HINTS \& SOLUTIONS

EXERCISE - 1

Single Choice

1. Entropy is extensive property \& others are intensive properties.
2. The compressor has to run for longer time releasing more heat to the surroundings.
3. In a reversible process, the driving and the opposite forces are nearly equal, hence the system and the surroundings always remain in equilibrium with each other.
$7 \mathrm{~A} \rightarrow \mathrm{~B}$, volume is not changing (Isochoric)
$\mathrm{B} \rightarrow \mathrm{C}$ Isobaric
$\mathrm{C} \rightarrow$ A Temperature is constant (Isothermal)
4. (D) $\mathrm{w}=-\mathrm{P}_{\text {ext }} . \Delta \mathrm{V}=-\Delta \mathrm{n}_{\mathrm{g}} \mathrm{RT}$ and $\Delta \mathrm{n}_{\mathrm{g}}$ is-Ve for I and II also $\Delta V=-$ ve for IV
$9 \mathrm{H}=\mathrm{W}=\mathrm{i}^{2} \mathrm{Rt}=\frac{\mathrm{V}^{2} \mathrm{t}}{\mathrm{R}}=\frac{120 \times 120 \times(10 \times 60)}{6}$
$=14.4 \times 10^{5}$ joule
5. Case (i) $\Delta \mathrm{V}=0, \mathrm{~W}=0$

Case (ii) $\mathrm{P}=$ constant, $\mathrm{W}=-\mathrm{P}\left(2 \mathrm{~V}_{1}-\mathrm{V}_{1}\right)=-\mathrm{PV} \mathrm{V}_{1}$
14. $\mathrm{W}=-2.303 \mathrm{nRT} \log \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}$
$=-2.303 \times 1 \times 8.314 \times 10^{7} \times 298 \log \frac{20}{10}$
$=-298 \times 10^{7} \times 8.314 \times 2.303 \log 2$.
16. At constant volume $\Delta \mathrm{H}=\Delta \mathrm{U}+\mathrm{V} \Delta \mathrm{P}$
$\Rightarrow \quad-560=\Delta \mathrm{U}+10 \times(-30) \times 0.1 \quad \Rightarrow \Delta \mathrm{U}=-530 \mathrm{~kJ}$
17. Let final common temperature is T_{f} Heat gained by Zinc piece $=$ Heat lost by water $0.4\left(\mathrm{~T}_{\mathrm{f}}-20\right) \times 65.38=4.2\left(100-\mathrm{T}_{\mathrm{f}}\right) \times 180 \Rightarrow \mathrm{~T}_{\mathrm{f}}=97.3^{\circ} \mathrm{C}$
19. We know that $\Delta \mathrm{E}=\mathrm{Q}+\mathrm{W}=600+(-300)=300 \mathrm{~J}$ $\mathrm{W}=-300$, because the work done by the system.
20. Bomb calorimeter is commonly used to find the heat of combustion of organic substances which consists of a sealed combustion chamber, called a bomb. If a process is run in a sealed container then no expansion or compression is allowed, so $\mathrm{w}=0$ and $\Delta \mathrm{U}=\mathrm{q}$.

$$
\Delta \mathrm{U}<0, \mathrm{w}=0
$$

22. For isochoric process $\Delta V=0$ so $q_{v}=\Delta E$ i.e. heat given to a system under constant volume is used up in increasing $\Delta \mathrm{E}$.
23. When a real gas is forced through a porous plug into a region of low pressure, it is found that due to expansion, the gas on the side of low pressure gets cooled.
The phenomenon of producing lowering of temperature when a gas is made to expand adiabatically from a region of high pressure into a region of low pressure is known as Joule-Thomson effect.
24. $\mathrm{T}_{1} \mathrm{~V}_{1}^{\gamma-1}=\mathrm{T}_{2} \mathrm{~V}_{2}^{\gamma-1} \Rightarrow 300 \times \mathrm{V}^{1 / 3}=\mathrm{T}_{2}(8 \mathrm{~V})^{1 / 3} \Rightarrow \mathrm{~T}_{2}=150 \mathrm{~K}$
$\mathrm{W}=\mathrm{nC}_{\mathrm{v}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)=1 \times 3 \mathrm{R}(150-300)=3 \times 2(-150)$
$=-900 \mathrm{cal}$
25. $\Delta \mathrm{H}=$ heat given. So, process is isobaric.
$\mathrm{w}=-\mathrm{P}_{\text {ext }}(\Delta \mathrm{V})=-1 \times 2$ litre.atm $=-202.6 \mathrm{~J}$
Hence, $q=202.6 \mathrm{~J}=\Delta \mathrm{H}$. and $\Delta \mathrm{E}=\mathrm{q}+\mathrm{w}=0$.
26. State 1 \qquad

State 2

(1 L, $10 \mathrm{~atm}, 300 \mathrm{~K}$)
(4L, $5 \mathrm{~atm}, 600 \mathrm{~K}$)
Heat given, $\mathrm{q}=50^{\prime}(600-300)=15000 \mathrm{~J}$
$\mathrm{W}=-\mathrm{P}_{\text {ext }}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)=-1(4-1)=-3 \mathrm{~L} \mathrm{~atm}=-300 \mathrm{~J}$
$\Delta \mathrm{E}=\mathrm{q}+\mathrm{W}=15000-300=14700 \mathrm{~J}$
$\Delta \mathrm{H}=\Delta \mathrm{E}+\mathrm{P}_{2} \mathrm{~V}_{2}-\mathrm{P}_{1} \mathrm{~V}_{1}=14700 \mathrm{~J}+(20-10) \times 100 \mathrm{~J}$
$=15.7 \mathrm{KJ}$
30. In isothermal reversible process ideal gas has constant temperature and so $\Delta \mathrm{E}=0$ and $\Delta \mathrm{H}=\Delta \mathrm{E}=0$.
32. Mixing of non-reacting gases increases randomness and so increase entropy .
$35 \mathrm{NaNO}_{3}$ is a solid, which is converted to liquid ions.
36. Reaction is endothermic and no. of moles increases on decomposition.
37. $\Delta \mathrm{S}_{\mathrm{gas}}=\mathrm{nC}_{\mathrm{v}, \mathrm{m}}$ In $\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=2 \times\left(\frac{5}{2}-1\right) \mathrm{R} \operatorname{In} 2=3 \mathrm{R} \operatorname{In} 2$
38. $\Delta \mathrm{S}=\mathrm{nC}_{\mathrm{v}, \mathrm{m}} \operatorname{In} \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}+\mathrm{nR} \operatorname{In} \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=\mathrm{C}_{\mathrm{v}, \mathrm{m}} \operatorname{In} 2+\mathrm{R} \operatorname{In}\left(\frac{1}{2}\right)$
$=\left(C_{v, m}-R\right)$ In 2
41. $\Delta \mathrm{S}_{\mathrm{gas}}=\mathrm{nC}_{\mathrm{V}, \mathrm{m}} \ln \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=2 \times \frac{3}{2} \mathrm{R} \ln \frac{573}{473}=3 \mathrm{R} \ln \left(\frac{573}{473}\right)$.
42. $\Delta \mathrm{S}=\mathrm{nC}_{\mathrm{v}} \operatorname{\ell n} \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}+\mathrm{nR} \ell \mathrm{n} \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}$

For adiabatic process $(\mathrm{Q}=0)$
$\Delta \mathrm{E}=\mathrm{W} \Rightarrow \mathrm{nC}_{\mathrm{v}} \ln \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=-\mathrm{nR} \ln \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}} \therefore \quad \Delta \mathrm{~S}=0$.
44. $\Delta \mathrm{S}_{\text {system }}=\mathrm{nR} \operatorname{In} \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=2 \times \mathrm{R} \times \operatorname{In} 2=11.52 \mathrm{~J} / \mathrm{K}$

$$
\begin{aligned}
& \Delta \mathrm{S}_{\text {surrounding }}=-\frac{3.41 \times 1000}{310}=-11 \mathrm{~J} / \mathrm{K} \\
& \Delta \mathrm{~S}_{\text {total }}=+11.52-11=+0.52 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

46. $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Delta \mathrm{H}_{\text {vap }}=\Delta \mathrm{S}_{\text {vap }} \mathrm{T}_{\text {B. } .}=\mathrm{x}_{1} \mathrm{~T}_{1}$
$\Delta \mathrm{H}_{\mathrm{f}}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{g}\right)=\Delta \mathrm{H}_{\mathrm{f}}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{l}\right)+\Delta \mathrm{H}_{\text {vap }} \quad=\mathrm{x}_{2}+\mathrm{x}_{1} \mathrm{~T}_{1}$ $\Delta \mathrm{H}_{\text {reaction }}=2 \Delta \mathrm{H}_{\mathrm{f}}\left(\mathrm{CO}_{2}, \mathrm{~g}\right)+3 \Delta \mathrm{H}_{\mathrm{f}}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{g}\right)-\Delta \mathrm{H}_{\mathrm{f}}\left(\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{~g}\right)$

$$
=2 x_{3}+3\left(x_{2}+x_{1} T_{1}\right)-x_{4} \quad=2 x_{3}+3 x_{2}+3 x_{1} T_{1}-x_{4} .
$$

47. $\Delta \mathrm{S}_{\text {(system) }}=\frac{1 \times-401.7}{368}=-1.09 \mathrm{JK}^{-1}$

The ice-water both absorbs the $401.7 \mathrm{~J} \mathrm{~mol}^{-1}$ at temperature 273 K

$$
\begin{aligned}
\therefore \quad \Delta \mathrm{S}_{\text {surrounding }} & =\frac{1 \times 401.7}{273}=1.47 \mathrm{JK}^{-1} \text { and } \Delta \mathrm{S}_{\text {(universe) }} \\
& =-1.09+1.47=0.38 \mathrm{JK}^{-1}
\end{aligned}
$$

48. Equilibrium at standard state means equilibrium constant is 1 .
49. $\Delta \mathrm{G}=\underset{ }{\downarrow} \underset{ }{(\Delta \mathrm{H})}-\underset{\sim}{\mathrm{T}} \mathrm{T}(\Delta \mathrm{S})$
since both are -ve, the reaction would have a -ve $\Delta \mathrm{G}$ below a temperature of $\frac{33000}{58} \mathrm{~K}(=569 \mathrm{~K})$
50. It is because of the fact that for spontaneity, the value of $\Delta G=(\Delta H-T \Delta S)$ should be <0. If ΔS is - ve, the value of $T \Delta S$ shall have to be less than ΔH or the value of ΔS has to be less than $\frac{\Delta H}{T}$ i.e., $\frac{\mathrm{x}}{298}$.
51. $\Delta \mathrm{G}$ for $3 \mathrm{Fe}(\mathrm{s})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}$ (s) can be obtained by taking
$[(2)+4 \times(1)] \times \frac{1}{3}$
Hence, we get $\Delta \mathrm{G}_{\mathrm{f}}=[-19+4 \times(-177)] \times \frac{1}{3}=-242.3 \mathrm{k}$ cal for $1 \mathrm{~mole} \mathrm{Fe}_{3} \mathrm{O}_{4}$
52. $\mathrm{A}(\mathrm{g}) \rightleftharpoons \mathrm{B}(\mathrm{g}) \mathrm{P}_{\mathrm{B}}=\frac{1}{4} \mathrm{P}_{\mathrm{A}} \quad \mathrm{P}_{\mathrm{A}}=4 \mathrm{P}_{\mathrm{B}}$
$\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{B}}}{\mathrm{P}_{\mathrm{A}}}=\frac{\mathrm{P}_{\mathrm{A}} / 4}{\mathrm{P}_{\mathrm{A}}}=\frac{1}{4}$
Atequilibrium, $\Delta \mathrm{G}=0$.
$\Delta \mathrm{G}^{\mathrm{o}}=-\mathrm{RT} \ell \mathrm{nK}_{\mathrm{P}}=-\mathrm{RT} \ln \mathrm{K}_{\mathrm{P}}=-\mathrm{RT} \ln \frac{1}{4}=\mathrm{RT} \ln 4$
53. Work is not a state function becuase it depends upon the path followed.
54. In isothermal process, $\Delta T=0$

In isobaric process, $\Delta \mathrm{P}=0$
In adiabatic process, $q=0$.
In isochoric process $\Delta \mathrm{V}=0$
62 For IV volume is constant (isochoric)
For I pressure is constant (isobaric)
63. Process direction in V-P diagram is clockwise so, process direction in $\mathrm{P}-\mathrm{V}$ diagram is anti-clockwise.
Net work done on the system = Area of the ellipse
$=\pi \times \frac{\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right)}{2} \frac{\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)}{2}$
64. At A and D the temperatures of the gas will be equal, so $\Delta \mathrm{E}=0, \quad \Delta \mathrm{H}=0$
Now $w=w_{A B}+\mathrm{w}_{\mathrm{BC}}+\mathrm{w}_{\mathrm{CD}}=-\mathrm{P}_{0} \mathrm{~V}_{0}-2 \mathrm{P}_{0} \mathrm{~V}_{0} \ln 2+\mathrm{P}_{0} \mathrm{~V}_{0}$ $=-2 \mathrm{P}_{0} \mathrm{~V}_{0} \ln 2$
66. $\mathrm{W}_{\text {net }}=$ area enclosed

$$
\begin{aligned}
& \mathrm{V}=\frac{\mathrm{nRT}}{\mathrm{P}} \\
& \mathrm{~V}_{\mathrm{A}}=\frac{2 \mathrm{R} \times 300}{1}=\frac{600 \mathrm{R}}{1} \\
& \mathrm{~V}_{\mathrm{B}}=\frac{2 \mathrm{R} \times 300}{2}=\frac{300 \mathrm{R}}{1} ; \mathrm{V}_{\mathrm{c}}=\frac{2 \mathrm{R} \times 400}{2}=\frac{400 \mathrm{R}}{1} \\
& \mathrm{~V}_{\mathrm{D}}=\frac{800 \mathrm{R}}{1}
\end{aligned}
$$

$\mathrm{W}_{\mathrm{AB}}=-\mathrm{nRT} \mathrm{T}_{\mathrm{A}} \ln \frac{\mathrm{V}_{\mathrm{B}}}{\mathrm{V}_{\mathrm{A}}}=-2 \mathrm{R}(300) \ln \frac{1}{2}=600 \mathrm{R} \ln 2$
$W_{B C}=-2(400-300) R=-200 R$
$W_{C D}=-2 R(400) \ln \frac{\mathrm{V}_{\mathrm{D}}}{\mathrm{V}_{\mathrm{C}}}=-800 \mathrm{R} \ln 2$
$W_{A D}=-1(600 R-800 R)=200 R$
$\mathrm{W}_{\text {Total }}=\mathrm{W}_{\mathrm{AB}}+\mathrm{W}_{\mathrm{BC}}+\mathrm{W}_{\mathrm{CD}}+\mathrm{W}_{\mathrm{AD}}=-200 \mathrm{R} \ln 2$ $=-100 \mathrm{R} \ln 4$
67. I - Work done by the system in case of infinite stage expansion is more than single stage expansion.
III - Single stage process is a irreversible process.
IV - We have 5 points on PV diagram.
69. latent heat of vaporisation of water $=2.25 \times 10^{6} \mathrm{~J} / \mathrm{kg}$ $\Delta \mathrm{H}=2.25 \times 10^{6} \mathrm{~J} / \mathrm{kg}$.
work done $=-\mathrm{P}_{\text {ext }}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$
$\Delta \mathrm{H}=2.25 \times 10^{6} \mathrm{~J} / \mathrm{kg}$
$\Delta \mathrm{H}=\Delta \mathrm{U}+\mathrm{P} \Delta \mathrm{V}$
(a) Now, volume of water $V=\left(\frac{m}{d}\right)=\frac{1}{1000} \mathrm{M}^{3}=1 \mathrm{~L}$
(b) volume of steam $=\frac{1000}{0.6}=1666.67 \mathrm{~L}$

$$
\begin{aligned}
& 2.25 \times 10^{6}=\Delta \mathrm{U}+1[1666.67-1] 101.325 \\
& \Delta \mathrm{U}=22.5 \times 10^{5}-1.68 \times 10^{5}=20.8 \times 10^{5}=2.08 \times 10^{6} \mathrm{~J}
\end{aligned}
$$

70. Volume $=5 \times 10 \times 3=150 \mathrm{~m}^{3}=150 \times 10^{3} \mathrm{~L}$;
$\mathrm{T}=27^{\circ} \mathrm{C}=300 \mathrm{~K} ; \quad \mathrm{P}=1 \mathrm{~atm}$
$\mathrm{PV}=\mathrm{nRT} \quad \Rightarrow \quad 1 \times 150 \times 10^{3}=\mathrm{n} \times 0.082 \times 300$
$\Rightarrow \mathrm{n}=6097.6$
Total energy released per second $=150 \times 50=7500 \mathrm{~J} / \mathrm{sec}$.
Amount of energy released by persons $=$ energy gained by air $\Rightarrow[7500] \mathrm{t}_{\mathrm{sec}}=\mathrm{nC}[\mathrm{dT}]$
$\Rightarrow 7500 \mathrm{t}_{\mathrm{sec}}=6097.6 \times \frac{7}{2} \times 8.312 \times 15$
$\Rightarrow \quad \mathrm{t}_{\mathrm{sec}}=354.87 \mathrm{sec} .=\frac{354.87}{60}=5.91$ minutes.
EXERCISE-2

Part \# I : Multiple Choice

6. $\Delta \mathrm{H}=\left(\mathrm{n}_{1} \mathrm{C}_{\mathrm{p}, \mathrm{m}_{1}}+\mathrm{n}_{2} \mathrm{C}_{\mathrm{p}, \mathrm{m}_{2}}\right) \Delta \mathrm{T}=\left(0.5 \times \frac{7}{2} \mathrm{R}+0.5 \times 4 \mathrm{R}\right)(-100)$
$=-375 \mathrm{R}$ and $\mathrm{DU}=\left(0.5 \times \frac{5}{2} \mathrm{R}+0.5 \times 3 \mathrm{R}\right)$
$(-100)=-275 \mathrm{R}$.
7. $\Delta \mathrm{S}=\mathrm{nC}_{\mathrm{V}} \ln \left(\frac{\mathrm{T}_{\mathrm{f}}}{\mathrm{T}_{\mathrm{i}}}\right)+\mathrm{nR} \ln \left(\frac{\mathrm{V}_{\mathrm{f}}}{\mathrm{V}_{\mathrm{i}}}\right)=5 \ln \frac{373}{298}+2 \ln 10$
$\Delta \mathrm{H}=\mathrm{nC}_{\mathrm{p}} \Delta \mathrm{T}=\mathrm{n}\left(\mathrm{C}_{\mathrm{v}}+\mathrm{R}\right) \Delta \mathrm{T}=1 \times 7 \times 75=525 \mathrm{cal}$
8. Boiling of a liquid at normal boiling point is a equilibrium process and on decreasing the pressure equilibrium will go forward and $\Delta \mathrm{G}$ will be negative and vice versa.
9. Avg. $C_{V, m}=\frac{n_{1} C_{V, m_{1}}+n_{2} C_{V, m_{2}}}{n_{1}+n_{2}}=\frac{1 \times 3 R+2 \times \frac{3}{2} R}{3}=2 R$

$$
\begin{aligned}
& \mathrm{T}_{1} \mathrm{~V}_{1}^{\gamma-1}=\mathrm{T}_{2} \mathrm{~V}_{2}^{\gamma-1} \Rightarrow 320 \times \frac{1}{2}^{\frac{3}{2}-1}=\mathrm{T}_{2} \times(4)^{32-1} \Rightarrow \mathrm{~T}_{2}=160 \mathrm{~K} \\
& \Delta \mathrm{U}=\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right) \mathrm{C}_{\mathrm{V}, \mathrm{avg}} \Delta \mathrm{~T}=3 \times 2 \mathrm{R} \times(160-320)=-960 \mathrm{R}
\end{aligned}
$$

17. $\mathrm{dE}=\mathrm{dW}+\mathrm{dQ} ;-\mathrm{dW}=\mathrm{dQ}-\mathrm{dE} \therefore \frac{\mathrm{dQ}}{\mathrm{dW}}=\frac{\mathrm{dQ}}{\mathrm{dQ}-\mathrm{dE}}$

$$
=\frac{c_{p}}{\left(c_{p}-c_{v}\right)}=\frac{7 R}{2 R}\left(c_{p}=\frac{7 R}{2}\right)
$$

19. (A) $\mathrm{w}=-\mathrm{nR} \Delta \mathrm{T}=-2 \times 8.314 \times 100=-1662.8 \mathrm{~J}$
$\Delta \mathrm{U}=\mathrm{n} \int_{300}^{400} \mathrm{C}_{\mathrm{V}, \mathrm{m}} \mathrm{dT}=2 \times \int_{300}^{400}\left(20+10^{-2} \mathrm{~T}\right) \mathrm{dT}$
$=2\left[20 \times 100+\frac{10^{-2}}{2}\left(400^{2}-300^{2}\right)\right]=4700 \mathrm{~J}$
$4700=q-1662.8$
$\therefore \quad \mathrm{q}=6362.8 \mathrm{~J}$.
20. $\mathrm{T} \propto \frac{1}{\sqrt{\mathrm{~V}}} ; \mathrm{TV}^{1 / 2}=\mathrm{constant}$

For adiabatic process, $\mathrm{TV}^{\gamma-1}=$ constant
$\therefore \quad \gamma-1=\frac{1}{2}, \gamma=\frac{3}{2}$
24. Molar mass $=102$ gram $/ \mathrm{mole}$
$\mathrm{P}=650$ torr $\quad ; \quad \mathrm{T}=77+273=350 \mathrm{~K}$
$\mathrm{Q}=\mathrm{i} \times \mathrm{t}=0.25 \times 600=150$
$\mathrm{E}=\mathrm{Q} \times \mathrm{V}=150 \times 12=1800 \mathrm{~J}$
This heat is supplied to the system at constant pressure that's why this is used for change in enthalpy
\because For vaporisation of 1.8 gram, amount of heat required $q=1800 \mathrm{~J}$
\therefore For vaporisation of 102 gram, amount of heat required $\mathrm{q}=\frac{1800}{1.8} \times 102 \mathrm{~J}$
$=102 \times 10^{3} \mathrm{~J}=102 \mathrm{KJ} / \mathrm{mole}$

$$
\begin{aligned}
& \Delta \mathrm{H}=\Delta \mathrm{U}+\mathrm{P} \Delta \mathrm{~V} \\
& \Delta \mathrm{H}=\Delta \mathrm{U}+\Delta \mathrm{n}_{\mathrm{g}} \mathrm{RT}
\end{aligned}
$$

For determination of $\Delta \mathrm{U}$ per $\operatorname{mol}\left(\Delta \mathrm{n}_{\mathrm{g}}=1\right)$
$102(\mathrm{KJ} / \mathrm{mol})=\Delta \mathrm{U}+(1 \times 8.3 \times 350) \times 10^{-3}$
$\Rightarrow \Delta \mathrm{U}=102-2.9=99.1 \mathrm{KJ} / \mathrm{mole}$
25. Given energy $=1560 \mathrm{~kJ}$

Utilised energy $=\frac{1560 \times 50}{100}=780 \mathrm{~kJ}$
44 kJ Utilised energy for evaporation of $\mathrm{H}_{2} \mathrm{O}=18$ gram
$\therefore \quad 780 \mathrm{~kJ}$ Utilised energy for evaporation of
$\mathrm{H}_{2} \mathrm{O}=\frac{18}{44} \times 780=\mathbf{3 1 9} \mathbf{~ g m}$
27. This is adiabatic irreversible process so, for this process $\mathrm{PV}^{\gamma}=$ Constant, is not applicable
$\mathrm{W}=-\mathrm{P}_{\text {ext }}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$
But for adiabatic process
$\mathrm{W}=\mathrm{dU}=\left(\frac{\mathrm{P}_{2} \mathrm{~V}_{2}-\mathrm{P}_{1} \mathrm{~V}_{1}}{\gamma-1}\right)$
$\mathrm{PV}=\mathrm{nRT}$
$\Rightarrow 10 \times 10=\mathrm{n} \times 0.082 \times 273 \Rightarrow \mathrm{n}=4.47$ moles
$-P_{e x t}\left(V_{2}-V_{1}\right)=\left(\frac{P_{2} V_{2}-P_{1} V_{1}}{\gamma-1}\right)$
$\Rightarrow-1 \times\left(\mathrm{V}_{2}-10\right)=\frac{1 \times \mathrm{V}_{2}-10 \times 10}{1.67-1}$
$\Rightarrow\left(10-\mathrm{V}_{2}\right)=\frac{\mathrm{V}_{2}-100}{0.67} \Rightarrow 6.7-0.67 \mathrm{~V}_{2}=\mathrm{V}_{2}-100$
$\Rightarrow 106.7=1.67 \mathrm{~V}_{2} \quad \Rightarrow \quad \mathrm{~V}_{2}=64$
$\therefore \quad \mathrm{nR}\left[\mathrm{T}_{2}-\mathrm{T}_{1}\right]=\mathrm{P}_{2} \mathrm{~V}_{2}-\mathrm{P}_{1} \mathrm{~V}_{1}$
$\Rightarrow 4.47 \times 0.082\left[\mathrm{~T}_{2}-273\right]=64-100=-36$
$\Rightarrow\left(T_{2}-273\right)=-98.2 \quad \Rightarrow \quad T_{2}=\mathbf{1 7 4 . 8} \mathbf{K}$
28. $\mathrm{q}=0, \Delta \mathrm{U}=\mathrm{W}$
$\mathrm{nC}_{\mathrm{v}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)=-\mathrm{P}_{\text {ext }}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$
$\mathrm{n} \frac{3}{2} \mathrm{R}\left(\mathrm{T}_{2} 300\right)=-2\left(\frac{\mathrm{nRT} T_{2}}{2}-\frac{\mathrm{nR} \times 300}{1}\right)$
$\Rightarrow \frac{3}{2}\left(\mathrm{~T}_{2}-300\right)=\left(600-\mathrm{T}_{2}\right) \Rightarrow \mathrm{T}_{2}=420 \mathrm{~K}$
$\mathrm{W}=\mathrm{nC}_{\mathrm{v}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)=2 \times \frac{3}{2} \times 2(420-300)=720 \mathrm{cal}$.
32. $0.40=\mathrm{aT}_{1}^{3}+\mathrm{bT}_{1} \Rightarrow 0.40=\mathrm{a} \times(1000)+\mathrm{b} \times 10$
$\Rightarrow \quad 0.4=1000 \mathrm{a}+10 \mathrm{~b}$
$0.92=\mathrm{aT}_{2}^{3}+\mathrm{bT}_{2} \Rightarrow 0.92=\mathrm{a} \times 8000+20 \mathrm{~b}$
from Eqs. (1) and (2)

$$
\begin{aligned}
\mathrm{a} & =2 \times 10^{-5}, \mathrm{~b}=0.038 \\
\mathrm{~S}_{\mathrm{m}} & =\int \frac{\mathrm{a} T^{3}+\mathrm{bT}}{\mathrm{~T}} \cdot \mathrm{dT}=\frac{\mathrm{a}\left[\mathrm{~T}_{2}^{3}-\mathrm{T}_{1}^{3}\right]}{3}+\mathrm{b}\left[\mathrm{~T}_{2}-\mathrm{T}_{1}\right] \\
& =0.427 \mathrm{~J} / \mathrm{K}-\mathrm{mol}
\end{aligned}
$$

35. As dew formation is spontaneous process, therefore, entropy or randomness of the universe will increase. As randomeness of the system has decreased but randomness of the surrounding will increase larger so that change is positive.
36. (D) No. of moles of sucrose $=\frac{34.2}{342}=0.1$
$-(\Delta \mathrm{G})_{\mathrm{T} . \mathrm{P}}=$ useful work done by the system
$-\Delta \mathrm{G}=-\Delta \mathrm{H}+\mathrm{T} . \Delta \mathrm{S}=+(6000 \times 0.1)+\frac{180 \times 0.1 \times 300}{1000}$ $=605.4 \mathrm{~kJ}$.
37. (A) $\Delta \mathrm{G}_{200}^{0}=\Delta \mathrm{H}_{200}^{\circ}-\mathrm{T} \Delta \mathrm{S}_{200}^{0}$
$\Delta \mathrm{H}_{200}^{\circ}=20-4=16 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{H}_{\mathrm{T}_{2}}^{\circ}=\Delta \mathrm{H}_{\mathrm{T}_{1}}^{\circ}+\Delta \mathrm{C}_{\mathrm{p}}\left[\mathrm{T}_{2}-\mathrm{T}_{1}\right]$
$\Delta \mathrm{H}_{400}^{\circ}=\Delta \mathrm{H}_{200}^{\circ}+\frac{20 \times 200}{1000} \mathrm{~kJ} / \mathrm{mol}=16+4$
$=20 \mathrm{~kJ} / \mathrm{mol}$.
38. $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
$\Delta \mathrm{H}=\sum \Delta \mathrm{H}_{\mathrm{P}}-\sum \Delta \mathrm{H}_{\mathrm{R}}$
$\Delta \mathrm{H}=-110.5+266.3=155.8 \mathrm{KJ}$
$\Delta \mathrm{S}=\sum \mathrm{S}_{\mathrm{P}}-\sum \mathrm{S}_{\mathrm{R}}$
$\Delta \mathrm{S}=197.6+27.28-(57.5+5.74)=161.64 \mathrm{~J} / \mathrm{mole} \mathrm{K}$
For reaction to be spontaneous, $\Delta \mathrm{G}<0$

$$
\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S}<0 \Rightarrow \mathrm{~T}>\frac{\Delta \mathrm{H}}{\Delta \mathrm{~S}}=\frac{155800}{161.64}=964 \mathrm{~K}
$$

Part \# II : Assertion \& Reason

1. Work done against vacuum is zero. It is free expansion.

CHEMISTRY FOR JEE MAIN \& ADVANCED

EXERCISE-3

Part \# I : Matrix Match Type

1. (A) Reversible isothermal expansion of ideal gas
$\mathrm{W}=-2.303 \mathrm{nRT} \log \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}$ and $\Delta \mathrm{E}=\Delta \mathrm{H}=0($ as $\Delta \mathrm{T}=0)$
(B) Reversible adiabatic compression of an ideal gas

$$
\mathrm{PV}^{\gamma}=\text { constant and } \mathrm{W}=\frac{\mathrm{nR}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)}{\gamma-1}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}-\mathrm{P}_{1} \mathrm{~V}_{1}}{\gamma-1}
$$

(C) Irreversible adiabatic expansion of an ideal gas

$$
\mathrm{W}=\frac{\mathrm{nR}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)}{\gamma-1}
$$

(D) Irreversible isothermal compression of an ideal gas

$$
\Delta \mathrm{H}=0(\text { as } \Delta \mathrm{T}=0)
$$

2. (A) A process carried out infinitesimally slowly is called reversible process
(B) A process in which no heat enters or leaves the system is called adiabatic process
(C) A process carried out at constant temperature is called isothermal process
(D) A process in equilibrium has $\Delta \mathrm{G}=0$
$(\mathrm{E}) \mathrm{A}(\mathrm{s}) \longrightarrow \mathrm{A}(\mathrm{g})$ process of conversion of solid to gas is called sublimation
(F) In a cyclic process, state function have no change in their value. So, $\Delta \mathrm{E}=0, \Delta \mathrm{H}=0$.
3. (A) $\Delta \mathrm{G}_{\text {sys }}=0 \Rightarrow$ equilibrium and free energy is zero. So, no useful work.
(B) $\Delta \mathrm{S}_{\text {universe }}>0 \Rightarrow$ Spontaneous process and able to do useful work.
(C) $\Delta \mathrm{S}_{\text {universe }}<0 \Rightarrow$ Nonspontaneous process and unable to do useful work.
(D) $\Delta \mathrm{G}_{\text {sys }}>0 \Rightarrow$ Nonspontaneous process and unable to do useful work.
4. (A) For reversible process $\Delta \mathrm{S}_{\text {universe }}=0$ and for adiabatic process $\Delta \mathrm{S}_{\text {system }}=0$
(B) For reversible process $\Delta \mathrm{S}_{\text {universe }}=0$, and in vaporisation entropy of system increases
(C) Number of gaseous moles decreases. So, entropy of system decreases and N_{2} is more stable. So, process is spontaneous. For spontaneous process $\Delta \mathrm{S}_{\text {universe }}>0$
(D) Number of gaseous moles increases. So, entropy of system increases.

Part \# II : Comprehension

Comprehension \# 1 :
2. $\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{O} \Delta \mathrm{H}=-57.8 \mathrm{kcal} / \mathrm{mole}$
$\mathrm{c}_{\mathrm{v}}\left(\mathrm{N}_{2}\right)=\mathrm{c}_{\mathrm{p}}\left(\mathrm{N}_{2}\right)-\mathrm{R}=6.3 \mathrm{cal} /{ }^{\circ} \mathrm{C}$ mole
$\mathrm{c}_{\mathrm{v}}\left(\mathrm{H}_{2} \mathrm{O}\right)=9.3 \mathrm{cal} /{ }^{\circ} \mathrm{C}$ mole
Assuming that both $\mathrm{H}_{2} \& \mathrm{O}_{2}$ are consumed.
For 100 moles of air taken 40 moles of $\mathrm{H}_{2} \mathrm{O}$ is formed. 80 moles of N_{2} left.
$\therefore \quad 40 \times 57.8 \times 10^{3}=80 \times 6.3 \times\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)+40 \times 9.3 \times\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$ $\mathrm{T}_{2}=2937 \mathrm{~K}$.
4. For rigid and adiabatic container $\mathrm{W}=0, \mathrm{Q}=0 \mathrm{dU}$ $=\mathrm{Q}-\mathrm{W}=0$
$\mathrm{E}_{2}-\mathrm{E}_{1}=0$ So $\quad \mathrm{E}_{2}=\mathrm{E}_{1}$.
Comprehension \# 2 :

1. Work done in isothermal process will be more than $\mathrm{PV}^{2}=$ const, process whatever be the value of K_{1} and K_{2} as is shown in the diagram.

2. Clearly $\left(\mathrm{V}_{\mathrm{f}}\right)_{\text {isothermal }}>\left(\mathrm{V}_{\mathrm{f}}\right)_{\text {adiabatic }}$

For reversible adiabatic,

$$
\frac{\mathrm{P}^{\circ}}{2}\left(2 \mathrm{~V}^{\circ}\right)^{\gamma}=\mathrm{P}_{1} \mathrm{~V}_{0}^{\gamma} \quad \Rightarrow \mathrm{P}_{1}=\mathrm{P}^{\circ} 2^{\gamma-1}
$$

For reversible $\mathrm{PV}^{2}=\mathrm{K}$

$$
\frac{\mathrm{P}^{\circ}}{2}\left(2 \mathrm{~V}^{\circ}\right)^{2}=\mathrm{P}_{2} \mathrm{~V}_{0}^{2} \quad \Rightarrow \mathrm{P}_{2}=2 \mathrm{P}^{\circ}
$$

So, $\mathrm{P}_{2}>\mathrm{P}_{1}$
Since final volume is same
$\mathrm{P} \propto \mathrm{T}$
So, $\mathrm{T}_{2}>\mathrm{T}_{1}$

Comprehension \#3:

1. Since $\Delta E=q+w=80-30=50$

So for ADB

$$
\Delta \mathrm{E}=\mathrm{q}+\mathrm{w} \quad ; \quad 50=\mathrm{q}-10 \quad ; \mathrm{q}=60 \mathrm{~J}
$$

3. In ADB process, DB process is isochoric so $\mathrm{w}_{\mathrm{DB}}=0$

$$
\begin{array}{ll}
\text { So, } & \Delta \mathrm{E}_{\mathrm{AD}}=\mathrm{q}_{A D}+\mathrm{w}_{\mathrm{AD}} \\
& -40=\mathrm{q}_{A D}+(-10) ; \mathrm{q}_{A D}=-30 \mathrm{~J} \\
\text { Now, } & \mathrm{q}_{A B}=\mathrm{q}_{A D}+\mathrm{q}_{\mathrm{DB}} ; \quad 60=-30+\mathrm{q}_{\mathrm{DB}} \\
& \mathrm{q}_{\mathrm{DB}}=90 \mathrm{~J}
\end{array}
$$

Comprehension \# 4 :
3. Reaction to be spontaneous

$$
\begin{aligned}
& \Delta \mathrm{G}<0 \quad \Rightarrow \Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S}<0 \\
& \Rightarrow \Delta \mathrm{~T}>\frac{\Delta \mathrm{H}}{\Delta \mathrm{~S}} \Rightarrow \mathrm{~T}>\frac{100 \times 10^{3}}{.05 \times 10^{3}} \Rightarrow \mathrm{~T}>2000 \mathrm{~K} .
\end{aligned}
$$

5. Use $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$

$$
\Delta \mathrm{G}=-15-\frac{300 \times(-7.2)}{1000}=-12.84 \mathrm{Kcal} \mathrm{~mol}^{-1}
$$

Comprehension \# 5 :

2. $\Delta \mathrm{S}=2.303 \times 1 \times \mathrm{C}_{\mathrm{P}} \log \left(\frac{600}{300}\right)=23.03$

$$
\begin{aligned}
& \Rightarrow C_{P}=\frac{10}{\log 2} \\
& C_{V}=C_{P}-R=\frac{10}{\log 2}-8.3
\end{aligned}
$$

3. For reaction to be spontaneous,

$$
\begin{aligned}
& \Delta \mathrm{G}<0 \Rightarrow \Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S}<0 \\
& \Rightarrow \mathrm{~T}<\frac{\Delta \mathrm{H}}{\Delta \mathrm{~S}} \Rightarrow \mathrm{~T}<428.6 \mathrm{~K}
\end{aligned}
$$

Comprehension \# 6 :

2. $\Delta \mathrm{H}=\Delta \mathrm{H}_{\mathrm{CH}_{3} \mathrm{OH}}-\Delta \mathrm{H}_{\mathrm{CO}}-\Delta \mathrm{H}_{\mathrm{H}_{2}}=201+114-2 \times 0=-87$
3. $\Delta \mathrm{S}_{320}=\Delta \mathrm{S}_{300}+\Delta \mathrm{C}_{\mathrm{p}} \ln \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=-16+(-43) \ln \frac{320}{300}=-18.58$
$\Delta \mathrm{C}_{\mathrm{P}}=44-29.4-2 \times 28.8=-43$.
4. $\Delta_{\mathrm{r}} \mathrm{G}_{320}^{\circ}=\Delta_{\mathrm{r}} \mathrm{H}_{320}^{\circ}-\mathrm{T} \cdot \Delta_{\mathrm{r}} \mathrm{S}_{320}^{\circ}$
$=-87.86-\frac{320 \times(-18.58)}{1000}=-81.91 \mathrm{~kJ} / \mathrm{mol}$.

Comprehension \#7:

1. $U=\alpha \sqrt{V} \quad$ Here $U=$ Kinetic energy of ideal gas

$$
\begin{align*}
& \mathrm{U}=\mathrm{nC}_{\mathrm{V}} \mathrm{~T} \\
& \Rightarrow \mathrm{nC}_{\mathrm{V}} \mathrm{~T}=\alpha \sqrt{\mathrm{V}} \tag{i}\\
& \mathrm{~T}=\frac{\mathrm{PV}}{\mathrm{nR}} \tag{ii}
\end{align*}
$$

sub. (2) in (1)
$\left(\frac{\mathrm{C}_{\mathrm{V}}}{\mathrm{R}}\right) \cdot \mathrm{PV}=\alpha \sqrt{\mathrm{V}}$
$\Rightarrow \mathrm{P}=\left(\frac{\alpha \cdot \mathrm{R}}{\mathrm{C}_{\mathrm{v}}}\right) \frac{1}{\sqrt{\mathrm{~V}}}$
$w=-\int P d V=-\left(\frac{\alpha R}{C_{V}}\right) \int \frac{d V}{\sqrt{V}}$
$\left.=-(\alpha)(\gamma-1) \cdot \frac{1}{(1 / 2)}(\sqrt{V})\right]_{V_{1}}^{V_{2}}$
$\mathrm{w}=-2(\alpha)(\gamma-1)\left(\sqrt{\mathrm{V}_{2}}-\sqrt{\mathrm{V}_{1}}\right)$
work done by the gas $=-\mathrm{w}=2(\alpha)$
$(\gamma-1)\left(\sqrt{\mathrm{V}_{2}}-\sqrt{\mathrm{V}_{1}}\right)$
2. For diatomic gas with no vibrational degree of freedom
$\mathrm{C}_{\mathrm{v}}=\frac{3}{2} \mathrm{R}+2 \times \frac{1}{2} \mathrm{R}$
$\mathrm{C}_{\mathrm{v}}=5 / 2 \mathrm{R}$
$\Delta \mathrm{U}=\alpha\left(\sqrt{\mathrm{V}_{2}}-\sqrt{\mathrm{V}_{1}}\right)=100 \mathrm{~J}$
$\mathrm{w}=2(\alpha)(\gamma-1)\left(\sqrt{\mathrm{V}_{2}}-\sqrt{\mathrm{V}_{1}}\right)=(2)(\gamma-1) \times 100$
$\because \gamma=\frac{\mathrm{C}_{\mathrm{P}}}{\mathrm{C}_{\mathrm{V}}}=\frac{7}{5}$
$(\gamma-1)=\left(\frac{7}{5}-1\right)=\left(\frac{2}{5}\right)$
$\mathrm{w}=(2)\left(\frac{2}{5}\right)(100) \mathrm{J}=80 \mathrm{~J}$
3. $\Delta \mathrm{U}=\mathrm{q}+\mathrm{w} \Rightarrow 100 \mathrm{~J}=\mathrm{q}-80 \mathrm{~J}$
$\mathrm{q}=180 \mathrm{~J}$

CHEMISTRY FOR JEE MAIN \& ADVANCED

EXERCISE - 4

Subjective Type

1.(i) \qquad $\mathrm{H}_{2} \mathrm{O}(\ell)$
$\mathrm{V}_{(\mathrm{g})}>\mathrm{V}_{(\ell)}$
$\mathrm{W}=-\mathrm{P}_{\mathrm{ext}}\left(\mathrm{V}_{(\rho)}-\mathrm{V}_{(\mathrm{g})}\right)$

$$
\mathrm{W}=+\mathrm{ve}
$$

(ii)

$\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \longrightarrow$| $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ |
| :--- |
| $\mathrm{V}_{(\mathrm{g})}>\mathrm{V}_{(\mathrm{s})}$ |
| $\mathrm{W}=-\mathrm{ve}$ |

(iii) \qquad

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \\
& \mathrm{V}_{(\mathrm{s})}>\mathrm{V}_{(\ell)} \\
& \mathrm{W}=-\mathrm{P}_{\mathrm{ext}}\left(\mathrm{~V}_{(\mathrm{s})}-\mathrm{V}_{(\ell)}\right) \\
& =-\mathrm{ve}
\end{aligned}
$$

(iv) $3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \longrightarrow$

$$
2 \mathrm{NH}_{3}(\mathrm{~g})
$$

$$
\mathrm{W}=-\mathrm{P}_{\mathrm{ext}}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)
$$

$$
=-\mathrm{P}_{\mathrm{ext}}\left(\mathrm{n}_{2} \mathrm{RT}-\mathrm{n}_{1} \mathrm{RT}\right)
$$

$$
=-\Delta \mathrm{n}_{\mathrm{g}} \mathrm{RT}
$$

$$
\mathrm{W}=+\mathrm{Ve}
$$

(v) $\mathrm{CaCO}_{3}(\mathrm{~s}) \longrightarrow$
$\mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
$\mathrm{W}=-\mathrm{P}_{\mathrm{ext}} \Delta \mathrm{V}$
$\Delta \mathrm{V}>0$
$=-\mathrm{ve}$
2. $\Delta \mathrm{E}=-65 \mathrm{~J}$
$\mathrm{w}=20 \mathrm{~J}$
$\Delta q=\Delta V-w$
$-65=\Delta \mathrm{V}-20$
$\Delta \mathrm{V}=-45 \mathrm{~J}$
3. $\Delta \mathrm{H}_{\text {glucose }}=-2808 \mathrm{~kJ} \mathrm{~mol}$
(a) Energy need to climb $3 \mathrm{~m}=\mathrm{Mgh}=62.5 \times 10 \times 3$
$\Delta q=1875$ Joule
Now useful energy from 1 mole of glucose $=2808 \times \frac{1}{4}$
$=702 \mathrm{~kJ}$
\Rightarrow No. of mole of glucose required $=\frac{1875}{702 \times 10^{3}}$
$=2.67 \times 10^{-3}$ mole
grams of glucose $=180 \times 2.67 \times 10^{-3}=0.4807 \mathrm{gm}$
(b) Energy need tp climb 3000 m will be 10^{3} time.
\Rightarrow wt. should be 10^{3} time $=0.4807 \mathrm{~kg}$
4. $\mathrm{q}_{\mathrm{p}}=\mathrm{q}_{\mathrm{v}}+\Delta \mathrm{n}_{\mathrm{g}} \mathrm{RT}$
$40.66 \times 2=q_{v}+2 \times 8.314 \times 373$
$\Rightarrow q_{v}=(81.32-6.202) \mathrm{kJ}$
$q_{v}=75.118 \mathrm{~kJ}$
5. $\Delta \mathrm{H}=1 \mathrm{kcal}$
$\Delta \mathrm{H}=\Delta \mathrm{E}+\mathrm{P} \Delta \mathrm{V}$
$1 \times 10^{3} \times 4.18=\Delta \mathrm{E}+1.013 \times 10^{5} \times 3 \times 10^{-3}$
$\Delta \mathrm{E}=(4180-30.39)$ Joule $=\left(\frac{4149.61}{4.18}\right) \mathrm{cal}$
$\Delta \mathrm{E}=0.993 \mathrm{kcal}$
6. $\mathrm{NH}_{4} \mathrm{CN}(\mathrm{s})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell)$
$\Delta \mathrm{H}_{298}=\Delta \mathrm{E}+\Delta \mathrm{n}_{\mathrm{g}} \mathrm{RT}=-742.7+\frac{1}{2} \times 8.314 \times 298$
$=-742.7+1.239$
$\Delta H_{298}=-741.46$
7. $\Delta \mathrm{H}=1440 \mathrm{cal}$
$\Delta \mathrm{H}=\Delta \mathrm{E}+\mathrm{P}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$
$1440=\Delta \mathrm{E}+1.013 \times 10^{5}(0.0180-0.0196) \times 10^{-3}$
$\Delta \mathrm{E}=1440-1.013 \times 0.0016 \times 10^{-3}$
$\Delta E=1440.168$
8. $W=\int P_{e x t} d V$
$=-\int \mathrm{P}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)=-1.01 \times 10^{5}(0.1) \times 10^{-3}$
$\mathrm{W}=-10.1 \mathrm{~J}$
9. $\mathrm{Zn}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
$\Delta \mathrm{H}=-36.5 \mathrm{~kJ}$
$\Delta \mathrm{Q}=\Delta \mathrm{E}-\mathrm{W}-36.5 \mathrm{~kJ}$
$=\Delta \mathrm{E}+1.01 \times 10^{5}\left(500 \times 50 \times 10^{-6}\right)$
$\Delta \mathrm{E}=-39.03 \mathrm{~kJ}$
$\mathrm{W}=-\mathrm{P}_{\text {ext }}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)=-1.013 \times 10^{5} \times 500 \times 50 \times 10^{-6}$
$\mathrm{W}=-2.53$
10. $\mathrm{W}_{\mathrm{irr}}=-\mathrm{nRT}\left(1-\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)=-5 \times 8.314 \times 300\left(1-\frac{1}{4}\right)$
$\mathrm{W}_{\mathrm{irr}}=-9.353 \mathrm{~kJ}$
$W_{\text {rev }}=-2.303 n R T \log \left(\frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}\right)$
$\mathrm{W}_{\mathrm{rev}}=-2.303 \times 5 \times 8.314 \times 300 \log 4$
$\mathrm{W}_{\mathrm{rev}}=-17.29 \mathrm{~kJ}$
and $\Delta q=\Delta E-W$
at $\Delta \mathrm{T} \rightarrow 0 \Delta \mathrm{E} \rightarrow 0 \Delta \mathrm{H} \rightarrow 0$
$\mathrm{W}_{\mathrm{rev}}=-\mathrm{q}=17.29 \mathrm{~kJ}$
11. $\mathrm{n}_{1}=1$
$\mathrm{T}_{1}=300 \mathrm{~V}_{2}=27 \mathrm{~V}_{1} \quad \mathrm{~T}_{1} \mathrm{~V}_{1}^{\gamma-1}=\mathrm{T}_{2} \mathrm{~V}_{2}^{\gamma-1}$
$\left(\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}\right)=\left(\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right)^{\gamma-1} \quad \mathrm{~T}_{2}=300\left(\frac{1}{27}\right)^{\frac{1}{3}}$
$\mathrm{T}_{2}=100 \mathrm{~K}$
Adiabatic condition $\Delta \mathrm{Q}=20 \Rightarrow \Delta \mathrm{E}=\mathrm{W}=\mathrm{nC}_{\mathrm{V}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
$\mathrm{W}=1 \times 25 \times-200$
$\mathrm{W}=-5.000 \mathrm{~kJ} / \mathrm{mole}$
12. Process reversibly adiabatic
$\mathrm{T}_{1}=298.15 \mathrm{~K} \quad \mathrm{~V}_{2}=2 \mathrm{~V}_{1}$
$\mathrm{T}_{2}=248.44 \mathrm{~K} \quad \mathrm{Pv}^{\gamma}=\mathrm{K} \quad \mathrm{PV}=\mathrm{nRT}$
$\frac{\mathrm{T}}{\mathrm{V}} \cdot \mathrm{V}^{\gamma}=\mathrm{K} \quad \mathrm{T}_{1} \mathrm{~V}_{1}^{\gamma-1}=\mathrm{T}_{2} \mathrm{~V}_{2}^{\gamma-1}$
$\left(\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}\right)=\left(\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right)^{\gamma-1} \quad\left(\frac{298.15}{248.44}\right)=2 . .^{\gamma-1}$
$1.2=2^{\gamma-1} \quad \log 1.2=\log 2 .(\gamma-1)$
$\gamma-1=\frac{\log 1.2}{\log 2} \quad \gamma-1=0.263$
Now $\quad \mathrm{nC}_{\mathrm{v}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}-\mathrm{P}_{1} \mathrm{~V}_{1}}{\gamma-1}$
$C_{V_{1} \mathrm{~m}}=\left(\frac{\mathrm{R}}{\gamma-1}\right)=\frac{\mathrm{nR}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)}{(\gamma-1)}$
$\mathrm{C}_{\mathrm{V}_{1} \mathrm{~m}}=\frac{8.314}{0.263} \quad \mathrm{C}_{\mathrm{V}_{1} \mathrm{~m}}=31.61$
13. $\mathrm{W}=-2.303 \mathrm{nRT} \log \left(\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}\right)$
$=-2.303 \times 1 \times 8.314 \times 298 \log \left(\frac{1}{5}\right)$
$\mathrm{W}=-3.988 \mathrm{~kJ}$
14.
(22.4L

State	P	V	T
1	1	22.4 L	273
2	2 atm	22.4	546 K
3	1 atm	44.8	546 K

State - 1

$$
\mathrm{PV}=\mathrm{nRT} \Rightarrow \mathrm{P}=1 \mathrm{~atm}
$$

State-2

$$
\begin{aligned}
& \frac{\mathrm{P}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}} \Rightarrow \mathrm{P}_{2}=2 \mathrm{~atm} \\
& \mathrm{P}_{2}=\frac{546}{273} \times 1 \mathrm{~atm}
\end{aligned}
$$

State-3

$$
\begin{aligned}
& \mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} \\
& 2 \times 22.4=44.8 \times \mathrm{P}_{2} \\
& \mathrm{P}_{2}=1 \mathrm{~atm}
\end{aligned}
$$

Step	Name of process	\mathbf{q}	\mathbf{w}	$\Delta \mathbf{E}$	$\Delta \mathbf{H}$
A	Isochoric	$\frac{3}{2} R(273)$	0	$\frac{3}{2} R(273)$	$\frac{5}{2} R(273)$
B	Isotherm	$546 R \ln 2$	$-546 R \ln 2$	0	0
C	Isotherm	$\frac{-5}{2} R(273)$	$R(273)$	$\frac{3}{2} R(273)$	$\frac{-5}{2} R(273)$
overall					

State-A \rightarrow (Isochoric)

$$
\begin{aligned}
\mathrm{W} & =0 \quad \Delta \mathrm{q}=\Delta \mathrm{E} \\
& \Rightarrow 1 \times \frac{3}{2} R(273)
\end{aligned}
$$

$\Delta \mathrm{H}=\mathrm{nC}_{\mathrm{p}} \mathrm{dT} \quad \Delta \mathrm{H}=1 \times \frac{5}{2} \mathrm{R}(273)$
State - B \rightarrow (Isothermal)

$$
\begin{array}{ll}
\Delta \mathrm{E}=0 & \Delta \mathrm{H}=0 \\
& \because \Delta \mathrm{H}=\Delta \mathrm{E}+\Delta \mathrm{PV}
\end{array}
$$

is $\mathrm{Q}=-\mathrm{w}=+2.303 \times 1 \times 8.314 \log (2) \times 546$
$\mathrm{Q}=546 \mathrm{R} \ln 2 \quad \mathrm{~W}=-546 \mathrm{R} \ln 2$
$\Delta \mathrm{E}=\mathrm{nC}_{\mathrm{V}} \Delta \mathrm{T} \quad \mathrm{W}=\mathrm{nR}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
State - $\mathrm{C} \rightarrow$ (Isobaric)

$$
\Delta q=\Delta E-w=\Delta E+P\left(V_{2}-V_{1}\right)
$$

or $\Delta H=\Delta E+P \Delta V=\frac{5}{2} R(-273)$
15. $\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\ell)$
$\Delta \mathrm{C}_{\text {reaction }}=\mathrm{C}_{\mathrm{p}_{\mathrm{H}_{2} \mathrm{O}(\ell)}}-\mathrm{C}_{\mathrm{H}_{2}(\mathrm{~g})}-\frac{1}{2} \mathrm{C}_{\mathrm{O}_{2}(\mathrm{~g})}$
$=75.312-38.83-\frac{1}{2} \times 29.16$
$\Delta \mathrm{Cp}_{\mathrm{p}}=21.90 \mathrm{~kJ}$
$\Delta \mathrm{H}_{373}^{\text {reaction }}=\Delta \mathrm{H}_{298}+\mathrm{nCp} \Delta \mathrm{T}$
$=\left(-285.76+1 \times 21.9 \times 75 \times 10^{-3}\right) \mathrm{kJ}$
$\Delta \mathrm{H}_{373}=-284.12 \mathrm{~kJ}$

CHEMISTRY FOR JEE MAIN \& ADVANCED

16. $\mathrm{C}_{\mathrm{P}}=22.34+48.1 \times 10^{-3} \mathrm{TJK}^{-1} \mathrm{~mol}^{-1}$

$$
\begin{aligned}
& \Delta \mathrm{H}
\end{aligned}=\int_{\mathrm{n}=1}^{\mathrm{n}=1} \mathrm{nC}_{\mathrm{p}} \mathrm{dT}=\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}}\left(22.34+48.1 \times 10^{-3} \mathrm{~T}\right) \mathrm{dT},
$$

17. $\Delta \mathrm{S}=28.8 \mathrm{~J} / \mathrm{K} \quad \Delta \mathrm{H}=30.5 \mathrm{~kJ}$
$\Delta \mathrm{H}=\mathrm{T} \Delta \mathrm{S} \quad \frac{30.5 \times 10^{3}}{28.8}=\mathrm{T}=1059 \mathrm{~K}$
18. $\Delta \mathrm{S}=\frac{\mathrm{nC}_{\mathrm{p}} \mathrm{dT}}{\mathrm{T}}$
$=1 \times \int\left(\frac{25.5}{\mathrm{~T}}+13.6 \times 10^{-3}-42.5 \times 10^{-7} \mathrm{~T}\right) \mathrm{dT}$
$=2.303 \times 25.5 \log 2+13.6 \times 10^{-3} \times 300-42.5 \times 10^{-7} \frac{\left(600^{2}-300^{2}\right)}{2}$
$\Delta \mathrm{S}=20.618 \mathrm{~kJ}$
19. $\mathrm{Br}_{2}(\ell)+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{BrCl}(\mathrm{g}), \quad \Delta \mathrm{H}^{\circ}=29.3 \mathrm{~kJ}$
$\Delta \mathrm{S}_{\mathrm{Br}}=152.3 \quad \Delta \mathrm{~S}_{\mathrm{Cl}_{2}(\mathrm{~g})}=223.0$
$\Delta \mathrm{S}_{\mathrm{BrCl}(\mathrm{g})}=239.7 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1^{-1}}$
$\Delta \mathrm{S}_{\mathrm{R}}=2 \times 239.7-223-152.3=104.4$
$\Delta_{\mathrm{r}} \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
$=29300-298 \times 104.4=-1721.8 \mathrm{~J}$
20. $\mathrm{CCl}_{4}(\ell) \longrightarrow \mathrm{CCl}_{4}(\mathrm{~g})$
$\mathrm{P}=1 \mathrm{~atm}$
$\mathrm{T}=298 \mathrm{~K} \quad \Delta \mathrm{~S}=94.98 \mathrm{JK}^{-1}$
$\Delta_{\mathrm{r}} \mathrm{H}=\Delta \mathrm{H}_{\mathrm{p}}-\Delta \mathrm{H}_{\mathrm{r}}=(-106.7+139.3) \mathrm{kJ}$
$=32.6 \mathrm{~kJ} / \mathrm{mol}$
$\Delta_{\mathrm{r}} \mathrm{G}=\Delta \mathrm{H}_{\mathrm{R}}-\mathrm{T} \Delta \mathrm{S}$
$\Delta_{\mathrm{r}} \mathrm{G}=32.6 \times 10^{3}-298 \times 94.98$
$\Delta_{\mathrm{r}} \mathrm{G}=4.296 \mathrm{~kJ} / \mathrm{mol}$
21. $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{s}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$
(i) $\Delta_{\mathrm{r}} \mathrm{H}^{\circ}{ }_{298}$

$$
\begin{aligned}
& =\Delta_{\mathrm{r}} \mathrm{H}_{2}(\mathrm{~g})+\Delta_{\mathrm{r}} \mathrm{H} \mathrm{CO}_{2}(\mathrm{~g})-\Delta_{\mathrm{r}} \mathrm{H}_{\mathrm{Co}-}(\mathrm{s}) \Delta_{\mathrm{r}} \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& =-94.05+26.42+57.8=-9.83 \mathrm{k} \mathrm{cal} / \mathrm{mol}
\end{aligned}
$$

(ii) $\Delta_{\mathrm{r}} \mathrm{G}=-94.24+0+32.79+54.64$
$\Delta_{\mathrm{r}} \mathrm{G}=-6.81$
(iii) $\Delta_{\mathrm{r}} \mathrm{G}=\Delta_{\mathrm{r}} \mathrm{H}-\mathrm{T} \Delta_{\mathrm{r}} \mathrm{S}-6.81=-9.83-298 \Delta_{\mathrm{r}} \mathrm{S}$

$$
\frac{9.83-6.81}{298}=-\Delta_{\mathrm{r}} \mathrm{~S}
$$

$\Delta_{\mathrm{r}} \mathrm{S}=-10.13 \mathrm{cal} / \mathrm{mole}$
(iv) but at constant P
$\Delta \mathrm{H}=\Delta \mathrm{E}+\Delta \mathrm{PV} \quad \because \Delta \mathrm{n}_{\mathrm{g}}=0$
$\Delta_{\mathrm{r}} \mathrm{H}=\Delta_{\mathrm{r}} \mathrm{E}_{298}=-9.83 \mathrm{k} \mathrm{cal} / \mathrm{mol}$
(v) $\mathrm{S}_{298}^{\circ}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right]$
$\Delta_{\mathrm{r}} \mathrm{S}=\Delta_{\mathrm{s}} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\Delta \mathrm{S}_{\mathrm{CO}}-\Delta_{\mathrm{r}} \mathrm{S}_{\mathrm{H}_{2}}-\Delta_{\mathrm{r}} \mathrm{S}_{\mathrm{CO}}$
$-10.13=-\Delta_{\mathrm{r}} \mathrm{S} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+47.3+31.2+51.1$
$\Delta_{\mathrm{r}} \mathrm{S}_{\mathrm{H}_{2} \mathrm{O}}(\mathrm{g})=45.13 \mathrm{cal} / \mathrm{K}$ mole
22. Step-1

Ice $(200 \mathrm{~K}) \longrightarrow$ Ice $(273 \mathrm{~K})$
$\Delta \mathrm{S}_{1}=\mathrm{m} \mathrm{C}_{\mathrm{p}} \ln \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=1 \times 2.09 \times 10^{3} \ln \frac{273}{200}$
$\Delta \mathrm{S}_{1}=650.312 \mathrm{~J} /{ }^{\circ} \mathrm{C}$
Step-2
Ice $(273 \mathrm{~K}) \rightleftharpoons$ Water $(273 \mathrm{~K})$
$\Delta \mathrm{S}_{2}=\frac{\Delta \mathrm{H}_{\mathrm{f}}}{273}=\frac{3.34 \times 10^{5}}{273}=1223.44 \mathrm{~J} /{ }^{\circ} \mathrm{C}$
Step-3
Water (273 K) \longrightarrow Water (373 K)
$\Delta \mathrm{S}_{3}=1 \times 4.18 \times 10^{3} \ln \frac{373}{273}=1304.6 \mathrm{~J} /{ }^{\circ} \mathrm{C}$

Step-4

Water $(373 \mathrm{~K}) \rightleftharpoons$ Steam $(373 \mathrm{~K})$
$\Delta \mathrm{S}_{4}=\frac{\Delta \mathrm{H}_{\mathrm{v}}}{373}=\frac{22.6 \times 10^{5}}{373}=6058.98 \mathrm{~J} /{ }^{\circ} \mathrm{C}$

Step-5

Steam $(373 \mathrm{~K}) \longrightarrow$ Steam $(400 \mathrm{~K})$
$\Delta \mathrm{S}_{5}=1 \times 2.09 \times 10^{3} \ln \frac{400}{373}=146.06 \mathrm{~J} /{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{S}_{\mathrm{T}}=9383.4 \mathrm{~J} /{ }^{\circ} \mathrm{C}$
23. $\gamma=\frac{5}{3}, \mathrm{P}_{1}=1 \mathrm{~atm}, \mathrm{~T}_{1}=300 \mathrm{~K}, \mathrm{P}_{2}=2 \mathrm{~atm}$
(a) $\mathrm{PV}^{\gamma}=$ constant
$\mathrm{P}^{1-\gamma} \mathrm{T}^{\gamma}=$ constant
$\mathrm{TP}^{(1-\gamma) / \gamma}=$ constant
$\mathrm{T}_{1} \mathrm{P}_{1}^{(1-\gamma) / \gamma}=\mathrm{T}_{2} \mathrm{P}_{2}^{(1-\gamma) / \gamma}$
$\mathrm{T}_{2}=300\left(\frac{1}{2}\right)^{-2 / 5}=395.85$
$\mathrm{w}=\Delta \mathrm{U}=\mathrm{nC}_{\mathrm{v}} \mathrm{dT}=1 \times \frac{3}{2} \times 8.314 \times 95.85$
$\mathrm{w}=1195.37 \mathrm{~J}$
$\mathrm{V}_{2}=\frac{\mathrm{nRT}_{2}}{\mathrm{P}_{2}}=16.25 \mathrm{~L}$
(b) $\Delta \mathrm{U}=\mathrm{w}$
$1 \times 1.5 \times 8.314\left(\mathrm{~T}_{2}-300\right)$
$=-2 \times 101.3\left(\frac{\mathrm{RT}_{2}}{\mathrm{P}_{2}}-\frac{\mathrm{RT}_{1}}{\mathrm{P}_{1}}\right)$
$\left(\mathrm{T}_{2}-300\right)=1.333\left(300-\frac{\mathrm{T}_{2}}{2}\right)$
$\mathrm{T}_{2}=420 \mathrm{~K} \quad \mathrm{~V}_{2}=\frac{\mathrm{nRT}_{2}}{\mathrm{P}_{2}}=17.24 \mathrm{~L}$
$\mathrm{w}=\Delta \mathrm{U}=1.5 \times 8.314(420-300)$
$\mathrm{w}=1496.52 \mathrm{~J}$
24. $\mathrm{V}_{1}=20 \mathrm{~L}, \gamma=7 / 5, \mathrm{~T}_{1}=673 \mathrm{~K}$,
$\mathrm{P}_{1}=0.2 \mathrm{MPa}=2 \mathrm{~atm}, \mathrm{P}_{2}=0.7 \mathrm{MPa}=7 \mathrm{~atm}$
$\mathrm{n}=\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{RT}_{1}}=2.5$
(i) $\Delta \mathrm{U}=\Delta \mathrm{H}=0$

$$
\begin{array}{ll}
\mathrm{q}=-\mathrm{w}=\mathrm{nRT} & \ln \frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=2.5 \times 8.314 \times 673 \ln \frac{7}{2} \\
\mathrm{q}=17.52 \mathrm{~kJ} & \mathrm{w}=-17.52 \mathrm{~kJ}
\end{array}
$$

(ii) $\mathrm{P}_{1} \mathrm{~V}_{1}^{\gamma}=\mathrm{P}_{2} \mathrm{~V}_{2}^{\gamma}$
$7(20)^{\gamma}=2\left(\mathrm{~V}_{2}\right)^{\gamma} \quad \Rightarrow \mathrm{V}_{2}=(3.5)^{5 / 7}=48.92 \mathrm{~L}$
$\mathrm{T}_{2}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{nR}}=470.46 \mathrm{~K}$
$\mathrm{q}=0, \mathrm{w}=\Delta \mathrm{U}=2.5 \times 2.5 \times 8.314(470.46-673)$
$\mathrm{w}=\Delta \mathrm{U}=-10.524 \mathrm{~kJ}$
$\Delta \mathrm{H}=2.5 \times 3.5 \times 8.314(470.46-673)=-14.73 \mathrm{~kJ}$
(iii) $\mathrm{q}=\mathrm{w}=\Delta \mathrm{U}=\Delta \mathrm{H}=0$
(iv) $\mathrm{q}=0, \Delta \mathrm{U}=\mathrm{w}$
$2.5 \times 2.5 \times 8.314\left(\mathrm{~T}_{2}-673\right)$
$=-101.3 \times 2 \times 2.5 \times 0.0821\left(\frac{\mathrm{~T}_{2}}{2}-\frac{\mathrm{T}_{1}}{7}\right)$
$\mathrm{T}_{2}-673=-0.79\left(\frac{\mathrm{~T}_{2}}{2}-96.142\right)$
$\mathrm{T}_{2}=536.91 \mathrm{~K}$
$\mathrm{w}=\Delta \mathrm{U}=2.5 \times 2.5 \times 8.314(-136)=-7.1 \mathrm{~kJ}$
$\Delta \mathrm{H}=2.5 \times 3.5 \times 8.314(-136)=-9.9 \mathrm{~kJ}$
(v) $\Delta \mathrm{U}=\Delta \mathrm{H}=0$
$\mathrm{V}_{2}=\frac{\mathrm{nRT}}{\mathrm{P}_{2}}=\frac{2.5 \times 0.821 \times 673}{2}=69 \mathrm{~L}$
$\mathrm{w}=-\mathrm{P}_{2}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)=-2 \times 49=-98.13 \mathrm{~L}-\mathrm{atm}$
$\mathrm{w}=-98.13 \times 101.3=-9940.9 \mathrm{~J}$
$\mathrm{w}=-9.94 \mathrm{~kJ} \quad \mathrm{q}=-\mathrm{w}=9.94 \mathrm{~kJ}$
25.(i) The entropy change of the system $\Delta \mathrm{S}_{\text {sys. }}$ will be same in all the three process as it is state function.
$\Delta \mathrm{S}_{\text {sys. }}=\mathrm{nR} \ln \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=1 \times 8.314 \ln 3=9.134 \mathrm{~J} / \mathrm{K}$
For reversible process
$\Delta \mathrm{S}_{\mathrm{T}}=0$
$\Delta \mathrm{S}_{\text {surr. }}=-\Delta \mathrm{S}_{\text {sys. }}=-9.134 \mathrm{~J} / \mathrm{K}$
(ii) $\Delta \mathrm{S}_{\text {sys. }}=9.134 \mathrm{~J} / \mathrm{K}$

$$
\begin{aligned}
& \Delta \mathrm{S}_{\text {surr. }}=\frac{-\mathrm{q}_{\text {irrev. }}}{\mathrm{T}}=-\left[\frac{\mathrm{q}_{\text {rev. }}-836.6}{298}\right] \\
& =-\Delta \mathrm{S}_{\text {sys. }}+2.807 \\
& \Delta \mathrm{~S}_{\mathrm{T}}=\Delta \mathrm{S}_{\text {syy. }}+\left(-\Delta \mathrm{S}_{\text {sys. }}+2.807\right)=2.807 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

(iiii) For free expansion system doesn't absorb any heat so $\mathrm{q}=0$
$\Delta \mathrm{S}_{\mathrm{sys} .}=0$
$\Delta \mathrm{S}_{\mathrm{T}}=\Delta \mathrm{S}_{\text {sys. }}=2.807 \mathrm{~J} / \mathrm{K}$
26. (i) $\Delta \mathrm{S}_{\text {sys. }}=0, \Delta \mathrm{~S}_{\text {surr. }}=0, \Delta \mathrm{~S}_{\mathrm{T}}=0$
(ii) $\Delta \mathrm{U}=\mathrm{w}, \Rightarrow \mathrm{nC}_{\mathrm{v}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)=-\mathrm{P}_{2}\left(\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)\right.$
$0.5 \times 1.5 \times 8.314\left(\mathrm{~T}_{2}-473\right)$
$=-101.3 \times 2 \times 0.5 \times 0.0821\left(\frac{\mathrm{~T}_{2}}{2}-\frac{473}{5}\right)$
$\mathrm{T}_{2}-473=-1.333\left(\frac{\mathrm{~T}_{2}}{2}-94.6\right)$
$\mathrm{T}_{2}=359.49 \mathrm{~K}$

CHEMISTRY FOR JEE MAIN \& ADVANCED

$$
\begin{aligned}
\Delta \mathrm{S}_{\text {sys. }} & =\mathrm{n}\left[\mathrm{C}_{\mathrm{p}} \ln \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}+\mathrm{R} \ln \frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}\right] \\
& =0.5\left[2.5 \times 8.314 \ln \frac{359.49}{473}+8.314 \ln \frac{5}{2}\right]
\end{aligned}
$$

$\Delta \mathrm{S}_{\text {sys. }}=0.957 \mathrm{~J} / \mathrm{K}$
since no heat is transfered $q=0$
$\Delta \mathrm{S}_{\text {surr. }}=0$
$\Delta \mathrm{S}_{\mathrm{T}}=\Delta \mathrm{S}_{\text {sys. }}=0.957 \mathrm{~J} / \mathrm{K}$
(iii) In free expansion $\mathrm{q}=\mathrm{w}=\Delta \mathrm{U}=0$

T is constant.
$\Delta \mathrm{S}_{\text {sys. }}=\mathrm{nR} \ln \frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=0.5 \times 8.314 \times \ln \frac{5}{2}=3.81 \mathrm{JK}$
$\Delta \mathrm{S}_{\text {surr. }}=0$
$\Delta \mathrm{S}_{\mathrm{T}}=\Delta \mathrm{S}_{\text {sys }}=3.81 \mathrm{~J} / \mathrm{K}$
27. $\mathrm{P}_{1}=1 \mathrm{~atm}, \mathrm{~V}_{1}=1 \mathrm{~L}$
$P_{2}=1001 \mathrm{~atm}, V_{2}=0.99 \mathrm{~L}$ Let $\mathrm{P}=\mathrm{a}+\mathrm{bV}$
On finding $\mathrm{a}=100001, \mathrm{~b}=-10^{5}$ so
$\mathrm{P}=\left(100001-10^{5} \mathrm{~V}\right)$
$w=-\int P d V=\int_{V_{1}}^{V_{2}}\left(100001-10^{5} V\right) d V$
$\mathrm{w}=-100001\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)+\frac{10^{5}}{2}\left(\mathrm{~V}_{2}^{2}-\mathrm{V}_{1}^{2}\right)$
$w=-100001(-0.01)+\frac{10^{5}}{2}(-0.0199)=5.01 \mathrm{~L}-\mathrm{atm}$
$\mathrm{w}=501 \mathrm{~J} \quad \Delta \mathrm{U}=\mathrm{w}=501 \mathrm{~J}$
$\Delta \mathrm{H}=\Delta \mathrm{U}+\left(\mathrm{P}_{2} \mathrm{~V}_{2}-\mathrm{P}_{1} \mathrm{~V}_{1}\right)$
$=501+(1001 \times 0.99-1 \times 1) \times 100=99500 \mathrm{~J}$
$\Delta \mathrm{H}=99.5 \mathrm{~kJ}$
28.(i) $\Delta \mathrm{S}_{\text {sys. }}=\mathrm{n} \mathrm{C}_{\mathrm{v}} \ln \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=1 \times \frac{3}{2} \mathrm{R} \ln \frac{1000}{100}=\frac{3}{2} \mathrm{R} \ln 10$
$\Delta \mathrm{S}_{\mathrm{T}}=0$ (Reversible process
$\Delta \mathrm{S}_{\text {surr. }}=-\Delta \mathrm{S}_{\text {sys. }}=-\frac{3}{2} R \ln 10$
(ii) $\Delta \mathrm{S}_{\text {sys. }}=\frac{3}{2} \mathrm{R} \ln 10$
$\mathrm{w}=0$
$\mathrm{q}=\Delta \mathrm{U}=-\frac{3}{2} \mathrm{R}(900)$
$\Delta \mathrm{S}_{\text {surr. }}=-\frac{\mathrm{q}}{\mathrm{T}}=\frac{-3 \mathrm{R}(900)}{2 \times 1000}=-\frac{3}{2} R(0.9)$
$\Delta \mathrm{S}_{\mathrm{T}}=\frac{3}{2} \mathrm{R} \ln 10-\frac{3}{2} \mathrm{R}(0.9)=\frac{3}{2} \mathrm{R}(1.402)$
29. $\mathrm{G}=\mathrm{H}-\mathrm{TS}=\mathrm{U}+\mathrm{PV}-\mathrm{TS}$
$\mathrm{dG}=\mathrm{dU}+\mathrm{PdV}+\mathrm{VdP}-\mathrm{TdS}-\mathrm{SdT}$
$\mathrm{w}=0, \mathrm{dV}=0, \mathrm{dV}=\mathrm{dq}=\mathrm{T} \mathrm{dS}$ so
$\mathrm{dG}=\mathrm{TdS}+\mathrm{VdP}-\mathrm{TdS}-\mathrm{SdT}$
$\mathrm{dG}=\mathrm{VdP}-\mathrm{SdT} \Rightarrow \Delta \mathrm{G}=\mathrm{V} \Delta \mathrm{P}-\int \mathrm{SdT}$
$\mathrm{VdP}=\mathrm{V}\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right)$
$\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}}=\frac{\mathrm{P}_{1}}{\mathrm{~T}_{1}} \Rightarrow \frac{\mathrm{P}_{2}}{400}=\frac{1}{300} \Rightarrow \mathrm{P}_{2}=\frac{4}{3}$
$\mathrm{VdP}=24.6(4 / 3-1)=8.2 \mathrm{~L}-\mathrm{atm}=820 \mathrm{~J}$
$\int \mathrm{SdT}=\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}}(10+0.01 \mathrm{~T}) \mathrm{dT}=10\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)+0.005\left(\mathrm{~T}_{2}^{2}-\mathrm{T}_{1}^{2}\right)$
$\mathrm{SdT}=10(100)+0.005\left(400^{2}-300^{2}\right)=1350$
$\Delta \mathrm{G}=820-1350=-530 \mathrm{~J}$
30. $\mathrm{n}=2$
$\mathrm{V}_{1}=\frac{2 \times 0.0821 \times 300}{1}=49.26 \mathrm{~L}$
$\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{T}_{2}}{\mathrm{~V}_{2}} \Rightarrow \frac{49.26}{300}=\frac{\mathrm{V}_{2}}{550} \Rightarrow \mathrm{~V}_{2}=90.31 \mathrm{~L}$
(i) $\mathrm{w}=-\mathrm{P} \Delta \mathrm{V}=1(90.31-49.26)=-41.05 \mathrm{~L}-\mathrm{atm}$
$\mathrm{w}=-41.05 \times 101.3=-4158.36 \mathrm{~J}=-4.15 \mathrm{k}$
$\mathrm{q}=\Delta \mathrm{H}=\int \mathrm{n} \mathrm{C}_{\mathrm{p}} \mathrm{dT}$
$=2\left[12.552\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)+\frac{8.368 \times 10^{-3}}{2}\left(\mathrm{~T}_{2}^{2}-\mathrm{T}_{1}^{2}\right)\right]$
$\mathrm{q}=\Delta \mathrm{H}=2\left[12.552(250)+\frac{8.368 \times 10^{-2}}{2}(212500)\right]$
$\mathrm{q}=\Delta \mathrm{H}=24.04 \mathrm{~kJ}$
$\mathrm{C}_{\mathrm{v}}=\mathrm{C}_{\mathrm{p}}-\mathrm{R}=4.238+8.368 \times 10^{-2} \mathrm{~T}$
$\Delta \mathrm{U}=\int_{\mathrm{nC}}^{\mathrm{v}} \mathrm{dT}=19.9 \mathrm{~kJ}$
(iii) $\mathrm{w}=0$
$\mathrm{q}=\Delta \mathrm{U}=19.9 \mathrm{~kJ}$
$\Delta \mathrm{H}=\int_{\mathrm{nC}}^{\mathrm{p}} \mathrm{dT}=24.04 \mathrm{~kJ}$
31. At 298 K ,

$$
\begin{aligned}
& \Delta \mathrm{G}^{\circ}=-6333 \mathrm{~kJ} / \mathrm{mole} \\
& \Delta \mathrm{H}^{\circ}=-5737 \mathrm{~kJ} / \mathrm{mole}
\end{aligned}
$$

\& $\Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{S}^{\circ}$
so $\Delta \mathrm{S}^{\circ}=2 \mathrm{~kJ} / \mathrm{mole}$
At 310 K
$\Delta \mathrm{G}=-5737-2 \times 310=-6357 \mathrm{~kJ} / \mathrm{mole}$
Additional non-PV work $=\left|\Delta \mathrm{G}-\Delta \mathrm{G}^{\circ}\right|=24 \mathrm{~kJ} / \mathrm{mole}$
32. $\Delta_{\mathrm{r}} \mathrm{C}_{\mathrm{p}}=33.305-75.312=-42.007 \mathrm{~J} / \mathrm{K}$ mole

$$
\begin{aligned}
& \Delta_{\mathrm{r}} \mathrm{~S}_{323}=\frac{\Delta \mathrm{H}}{\mathrm{~T}}=\frac{40639}{323}=108.95 \mathrm{~J} / \mathrm{K} \text { mole } \\
& \mathrm{d}\left(\Delta_{\mathrm{r}} \mathrm{~S}\right)=\frac{\Delta_{\mathrm{r}} \mathrm{C}_{\mathrm{p}} \mathrm{dT}}{\mathrm{~T}} \\
& \Delta_{\mathrm{r}} \mathrm{~S}_{373}-\Delta_{\mathrm{r}} \mathrm{~S}_{323}=\Delta_{\mathrm{r}} \mathrm{C}_{\mathrm{p}} \ln \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}} \\
& \Delta_{\mathrm{r}} \mathrm{~S}_{373}=108.95-\left(-42.007 \ln \frac{373}{323}\right)=115 \mathrm{~J} / \mathrm{K} \text { mole } \\
& \mathrm{d}\left(\Delta_{\mathrm{r}} \mathrm{H}\right)=\Delta_{\mathrm{r}} \mathrm{C}_{\mathrm{p}} \mathrm{dT} \\
& \Delta_{\mathrm{r}} \mathrm{H}_{373}-\Delta_{\mathrm{r}} \mathrm{H}_{323}=-42.007(50) \\
& \mathrm{r}_{\mathrm{r}} \mathrm{H}_{373}=42739.35 \mathrm{~J} / \mathrm{mole} \\
& \Delta_{\mathrm{r}} \mathrm{G}_{323}=42739.35-323(115) \\
& =5594.35 \mathrm{~J}=5.59 \mathrm{~kJ} / \mathrm{mole}
\end{aligned}
$$

EXERCISE - 5

Part \# I : AIEEE/JEE-MAIN

1. $\mathrm{W}=-\mathrm{P} \Delta \mathrm{V}$
$=-1 \times 10^{5}\left(1 \times 10^{-2}-1 \times 10^{-3}\right)$
$=-1 \times 10^{5} \times 9 \times 10^{-3}=-900 \mathrm{~J}$.
2. For spontaneous process, $\Delta \mathrm{G}=-\mathrm{ve}, \mathrm{K}>1$ and $\mathrm{E}_{\text {cell }}^{0}=+\mathrm{ve}$.
3. In isolated system, the expansion of gas is carried out adiabatically. Since heat exchange between system and surrounding is not possible i.e. $q=0$ and secondary $w_{\text {rev }}$ is always greater than $w_{i r r}$ therefore for reversible process there must be comparatively higher decreases in internal energy i.e. $\Delta \mathrm{U}$ for reversible process will be more negative. Hence, final temperature in reversible process will be smaller than irreversible process.
$\therefore \quad\left(\mathrm{T}_{\mathrm{f}}\right)_{\text {irrev }}>\left(\mathrm{T}_{\mathrm{f}}\right)_{\text {rev }}$
4. In an isolated system, there is no exchange of energy or matter between the system and surrounding. For a spontaneous process in an isolated system, the change in entropy is positive, i.e. $\Delta \mathrm{S}>0$.
Most of the spontaneous chemical reactions are exothermic. A number of endothermic reaction are spontaneous e.g melting of ice (an endothermic process) is a spontaneous reaction.
The two factors which are responsible for the spontaneity of process are
(i) tendency to acquire minimum energy
(ii) tendency to acquire maximum randomness.
5. $\Delta \mathrm{G}^{\mathrm{o}}=\Delta \mathrm{H}^{\mathrm{o}}-\mathrm{T} \Delta \mathrm{S}^{\mathrm{o}}$
for a spontaneous process $\Delta \mathrm{G}^{\mathrm{o}}<0$

$$
\Rightarrow \Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{~S}^{\circ}<0 \Rightarrow \mathrm{~T} \Delta \mathrm{~S}^{\circ}>\Delta \mathrm{H}^{\circ} \Rightarrow \mathrm{T}>\frac{\Delta \mathrm{H}^{\circ}}{\Delta \mathrm{S}^{\circ}}
$$

$\Rightarrow \mathrm{T}>\frac{179.1 \times 1000}{160.2} \Rightarrow \mathrm{~T}>1117.9 \mathrm{~K} \approx 1118 \mathrm{~K}$.
8. $\Delta \mathrm{S}^{\circ}$ reaction $=50-\frac{1}{2}(60)-\frac{3}{2}(40)=-40 \mathrm{JK}^{-1}$

For reaction to be at equilibrium
$\Delta \mathrm{G}=0$

$$
\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S}=0 \Rightarrow \mathrm{~T}=\frac{\Delta \mathrm{H}}{\Delta \mathrm{~S}}=\frac{30000}{40}=750 \mathrm{~K}
$$

9. $\mathrm{CH}_{3} \mathrm{OH}(\ell)+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\ell)$
$\Delta \mathrm{G}_{\mathrm{r}}=\Delta \mathrm{G}_{\mathrm{f}}\left(\mathrm{CO}_{2}, \mathrm{~g}\right)+2 \Delta \mathrm{G}_{\mathrm{f}}\left(\mathrm{H}_{2} \mathrm{O},(\ell)\right)-\Delta \mathrm{G}_{\mathrm{f}}\left(\mathrm{CH}_{3} \mathrm{OH},(\ell)\right)-\frac{3}{2} \Delta \mathrm{G}_{\mathrm{f}}\left(\mathrm{O}_{2}, \mathrm{~g}\right)$
$=-394.4+2(-237.2)-(-166.2)-0=-394.4-474.4+$
$166.2=-868.8 \times 166.2$
$\Delta \mathrm{G}_{\mathrm{r}}=-702.6 \mathrm{~kJ}$
$\%$ efficiency $=\frac{702.6}{726} \times 100=97 \%$.
10. $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$

For spontaneous reaction $\Delta \mathrm{G}$ must be negative
At equilibrium temperature $\Delta \mathrm{G}=0$
to maintain the negative value of $\Delta \mathrm{G}$
T should be greater than T_{e}.
11. $\Delta \mathrm{S}=\mathrm{nR} \ln \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=2.303 \mathrm{nR} \log \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}$
$=2.303 \times 2 \times 8.314 \times \log \frac{100}{10}=38.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
12. Negative $\Delta_{\mathrm{r}} \mathrm{G}^{\mathrm{o}}$ value indicates that +2 oxidation state is more stable for Pb^{2+}. Also it is supported by inert pair effect that +2 oxidation state is more stable for Pb and +4 oxidation state is more stable for Sn .
13. $\Delta \mathrm{G}^{\mathrm{o}}=\Delta \mathrm{H}^{\mathrm{o}}-\mathrm{T} \Delta \mathrm{S}^{\mathrm{o}}$
$-\mathrm{RT} \ln \mathrm{K}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{S}^{\circ}$
$\ln \mathrm{K}=-\frac{\Delta \mathrm{H}^{\mathrm{o}}-\mathrm{T} \Delta \mathrm{S}^{\mathrm{o}}}{\mathrm{RT}}$
14. The process is isothermal expansion Hence,
$\mathrm{q}=-\mathrm{w} \quad \Delta \mathrm{u}=0$
$\mathrm{q}=+208 \mathrm{~J}$
$\mathrm{w}=-208 \mathrm{~J}$ (expansion work)
15. $\Delta \mathrm{H}_{\mathrm{c}}^{0}(\mathrm{c})=-393.5 \quad \Delta \mathrm{H}_{\mathrm{c}}^{0}(\mathrm{w}, \mathrm{g})=-283.5$
$\mathrm{C}_{\text {grophitro }}+\frac{1}{2} \mathrm{O}_{2}(\mathrm{q}) \longrightarrow \mathrm{CO}(\mathrm{q})$
$\Delta H_{F}^{0}(\mathrm{w}, \mathrm{g})=\Delta \mathrm{H}_{\mathrm{O}}^{0}(\mathrm{c})-\Delta \mathrm{H}_{\mathrm{c}}^{0}(\mathrm{co}, \mathrm{g})$
$=-393.5+283.5=-110.0 \mathrm{Kg}$.
17. From $1^{\text {st }}$ law : $\Delta \mathrm{U}=\mathrm{q}+\mathrm{w}$

For adiabatic process : $\mathrm{q}=0$
$\therefore \Delta \mathrm{U}=\mathrm{W}$
\therefore Work involve in adiabatic process is at the expense of change in internal energy of the system.
18. From thermodynamics

$$
\operatorname{lnk}=\frac{-\Delta \mathrm{H}^{0}}{\mathrm{RT}}+\frac{\Delta \mathrm{S}^{0}}{\mathrm{R}}
$$

for exothermic reaction, $\Delta \mathrm{H}=-\mathrm{ve}$

$$
\text { slope }=\frac{-\Delta \mathrm{H}^{0}}{\mathrm{R}}=+\mathrm{ve}
$$

So from graph, line should be a \& b.
19. $\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+\frac{15}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta \mathrm{n}_{\mathrm{g}}=6-7.5=-1.5$ (change in gaseous mole)
$\Delta \mathrm{U}$ or $\Delta \mathrm{E}=-3263.9 \mathrm{~kJ} \Rightarrow \Delta \mathrm{H}=\Delta \mathrm{U}+\Delta \mathrm{n}_{\mathrm{g}} \mathrm{RT}$
$\Delta \mathrm{n}_{\mathrm{g}}=-1.5 \Rightarrow \mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{T}=298 \mathrm{~K}$
So $\Delta \mathrm{H}=-3263.9+(-1.5) 8.314 \times 10^{-3} \times 298=-3267.6 \mathrm{~kJ}$
$\Delta \mathrm{H}=$ Heat at constant pressure
$\Delta \mathrm{U} / \Delta \mathrm{E}=$ Heat at constant volume
$\mathrm{R}=$ gas constant

Part \# II : IIT-JEE ADVANCED

1. $\because \quad H=E+P V$ and $\Delta H=\Delta E+P \Delta V$
$\mathrm{P} \Delta \mathrm{V}=\mathrm{nRT}$.
$\therefore \quad \Delta H=\Delta \mathrm{E}+\mathrm{nR} \Delta \mathrm{T}$
For isothermal and reversible process

$$
\begin{aligned}
& \Delta T=0 . \\
\therefore \quad \Delta H & =\Delta \mathrm{E}+0 .
\end{aligned}
$$

$\because \Delta E=0$.
$\because \Delta \mathrm{H}$ is also equal to zero.
3. Given that, $\Delta \mathrm{H}_{\text {vaps }}=30 \mathrm{~kJ} / \mathrm{mol}=30 \times 10^{3} \mathrm{~J} / \mathrm{mol}$.

$$
\Delta \mathrm{S}_{\mathrm{vaps}}=75 \mathrm{~J} / \mathrm{mol}
$$

We know that, $\quad \Delta \mathrm{S}=\frac{\Delta \mathrm{H}_{\mathrm{vap}}}{\mathrm{T}_{\mathrm{B} . \mathrm{P}}}$
$\therefore \quad \Delta \mathrm{H}=\mathrm{T} \Delta \mathrm{S} \quad \Rightarrow 30 \times 10^{3}=\mathrm{T} \times 75 . \mathrm{T}=400 \mathrm{~K}$.
4. In adsorption there in bond formation between the gases and solid surface which decrease the entropy.
5. (a) (i) ΔG^{o} for the reaction
$\Delta \mathrm{G}^{\mathrm{o}}$ reac. $=2 \Delta \mathrm{G}^{\mathrm{o}}{ }_{f}\left(\mathrm{NO}_{2}\right)-\Delta \mathrm{G}_{f}^{\mathrm{o}}\left(\mathrm{N}_{2} \mathrm{O}_{4}\right)$
$100-100=0$
Now, $\quad \Delta \mathrm{G}=2.303 \mathrm{RT} \log \mathrm{Q}_{\mathrm{P}}+\Delta \mathrm{G}^{\circ}$
Here $\quad Q_{P}=\frac{P_{\mathrm{NO}_{2}}^{2}}{P_{\mathrm{N}_{2} \mathrm{O}_{4}}}=\frac{100}{10}=10 \mathrm{~atm}$

So, $\Delta \mathrm{G}=2.303 \mathrm{RT} \log \mathrm{Q}_{\mathrm{P}}+0=2.303 \mathrm{RT} \log \mathrm{Q}_{\mathrm{P}}=2.303 \mathrm{RT}$ $\log _{10} 10=2.303 \mathrm{RT}=5.7 \mathrm{~kJ} / \mathrm{mole}$
(ii) Since Q_{P} is more than K_{P}
(calculate K_{p} by putting the value of $\Delta \mathrm{G}^{\mathrm{o}}$ in the equation $\Delta \mathrm{G}^{\mathrm{o}}=2.303 \mathrm{RT} \log \mathrm{K}_{\mathrm{p}}$ as $\Delta \mathrm{G}^{\mathrm{o}}=0$ that's why K_{p} comes as 1.)
Hence, the reaction will proceed in backward direction.
6. $\Delta \mathrm{U}=\mathrm{W}$

$$
\begin{aligned}
& \mathrm{nCv}\left(\mathrm{~T}_{2}-\mathrm{T}\right)=-\mathrm{P} \times\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right) \\
& \frac{3}{2} \mathrm{R}\left(\mathrm{~T}_{2}-\mathrm{T}\right)=-1 \quad \Rightarrow \therefore \mathrm{~T}_{2}=\mathrm{T}-\frac{2}{3 \times 0.0821}
\end{aligned}
$$

7. From first law of Thermodynamics, $\Delta \mathrm{E}=\mathrm{q}+\mathrm{w}$
$\Rightarrow \mathrm{nC}_{\mathrm{v}} \mathrm{dT}=\mathrm{nCdT}-\mathrm{PdV}$
.....(1)
Now according to process, $\mathrm{P}=\mathrm{V}$ and according to ideal gas equation, $\mathrm{PV}=\mathrm{nRT}$
We have, $V^{2}=n R T$
On differentiating, $2 \mathrm{VdV}=\mathrm{nRdT}$ and
$\mathrm{PdV}=\mathrm{VdV}=\frac{\mathrm{nRdT}}{2}$
So, from first equation we have,
$\mathrm{nC}_{\mathrm{v}} \mathrm{dT}=\mathrm{nCdT}-\frac{\mathrm{nRdT}}{2}$
So, $C_{v}=C-\frac{R}{2} \quad$ Hence, $C=\frac{4 R}{2}$
8. $\mathrm{A} \longrightarrow \mathrm{C} ; \Delta \mathrm{S}=50 ; \mathrm{C} \longrightarrow \mathrm{D}$; $\Delta \mathrm{S}=30$;
$\mathrm{D} \longrightarrow \mathrm{B} ; \Delta \mathrm{S}=-20$
For $\mathrm{A} \longrightarrow \mathrm{B}: \Delta \mathrm{S}=50+30-20=60$
$10 \Delta \mathrm{G}^{\mathrm{o}}=\Delta \mathrm{H}^{\mathrm{o}}-\mathrm{T} \Delta \mathrm{S}^{\circ}=-54.07 \times 1000-298 \times 10$
$=-54070-2980=-57050$
$\Delta \mathrm{G}^{\mathrm{o}}=-2.303 \mathrm{RT} \log _{10} \mathrm{~K}$
$-57050=-2.303 \times 298 \times 8.314 \log _{10} \mathrm{~K}=-5705 \log _{10} \mathrm{~K}$
$\log _{10} \mathrm{~K}=10$
9. $\mathrm{H}_{2} \mathrm{O}(\ell, 1 \mathrm{bar}, 373 \mathrm{~K}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}, 1 \mathrm{bar}, 373 \mathrm{~K})$
$\Delta \stackrel{2}{\mathrm{~S}}>0 ; \Delta \mathrm{H}>0 ; \Delta \mathrm{G}=0$
10. At equilibrium $\Delta \mathrm{G}($ Gibbs energy $)=0$ but $\Delta \mathrm{G}^{\circ}$ (standard Gibbs energy) $\neq 0$
As $\Delta \mathrm{G}$ (Gibbs energy) is more negative reaction will be more spontaneous.
11. Statement 2 is $\mathrm{II}^{\text {nd }}$ law of thermodynamics which concludes that total heat can never be converted into equivalent amount of work.
12. Process shown by solid line is reversible isothermal So, work $\mathrm{W}_{\mathrm{s}}=-4 \times 0.5 \ln (5.5 / 0.5)$

$$
=-2 \ln 11 \mathrm{~L} \text { atm } .
$$

For dotted process (three step irreversible) work done will be
$\mathrm{W}_{\mathrm{d}}=-\left\{4 \times 1.5+1 \times 1+\frac{2}{3} \times 2.5\right\}$ L atm.
$=-\left\{6+1+\frac{5}{3}\right\} \mathrm{Latm} .=-\frac{26}{3} \mathrm{Latm}$.
so, $\frac{\mathrm{W}_{\mathrm{d}}}{\mathrm{W}_{\mathrm{s}}}=\frac{26}{3 \times 2 \ln 11} \approx 2$.
17 (A) CO_{2} (s) $\longrightarrow \mathrm{CO}_{2}$ (g)
It is phase transition. The process is endothermic (sublimation).
Gas is produced, so entropy increases.
(B) On heating CaCO_{3} decomposes. So, process is endothermic.
The entropy increases as gaseous product is formed.
$(\mathrm{C}) 2 \mathrm{H} \bullet \longrightarrow \mathrm{H}_{2}(\mathrm{~g})$
Entropy decreases as number of gaseous particles decreases.
(D) It is phase transition.

White and red P are allotopes.
Red P is more stable than white.
So $\Delta \mathrm{H}$ is -ve .
18.

(A) $\Delta \mathrm{S}_{\mathrm{x} \rightarrow \mathrm{z}}=\Delta \mathrm{S}_{\mathrm{x}-\mathrm{y}}+\Delta \mathrm{S}_{\mathrm{y} \rightarrow \mathrm{z}}$
(B) $\mathrm{W}_{\mathrm{x} \rightarrow \mathrm{y}}=\mathrm{W}_{\mathrm{x}-\mathrm{y}}+\mathrm{W}_{\mathrm{y} \rightarrow \mathrm{z}}$
(Correct)
(C) $\mathrm{W}_{\mathrm{x} \rightarrow \mathrm{y} \rightarrow \mathrm{z}}=\mathrm{W}_{\mathrm{x}-\mathrm{y}}$
(Incorrect)
(Correct)
(D) $\Delta \mathrm{S}_{\mathrm{x} \rightarrow \mathrm{y} \rightarrow \mathrm{z}}=\Delta \mathrm{S}_{\mathrm{x}-\mathrm{y}}$ (Incorrect)
19.

(A) $\mathrm{T}_{1}=\mathrm{T}_{2}$ (due to isothermal)
(B) $\mathrm{T}_{3}>\mathrm{T}_{1}$ (incorrect) cooling will take place in adiabatic expansion)
(C) $\mathrm{W}_{\text {isothermal }}>\mathrm{W}_{\text {adiabatic }}\{$ with sign, this is incorrect \}
(D) $\Delta \mathrm{U}_{\text {isothermal }}=0>\Delta \mathrm{U}_{\text {adiabatic }}=-\mathrm{ve}$

So, answer is (A) and (D)
20. For $\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ at $\mathrm{T}=100^{\circ} \mathrm{C}, 1 \mathrm{~atm}$ equilibrium exists.
$\therefore \Delta \mathrm{G}=0, \Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}=0$
$\Delta \mathrm{H}=\mathrm{T} \Delta \mathrm{S}>0$ for system, since evapration is endothermic
$\therefore(\Delta \mathrm{S})_{\text {system }}>0$, also $(\Delta \mathrm{S})_{\text {surrounding }}=\frac{\mathrm{q}_{\text {surr }}}{\mathrm{T}_{\text {surr }}}$
Heat gained by system $=$ heat lost by surroundings.
$\therefore \mathrm{q}_{\text {surr. }}<0 \therefore(\Delta \mathrm{~S})_{\text {surr. }}<0$
22. $\mathrm{P}_{1} \mathrm{~V}_{1} \mathrm{~T}_{1}$

$\left|\mathrm{W}_{\text {isothermal }}\right|>\left|\mathrm{W}_{\text {adiabatic }}\right|$
(B) (i) zero $\mathrm{T}_{1}=\mathrm{T}_{2}=\mathrm{T}=$ constant $\Delta \mathrm{E}=\mathrm{nC}_{\mathrm{v}} \Delta \mathrm{T}=0$
(ii) positive $\mathrm{T}_{1} \neq \mathrm{T}_{2}$ (During adiabatic expansion internal energy decrease)
(C) $\mathrm{P}_{\text {ext }}=0$ isothermal $\rightarrow \Delta \mathrm{E}=0$
$\therefore \mathrm{q}=0$
(D) $\mathrm{W}=0$ adiabatic $\rightarrow \mathrm{q}=0$
$\therefore \Delta \mathrm{E}=0$
23. At equilibrium
$G_{\text {graphite }}=D_{\text {Diamond }}$
$\mathrm{G}_{\text {graphite }}^{\mathrm{o}}+\mathrm{V}_{\text {graphite }} \cdot \mathrm{dp}=\mathrm{G}_{\text {Diamond }}^{\mathrm{o}}+\mathrm{V}_{\text {Diamond }} \cdot \mathrm{dp}$
$\left(\mathrm{G}_{\text {Diamond }}^{\mathrm{o}}-\mathrm{G}_{\text {graphite }}^{\mathrm{o}}\right)=\left(\mathrm{V}_{\text {graphite }}-\mathrm{V}_{\text {Diamond }}\right) \mathrm{dp}$
$2900 \mathrm{~J}=2 \times 10^{-6} \mathrm{~m}^{3} \times\left(\mathrm{P}_{\mathrm{f}}-\mathrm{P}_{\mathrm{i}}\right)$
$\mathrm{P}_{\mathrm{f}}-\mathrm{P}_{\mathrm{i}}=\frac{29}{2} \times 10^{8} \mathrm{~Pa} \Rightarrow \mathrm{P}_{\mathrm{f}}-\mathrm{P}_{\mathrm{i}}=\frac{29}{2} \times 10^{8} \times 10^{-5}$
$=\frac{29000}{2}$ bar $\Rightarrow \mathrm{P}_{\mathrm{f}}=1+\frac{29000}{2}=14501 \mathrm{bar}$
25. $\mathrm{AC} \Rightarrow$ isochoric process
$\mathrm{AB} \Rightarrow$ isothermal process
$\mathrm{BC} \Rightarrow$ isobaric process
$\Rightarrow \mathrm{q}_{\mathrm{AC}}=\Delta \mathrm{U}_{\mathrm{AC}}=\mathrm{nC}_{\mathrm{V}, \mathrm{m}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)=\Delta \mathrm{U}_{\mathrm{BC}}$
$\Rightarrow \mathrm{W}_{\mathrm{AB}}=-\mathrm{nRT}, \operatorname{\ell n}\left(\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right)$
$\Rightarrow \mathrm{W}_{\mathrm{BC}}=-\mathrm{P}_{2}\left(\mathrm{~V}_{1}-\mathrm{V}_{2}\right)=\mathrm{P}_{2}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)$
$\Rightarrow \mathrm{q}_{\mathrm{BC}}=\Delta \mathrm{H}_{\mathrm{BC}}=\mathrm{nC}_{\mathrm{P}, \mathrm{m}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)=\Delta \mathrm{H}_{\mathrm{AC}}$
$\Rightarrow \Delta \mathrm{H}_{\mathrm{CA}}=\mathrm{nC}_{\mathrm{P}, \mathrm{m}}\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)$
$\Rightarrow \Delta \mathrm{U}_{\mathrm{CA}}=\mathrm{nC}_{\mathrm{V}, \mathrm{m}}\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)$
$\Delta \mathrm{H}_{\mathrm{CA}}<\mathrm{U}_{\mathrm{CA}}$ since both are negative $\left(\mathrm{T}_{1}<\mathrm{T}_{2}\right)$

CHEMISTRY FOR JEE MAIN \& ADVANCED

26. As temperature increases concentration of product decreases
so reaction is exothermic $\Rightarrow \Delta \mathrm{H}^{\circ}<0$

$$
\frac{\ln \mathrm{K}_{\mathrm{T}_{1}}}{\ln \mathrm{~K}_{\mathrm{T}_{2}}}>1 \Rightarrow \ln \mathrm{~K}_{\mathrm{T}_{1}}>\ln \mathrm{K}_{\mathrm{T}_{2}}
$$

$$
\text { so, } \mathrm{K}_{\mathrm{T}_{1}}>\mathrm{K}_{\mathrm{T}_{2}} \text { Also, } \frac{\ln \mathrm{K}_{\mathrm{T}_{1}}}{\ln \mathrm{~K}_{\mathrm{T}_{2}}}>\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}
$$

or
$\mathrm{T}_{1} \ln \mathrm{~K}_{\mathrm{T}_{1}}>\mathrm{T}_{2} \ln \mathrm{~K}_{\mathrm{T}_{2}} \Rightarrow-\mathrm{RT}_{1} \ln \mathrm{~K}_{\mathrm{T}_{1}}<-\mathrm{RT}_{2} \ln \mathrm{~K}_{\mathrm{T}}$

$$
\begin{array}{ll}
\text { or } & \Delta \mathrm{G}_{\mathrm{T}_{1}}^{\circ}<\Delta \mathrm{G}_{\mathrm{T}_{2}}^{\circ} \\
\text { or } & \Delta \mathrm{H}^{\circ}-\mathrm{T}_{1} \Delta \mathrm{~S}^{\circ}<\Delta \mathrm{H}^{\circ}-\mathrm{T}_{2} \Delta \mathrm{~S}^{\circ}
\end{array}
$$

As $\Delta \mathrm{G}_{\mathrm{T}_{1}}^{\mathrm{o}}<\Delta \mathrm{G}_{\mathrm{T}_{2}}^{\mathrm{o}}$, since as temperature increases
$\Delta \mathrm{G}$ increases this is possible only when $\Delta \mathrm{S}^{\circ}<0$

MOCK TEST

3. $\mathrm{H}=\mathrm{W}=\mathrm{i}^{2} \mathrm{Rt}=\frac{\mathrm{V}^{2} \mathrm{t}}{\mathrm{R}}=\frac{120 \times 120 \times(10 \times 60)}{6}=14.4 \times 10^{5}$ joule
4. (D) $\mathrm{w}=-\mathrm{P}_{\text {ext }} . \Delta \mathrm{V}=-\Delta \mathrm{n}_{\mathrm{g}} \mathrm{RT}$ and $\Delta \mathrm{n}_{\mathrm{g}}$ is-Ve for I and II also $\Delta V=-$ ve for IV
5. For isochoric process $\Delta V=0$ so $q_{v}=\Delta E$ i.e. heat given to a system under constant volume is used up in increasing $\Delta \mathrm{E}$.
6. Reaction is endothermic and no. of moles increases on decomposition.
7. $\Delta \mathrm{S}_{\mathrm{gas}}=\mathrm{nC}_{\mathrm{v}, \mathrm{m}} \operatorname{In} \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=2 \times\left(\frac{5}{2}-1\right) \mathrm{R} \operatorname{In} 2=3 \mathrm{R} \operatorname{In} 2$
8. $\Delta \mathrm{S}=\mathrm{nC}_{\mathrm{v}, \mathrm{m}} \operatorname{In} \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}+\mathrm{nR} \operatorname{In} \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=\mathrm{C}_{\mathrm{v}, \mathrm{m}} \operatorname{In} 2+\mathrm{R} \operatorname{In}\left(\frac{1}{2}\right)$ $=\left(C_{v, m}-R\right)$ In 2
9. It is because of the fact that for spontaneity, the value of $\Delta \mathrm{G}=(\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S})$ should be <0. If $\Delta \mathrm{S}$ is -ve , the value of $\mathrm{T} \Delta \mathrm{S}$ shall have to be less than $\Delta \mathrm{H}$ or the value of $\Delta \mathrm{S}$ has to be less than $\frac{\Delta H}{T}$ i.e., $\frac{x}{298}$.
10. $\begin{aligned} & \Delta \mathrm{G}=(\Delta \mathrm{H})-\mathrm{T}(\Delta \mathrm{S}) \\ & \downarrow \downarrow \\ &-\mathrm{ve}-\mathrm{ve}\end{aligned}$
since both are -ve , the reaction would have a $-\mathrm{ve} \Delta \mathrm{G}$ below a temperature of $\frac{33000}{58} \mathrm{~K}(=569 \mathrm{~K})$
11. $\Delta \mathrm{S}=\mathrm{nC}_{\mathrm{V}} \ln \left(\frac{\mathrm{T}_{\mathrm{f}}}{\mathrm{T}_{\mathrm{i}}}\right)+\mathrm{nR} \ln \left(\frac{\mathrm{V}_{\mathrm{f}}}{\mathrm{V}_{\mathrm{i}}}\right)=5 \ln \frac{373}{298}+2 \ln 10$
$\Delta \mathrm{H}=\mathrm{nC}_{\mathrm{p}} \Delta \mathrm{T}=\mathrm{n}\left(\mathrm{C}_{\mathrm{v}}+\mathrm{R}\right) \Delta \mathrm{T}=1 \times 7 \times 75=525 \mathrm{cal}$
12. Work done against vacuum is zero. It is free expansion.
13. Rearrangeing the relationship $\Delta \mathrm{S}_{\text {fus }}=\frac{\Delta \mathrm{H}_{\text {fus }}}{\mathrm{T}_{\mathrm{m}}}$

We have $\mathrm{T}=\frac{\Delta \mathrm{H}_{\text {fus }}}{\Delta \mathrm{S}_{\text {fus }}}$

$$
=\frac{12.36 \times 10^{3} \mathrm{Jmol}^{-1}}{9.250 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}}=1336 \mathrm{~K}
$$

This 1336-273, or $1063^{\circ} \mathrm{C}$
22. (i) $\mathrm{q}=-\mathrm{w}=\mathrm{nRT} \ln \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=2722.26 \mathrm{~J}$

$$
\begin{aligned}
\Delta \mathrm{S}_{\text {gas }} & =\mathrm{nR} \ln \frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}=8.314 \times 2.303 \times \log 3=9.135 \mathrm{JK}^{-1} \\
& =-\Delta \mathrm{S}_{\text {surr }} \\
\Delta \mathrm{S}_{\text {total }} & =0 \text { (reversible) }
\end{aligned}
$$

(ii) $\mathrm{q}=2722.26-836.8=1885.46 \mathrm{~J}$

As entropy is a state function and $\Delta \mathrm{S}$ of system will be same as above one.

$$
\begin{aligned}
& \Delta \mathrm{S}_{\text {gas }}=9.135 \mathrm{~J} \mathrm{~K}^{-1} \\
& \Delta \mathrm{~S}_{\text {sur }}=-\frac{1885.46}{298}=-6.327 \mathrm{~J} \mathrm{~K}^{-1} \\
& \Delta \mathrm{~S}_{\text {total }}=2.808 \mathrm{~J} \mathrm{~K}^{-1} \\
& \text { (iiii) } \Delta \mathrm{S}_{\text {gas }}=9.135 \mathrm{~J} \mathrm{~K}^{-1} \\
& \mathrm{q}=0 \quad \Rightarrow \Delta \mathrm{~S}_{\text {surr }}=0 \text { and } \quad \Delta \mathrm{S}_{\text {total }}=9.135 \mathrm{~J} \mathrm{~K}^{-1} .
\end{aligned}
$$

23. (a) In case of adiabatic reversible expansion,

$$
\mathrm{dq}_{\mathrm{rev}}=0 \Rightarrow \Delta \mathrm{~S}=0
$$

(b) In case of irreversible adiabatic expansion :
$\mathrm{W}=-\mathrm{P}_{\text {ext }}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)=-3(16-8)=-3 \times 8=-24 \mathrm{~L}$. atm
$\Delta \mathrm{U}=\mathrm{q}+\mathrm{w}$ hereq $=0 \Rightarrow \Delta \mathrm{U}=\mathrm{W}$
$\Rightarrow \mathrm{nC}_{\mathrm{V}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)=-24$
$\Rightarrow 1 \times 1.5 \mathrm{R}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)=-24$
$\Rightarrow \mathrm{T}_{2}-\mathrm{T}_{1}=\frac{-24}{1.5 \times 0.082} \Rightarrow \mathrm{~T}_{2}=805 \mathrm{~K}$
$\Delta \mathrm{S}=\mathrm{nC}_{\mathrm{V}} \operatorname{In}\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)+\mathrm{R} \operatorname{In}\left(\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right)=1.5 \times 8.314 \operatorname{In}\left(\frac{805}{1000}\right)$
$+8.314 \operatorname{In} 2 \Rightarrow \Delta \mathrm{~S}=3.06 \mathrm{JK}^{-1}$
(c) In case of free expansion (Adiabatically)
$\mathrm{W}=0, \quad \mathrm{q}=0, \quad \Delta \mathrm{U}=0$
$\Rightarrow \mathrm{nC}_{\mathrm{v}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)=0 \quad \Rightarrow \quad \mathrm{~T}_{2}=\mathrm{T}_{1}$
$\Delta \mathrm{S}=\mathrm{nR} \operatorname{In}\left(\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right)=\mathrm{R} \operatorname{In}(2)=5.76 \mathrm{~J} / \mathrm{K}$.
24. Work done in isothermal process will be more than $\mathrm{PV}^{2}=$ const, process whatever be the value of K_{1} and K_{2}
as is shown in the diagram.

25. Clearly $\left(\mathrm{V}_{\mathrm{f}}\right)_{\text {isothermal }}>\left(\mathrm{V}_{\mathrm{f}}\right)_{\text {adiabatic }}$

28. $\mathrm{P}^{\circ}, \mathrm{V}^{\circ} \xrightarrow[\text { isothermal }]{\text { irreversible }} 2 \mathrm{~V}^{\circ}, \frac{\mathrm{P}^{\circ}}{2}$

For reversible adiabatic,

$$
\frac{\mathrm{P}^{\circ}}{2}\left(2 \mathrm{~V}^{\circ}\right)^{\gamma}=\mathrm{P}_{1} \mathrm{~V}_{0}^{\gamma} \quad \Rightarrow \quad \mathrm{P}_{1}=\mathrm{P}^{\circ} 2^{\gamma-1}
$$

For reversible $\mathrm{PV}^{2}=\mathrm{K}$

$$
\frac{\mathrm{P}^{\circ}}{2}\left(2 \mathrm{~V}^{\circ}\right)^{2}=\mathrm{P}_{2} \mathrm{~V}_{0}^{2} \Rightarrow \mathrm{P}_{2}=2 \mathrm{P}^{\circ}
$$

So, $\mathrm{P}_{2}>\mathrm{P}_{1}$
Since final volume is same
$P \propto T$
So, $\mathrm{T}_{2}>\mathrm{T}_{1}$
29. (A) Reversible isothermal expansion of ideal gas
$\mathrm{W}=-2.303 \mathrm{nRT} \log \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}$ and $\Delta \mathrm{E}=\Delta \mathrm{H}=0($ as $\Delta \mathrm{T}=0)$
(B) Reversible adiabatic compression of an ideal gas

$$
\begin{aligned}
\mathrm{PV}^{\gamma}=\text { constant and } \mathrm{W} & =\frac{\mathrm{nR}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)}{\gamma-1} \\
& =\frac{\mathrm{P}_{2} \mathrm{~V}_{2}-\mathrm{P}_{1} \mathrm{~V}_{1}}{\gamma-1}
\end{aligned}
$$

(C) Irreversible adiabatic expansion of an ideal gas

$$
\mathrm{W}=\frac{\mathrm{nR}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)}{\gamma-1}
$$

(D) Irreversible isothermal compression of an ideal gas

$$
\Delta \mathrm{H}=0(\text { as } \Delta \mathrm{T}=0)
$$

30. (A) A process carried out infinitesimally slowly is called reversible process
(B) A process in which no heat enters or leaves the system is called adiabatic process
(C) A process carried out at constant temperature is called isothermal process
(D) A process in equilibrium has $\Delta \mathrm{G}=0$
$(\mathrm{E}) \mathrm{A}(\mathrm{s}) \longrightarrow \mathrm{A}(\mathrm{g})$
process of conversion of solid to gas is called sublimation
(F) In a cyclic process, state function have no change in their value. $\mathrm{So}, \Delta \mathrm{E}=0, \Delta \mathrm{H}=0$.
31. $\Delta \mathrm{H}=30.84 \mathrm{~kJ} / \mathrm{mole}$
$\mathrm{PV}=\mathrm{nRT} \Rightarrow 1 \times \mathrm{V}_{2}=1 \times 0.082 \times 353$

$$
\Rightarrow V_{2}=(0.082 \times 353) \text { Lit. }
$$

as initial volume is negligible so, $\Delta \mathrm{H}=\Delta \mathrm{E}+\mathrm{P}_{2} \mathrm{~V}_{2}$
$\Delta \mathrm{H}=\Delta \mathrm{E}+\Delta \mathrm{n}_{\mathrm{g}} \mathrm{RT} \Rightarrow 30.84=\Delta \mathrm{E}+1 \times 8.3 \times 353 \times 10^{-3}$
$\Delta \mathrm{E}=27.91$
$\mathrm{Q}=\mathrm{i} \times \mathrm{t}=(0.5 \times \mathrm{t})$
Energy $=\mathrm{Q} \times \mathrm{V}=0.5 \times \mathrm{t} \times \mathrm{V}=0.5 \times 12 \times \mathrm{t}=6 \mathrm{t}$
$6 t=30.84 \times 1000 \times 0.1$
t $=514$ sec.
33. $\int d w=\int-P \cdot d V=-\int 20 \cdot \frac{d V}{V}=-20 \operatorname{In} \frac{V_{2}}{V_{1}}=-46.06$
$\mathrm{L}-\mathrm{atm}=-4665.8 \mathrm{~J}$
$\Delta \mathrm{U}=\mathrm{q}+\mathrm{w} \Rightarrow 400=\mathrm{q}-4665.8 \Rightarrow \mathrm{q}=5065.8 \mathrm{~J}$
34. $\mathrm{n}\left(\right.$ no. of moles of $\left.\mathrm{O}_{2}\right)=4$
$\mathrm{V}_{1}=20 \mathrm{Lit} . \quad \mathrm{V}_{2}=60 \mathrm{Lit}$.
$\mathrm{T}_{1}=270 \mathrm{~K}$
$W=-P_{\text {ext }} d V$

$$
\begin{aligned}
\mathrm{W} & =-\frac{600}{760} \times(60-20)=-\frac{600 \times 40}{760}=-31.58 \mathrm{~L}-\mathrm{atm} \\
& =-31.58 \times 101.35 \mathrm{~J}=-3.2 \mathrm{~kJ}
\end{aligned}
$$

In case of adiabatic process,
$d E=d q+d w \& \quad d E=d w(\because d q=0)$
$\Delta \mathrm{E}=\mathrm{W}=-3.2 \mathrm{~kJ}$
$\mathrm{W}=\frac{\mathrm{nR}}{\gamma-1}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)=-3200 \Rightarrow \Delta \mathrm{~T}=\frac{-3200(1.4-1)}{4 \times 8.312}$
$\Delta T=-38 \mathrm{~K}$
$\Delta \mathrm{H}=\mathrm{nC}_{\mathrm{p}} \Delta \mathrm{T}=4 \times \frac{7}{2} \mathrm{R}(-38)=-4.42 \mathrm{~kJ}$.

