

# **SOLVED EXAMPLES**

**DCAM** classes

Dynamic Cl

**Ex.1** From the following data at 25°C

# Reaction $\Delta r \ H^0/KJ \ mol^{-1}$ $1/2 \ H_2(g) + 1/2O_2(g) \rightarrow OH(g)$ 42.09 $H_2(g) + 1/2O_2(g) \rightarrow H_2O(g)$ -241.84 $H_2(g) \rightarrow 2H(g)$ 435.88 $O_2(g) \rightarrow 2O(g)$ 495.04

Calculate  $\Delta_r H^\circ$  for the following reactions

(a)  $OH(g) \rightarrow H(g) + O(g)$ 

**(b)**  $H_2O(g) \rightarrow 2H(g) + O(g)$ 

(c)  $H_2O(g) \rightarrow H(g) + OH(g)$ 

**Sol.** (a) The desired equation is

 $OH(g) \rightarrow H(g) + O(g)$ 

We are to develop the desired equation by using the four given equations

(i) 
$$\frac{1}{2}H_2(g) \rightarrow H(g)$$
  $\Delta_r H^\circ = \frac{435.88}{2}$   
(ii)  $OH(g) \rightarrow \frac{1}{2}H_2(g) + \frac{1}{2}O_2(g)$   $\Delta_r H^\circ = -42.09$   
(iii)  $\frac{1}{2}O_2(g) \rightarrow O(g)$   $\Delta_r H^\circ = \frac{495.04}{2}$   
By adding equation (i), (ii) & (iii),  
we get  
 $OH(g) \rightarrow H(g) + O(g)$   
 $\Delta_r H^\circ \rightarrow \frac{435.88}{2} - 42.09 + \frac{495.04}{2}$   
or  $\Delta_r H^\circ = 423.37 \text{ kJ/mol.}$  Ans.  
(b) The desired equation is  
 $H_2O(g) \rightarrow 2H(g) + O(g)$   
(i)  $\frac{1}{2}O_2(g) \rightarrow O(g)$   $\Delta_r H^\circ = \frac{495.04}{2}$   
(ii)  $H_2(g) \rightarrow 2H(g)$   $\Delta_r H^\circ = 435.88$   
(iii)  $H_2O(g) \rightarrow H_2(g) + \frac{1}{2}O_2(g)$   $\Delta_r H^\circ = 241.88$   
The net equation is,  
 $H_2O(g) \rightarrow 2H(g) + O(g)$   $\Delta_r H^\circ = 925.28 \text{ kJ/mol}$  Ans.  
(c) The desired equation is  
 $H_2O(g) \rightarrow H(g) + OH(g)$ 

| (i) $H_2O(g) \rightarrow 2H(g) + O(g)$ | $\Delta_{\rm r} {\rm H}^{\circ} = 925.28  {\rm kJ/mol}$       |
|----------------------------------------|---------------------------------------------------------------|
| (ii) $H(g) + O(g) \rightarrow OH(g)$   | $\Delta_r H^\circ = 423.37 \text{ kJ/mol}$                    |
| By adding eq <sup>n</sup> (i) and (ii) |                                                               |
| $H_2O(g) \rightarrow H(g) + OH(g)$     | $\Delta_{\rm r} {\rm H}^{\circ} = 1348.65  {\rm kJ/mol}$ Ans. |

**Ex.2** From the given data prove that graphite is more stable allotrope of carbon than diamond from the given data

Sol.



since heat content of diamond > graphite Therefore diamond is less stable than graphite.

Ex. 3 Calculate  $\Delta_r H^\circ$  for the reaction  $Ag^+(aq) + C\Gamma^-(aq) = AgCl(s) \text{ at } 25^\circ C.$ Given :  $\Delta_r H^\circ (Ag^+, aq) = 105.58 \text{ kJ mol}^{-1},$   $\Delta_r H^\circ (C\Gamma^-, aq) = -167.16 \text{ kJ mol}^{-1} \text{ and } \Delta_r H^\circ$   $(AgCl, s) = -127.07 \text{ kJ mol}^{-1}$ Sol. For the reaction  $Ag^+(aq) + C\Gamma^-(aq) \rightarrow AgCl(s)$ We have  $\Delta_r H^\circ = (AgCl, s) - \Delta_r H^\circ (Ag^+, aq) - \Delta_r H^\circ (C\Gamma^-, aq)$  = [-127.07 - 105.58 - (-167.16)] $= -65.49 \text{ kJ mol}^{-1}$ 

Н

0

**Ex.4** Using bond enthalpy data given below, estimate enthalpy of formation of acetic acid.

| Bond                    | Bond enthalpies              |
|-------------------------|------------------------------|
| С – Н                   | $413.38 \text{ kJ mol}^{-1}$ |
| C - C                   | $347.69 \text{ kJ mol}^{-1}$ |
| C = O                   | $728.02 \text{ kJ mol}^{-1}$ |
| C – O                   | $351.46 \text{ kJ mol}^{-1}$ |
| O – H                   | $462.75 \text{ kJ mol}^{-1}$ |
| Enthalpy of atomization |                              |
| С                       | 718.39 kJ atom <sup>-1</sup> |

The observed  $\Delta_{\rm c}$  H° for acetic acid is -438.15 kJ mol<sup>-1</sup>. Compute the resonance energy of acetic acid.

217.94 kJ atom<sup>-1</sup>

<u>247.52 kJ atom<sup>-1</sup></u>

Sol. The desired reaction for the formation of CH<sub>2</sub>COOH is  $2C(s) + 2H_2(g) + O_2(g) \rightarrow CH_3COOH(\ell)$  $\Delta_{\rm L} {\rm H}^{\rm o} = -3 \times 413.38 - 1 \times 347.69 - 728.02 - 351.46 - 462.75 + 2 \times 718.39 + 4 \times 217.94 + 2 \times 247.52$  $= -326.48 \text{ kJ mol}^{-1}$ Resonance energy  $=\Delta H^{\circ}_{obc} - \Delta H^{\circ}$ =-438.15+326.48  $=-111.67 \text{ kJ mol}^{-1}$ **Ex.5** At 25° C, 1 mole MgSO<sub>4</sub> was dissolved in water. The heat evolved was found to be 91.211 kJ. One mole of MgSO<sub>4</sub>. 7H<sub>2</sub>O on dissolution gives a solution of the same composition accompained by an absorption of 13.807 kJ. Find the enthalpy of hydration, i.e.,  $\Delta H$  for the reaciton  $MgSO_4(s) + 7H_2O(\ell) \rightarrow MgSO_4 \cdot 7H_2O(s)$ Given that (i) MgSO<sub>4</sub> (s) + aq  $\rightarrow$  MgSO<sub>4</sub> (aq)  $\Delta H_1 = -91.211 \text{ kJ mol}^{-1}$ (ii) MgSO<sub>4</sub>. 7H<sub>2</sub>O (s) + aq  $\rightarrow$  MgSO<sub>4</sub> (aq)  $\Delta_{\rm r} {\rm H}_2 = +13.807 \, {\rm kJ \, mol^{-1}}$  $\Delta_{\rm r} {\rm H}_2 = +13.807 \, {\rm kJ \, mol^{-1}}$ Sol.  $MgSO_4$ .  $7H_2O(s) + aq \rightarrow MgSO_4(aq)$ .....(ii) Equation (i) can be written as follows :  $\Delta H = -91.211 \text{ kJ mol}^{-1}$  $MgSO_4(s) + 7H_2O(\ell) + aq \rightarrow MgSO_4(aq)$ .....(iii) eqn (iii) – (ii) will give  $MgSO_4(s) + 7H_2O(\ell) \rightarrow MgSO_4.7H_2O(s)$  $\Delta_{\rm r}$ H = -91.211 - 13.807 = -105.018 kJ mol<sup>-1</sup>. Enthalpy of neutralization of HCl by NaOH is -57.32 kJ mol<sup>-1</sup> and by NH<sub>4</sub>OH is -51.34 kJ mol<sup>-1</sup>. Calculate the **Ex.6** enthalpy of dissociation of NH<sub>4</sub>OH. Sol. Given that  $\Delta H = -51.34 \text{ kJ mol}^{-1}$  $H^+(aq) + NH_4OH(aq) \rightarrow NH_4^+(aq) + H_2O(\ell)$ we may consider neutralization in two steps : (i) ionization  $NH_4OH(aq) \rightarrow NH_4^+(aq) + OH^-(aq) \Delta_r H_1?$ (ii) neutralization  $\Delta_{\rm r} {\rm H}_2 = -57.32 \, {\rm kJ \, mol^{-1}}$  $H^+(aq) + OH^-(aq) \rightarrow H_2O(\ell)$ Thus,  $\Delta_r H = \Delta_r H_1 + \Delta_r H_2$ Therefore,  $\Delta_r H_1 = \Delta_r H - \Delta_r H_2$ =-51.34+57.32=5.98 kJ/mol<sup>-1</sup> Ex. 7 The enthalpy of formation of ethane, ethylene and benzene from the gaseous atoms are -2839.2, -2275.2 and -5536 kJ mol<sup>-1</sup> respectively. Calculate the resonance energy of benzene, compared with Kekule structure. The bond enthalpy of C – H bond is given as equal to 410.87 kJ mol<sup>-1</sup>.

**Sol.** Bond enthalpy of C - C bond

= Enthalpy required to break  $C_2H_6$  into gaseous atoms  $-6 \times$  bond enthalpy of C – H bond = 2839.2 kJ mol<sup>-1</sup> –  $6 \times 410.87$  kJ mol<sup>-1</sup> = 373.98 kJ mol<sup>-1</sup>

Bond enthalpy of C = C bond = Enthalpy required to break  $C_2H_4$  into gaseous atoms  $-4 \times$  bond enthalpy of C - H bond

 $= 2275.2 \text{ kJ mol}^{-1} - 4 \times 410.87 \text{ kJ mol}^{-1}$  $= 631.72 \text{ kJ mol}^{-1}$ 

For the formation of benzene having Kekule structure, we have to form 3 C - C bonds, 3 C = C bonds and 6 C - Hbonds for which enthalpy released is

[3(-373.98)+3(-631.72)+6(-410.87)]

=-5482.32 kJ mol<sup>-1</sup>

But the given value of  $\Delta_{t}H$  is

 $\Delta_{\rm f}$ H (actual) = -5536 kJ mol<sup>-1</sup>

Hence resonance energy compared to Kekule structure

$$= \Delta_{\rm f} {\rm H} ({\rm actual}) - \Delta_{\rm f} {\rm H} ({\rm Kekule \ structure})$$
$$= (-5536 + 5482.32)$$
$$= -53.68 \text{ kJ mol}^{-1}$$

The specific heats of iodine vapour and solid are 0.031 and 0.055 cal/g respectively. If heats of sublimation of iodine **Ex.8** is 24 cal/g at 200°C, what is its value at 250°C?

Sol. Given

$$\begin{split} I_{2_{(s)}} &\longrightarrow I_{2_{(v)}}; & \Delta H = 24 \text{ cal/g at } 200^{\circ}\text{C} \\ \Delta C_{P(\text{cal/g})} &= C_{P} \text{ of product} - C_{P} \text{ of reatant} \\ &= 0.031 - 0.055 \\ &= -0.024 \text{ cal/g} \\ \text{Now} & \Delta H_{2} - \Delta H_{1} = \Delta C_{P} (T_{2} - T_{1}) \\ & \Delta H_{2} - 24 = -0.024 \times (523 - 473) \\ \therefore & \Delta H_{2} = 24 - 1.2 = 22.8 \text{ cal/g.} \end{split}$$

When 2 mole of  $C_2H_{6_{(g)}}$  are completely burnt, 3129 kJ of heat is liberated. Calculate the heat of formation of **Ex.9**  $C_2H_{6_{(g)}}$ . $\Delta H_f$  for  $CO_{2_{(g)}}$  and  $H_2O_{(I)}$  are -395 and -286 kJ mol<sup>-1</sup> respectively.

Sol. We have to find

|        | $2C(s) + 3H_{2_{(g)}} \rightarrow C_2H_{6_{(g)}};$         | $\Delta H = ?$               | (1) |
|--------|------------------------------------------------------------|------------------------------|-----|
| Given, | $C_{(s)}^{} + O_{2_{(g)}}^{} \rightarrow CO_{2_{(g)}}^{};$ | $\Delta H = -395 \text{ kJ}$ | (2) |

| $H_{2_{(g)}} + \frac{1}{2}O_{2_{(g)}} \rightarrow H_2O_{(l)};$ | $\Delta H = -286 \text{ kJ}$ . | (3) |
|----------------------------------------------------------------|--------------------------------|-----|
|----------------------------------------------------------------|--------------------------------|-----|

$$C_2H_{6_{(g)}} + \frac{7}{2}O_{2_{(g)}} \rightarrow 2CO_{2_{(g)}} + 3H_2O_{(I)}; \qquad \Delta H = -\frac{3129}{2}kJ = -1564.5 kJ \qquad \dots (4)$$

Multiplying Eq. (2) by 2 and Eq. (3) by 3, then adding

$$2C_{(s)} + 3H_{2_{(g)}} + \frac{7}{2}O_{2_{(g)}} \to 2CO_{2_{(g)}} + 3H_2O_{(l)}; \qquad \Delta H = -1648 \text{ kJ} \qquad \dots (5)$$

Subtracting Eq. (4) from Eq. (5)

C<sub>2</sub>H<sub>6<sub>(g)</sub></sub> + 
$$\frac{7}{2}$$
O<sub>2<sub>(g)</sub></sub> → 2CO<sub>2<sub>(g)</sub></sub> + 3H<sub>2</sub>O<sub>(l)</sub>; ΔH = -1564.5 kJ +

$$2C_{(s)} + 3H_{2_{(g)}} \rightarrow C_2 H_{6_{(g)}};$$
  $\Delta H = -83.5 \text{ kJ}$   
:  $\Delta H_f \text{ of } C_2 H_6 = -83.5 \text{ kJ}$ 

**Ex. 10** The molar heat of formation of  $NH_4NO_{3_{(s)}}$  is -367.54 kJ and those of  $N_2O_{(g)}$ ,  $H_2O_{(l)}$  are 81.46 and -285.8 kJ respectively at 25°C and 1 atmosphere pressure. Calculate  $\Delta H$  and  $\Delta E$  of the reaction  $NH_4NO_{3_{(s)}} \longrightarrow N_2O_{(g)} + 2H_2O_{(l)}$ 

**Sol.** We have to find 
$$\Delta H$$
 for

$$\begin{split} \mathrm{NH}_{4}\mathrm{NO}_{3_{(g)}} &\longrightarrow \mathrm{N}_{2}\mathrm{O}_{(g)} + 2\mathrm{H}_{2}\mathrm{O}_{(1)}; \ \Delta\mathrm{H} = ? \\ & \Delta\mathrm{H}_{\mathrm{reaction}} = \Delta\mathrm{H}_{\mathrm{Products}} - \Delta\mathrm{H}_{\mathrm{Reactants}} \\ &= \Delta\mathrm{H}_{\mathrm{N}_{2}\mathrm{O}} + \Delta\mathrm{H}_{\mathrm{H}_{2}\mathrm{O}} \times 2 - \Delta\mathrm{H}_{\mathrm{NH}_{4}\mathrm{NO}_{3}} \\ \\ \mathrm{Given}, \ \Delta\mathrm{H}_{\mathrm{N}_{2}\mathrm{O}} = +81.46 \ \mathrm{kJ}, \ \Delta\mathrm{H}_{\mathrm{H}_{2}\mathrm{O}} = -285.8 \ \mathrm{kJ}, \ \Delta\mathrm{H}_{\mathrm{NH}_{4}\mathrm{NO}_{3}} = -367.54 \ \mathrm{kJ} \\ \\ \therefore \ \Delta\mathrm{H}_{\mathrm{reaction}} = +81.46 + 2(-285.8) - (-367.54) \\ \Delta\mathrm{H} = -122.6 \ \mathrm{kJ} \\ \\ \mathrm{Further} \ \Delta\mathrm{H} = \Delta\mathrm{E} + \Delta\mathrm{n}\mathrm{R}\mathrm{T} \qquad (\Delta\mathrm{n} = 1 - 0 = 1, \mathrm{R} = 8.314 \ \mathrm{J}, = 298 \ \mathrm{K}) \\ \\ \therefore \ -122.6 \times 10^{3} = \Delta\mathrm{E} + 1 \times 8.314 \times 298 \\ \\ \therefore \ \Delta\mathrm{E} = -125077 \ \mathrm{joule} \\ &= 125.077 \ \mathrm{kJ} \end{split}$$

**Ex. 11**  $\Delta$ H for combustion of ethane and ethyne are -341.1 and -310.0 kcal respectively. Which is better gas welder and why? **Sol.** A better gas welder is one which posses high calorific value, i.e., heat produced by 1 g of fuel.

$$\Delta H_{\text{combustion}} \text{ for } C_2 H_6 = -341.1 \text{ kcal}$$
  

$$\therefore \qquad \text{Calorific value} = \frac{-341.1}{30} \text{ kcal/g} = -11.37 \text{ kcal/g}$$
  

$$\Delta H_{\text{combustion}} \text{ for } C_2 H_2 = -310.0 \text{ kcal}$$
  

$$\therefore \qquad \text{Calorific value} = \frac{-310.0}{26} \text{ kcal/g} = -11.92 \text{ kcal/g}$$
  

$$\therefore \qquad C_2 H_2 \text{ is better gas welder.}$$

**Ex. 12** The heats of combustion of  $C_2H_{4_{(g)}}$ ,  $C_2H_{6_{(g)}}$  and  $H_{2_{(g)}}$  are -1409.5, -1558.3 and -285.6 kJ respectively. Calculate heat of hydrogenation of ethylene.

**Sol.** We have to find

$$C_2H_{4_{(g)}} + H_{2_{(g)}} \to C_2H_{6_{(g)}}; \qquad \Delta H = ?$$

Given, 
$$C_2H_{4_{(g)}} + 3O_{2_{(g)}} \rightarrow 3CO_{2_{(g)}} + 2H_2O_{(g)};$$

$$C_2H_6 + \frac{7}{2}O_{2_{(g)}} \rightarrow 2CO_{2_{(g)}} + 3H_2O_{(g)}; \qquad \Delta H = -1558.3 \text{ kJ} \qquad \dots (2)$$

 $\Delta H = -1409.5 \text{ kJ}$ 

.....(1)

$$H_2 + \frac{1}{2}O_{2_{(g)}} \to H_2O_{(g)}; \qquad \Delta H = -285.6 \text{ kJ} \qquad \dots (3)$$

Adding Eqs. (1) and (3)

$$C_2H_{4_{(g)}} + \frac{7}{2}O_{2_{(g)}} + H_{2_{(g)}} \rightarrow 2CO_{2_{(g)}} + 3H_2O_{(g)}; \quad \Delta H = -1695.1 \text{ kJ} \quad \dots (4)$$

Subtracting Eq. (2) from (4)

$$C_{2}H_{6_{(g)}} + \frac{7}{2}O_{2_{(g)}} \to 2CO_{2_{(g)}} + 3H_{2}O_{(g)}; \qquad \Delta H = -1558.3 \text{ kJ} \qquad \dots \dots (5)$$

$$C_{2}H_{4_{(g)}} + H_{2_{(g)}} \rightarrow C_{2}H_{6_{(g)}}; \qquad \Delta H = -136.8 \text{ kJ}$$

 $\therefore$  Heat of hydrogenation of C<sub>2</sub>H<sub>4</sub> = 136.8 kJ

- Ex. 13 The heat of formation of methane is -17.9 kcal. If the heats of atomisation of carbon and hydrogen are 170.9 and 52.1 kcal per mole, calculate the C–H bond energy in methane.
- Sol. Given that

 $C(s) + 2H_2(g) \rightarrow CH_4(g);$   $\Delta H = -17.9 \text{ kcal}$ 

Energy change in reactants :

Heat of atomisation of 1 mole of C = 170.9 kcal

Heat of atomisation of 4 moles of  $H = 4 \times 52.1$  kcal

Energy change in product :

Heat of formation of 4 moles of C–H bonds =  $4 \times x$  kcal.

(where x is the energy of formation of C–H bonds in kcal/mole).

Since the algebraic sum of all the heat changes is equal to the heat of formation of the above given equation,

we have

 $170.9 + 4 \times 52.1 + 4x = -17.9$ ; x = -99.3 kcal

Thus the bond energy = +99.3 kcal/mole

Ex. 14 Calculate the heat of formation of benzene from the following data, assuming no resonance. Bond energies :

C-C = 83 kcal, C=C = 140 kcal, C-H = 99 kcal

Heat of atomisation of C = 170.9 kcal

Heat of atomisation of H = 52.1 kcal

**Sol.** We have to calculate  $\Delta H$  for the reaction

$$6C(s) + 3H_2(g) \rightarrow C_6H_6(g)$$

$$C \qquad C \qquad \Delta H = ?$$

For reactants :

Heat of atomisation of 6 moles of  $C = 6 \times 170.9$  kcal

Heat of atomisation of 6 moles of  $H = 6 \times 52.1$  kcal

For products :

Heat of formation of 6 moles of C - H bonds =  $-6 \times 99$ 

Heat of formation of 3 moles of C - C bonds =  $-3 \times 83$ 

Heat of formation of 3 moles of C = C bonds  $= -3 \times 140$ 

On adding, we get heat of formation of  $C_6H_6$ , i.e.,

 $\Delta H = 6 \times 170.9 + 6 \times 52.1 - 6 \times 99 - 3 \times 83 - 3 \times 140 = 75.0$  kcal.



| 10. | The standard heat of combustion o<br>(A) $\Delta H^{\circ}_{f}(B_2O_3)$ (B) 1/2 4                                                                                                                                                                                                                                                                                                   | f solid boron is equal to $AH^{\circ}_{f}(B_2O_3)$ (C) 2                                                                                                              | D:<br>$2\Delta H^{o}_{f}(B_{2}O_{3})$                                                    | <b>(D)</b> $1/2 \Delta H^{\circ}_{f}(B_2O_3)$                                               |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 11. | <ul><li>The following is (are) endothermic</li><li>(A) Combustion of methane.</li><li>(C) Dehydrogenation of ethane to</li></ul>                                                                                                                                                                                                                                                    | reaction(s):<br>(B)<br>ethylene.<br>(D)                                                                                                                               | Rusting of iron<br>Making ice cubes                                                      |                                                                                             |
| 12. | In the reaction $CS_2(\ell) + 3O_2(g)$ —<br>The enthalpies of formation of $CO_2$<br>$CS_2$ is +26kcal/mol. Calculate the ent<br>(A) -90 kcal/mol (B) -52                                                                                                                                                                                                                           | $ \longrightarrow CO_2(g) + 2SO_2(g) $ and SO <sub>2</sub> are both negative thalpy of formation of S kcal/mol (C) -                                                  | $\Delta H = -265$ kcal<br>ve and are in the ratio 4<br>SO <sub>2</sub> .<br>-78 kcal/mol | : 3. The enthalpy of formation of <b>(D)</b> – 71.7 kcal/mol                                |
| 13. | If $S + O_2 \longrightarrow SO_2$ , $\Delta H = -298.2$<br>$SO_2 + 1/2 O_2 \longrightarrow SO_3 \Delta H = -98$<br>$SO_3 + H_2O \longrightarrow H_2SO_4$ , $\Delta H = -1$<br>$H_2 + 1/2 O_2 \longrightarrow H_2O$ , $\Delta H = -287$<br>the enthalpy of formation of $H_2SO_4$<br>(A) $-814.4 \text{ kJ mol}^{-1}$ (B) $+81$                                                      | kJ mole <sup>-1</sup><br>.7 kJ mole <sup>-1</sup><br>30.2 kJ mole <sup>-1</sup><br>7.3 kJ mole <sup>-1</sup><br>at 298 K will be -<br>4.4 kJ mole <sup>-1</sup> (C) - | – 650.3 kJ mole <sup>-1</sup>                                                            | <b>(D)</b> – 433.7 kJ mole <sup>-1</sup>                                                    |
| 14. | When a certain amount of ethylene 1411 kJ, the volume of $O_2$ (at NTP)<br>(A) 296.5 ml (B) 296.                                                                                                                                                                                                                                                                                    | was combusted, 6226 k.<br>that entered into the rea<br>3 L (C) e                                                                                                      | J heat was evolved. If h<br>action is :<br>6226 × 22.4 L                                 | ( <b>D</b> ) 22.4 L                                                                         |
| 15. | One mole of anhydrous $MgCl_2$ diss<br>Heat of dissolution of $MgCl_2.H_2O$ i<br>(A)+5 cal/mol (B)-5 c                                                                                                                                                                                                                                                                              | olves in water and librates<br>s<br>al/mol (C) \$                                                                                                                     | es 25 cal/mol of heat. ∆<br>55 cal/mol                                                   | $H_{hydration}$ of $MgCl_2 = -30$ cal/mol.<br>( <b>D</b> ) -55 cal/mol                      |
| 16. | If heat of dissociation of $CHCl_2COO$<br>$CHCl_2COOH+KOH \longrightarrow CHCl_2$<br><b>(A)</b> -13 kcal <b>(B)</b> +13                                                                                                                                                                                                                                                             | DH is 0.7 kcal/mole then<br>COOK + H <sub>2</sub> O<br>kcal (C)-                                                                                                      | $\Delta H$ for the reaction :<br>- 14.4 kcal                                             | <b>(D)</b> – 13.7 kcal                                                                      |
| 17. | Enthalpy of neutralization of $H_3PO_3$<br>is -55.84 kJ/mol. Calculate $\Delta H_{ionizati}$<br>(A) 50.84 kJ/mol (B) 5 kJ/mol                                                                                                                                                                                                                                                       | acid is $-106.68 \text{ kJ/mol us}$<br>$_{\text{m}} \text{ of H}_{3} \text{PO}_{3} \text{ into its ions :}$<br>$_{\text{mol}} \text{ (C) 2}$                          | sing NaOH. If enthalpy<br>:<br>2.5 kJ/mol                                                | of neutralization of HCl by NaOH<br>( <b>D</b> ) None of these                              |
| 18. | If CH <sub>3</sub> COOH + OH <sup>-</sup> $\rightarrow$ CH <sub>3</sub> COO <sup>-</sup> +<br>H <sup>+</sup> + OH <sup>-</sup> $\rightarrow$ H <sub>2</sub> O + q <sub>2</sub><br>then the enthalpy change for the re<br>CH <sub>3</sub> COOH $\rightarrow$ CH <sub>3</sub> COO <sup>-</sup> + H <sup>+</sup> is eq<br>(A) (q <sub>1</sub> + q <sub>2</sub> ) (B) (q <sub>1</sub> - | $H_2O + q_1$<br>action<br>ual to<br>$-q_2$ ) (C)                                                                                                                      | $(q_2 - q_1)$                                                                            | <b>(D)</b> – $(q_1 + q_2)$                                                                  |
| 19. | Heat of hydrogenation of ethene is<br>(A) $x_1 - x_2$ (B) $x_1 +$                                                                                                                                                                                                                                                                                                                   | $x_1$ and that of benzene $x_2$ (C)                                                                                                                                   | is $x_2$ . Hence, resonance $3x_1 - x_2$                                                 | e energy is :<br>( <b>D</b> ) $x_1 - 3x_2$                                                  |
| 20. | AB, $A_2$ and $B_2$ are diatomic in<br>1 : 1 : 0.5 and enthalpy of formation<br>(A) 400 kJ/mol (B) 200                                                                                                                                                                                                                                                                              | nolecules. If the box<br>of AB from $A_2$ and $B_2$<br>kJ/mol (C)                                                                                                     | nd enthalpies of A <sub>2</sub><br>is – 100 kJ/mol <sup>–1</sup> . Wha<br>100 kJ/mol     | AB & B <sub>2</sub> are in the ratio<br>t is the bond enthalpy of $A_2$ .<br>(D) 300 kJ/mol |
| 21. | The bond dissociation energy respectively. The enthalpy of formation $(A) - 44.0$ kcal $(B) - 22.0$ kc                                                                                                                                                                                                                                                                              | y of gaseous $H_2$ , C<br>tion for HCl gas will be<br>al (C)                                                                                                          | 21 <sub>2</sub> and HCl are 10<br>22.0 kcal                                              | <ul> <li>04, 58 and 103 kcal mol<sup>-1</sup></li> <li>(D) 44.0 kcal</li> </ul>             |

22. In Haber's process of manufacturing of ammonia :

23.

24.

25.

26.

 $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g); H^0_{25^\circ C} = -92.2 \text{ kJ}$ Molecule  $N_2(g)$  $H_2(g)$  $NH_3(g)$ C<sub>p</sub> JK<sup>-1</sup> mol<sup>-1</sup> 29.1 28.8 35.1 If  $C_p$  is independent of temperature, then reaction at 100°C as compared to that of 25°C will be : (A) More endothermic **(B)** Less endothermic (C) More exothermic (D) Less exothermic From the following data of  $\Delta H$ , of the following reactions,  $C(s) + \frac{1}{2}O_2(g) \longrightarrow CO(g)$  $\Delta H = -110 \text{ kJ}$  $C(s) + H_2O(g) \longrightarrow CO(g) + H_2(g)$  $\Delta H = 132 \text{ kJ}$ What is the mole composition of the mixture of steam and oxygen on being passed over coke at 1273 K, to maintain constant temperature : (A) 0.5:1 (C) 0.8:1 **(B)** 1:0.6 **(D)**1:1 When 12.0 g of carbon reacted with limited quantity of oxygen, 57.5 kcal of heat was produced, Calculate the number of moles of CO produced  $(\Delta_{\rm f} H (\rm CO_2) = -94.05 \text{ kcal}, \Delta_{\rm f} H (\rm CO) = -21.41 \text{ kcal}.$ (A) 0.54 mol (B) 0.46 mol (C) 0.64 mol (D) 0.74 mol The standard enthalpy of formation of FeO & Fe<sub>2</sub>O<sub>3</sub> is -65 kcal mol<sup>-1</sup> and -197kcalmol<sup>-1</sup> respectively. A mixture of two oxides contains FeO & Fe<sub>2</sub>O<sub>3</sub> in the mole ratio 2:1. If by oxidation, it is changed into a 1:2 mole ratio mixture, how much of thermal energy will be released per mole of the initial mixture ? (A) 13.4 kcal/mole (B) 14.6 kcal/mole (C) 15.7 kcal/mole (D) 16.8 kcal/mole In the reaction  $AB_2(\ell) + 3X_2(g) \rightleftharpoons AX_2(g) + 2BX_2(g) \Delta H = -270$  kcal per mol. of  $AB_2(\ell)$ , the enthalpies of formation of AX<sub>2</sub>(g) & BX<sub>2</sub>(g) are in the ratio of 4 : 3 and have opposite sign. The value of  $\Delta H_{f}^{0}$  $(AB_2(\ell)) = +30$  kcal/mol. Then (A)  $\Delta H_{f}^{0}(AX_{2}) = -96 \text{ kcal/mol}$ **(B)**  $\Delta H_{f}^{0}(BX_{2}) = +480 \text{ kcal/mol}$ 

**27.** Look at the following diagram :



The enthalpy change for the reaction  $A \rightarrow B$  will be (A) -25 kJ (B) -40 kJ

(C)  $K_{p} = K_{c} \& \Delta H_{f}^{0} (AX_{2}) = +480 \text{ kcal /mol}$ 

**(D)** $-65 \, \text{kJ}$ 

**(D)**  $K_{p} = K_{c} RT \& \Delta H_{f}^{0} (AX_{2}) + \Delta H_{f}^{0} (BX_{2}) = -240 \text{ kcal/mol}$ 

**28.** The difference between  $\Delta$ H and  $\Delta$ E (on a molar basis) for the combustion of n-octane ( $\ell$ ) at 25°C would be : (A)-13.6 kJ (B)-1.14 kJ (C)-11.15 kJ (D)+11.15 kJ

 $(C) + 25 \, kJ$ 

| 29. | The heat of formation of HCl at 348 K from the following data, will be                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                             |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|     | $0.5 \operatorname{H}_2(g) + 0.5 \operatorname{Cl}_2(g) \longrightarrow \operatorname{HCl} \Delta \operatorname{H}^\circ_{298} = -22060 \operatorname{cal}$                                                                                                                                                                                                                                                              | $0.5 \operatorname{H}_2(g) + 0.5 \operatorname{Cl}_2(g) \longrightarrow \operatorname{HCl} \Delta \operatorname{H}^\circ_{298} = -22060 \operatorname{cal}$ |  |  |  |  |
|     | The mean heat capacities over this temperature range are,<br>$H_2(g), C_p = 6.82 \text{ cal mol}^{-1} \text{ K}^{-1};$ $Cl_2(g), C_p = 7.71 \text{ cal mol}^{-1} \text{ K}^{-1};$<br>(A) - 20095 cal (B) - 32758 cal (C) - 37725 c                                                                                                                                                                                       | HCl (g), $C_p = 6.81$ cal mol <sup>-1</sup> K <sup>-1</sup><br>al <b>(D)</b> - 22083 cal                                                                    |  |  |  |  |
| 30. | The enthalpy of neutralization of 40.0 g of NaOH by 60.0 g of CH <sub>3</sub> CO                                                                                                                                                                                                                                                                                                                                         | OOH will be :                                                                                                                                               |  |  |  |  |
|     | (A) 57.1 kJ equiv <sup><math>-1</math></sup> (B) less than                                                                                                                                                                                                                                                                                                                                                               | 57.1 kJ equiv <sup>-1</sup>                                                                                                                                 |  |  |  |  |
|     | (C) more than 57.1 kJ equiv <sup><math>-1</math></sup> (D) 13.7 kJ equiv <sup><math>-1</math></sup>                                                                                                                                                                                                                                                                                                                      | uiv <sup>-1</sup>                                                                                                                                           |  |  |  |  |
| 31. | Given $\Delta_{ioniz}$ H° (HCN) = 45.2 kJ mol <sup>-1</sup> and $\Delta_{ioniz}$ H° (CH <sub>3</sub> COOH) = 2.1 k.<br>(A) pK <sub>a</sub> (HCN) = pK <sub>a</sub> (CH <sub>3</sub> COOH)<br>(B) pK <sub>a</sub> (HCN) > pK <sub>a</sub> (CH <sub>3</sub> COOH)<br>(C) pK <sub>a</sub> (HCN) < pK <sub>a</sub> (CH <sub>3</sub> COOH)<br>(D) pK <sub>a</sub> (HCN) = (45.17/2.07) pK <sub>a</sub> (CH <sub>3</sub> COOH) | J mol <sup>-1</sup> . Which one of the following facts is true ?                                                                                            |  |  |  |  |
| 32. | A solution is 500 ml of 2 M KOH is added to 500 ml of 2 M HCl and the mixture is well shaken. The rise in temperature $T_1$ is noted. The experiment is then repeated using 250 ml of each solution and rise in temperature $T_2$ is again noted.<br>Assume all heat is taken by the solution<br>(A) $T_1 = T_2$<br>(B) $T_1$ is 2 times as large as $T_2$<br>(C) $T_2$ is twice of $T_1$                                |                                                                                                                                                             |  |  |  |  |
|     | (D) $I_1$ is 4 times as large as $I_2$                                                                                                                                                                                                                                                                                                                                                                                   | ( <b>D</b> ) $T_1$ is 4 times as large as $T_2$                                                                                                             |  |  |  |  |

- 50.0 mL of 0.10 M HCl is mixed with 50.0 mL of 0.10 M NaOH. The solution's temperature rises by 3.0°C. Calculate the enthalpy of neutralization per mole of HCl.
   (A) -2.5×10<sup>2</sup> kJ/mole
   (B) -1.3×10<sup>2</sup> kJ/mole
   (C) -8.4×10<sup>1</sup> kJ/mole
   (D) -6.3×10<sup>1</sup> kJ/mole
- 34. The average O-H bond energy in  $H_2O$  with the help of following data.

 $\begin{array}{l} (1) \, H_2O(\ell) \longrightarrow H_2O(g) \, ; \, \Delta H \, = \, + \, 40.6 \, \text{KJ mol}^{-1} \\ (2) \, 2H(g) \longrightarrow H_2(g) \, ; \, \Delta H \, = \, - \, 435.0 \, \text{KJ mol}^{-1} \\ (3) \, O_2(g) \longrightarrow 2O(g) \, ; \, \Delta H \, = \, + \, 489.6 \, \text{KJ mol}^{-1} \\ (4) \, 2H_2(g) \, + \, O_2(g) \longrightarrow 2H_2O(\ell) \, ; \, \Delta H \, = \, - \, 571.6 \, \text{KJ mol}^{-1} \\ \textbf{(A)} \, 584.9 \, \text{KJ mol}^{-1} \qquad \textbf{(B)} \, 279.8 \, \text{KJ mol}^{-1} \qquad \textbf{(C)} \, 462.5 \, \text{KJ mol}^{-1} \\ \end{array}$ 

35. Reactions involving gold have been of particular interest to alchemists. Consider the following reactions,

 $\begin{array}{ll} \operatorname{Au(OH)}_3 + 4 \operatorname{HCl} \longrightarrow \operatorname{HAuCl}_4 + 3 \operatorname{H}_2 \operatorname{O}, & \Delta \operatorname{H} = -28 \operatorname{kcal} \\ \operatorname{Au(OH)}_3 + 4 \operatorname{HBr} \longrightarrow \operatorname{HAuBr}_4 + 3 \operatorname{H}_2 \operatorname{O}, & \Delta \operatorname{H} = -36.8 \operatorname{kcal} \end{array}$ 

In an experiment, there was an absorption of 0.44 kcal when one mole of  $HAuBr_4$  was mixed with 4 moles of HCl. Then, the fraction of  $HAuBr_4$  converted into  $HAuCl_4$  (percentage conversion)

(A) 5% (B) 6% (C) 7% (D) 8%

36. The heat of formation of C<sub>2</sub>H<sub>5</sub>OH(ℓ) is - 66 kcal/mole. The heat of combustion of CH<sub>3</sub>OCH<sub>3</sub> (g) is - 348 kcal/mole. ΔH<sub>f</sub> for H<sub>2</sub>O and CO<sub>2</sub> are -68 kcal/mole and -94 kcal/mole respectively. Then, the ΔH for the isomerisation reaction C<sub>2</sub>H<sub>5</sub>OH(ℓ) → CH<sub>3</sub>OCH<sub>3</sub>(g), and ΔE for the same are at T = 25°C
(A) ΔH = 18 kcal/mole, ΔE = 17.301 kcal/mole
(B) ΔH = 22 kcal/mole, ΔE = 21.408 kcal/mole
(C) ΔH = 26 kcal/mole, ΔE = 25.709 kcal/mole

- **(D)**  $\Delta H = 30$  kcal/mole,  $\Delta E = 28.522$  kcal/mole
- 37. The average Xe–F bond energy is 34 kcal/mol, first I.E. of Xe is 279 kcal/mol, electron affinity of F is 85 kcal/mol & bond dissociation energy of  $F_2$  is 38 kcal/mol. Then, the enthalpy change for the reaction

 $XeF_4 \longrightarrow Xe^+ + F^- + F_2 + F \text{ will be}$ (A) 367 kcal/mole (B) 425 kcal/mole (C) 292 kcal/mole (D) 392 kcal/mole

38. Caesium chlorides is formed according to the following equation Cs(s) + 0.5 Cl<sub>2</sub>(g) → CsCl(s). The enthalpy of sublimation of Cs, enthalpy of dissociation of chlorine, ionization energy of Cs and electron affinity of chlorine are 81.2, 243.0, 375.7 and -348.3 kJ mol<sup>-1</sup>. The energy change involved in the formation of CsCl is -388.6 kJ mol<sup>-1</sup>. Calculate the lattice energy of CsCl.

**(B)** 1237.4 kJ mol<sup>-1</sup>

```
(A) 618.7 kJ mol<sup>-1</sup>
```

(C) $-1237.4 \text{ kJ mol}^{-1}$ 

(D) -618.7 kJ mol<sup>-1</sup>

- 39. The enthalpies of neutralization of a weak base AOH and a strong base BOH by HCI are -12250 cal/ mol and -13000 cal/ mol respecitively. When one mole of HCI is added to a solution containing 1 mole of AOH and 1 mole of BOH, the enthalpy change was -12500 cal/ mol. In what ratio the acid is distributed between AOH and BOH?
  (A) 2:1
  (B) 2:3
  (C) 1:2
  (D) None of these
- **40.** Equal volumes of molar hydrochloric acid and sulphuric acid are neutralized by dil. NaOH solution and x kcal and y kcal of heat are liberated respectively. Which of the following is true ?

(A) x=y (B)  $x = \frac{1}{2}y$  (C) x=2y (D) None of these

- 41. Enthalpy of polymerisation of ethylene, as represented by the reaction,  $nCH_2=CH_2 \longrightarrow (-CH_2-CH_2-)_n$  is -100 kJ per mole of ethylene. Given bond enthalpy of C=C bond is 600 kJ mol<sup>-1</sup>, enthalpy of C-C bond (in kJ mol) will be :
  - (A) 116.7 (B) 350 (C) 700 (D) indeterminate
- 42. The average energy required to break a P P bond in P<sub>4</sub> (s) into gaseous atoms is 53.2 kcal mol<sup>-1</sup>. The bond dissociation energy of H<sub>2</sub>(g) is 104.2 kcal mol<sup>-1</sup>;  $\Delta$ H<sub>f</sub><sup>0</sup> of PH<sub>3</sub>(g) from P<sub>4</sub>(s) is 5.5 kcal mol<sup>-1</sup>. The P-H bond energy in kcal mol<sup>-1</sup> is [Neglect presence of Van der Waals forces in P<sub>4</sub>(s)]

Exercise # 2 [Multiple Correct Choice Type Questions] Part # I Use the given standard enthalpies of formation to determine the heat of reaction of the following reaction : 1.  $2 \operatorname{LiOH}(s) + \operatorname{CO}_2(g) \rightarrow \operatorname{Li}_2\operatorname{CO}_3(s) + \operatorname{H}_2O(l)$  $\Delta H_{f}^{o}$ LiOH(s)=-487.23 kJ/mole  $\Delta H^{\circ}_{f} Li_{2}CO_{3}(s) = -1215.6 \text{ kJ/mole}$  $\Delta H_{f}^{o}H_{2}O(l) = -285.85 \text{ kJ/mole}$  $\Delta H_f^{o} CO_2(g) = -393.5 \text{ kJ/mole}$ (A)+303.4 **(B)**-133.5(C) - 198.6 **(D)**+198.6  $NH_{g}(g) + 3Cl_{g}(g) \Longrightarrow NCl_{g}(g) + 3HCl(g); -\Delta H_{g}(g) = 0$ 2.  $N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g); \Delta H_2$  $H_{2}(g) + Cl_{2}(g) \Longrightarrow 2HCl(g); \Delta H_{3}$ The heat of formation of NCl<sub>3</sub> (g) in the terms of  $\Delta H_1$ ,  $\Delta H_2$  and  $\Delta H_3$  is ? **(B)**  $\Delta H_{f} = \Delta H_{1} + \frac{\Delta H_{2}}{2} - \frac{3}{2} \Delta H_{3}$ (A)  $\Delta H_f = -\Delta H_1 + \frac{\Delta H_2}{2} - \frac{3}{2} \Delta H_3$ (C)  $\Delta H_f = \Delta H_1 - \frac{\Delta H_2}{2} - \frac{3}{2} \Delta H_3$ (D) None Determine  $\Delta H^{\circ}$  of the following reaction using the listed heats of formation : 3.  $4 \text{HNO}_3(l) + P_4O_{10}(s) \rightarrow 2 \text{ N}_2O_5(s) + 4 \text{ HPO}_3(s)$  $\Delta H_{f}^{o}HNO_{3}(l) = -174.1 \text{ kJ/mole}$  $\Delta H^{\circ}_{f} N_{2} O_{5}(s) = -43.1 \text{ kJ/mole}$  $\Delta H^{o}_{f} P_{4} O_{10}(s) = -2984.0 \text{ kJ/mole}$  $\Delta H_{f}^{o}HPO_{3}(s) = -948.5 \text{ kJ/mole}$ (A)-176.3 **(B)**-199.8(C)+276.2 (D) - 242.44. If  $x_1, x_2$  and  $x_3$  are enthalpies of H–H, O=O and O–H bonds respectively, and  $x_4$  is the enthalpy of vaporisation of water, estimate the standard enthalpy of combustion of hydrogen. (A)  $x_1 + \frac{x_2}{2} - 2x_3 + x_4$  (B)  $x_1 + \frac{x_2}{2} - 2x_3 - x_4$  (C)  $x_1 + \frac{x_2}{2} - x_3 + x_4$  (D)  $2x_1 - x_1 - \frac{x_2}{2} - x_4$ 5. Use the given bond enthalpy data to estimate the  $\Delta H^{\circ}$  (kJ) for the following reaction. (C-H=414 kJ, H-Cl=431 kJ, Cl-Cl=243 kJ, C-Cl=331 kJ). $CH_{4}(g) + 4Cl_{2}(g) \rightarrow CCl_{4}(g) + 4HCl(g)$ (A) 620 **(B)** 330 (C) 420 **(D)** 105 For which of the following change  $\Delta H \neq \Delta E$ ? 6. (A)  $H_{2}(g) + I_{2}(g) \longrightarrow 2HI(g)$ (B) HCI (aq) + NaOH (aq)  $\longrightarrow$  NaCl(aq) + H<sub>2</sub>O (l)

7. 
$$\Delta H_{r}$$
 of which of the following reactions is zero ?  
(A)  $H_{2}(g) \longrightarrow 2H^{+}(g) + 2e^{-}$   
(C)  $2H(g) \longrightarrow 2H^{+}(g) + 2e^{-}$ 

(C)  $C(s) + O_{\gamma}(g) \longrightarrow CO_{\gamma}(g)$ 

**(B)**  $2H(g) + aq \longrightarrow 2H^+(aq) + 2e^-$ **(D)**  $H_{\gamma}(g) + aq \longrightarrow 2H^+(aq) + 2e^-$ 

(D)  $N_2(g) + 3H_2(g) \longrightarrow 2 NH_3(g)$ 

| 8.  | $\Delta H_{f}^{0}$ of water is -285<br>-57.3 kJ mol <sup>-1</sup> , $\Delta H_{f}^{0}$ of OI                                                                                                  | 5.8 kJ mol <sup>-1</sup> . If enthalp <sub>1</sub><br>T ion will be ?                                                                                                                                                                                                               | y of neutralisation of n                                                                                                                                              | nonoacid strong base is                                       |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
|     | (A) $-228.5 \text{ kJ mol}^{-1}$                                                                                                                                                              | <b>(B)</b> 228.5 kJ mol <sup><math>-1</math></sup>                                                                                                                                                                                                                                  | (C) $114.25 \text{ kJ mol}^{-1}$                                                                                                                                      | <b>(D)</b> $-114.25$ kJ mol <sup>-1</sup>                     |
| 9.  | 4 grams of sodium hydroxic<br>hydroxide pellets was 25 de<br>in kJ/mole of the reaction (S                                                                                                    | le pellets were dissolved in 10<br>grees C, and after adding the<br>Specific heat capacity of wate                                                                                                                                                                                  | $00 \text{ cm}^3 \text{ of water. The temperature}$<br>pellets it was 35 degrees C. C<br>er = 4.2 J/K/g)                                                              | ure before adding the sodium<br>Calculate the enthalpy change |
|     | (A) 42 kJ/mole                                                                                                                                                                                | <b>(B)</b> 4.2 kJ/mole                                                                                                                                                                                                                                                              | (C) 4200 kJ/mole                                                                                                                                                      | (D) none                                                      |
| 10. | 50.0 mL of 0.10 M HCl is m<br>the enthalpy of neutralizati                                                                                                                                    | ixed with 50.0 mL of 0.10 M on per mol of HCl.                                                                                                                                                                                                                                      | NaOH. The solution tempera                                                                                                                                            | ture rises by 3.0°C. Calculate                                |
|     | (A) $-2.5 \times 10^2  \text{kJ}$                                                                                                                                                             | <b>(B)</b> $-1.3 \times 10^2  \text{kJ}$                                                                                                                                                                                                                                            | (C) $-8.4 \times 10^{1} \text{ kJ}$                                                                                                                                   | <b>(D)</b> $-6.3 \times 10^1  \text{kJ}$                      |
| 11. | Which of the following state (A) the reaction between the (B) $\Delta H_{neut.}$ of weak acid/state (C) $\Delta H_{neut.}$ of strong acid/state (D) $\Delta H_{neut.(weak acid/strong base)}$ | the strong acid and strong b<br>rong base is less than the Δ<br>rong base is equal to the ΔH o<br>- $\Delta H_{neut.(strong acid/strong base)} = \Delta H$                                                                                                                          | ase takes place with the even<br>$H_{neut.}$ of strong acid/strong<br>f formation of $H_2O(1)$ from its<br>$H_{ioni(weak acid)}$                                      | olution of heat<br>base<br>ions in the aqueous medium         |
| 12. | The standard enthalpies of f<br>(A) –393.7 kJ/mol is the er<br>(B) the enthalpy change fo<br>(C) the enthalpy change fo<br>(D) the enthalpy change fo                                         | Formation of $CO_{2(g)}$ , and $HCO_{2(g)}$ , and $HCO_{2(g)}$ at halp y change for the reaction<br>r the reaction $CO_{2(g)} + H_{2(g)}$ for the reaction<br>$H_2O + CO \rightarrow HCOOH \text{ is } -4$<br>for the reaction<br>$H_{2(g)} + CO_{2(g)} \rightarrow H_2O_{(1)} + C$ | OH(l) are -393.7 kJ/mol and<br>on $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$<br>$\rightarrow HCOOH_{(l)}$ would be -15.<br>409.2 kJ/mol<br>$O_{(g)}$ is -409.2 kJ/mol | –409.2 kJ/mol respectively :-<br>5 kJ/mol                     |
| 13. | Ethanol can undergoes de                                                                                                                                                                      | composition to form two se                                                                                                                                                                                                                                                          | ts of products ?                                                                                                                                                      |                                                               |
|     | $C_{2}H_{5}OH(g) \longrightarrow \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} C_{2}H_{3}$<br>if the molar ratio of C <sub>2</sub> H <sub>4</sub> to<br>of 1 mole of ethanol is ?                 | $A_4(g) + H_2O(g)$ $\Delta H^{\circ}$<br>$CHO(g) + H_2(g)$ $\Delta H^{\circ}$<br>$CH_3CHO \text{ is } 8 : 1  in a set of pro-$                                                                                                                                                      | = 45.54  kJ<br>= 68.91 kJ<br>oduct gases, then the energy in                                                                                                          | nvolved in the decomposition                                  |
|     | (A) 65.98 kJ                                                                                                                                                                                  | <b>(B)</b> 48.137 kJ                                                                                                                                                                                                                                                                | ( <b>C</b> ) 48.46 kJ                                                                                                                                                 | <b>(D)</b> 57.22 kJ                                           |
| 14. | Reactions involving gold H<br>Au(OH) <sub>3</sub> + 4 HCl $\longrightarrow$ HA<br>Au(OH) <sub>3</sub> + 4 HBr $\longrightarrow$ HA<br>In an experiment there was<br>What is the percentage co | have been of particular inter<br>$ucl_4 + 3 H_2O$ ,<br>$uuBr_4 + 3 H_2O$ ,<br>an absorption of 0.44 kcal we<br>prefer into H/4.                                                                                                                                                     | est to a chemist. Consider the<br>$\Delta H = -28 \text{ kcal}$<br>$\Delta H = -36.8 \text{ kcal}$<br>hen one mole of HAuBr <sub>4</sub> was                          | the following reactions,                                      |
|     | (A) 0.5 %                                                                                                                                                                                     | <b>(B)</b> 0.6 %                                                                                                                                                                                                                                                                    | (C) 5%                                                                                                                                                                | <b>(D)</b> 50%                                                |
|     |                                                                                                                                                                                               | × / ···· *                                                                                                                                                                                                                                                                          |                                                                                                                                                                       |                                                               |

- 15. Which of the following statement is (are) correct ?
  - (A) for an exothermic reactions,  $\sum \Delta H_{f}^{\circ}$  (products)  $\leq \sum \Delta H_{f}^{\circ}$  (reactants)
  - **(B)**  $\Sigma \Delta H_{f}^{\circ}$  of CO<sub>2</sub>(g) is same as the  $\Delta H_{comb}^{\circ}$  of carbon graphite
  - (C) all exothermic reactions have a free energy change negative

(D) for a reaction  $N_{2(g)} + O_{2(g)} \longrightarrow 2NO_{(g)}$ , the heat at constant pressure and the heat at constant volume at a given temperature are same

16. Which of the reaction defines molar  $\Delta H_{f}^{\circ}$ ?

(A) 
$$\operatorname{CaO}(s) + \operatorname{CO}_{2}(g) \longrightarrow \operatorname{CaCO}_{3}(s)$$
  
(B)  $\frac{1}{2} \operatorname{Br}_{2}(\ell) + \frac{1}{2} \operatorname{H}_{2}(g) \longrightarrow \operatorname{HBr}(g)$   
(C)  $\operatorname{N}_{2}(g) + 2\operatorname{H}_{2}(g) + \frac{3}{2} \operatorname{O}_{2}(g) \longrightarrow \operatorname{NH}_{4}\operatorname{NO}_{3}(s)$   
(D)  $\frac{1}{2} \operatorname{I}_{2}(s) + \frac{1}{2} \operatorname{H}_{2}(g) \longrightarrow \operatorname{HI}(g)$ 

(C) 
$$N_2(g) + 2H_2(g) + \frac{3}{2} O_2(g) \longrightarrow NH_4NO_3(g)$$

- (i) S (rhombic) +  $3/2 O_2(g) \longrightarrow SO_3(g), \Delta H_1$
- (ii) S (monoclinic) +  $3/2O_2(g) \longrightarrow SO_3(g), \Delta H_2$

(iii) S (rhombic) + 
$$O_3(g) \longrightarrow SO_3(g), \Delta H_3$$

- (iv) S (monoclinic) +  $O_3(g) \longrightarrow SO_3(g), \Delta H_4$
- (A)  $\Delta H_1 < \Delta H_2 < \Delta H_4$  (magnitude only)
- (C)  $\Delta H_1 < \Delta H_2 = \Delta H_3 < \Delta H_4$  (magnitude only)

(B) 
$$\Delta H_1 < \Delta H_3 < \Delta H_4$$
 (magnitude only)  
(D)  $\Delta H_1 + \Delta H_4 = \Delta H_2 + \Delta H_3$ 

Part # II  $\mathbf{A}$ 

Each question has 5 choices (A), (B), (C), (D) and (E) out of which only one is correct.

- (A) Statement-1 is true, Statement-2 is true and Statement-2 is correct explanation for Statement-1
- (B) Statement-1 is true, Statement-2 is true and Statement-2 is not correct explanation for Statement-1
- (C) Statement-1 is true, Statement-2 is false
- (D) Statement-1 is false, Statement-2 is true
- (E) Both Statements are false
- Statement-1: Heat of neutralisation of perchloric acid, HClO<sub>4</sub>, with NaOH is same as that of HCl with NaOH. 1. **Statement-2** : Both HCl and HClO<sub>4</sub> are strong acids.
- 2. **Statement-1**: In the following reaction :  $C(s) + O_2(g) \longrightarrow CO_2(g); \Delta H = \Delta U - RT$ **Statement-2**:  $\Delta H$  is related to  $\Delta U$  by the equation,  $\Delta H = \Delta U + \Delta n_g RT$
- 3. Statement-I: Heat of neutralisation of HF (aq.), a weak acid, with NaOH (aq.) is more than 13.7 kcal, in an exothermic reaction.

Statement-II: Some heat is lost in the ionisation of a weak acid.

- Statement-1: Enthalpy changes are positive when Na, SO<sub>4</sub>.10H, O, CuSO<sub>4</sub>.5H, O and salts like NaCl, KCl, etc., which 4. do not form hydrates are dissolved in water. But enthalpy changes are negative when anhydrous salts capable of forming hydrates are dissolved in water.
  - Statement-II: The difference in the behaviour is due to large differences in the molecular weight of hydrated and anhydrous salts. The substances with larger molecular weights usually show positive enthalpy changes on dissolution.

- Statement-I: Enthalpy of neutralization of CH<sub>3</sub>COOH by NaOH is less than that of HCl by NaOH.
   Statement-II: Enthalpy of neutralization of CH<sub>3</sub>COOH is less because of the absorption of heat in the ionization process.
- 6. Statement-I: As temperature increases, heat of reaction also increases for exothermic as well as for endothermic reactions.

**Statement-II**:  $\Delta H$  varies with temperature as given by  $\Delta H_2(at T_2) = \Delta H_1(at T_1) + \Delta C_p(T_2 - T_1)$ 

- Statement-I: Heat of combustion is always negative.
   Statement-II: Heat of combustion is used to calculate of fuels.
- Statement-I: Enthalpy of formation of HCl is equal to bond energy of HCl.
   Statement-II: Enthalpy of formation and bond energy both involve the formation of one mole of HCl from the elements.
- 9. Statement-I: Enthalpy of atomization is the heat of reaction  $H_2O(1) \longrightarrow H_2O(g)$ . Statement-II: Gaseous molecules are far apart of each other due to less attraction.
- 10. Statement-I: The enthalpy of formation of  $H_2O(l)$  is greater than that of  $H_2O(g)$ . Statement-II: Enthalpy change is negative for the condensation reaction,  $H_2O(g) \longrightarrow H_2O(l)$ .

| ł  | Exercise # 3 Part # I                                                | [Matrix Match Type Questions]                                                                                    |
|----|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 1. | Columm - I                                                           | Columm - II                                                                                                      |
|    | (A) C (s, graphite) + $O_2(g) \longrightarrow CO_2(g)$               | ( <b>p</b> ) $\Delta H^{o}_{combustion}$                                                                         |
|    | (B) $C(s, graphite) \longrightarrow C(g)$                            | (q) $\Delta H^{o}_{formation}$                                                                                   |
|    | (C) $CO(g) + \frac{1}{2}O_2(g) \longrightarrow CO_2(g)$              | (r) $\Delta H^{o}_{atomization}$                                                                                 |
|    | ( <b>D</b> ) $CH_4(g) \longrightarrow C(g) + 4H(g)$                  | (s) $\Delta H^{o}_{sublimation}$                                                                                 |
| 2. | List equation/law (in Column I) with statement (                     | (in Column II) :                                                                                                 |
|    | Column-I                                                             | Column-II                                                                                                        |
|    | (A) Arrhenius equation                                               | (p) Variation of enthalpy of a reaction with temperature                                                         |
|    | (B) Kirchhoff equation                                               | (q) Variation of rate constant with temperature                                                                  |
|    | (C) Second law of thermodynamics                                     | (r) Entropy of an isolated system tends to increase and reach a maximum value                                    |
|    | (D) Hess's law of constant heat summation                            | (s) Enthalpy change in a reaction is always constant and independent of the manner in which the reaction occurs. |
| 3. | Match the reaction (In Column I) with relation b                     | between $\Delta H$ and $\Delta E$ (in Column II):                                                                |
|    | Column-I                                                             | Column-II                                                                                                        |
|    | (A) $C(s) + O_2(g) \longrightarrow CO_2(g)$                          | (p) $\Delta H = \Delta E + RT$                                                                                   |
|    | <b>(B)</b> $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$               | $(\mathbf{q}) \Delta \mathbf{H} = \Delta \mathbf{E}$                                                             |
|    | (C) $NH_4HS(s) \longrightarrow NH_3(g) + H_2S(g)$                    | (r) $\Delta H = \Delta E - 2RT$                                                                                  |
|    | ( <b>D</b> ) $PCl_5(g) \longrightarrow PCl_3(g) + Cl_2$              | (s) $\Delta H = \Delta E + 2RT$                                                                                  |
|    | (E) $2SO_2(g) + O_2(g) \longrightarrow 2SO_3(g)$                     | (t) $\Delta H = \Delta E - RT$                                                                                   |
| 4. | Column-I                                                             | Column-II                                                                                                        |
|    | (A) $S(g) + O_2(g) \longrightarrow SO_2(g); \Delta H$                | (p) Heat of solution                                                                                             |
|    | (B) $CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(l); \Delta H$ | (p) Heat of neutralisation                                                                                       |
|    | (C) NaOH(s) + aq $\longrightarrow$ NaOH (aq); $\Delta$ H             | (p) Heat of formation                                                                                            |
|    | (D) NaOH(aq) + HCl(aq) $\longrightarrow$ NaCl (aq)                   | (s) Heat of combustion                                                                                           |

(s) Heat of combustion

Part # II

[Comprehension Type Questions]

### **Comprehension #1**

The commercial production of "Water gas" utilises the endothermic reaction  $C(s) + H_2O(g) \rightarrow H_2(g) + CO(g)$ . The heat required for this reaction is generated by combustion of coal to CO<sub>2</sub> using stoichiometric amount of air. (79% N<sub>2</sub> by volume and 21%O<sub>2</sub> by volume). The superheated steam undergoes 75% conversion. Using the following data, answer the question that follows

 $\Delta H_{f}[CO(g)] = -110.53 \text{ kJ.mol}; \Delta H_{f}[H_{2}O(g)] = -241.81 \text{ kJ/mol}; \Delta H_{f}[CO_{2}(g)] = -314.0 \text{ kJ/mol}$ 

The amount of heat liberated when one litre of product gases are burnt at 373 K and at 1 atm is 1. (A) ≅ 3.6kJ **(B)** ≅ 3.9 kJ (C) ≅ 4.43 kJ (**D**) ≅ 5.34 kJ

 $+ H,O(l);\Delta H$ 

| 2. | Match the gas and | percentage of ea | ach gas in one | litre product gases. |
|----|-------------------|------------------|----------------|----------------------|
|----|-------------------|------------------|----------------|----------------------|

| Gas       |                            | Percentage       |                           |  |
|-----------|----------------------------|------------------|---------------------------|--|
| (I)       | N <sub>2</sub>             | (A)              | ≈23.1                     |  |
| (II)      | CO <sub>2</sub>            | (B)              | ≈36.4                     |  |
| (III)     | H <sub>2</sub>             | (C)              | ≈7.7                      |  |
| (IV)      | H <sub>2</sub> O           | (D)              | ≈9.7                      |  |
| (A) (I-a) | ), (II-b), (III-c), (IV-d) | <b>(B)</b> (I-b) | , (II-a), (III-d), (IV-c) |  |
| (C) (I-c) | ), (II-d), (III-a), (IV-c) | <b>(D)</b> (I-b) | , (II-d), (III-a), (IV-c) |  |

### **Comprehension #2**

Enthalpy of neutralization is defined as the enthalpy change when 1 mole of acid/base is completely neutralized by base/acid in dilute solution.

For strong acid and strong base neutralization net chemical change is

 $H^+(aq) + OH^-(aq) \longrightarrow H_2O(\ell); \Delta_r H^o = -55.84 \text{ kJ/mol}$ 

 $\Delta H^{o}_{\mbox{ ionization}}$  of aqueous solution of strong acid and strong base is zero.

When a dilute solution of a weak acid or base is neutralized, the enthalpy of neutralization is some what less because of the absorption of heat in the ionization of the weak acid or base, for weak acid/base

 $\Delta H^{o}_{neutrilization} = \Delta H^{o}_{ionization} + \Delta_{r} H^{o} \qquad (H^{+} + OH^{-} \rightarrow H_{2}O)$ 

- 1.If enthalpy of neutralization of CH3COOH by NaOH is -49.86 kJ/mol then enthalpy of ionzation of CH3COOH is:(A) 5.98 kJ/mol(B) -5.98 kJ/mol(C) 105.7 kJ/mol(D) None of these
- 2. What is  $\Delta H^{\circ}$  for complete neutralization of strong diacidic base A(OH)<sub>2</sub> by HNO<sub>3</sub>?
  - (A) -55.84 kJ (B) -111.68 kJ (C) 55.84 kJ/mol (D) None of these

Under the same condition how many mL of 0.1 M NaOH and 0.05 M H<sub>2</sub>A (strong diprotic acid) solution should be mixed for a total volume of 100 mL produce the highest rise in temperature :
 (A) 25:75
 (B) 50:50
 (C) 75:25
 (D) 66.66:33.33

### Comprehension #3

The hydration enthalpy of anhydrous copper (II) sulphate is defined as the heat absorbed or evolved when one mole of anhydrous solid is converted to one mole of crystalline hydrated solid.

 $CuSO_4(s) + 5H_2O(l) \longrightarrow CuSO_4.5H_2O(s)$ 

It cannot be measured directly.

In an experiment to determine the hydration enthalpy indirectly, 4 g of the anhydrous solid were added to 50 g of water and the rise in temperature was 8 degrees. When 4 g of the hydrated solid was added to 50 g of water the fall in temperature was 1.3 degrees.

| 1. What is the heat produced when 4 g of anhydrous solid is added to 50 g of water. |                                                                               |                            |                     |                     |  |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------|---------------------|---------------------|--|
|                                                                                     | (A) 400 kJ                                                                    | <b>(B)</b> 1672 kJ         | (C) 200 kJ          | <b>(D)</b> 836 kJ   |  |
| 2.                                                                                  | What is the enthalpy of solution of anhydrous copper (II) sulphate in kJ/mol. |                            |                     |                     |  |
|                                                                                     | (A) 69.9472 kJ/mol                                                            | <b>(B)</b> 4054.375 kJ/mol | (C) 139.8948 kJ/mol | (D) 8108.750 kJ/mol |  |

Given that the enthalpy of solution of the hydrated copper (II) sulphate is +11.3 kJ/mol, what is the enthalpy of hydration of the anhydrous solid.
(A) 97.321 kJ/mol
(B) -97.321 kJ/mol
(C) -77.971 kJ/mol
(D) 77.971 kJ/mol

### **Comprehension #4**

The industrial preparation of a polymer, PTFE, is based on the synthesis of the monomer  $CF_2 = CF_2$ , which is produced according to reaction (i) below :

$$2CHClF_2(g) \longrightarrow CF_2 = CF_2(g) + 2HCl \qquad \dots \dots (i)$$

The monomer  $CF_2 = CF_2$  is also obtained by reaction (ii) below :

 $2CHF_{3}(g) \longrightarrow CF_{2} = CF_{2}(g) + 2HF(g); \Delta H = 198.1 \text{ kJ/mol} \qquad \dots \dots (ii)$ 

Consider the information below to answer the questions:

| Compound                                                                           | $\Delta H_{f}$              | MoleculeX-X                  | $\Delta(X-X)$           |                    |
|------------------------------------------------------------------------------------|-----------------------------|------------------------------|-------------------------|--------------------|
| HCl(g)                                                                             | -92.3                       |                              |                         |                    |
|                                                                                    |                             | F–F                          | 154.7                   |                    |
| CHClF <sub>2</sub> (g)                                                             | -485.2                      |                              |                         |                    |
| -                                                                                  |                             | Cl–Cl                        | 246.7                   |                    |
| $CF_2 = CF_2(g)$                                                                   | -658.3                      |                              |                         |                    |
| $CF_4$                                                                             | 679.6                       |                              |                         |                    |
| CCl <sub>4</sub>                                                                   | -106.6                      |                              |                         |                    |
| The enthalpy chang                                                                 | e for reaction (i).         |                              |                         |                    |
| (A) 100.23 kJ/mol                                                                  |                             | <b>(B)</b> 127.5 kJ          | mol                     |                    |
| (C)-127.5 kJ/mol                                                                   |                             | <b>(D)</b> -100.231          | cJ/mol                  |                    |
| (i) Use the express                                                                | ions                        |                              |                         |                    |
| $CX_4(g) \longrightarrow C(g)$                                                     | $(s) + 2X_2(g)$             |                              |                         |                    |
| $\Delta H = -\Delta H_{f}$                                                         | -                           |                              |                         |                    |
| $C(s) \longrightarrow C(g);$                                                       | $\Delta$ H=718 kJ/mol       |                              |                         |                    |
| and                                                                                |                             |                              |                         |                    |
| $2X_2(g) \longrightarrow 4X_2(g)$                                                  | (g); $\Delta H = 2D(X - X)$ |                              |                         |                    |
| where $X = F,Cl$ ,                                                                 | to the enthalpy change      | for the two processes        |                         |                    |
| $CX_4(g) \longrightarrow C(g$                                                      | g) + 4X(g)                  |                              |                         |                    |
| What is the average                                                                | C-X bond energies for       | the species $CX_4(g)$ (where | X = F, Cl).             |                    |
| (A) 329.5 kJ/mol, 42                                                               | 6.75 kJ/mol                 |                              |                         |                    |
| <b>(B)</b> 426.75 kJ/mol, 3                                                        | 29.5 kJ/mol                 |                              |                         |                    |
| (C) –329.5 kJ/mol, –                                                               | 426.75 kJ/mol               |                              |                         |                    |
| <b>(D)</b> –426.75 kJ/mol,                                                         | –329.5 kJ/mol               |                              |                         |                    |
| (ii) Given that the                                                                | C–H bond energy is 4        | 16.1 kJ/mol, the order of    | f relative chemical rea | activities of C–H, |
| C-F, and $C-Cl$                                                                    | oonds.                      |                              |                         |                    |
| $(\mathbf{A}) \subset \mathbf{H} \geq (\mathbf{C} - \mathbf{C}) \geq (\mathbf{A})$ |                             |                              |                         |                    |
| $(\mathbf{D}) \mathbf{C} - \mathbf{r} > \mathbf{C} - \mathbf{C} > \mathbf{C}$      | С-п                         |                              |                         |                    |

(C) C-Cl>C-H>C-F(D) C-Cl>C-F>C-H

1.

2.

### **Comprehension #5**

The Born Haber cycle below represents the energy changes occurring at 298K when KH is formed from its elements



$$\begin{split} \Delta H_{atomisation} & K = 90 \text{ kJ/mol} \\ \Delta H_{ionisation} & K = 418 \text{ kJ/mol} \\ \Delta H_{dissociation} & H = 436 \text{ kJ/mol} \\ \Delta H_{electron affinity} & H = -78 \text{ kJ/mol} \\ \Delta H_{lattice} & KH = -710 \text{ kJ/mol} \end{split}$$

- 1. In terms of the letters v to z write down expressions for
  - (i)  $\Delta H$  for the reaction

 $2K(s) + H_2(g) \longrightarrow 2KH(s)$ 

(ii)  $\Delta H_i$  of K

(iii)  $\Delta H_{electron affinity}$  of H

$$(iv) \Delta H_{lattice} \text{ of KH}(s)$$

- 2. Which of v to y is
  - (i) The most exothermic .....
  - (ii) The most endothermic .....
- 3. Calculate the value of  $\Delta H$  showing all your working.
- 4. Calculate the  $\Delta H_f$  of KH(s).
- 5. Write a balanced equation for the reaction of KH with water.
- 6. On complete reaction with water, 0.1 g of KH gave a solution requiring 25 cm<sup>3</sup> of 0.1M HCl for neutralisation. Calculate the relative atomic mass of potassium from this information.

| ]   | Exercise # 4 [Subjective Type Questions]                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.  | Why is the enthalpy of sublimation equal to the sum of enthalpy of fusion and enthalpy of vaporisation ?                                                                                                                                                                                                                                                                                                                      |
| 2.  | For a chemical reaction, $\Delta C_p$ is negative ( $\Delta C_p < 0$ ).<br>The heat required to increase temperature of reactants of this reaction by a certain amount = $q_1$ and heat required increase temperature of products of the same reaction by same amount = $q_2$ , Relate $q_1$ and $q_2$                                                                                                                        |
| 3.  | The specific heats of iodine vapour and solid are 0.031 $calg^{-1}$ °C <sup>-1</sup> and 0.055 $calg^{-1}$ °C <sup>-1</sup> respectively. If heat sublimation of iodine is 24 cal/g at 200°C, what is its value at 250°C?                                                                                                                                                                                                     |
| 4.  | Predict the standard reaction enthalpy of 2 NO <sub>2</sub> (g) $\rightarrow$ N <sub>2</sub> O <sub>4</sub> (g) at 100°C. $\Delta$ H° at 25°C is -57.2 kj. mol <sup>-1</sup> C <sub>p</sub> (NO <sub>2</sub> ) 37.2 j. mol <sup>-1</sup> K <sup>-1</sup> C <sub>p</sub> (N <sub>2</sub> O <sub>4</sub> ) = 77.28 J. mol <sup>-1</sup> k <sup>-1</sup> .                                                                       |
| 5.  | Classify the following processes as exothermic or endothermic :(A) Burning of a match stick(B) Melting of ice(C) Molten metal solidifies(D) Reaction between Na and H2O(E) Rubbing alcohol evaporates.                                                                                                                                                                                                                        |
| 6.  | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                          |
| 7.  | Find out the heat evolved in combustion if 112 litres (at STP) of water gas (mixture of equal volume of H <sub>2</sub> (g) and CO (g)<br>$H_2(g) + 1/2 O_2(g) \longrightarrow H_2O(g)$ $\Delta H = -241.8 \text{ kJ}$<br>$CO(g) + 1/2 O_2(g) \longrightarrow CO_2(g)$ $\Delta H = -283 \text{ kJ}$                                                                                                                            |
| 8.  | If $H_2 + 1/2 O_2 \longrightarrow H_2O$ , $\Delta H = -68 \text{ kcal}$ $K + H_2O \longrightarrow KOH(aq) + 1/2 H_2$ , $\Delta H = -48 \text{ kcal}$ KOH + water $\longrightarrow KOH(aq)$ , $\Delta H = -14 \text{ kcal}$ Find the heat of formation of KOH.                                                                                                                                                                 |
| 9.  | One litre sample of a mixture of $CH_4$ and $O_2$ measured at 25°C and 740 torr, was allowed to react at constant pressu<br>in a calorimeter. The complete combustion of $CH_4$ to $CO_2$ and water caused a temperature rise in calorimeter of 0.66<br>K. Calculate mole % of $CH_4$ in original mixture.<br>[Given : Heat of combustion of $CH_4$ is – 210.8 Kcal/mol. Total heat capacity of the calorimeter = 1260 cal/K] |
| 10. | The heat of combustion of ethyl alcohol is $-300$ kcal. If the heats of formation of CO <sub>2</sub> (g) and H <sub>2</sub> O( $\ell$ ) are $-94.3$ ar $-68.5$ kcal respectively, calculate the heat of formation of ethyl alcohol.                                                                                                                                                                                           |
| 11. | The standard enthalpy of decomposition of the yellow complex $H_3NSO_2$ Into $NH_3$ and $SO_2$ is + 40 kJ mol <sup>-1</sup> . Calcula the standard enthalpy of formation of $H_3NSO_2$ . $\Delta H^0_{f}(NH_3) = -46.11 \text{ kJ mol}^{-1}$ , $\Delta H^0_{f}(SO_2) = -296.83$                                                                                                                                               |
| 12. | When 12.0 g of carbon (graphite) reacted with oxygen to form CO and CO <sub>2</sub> at 25 <sup>o</sup> C and constant pressure, 313.8 I of heat was released and no carbon remained. If $\Delta H^0_{f}(CO, g) = -110.5 \text{ kJ mol}^{-1}$ and $\Delta H^0_{f}(CO_{2},g) = -393.5 \text{ kJ mol}^{-1}$ alculate the mass of oxygen consumed.                                                                                |

**13.** Substance A<sub>2</sub>B(g) can undergoes decomposition to form two set of products :

$$A_{2}B(g) \longrightarrow A(g) + B(g) ; \Delta H^{\circ} = 40 \text{ kJ/mole}$$

$$A_{2}B(g) \longrightarrow A(g) + AB(g) ; \Delta H^{\circ} = 50 \text{ kJ/mole}$$

If the molar ratio of  $A_2(g)$  to A(g) is 5 : 3 in a set of product gases, calculate the energy involved in the decomposition of 1 mole of  $A_2B_3$ ,

- 14. Calculate the standard enthalpy of solution of AgCl(s) in water  $\Delta H_{f}^{0}$  (AgCl,s) = 127.07 kJ mol-1,  $\Delta H_{f}^{0}$  (Ag+, aq) = 105.58,  $\Delta H_{f}^{0}$  (Cl<sup>-</sup>, aq) = 167.16
- 15. The  $\Delta H_{f}^{0}(KF,s)$  is 563 kJ mol<sup>-1</sup>. The ionization enthalpy of K(g) is 419 kJ mol<sup>-1</sup>. and the enthalpy of sublimation of potassium is 88 kJ mol<sup>-1</sup>. The electron affinity of F(g) is 322 kJ mol<sup>-1</sup> and F–F bond enthalpy is 158 kJ mol<sup>-1</sup>. Calculate the lattice enthalpy of KF(S). The give data are as follows :
- 16. The heats of neutralization of

  (i) CHCℓ₂-COOH by NaOH is 12830 cals;
  (ii) HCℓ by NaOH is 13680 calories,
  (iii) NH₄OH by HCℓ is 12270 calories.

  What is the heat of neutralization of dichloro acetic acid by NH₄OH ? Calculate also the heats of ionization of dichloro acetic acid & NH₄OH.
- 17. Calculate the heat of neutralisation from the following data. 200 mL of 1M HCl is mixed with 400 mL of 0.5 M NaOH. The temperature rise in calorimeter was found to be 4.4°C. Water equivalent of calorimeter was found to be 4.4°C. Water equivalent of calorimeter is 12 g and specific heat is 1 cal/ml/degree for solution.
- 18. Calculate  $\Delta H_{r}^{\circ}$  for the reaction  $CH_2Cl_2(g) \longrightarrow C(g) + 2H(g) + 2Cl(g)$ . The average bond enthalpies of C-H and C-Cl bonds are 414 kJ mol<sup>-1</sup> and 330 kJ mol<sup>-1</sup>.
- 19. Calculate the enthalpy change ( $\Delta$ H) of the following reaction  $2C_2H_2(g) + 5O_2(g) \longrightarrow 4CO_2(g) + 2H_2O(g)$  given average bond enthalpies of various bonds, i.e., C-H,  $C \equiv C, O = O, C = O, O$ -H as 414, 814, 499, 724 and 640 kJ mol<sup>-1</sup> respectively.
- 20. Estimate the average S–F bond enthalpy in SF<sub>6</sub>. The values of standard enthalpy of formation of SF<sub>6</sub>(g), S(g) and F(g) are : -1100, 275 and 80 kJ mol-1 respectively.
- 21. Calcualte the bond energy of Cl–Cl bond from the following data :  $CH_4(g) + Cl_2(g) \longrightarrow CH_3Cl(g) + HCl(g); \Delta H = -100.3 \text{ kJ}. \text{ Also the bond enthalpies of C-H, C-Cl, H-Cl bonds are}$ 413, 326 and 431 kJ mol<sup>-1</sup> respectively.
- 22. Calculate free energy change for the reaction at 27°C  $H_2(g) + C\ell_2(g) \longrightarrow 2H - C\ell(g)$ by using the bond energy and energy data

Bond energies of H–H,  $C\ell$ – $C\ell$  and H– $C\ell$  bonds are 435 kJ mol<sup>-1</sup>, 240 kJ mol<sup>-1</sup> and 430 kJ mol<sup>-1</sup> respectively. Standard entropies of H<sub>2</sub>,  $C\ell_2$  and HC $\ell$  are 131, 223 and 187 JK<sup>-1</sup> mol<sup>-1</sup> respectively.

- 23. Find the standard enthalpy of combustion of hydrazine using the following thermochemical reactions.
  - (i)  $2NH_3(g) + 3N_2O(g) \rightarrow 4N_2(g) + 3H_2O(\ell) + 1011 \text{ kJ}$
  - (ii)  $N_2O(g) + 3H_2(g) \rightarrow N_2H_4(\ell) + H_2O(\ell) + 317 \text{ kJ}$
  - (iii)  $4NH_3(g) + O_2(g) \rightarrow 2N_2H_4(\ell) + 2H_2O(\ell) + 286 \text{ kJ}$

(iv) 
$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(\ell) + 286 \text{ kJ}$$

Also find  $\Delta H_f(N_2H_4)$ . Is  $N_2H_4$  an endothermic compound?

- 24. For reduction of ferric oxide by hydrogen,  $Fe_2O_3(s) + 3H_2(g) \longrightarrow 2Fe(s) + 3H_2O(\ell)$ ;  $\Delta H^o_{300} = -35 \text{ kJ}$ . The reaction was found to be too exothermic. To be convenient, it is desirable that  $\Delta H^o$  should be at the most -26 kJ. At what temperature is it possible ?  $C_p[Fe_2O_3] = 105$ ,  $C_p[Fe(s)] = 25$ ,  $C_p[H_2O(\ell)] = 75$ ,  $C_p[H_2(g)] = 29$  (all are in J/mol)
- 25. Calculate the amount of heat evolved during the complete combustion of 100 ml of liquid benzene from the following data.
  - (i) 18 gm of graphite on complete combustion evolve 590 KJ heat
  - (ii) 15889 KJ heat is required to dissociate all the molecules of 1 litre water into H<sub>2</sub> and O<sub>2</sub>.
  - (iii) The heat of formation of liquid benzene is 50 kJ/mol
  - (iv) Density of  $C_6 H_6(\ell) = 0.87 \text{ gm/m}\ell$
- **26.** Given the following reactions :

 $I: N_{2}(g) + 2O_{2}(g) \longrightarrow 2NO_{2}(g), \Delta H_{I} = 16.18 \text{ kcal}$ II:  $N_{2}(g) + 2O_{2}(g) \longrightarrow N_{2}O_{4}(g), \Delta H_{II} = 2.31 \text{ kcal}$ 

Which is more stable between N2O4 & NO2 at low temperature

- 27. When 0.36g of glucose was burned in a bomb calorimeter (Heat capacity 640 JK<sup>-1</sup>) the temperature rise by 10 K. Calculate the standard molar enthalpy of combustion.
- 28. Use the equations  $(C_p)_C = 1.1 + 4.8 \times 10^{-3}T - 1.2 \times 10^{-6}T^2$  $(C_P)_{O_2} = 6.26 + 2.746 \times 10^{-3}T - 0.770 \times 10^{-6}T^2$

 $(C_p)_{CO} = 6.60 + 1.20 \times 10^{-3} \text{ T}$ to find the temperature interval within which the  $\Delta H$  of the reaction  $C + \frac{1}{2}O_2 = CO$  does not depend on the temperature.

- 29. If the enthalpy of formation and enthalpy of solution of HCl (g) are -92.3 kJ/mol and -75.14 kJ/mol respectively then find enthalpy of formation of Cl<sup>-</sup> (aq) :
- **30.** Calculate the enthalpy change when infinitely dilute solution of  $CaCl_2$  and  $Na_2CO_3$  are mixed.  $\Delta H^0_{f}$  for  $Ca^{+2}(aq)$ ,  $CO^{-2}_{3}(aq)$  and  $CaCO_{3}(s)$  are -129.80, 161.65, -288.50 kcal mol<sup>-1</sup> respectively.
- 31. For the reaction, cis-2butene  $\longrightarrow$  trans-2butene and cis-2butene  $\rightarrow$  1-butene,  $\Delta H = -950$  cal/mol and  $\Delta H = 1800$  cal/mol respectively. The heat of combustion of 1-butene is 650 kcal/mol. Determine the heat of combustion of trans-2-butene. Also calculate the bond energy of C=C bond in trans-2-butene. Given B.E. of C=O = 196, O-H = 110, O=O = 118, C-C = 80 and C-H = 98 kca/mol respectively.  $\Delta H_v(H_2O) = 11$  kcal/mol.
- **32.** Using the data (all values in kJ.mol<sup>-1</sup> at 25°C) given below:
  - (A) Enthalpy of polymerisation of ethylene = -72 (kJ per mole of ethylene)
  - (B) Enthalpy of formation of benzene ( $\ell$ ) = 49 KJ/mole
  - (C) Enthalpy of vaporization of benzene( $\ell$ ) = 144 KJ/mole
  - (D) Resonance energy of benzene = -152 KJ/mole
  - (E) Heat of formation of gaseous atoms from elements in their standard states H = 436, C = 715.
  - (F) Average bond energy of C H = 415, calculate the bond energy of C–C and C=C.
- **33.** The enthalpy of neutralisation of a weak acid in 1 M solution with a strong base is -56.1 kJ mol<sup>-1</sup>. If the enthalpy of ionization of the acid is 1.5 kJ mol<sup>-1</sup> and enthalpy of neutralization of the strong acid with a strong base is -57.3 kJ equiv<sup>-1</sup>, what is the % ionization of the weak acid in molar solution (assume the acid to be monobasic)?

| Ex | xercise # 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Part # I  Previ                                                                                         | ous Year Questions] [A                                         | IEEE/JEE-MAIN]                                                                 |  |  |  |  |  |  |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 1. | The enthalpies of combu<br>enthalpy of formation of c<br>(A) 110.5 kJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | stion of carbon and carbon<br>carbon monoxide per mole i<br>(B) 676.5 kJ                                | monoxide are $-393.5$ and<br>s<br>(C) $-676.5$ kJ              | - 283 kJ mol <sup>-1</sup> respectively. The<br>[AIEEE 2004]<br>(D) - 110.5 kJ |  |  |  |  |  |  |  |
| 2. | If the bond dissociation energies of XY, $X_2$ and $Y_2$ (all diatomic molecules) are in the ratio of $1 : 1 : 0.5$<br>formation of XY is - 200 KJ mol <sup>-1</sup> . The bond dissociation energy of $X_2$ will be<br>(A) 100 KJ mol <sup>-1</sup> (B) 200 KJ mol <sup>-1</sup> (C) 300 KJ mol <sup>-1</sup> (D) 800 KJ mol <sup>-1</sup>                                                                                                                                                                                                                           |                                                                                                         |                                                                |                                                                                |  |  |  |  |  |  |  |
| 3. | The enthalpy changes for the following processes are listed below:<br>$Cl_2(g) \rightarrow 2Cl(g); 242.3 \text{ kJ mol}^{-1}; I_2(g) \rightarrow 2I(g); 151.0 \text{ kJ mol}^{-1}$<br>$ICl(g) \rightarrow I(g) + Cl(g); 211.3 \text{ kJ mol}^{-1}; I_2(s) \rightarrow I_2(g); 62.76 \text{ kJ mol}^{-1}$<br>Given that the standard state for iodine and chlorine are $I_2(s)$ and $Cl_2(g)$ , the standard enthalpy of formation for<br>(A) -16.8 kJ mol <sup>-1</sup> (B) +16.8 kJ mol <sup>-1</sup> (C) +244.8 kJ mol <sup>-1</sup> (D) -14.6 kJ mol <sup>-1</sup> |                                                                                                         |                                                                |                                                                                |  |  |  |  |  |  |  |
| 4. | $(\Delta H - \Delta U)$ for the formation<br>(R = 8.314 J K <sup>-1</sup> mol <sup>-1</sup> )<br>(A) 1238 78 L mol <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                      | on of carbon monoxide (CO)<br>(B) -2477 57 $\text{Imol}^{-1}$                                           | from its elements at 298 K i<br>(C) 2477 57 $\text{Lmol}^{-1}$ | s [AIEEE 2006]                                                                 |  |  |  |  |  |  |  |
| 5. | The standard enthalpy of formation $(\Delta H_f^{\circ})$ at 398 K for methane, $CH_{4(g)}$ is 74.8 kJ mol <sup>-1</sup> . The additional information required to determine the average energy for C - H bond formation would be : [AIEEE 2007]<br>(A) the dissociation energy of H <sub>2</sub> and enthalpy of sublimation of carbon<br>(B) latent heat of vapourisation of methane<br>(C) the first four ionization energies of carbon and electron gain enthalpy of hydrogen<br>(D) the dissociation energy of hydrogen melecule. H                               |                                                                                                         |                                                                |                                                                                |  |  |  |  |  |  |  |
| 6. | On the basis of the following thermochemical data : $(\Delta_{f}G^{\circ}H^{+}_{(aq)} = 0)$<br>$H_{2}O(\ell) \longrightarrow H^{+}(aq) + OH^{-}(aq.); \Delta H = 57.32 \text{ kJ}$<br>$H_{2}(g) + \frac{1}{2} O_{2}(g) \longrightarrow H_{2}O(\ell); \Delta H = -286.20 \text{ kJ}$<br>The value of enthalpy of formation of OH <sup>-</sup> ion at 25°C is :<br>(A) 228.88 M = (B) + 228.88 M                                                                                                                                                                        |                                                                                                         |                                                                |                                                                                |  |  |  |  |  |  |  |
| 7. | The standard enthalpy of formation of NH <sub>3</sub> is $-46.0$ kJ mol <sup>-1</sup> . If the enthalpy of formation of H <sub>2</sub> from its atoms is $-436$ kJ mol <sup>-1</sup> and that of N <sub>2</sub> is $-712$ kJ mol <sup>-1</sup> , the average bond enthalpy of N $-$ H bond in NH <sub>3</sub> is [AIEEE 2010]<br>(A) $-964$ kJ mol <sup>-1</sup> (B) $+352$ kJ mol <sup>-1</sup> (C) $+1056$ kJ mol <sup>-1</sup> (D) $-1102$ kJ mol <sup>-1</sup>                                                                                                    |                                                                                                         |                                                                |                                                                                |  |  |  |  |  |  |  |
| 8. | The value of enthalpy changes $C_2H_5OH_{(1)} + 3O_{2(g)} \rightarrow 2C0$<br>at 27°C is -1366.5 kJ mol                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ange ( $\Delta$ H) for the reaction<br>$O_{2(g)} + 3H_2O_{(I)}$<br>$ ^{-1}$ . The value of internal end | ergy change for the above re                                   | action at this temperature will be :                                           |  |  |  |  |  |  |  |
| 9. | (A) $-1369.0 \text{ kJ}$<br>Consider the reaction :<br>$4\text{NO}_{2(g)} + \text{O}_{2(g)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (B) −1364.0 kJ<br>$\rightarrow 2N_2O_{5(g)}, \Delta_r H = -111 kJ.$                                     | (C)–1361.5 kJ                                                  | <b>(D)</b> –1371.5 kJ                                                          |  |  |  |  |  |  |  |
|    | If $N_2O_{5(s)}$ is formed instead<br>(given, $\Delta H$ of sublimation<br>(A) + 54kJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ad of $N_2O_{5(g)}$ in the above re<br>for $N_2O_5$ is 54 kJ mol <sup>-1</sup> )<br>(B) + 219 kJ        | eaction, the $\Delta_r$ H value will b<br>(C)-219 kJ           | e:<br>[AIEEE 2011]<br>(D) – 165 kJ                                             |  |  |  |  |  |  |  |

| 10. | For complete combustion of ethanol, $C_2H_5OH(\ell) + 3O_2(g) \longrightarrow 2CO2(g) + 3H2O(\ell)$ , the amount of heat prod<br>as measured in bomb calorimeter, is 1364.47 kJ mol <sup>-1</sup> at 25°C. Assuming ideality the Enthalpy of ccombustion, for the reaction will be: (R = 8.314 kJ mol <sup>-1</sup> ) [JEE MAIN 2<br>(A) - 1460.50 kJ mol <sup>-1</sup> (B) - 1350.50 kJ mol <sup>-1</sup> (C) - 1366.95 kJ mol <sup>-1</sup> (D) - 1361.95 kJ mol <sup>-1</sup> |                                                                                                                                                               |                                                                                                         |                                                                                                                      |  |  |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 11. | The following reaction is $2NO(g) + O_2(g) \rightleftharpoons 2NO(g)$                                                                                                                                                                                                                                                                                                                                                                                                            | performed at 298 K?<br><sub>2</sub> (g)                                                                                                                       |                                                                                                         | [JEE MAIN 2015]                                                                                                      |  |  |  |  |  |  |
|     | The standard free energy of $NO_2(g)$ at 298 K ? (K <sub>p</sub>                                                                                                                                                                                                                                                                                                                                                                                                                 | of formation of NO(g) is 86.6<br>= $1.6 \times 10^{12}$ )                                                                                                     | 5 kJ/mol at 298 K. What is th                                                                           | e standard free energy of formation                                                                                  |  |  |  |  |  |  |
|     | (A) 86600 $-\frac{\ln(1.6 \times 10^{12})}{R(298)}$                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                               | <b>(B)</b> 0.5[2×86,600–R(298 h                                                                         | $n(1.6 \times 10^{12})]$                                                                                             |  |  |  |  |  |  |
|     | (C) $R(298 \ln (1.6 \times 10^{12}) -$                                                                                                                                                                                                                                                                                                                                                                                                                                           | 86600                                                                                                                                                         | <b>(D)</b> $86600 + R(298) \ln (1.6)$                                                                   | $5 \times 10^{12}$ )                                                                                                 |  |  |  |  |  |  |
| 12. | The heats of combustion formation (in kJ) of carbo                                                                                                                                                                                                                                                                                                                                                                                                                               | of carbon and carbon mono<br>on monoxide per mole is:                                                                                                         | xide are –393.5 and –283.5                                                                              | kJ mol <sup>-1</sup> respectively. The heat of                                                                       |  |  |  |  |  |  |
|     | (A) 676.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>(B)</b> -676.5                                                                                                                                             | <b>(C)</b> -110.5                                                                                       | <b>(D)</b> 110.5                                                                                                     |  |  |  |  |  |  |
|     | Part # II                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [Previous Year Quest                                                                                                                                          | ions][IIT-JEE ADVA]                                                                                     | NCED]                                                                                                                |  |  |  |  |  |  |
| 1.  | In a constant volume calo<br>temperature of the calori<br>Given that the heat capace<br>gas in kJ mol <sup>-1</sup> is.                                                                                                                                                                                                                                                                                                                                                          | rimeter, 3.5 g of a gas with m<br>meter was found to increase<br>ity of the calorimeter is 2.5 k.                                                             | nolecular weight 28 was burn<br>es from 298.0 K to 298.45<br>J K <sup>-1</sup> , the numerical value fo | nt in excess oxygen at 298.0 K. The K due to the combustion process. or the enthalpy of combustion of the [JEE 2009] |  |  |  |  |  |  |
| 2.  | The species which by det $(A) \operatorname{Br}_2(g)$                                                                                                                                                                                                                                                                                                                                                                                                                            | finition has <b>ZERO</b> standard<br>( <b>B</b> ) Cl <sub>2</sub> (g)                                                                                         | molar enthalpy of formatio $(C)$ H <sub>2</sub> O(g)                                                    | n at 298 K is : [JEE 2010]<br>(D) CH <sub>4</sub> (g)                                                                |  |  |  |  |  |  |
| 2   | The bond energy (in less                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>1 mal=1</b> ) of a C C single how                                                                                                                          | nd is approximately.                                                                                    |                                                                                                                      |  |  |  |  |  |  |
| 5.  | (A) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (B) 10                                                                                                                                                        | (C) 100                                                                                                 | ( <b>D</b> ) 1000                                                                                                    |  |  |  |  |  |  |
| 4.  | Using the data provided,<br>bond energy of a C-H bo<br>$2C(s) + H_2(g) \longrightarrow C_2H_2(g)$<br>$2C(s) \longrightarrow 2C(g)$<br>$H_2(g) \longrightarrow 2H(g)$                                                                                                                                                                                                                                                                                                             | calculate the multiple bond e<br>ond as 350 kJ mol <sup>-1</sup> )<br>g) $\Delta H = 225$ kJ mol<br>g) $\Delta H = 1410$ kJ mol<br>g) $\Delta H = 330$ kJ mol | energy (kJ mol <sup>-1</sup> ) of a C=C l<br>-1<br>-1<br>-1<br>-1<br>-1                                 | bond C <sub>2</sub> H <sub>2</sub> . That energy is (take the<br>[JEE 2012]                                          |  |  |  |  |  |  |
|     | (A) 1165                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>(B)</b> 837                                                                                                                                                | <b>(C)</b> 865                                                                                          | <b>(D)</b> 815                                                                                                       |  |  |  |  |  |  |
| 5.  | The standard enthalpies of                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of formation of $CO_2(g)$ , $H_2O$                                                                                                                            | ( <i>l</i> ) and glucose(s) at 25°C at                                                                  | re –400 kJ/mol, –300 kJ/mol and –                                                                                    |  |  |  |  |  |  |

1300 kJ/mol, respectively. The standard enthalpy of combustion per gram of glucose at 25°C is [JEE (Advance)2013](A) +2900 kJ(B) - 2900 kJ(C) -16.11 kJ(D) + 16.11 kJ



### **SECTION - II : MULTIPLE CORRECT ANSWER TYPE**

11. Which of the reaction defines molar  $\Delta H_f^{\circ}$ ?

(A) 
$$\operatorname{CaO}(s) + \operatorname{CO}_2(g) \longrightarrow \operatorname{CaCO}_3(s)$$
  
(B)  $\frac{1}{2} \operatorname{Br}_2(\ell) + \frac{1}{2} \operatorname{H}_2(g) \longrightarrow \operatorname{HBr}(g)$   
(C)  $\operatorname{N}_2(g) + 2\operatorname{H}_2(g) + \frac{3}{2} \operatorname{O}_2(g) \longrightarrow \operatorname{NH}_4\operatorname{NO}_3(s)$   
(D)  $\frac{1}{2} \operatorname{I}_2(s) + \frac{1}{2} \operatorname{H}_2(g) \longrightarrow \operatorname{HI}(g)$ 

**12.** Consider the reactions

(i) 
$$S (\text{rhombic}) + 3/2 O_2(g) \longrightarrow SO_3(g), \Delta H_1$$

- (ii) S (monoclinic) +  $3/2O_2(g) \longrightarrow SO_3(g), \Delta H_2$
- (iii)  $S (rhombic) + O_3(g) \longrightarrow SO_3(g), \Delta H_3$
- (iv) S (monoclinic) +  $O_3(g) \longrightarrow SO_3(g), \Delta H_4$

(A)  $\Delta H_1 < \Delta H_2 < \Delta H_4$  (magnitude only)

(C)  $\Delta H_1 < \Delta H_2 = \Delta H_3 < \Delta H_4$  (magnitude only)

(B)  $\Delta H_1 < \Delta H_3 < \Delta H_4$  (magnitude only) (D)  $\Delta H_1 + \Delta H_4 = \Delta H_2 + \Delta H_3$ 

### **SECTION - III : ASSERTION AND REASON TYPE**

Each question has 5 choices (A), (B), (C), (D) and (E) out of which only one is correct.

(A) Statement-1 is true, Statement-2 is true and Statement-2 is correct explanation for Statement-1

- (B) Statement-1 is true, Statement-2 is true and Statement-2 is not correct explanation for Statement-1
- (C) Statement-1 is true, Statement-2 is false
- (D) Statement-1 is false, Statement-2 is true
- (E) Both Statements are false
- 13. Statement-1: Heat of neutralisation of perchloric acid,  $HClO_4$ , with NaOH is same as that of HCl with NaOH. Statement-2: Both HCl and  $HClO_4$  are strong acids.
- 14. Statement-1: In the following reaction:  $C(s) + O_2(g) \longrightarrow CO_2(g); \quad \Delta H = \Delta U RT$ Statement-2:  $\Delta H$  is related to  $\Delta U$  by the equation,  $\Delta H = \Delta U + \Delta n_g RT$

### **SECTION - IV : COMPREHENSION TYPE**

Read the following comprehensions carefully and answer the questions.

### **Comprehension #1**

Enthalpy of neutralization is defined as the enthalpy change when 1 mole of acid/base is completely neutralized by base/acid in dilute solution.

For strong acid and strong base neutralization net chemical change is

 $H^+(aq) + OH^-(aq) \longrightarrow H_2O(\ell); \Delta_r H^\circ = -55.84 \text{ kJ/mol}$ 

 $\Delta H^{o}_{ionization}$  of aqueous solution of strong acid and strong base is zero.

When a dilute solution of a weak acid or base is neutralized, the enthalpy of neutralization is some what less because of the absorption of heat in the ionization of the weak acid or base, for weak acid/base

$$\Delta H^{o}_{\text{neutrilization}} = \Delta H^{o}_{\text{ionization}} + \Delta_{r} H^{o} \qquad (H^{+} + OH^{-} \rightarrow H_{2}O)$$

- 15.If enthalpy of neutralization of CH3COOH by NaOH is -49.86 kJ/mol then enthalpy of ionzation of CH3COOH is:(A) 5.98 kJ/mol(B) -5.98 kJ/mol(C) 105.7 kJ/mol(D) None of these
- 16.What is  $\Delta$ H° for complete neutralization of strong diacidic base A(OH)<sub>2</sub> by HNO<sub>3</sub>?(A) -55.84 kJ(B) -111.68 kJ(C) 55.84 kJ/mol(D) None of these

17. Under the same condition how many mL of 0.1 M NaOH and 0.05 M  $H_2A$  (strong diprotic acid) solution should be mixed for a total volume of 100 mL produce the highest rise in temperature :

(A) 25:75 (B) 50:50 (C) 75:25 (D) 66.66:33.33

### **SECTION - V : MATRIX - MATCH TYPE**

| 18. | Columm - I                                                                                           | Columm - II                      |
|-----|------------------------------------------------------------------------------------------------------|----------------------------------|
|     | (A) C (s, graphite) + $O_2(g) \longrightarrow CO_2(g)$                                               | (p) $\Delta H^{o}_{combustion}$  |
|     | (B) $C(s, graphite) \longrightarrow C(g)$                                                            | (q) $\Delta H^{o}_{formation}$   |
|     | (C) $\operatorname{CO}(g) + \frac{1}{2}\operatorname{O}_2(g) \longrightarrow \operatorname{CO}_2(g)$ | (r) $\Delta H^{o}_{atomization}$ |
|     | (D) $CH_4(g) \longrightarrow C(g) + 4H(g)$                                                           | (s) $\Delta H^{o}_{sublimation}$ |

### **SECTION - VI : SUBJECTIVE TYPE**

- **19.** Calculate the amount of heat evolved during the complete combustion of 100 ml of liquid benzene from the following data.
  - (i) 18 gm of graphite on complete combustion evolve 590 KJ heat
  - (ii) 15889 KJ heat is required to dissociate all the molecules of 1 litre water into  $H_2$  and  $O_2$ .
  - (iii) The heat of formation of liquid benzene is 50 kJ/mol

(iv) Density of  $C_6H_6(\ell) = 0.87 \text{ gm/m}\ell$ 

### **20.** Given the following reactions :

 $I: N_2(g) + 2O_2(g) \longrightarrow 2NO_2(g), \Delta H_1 = 16.18 \text{ kcal}$ 

II :  $N_2(g) + 2O_2(g) \longrightarrow N_2O_4(g), \Delta H_{II} = 2.31$  kcal

Which is more stable between N2O4 & NO2 at low temperature

**21.** When 0.36g of glucose was burned in a bomb calorimeter (Heat capacity 640 JK<sup>-1</sup>) the temperature rise by 10 K. Calculate the standard molar enthalpy of combustion.

# ANSWER KEY

### **EXERCISE - 1**

 1. D
 2. D
 3. A
 4. D
 5. B
 6. D
 7. D
 8. A
 9. A
 10. B
 11. C
 12. D
 13. A

 14. B
 15. A
 16. A
 17. B
 18. C
 19. C
 20. A
 21. B
 22. C
 23. B
 24. A
 25. C
 26. C

 27. A
 28. C
 29. D
 30. B
 31. B
 32. A
 33. A
 34. C
 35. A
 36. B
 37. C
 38. D
 39. A

 40. B
 41. B
 42. C
 25. C
 23. A
 33. A
 34. C
 35. A
 36. B
 37. C
 38. D
 39. A

### EXERCISE - 2 : PART # I

| 1.<br>8.<br>15. | B<br>A<br>A, I | B, D |   | 2.<br>9.<br>16. | A<br>A<br>B, | C, D |   | 3.<br>10.<br>17. | B<br>A<br>A, I | B, D |   | 4.<br>11. | B<br>A, | B, C     | , D | 5.<br>12. | С<br>А, | В  |   | 6.<br>13. | D<br>B |  | 7.<br>14 | D<br>. C |
|-----------------|----------------|------|---|-----------------|--------------|------|---|------------------|----------------|------|---|-----------|---------|----------|-----|-----------|---------|----|---|-----------|--------|--|----------|----------|
| 1               | ٨              | 2    | D | 3               | C            | 4    | C | 5                | ٨              | 6    | D | PA<br>7   | RT<br>R | `#I<br>8 | I   | 0         | D       | 10 | ٨ |           |        |  |          |          |

### EXERCISE - 3 : PART # I

- 1.  $A \rightarrow (p, q), B \rightarrow (q, r, s), C \rightarrow (p), D \rightarrow (r)$
- 2.  $A \rightarrow (q), B \rightarrow (p), C \rightarrow (r), D \rightarrow (s)$
- 3.  $A \rightarrow (q), B \rightarrow (r), C \rightarrow (s), D \rightarrow (p), E \rightarrow (t)$
- 4.  $A \rightarrow (r), B \rightarrow (s), C \rightarrow (p), D \rightarrow (q)$

### PART # II

|                     | 3. | – 124 kJ/r       | nol    |           | 4    | – 62 kJ/mol | <b>6.</b> 39 |          |
|---------------------|----|------------------|--------|-----------|------|-------------|--------------|----------|
|                     | 2. | (i) y            | (ii) v | N         |      |             |              |          |
| Comprehension # 5 : | 1. | (i) $\Delta H =$ | (v+    | w + x + y | + z) | (ii) w/2    | (iii) y/2    | (iv) z/2 |
| Comprehension #4:   | 1. | В                | 2.     | (i)B      | (ii) | C           |              |          |
| Comprehension #3:   | 1. | В                | 2.     | А         | 3.   | С           |              |          |
| Comprehension #2:   | 1. | А                | 2.     | В         | 3.   | В           |              |          |
| Comprehension #1:   | 1. | А                | 2.     | D         |      |             |              |          |

### **EXERCISE - 5 : PART # I**

1. B 2. D 3. B 4. A 5. A 6. A 7. B 8. B 9. D 10. C 11. B 12. C PART # II 1. 9 2. B 3. C 4. D 5. D

### **MOCK TEST**

| 1.  | А         | 2.      | D   |   | 3. | D   |   | 4. | В   |   | 5.  | А |
|-----|-----------|---------|-----|---|----|-----|---|----|-----|---|-----|---|
| 6.  | А         | 7.      | В   |   | 8. | В   |   | 9. | С   |   | 10. | Α |
| 11. | B,C,D 12. | A, B, D | 13. | А |    | 14. | D |    | 15. | А |     |   |
| 16. | В         | 17.     | В   |   |    |     |   |    |     |   |     |   |
|     |           |         |     |   |    |     |   |    |     |   |     |   |

18.  $A \rightarrow (p,q), B \rightarrow (q,r,s), C \rightarrow (p), D \rightarrow (r)$ 

