

REDOX REACTION AND EQUIVALENT CONCEPT

SOLVED EXAMPLES

Sol.

A

$$n-factor = 5$$

$$As_2O_3 + MnO_4^- 2AsO_4^{3-} + Mn^{2+}$$

$$n-factor = 4$$

Let, molarity of KMnO₄ solution be M : Eq. of $As_2O_3 = Eq. of KMnO_4$ solution $\frac{0.1097}{198} \times 4 = \frac{36.10 \times M \times 5}{1000}$ (Equivalent weight As₂O₃ = $\frac{198}{4}$) Molarity = 0.0122 M Hence, (C) is the correct answer. In basic medium, CrO_4^{2-} oxidize $S_2O_3^{2-}$ to form SO_4^{2-} and itself changes to Cr(OH)_4^{-} . How many mL of 0.154 M CrO_4^{2-} are required to react with 40 mL of 0.246 M $S_2O_3^{2-}$? **Ex.5** (A) 200 mL (C) 170.4 mL (D) 190.4 mL **(B)** 156.4 mL $40 \times 0.246 \times 8 = V \times 0.154 \times 3$ (Meq. of S₂O₃²⁻ = Meq. of CrO₄²⁻) Sol. :. V=170.4 mL Hence, (C) is the correct answer. 10 mL of 0.4 M $Al_2(SO_4)_3$ is mixed with 20 mL of 0.6 M $BaCl_2$. Concentration of Al^{3+} ion in the solution will **Ex.6** be. (A) 0.266 M **(B)** 10.3 M (C) 0.1 M **(D)** 0.25 M $Al_2(SO_4)_3 + BaCl_2 \longrightarrow BaSO_4 \downarrow + AlCl_3$ Sol. $10 \times 0.4 \times 6$ $20 \times 0.6 \times 2$ 0 0 Initial Meq. = 24= 24Final Meq. 0 0 24 24 $[Al^{3+}] = \frac{24}{30 \times 3} = 0.266 \text{ M}$ Hence (A) is the correct answer. 0.52 g of a dibasic acid required 100 mL of 0.2 N NaOH for complete neutralization. **Ex.**7 The equivalent weight of acid is (A) 26 **(C)** 104 **(D)** 156 **(B)** 52 Meq. of Acid = Meq. of NaOH Sol. $\frac{0.52}{E} \times 1000 = 100 \times 0.2$ $\therefore E = 26$ Hence (A) is the correct answer. 34 g hydrogen peroxide is present in 1120 mL of Solution : This solution is called **Ex.8** (A) 10 volume (B) 20 volume (C) 30 volume (D) 32 volume Wt. of H_2O_2 in 1 mL = $\frac{34}{1120}$ g Sol. $H_2O_2 \rightarrow H_2O + \frac{1}{2}O_2$ 34 g of H₂O₂ gives 11200 mL of O₂ at STP :. $\frac{34}{1120}$ g of H₂O₂ = $\frac{11200}{34} \times \frac{34}{1120}$ = 10 mL of O₂ at STP. Hence, (A) is the correct answer.

(D)1

(**D**) 11 g of CO₂

Ex.9 The number of moles of $KMnO_4$ that will be required to react with 2 mol of ferrous oxalate is

(C) $\frac{4}{5}$

(A) $\frac{6}{5}$ (B) $\frac{2}{5}$ Sol. $Mn^{7+} + 5 e^- \rightarrow Mn^{2+}] \times 3$ $Fe^{2+} \rightarrow Fe^{3+} + e^ C_2O_4^{2-} \rightarrow 2CO_2 + 2e^-$ 3 moles of KMnO₄ = 5 moles of FeC₂O₄ $\therefore 2 \text{ mol of ferrous oxalate} = \frac{6}{5} \text{ mole of KMnO}_4$ Hence, (A) is the correct answer.

Ex. 10 The minimum quantity of H_2S needed to precipitate 63.5 g of Cu^{2+} will be nearly.

(A)
$$63.5 \text{ g}$$
 (B) 31.75 g (C) 34 g (D) 2.0 g
Sol. Meq. of H₂S = Meq. of Cu²⁺

$$\therefore \frac{W_{H_2S}}{34/2} \times 1000 = \frac{63.5}{63.5/2} \times 1000$$

$$\therefore W_{H_{2}S} = 34 g$$

Hence, (C) is the correct answer.

Ex. 11 Which of the following is / are correct?
(A) g mole wt. = mol. wt. in g = wt. of 6.02 × 10²³ molecules
(B) mole = N molecule = 6.02 × 10²³ molecules
(C) mole = g molecules
(D) none of the above
Sol. (A), (B) and (C)

- **Ex. 12** 8 g of O_2 has the same number of molecules as (A) 7 g of CO (B) 14 g of CO
- **Sol.** (A) and (D)
- Ex. 13What volume of 0.1 M KMnO_4 is needed to oxidize 100 mg of FeC_2O_4 in acid solution ?(A) 4.1 mL(B) 8.2 mL(C) 10.2 mL(D) 4.6 mL

(C) 28 g of CO

Sol. Meq. of $KMnO_4 = Meq.$ of FeC_2O_4

:. V=4.1 mL

Hence, (A) is the correct answer.

Ex. 14 What volume of 6 M HNO₃ is needed to oxidize 8 g of Fe^{2+} to Fe^{3+} , HNO₃ gets converted to NO?

(A) 8 mL (B) 7.936 mL (C) 32 mL (D) 64 mL Sol Mag of $ID(O) = Mag of Eg^{2+}$

Sol. Meq. of
$$HNO_3 = Meq.$$
 of Fe^2

or
$$6 \times 3 \times V = \frac{8}{56} \times 1000$$

V=7.936 mL

$$n-factor = 3$$

$$\downarrow +5 \qquad 2+$$

$$(NO_3^{-} \qquad NO)$$

Hence, **(B)** is the correct answer.

Ex.15 0.5 g of fuming H_2SO_4 (oleum) is diluted with water. This solution is completely neutralized by 26.7 mL of 0.4 N KOH. The percentage of free SO₃ in the sample is

(A) 30.6% (B) 40.6% (C) 20.6% (D) 50%
Sol. Meq. of
$$H_2SO_4 + Meq.of SO_3 = Meq. of KOH$$

 $\therefore \frac{(0.5 - x)}{98/2} \times 1000 + \frac{x}{80/2} \times 1000 = 26.7 \times 0.4$
 $\therefore x = 0.103$
 $\therefore \% \text{ of } SO_3 = \frac{0.103}{0.5} \times 100 = 20.6\%$
Hence, (C) is the correct answer.

Ex. 16 The eq. wt. of a substance is the weight which either combines or displaces.

(A) 8 part of O (B) 2 part of H (C) 35.5 part of Cl (D) none of the above

```
Sol. (A) and (C)
```

Ex. 17 'A' g of a metal displaces V mL of H, at NTP. Eq. wt of metal E is / are :

(A) $E = \frac{A}{Wt. \text{ of } H_2 \text{ displaced}} \times Eq. \text{ wt. of H}$ (B) $E = \frac{A \times 1.008 \times 22400}{Volume \text{ of } H_2 \text{ displaced} \times 2} \times Eq. \text{ wt. of H}$

(C) $E = \frac{A \times 1.008}{\text{Volume of H}_2 \text{ displaced} \times 0.0000897}$

(D) none of the above

Sol. (A), (B) and (C)

Ex. 18 Which of the following is/are redox reaction (s)? (A) $BaO_2 + H_2SO_4 \rightarrow BaSO_4 + H_2O_2$ (C) $2KClO_3 \rightarrow 2KCl + 3O_2$

(B) $2BaO + O_2 \rightarrow 2BaO_2$ (D) $SO_2 + 2H_2S \rightarrow 2H_2O + 3S$

Sol. (B), **(C)** and **(D)**

Ex. 19 Which of the following statements is/are true if 1 mol of H_3PO_x is completely neutralized by 40 g of NaOH?

- (A) x = 2 and acid is monobasic (B) x = 3 and acid is dibasic
- (C) x = 4 and acid is tribasic (D) x = 2 and acid does not form acid salt

Sol. (A) and (D).

Ex. 20 In the reaction,

 $3Br_2 + 6CO_3^{2-} + 3H_2O \rightarrow 5Br^- + BrO_3^- + 6HCO_3^-$

(A) bromine is oxidized and carbonate is reduced

(C) bromine is reduced

(B) bromine is oxidized

(D) it is disproportionation reaction or autoredox change

- **Sol. (B)**, **(C)** and **(D)**
- **Ex. 21** A 20 g sample of only CuS and Cu₂S was treated with 100 mL of 1.25 M K₂Cr₂O₇. The products obtained were Cr³⁺, Cu²⁺ and SO₂. The excess oxidant was reacted with 50 mL of Fe²⁺ Solution : 25 mL of the same Fe²⁺ solution required 0.875 M KMnO₄ under acidic condition, the volume of KMnO₄ used was 20 mL. Find the % of CuS and Cu₂S in the sample.

Sol. Equivalents of dichromate initially =
$$\frac{1.25 \times 6 \times 100}{1000} = 0.75$$

Equivalents of Fe²⁺ in 25 mL = $\frac{0.875 \times 5 \times 5 \times 20}{1000} = 0.0875$

Equivalents of Fe^{2+} in 50 mL = 0.0875 × 2 = 0.175

Equivalents of excess dichromate = 0.175

: Equivalents of dichromate consumed by (CuS and Cu₂S)

= 0.75 - 0.175 = 0.575

If x g is the mass of CuS, the mass of Cu₂S is (10 - x) g

$$\frac{x}{95.5} \times 6 + \frac{(10 - x)}{159} \times 8 = 0.575$$

$$\therefore x = 5.74 g$$

% CuS = $\frac{5.74}{20} \times 100 = 28.7 \%$
% Cu,S = 71.3 %

Ex. 22 2.249 g of a sample of pure BaCO₃ and impure CaCO₃ containing some CaO was treated with dil. HCl and it evolved 168 mL of CO₂ at N.T.P. From this solution, BaCrO₄ was precipitated filtered and washed. The precipitate was dissolved in dil. H₂SO₄ and diluted to 100 mL. 10 mL of this solution when treated with KI solution liberated iodine which required exactly 20 mL of 0.05 N Na₂S₂O₃. Calculate the percentage of CaO in the sample.

Sol. Let, weight of BaCO₃, CaCO₃ and CaO are x, y and z respectively.

 $\therefore x + y + z = 2.249$ BaCO₃ \longrightarrow BaCrO₄
Redox change $Cr^{6+} + 3e^{-} \longrightarrow Cr^{3+}$ 2I⁻ \longrightarrow I₂ + 2e⁻

Meq. of $BaCO_3 = Meq.$ of $BaCrO_4 = Meq.$ of I_2

$$\therefore \frac{x}{197/3} \times 1000 = 20 \times 0.05 \times \frac{100}{10}$$

 $\therefore x = 0.657 g$

....(1)

The equivalent weight of $BaCrO_4$ is M/3, therefore for $BaCO_3$, it should be M/3 also because mole ratio of $BaCO_3$ and $BaCrO_4$ is 1 : 1.

Applying POAC for C atom,

Moles of C in $BaCO_3 + Moles of C$ in $CaCO_3 = Moles of C$ in CO_2

$$\therefore \qquad \frac{x}{197} + \frac{y}{100} = \frac{168}{22400}$$

$$\Rightarrow \qquad 200 x + 294 y = 295.5 \qquad(2)$$

From equation (1) and (2)

$$y = 0.416 g$$

$$\therefore \qquad 0.657 + 0.416 + z = 2.249$$

$$z = 1.176$$

$$\% \text{ of } CaO = \frac{1.176}{2.249} = 52.29 \%$$

Ex. 23 For estimating ozone in the air, a certain volume of air is passed through an alkaline KI solution when O_2 is evolved and iodide is oxidized to iodine. When such a solution is acidified, free iodine is evolved which can be titrated with standard $Na_2S_2O_3$ Solution : In an experiment, 10 L of air at 1 atm and 27°C were passed through an alkaline KI solution, and at the end, the iodine was entrapped in a solution which on titration as above required 1.5 mL of 0.02 N $Na_2S_2O_3$ solution. Calculate volume percentage of ozone in the sample.

Sol. The chemical reaction is,
$$H_2O + KI + O_3 \longrightarrow I_2 + O_2 + KOH$$

Milliequivalents of iodine = Milliequivalents of KI = Milliequivalents of O_3 reacted
Milliequivalents of $Na_2S_2O_3 = 1.5 \times 0.02 = 3 \times 10^{-2}$
Millimoles of iodine = $\frac{3 \times 10^{-2}}{2} = 1.5 \times 10^{-2}$ [:: n-factor for iodine = 2]
Millimoles of ozone = 1.5×10^{-2}
Volume of ozone = $\frac{nRT}{P} = \frac{1.5 \times 10^{-5} \times 0.0821 \times 300}{1} = 36.945 \times 10^{-5}$ litre
Volume percent of ozone = $\frac{36.945 \times 10^{-5}}{10} \times 100 = 3.6945 \times 10^{-3}$

Ex. 24 What volume of 0.40 M H_2SO_4 is required to produce 34.0 g of H_2S by the reaction, 8 KI + 5 $H_2SO_4 \rightarrow 4 K_2SO_4 + 4 I_2 + H_2S + 4 H_2O$?

1 mole of
$$H_2S \equiv 5$$
 moles of H_2SO_4
34 g of $H_2S \equiv 5$ moles of H_2SO_4

 $0.40 \times V_{H_2SO_4} = 5$

:
$$V_{H_2SO_4} = \frac{5}{0.40} = 12.5$$
 litre

Ex.25 To 50 L of 0.2 N NaOH, 2.5 L of 2N HCl and 15 L of 0.1 N FeCl₃ solutions are added. What weight of Fe_2O_3 can be obtained from the precipitate? Also report the normality of NaOH left in resultant solution :

Sol. Eq. of NaOH = $50 \times 0.2 = 10$ Eq. of HCl = $2.5 \times 2 = 5$

Eq. of NaOH left after reaction with HCl = 10 - 5 = 5

FeCl₃ + NaOH → Fe (OH)₃ ↓
$$\xrightarrow{\Delta}$$
 Fe₂O₃
FeCl₃ reacts with NaOH to give Fe(OH)₃ which on ignition gives Fe₂O₃
∴ Eq. of NaOH used for FeCl₃ = Eq. of Fe(OH)₃
= Eq. of Fe₂O₃
= 15 × 0.1 = 3.5

Sol.

: Eq. of NaOH left finally = 5 - 1.5 = 3.5

Normality of NaOH in the resultant solution = $\frac{3.5}{70} = 0.05$

$$\frac{W_{Fe_2O_3}}{M_{Fe_2O_3}} \times 6 = 1.5$$
 (n-factor for Fe₂O₃ = 6)
$$W_{Fe_2O_3} = \frac{1.5 \times 160}{6} = 40g$$

Ex. 26 One litre of a mixture of O₂ and O₃ at NTP was allowed to react with an excess of acidified solution of KI. The iodine liberated required 30 mL of M/10 Na₂S₂O₃ solution for titration. What is the weight percent of ozone in the mixture ? Ultraviolet radiation of wavelength 300 mm can decompose ozone. Assuming that one photon can decompose one ozone molecule, how many photons would have been required for the complete decomposition of ozone in the original mixture?

Sol.
$$O_3 + 2 \text{ KI} + \text{H}_2 O \rightarrow 2 \text{ KOH} + \text{I}_2 + \text{O}_2$$

 $2 \text{Na}_2 \text{S}_2 \text{O}_3 + \text{I}_2 \rightarrow \text{Na}_2 \text{S}_4 \text{O}_6 + 2 \text{Nal}$
Millimoles of $O_3 = \text{Millimoles of I}_2 = \frac{1}{2} \times \text{Millimoles of Na}_2 \text{S}_2 \text{O}_3$
 $= \frac{1}{2} \times 30 \times 1/10 = 1.5 \text{ millimoles}$

= 0.0015 moles

Total moles of O₃ and O₂ in the mixture

PV = n RT $1 \times 1 = n \times 0.0821 \times 273$ ∴ n= 0.044 Moles of O₂ = 0.044 - 0.0015 = 0.0425 $W_{O_2} = 0.0425 \times 32 \text{ g} = 1.36 \text{ g}$ $W_{O_3} = 0.0015 \times 48 \text{ g} = 0.072 \text{ g}$

:. % of
$$O_3 = \frac{0.072}{1.432} \times 100 = 5.028 \%$$

No. of photons required for decomposition of Ozone molecules = $0.0015 \times 6.023 \times 10^{23} = 0.90 \times 10^{21}$

Ex.27 A 2.18 g sample contains a mixture of XO and X_2O_3 . It reacts with 0.015 moles of $K_2Cr_2O_7$ to oxidize the sample completely to form XO_4^- and Cr^{3+} . If 0.0187 mole of XO_4^- is formed, what is the atomic mass of X?

 $XO + K_2Cr_2O_7 \longrightarrow Cr^{3+} + XO_4^{-}$ $X_2O_3 + K_2Cr_2O_7 \longrightarrow Cr^{3+} + XO_4^{-}$

Let, wt. of XO in the mixture be x g Equivalent of K₂Cr₂O₇ consumed by the mixture= 0.015×6

Equivalents of XO =
$$\frac{x}{x+16} \times 5$$

Equivalents of
$$X_2O_3 = \frac{2.18 - x}{2x + 48} \times 8$$

$$\therefore \frac{x}{x+16} \times 5 + \frac{2.18 - x}{2x - 148} \times 8 = 0.015 \times 6$$

Since 1 mole of XO gives 1 mole XO_4^- and 1 mole of $X_2O_3^-$ gives 2 moles of XO_4^- ,

$$\therefore \frac{x}{x+16} + \frac{2x(2.18 - x)}{2x + 48} = 0.0187$$

On solving, x = 99

Ex. 28 An aqueous solution containing 0.10 g KIO₃ (formula wt. = 214.0) was treated with an excess of KI Solution : The solution was acidified with HCl. The liberated I₂ consumed 55 mL of thiosulphate solution to decolourize the blue starch-iodine complex. Calculate molarity of the sodium thiosulphate solution :

Sol. Moles of KIO₃ =
$$\frac{0.1}{214}$$
 = 0.00047

:. Moles of I₂ liberated from KIO₃ = $\frac{0.00047}{2} = 0.000235$

Moles of KI reacting = $0.00047 \times 5 = 0.00235$

(: n-factor for KIO₃ and KI are 5 and 1 respectively)

Moles of I₂ produced from KI = $\frac{0.00235}{2} = 0.001175$

Total moles of I₂ produced and reacted = 0.000235 + 0.001175 = 0.00141 equivalents of I₂ reacted = $0.00141 \times 2 = 0.00282$ = equivalents of thiosulphate Solution :

 $Molarity = \frac{0.00282 \times 1000}{55} = 0.0512 \text{ M} (For thio sulphate n-factor = 1)$

Ex. 29 Mg can reduce NO_3^- to NH_3 in basic medium.

 $NO_3^- + Mg(s) + H_2O \rightarrow Mg(OH)_2(s) + OH^-(aq.) + NH_3(g)$

A 25.0 mL sample of NO_3^- solution was treated with Mg. The NH_3^- (g) was passed into 100 mL of 0.15 N HCl. The excess of HCl required 32.10 mL of 0.10 N NaOH for neutralization. What was the molarity of NO_3^- ions in the original sample ?

Sol. Meq. of NH₃ formed = Meq. of HCl used = $100 \times 0.15 - 32.10 \times 0.10$

Here, n-factor of NH_3 is 1 (acid - base reaction)

For redox change,

$$\stackrel{^{+5}}{NO_{3}^{-}} \xrightarrow{^{+8e^{-}}} \stackrel{^{-3}}{NH_{3}} (n - factor = 8)$$

$$\therefore Meq. of NH_{3} for n-factor 8 = 8 \times 11.79$$

$$\therefore Normality of NO_{3}^{-} = \frac{94.32}{25} = 3.77$$

Molarity of NO₃⁻ = $\frac{3.77}{8} = 0.47125$

Ex. 30 Chile salt peter a source of NaNO₃ also contains NaIO₃. The NaIO₃ can be used as a source of iodine produced in the following reactions :

Step 1: $IO_3^- + 3HSO_3^- \longrightarrow I^- + 3H^+ + 3SO_4^{2-}$ Step 2: $5I^- + IO_3^- + 6H^+ \longrightarrow 3I_2^- + 3H_4O$

One litre of chile salt peter solution containing 6.80 g NaIO₃, is treated with stoichiometric quantity of NaHSO₃. Now additional amount of same solution is added to the reaction mixture to bring about the second reaction. How many grams of NaHSO₃ are required in step 1 and what additional volume of chile salt peter must be added in step 2 to bring in complete conversion of I⁻ to I₂?

Sol. Meq. of NaHSO₃ = Meq. of NaIO₃ = N × V = $\frac{6.8}{198}$ × 6 × 1000

$$I^{5^+} + 6e^- \longrightarrow I^-$$
 (For KIO₃, n-factor = 6)

 \therefore Meq. of NaHSO₃ = 206.06

$$\frac{W_{\text{NaHSO}_3}}{M/2} \times 1000 = 206.06$$

$$\Rightarrow W_{\text{NaHSO}_3} = \frac{206.06 \times 104}{2 \times 1000} = 10.715 \text{ g}$$

Also, Meq. of I⁻ formed using n-factor 6 = 206.06

In step 2, n-factor I⁻ is 1 and n-factor for IO₃⁻ is 5

Meq. of I⁻ formed using n-factor
$$1 = \frac{206.06}{6}$$

Meq. of NaIO₃ used in 2nd step $= \frac{206.06}{6}$
 $\Rightarrow \frac{6.8}{198} \times 5 \times V = \frac{206.06}{6}$

:.
$$V_{NalO_2} = 199.99 \,\text{mL}$$

Ex. 31 1 g sample of AgNO₃ is dissolved in 50 mL of water. It is titrated with 50 mL of KI Solution : The AgI precipitated is filtered off. Excess of KI in filtrate is titrated with M/10 KIO₃ in presence of 6 M HCl till all I⁻ converted into ICI. It requires 50 ml of M/10 KIO₃ Solution : 20 mL of the same stock solution of KI require 30 mL of M/10 KIO₃ under similar conditions. Calculate % of AgNO₃ in the sample. The reaction is :

 $KIO_3 + 2KI + 6HCI \longrightarrow 3ICI + 3KCI + 3H_2O.$

Sol.
$$AgNO_3 + KI \longrightarrow AgI \downarrow + KNO_3$$

As present in AgNO₃ is removed as AgI by adding 50 mL of KI solution of which 20 mL requires 30 mL of $M/10 \text{ KIO}_3$

Meq. of KI in 20 mL = Meq. of KIO₃ = 30 ×
$$\frac{1}{10}$$
 × 4
For KIO₃, I⁵⁺ + 4e⁻ → I⁺
I₋ → I¹⁺ + 2e⁻
 \therefore Eq. wt. of KI = $\frac{M}{2}$
 \therefore Meq. of KI in 50 mL added to AgNO₃ = $\frac{30 \times 4 \times 50}{10 \times 20}$ = 30

Meq. of KI left unused by $AgNO_3 = 50 \times \frac{1}{10} \times 4 = 20$

 $\therefore \text{ Meq. of KI used for AgNO}_3 = 30 - 20 = 10$ $\therefore \text{ Meq. of AgNO}_3 = 10$ $\frac{W_{AgNO_3}}{170} \times 2 \times 1000 = 10$ $\therefore W_{AgNO_3} = 0.85 \text{ g} = 85\%$ $\frac{\text{Mole of AgNO}_3}{\text{Mole of KI}} = \frac{1}{1}$ $\therefore \text{ If equivalent weight of KI} = \frac{M}{2}$ Equivalent weight of AgNO}_3 = \frac{M}{2}

- Ex. 32 A sample of Mg was burnt in air to give a mixture of MgO and Mg₃N₂. The ash was dissolved in 60 Meq. of HCl and the resulting solution was back titration with NaOH. 12 Meq. of NaOH were required to reach the end point. An excess of NaOH was then added and the solution was distilled. The ammonia released was then trapped in 10 Meq. of acid. Back titration of this solution required 6 Meq. of base. Calculate the % of Mg burnt to the nitride.
- **Sol.** Let, total moles of Mg used for MgO and Mg_3N_2 be a and b respectively

Now a, $\frac{b}{3}$ moles respectively of MgO and Mg₃N₂ are present in the mixture. MgO + 2HCl \longrightarrow MgCl₂ + H₂O Mg₃N₂ + 8HCl \longrightarrow 3MgCl₂ + 2NH₄Cl

or solution contains (A) moles of MgCl₂ from MgO and (B) moles of MgCl₂ from Mg₃N₂ and $\frac{2b}{3}$ moles of NH₄Cl. Now, moles of HCl or Meq. of HCl (monobasic) = 30 - 12 = 48

$$2a + \frac{8b}{3} = 48$$
(1)

Moles of NH_4Cl formed = Moles of NH_3 liberated = Moles of HCl used for absorbing NH_3 .

$$\frac{2b}{3} = (10-6) = 4$$
From (1), $2a + \frac{8 \times 6}{3} = 48$ or $a = 16$

 $\therefore \%$ of Mg used for Mg₃N₂ = $\frac{6}{(6+16)} \times 100 = 27.27\%$

- **Ex.33** 30 mL of a solution containing 9.15 g/litre of an oxalate $K_x H_y (C_2 O_4)_z \cdot nH_2 O$ are required for titrating 27 mL of 0.12 N NaOH and 36 mL of 0.12 N KMnO₄ separately. Calculate x,y,z and n. Assume all H atoms (except H₂O) are replaceable and x,y,z are in the simple ratio of g atoms.
- Sol. Let molecular weight of oxalate salt is M
 - (i) n factor in acid base reaction = 2
 - (ii) n factor in redox titration = $2 \times z$

$$(C_2O_4^{2-} \longrightarrow 2CO_2 + 2e)$$

 \therefore Meq. of acid in 30 mL = Meq. of NaOH used

$$30 \times \frac{9.15}{M} \times y = 27 \times 0.12$$
 ...(1)

Also,
$$30 \times \frac{9.15}{M} \times (2z) = 36 \times 0.12$$
 ...(2)

From equations (1) and (2)
$$\frac{y}{2z} = \frac{27}{36} \Rightarrow \frac{y}{z} = \frac{3}{2}$$
 ...(3)

Also, total cationic charge = total anionic charge

$$\therefore x + y = 2z \qquad \dots (4)$$

By equations (3) and (4)

These are in simplest ratio and molecular formula is $KH_3 (C_2O_4)_2 .nH_2O_4$

Molecular weight of salt = 39 + 3 + 176 + 18n = 218 + 18n

From equation (1),
$$M = \frac{30 \times 9.15 \times 3}{27 \times 0.12} = 254.16$$

 $\therefore 218 + 18n = 254.15$
 $\therefore n = 2$
 $\therefore \text{ Oxalate salt is KH}_3(C_2O_4)_2.2H_2O$

Ex. 34 Hydrogen peroxide solution (20 mL) reacts quantitatively with a solution of KMnO_4 (20 mL) acidified with dilute H_2SO_4 . The same volume of the KMnO_4 solution is just decolourized by 10 mL of MnSO_4 in neutral medium simultaneously forming a dark brown precipitate of hydrated MnO_2 . The brown precipitate is dissolved in 20 mL of 0.2 M sodium oxalate under boiling condition in the presence of dilute H_2SO_4 . Write the balanced equations involved in the reactions and calculate the volume strength of H_2O_2 .

Sol. Meq. of
$$MnO_2 = Meq. of Na_2C_2O_4$$

 $= 20 \times 0.2 \times 2 = 8$
 $(C_2O_4^{2-} \rightarrow 2CO_2, n-factor = 2)$
Millimoles of $MnO_2 = \frac{8}{2} = 4$
 $n-factor = 3$
 $MnO_4^- + Mn^{+2} \xrightarrow{H_2O} MnO_2$ brown (ppt.)
 $n-factor = 2$

or $2MnO_4^- + 3Mn^{2+} \rightarrow 5MnO_2$ (Mole ratio is reciprocal of n-factor ratio) $\frac{Millimoles of MnO_4^-}{Millimoles of MnO_2} = \frac{2}{5}$ Millimoles $MnO_4^- = \frac{2}{5} \times Millimoles of MnO_2$ $= \frac{2}{5} \times 4 = \frac{8}{5}$ $2KMnO_4 + 5H_2O_2 + 3H_2SO_4 \rightarrow 2MnSO_4 + K_2SO_4 + 8H_2O + 5O_2$ $\frac{Millimoles of H_2O_2}{Millimoles of MnO_4^-} = \frac{5}{2}$ $\therefore Millimoles of H_2O_2 = \frac{5}{2} \times \frac{8}{5} = 4$ $N_{H_2O_2} \times 20 = 4 \times 2$ (n-factor for $H_2O_2 = 2$) $\therefore N_{H_2O_2} = 0.4$ Volume strength of $H_2O_2 = 5.6 \times N_{H_2O_2}$

$$= 5.6 \times 0.4 = 2.24$$

Ex. 35 1.0 g of moist sample of mixture of potassium chlorate (KClO₃) and potassium chloride (KCl) was dissolved in water and solution made upto 250 mL. This solution was treated with SO₂ to reduce all ClO₃⁻ to Cl⁻ and excess of SO₂ was removed by boiling. The total chloride was precipitated as silver chloride. The weight of precipitate was found to be 1.435 g. In another experiment, 25 mL of the original solution was heated with 30 ml 0.2 N FeSO₄ and unused FeSO₄ required 37.5 mL of 0.08 N KMnO₄ solutions.

Calculate the molar ratio of the ClO_3^- to the given mixture.

Given that, $ClO_{2}^{-}+6Fe^{2+}+6Fe^{2+}$

 $ClO_{3}^{-}+6Fe^{2+}+6H^{+}\longrightarrow Cl^{-}+6Fe^{3+}+3H_{2}O$ $3SO_{2}+ClO_{3}^{-}+3H_{2}O\longrightarrow Cl^{-}+3SO_{4}^{2-}+6H^{+}$

Sol. ClO_3^- is reduced to Cl^- by SO_2 and ClO_3^- is also reduced to Cl^- by Fe^{2+} , hence AgCl is formed due to total Cl^- Meq. of Fe^{2+} initially taken = $30 \times 0.2 = 6$

Meq. of Fe^{2+} unused = $37.5 \times 0.08 = 3$

:. Meq. of
$$Fe^{2+} = 6.0 - 3.0 = 3.0$$

Thus, Meq. of ClO_3^- in 25 mL = 3.0

Moles of
$$ClO_{3}^{-}$$
 in 25 mL = $\frac{3.0}{1000 \times 6} = 0.0005$
 $^{+5}ClO_{3}^{-} \longrightarrow ^{-1}Cl^{-}$ (n-factor = 6)
O.N. 5 -1

Thus, moles of ClO_3^- in 25 mL solution = 0.0005

ClO₃⁻ is also reduced to Cl⁻ by SO₂ in first experiment and precipitated as AgCl.

Thus, Cl^{-} formed from $ClO_{3}^{-} = AgCl$ from $ClO_{3}^{-} = 1.435$ g

Total AgCl formed both from actual and Cl^{-} from $ClO_{3}^{-} = 1.435$ g

 $=\frac{1.435}{143.5}=0.01$ mol

Thus, AgCl formed due to Cl^- only = 0.01 - 0.0005 = 0.0095 mol

Thus, ClO_3^- and Cl^- are in molar ratio = 1 : 19

Exercise # 1

[Single Correct Choice Type Questions]

- 1. Which reaction does not represent autoredox or disproportionation :-(A) $Cl_2 + OH^- \longrightarrow CI^- + ClO_3^- + H_2O$ (B) $2H_2O_2 \longrightarrow H_2O + O_2$ (C) $2Cu^+ \longrightarrow Cu^{+2} + Cu$ (D) $(NH_4)_2Cr_2O_7 \longrightarrow N_2 + Cr_2O_3 + 4H_2O$
- 2. Match List-I (Compounds) with List-II (Oxidation states of nitrogen) and select answer using the codes given below the lists :-

	List-I		List-II	
(A)	NaN ₃	1.	+5	
(B)	N,H,	2.	+2	
(C)	NO	3.	-1/3	
(D)	N,O5	4.	-1	
	64			
Code:	(Å)	(B)	(C)	(D)
Code: (A)	(A) 3	(B) 4	(C) 2	(D) 1
Code: (A) (B)	(A) 3 4	(B) 4 3	(C) 2 2	(D) 1 1
Code: (A) (B) (C)	(Å) 3 4 3	(B) 4 3 4	(C) 2 2 1	(D) 1 1 2

3. Which of the following is a redox reaction :-(A) $2 \operatorname{CrO}_{4}^{2-} + 2H^{+} \rightarrow \operatorname{Cr}_{2}\operatorname{O}_{7}^{2-} + H_{2}O$

(C)
$$\operatorname{Na}_2\operatorname{S}_2\operatorname{O}_3 + \operatorname{I}_2 \rightarrow \operatorname{Na}_2\operatorname{S}_4\operatorname{O}_6 + \operatorname{NaI}$$

(B)
$$CuSO_4 + 4 NH_3 \rightarrow [Cu(NH_3)_4] SO_4$$

(D) $Cr_2O_7^{2-} + 2OH^- \rightarrow 2 CrO_4^{2-} + H_2O$

4. 50 mL of 0.1 M solution of a salt reacted with 25 mL of 0.1 M solution of sodium sulphite. The half reaction for the oxidation of sulphite ion is :-

$$SO_3^{2-} (aq) + H_2O(\ell) \longrightarrow SO_4^{2-} (aq) + 2H^+(aq) + 2e^-$$

If the oxidation number of metal in the salt was 3, what would be the new oxidation number of metal :
(A) zero (B) 1 (C) 2 (D) 4

5. An element A in a compound ABD has oxidation number A^{n-} . It is oxidised by $Cr_2O_7^{2-}$ in acid medium. In the experiment 1.68×10^{-3} moles of $K_2Cr_2O_7$ were used for 3.26×10^{-3} moles of ABD. The new oxidation number of A after oxidation is (A) 3 (B) 3 - n (C) n - 3 (D) + n

6. The incorrect order of decreasing oxidation number of S in compounds is :-
(A)
$$H_2S_2O_7 > Na_2S_4O_6 > Na_2S_2O_3 > S_8$$
(B) $H_2SO_5 > H_2SO_3 > SCl_2 > H_2S$
(C) $SO_2 > SO_2 > H_2S > S_8$
(D) $H_2SO_4 > SO_2 > H_2S > H_2SO_8$

7. In which of the following reaction is there a change in the oxidation number of nitrogen atoms :-(A) $2 \operatorname{NO}_2 \rightarrow \operatorname{N}_2\operatorname{O}_4$ (B) $\operatorname{NH}_3 + \operatorname{H}_2\operatorname{O} \rightarrow \operatorname{NH}_4^+ + \operatorname{OH}^-$ (C) $\operatorname{N}_2\operatorname{O}_5 + \operatorname{H}_2\operatorname{O} \rightarrow 2\operatorname{HNO}_3$ (D) none

- 8. In the reaction $xHI+yHNO_3 \longrightarrow NO+I_2+H_2O$ (A) x=3, y=2 (B) x=2, y=3 (C) x=6, y=2 (D) x=6, y=1
- 9. For the redox reaction : $MnO_4^- + C_2O_4^{2-} + H^+ \longrightarrow Mn^{2+} + CO_2 + H_2O$ the correct stoichiometric coefficients of MnO_4^- , $C_2O_4^{2-}$ and H^+ are respectively (A) 2,5,16 (B) 16,5,2 (C) 5,16,2 (D) 2,16,5

10.	A certain weight of pu 224 mL of CO ₂ gas at STF	re $CaCO_3$ is made to real. P. The normality of the HCl i	ct completely with 200 rs:-	nL of an HCl solution to give
	(A) 0.05 N	(B) 0.1 N	(C) 1.0 N	(D) 0.2 N
11.	The volume of $1.5 \text{ MH}_{3}\text{PC}$ (A) 10 mL	 A solution required to neutral (B) 30 mL 	ize exactly 90 mL of a 0.5 M (C) 20 mL	I Ba $(OH)_2$ solution is :- (D) 60 mL
12.	Volume $V_1 mL of 0.1 MK_2$ M KMnO ₄ needed for sam	Cr_2O_7 is needed for complete ne oxidation in acidic medium	oxidation of 0.678 g N_2H_4 ir n will be :-	acidic medium. The volume of 0.3
	(A) $\frac{2}{5}V_1$	(B) $\frac{5}{2}$ V ₁	(C) 113 V ₁	(D) can't say
13.	Which of the following re (A) $3 \text{ NAl}_2(\text{SO}_4)_3 = 0.5 \text{ M}$ (C) $1 \text{ MH}_3\text{PO}_4 = 1/3 \text{ NH}_3\text{J}$	elations is incorrect :- Al ₂ (SO ₄) ₃ PO ₄	(B) $3 \text{ M H}_2\text{SO}_4 = 6 \text{ N H}_2 \text{SO}_4$ (D) $1 \text{ M Al}_2(\text{SO}_4)_3 = 6 \text{ N A}_2$	D_4 $l_2(SO_4)_3$
14.	The mass of oxalic acid cr (A) 4.5 g	rystals ($H_2C_2O_4$. 2 H_2O) requir (B) 6.3 g	ired to prepare 50 mL of a 0 (C) 0.63 g	.2 N solution is :- (D) 0.45 g
15.	125 mL of 63% (w/v) H_2C_2	O_4 . 2H ₂ O is made to react with	n 125 mL of a 40% (w/v) NaC	OH solution. The resulting solution is
	(A) neutral	(B) acidic	(C) strongly acidic	(D) alkaline
16.	If equal volumes of 0.1 M then Fe^{2+} oxidised will be (A) more by $KMnO_4$ (C) equal in both cases	$KMnO_4$ and 0.1 M $K_2Cr_2O_7$:-	solutions are allowed to oxi (B) more by K_2CrO_7 (D) can't be determined	dise Fe ²⁺ to Fe ³⁺ in acidic medium,
17.	If 10 g of V_2O_5 is dissolver resulting solution if it is fit [Assume no change in state (A) 0.11 mole of I ₂	ed in acid and is reduced to V arther oxidised to VO^{2+} ions te of Zn^{2+} ions] (V = 51, O = (B) 0.22 mole of I ₂	V^{2+} by zinc metal, how man ? 16, I = 127) : (C) 0.055 mole of I ₂	by mole I_2 could be reduced by the (D) 0.44 mole of I_2
18.	Given that 50.0 mL of 0.0	1 M Na ₂ S ₂ O ₃ solution and 5 Cl. (g) + S.O. ²⁻ \longrightarrow SO. ²⁻	$\times 10^{-4}$ mole of Cl ₂ react acc + Cl ⁻ + S	ording to equation,
(i)	Answer the following : The balanced molecular e (A) $Cl_2 + H_2O + Na_2S_2O_3 -$ (C) $Cl_2 + S_2O_3^{2-} \longrightarrow SO_4$	equation is : $\xrightarrow{2} \operatorname{Na}_{2} \operatorname{SO}_{4} + \operatorname{S} + 2\operatorname{HCl}_{4}$ $\xrightarrow{2^{-}} + \operatorname{S} + \operatorname{Cl}^{-}$	(B) $Cl_2 + Na_2S_2O_3 \longrightarrow 2N$ (D) none of these	$NaCl + Na_2SO_4$
(ii)	How many moles of $S_2O_3^{-3}$ (A) 0.00050	²⁻ are in the above sample :- (B) 0.0025	(C) 0.01	(D) 0.02
(iii)	How many equivalents of (A) 0.001	Coxidising agents are in this (B) 0.080	sample for the above react (C) 0.020	ion :- (D) 0.010
(iv)	What is the molarity of N (A) 0.080 M	$a_2 SO_4$ in this solution :- (B) 0.040 M	(C) 0.020 M	(D) 0.010 M
19.	One gram of Na_3AsO_4 is b K1 solution and titrated a_4	poiled with excess of solid K gainst 0.2 N hyposolution. A AsO. ³⁻⁺ $2H^+ + 2I^- \longrightarrow A$	l in presence of strong HCl. Assuming the reaction to be $sO_3^{3-} + H_2O + I_2$,	The iodine evolved is absorbed in e
	calculate the volume of the (A) 48.1 mL	niosulphate hypo consumed. (B) 38.4 mL	[Atomic weight of As = 75] (C) 24.7 mL	5] (D) 30.3 mL

20.	Which of the following s reduced to Mn ²⁺ and wate	amples of reducing agents i er :-	s/are chemically equivalen	t to 25 mL of 0.2 N KMnO ₄ to be
	(A) 50 mL of 0.2 M FeSO (C) 50 mL of 0.1 M H_2O_2	$_{4}$ to be oxidized to Fe ³⁺ to be oxidized to H ⁺ and O ₂	(B) 50 mL of 0.1 M H_3 As (D) 25 mL of 0.1 M SnCl ₂	D_3 to be oxidized to H_3 AsO ₄ to be oxidized to Sn ⁴⁺
21.	Find the volume of strengt (A) 1.5 V	h of H_2O_2 solution prepared b (B) 8.4 V	by mixing of 250 mL of 3N H (C) 5.6 V	H_2O_2 & 750 mL of 1N H_2O_2 solution (D) 11.2 V
22.	0.3 g of an oxalate salt wa oxidation. The % of oxala	s dissolved in 100 mL solution te ion in salt is :-	on. The solution required 90	$0 \text{ mL of N/20 KMnO}_4$ for complete
	(A) 33%	(B) 66%	(C) 70%	(D) 40%
23.	A 0.518 g sample of limes washing the precipitate, i percentage of CaO in the	tone is dissolved in HCl and t requires 40.0 mL of 0.250 sample is :- MnO ₄ ⁻ + H ⁺ +C ₂ O ₄ ²⁻ \longrightarrow	then the calcium is precipit N KMnO ₄ solution acidifi Mn ²⁺ + CO ₅ + 2H ₂ O	tated as CaC_2O_4 . After filtering and led with H_2SO_4 to titrate it as. The
	(A) 54.0 %	(B) 27.1 %	$(C) 42\%^{2}$	(D) 84 %
24.	In the reaction $CrO_5 + H_2S$ (A) 5/2	$GO_4 \rightarrow Cr_2(SO_4)_3 + H_2O + O_2$ (B) 5/4	one mole of CrO_5 will liber (C) 9/2	rate how many moles of O_2 :- (D) 7/2
25.	$25 \text{ mL of } 0.50 \text{ M H}_2\text{O}_2 \text{ solution}$ are true :-	ution is added to 50 mL of 0.2	$20\mathrm{M}\mathrm{KMnO}_4$ in acid solution	n. Which of the following statement
	(A) 0.010 mole of oxygen(C) 0.030 g atom of oxyg	is liberated en gas is evolved	(B) 0.005 mole of KMnO (D) 0.0025 mole H_2O_2 do	₄ are left es not react with KMnO ₄
26.	Hydrogen peroxide in aq Under conditions where 1	ueous solution decomposes $2H_2O_2(aq) \longrightarrow 2H_2O(\ell)$ mole of gas occupies 24 dm	on warming to give oxyge + $O_2(g)$ ³ . 100 cm ³ of XM solution of	en according to the equation of H_2O_2 produces 3 dm ³ of O_2 . Thus
	(A) 2.5	(B) 1	(C) 0.5	(D) 0.25
27.	Bottle (A) contain 320 m normality 5N. If bottle (A term of volume strength & (A) 13.6 "V" & 41.285 g/L (C) 5.6 "V" & 0.68 g/L	L of H_2O_2 solution & labelet) & bottle (B) mixed & solut c in term of g / litre. :-	ed with 10 V H ₂ O ₂ & Bottl ion filled in bottle (C). Sele (B) 11.2 "V" & 0.68 g/L (D) 5.6 "V" & 41.285 g/L	le (B) contain 80 mL H_2O_2 having ct the correct lable for bottle (C) in
28.	Temporary hardness is du	te to HCO_3^- of Mg^{2+} and Ca^2 Ca(HCO) + CaO \rightarrow 2Ca(²⁺ . It is removed by addition $CO + HO$	n of CaO.
	Mass of CaO required to p (A) 2.00	precipitate 2 g $CaCO_3$ is :- (B) 0.56 g	(C) 0.28 g	(D) 1.12 g
29.	An ore of iron, Wustite ha	the formula $F_{0.93}O_{1.00}$. The (B) 0.85	mole fraction of total iron (C) 0.15	present in the form of Fe(II) is :- (D) 0.37
30.	HNO ₃ oxidises NH_4^+ ions (NH_4) ₂ SO ₄ is :-	s to nitrogen and itself gets	reduced to NO_2 . The mol	es of HNO_3 required by 1 mol of
	(A) 4	(B) 2	(C) 6	(D) 2
31.	25 mL of a 0.1 M solution solution. Which of the for (A) $Z^+ \rightarrow Z^{2+}$	of a stable cation of transition llowing is most likely to rep (B) $Z^{2+} \rightarrow Z^{3+}$	m metal Z reacts exactly with present the change in oxidat (C) $Z^{3+} \rightarrow Z^{4+}$	25 ml of 0.04 mL acidified KMnO ₄ tion state of Z correctly :- (D) $Z^{2+} \rightarrow Z^{4+}$

CHEMISTRY FOR JEE MAIN & ADVANCED

32.	1 mol of iron (Fe) reacts co oxide to ferric oxide is :-	completely with 0.65 mol O_2 to O_2	to give a mixture of only Fe	D and Fe_2O_3 . Mole ratio of ferrous
	(A) 3 : 2	(B) 4 : 3	(C) 20:13	(D) none of these
33.	The molar ratio of Fe ⁺⁺ to ferrous and ferric sulphate	Fe^{+++} in a mixture of FeSO e is :-	$_4$ and Fe ₂ (SO ₄) ₃ having equ	al number of sulphate ion in both
	(A) 1 : 2	(B) 3:2	(C) 2:3	(D) can't be determined
34.	If a piece of iron gains 10% (A) 23	of its weight due to partial ru (B) 13	sting into Fe_2O_3 . The percenta (C) 23.3	age of total iron that has rusted is :- (D) 25.67
35.	How many litres of Cl_2 at S (A) 3.54 litres	S.T.P. will be liberated by ox (B) 7.08 litres	idation of NaCl with 10 g K (C) 1.77 litres	MnO ₄ :- (D) none of these
36.	During the disproportiona alkaline medium is :-	ation of iodine to iodide an	d iodate ions, the ratio of	iodate and iodide ions formed in
	(A) 1 : 5	(B) 5 : 1	(C) 3 : 1	(D) 1:3
37.	$28 \text{ NO}_3^- + 3\text{As}_2\text{S}_3 + 4\text{H}_2\text{O} + 38836\text{ What will be the equivale}$	\rightarrow 6AsO ₄ ³⁻ + 28 NO + 9SO ₄ ² nt mass of As ₂ S ₃ in above re	²⁻ + H ⁺ eaction	
	(A) $\frac{\text{M.wt.}}{2}$	(B) $\frac{\text{M.wt.}}{4}$	(C) $\frac{M.wt.}{24}$	(D) $\frac{M.wt.}{28}$
38.	CN^{-} is oxidised by NO_{3}^{-} in	n presence of acid :		
		$a CN^{-} + b NO_{3}^{-} + c H^{+}$	\rightarrow (a+b) NO + a CO ₂ + $\frac{c}{2}$ H	1,0
	What are the values of a,	b, c in that order :	- 2	-
	(A) 3,7,7	(B) 3,10,7	(C) 3,10,10	(D) 3,7,10
39.	Which of the following so (A) 25 mL of 0.1 M KMnC (C) 25 mL of 0.6 M KMnC	lutions will exactly oxidize 2 Q_4 Q_4	25 mL of an acid solution of (B) 25 mL of 0.2 M KMnO (D) 15 mL of 0.1 M KMnO	0.1 M Fe (II) oxalate :- 4 4
40.	4.9 gm of $K_2Cr_2O_7$ is taken into Sn^{4+} ion Sn^{4+} so produ be (assume all other comp	to prepare 0.1 L of the solution to be used in 2^{nd} reaction to bonents are in sufficient amo	tion. 10 mL of this solution o prepare Fe^{3+} ion then the r unt) [Molar mass of $K_2Cr_2Cr_2Cr_2Cr_2Cr_2Cr_2Cr_2Cr_2Cr_2Cr$	is further taken to oxidise Sn^{2+} ion millimoles of Fe ³⁺ ion formed will $D_7 = 294 \text{ g}$].
	(A) 5	(B) 20	(C) 10	(D) none of these
41.	When ZnS is boiled with s are the changes in the oxid	strong nitric acid, the produc dation numbers of Zn, S and	ets are zinc nitrate, sulphurio 1 N.	c acid and nitrogen dioxide. What
	(A) +2,+4,-1	(B) +2,+6,-2	(C) 0, +4, -2	(D) 0, +8, -1
42.	When arsenic sulphide is	boiled with NaOH, sodium	arsenite and sodium thioars	senite are formed
	$x As_2S_3 + y NaOH \longrightarrow N$	$[a_3AsO_3 + x Na_3AsS_3 + \frac{y}{2}]$ H	I_2O . What are the values of z	x and y ?
	(A) 1, 6	(B) 2, 8	(C) 2, 6	(D) 1, 4
43.	An element forms two diff of the element in these su	ferent sulphates in which its lphates ?	weight % is 28 and 37. Wha	t is the ratio of oxidation numbers
	(A) 1 : 2	(B) 1 : 3	(C) 2:1	(D) 3:2
44.	The following equations a (i) $Cr_2O_7^{2-} + 8H^+ + 3H_2O_2 -$ (ii) $Cr_2O_7^{2-} + 8H^+ + 5H_2O_2 -$ (iii) $Cr_2O_7^{2-} + 8H^+ + 7H_2O_2$ The precise equation/equation	are balanced atomwise and $c \rightarrow 2Cr^{3+} + 7H_2O + 3O_2$ $\rightarrow 2Cr^{3+} + 9H_2O + 4O_2$ $\rightarrow 2Cr^{3+} + 11H_2O + 5O_2$ ations representing the oxid	chargewise. ation of H_2O_2 is /are :	
	(A) (i) only	(B) (ii) only	(C) (iii) only	(D) all the three

45.	35 mL sample of hydrogen peroxide gives of 500 mL of O_2 at 27°C and 1 atm pressure. Volume strength of H_2O_2 sa will be :-			pressure. Volume strength of H_2O_2 sample
	(A) 10 volume	(B) 13 volumes	(C) 11 volume	(D) 12 volume
46.	20 mL of 0.1 M solut phenolphthalein is u titrations. Hence (y-	ion of compound $Na_2CO_3.Na$ sed as an indicator and y mL - x) is :-	$HCO_3.2H_2O$ is titrated agai of HCl is used when meth	nst 0.05 M HCl, x mL of HCl is used when yl orange is the indicator in two separate
	(A) 40 mL	(B) 80 mL	(C) 120 mL	(D) none of these
47.	A mixture of H ₂ SO ₄	and $H_2C_2O_4$ (oxalic acid) and	some inert impurity weight	ing 3.185 g was dissolved in water and the
	solution made up to 1 experiment 100 mL reaction. The wt. %	l litre, 10 mL of this solution i of the same solution in hot of H_2SO_4 in the mixture was	required 3 mL of 0.1 N NaC condition required 4 mL :-	DH for complete neutralization. In another of $0.02M$ KMnO ₄ solution for complete
	(A) 40	(B) 50	(C) 60	(D) 80
48.	0.80 g of sample of i this solution treated solution. 30 mL of th What was the percer	mpure potassium dichromat with excess of KI in acidic his sodium thiosulphate solut ntage of $K_2Cr_2O_7$ in given sa	e was dissolved in water as medium and I_2 liberated r ion required 15 mL of N/2 umple?	nd made upto 500 mL solution. 25 mL of equired 24 mL of a sodium thiosulphate 0 solution of pure potassium dichromate.
	(A) 73.5 %	(B) 75.3 %	(C) 36.75 %	(D) none of these
49.	0.10 g of a sample containing CuCO ₃ and some inert impurity was dissolved in dilute sulphuric acid and volume made up to 50 mL. This solution was added into 50 mL of 0.04 M KI solution where copper precipitates as CuI and I ⁻ is oxidized into I ₃ ⁻ . A 10 mL portion of this solution is taken for analysis, filtered and made up free I ₃ ⁻ and then treated with excess of acidic permanganate solution. Liberated iodine required 20 mL of 2.5 mM sodium thiosulphate solution to reach the end point. Determine weight percentage of CuCO ₃ in the original sample. (A) 7.41 (B) 74.1 (C) 61.75 (D) none of these			
50	A 150 ml afaal die	n of I is divided into two	and ports. I read read to the	h humo polution in poidio modium 15 m.T.
30.	of 0.4 M hypo was co of 0.3 M H_2SO_4 solution	onsumed. II part was added v ition for complete neutraliza	vith 100 mL of 0.3 M NaOl tion. What was the initial	H solution. Residual base required 10 mL concentration of I_2 ?

(A) 0.08 M (B) 0.1 M (C) 0.2 M (D) none of these

Exercise # 2 Part # I [Multiple Correct Choice Type Questions]

1. In the titration of $K_2Cr_2O_7$ and ferrous sulphate , following data is obtained : $V_1 \text{ mL of } K_2Cr_2O_7$ solution of molarity M_1 requires $V_2 \text{ mL of } FeSO_4$ solution of molarity M_2 . Which of the following relations is/are true for the above titration : (A) $6 M_1V_1 = M_2V_2$ (B) $M_1V_1 = 6 M_2V_2$ (C) $N_1V_1 = N_2V_2$ (D) $M_1V_1 = M_2V_2$

2. Choose the correct statement(s) :

- (A) 1 mole of MnO_4^{-1} ion can oxidise 5 moles of Fe^{2+1} ion in acidic medium.
- **(B)** 1 mole of $Cr_2 O_7^{2-}$ ion can oxidise 6 moles of Fe^{2+} ion in acidic medium.
- (C) 1 mole of Cu_2S can be oxidised by 1.6 moles of MnO_4^{-1} ion in acidic medium.
- (D) 1 mole of Cu₂S can be oxidised by 1.33 moles of $Cr_2O_7^{2-}$ ion in acidic medium.
- 3. Which of the following samples of reducing agents is /are chemically equivalent to 25 mL of 0.2 N KMnO₄ to be reduced to Mn^{2+} and water :

(A) 25 mL of 0.2 M FeSO₄ to be oxidized to Fe³⁺

(B) 50 mL of 0.1 M H_3AsO_3 to be oxidized to H_3AsO_4

(C) 25 mL of 0.1 M H_2O_2 to be oxidized to H^+ and O_2

(D) 25 mL of 0.1 M SnCl_2 to be oxidized to Sn^{4+}

4. 0.1 M solution of KI reacts with excess of H₂SO₄ and KIO₃ solutions, according to equation

 $5I^{-} + IO_{3}^{-} + 6H^{+} \longrightarrow 3I_{2} + 3H_{2}O$; which of the following statements is/are correct :

- (A) 200 mL of the KI solution react with 0.004 mole KIO₃.
- (B) 100 mL of the KI solution reacts with 0.006 mole of H_2SO_4 .
- (C) 0.5 litre of the KI solution produced 0.005 mole of I_2 .

(D) Equivalent weight of KIO₃ is equal to $\left(\frac{\text{Molecular Weight}}{5}\right)$.

- 5. Consider the redox reaction $2S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-} + 2 I^-$: (A) $S_2O_3^{2-}$ gets reduced to $S_4O_6^{2-}$ (B) $S_2O_3^{2-}$ gets oxidised to $S_4O_6^{2-}$ (C) I_2 gets reduced to I^- (D) I_2 gets oxidised to I^-
- 6. There are two sample of HCl having molarity 1N and 0.25 N. Find volume of these sample taken in order to prepare 0.75 N HCl solution. (Assume no water is used) :

(A) 20 mL, 10 mL (B) 100 mL, 50 mL (C) 40 mL, 20 mL (D) 50 mL, 25 mL

- 7. To a 25 ml H_2O_2 solution excess acidified solution of KI was added. The iodine liberated 20 ml of 0.3 N sodium thiosulphate solution. Use these data to choose the correct statements from the following :
 - (A) The weight of H_2O_2 present in 25 ml solution is 0.102 g
 - **(B)** The molarity of H_2O_2 solution is 0.12 M
 - (C) The weight of H_2O_2 present in 1 L of the solution is 0.816 g
 - (D) The volume strength of H_2O_2 is 1.344 L

8. $A + B \rightarrow A_3B_2$ (unbalanced) $A_3B_2 + C \rightarrow A_3B_2C_2$ (unbalanced) Above two reactions are carried out by taking 3 moles each of A and B and one mole of C. Then which option is/are correct? (A) 1 mole of $A_3B_2C_2$ is formed (B) 1/2 mole of $A_3B_2C_2$ is formed (C) 1/2 mole of A_3B_2 is formed (**D**) 1/2 mole of A_3B_2 is left finally Consider the redox reaction $2S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-} + 2I^-$: 9. (A) $S_2O_3^{2-}$ gets reduced to $S_4O_6^{2-}$ (B) $S_2O_3^{2-}$ gets oxidised to $S_4O_6^{2-}$ (D) I_2 gets oxidised to I^- (C) I_2 gets reduced to I^- 10. If 100 ml of 1M H_2SO_4 solution is mixed with 100 ml of 9.8% (w/w) H_2SO_4 solution (d = 1 g/ml) then : (A) concentration of solution remains same (B) volume of solution become 200 ml (C) mass of H_2SO_4 in the solution is 98 gm (**D**) mass of H_2SO_4 in the solution is 19.6 gm 11. Equal volume of 0.1M NaCl and 0.1M FeCl₂ are mixed with no change in volume due to mixing. Which of the following will be true for the final solution. (No precipitation occurs). Assume complete dissociation of salts and neglect any hydrolysis. (A) $[Na^+] = 0.05 M$ **(B)** $[Fe^{2+}] = 0.05M$ (C) $[Cl^{-}] = 0.3M$ (D) $[Cl^{-}] = 0.15M$ 12. Silver metal in ore is dissolved by potassium cyanide solution in the presence of air by the reaction $4 \text{Ag} + 8 \text{KCN} + \text{O}_2 + 2\text{H}_2\text{O} \longrightarrow 4 \text{K}[\text{Ag}(\text{CN})_2] + 4 \text{KOH}$ (A) The amount of KCN required to dissolve 100 g of pure Ag is 120 g. (B) The amount of oxygen used in this process is 0.742 g (for 100 gm pure Ag) (C) The amount of oxygen used in this process is 7.40 g (for 100 gm pure Ag) (D) The volume of oxygen used at STP is 5.20 litres. 13. If 27 g of Carbon is mixed with 88 g of Oxygen and is allowed to burn to produce CO_2 , then : (A) Oxygen is the limiting reagent. (B) Volume of CO, gas produced at NTP is 50.4 L. (C) C and O combine in mass ratio 3 : 8. (D) Volume of unreacted O_2 at STP is 11.2 L. 14. Equal masses of SO₂ and O₂ are placed in a flask at STP choose the correct statement. (A) The number of molecules of O_2 are more than SO_2 **(B)** Volume occupied at STP is more for O_2 than SO_2 (C) The ratio of number of atoms of SO_2 and O_2 is 3 : 4. (D) Moles of SO_2 is greater than the moles of O_2 . 15. For the reaction $2P + Q \rightarrow R$, 12 mol of P and 8 mol of Q are taken then (A) 3 mol of R is produced (B) 6 mol of R is produced (C) 25% of Q is left behind (D) 25% of Q has reacted

CHEMISTRY FOR JEE MAIN & ADVANCED

16.	The molality of a sulphuric acid solution is 0.2. Calculate the total weight of the solution having 1000 gm of solvent.			
	(A) 1000 g	(B) 1098.6 g	(C) 980.4 g	(D) 1019.6g
17.	If H_2SO_4 is formed from it	s elements by taking 6.023	\times 10 ²³ atom of 'O' 5.6 litre of	of H_2 gas at STP and 8 gm S then
	(A) 0.125 moles of H_2SO_4 a	are formed	(B) 0.25 moles of H_2SO_4 a	re formed
	(C) no moles of 'S' are left		(D) $1/4$ mole of O_2 is left	
18.	18. A 5L vessel contains 2.8 g of N ₂ . When heated to 1800 K, 30% molecules are dissociated into atoms.			issociated into atoms.
	(A) Total no. of moles in the container will be 0.13			
	(B) Total no. of molecules	in the container will be clo	se to 0.421×10^{23} .	
	(C) Total no. of moles in th	e container will be 0.098.		
	(D) All of these are correct	t.		
19.	The density of air is 0.001	293 g/cm ³ at STP. Identify	which of the following state	ement is correct
	(A) Vapour density is 14.48			
	(B) Molecular weight is 28	.96		
	(C) Vapour density is 0.00	1293 g/cm ³		
	(D) Vapour density and me	olecular weight cannot be	determined.	
20.	Which of the following ha	is same mass		
	(\mathbf{A}) 1.0 mole of $\mathbf{O}_{\mathbf{A}}$		(B) 3.01×10^{23} molecules	ofSO

(A) 1.0 mole of O_2 (B) 3.01×10^{-3} molecules of S (C) 0.5 moles of CO_2 (D) 1 g atom of sulphur

Part # II > | [Assertion & Reason Type Questions]

These questions contains, Statement I (assertion) and Statement II (reason).

- (A) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.
- (B) Statement-I is true, Statement-II is true; Statement-II is NOT a correct explanation for statement-I
- (C) Statement-I is true, Statement-II is false
- (D) Statement-I is false, Statement-II is true
- Statement-I : Oxidation involves loss of electrons and reduction involves gain of electrons.
 Statement-II : The overall reaction in which oxidation and reduction occur simultaneously is called redox reaction.
- Statement-I: The oxidation state of superoxide ion in KO₂, CsO₂ and RbO₂ is -1/2.
 Statement-II: Since the oxidation state of an alkali metal in any compound is always +1, the oxidation state of oxygen is -1/2 in the O₂⁻ ion.
- Statement-I: Among Br⁻, O₂²⁻, H⁻ and NO₃⁻, the ions that could not act as oxidising agents are Br⁻ and H⁻.
 Statement-II: Br^Θ and H⁻ could not be reduced.
- Statement-I : H₂SO₄ cannot act as reducing agent.
 Statement-II : Sulphur cannot increase its oxidation number beyond +6.

5.	Statement-I: In the redox reaction
	$8 \text{ H}^+(\text{aq}) + 4 \text{ NO}_3^- + 6 \text{ Cl}^- + \text{Sn}(\text{s}) \rightarrow \text{SnCl}_6^{2-} + 4 \text{ NO}_2 + 4 \text{ H}_2\text{O}$
	the reducing agent is Sn (s),
	Statement-II : In balancing half reaction, $S_2O_3^{2-} \rightarrow S(s)$, the number of electrons added on the left is 4.
6.	Statement-1: The molality and molarity of very dilute aqueous solutions differ very little.
	Statement-2: The density of water is about 1.0 g cm ⁻³ at room temperature.
7.	Statement-1 : For calculating the molality or the mole fraction of solute, if the molarity is known, it is necessary to know the density of the solution.
	Statement-2 : Molality, molarity and the mole fraction of solute can be calculated from the weight percentage and the density of the solution
8.	Statement-1: Laboratory reagents are usually made up to a specific molarity rather than a given molality.
	Statement-2: The volume of a liquid is more easily measured than its mass.
9.	Statement-1: Molality and mole fraction concentration units do not change with temperature.
	Statement-2 : These units are not defined in terms of any volume.
10.	Statement-1: A one molal solution prepared at 20°C will retain the same molality at 100°C, provided there is no loss of solute or solvent on heating.
	Statement-2 : Molality is independent of temperature.
11.	Statement-1: In the reaction, $MnO_4^- + 5Fe^{2+} + 8H^+ \longrightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$, MnO_4^- acts as oxidising agent.

Statement-2 : In the above reaction, n-factor for MnO_4^- is 5.

- 12. Statement-1: If 200 mL of 0.1 N NaOH is added to 200 mL of 0.1 N H₂SO₄ solution, then the resulting solution is acidic. Statement-2: If milliequivalents of acid is greater than milliequivalents of base, then upon mixing the solution is acidic.
- **13. Statement-1 :** Equivalent weight of FeC_2O_4 in the reaction,

 FeC_2O_4 + Oxidising agent \longrightarrow Fe^{3+} + CO_2 is M/3, where M is molar mass of FeC_2O_4 .

Statement-2: In the above reaction, total two moles of electrons are given up by 1 mole of FeC₂O₄ to the oxidising agent.

	Exerci	se # 3 Part # I >	[Matrix	Match Type Questions]
1.		Column-I		Column-II
	(A)	Eq. wt. = $\frac{\text{Molecular weight}}{33}$	(p)	When CrI_3 oxidises into $\operatorname{Cr}_2\operatorname{O}_7^{2-}$ and IO_4^{-}
	(B)	Eq. wt. = $\frac{\text{Molecular weight}}{27}$	(q)	When $\text{Fe}(\text{SCN})_2$ oxidises into Fe^{3+} , SO_4^{2-} , CO_3^{2-}
	(C)	Eq. wt. = $\frac{\text{Molecular weight}}{28}$	(r)	When NH_4SCN oxidizes into SO_4^{2-} , CO_3^{2-} and
				NO_3^-
	(D)	Eq. wt. = $\frac{\text{Molecular weight}}{24}$	(s)	When As_2S_3 oxidises into AsO_3^- and SO_4^{2-}
2.		Column-I		Column-II
	(A)	When Bi ₂ S ₃ converted into Bi ⁵⁺ and S	(p)	18
	(B)	When $Al_2(Cr_2O_7)_3$ reduced into Cr^{3+}	(q)	11
	(C)	When FeS_2 converted into Fe_2O_3 and	(r)	2
	(D)	SO_2 When Mn(NO ₃) ₂ converted into MnO ₄ ²⁻ and NO	(\$)	10
3.		Column-I		Column-II
	(A)	$\underline{P_{2}H_{4}} \longrightarrow PH_{3} + P_{4}H_{2}$	(p)	$E = \frac{3M}{4}$
	(B)	$\underline{I_2} \longrightarrow \overline{I^- + IO_3^-}$	(q)	$E = \frac{3M}{5}$
	(C)	$\underline{\mathrm{MnO}_{4}}^{-} + \mathrm{Mn}^{2+} + \mathrm{H}_{2}\mathrm{O} \longrightarrow \mathrm{Mn}_{3}\mathrm{O}_{4} + \mathrm{H}^{+}$	(r)	$E = \frac{15M}{26}$
	(D)	$\underbrace{H_3PO_2 \longrightarrow PH_3 + H_3PO_3}_{$	(5)	$E = \frac{5M}{6}$
4.	(A)	Column-I Molarity	(p)	Column-II Dependent on temperature
	(B)	Molality	(q)	$\frac{M_A \times n_A}{n_A M_A + n_B M_B} = x \ 100$
	(C)	Mole fraction	(r)	Independent of temperature
	(D)	Mass %	(s)	$\frac{X_A}{X_B M_B} \times 1000$

Where M_A , M_B are molar masses, n_A , n_B are no of moles & X_A , X_B are mole fractions of solute and solvent respectively.

REDOX REACTION AND EQUIVALENT CONCEPT

Column-I

5.

6.

7.

(A) $100 \text{ ml of } 0.2 \text{ MAlCl}_3 \text{ solution} + 400 \text{ ml}$

(B) 50 ml of 0.4 M KCl + 50 ml H_2O (C) 30 ml of 0.2 M $K_2SO_4 + 70$ ml H_2O (D) 200 ml 24.5% (w/v) H_2SO_4

Column-I

(A) 4.1 g H₂SO₃
(B) 4.9 g H₃PO₄
(C) 4.5 g oxalic acid (H₂C₂O₄)
(D) 5.3 g Na₂CO₃

Column-I

(A) $Sn^{+2} + MnO_4^{-}$ (acidic)

3.6 mole

3.6 mole

+ $Cr_2O_7^{-2}$ (acidic)

1.6 mole

3.5 mole 1.2 mole (B) $H_2C_2O_4 + MnO_4^-$ (acidic)

8.4 mole

7.2 mole

9.2 mole

(D) Fe^{+2}

(C) $S_2O_3^{-2} + I_2$

Column-II

```
(p) Total concentration of cation(s) = 0.12 M of 0.1 M HCl solution
(q) [SO<sub>4</sub><sup>2-</sup>]=0.06 M
(r) [SO<sub>4</sub><sup>2-</sup>]=2.5 M
(s) [Cl<sup>-</sup>]=0.2 M
```

Column-II

- (p) 200 mL of 0.5 N base is used for complete neutralization
- (q) 200 millimoles of oxygen atoms
- (r) Central atom is in its highest oxidation number
- (s) May react with an oxidising agent

Column-II

(p) Amount of oxidant available decides the number of electrons transfer

- (q) Amount of reductant available decides the number of electrons transfer
- (r) Number of electrons involved per mole of oxidant > Number of electrons involved per mole of reductant
- (s) Number of electrons involved per mole of oxidant < Number of electrons involved per mole of reductant.

Part # II

[Comprehension Type Questions]

Comprehension #1

The strength of H_2O_2 is expressed in several ways like molarity, normality, % (w/V), volume strength, etc. The strength of "10 V" means 1 volume of H_2O_2 on decomposition gives 10 volumes of oxygen at STP or 1 litre of H_2O_2 gives 10 litre of O_2 at STP. The decomposition of H_2O_1 is shown as under :

$$H_2O_2(aq) \longrightarrow H_2O(\ell) + \frac{1}{2}O_2(g)$$

 H_2O_2 can acts as oxidising as well as reducing agent, as oxidizing agent H_2O_2 converted into H_2O and as reducing agent H_2O_2 converted into O_2 , both cases it's n-factor is 2.

 \therefore Normality of H₂O₂ solution = 2 × Molarity of H₂O₂ solution

1.	What is the mola	rity of "11.2 V" of H ₂ O ₂ ?		
	(A) 1 M	(B) 2 M	(C) 5.6 M	(D) 11.2 M
2.	What is the perce	entage strength (% w/V) of "	11.2 V" H ₂ O ₂ ?	

(A) 1.7 (B) 3.4 (C) 34 (D) none of these

3. $20 \text{ mL of H}_2\text{O}_2$ solution is reacted with 80 mL of 0.05 M KMnO₄ in acidic medium then what is the volume strength of H₂O₂?

(A) 2.8 (B) 5.6 (C) 11.2 (D) none of these

4.	4. $40 \text{ g Ba}(\text{MnO}_{4})_2 \text{ (mol. wt. = 375)}$ sample containing some inert impurities in acidic medium is completely reacted wit 125 mL of "33.6 V" of H ₂ O ₂ . What is the percentage purity of the sample ?			
	(A) 28.12 %	(B) 70.31 %	(C) 85 %	(D) none of these
		Comp	orehension # 2	
	Oleum is considered a g sample of oleum is d as % labelling in oleur	s a solution of SO_3 in H_2SC iluted with desired weight m.	D_4 , which is obtained by passin of H_2O then the total mass of	ng SO ₃ in solution of H_2 SO ₄ . When 100 H_2 SO ₄ obtained after dilution is known
	For example, a oleum 100 g of oleum is dilu $SO_3 + H_2O \longrightarrow H_2SC$	bottle labelled as '109% H ated by 9 g of H_2O which D_4	$_2$ SO ₄ ' means the 109 g total machines with all the free So	ass of pure H_2SO_4 will be formed when O_3 present in oleum to form H_2SO_4 as
1.	What is the % of free	SO_3 in an oleum that is lab	belled as '104.5 % H_2SO_4 '?	
	(A) 10	(B) 20	(C) 40	(D) none of these
2.	9.0 g water is added int	to oleum sample labelled as	'112% H_2SO_4 ' then the amoun	t of free SO_3 remaining in the solution is
	(A) 14.93 L at STP	(B) 7.46 L at STP	(C) 3.73 L at STP	(D) 11.2 L at STP
3.	If excess water is adde volume of CO ₂ evolve	ed into a bottle sample labe ed at 1 atm pressure and 30	lled as '112 % H ₂ SO ₄ ' and is re 00 K temperature after the co	eacted with 5.3 g Na_2CO_3 , then find the mpletion of the reaction :
	(A) 2.46 L	(B) 24.6 L	(C) 1.23 L	(D) 12.3 L
4.	1 g of oleum sample is % of free SO ₃ in the sa	diluted with water. The solution ample is :	ution required 54 mL of 0.4 N	NaOH for complete neutralization. The
	(A) 74	(B) 26	(C) 20	(D) none of these
		Comp	orehension #3	
	Equivalent weight = $-\frac{N}{2}$	Molecular weight / Atomic n – factor	eweight	
	n-factor is very import ratio of the reactant sp ratio of the reactants.	tant in redox as well as non becies taking part in reacti	redox reactions. With the hel ons. The reaciprocal of n-fac	p of n-factor we can predicts the molar tor's ratio of the reactants is the molar
	In general n-factor n-factor of a reactant	of acid/base is numb is no. of moles of electron	er of moles of H^+ /OH ⁻ is lost or gained per mole of r	furnished per mole of acid/base. reactant.
	Example 1			
	1. In acidic med	dium : $KMnO_4 (n=5)$ —	$\rightarrow Mn^{2+}$	
	2. In basic med	ium : $KMnO_4 (n=3)$ —	$\rightarrow Mn^{2+}$	
	3. In neutral me	edium : $KMnO_4$ (n = 1) —	$\rightarrow Mn^{6+}$	
	Example 2 FeC_2O_4 -	\rightarrow Fe ³⁺ + 2CO ₂		
	Total no. of moles of e	e^{-} lost by 1 mole of FeC ₂ O	$_4 = 1 + 1 \times 2 \Longrightarrow 3$	
	\therefore n-factor of F	$eC_{2}O_{4}=3$		
1.	n-factor of $Ba(MnO_4)$	₂ in acidic medium is :		
	(A) 2	(B) 6	(C) 10	(D) none of these

2.	For the reaction,			
	$H_3PO_2 + NaOH$	\longrightarrow NaH ₂ PO ₂ + H ₂ O		
	What is the equivalent w	veight of H_3PO_2 ? (mol. wt.	is M)	
	(A) M	(B) M/2	(C) M/3	(D) none of these
3.	For the reaction, $Fe_{0.95}O$	$(\text{molar mass}: M) \longrightarrow Fe_{a}$	$_{2}O_{3}$. What is the eq. wt. of Fe	_{0.95} O ?
	$(\mathbf{A}) \frac{\mathbf{M}}{0.85}$	(B) $\frac{M}{0.95}$	(C) $\frac{M}{0.8075}$	(D) none of these
4.	In the reaction, $xVO + y$	$Fe_2O_3 \longrightarrow FeO + V_2O_5$. V	What is the value of x and y re	spectively?
	(A) 1, 1	(B) 2, 3	(C) 3, 2	(D) none of these
		Compre	hension # 4	
	Some amount of "20V" H of $0.1 \text{ N Na}_2\text{S}_2\text{O}_3$ for titra	H_2O_2 is mixed with excess oution.	facidified solution of KI. The	iodine so liberated required 200 mL
1.	The volume of H_2O_2 solution (A) 11.2 mL	ution is : (B) 37.2 mL	(C) 5.6 mL	(D) 22.4 mL
2.	The mass of $K_2Cr_2O_7$ ne	eded to oxidise the above	volume of H ₂ O ₂ solution is :	
	(A) 3.6 g	(B) 0.8 g	(C) 4.2 g	(D) 0.98 g
3.	The volume of O_2 at ST	P that would be liberated b	by above H_2O_2 solution is :	
	(A) 56 mL	(B) 112 mL	(C) 168 mL	(D) 224 mL

Comprehension #5

Equivalent Mass

The equivalent mass of a substance is defined as the number of parts by mass of it which combine with or displace 1.0078 parts by mass of hydrogen, 8 parts by mass of oxygen and 35.5 parts by mass of chlorine.

The equivalent mass of a substance expressed in grams is called gram equivalent mass.

The equivalent mass of a substance is not constant. It depends upon the reaction in which the substance is participating. A compound may have different equivalent mass in different chemical reactions and under different experimental conditions.

(A) Equivalent mass of an acid

It is the mass of an acid in grams which contains 1.0078 g of replaceable H⁺ ions or it is the mass of acid which contains one mole of replaceable H⁺ ions. It may be calculated as :

Equivalent mass of acid = $\frac{\text{Molecular mass of acid}}{\text{Basicity of acid}}$

Basicity of acid = number of replaceable hydrogen atoms present in one molecule of acid

(B) Equivalent mass of a base

It is the mass of the base which contains one mole of replaceable OH⁻ ions in molecule.

Equivalent mass of base = $\frac{\text{Molecular mass of base}}{\text{Aciditiv of base}}$

Acidity of base = Number of replaceable OH⁻ ions present in one molecule of the base

	Equivalent mass of	of an oxidising agent			
	(a) Floctron conc	ent · Equivalent mass of oxi	dising agent = Mol	ecular mass of oxidising agent	
	(a) Electron conc	ept . Equivalent mass of oxi	Number	of electrons gained by one molecule	
				Molecular mass of oxidising agent	
	(b) Oxidation nui	mber concept : Equivalent n	nass of oxidising agent =	Total change in oxidation number per molecule of oxidising agent	
1.	Equivalent mass o	Equivalent mass of Ba(MnO ₁), in acidic medium is : (where M stands for molar mass)			
	(A) M/5	(B) M/6	(C) M/10	(D) M/2	
2.	Equivalent mass o	f Fe ₀₉ O in reaction with aci	dic $K_2 Cr_2 O_7$ is : (M = Mo	olar mass)	
	(A) 7 M/10	(B) 10 M/7	(C) 7 M/9	(D) 9 M/7	
3.	Equivalent weight	of oxalic acid salt in follow	ing reaction is : (Atomic	masses : $O = 16, C = 12, K = 39$)	
	$H_2C_2O_4 + Ca(OH)_2$	$a \longrightarrow CaC_2O_4 + H_2O$			
	(A) 90	(B) 45	(C) 64	(D) 128	

Exercise # 4

[Subjective Type Questions]

- 1. KMnO₄ oxidizes X^{n^+} ion to XO_3^- , itself changing to Mn^{2^+} in acid medium. 2.68 × 10⁻³ mole of X^{n^+} requires 1.61×10^{-3} mole of MnO₄⁻. What is the value of n? Also calculate the atomic mass of X, if the weight of 1g equivalent of XCl_n is 56.
- 2. In a quantitative determination of iron in an ore, an analyst converted 0.40 g, of the ore into its ferrous. This required 40.00 mL of 0.1 N solution of $KMnO_4$ for titration.
 - (i) How many milliequivalents of $KMnO_4$ does 40.00 mL of 0.1 N solution represent?
 - (ii) How many equivalents of iron were present in the sample of the ore taken for analysis?
 - (iii) How many grams of iron were present in the sample?
 - (iv) What is the percentage of iron in the ore?
 - (v) What is the molarity of $KMnO_4$ solution used?
 - (vi) How many moles of KMnO₄ were used for titration ? (Fe = 56)
- 3. The mixture of CuS (molar weight = M_1) and Cu₂S (molecular weight = M_2) oxidised by KMnO₄(molecular weight = M_3) in acidic medium, the product obtained are Cu²⁺, SO₂. Find the equivalent weight of CuS, Cu₂S and KMnO₄ respectively.
- 4. Calculate the oxidation number of underlined elements in the following compounds :
 - (a) $K[\underline{Cq}(C_2O_4)_2.(NH_3)_2]$ (b) $K_4\underline{P}_2O_7$ (c) $\underline{Cr}O_2Cl_2$ (d) $Na_2[\underline{Fe}(CN)_5NO^+]$ (e) \underline{Mn}_3O_4 (f) $Ca(\underline{Cl}O_2)_2$ (g) $[\underline{Fe}(NO)(H_2O)_2]SO_4$ (h) $\underline{Z}nO_2^{2-}$ (c) $\underline{Fe}_{0.93}O_2$
- 5. Write balanced net ionic equation for the following reactions in acidic solution.

(a)
$$S_4O_6^{2-}(aq) + Al(s) \longrightarrow H_2S(aq) + Al^{3+}(aq)$$

(b)
$$S_2O_3^{2-}(aq) + Cr_2O_7^{2-}(aq) \longrightarrow S_4O_6^{2-}(aq) + Cr^{3+}(aq)$$

- (c) $\operatorname{ClO}_3^{-}(\operatorname{aq}) + \operatorname{As}_2 \operatorname{S}_3(\operatorname{s}) \longrightarrow \operatorname{Cl}^{-}(\operatorname{aq}) + \operatorname{H}_2 \operatorname{AsO}_4^{-}(\operatorname{aq}) + \operatorname{HSO}_4^{-}(\operatorname{aq})$
- (d) $IO_3^-(aq) + Re(s) \longrightarrow ReO_4^-(aq) + I^-(aq)$
- (e) $HSO_4^-(aq) + As_4(s) + Pb_3O_4(s) \longrightarrow PbSO_4(s) + H_2AsO_4^-(aq)$
- (f) $HNO_2(aq) \longrightarrow NO_3^- + NO(g)$
- **6.** Write balanced net ionic equations for the following reactions in basic solution :

(a)
$$C_4H_4O_6^{2-}(aq) + ClO_3^{-}(aq) \longrightarrow CO_3^{2-}(aq) + Cl^{-}(aq)$$

(b) $Al(s) + BiONO_3(s) \longrightarrow Bi(s) + NH_3(aq) + Al(OH)_4^{-}(aq)$

(c)
$$H_2O_2(aq) + Cl_2O_7(aq) \longrightarrow ClO_2^{-}(aq) + O_2(g)$$

(d)
$$Tl_2O_3(s) + NH_2OH(aq) \longrightarrow TIOH(s) + N_2(g)$$

- (e) $Cu(NH_3)_4^{2+}(aq) + S_2O_4^{2-}(aq) \longrightarrow SO_3^{2-}(aq) + Cu(s) + NH_3(aq)$
- (f) $Mn(OH)_{2}(s) + MnO_{4}(aq) \longrightarrow MnO_{2}(s)$

7.	Consider the reaction $H^+ + IO_4^- + I^- \rightarrow I_2^- + H_2O$. Find the ratio of coefficients of IO_4^- , I^- and I_2 .
8.	A dilute solution of H_2SO_4 is made by adding 5 mL of 3N H_2SO_4 to 245 mL of water. Find the normality and molarity of the solution.
9.	What volume at NTP of gaseous ammonia will be required to be passed into $30 \text{ cc of } N - H_2SO_4$ solution to bring down the acid strength of the latter to 0.2 N.
10.	10 g CaCO ₃ were dissolved in 250 mL of M HCl and the solution was boiled. What volume of 2 M KOH would be required to equivalence point after boiling? Assume no change in volume during boiling.
11.	H_3PO_4 is a tri basic acid and one of its salt is NaH_2PO_4 . What volume of 1 M NaOH solution should be added to 12 g of NaH_2PO_4 to convert it into Na_3PO_4 ?
12.	1.64 g of mixture of $CaCO_3$ and $MgCO_3$ was dissolved in 50 mL of 0.8 M HCl. The excess of acid required 16 mL of 0.25 M NaOH for neutralization. Calculate the percentage of $CaCO_3$ and $MgCO_3$ in the sample.
13.	A solution containing 4.2 g of KOH and $Ca(OH_2)$ is neutralized by an acid. It consums 0.1 equivalent of acid, calculate the percentage composition of the sample.
14.	How many mL of 0.1 N HCl are required to react completely with 1 g mixture of Na_2CO_3 and $NaHCO_3$ containing equimolar amounts of two?
15.	0.5 g of fuming H_2SO_4 (oleum) is diluted with water. The solution requires 26.7 mL of 0.4N NaOH for complete neutralization. Find the % of free SO_3 in the sample of oleum.
16.	1.5 g of chalk were treated with 10 mL of $4N - HCl$. The chalk was dissolved and the solution made to 100 mL, 25 mL of this solution required 18.75 mL of 0.2 N – NaOH solution for complete neutralisation. Calculate the percentage of pure CaCO ₃ in the sample of chalk?
17.	A solution contains Na_2CO_3 and $NaHCO_3$. 20 mL of this solution required 4 mL of $1N - HCl$ for titration with Ph indicator. The titration was repeated with the same volume of the solution but with MeOH. 10.5 mL of $1 - N$ HCl was required this time. Calculate the amount of Na_2CO_3 & $NaHCO_3$.
18.	A solution contains a mix of Na_2CO_3 and $NaOH$. Using Ph as indicator 25 mL of mixture required 19.5 mL of 0.995 N HCl for the end point. With MeOH, 25 mL of the solution required 25 mL of the same HCl for the end point. Calculate g/L of each substance in the mixture.
19.	It required 40.05 mL of 1 M Ce ⁴⁺ to titrate 20 mL of 1 M Sn ²⁺ to Sn ⁴⁺ . What is the oxidation state of the cerium in the product.
20.	A volume of 12.53 mL of 0.05093 M SeO ₂ reacted with exactly 25.52 mL of 0.1 M $CrSO_4$. In the reaction, Cr^{2+} was oxidized to Cr^{3+} . To what oxidation state was selenium converted by the reaction.
21.	Pottasium acid oxalate $K_2C_2O_4.3H_2C_2O_4.4H_2O$ can be oxidized by MnO_4 in acid medium. Calculate the volume of 0.1 M KMnO ₄ reacting in acid solution with one gram of the acid oxalate.
22.	200 mL of a solution of mixture of NaOH and Na ₂ CO ₃ was first titrated with Ph and $\frac{N}{10}$ HCl. 17.5 mL of HCl was required for end point. After this MeOH was added and 2.5 mL of same HCl was again required for next end point. Find out amounts of NaOH and Na ₂ CO ₃ in the mix.

- 23. A solution contains Na_2CO_3 and $NaHCO_3$. 10 mL of this requires 2 mL of 0.1 M H_2SO_4 for neutralisation using Ph indicator. MeOH is then added when a further 2.5 mL of 0.2 M H_2SO_4 was needed. Calculate strength of Na_2CO_3 and $NaHCO_3$.
- 24. A sample containing Na₂CO₃ & NaOH is dissolved in 100 mL solution. 10 mL of this solution requires 25 mL of 0.1 N HCl when Ph is used as indicator. If MeOH is used as indicator 10 mL of same solution requires 30 mL of same HCl. Calculate % of Na₂CO₃ and NaOH in the sample.
- 25. A 1.0 g sample of H_2O_2 solution containing x% H_2O_2 by mass requires x cm³ of a KMnO₄ solution for complete oxidation under acidic conditions. Calculate the normality of KMnO₄ solution.
- 26. Metallic tin in the presence of HCl is oxidized by $K_2Cr_2O_7$ to stannic chloride, $SnCl_4$. What volume of decinormal dichromate solution would be reduce by 1 g of tin.
- 27. 5 g sample of brass was dissolved in one litre dil. H_2SO_4 . 20 mL of this solution were mixed with KI, liberating I_2 and Cu^+ and the I_2 required 20 mL of 0.0327 N hypo solution for complete titration. Calculate the percentage of Cu in the alloy.
- 28. One g of impure sodium carbonate is dissolved in water and the solution is made up to 250 mL. To 50 mL of this made up solution, 50 mL of 0.1 N HCl is added and the mix after shaking well required 10 mL of 0.16 N NaOH solution for complete titration. Calculate the % purity of the sample.
- 29. What amount of substance containing 60% NaCl, 37% KCl should be weighed out for analysis so that after the action of 25 mL of 0.1 N AgNO₃ solution, excess of Ag^+ is back titrates with 5 mL of NH_4SCN solution. Given that 1 mL of $NH_4SCN = 1.1$. mL of $AgNO_3$.
- **30.** A bottle labelled with " $12 \text{ V H}_2\text{O}_2$ " contain 700 mL solution. If a student mix 300 mL water in it what is the g/litre strength & normality and volume strength of final solution.
- **31.** 0.84 g iron ore containing x percent of iron was taken in a solution containing all the iron in ferrous condition. The solution required x mL of a dichromatic solution for oxidizing the iron content to ferric state. Calculate the strength of dichromatic solution.
- 32. The neutralization of a solution of 1.2 g of a substance containing a mixture of $H_2C_2O_4$. $2H_2O$, KHC_2O_4 . H_2O and different impurities of a neutral salt consumed 18.9 mL of 0.5 N NaOH solution. On titration with KMnO₄ solution, 0.4 g, of the same substance needed 21.55 mL of 0.25 N KMnO₄. Calculate the % composition of the substance.
- 33. 50 g of a sample of $Ca(OH)_2$ is dissolved in 50 mL of 0.5 N HCl solution. The excess of HCl was titrated with 0.3 N NaOH. The volume of NaOH used was 20cc. Calculate % purity of Ca(OH)₂.
- 34. 50 mL of an aqueous solution of H_2O_2 were treated with an excess of KI solution and dilute H_2SO_4 , the liberated iodine required 20 mL of 0.1 N Na₂S₂O₃ solution for complete interaction. Calculate the concentration of H_2O_2 in g/ℓ .
- **35.** 100 kg hard water contains 5 g $MgSO_4$. Find hardness.
- **36.** One litre hard water contains 1 mg $CaCl_2$ and 1 mg $MgSO_4$. Find hardness.
- 37. Calculate the amount of lime Ca(OH)₂ required to remove the hardness in 60 litre of pond water containing 1.62 mg of calcium bicarbonate per 100 mL of water.

- 38. 10 g sample of bleaching powder was dissolved into water to make the solution one litre. To this solution 35 mL of 1.0 M Mohr salt solution was added containing enough H_2SO_4 . After the reaction was complete, the excess Mohr salt required 30 mL of 0.1 M KMnO₄ for oxidation. Find out the % of available Cl₂ approximately is (mol wt. 71).
- 39. Calculate the amount (in milligrams) of SeO_3^{-2} in solution on the basis of following data 20 mL of M/60 solution of KBrO₃ was added to a definite volume of SeO_3^{-2} solution. The bromine evolved was removed by boiling and excess of KBrO₃ was back titrated with 5 mL of M/25 solution of NaAsO₂. The reactions are given below. (Atomic mass of K = 39, Br = 80, As = 75, Na = 23, O = 16, Se = 79)

(a)
$$\operatorname{SeO}_{3}^{-2} + \operatorname{BrO}_{3}^{-} + \operatorname{H}^{+} \longrightarrow \operatorname{SeO}_{4}^{-2} + \operatorname{Br}_{2} + \operatorname{H}_{2}\operatorname{C}_{4}^{-2}$$

(b)
$$\operatorname{BrO}_3^- + \operatorname{AsO}_2^- + \operatorname{H}_2O \longrightarrow \operatorname{Br}^- + \operatorname{AsO}_4^{-3} + \operatorname{H}^2$$

- 40. Calculate the hardness of water sample which contains 0.001 mol MgSO_4 per litre of water.
- 41. A solution of a 0.4 g sample of H_2O_2 reacted with 0.632 g of KMnO₄ in the presence of sulphuric acid. Calculate the percentage purity of the sample of H_2O_2 .
- 42. 5 litre of a solution of H_2O_2 with x N strength is diluted to 5.5 litre. This 5.5 litre H_2O_2 solution gives 28 litre O_2 at NTP. Find the value of x.
- 43. A 1.0 g sample of Fe_2O_3 solid of 55.2% purity is dissolved in acid and reduced by heating the solution with zinc dust. The resultant solution is cooled and made upto 100.0 mL. An aliquot of 25.0 mL of this solution requires 17.0 mL of 0.0167 M solution of an oxidant for titration. Calculate the number of moles of electrons taken up by the oxidant in the reaction of the above titration.
- 44. 25 mL of a solution containing HCl was treated with excess of M/5 KIO₃ and KI solution of unknown concentration where I₂ liberated is titrated against a standard solution of 0.021 M Na₂S₂O₃ solution whose 24 mL were used up. Find the strength of HCl and volume of KIO₃ solution consumed :
- 45. 0.6213 g of sample contains an unknown amount of As₂O₃. The sample was treated with HCl resulting information of AsCl₃ (g) which was distilled into a beaker of water. The hydrolysis reaction is as follows :

 $AsCl_3 + 2H_2O \rightarrow HAsO_2 + 3H^+ + 3Cl^-$

The amount of HAsO₂ was determined by titration with 0.04134 M I₂, requiring 23.04 mL to reach the equivalence point. The redox products in the titration were H₃AsO₄ and Γ . Find the amount of KMnO₄ needed to oxidize As in As₂O₃ to its maximum possible oxidation state in acidic medium.

- 46. A sample of steel weighing 0.6 g and containing S as an impurity was burnt in a stream of O_2 , when S was converted to its oxide $SO_2.SO_2$ was then oxidized to SO_4^- by using H_2O_2 solution containing 30 mL of 0.04 M NaOH. 22.48 mL of 0.024 M HCl was required to neutralize the base remaining after oxidation. Calculate the % of S in the sample :
- 47. 1.2475 g of crystalline copper sulphate was dissolved in water and excess of KI was added. The liberated iodine consumed 50 mL N/10 Na₂S₂O₃ solution to reach the end point of the titration. Calculate the number of water molecules of hydration in crystalline copper sulphate salt.
- 48. A 1g sample of $K_2Cr_2O_7$ containing some inert material was entirely reduced with conc. HCl. The chlorine liberated was passed through hot solution of NaOH at 80°C, and it completely diproportionates to form ClO_3^- and Cl^- . This NaClO₃ was isolated and its reduction with KI (aq) liberated iodine, giving Cl^- . The iodine thus liberated required 100 mL of decinormal hypo solution for complete titration. What is the percentage purity of the dichromate sample?

- 49. 2.5g of mixture of crystalline oxalic acid ($H_2C_2O_4$. $2H_2O$) and sodium oxalate ($Na_2C_2O_4$) was dissolved in 100 mL of water. 50 mL of this solution was titrated against N/10 NaOH solution when 119.05 mL of the base was found necessary to reach the end point with phenolphthalein as the indicator. 1g of the mixture was dissolved in water and the solution titrated against N/10 KMnO₄ in the presence of dil. H_2SO_4 . What is the volume of KMnO₄ needed for getting the end point with 0.5g of the mixture?
- 50. In the presence of fluoride ion, Mn^{2+} can be titrated with MnO_4^- , both reactants being converted to a complex of Mn(III). A 0.545 g sample containing Mn_3O_4 was dissolved and all manganese was converted to Mn^{2+} . Titration in the presence of fluoride ion consumed 31.1 mL of KMnO₄ that was 0.177 N against oxalate.
 - (a) write a balanced chemical equation for the reaction, assuming that the complex is MnF_{4}^{-} .
 - (b) what was the % of Mn_3O_4 in the sample ?
- 51. A mixture of two gases, H_2S and SO_2 is passed through three beakers successively. The first beaker contains Pb^{2+} ions, which absorbs S^{2-} forming PbS. The second beaker contains 25 mL of 0.0396 N I₂ to oxidize SO_2 to SO_4^{2-} . The third contains 10 mL of 0.0345 N thiosulphate solution to retain any I₂ carried over from the second absorber. A 25 L gas sample was passed through the apparatus followed by an additional amount of N₂ to sweep last traces of SO₂ from first and second absorber. The solution from the first absorber was made acidic and treated with 20 mL of 0.0066 M K₂Cr₂O₇ which converted S²⁻ to SO₂. The excess dichromate was reacted with solid KI and the liberated iodine required 7.45 mL of 0.0345 N Na₂S₂O₃ solution. The solutions in the second and third absorbers were combined and the resultant iodine was titrated with 2.44 mL of the same thiosulphate solution. Calculate the concentrations of SO₂ and H₂S in mg/L of the sample :
- 52. 1 g of a moist sample of a mixture of $KClO_3$ and KCl was dissolved in water and made upto 250 mL. 25 mL of this solution was treated with SO_2 to reduced chlorate into chloride and the excess SO_2 was boiled off. When the total chloride was precipitated, 0.1435 g of AgCl was obtained. In another experiment 25 mL of the original solution was treated with 30 mL of 0.2 N solution of FeSO₄ and unreacted FeSO₄ required 37.5 mL of 0.08 N solution of an oxidizing agent for complete oxidation. Calculate the molar ratio of chlorate and chloride in the given mixture. Fe²⁺ reacts with ClO_3^- according to equation :

$$ClO_{3}^{-} + 6Fe^{2+} + 6H^{+} \rightarrow Cl^{-} + 6Fe^{3+} + 3H_{2}O$$

Also calculate the mass percent of moisture present in the moist sample.

53. A 1 g sample containing NaOH as the only basic substance and some inert impurity was left exposed to atmosphere for a very long time so that part of NaOH got converted into Na_2CO_3 by absorbing CO_2 from atmosphere. The resulting sample was dissolved in water and volume made upto 100 mL. A 20 mL portion of this solution required 16 mL 0.25 M HCl solution to reach the equivalence point when methyl orange was used as indicator. In a separate analysis, 20 mL portion of the same solution was taken along with phenolphthalein indicator and mixed with 50 mL of 0.1 M HCl solution. An additional 9.00 mL 0.1 M Ba(OH)₂ solution was required to just restore the pink colour of solution. Determine mass percentage of NaOH in the original sample and mass percentage of Na_2CO_3 in the sample after exposure to atmosphere.

- 54. A steel sample is to be analysed for Cr and Mn simultaneously. By suitable treatment the Cr is oxidized to $Cr_2O_7^{2-}$ and the Mn to MnO_4^- . A 10.00 g sample of steel is used to produce 250.0 mL of a solution containing $Cr_2O_7^{2-}$ and MnO_4^- . A 10.00 mL portion of this solution is added to a BaCl₂ solution and by proper adjustment of the acidity, the chromium is completely precipitated as BaCrO₄; 0.0549 g is obtained. A second 10.00 mL portion of this solution requires exactly 15.95 mL of 0.0750 M standard Fe²⁺ solution for its titration (in acid solution). Calculate the % of Mn and % of Cr in the steel sample.
- 55. $1.16 \text{ g CH}_3(\text{CH}_2)_n$ COOH was burnt in excess air and the resultant gases (CO₂ and H₂O) were passed through excess NaOH solution. The resulting solution was divided in two equal parts. One part required 50 mL of 1 N HCl for neutralization using phenolphthalein as indicator. Another part required 80 mL of 1 N HCl for neutralization using methyl orange as indicator. Find the value of n and the amount of excess NaOH solution taken initially.
- 56. A 1.5 g sample containing oxalic acid and some inert impurity was dissolved in enough water and volume made up to 250 mL. A 20 mL portion of this solution was then mixed with 30 mL of an alkali solution. The resulting solution was then treated with stoichiometric amount of $CaCl_2$ just needed for precipitation of oxalate as CaC_2O_4 . Solution was filtered off and filtrate was finally titrated against 0.1 M HCl solution. 8.0 mL of acid was required to reach the equivalence point. At last, the above neutral solution was treated with excess of $AgNO_3$ solution and AgCl obtained was washed, dried and weighed to be 0.4305 g. Determine mass percentage of oxalic acid in the original sample :

k	Xercise # 5 Part # I > [Previous Year Questions] [AIEEE/JEE-MAIN]
	The oxidation state of Cr in $[Cr(NH_3)_4Cl_2]^+$ is -
	(1)+2 (2)+3 (3) 0 (4)+1
•	The oxidation state of chromium in the final product formed by the reaction between Kl and acidified potassiun dichromate solution is -
	(1)+6 (2)+4 (3)+3 (4)+2
	Which of the following chemical reaction depicts the oxidizing behaviour of H_2SO_4 ? [AIEEE-06 (1) $Ca(OH)_2 + H_2SO_4 \rightarrow CaSO_4 + 2H_2O$ (2) $NaCl + H_2SO_4 \rightarrow NaHSO_4 + HCl$ (3) $2PCl_5 + H_2SO_4 \rightarrow 2POCl_3 + 2HCl + SO_2Cl_2$ (4) $2HI + H_2SO_4 \rightarrow I_2 + SO_2 + 2H_2O$
	Which of the following reactions is an example of a redox reaction? [JEE Main-2017]
	(1) $\operatorname{XeF}_4 + \operatorname{O}_2\operatorname{F}_2 \to \operatorname{XeF}_6 + \operatorname{O}_2$ (2) $\operatorname{XeF}_2 + \operatorname{PF}_5 \to [\operatorname{XeF}]^+ + \operatorname{PF}_6^-$
	(3) $\operatorname{XeF}_6 + \operatorname{H}_2O \to \operatorname{XeOF}_4 + 2\operatorname{HF}$ (4) $\operatorname{XeF}_6 + 2\operatorname{H}_2O \to \operatorname{XeO}_2F_2 + 4\operatorname{HF}$
	Hydrogen peroxide oxidises $[Fe(CN)_6]^4$ to $[Fe(CN)_6]^3$ in acidic medium but reduces $[Fe(CN)_6]^3$ to $[Fe(CN)_6]^4$ in alkaline medium. The other products formed are, respectively: [JEE Main-2018]
	(1) $(H_2O + O_2)$ and $(H_2O + OH^-)$ (2) H_2O and $(H_2O + O_2)$
	(3) H_2O and $(H_2O + OH^-)$ (4) $(H_2O + O_2)$ and H_2O
	In basic medium I ⁻ oxidises by MnO_4^- . In this process I ⁻ replaces by : (A) IO_3^- (B) I_2 (C) IO_4^- (D) IO^- [JEE 2004]
	(A) IO_3^- (B) I_2^+ (C) IO_4^- (D) IO^- Amongst the following, the pair having both the metals in their highest oxidation state is : [JEE 2004
	(A) $[Fe(CN)_6]$ and $[Co(CN)_6]$ (B) $[CrO_2Cl_2]$ and $[MnO_4]$ (C) TiO_2 and MnO_2 (D) $[MnCl_4]^{2-}$ and $[NiF_6]^{-2}$
	O_3 does not oxidise :[JEE 2005](A) KI(B) FeSO4(C) KMnO4(D) K2MnO4
	A 5.0 cm ³ solution of H_2O_2 liberates 0.508 g of iodine from an acidified KI solution. Calculate the strength of H_2O_2 solution in terms of volume strength at STP. [JEE' 1995]
	A 3.00 g sample containing Fe_3O_4 , Fe_2O_3 and an inert impure substance, is treated with excess of KI solution in presence of dilute H_2SO_4 . The entire iron is converted into Fe^{2+} along with the liberation of iodine. The resulting solution is diluted to 100 mL. A 20 mL of the diluted solution require 11 mL of 0.5 M Na ₂ S ₂ O ₃ solution to reduce the iodine present. A 50 mL of diluted solution after complete extraction of the iodine requires 12.80 mL of 0.2 KMnO ₄ solution in dilute H_2SO_4 medium for the oxidation of Fe^{2+} . Calculate the percentages of Fe_2O_3 and Fe_3O_4 in the original sample.
	One litre of a mixture of O_2 and O_3 at NTP was allowed to react with an excess of acidified solution of KI. The Iodine liberated required 40 mL of M/10 sodium thiosulphate solution for titration. What is the percent of ozone in the mixture ? Ultraviolet radiation of wavelength 300 nm can decompose ozone. Assuming that one photon can decompose one ozone molecule, how many photons would have been required for the complete decomposition of ozone in the original mixture?

- 7. A sample of hard water contains 96 ppm of SO_4^{2-} and 183 ppm of HCO_3^{-} , with Ca^{2+} as the only cation. How many moles of CaO will be required to remove HCO_3^{-} from 1000 kg of this water? If 1000 kg of this water is treated with the amount of CaO calculate above, what will be the concentration (in ppm) of residual Ca^{2+} ions (Assume CaCO₃ to be completely insoluble in water)? If the Ca^{2+} ions in one litre of the treated water are completely exchanged with hydrogen ions, what will be its pH (one ppm means one part of the substance in one million part of water, weight / weights)?
- 8. An aqueous solution containing 0.10 g KIO_3 (formula wt. 214.0) was treated with an excess of KI solution. The solution was acidified with HCl. The liberated I₂ consumed 45.0 mL of thiosulphate solution to decolourise the blue starch iodine complex. Calculate the molarity of the sodium thiosulphate solution. [JEE 1998]
- 9. How many millilitre of $0.5 \text{ M H}_{2}\text{SO}_{4}$ are needed to dissolve 0.5 g of copper II carbonate ? [JEE 1999]
- 10.Hydrogen peroxide solution (20 mL) reacts quantitatively with a solution of $KMnO_4$ (20 mL) acidified with dilute
 H_2SO_4 . The same volume of $KMnO_4$ solution is just decolorized by 10 mL of $MnSO_4$ in neutral medium simultaneously
forming a dark brown precipitate of hydrated MnO_2 . The brown precipitate is dissolved in 10 mL of 0.2 M sodium
oxalate under boiling condition in the presence of dilute H_2SO_4 . Write the balanced equations involved in the
reactions and calculate the molarity of H_2O_2 .[JEE 2001]
- **11.** For the reaction :

$I^- + ClO_3^- + H_2SO_4 \longrightarrow Cl^- + HSO_4^- + I_2$							
The correct statement(s) in the balanced equation is/are :							
(A) Stoichiometric coefficient of HSO_4^{-} is 6	(B) Iodide is oxidized.						
(C) Sulphur is reduced	(D) H_2O is one of the product						

- Hydrogen peroxide in its reaction with KlO₄ and NH₂OH respectively, is acting as a
 (A) reducing agent, oxidising agent
 (B) reducing agent, reducing agent
 (C) oxidising agent, oxidising agent.
 (D) oxidising agent, reducing agent
- 13. In dilute aqueous H_2SO_4 , the complex diaquodioxalatoferrate(II) is oxidized by MnO_4^- . For this reaction, the ratio of the rate of change of [H^+] to the rate of change of [MnO_4^-] is. [JEE 2015]

			MOCK	TEST				
		SECTION	- I : STRAIG	HT OBJECTIVE 1	YPE			
1.	The number of moles of KMnO ₄ that will be needed to react completely with one mole of ferrous oxalate in acid							
	solution is (A) 3/5	(B) 2/5		(C) 4/5	(D) 1			
2.	The number of mole (A) 2/5	es of KMnO ₄ t (B) 3/5	hat will be needed	to react with one mole (C) 4/5	ne mole of sulphite ions in acidic solution is (D) 1			
3.	The normality of 0.3 (A) 0.1	3 M phosphoru (B) 0.9	is acid (H_3PO_3) is	(C) 0.3	(D) 0.6			
4.	An aqueous solution completely neutraliz (A) 40 ml (F	a of 6.3 gm of ox ze 10 ml of this 3) 20 ml	alic acid dihydrat solution is (C) 10 ml	e is made upto 250 ml. T (D) 4 ml	he volume of 0.1 N NaOH required to			
5.	Consider a titration indicator. The numb (A) 3	of potassium d er of moles of 1 (B) 4	ichromate solutic Mohr's salt requir	n with acidified Mohr's ed per mole of dichroma (C) 5	salt solution using diphenylamine as te is (D) 6			
	SE	CTION - II :	MULTIPLE	CORRECT ANSW	ER TYPE			
6.	Consider the redox r (A) $S_2O_3^{2-}$ gets reduced t (C) I_2 gets reduced t	reaction $2S_2O_3^2$ uced to $S_4O_6^{2-1}$ to I ⁻	$2^{-} + I_2 \longrightarrow S_4 C$	$D_6^{2-} + 2 I^-:$ (B) $S_2O_3^{2-}$ gets oxidia (D) I_2 gets oxidised to	sed to $S_4O_6^{2-}$ I ⁻			
7.	There are two sampl 0.75 N HCl solution	e of HCl having . (Assume no v	g molarity 1N and vater is used) :	0.25 N. Find volume of	these sample taken in order to prepare			
	(A) 20 mL, 10 mL	(B) 100	mL, 50 mL	(C) 40 mL, 20 mL	(D) 50 mL, 25 mL			
8.	To a 25 ml H ₂ O ₂ solution excess acidified solution of KI was added. The iodine liberated 20 ml of 0.3 N sodium thiosulphate solution. Use these data to choose the correct statements from the following : (A) The weight of H ₂ O ₂ present in 25 ml solution is 0.102 g (B) The molarity of H ₂ O ₂ solution is 0.12 M (C) The weight of H ₂ O ₂ present in 1 L of the solution is 0.816 g (D) The volume strength of H ₂ O ₂ is 1.344 L							
	S	SECTION - I	III : ASSERTI	ON AND REASON	NTYPE			
	 Each question has 5 choices (A), (B), (C), (D) and (E) out of which only one is correct. (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (C) Statement-1 is True. Statement-2 is False. 							

(D) Statement-1 is False, Statement-2 is True.

(E) Statement-1 and Statement-2 both are False.

9. Statement-1: In the redox reaction 8 H⁺ (aq) + 4 NO₃⁻ + 6 Cl⁻ + Sn(s) \longrightarrow SnCl₆²⁻ + 4 NO₂ + 4 H₂O, the reducing agent is Sn(s).

Statement-2 : In balancing half reaction, $S_2O_3^{2-} \longrightarrow S(s)$, the number of electrons added on the left is 4.

10. Statement-1 : Among Br⁻, O_2^{2-} , H⁻ and NO₃⁻, the ions that cannot act as oxidising agents are Br⁻ and H⁻ Statement-2 : Br⁻ and H⁻ cannot be reduced.

SECTION - IV : COMPREHENSION TYPE

Read the following comprehensions carefully and answer the questions.

Comprehension #1

Chromium exists as FeCr_2O_4 in the nature and it contains $\text{Fe}_{0.95}O$ & other impurity. To obtain pure chromium from FeCr_2O_4 , the ore is fused with KOH and oxygen is passed through the mixture when K_2CrO_4 and Fe_2O_3 are produced.

$$FeCr_{2}O_{4} + KOH + O_{2} \longrightarrow K_{2}CrO_{4} + Fe_{2}O_{3}$$
$$Fe_{0.95}O + O_{2} \longrightarrow Fe_{2}O_{3}$$

2 g of ore required 270 mL of O₂ at 273 K and 1 atm for complete oxidation of ore. K_2CrO_4 is precipitated as BaCrO₄ when Barium salt is added . To remaining solution 10 mL of 1 M $K_4Fe(CN)_6$ is added when Fe^{3+} ions react with it to form $KFe[Fe(CN)_6]$, often called 'Prussian Blue'. To determine excess of $K_4Fe(CN)_6$ in solution 7mL of 0.2 N of Fe^{2+} is added when all the $K_4Fe(CN)_6$ is precipitated as $K_2Fe[Fe(CN)_6]$.

11.	Weight of $BaCrO_4$ (A) 1.64	precipitated (B) 6.29	(C) 0.82	(D) 3.29				
12.	% by mass of Fe _{0.} (A) 9.6%	³⁵ O in the ore (B) 10.1%	(C) 8.55%	(D) 20.2%				
13.	n factor for Fe _{0.95} C)						
	(A) 0.9	(B) 0.85	(C) $\frac{2}{0.95}$	(D) 1.8				
14.	Weight of impurit	Weight of impurities present in the ore						
	(A) 0.421	(B) 0.123	(C) 0.341	(D) 0.206				

SECTION - V : MATRIX - MATCH TYPE

15. Column I

Column II

(A)	Sn^{+2} +	MnO_4^{-} (acidic)	(p) Amount of oxidant available decides the number of electrons transfer
	3.5 mole	1.2 mole	
(B)	$H_2C_2O_4 +$	$MnO_4^{-}(acidic)$	(q) Amount of reductant available decides the number of electrons transfer
	8.4 mole	3.6 mole	
(C)	$S_2O_3^{-2}$ +	I ₂	(r) Number of electrons involved per mole of oxidant > Number of electrons
	7.2 mole	3.6 mole	involved per mole of reductant
(D)	Fe ⁺² +	$Cr_2O_7^{-2}$ (acidic)	(s) Number of electrons involved per mole of oxidant < Number of electrons
	9.2 mole	1.6 mole	involved per mole of reductant.

SECTION - VI : SUBJECTIVE TYPE

- 16. H_2O_2 is reduced rapidly by Sn²⁺, the products being Sn⁴⁺ & water. H_2O_2 decomposes slowly at room temperature to yield O_2 & water. Calculate the volume of O_2 produced at 273K & 1.00 atm when 200g of 10.0 % by mass H_2O_2 in water is treated with 88.2 ml of 1 M Sn²⁺ & then the mixture is allowed to stand until no further reaction occurs.
- 17. 80 gm of a sample of Anhydrous CuSO_4 was dissolved in water and made to 250ml. 25 ml of this solution after taking usual precautions was treated with a little excess of KI solution. A white ppt. of Cu_2I_2 and iodine was evolved. The iodine so evolved required 40 ml of 1 M of hypo solution. What is the approximate purity of CuSO_4 solution.[Mol. wt. of $\text{CuSO}_4 = 160$]

REDOX REACTION AND EQUIVALENT CONCEPT

ANSWER KEY

EXERCISE - 1

 1. D
 2. A
 3. C
 4. C
 5. B
 6. D
 7. D
 8. C
 9. A
 10. B
 11. C
 12. A
 13. C

 14. C
 15. A
 16. B
 17. A
 18. (i) A
 (ii) A
 (iii) A
 (iv) D
 19. A
 20. D
 21. B
 22. B

 23. A
 24. D
 25. B
 26. A
 27. A
 28. B
 29. B
 30. C
 31. D
 32. B
 33. B
 34. C
 35. A

 36. A
 37. D
 38. D
 39. D
 40. C
 41. D
 42. A
 43. D
 44. A
 45. B
 46. B
 47. A
 48. A

 49. B
 50. B</t

EXERCISE - 2 : PART # I

1. A, C	2. A, B, C, D	3. A, C, D	4. A, B, D	5. B,C	6. A, B, C, D
7. A, B, D	8. B, D	9. B,C	10. A, B, D	11. A, B, D	12. A, C, D
13. B, C, D	14. A, B, C	15. B,C	16. D	17. C	18. A, B
19. A, B	20. A, B, D				

PART # II

1 B 2 A 3 A 4 A 5 B 6 A 7 B 8 A 9 A 10 A 11 B 12 D 13 C

EXERCISE - 3 : PART # I

1.	$A \rightarrow (q), B \rightarrow (p), C \rightarrow (s), D \rightarrow (r)$	2.	$A \rightarrow (s), B \rightarrow (p), C \rightarrow (q), D \rightarrow (r)$
3.	$A \rightarrow (s), B \rightarrow (q), C \rightarrow (r), D \rightarrow (p)$	4.	$A \rightarrow (p), B \rightarrow (r,s), C \rightarrow (r), D \rightarrow (r,q)$
5.	$A \rightarrow (p, s), B \rightarrow (s), C \rightarrow (p, q), D \rightarrow (r)$	6.	$A \rightarrow (p, s), B \rightarrow (q, r), C \rightarrow (p, q, s), D \rightarrow (r)$

7. $A \rightarrow (p, r), B \rightarrow (q, r), C \rightarrow (p, q, r), D \rightarrow (q, r)$

PART # II

Comprehension #1:	1.	А	2.	В	3. B	4.	В
Comprehension # 2 :	1.	В	2.	С	3. C	4.	В
Comprehension #3:	1.	С	2.	А	3. C	4.	В
Comprehension #4:	1.	С	2.	D	3. B		
Comprehension # 5 :	1.	С	2.	В	3. C		

EXERCISE - 5 : PART # I

1. 2 **2.** 3 **3.** 4 **4.** 1 **5.** 2

PART # II

1. A **2.** B **3.** C **4.** 4.48 **5.** $Fe_2O_3 = 49.33 \%$, $Fe_3O_4 = 34.8\%$ **6.** 6.57% O_3 (by weight), 1.2×10^{21} photons **7.** 1.5, 40 ppm, pH = 2.6989 **8.** 0.0623 M **9.** 8.097 mL **10.** 0.1 M **11.** (A), (B), (D) **12.** (A) **13.** 8

MOCK TEST

1. A **2.** A **3.** D **4.** A **5.** D **6.** B,C **7.** A,B,C,D **8.** A,B,D **9.** C **10.** B **11.** D **12.** B **13.** B **14.** C **15.** A→(p,r), B→(q,r), C→(p,q,r), D→(q,r) **16.** 5.6 L **17.** 80%

