \mathrm{pH}=2$
(c) $\frac{1}{10} \times 10=1 \quad \frac{1}{10} \times 90=9$ Basic
(d) $\frac{1}{5} \times 75=15 \quad \frac{1}{5} \times 25=5$

$$
\left[\mathrm{H}^{+}\right]=0.1 \mathrm{M}, \mathrm{pH}=1
$$

12. Concentration of Solutions are same therefore $\left[\mathrm{H}^{+}\right]$ depends only on Dissociation constant.
13. pH of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{~S}$ solution can be derived by :

$$
\mathrm{H}_{2} \mathrm{~S} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HS}^{-} ; \mathrm{K}_{1}=1 \times 10^{-7}
$$

$\therefore \quad\left[\mathrm{H}^{+}\right]=\mathrm{C} \alpha=\mathrm{C} \sqrt{\frac{\mathrm{K}_{1}}{\mathrm{C}}}=\sqrt{\mathrm{K}_{1} \times \mathrm{C}}=\sqrt{1 \times 10^{-7} \times 0.1}$

$$
=\sqrt{10^{-8}}=10^{-4} \quad \therefore \quad \mathrm{pH}=4
$$

15. (A) In 0.6 m M HCOOH solution

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\mathrm{C}-\left[\mathrm{H}^{+}\right]} \Rightarrow 8 \times 10^{-4}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{6 \times 10^{-4}-\left[\mathrm{H}^{+}\right]}
$$

$\therefore \quad\left[\mathrm{H}^{+}\right]=\mathbf{4} \times \mathbf{1 0}^{-4} \mathbf{M}$.
So solution in (A), (C) \& (D) are ISOHYDRIC.
16. (A) $\left[\mathrm{H}^{+}\right]=10^{-2}$ and $\left[\mathrm{OH}^{-}\right]=10^{-2}$
$\mathrm{H}^{+}+\mathrm{OH}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O}$
This leads complete neutralisation
so, $\mathrm{pH}=7=\frac{2+12}{2}$
(D) $\left[\mathrm{H}^{+}\right]=10^{-5}$ and $\left[\mathrm{OH}^{-}\right]=10^{-5}$
$\left[\mathrm{H}^{+}\right]+\left[\mathrm{OH}^{-}\right] \longrightarrow \mathrm{H}_{2} \mathrm{O}$
This leads complete neutralisation
so, $\mathrm{pH}=7=\frac{5+9}{2}$
18. On the basis of ostwald dilution law, number of H^{+}ions will increase but increase in volume will be more. Therefore, $\left[\mathrm{H}^{+}\right]$decreases, pH increases.
20. Since K_{a} of HCN is less than that of HF , so CN^{-}is stronger base than F^{-}
22. Due to common ion effect, $\left[\mathrm{H}^{+}\right]$increases therefore ionization of HCOOH decreased.
24. Since K_{a} of $\mathrm{CH}_{3} \mathrm{COOH} \& \mathrm{~K}_{\mathrm{b}}$ of $\mathrm{NH}_{4} \mathrm{OH}$ are same so degree of hydrolysis of $\mathrm{CH}_{3} \mathrm{COO}^{-} \& \mathrm{NH}_{4}^{+}$are exactly same.
25. (A) $\left[\mathrm{H}^{+}\right]$in HCl solution $=10^{-5} \mathrm{M}$
$\left[\mathrm{H}^{+}\right]$in $\mathrm{H}_{2} \mathrm{~S}$ solution $=\sqrt{\mathrm{K}_{\mathrm{a}} \times \mathrm{C}}=10^{-4} \mathrm{M}$
so $\left[\mathrm{H}^{+}\right]$in HCl solution $<\left[\mathrm{H}^{+}\right]$in $\mathrm{H}_{2} \mathrm{~S}$ solution
\& $\left[\mathrm{OH}^{-}\right]$in HCl solution $>\left[\mathrm{OH}^{-}\right]$in $\mathrm{H}_{2} \mathrm{~S}$ solution
\& degree of dissociation of water in HCl solution $>$ degree of dissociation of water in $\mathrm{H}_{2} \mathrm{~S}$ solution pH of HCl solution $>\mathrm{pH}$ of $\mathrm{H}_{2} \mathrm{~S}$ solution.
(B) At $\mathrm{pH}=4.74$ in $\mathrm{CH}_{3} \mathrm{COOH}$ solution, $\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$
$\therefore \quad$ degree of dissociation of $\mathrm{CH}_{3} \mathrm{COOH}=\frac{1}{2}$
At $\mathrm{pH}=9.26$ i.e. $\mathrm{pOH}=4.74$ in $\mathrm{NH}_{4} \mathrm{OH}$ solution, $\left[\mathrm{NH}_{4}^{+}\right]=\left[\mathrm{NH}_{4} \mathrm{OH}\right]$
\therefore degree of dissociation of $\mathrm{CH}_{3} \mathrm{COOH}=$ degree of dissociation of $\mathrm{NH}_{4} \mathrm{OH}$
degree of dissociation of water in $\mathrm{CH}_{3} \mathrm{COOH}$ solution $>$ degree of dissociation of water in $\mathrm{NH}_{4} \mathrm{OH}$ solution.
(C) $\left[\mathrm{H}^{+}\right]$in $\mathrm{CH}_{3} \mathrm{COOH}$ solution $=\sqrt{1.8 \times 10^{-5} \times 0.1}$

$$
=\sqrt{1.8} \times 10^{-3} \mathrm{M}
$$

$\left[\mathrm{H}^{+}\right]$in HCOOH solution $=\sqrt{1.8 \times 10^{-4} \times 1}$

$$
=\sqrt{1.8} \times 10^{-2} \mathrm{M}
$$

so, degree of dissociation of $\mathrm{CH}_{3} \mathrm{COOH}=$ degree dissociation of HCOOH .
(ID) $\left[\mathrm{H}^{+}\right]$in HA_{1} solution $=\sqrt{10^{-5} \times 0.1}=10^{-3} \mathrm{M}$
$\left[\mathrm{H}^{+}\right]$in HA_{2} solution $=\sqrt{10^{-6} \times 0.01}=10^{-4} \mathrm{M}$
so $\left[\mathrm{OH}^{-}\right]$in solution of $\mathrm{HA}_{1}<\left[\mathrm{OH}^{-}\right]$in solution of HA_{2} pH in solution of $\mathrm{HA}_{1}<\mathrm{pH}$ in solution of HA_{2}
\& degree of dissociation of water $\mathrm{HA}_{1}<$ degree of dissociation of water HA_{2}.
27. (i) $\mathrm{CH}_{3} \mathrm{COOH}=0.2 \mathrm{M}$
$\left[\mathrm{H}^{+}\right]=\sqrt{\mathrm{K}_{\mathrm{a}} \times \mathrm{C}}=\sqrt{2 \times 10^{-5} \times 0.2}=\sqrt{4 \times 10^{-6}}$ $=2 \times 10^{-3}$
$\mathrm{pH}=3-\log 2=\mathbf{2 . 7}$
$\mathrm{C} \alpha=\left[\mathrm{H}^{+}\right] \Rightarrow \alpha=\frac{2 \times 10^{-3}}{2 \times 10^{-1}} \Rightarrow \alpha=\mathbf{0 . 0 1}$
(ii) $\mathrm{HCI} \longrightarrow \mathrm{H}^{+}+\mathrm{CI}^{-}$
$0.1 \quad 0.1 \quad 0.1$
$\left[\mathrm{H}^{+}\right]=0.1 \quad \mathrm{pH}=1$
$\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$

0.2	O	0.1
$0.2(1-\alpha)$	0.2α	$0.1+0.2 \alpha=0.1$
$\mathrm{~K}_{\mathrm{a}}=\frac{0.2 \alpha \times 0.1}{0.2}=2 \times 10^{-5}$	$\alpha=2 \times 10^{-4}$	

(iii) $\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=0.2 \times 2 \times 10^{-4}=\mathbf{4} \times \mathbf{1 0}^{-5}$
(iv) $\%$ change in $\alpha=\frac{1 \times 10^{-2}-2 \times 10^{-4}}{1 \times 10^{-2}} \times 100$

$$
=\left\lfloor\left. 1-\frac{2}{100} \right\rvert\, \times 100=\mathbf{9 8} \%\right.
$$

28. $\mathrm{HA}+\mathrm{NaOH} \rightarrow \mathrm{NaA}+\mathrm{H}_{2} \mathrm{O}$; or $\mathrm{HA}+\mathrm{OH}^{-} \rightarrow \mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{K}_{\mathrm{eq}} .=10^{9}=\frac{\left[\mathrm{A}^{-}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{[\mathrm{HA}]\left[\mathrm{OH}^{-}\right]}
$$

Also

$$
\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-} \quad \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

$\therefore \quad \frac{\mathrm{K}_{\mathrm{eq}}}{\mathrm{K}_{\mathrm{a}}}=\frac{1}{\mathrm{~K}_{\mathrm{w}}}$ or $\mathrm{K}_{\mathrm{a}}=10^{9} \times 10^{-14}=10^{-5} \quad$ Thus for

$$
\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HA}+\mathrm{OH}
$$

$\left[\mathrm{OH}^{-}\right]=\mathrm{Ch}=\mathrm{C} \sqrt{\frac{\mathrm{K}_{\mathrm{H}}}{\mathrm{C}}}=\sqrt{\frac{\mathrm{K}_{\mathrm{w}} \mathrm{C}}{\mathrm{K}_{\mathrm{a}}}}=\sqrt{\frac{10^{-14} \times 0.1}{10^{-5}}}=10^{-5} \mathrm{M}$
$\therefore \quad\left[\mathrm{H}^{+}\right]=10^{-}$and $\mathrm{pH}=9$
30. $\mathrm{Asc}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HAsc}+\mathrm{OH}^{-}$

$$
\begin{aligned}
\therefore \quad\left[\mathrm{OH}^{-}\right] & =\mathrm{C} \cdot \mathrm{~h}=\mathrm{C} \sqrt{\frac{\mathrm{~K}_{\mathrm{h}}}{\mathrm{C}}}=\sqrt{\mathrm{K}_{\mathrm{h}} \cdot \mathrm{C}}=\sqrt{\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{a}}} \cdot \mathrm{C}} \\
& =\sqrt{\frac{10^{-14} \times 0.02}{5 \times 10^{-5}}}=2 \times 10^{-6}
\end{aligned}
$$

$$
\therefore \quad\left[\mathrm{H}^{+}\right]=\frac{1 \times 10^{-14}}{2 \times 10^{-6}}=5 \times 10^{-9} \mathrm{M}
$$

Also $\quad h=\sqrt{\left[\frac{K_{h}}{C}\right]}=\sqrt{\frac{K_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}} \times \mathrm{C}}}=\sqrt{\frac{10^{-14}}{5 \times 10^{-5} \times 0.02}}$

$$
=10^{-4} \text { or } 0.01 \%
$$

