HINTS \& SOLUTIONS

EXERCISE - 1

Single Choice

1. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \longrightarrow \mathrm{~N}_{2}+\mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{H}_{2} \mathrm{O}$

Decomposition $\mathrm{R} \times \mathrm{N}$
2. $\mathrm{NaN}_{3} \longrightarrow \mathrm{~N}_{3}^{-} \longrightarrow \mathrm{N} \longrightarrow-1 / 3$
$\mathrm{N}_{2} \mathrm{H}_{2} \longrightarrow \mathrm{~N} \longrightarrow-1$
$\mathrm{NO} \longrightarrow \mathrm{N} \longrightarrow+2 \quad \Rightarrow 5(\mathrm{~A})$
$\mathrm{N}_{2} \mathrm{O}_{5} \longrightarrow \mathrm{~N} \longrightarrow+5$
3. $\mathrm{S}_{2} \mathrm{O}_{5}^{-2}+\mathrm{I}_{2} \longrightarrow \mathrm{~S}_{4} \mathrm{O}_{6}^{-2}+\mathrm{I}^{-}$
\Rightarrow Redox $\mathrm{R} \times \mathrm{N} \mathrm{I} \mathrm{I}_{2}^{\circ} \xrightarrow{\mathrm{Redn}} \mathrm{I}^{-}$

$$
\begin{gathered}
\mathrm{S}_{2} \mathrm{O}_{3}^{-2} \xrightarrow{\text { Oxd. }} \\
(4,0)
\end{gathered} \mathrm{S}_{4} \mathrm{O}_{6}^{-2}
$$

4. No. of equivalent $=$ mole $\times n$-factor
$\mathrm{SO}_{3}^{-2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{SO}_{4}^{-2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$
n -factor for $\mathrm{R} \times \mathrm{N}(1)$ is (2)
$\Rightarrow 50 \times .1 \times \mathrm{n}=25 \times .1 \times 2$
$\mathrm{n}=\frac{2.5 \times 2}{5}$
$\mathrm{n}=1$
\Rightarrow Final oxidation state will be $(3-1)=2$
5. Meq. of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=$ Meq. of ABD
n -factor of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in acidic medium $=6$.
$6 \times 1.68 \times 10^{-3}=\mathrm{x} \times 3.26 \times 10^{-3}$
$\mathrm{x}=3$
\Rightarrow New oxidation state of $\mathrm{A}^{-\mathrm{n}}$ will be $=-\mathrm{n}+3$
6.

(A)

$\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}(6,6)$

$\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}(5,0,0,5)$
$\mathrm{H}_{2} \mathrm{SO}_{5}$
(B)

$(4,0)$

(6)
(C) $\mathrm{SO}_{3}>\mathrm{SO}_{2}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{S}_{8}$ $\downarrow \quad \downarrow \quad \downarrow \quad \downarrow$

$$
\begin{array}{llll}
+6 & +4 & -2 & 0
\end{array}
$$

(D) $\mathrm{H}_{2} \mathrm{SO}_{4}>\mathrm{SO}_{2}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$.

$$
+6 \quad+4 \quad-2 \quad(6,6)
$$

8. $\mathrm{xHI}+\mathrm{yHNO}_{3} \longrightarrow \mathrm{NO}+\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}$

Adding (1) and (2)
$\Rightarrow 6 \mathrm{I}^{-}+2 \mathrm{NO}_{3}^{-} \longrightarrow 2 \mathrm{NO}+3 \mathrm{I}_{2}$
$6 \mathrm{HI}+2 \mathrm{HNO}_{3} \longrightarrow 2 \mathrm{NO}+3 \mathrm{I}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
$\Rightarrow \mathrm{x}=6, \mathrm{y}=2$

$2 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{-2}+\mathrm{H}^{+}(6) \rightarrow 2 \mathrm{Mn}^{+2}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
\Rightarrow (A) $2,5,16$
10. $\mathrm{CaCO}_{3}+\mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}(224 \mathrm{~mL})$
CO_{2} mole $=\frac{224}{22400}=10^{-2}$
$\mathrm{HCl} \mathrm{M}=\mathrm{HCl} \mathrm{N}=\frac{10^{-2}}{200 \times 10^{-3}}=\frac{1}{20}=.05$
M. eq. of $\mathrm{H}_{3} \mathrm{PO}_{4}=$ M. eq. of $\mathrm{Ba}(\mathrm{OH})_{2}$
$1.5 \times v \times 3=90 \times .5 \times 2$
$\mathrm{v}=\frac{90 \times 2 \times .5}{3 \times 1.5}=20 \mathrm{~mL}$
12. $\mathrm{KMnO}_{4} \mathrm{n}$ factor in Acidic medium $=5$
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \mathrm{n}$ factor in acidic medium $=6$
$6 \times 0.1 \times \mathrm{V}_{1}=5 \times 0.3 \times \mathrm{V}_{2}$
$\frac{6}{15} \mathrm{~V}_{1}=\mathrm{V}_{2}$
$\mathrm{V}_{2}=\frac{2}{5} \mathrm{~V}_{1}$
13. Molarity $=\frac{\text { Normality }}{\mathrm{n} \text { factor }}$
(e) $1 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}=1 / 3 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$
14. $\mathrm{M}=\frac{\text { No. of equivalent }}{\text { Volume of sol }}$
\Rightarrow Meq. $=50 \times 2=10$
M mole $=\frac{10}{2}=5$
$\mathrm{M}_{\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}}=24+16 \times 4+2+2 \times 18=126 \mathrm{gm}$.
\Rightarrow Mass of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$=126 \times 5 \times 10^{-3}=.63 \mathrm{gm}$
15. $63 \%(\mathrm{w} / \mathrm{v}) \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$\Rightarrow 100 \mathrm{~mL}$ contain $=63 \mathrm{gm}$
$125 \mathrm{~mL} \longrightarrow=\frac{63}{100} \times 125 \mathrm{gm}$
Mole of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=\frac{63 \times 125}{126 \times 100}=\left(\frac{5}{8}\right)$
$\frac{40}{100}=\frac{x}{125}$
Mole of $\mathrm{NaOH}=\frac{125 \times 40}{100 \times 40}=\left(\frac{5}{4}\right)$
$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
$2 \times$ mole of Acid $=$ Mole of NaOH
$2 \times \frac{5}{8}=\frac{5}{4}$
And will have $\left(\frac{5}{4}\right)$ mole of NaOH
\Rightarrow Sol. is neutral
16. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ have greater n factor as compaire KMnO_{4} so same volume of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ will oxidise more amount of Fe^{+2}.
17. Mole of $\mathrm{V}_{2} \mathrm{O}_{5}=\frac{10}{51 \times 2+5 \times 16}=\frac{10}{102+80}=\frac{10}{182}=.055$

Mole of $\mathrm{V}^{+2}=.055 \times 2$

$$
=.1098 \text { mole } \simeq 0.11
$$

$\mathrm{V}^{+2} \longrightarrow \mathrm{~V}^{+4} \mathrm{O}^{+2}+2 e$
$\mathrm{I}_{2}+2 e \longrightarrow 2 \mathrm{I}^{-}$
\Rightarrow Mole of $\mathrm{I}_{2}=$ Mole of $\mathrm{V}^{+2}=.11$
18. $\mathrm{Cl}_{2}+\mathrm{S}_{2} \mathrm{O}_{3}^{-2} \longrightarrow \mathrm{SO}_{4}^{-2}+\mathrm{Cl}^{-}+\mathrm{S}$
$50 \times .01 \times \mathrm{n}$ factor $=5 \times 10^{-4} \times 2 \times 10^{3}$
n factor $\mathrm{S}_{2} \mathrm{O}_{3}^{-2}=\frac{10 \times 10^{-4} \times 10^{3}}{.5}=2 \times 10^{-3} \times 10^{3}$
n factor $=2$
(i) $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{S}+2 \mathrm{HCl}$

Balanced equation
(ii) Mole of $\mathrm{S}_{2} \mathrm{O}_{3}^{-2}=50 \times 10^{-3} \times 10^{-2}=.0005$
(iii) Equivalent of oxidising agent $=5 \times 10^{-4} \times 2=.001$
(iv) Molarity of $\mathrm{Na}_{2} \mathrm{SO}_{4}=\frac{5 \times 10^{-4}}{50 \times 10^{-3}}$
$=10^{-2}=.01 \mathrm{M}$
19. $\underset{\sim}{\mathrm{AsO}_{4}^{-3}+2 \mathrm{H}^{+}+2 \mathrm{I}^{-}} \quad \mathrm{AsO}_{3}^{+3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}$
molar mass $\mathrm{Na}_{3} \mathrm{AsO}_{4}$
$=23 \times 3+75+15 \times 4$
molar mass $=208$
eq. of $\mathrm{AsO}_{4}^{-}=\frac{1}{\left(\frac{208}{2}\right)}=\left(\frac{1}{104}\right)$
equivalent of $\mathrm{Na}_{3} \mathrm{AsO}_{4}=$ equivalent of I_{2}
$=$ equivalent of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$.
$\frac{1}{104}=.2 \times \mathrm{V}$
$\frac{1}{104 \times .2} \mathrm{~L}=\mathrm{V}=48.1 \mathrm{~mL}$
20. M eq. of $\mathrm{KMnO}_{4}=25 \times .2=5$
(A) M eq. of $\mathrm{FeSO}_{4}=\frac{25 \times .2}{1}=5$
(C) M eq. of $\mathrm{H}_{2} \mathrm{O}_{2}=25 \times .1 \times 2=2.5 \times 2=5$
(D) M eq. of $\mathrm{SnCl}_{2}=25 \times .1 \times 2=5$
21. $\mathrm{N}=\left(\frac{\mathrm{N}_{1} \mathrm{~V}_{1}+\mathrm{N}_{2} \mathrm{~V}_{2}}{\mathrm{~V}_{1}+\mathrm{V}_{2}}\right)=\frac{3 \times 250+750 \times 1}{1000}=\frac{1500}{1000}=1.5$

Molarity $=\frac{1.5}{2}=0.75=\frac{3}{4}$
$\Rightarrow \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\frac{1}{2} \mathrm{O}_{2}$
$1 \mathrm{~L} \mathrm{H}_{2} \mathrm{O}_{2}, 1$ Mole $\mathrm{H}_{2} \mathrm{O}_{2}$ give $\mathrm{O}_{2}=11.2 \mathrm{~L}$
$1 \mathrm{LH}_{2} \mathrm{O}_{2}, 0.75 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow=11.2 \times \frac{3}{4}$

$$
\longrightarrow \quad=8.4 \mathrm{~V} \mathrm{O}_{2}
$$

\Rightarrow Volume strength $=8.4 \mathrm{~V}$
Alternative $\mathrm{V}_{\mathrm{S}}=5.6 \times \mathrm{N}=5.6 \times 1.5=8.4 \mathrm{~V}$

CHEMISTRY FOR JEE MAIN \& ADVANCED

22. M eq. of $\mathrm{KMnO}_{4}=\mathrm{M}$ eq. of $\mathrm{C}_{2} \mathrm{O}_{4}^{-2}$
$90 \times \frac{1}{20}=100 \times \mathrm{N}_{\mathrm{C}_{2} \mathrm{O}_{4}^{-2}}$
M mole of oxalate $=\frac{9}{2 \times 2}=\frac{9}{4}$
Wt of oxalate $=\frac{9}{4} \times 88 \times 10^{-3}=22 \times 9 \times 10^{-3}=198 \times 10^{-3}$
$\% \mathrm{C}_{2} \mathrm{O}_{4}^{-2}=\frac{.198}{.300} \times 100=66 \%$
23. M eq. of $\mathrm{KMnO}_{4}=\mathrm{M}$ eq. of $\mathrm{C}_{2} \mathrm{O}_{4}^{-2}=\mathrm{M}$ eq. of CaCO_{3}
$40 \times .25=\mathrm{M}$ eq. of CaO
$\frac{10 \times 10^{-3}}{2}=$ Mole of CaO
$\% \mathrm{CaO}=\frac{5 \times 10^{-3} \times 56 \times 100}{.518}$
$\mathrm{CaO}=54 \%$
24. $2 \mathrm{CrO}_{5}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{H}_{2} \mathrm{O}+7 / 2 \mathrm{O}_{2}$

1 mole CrO_{5} Liberate $\longrightarrow 7 / 4$ mole of O_{2}
25. M eq. of $\mathrm{KMnO}_{4}=.2 \times 50 \times 5=50$

M eq. of $\mathrm{H}_{2} \mathrm{O}_{2}=2 \times 25 \times .5=25$
M eq. of KMnO_{4} remaining $=(50-25)=25$
Mole of $\mathrm{KMnO}_{4}=\frac{25}{5} \times 10^{-3}=5 \times 10^{-3}=.005$
26. $\frac{100 \mathrm{x}}{1000}=\left(\frac{3}{24}\right) \times 2$
$\mathrm{x}=\frac{20}{8}=2.5$
27. $\left(320 \mathrm{~mL}, 10 \mathrm{VH}_{2} \mathrm{O}_{2}\right)+\left(80 \mathrm{~mL}, 5 \mathrm{NH}_{2} \mathrm{O}_{2}\right)$
(A)
(B)

$$
\mathrm{N}_{\mathrm{A}}=\left(\frac{10}{5.6}\right)
$$

$\Rightarrow \mathrm{N}_{\mathrm{C}}=\frac{\mathrm{N}_{\mathrm{A}} \mathrm{V}_{\mathrm{A}}+\mathrm{N}_{\mathrm{B}} \mathrm{V}_{\mathrm{B}}}{\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{B}}}=\frac{\frac{10}{5.6} \times 320+5 \times 80}{320+80}$
$\mathrm{N}_{\mathrm{C}}=\frac{400+\frac{1000 \times 4}{7}}{400}=11+\frac{10}{7}=(17 / 7)$
$\Rightarrow \quad \mathrm{V}_{\mathrm{S}}=5.6 \times \frac{17}{7} \quad \mathrm{~V}_{\mathrm{S}}=13.6 \mathrm{~V}$
$\mathrm{M}_{\mathrm{C}}=\frac{17}{7 \times 2} \mathrm{Mol} / \mathrm{L} \quad \mathrm{M}_{\mathrm{C}}=\frac{17}{14}$ Mole $/ \mathrm{L}$
$\mathrm{C}=\frac{17 \times 34}{14} \mathrm{gm} / \mathrm{Ltr}$.
Concentration $=41.285 \mathrm{gm} / \mathrm{Ltr}$.
28. $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}+\mathrm{CaO} \longrightarrow 2 \mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O}$ 2×100
$56 \mathrm{gm} \quad 2 \mathrm{gm}$
$\frac{200}{56}=\frac{2}{x}$
$x=.56 \mathrm{gm}$
30. $\mathrm{HNO}_{3}+\mathrm{NH}_{4}^{+} \longrightarrow \mathrm{N}_{2}+\mathrm{NO}_{2}$

Meq of $\mathrm{HNO}_{3}=\mathrm{Meq}$ of NH_{4}^{+}
mole $\times \mathrm{n}$-factor $=$ mole $\times \mathrm{n}$-factor
$1 \times$ mole $=1 \times 6$
mole of $\mathrm{HNO}_{3}=6$
$31 \mathrm{Z}^{+\mathrm{x}}+\mathrm{KMnO}_{4} \xrightarrow{\mathrm{H}^{+}} \mathrm{Mn}^{2+}+\mathrm{Z}^{+\mathrm{y}}$
Meq of $Z^{+x}=$ Meq of KMnO_{4}
$25 \times 0.1 \times(y-x)=25 \times 0.04 \times 5$
$(y-x)=\frac{0.04 \times 5}{0.1}=2$
$\mathrm{Z}^{2+} \longrightarrow \mathrm{Z}^{4+}$
$(4-2)=2$
32. $\mathrm{Fe}+\frac{1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{FeO}$
$1 \quad 0.65$
$\begin{array}{lll}0 & 0.15 & 1\end{array}$
$2 \mathrm{FeO}+\frac{1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}$
1
$\begin{array}{ll}(1-0.60) & 0.30 \\ 0.4 & 0.30\end{array}$
Mole ratio $\frac{\mathrm{FeO}}{\mathrm{Fe}_{2} \mathrm{O}_{3}}=\frac{0.40}{0.30} \Rightarrow \frac{4}{3}$
33. FeSO_{4}

1 mole of SO_{4}^{2-} than 1 mole Fe^{2+}
In $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
3 mole of SO_{4}^{2-} than $=2$ mole Fe^{3+}
1 mole of SO_{4}^{2-} than $=\frac{2}{3}$ mole Fe^{3+}
ratio $=\frac{\mathrm{Fe}^{2+}}{\mathrm{Fe}^{3+}}=\frac{1}{\frac{2}{3}}=\frac{3}{2}$
34. $2 \mathrm{Fe}+\frac{3}{2} \mathrm{O}_{2} \longrightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}$

Let assume n mole of Iron
Initial $n \quad 0$

$$
\mathrm{n}-\mathrm{x} \quad\left(\frac{\mathrm{x}}{2}\right)
$$

wt. $(\mathrm{n}-\mathrm{x}) \times 56+\left(\frac{\mathrm{x}}{2}\right) \times 160=\mathrm{n} \times 56 \times 1.1$

$$
24 x=5.6 n
$$

$$
\left(\frac{\mathrm{x}}{\mathrm{n}}\right)=0.2323
$$

\% total Iron = 23.3\%
35. $\mathrm{Cl}^{-}+\mathrm{KMnO}_{4} \longrightarrow \mathrm{Mn}^{2+}+\mathrm{Cl}_{2}$

Meq of $\mathrm{NaCl}=$ Meq of KMnO_{4}
mole \times n-factor $=\frac{10}{158} \times \frac{5}{2}$
mole $\times 1=\frac{10}{158} \times \frac{5}{2}$
volume of $\mathrm{Cl}_{2}=\frac{10}{158} \times \frac{5}{2} \times 22.4=3.54 \mathrm{~L}$
36. $\mathrm{I}_{2} \longrightarrow \mathrm{I}^{-}+\mathrm{IO}_{3}^{-}$
$\mathrm{I}_{2} \rightarrow 2 \mathrm{I}^{-} \mid \mathrm{I}_{2} \longrightarrow 2 \mathrm{IO}_{3}^{-}$
$2 \mathrm{e}^{-}+\mathrm{I}_{2} \rightarrow 2 \mathrm{I}^{-} \times 5 \quad \mathrm{I}_{2}+6 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{IO}_{3}^{-}$
$10 \mathrm{e}^{-}+5 \mathrm{I}_{2} \rightarrow 10 \mathrm{I}^{-} \quad \mathrm{I}_{2}+6 \mathrm{H}_{2} \mathrm{O}+12 \mathrm{OH}^{-} \longrightarrow 2 \mathrm{IO}_{3}^{-}$
$+12 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{I}_{2}+12 \mathrm{OH}^{-} \longrightarrow 2 \mathrm{IO}_{3}^{-}+6 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{e}^{-}$
$12 \mathrm{OH}^{-}+6 \mathrm{I}_{2} \longrightarrow 10 \mathrm{I}^{-}+2 \mathrm{IO}_{3}^{-}+6 \mathrm{H}_{2} \mathrm{O}$
ratio of $\frac{\mathrm{IO}_{3}^{-}}{\mathrm{I}^{-}}=\frac{2}{10}=1: 5$
37. Eq. mass
$=\frac{\text { molecular mass }}{\mathrm{n}-\text { factor }}$
$\mathrm{As}_{2}^{+3} \longrightarrow 2 \mathrm{As}^{+5} \quad \mathrm{n}$-factor 4
$\mathrm{S}_{3} \longrightarrow 3{ }^{+6}$
24
total n-factor $=28$
Eq. mass $=\frac{\text { m.wt. }}{28}$
38. From Hit and trial method
$3 \mathrm{H}_{2} \mathrm{O}+\mathrm{CN}^{-} \longrightarrow \mathrm{NO}+\mathrm{CO}_{2}+6 \mathrm{H}^{+}+7 \mathrm{e}^{-} \ldots$ (i)
$3 \mathrm{CN}^{-}+9 \mathrm{H}_{2} \mathrm{O} \longrightarrow 3 \mathrm{NO}+3 \mathrm{CO}_{2}+18 \mathrm{H}^{+}+21 \mathrm{e}^{-}$
$21 \mathrm{e}^{-}+7 \mathrm{NO}_{3}^{-}+28 \mathrm{H}^{+} \longrightarrow 7 \mathrm{NO}+14 \mathrm{H}_{2} \mathrm{O}$
Balance equation
$3 \mathrm{CN}^{-}+7 \mathrm{NO}_{3}^{-}+10 \mathrm{H}^{+} \rightarrow 10 \mathrm{NO}+3 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}$
40. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{Sn}^{2+} \longrightarrow \mathrm{Sn}^{4+}+\mathrm{Cr}^{3+}$
$\mathrm{Sn}^{4+}+\mathrm{Fe}^{2+} \longrightarrow \mathrm{Fe}^{3+}$
meq. of $\mathrm{Sn}^{4+}=$ meq of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
meq. of $\mathrm{Sn}^{4+}=$ meq of Fe^{3+}
meq. of $\mathrm{Fe}^{3+}=$ meq of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
$\mathrm{N}_{\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}}=\frac{4.9 \times 6}{294 \times 0.1}=1$
millimol $\times \mathrm{n}$-factor $=1 \times 10$
millimol $=10$

change in O.N. of Zn

$$
\begin{aligned}
& \mathrm{Zn}=0 \\
& \mathrm{~S}=6-(-2)=8 \\
& \mathrm{~N}=5-4=1
\end{aligned}
$$

45. Vol. of O_{2} at NTP
$\mathrm{V}_{\mathrm{O}_{2}}=\frac{500 \times 1 \times 273}{300}$
$\mathrm{V}_{\mathrm{O}_{2}}=455 \mathrm{~mL}$
35 mL of $\mathrm{H}_{2} \mathrm{O}_{2}$ gives 455 mL at N.T.P.
$\therefore 1 \mathrm{~mL}$ of $\mathrm{H}_{2} \mathrm{O}_{2}$ gives $=\frac{455}{35}=13$
$=13 \mathrm{~mL}$ of O_{2} at NTP
hence volume strength of $\mathrm{H}_{2} \mathrm{O}_{2}=$ ' $13 \mathrm{~V}^{\prime}$
46. Half meq of salt $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ in neutralize using Hph indicator
$\frac{1}{2}$ meq of salt $=$ meq of HCl
$\frac{1}{2}(20 \times 0.1 \times 2)=0.05 \mathrm{x}$ \qquad
complete meq of salt $\left(\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{NaHCO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ is
neutralise using MeOH indicator
Meq. of salt $=$ Meq of HCl
$20 \times 0.1 \times 3=0.05 \mathrm{y}$
eq (ii) -eq (i)
$0.05(y-x)=(6-2)$
$(y-x)=\frac{4}{0.05} \quad(y-x)=4 \times 20$
$(y-x)=80 \mathrm{~mL}$

CHEMISTRY FOR JEE MAIN \& ADVANCED

47. Let a gm $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $(3.185-\mathrm{a}) \mathrm{g} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$

Meq of 10 mL mixture $=0.3$
meq of 1000 mL mixture $=0.3 \times 1000=30$
meq of $\mathrm{H}_{2} \mathrm{SO}_{4}+$ meq of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=30$
$\frac{\mathrm{a}}{49} \times 1000+\frac{(3.185-\mathrm{a})}{45} \times 1000=30$
In another ex.
meq of 100 mL mixture $=\mathrm{meq}$ of KMnO_{4}

$$
=4 \times 0.02 \times 5
$$

meq of 100 mL mixture $=0.4$
meq of 1000 mL mixture $=4$
meq of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=4$
$\frac{3.185-\mathrm{a}}{45} \times 1000=4$
48. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{KI} \longrightarrow \mathrm{I}_{2}+\mathrm{Cr}^{3+}$
$\mathrm{I}_{2}+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \longrightarrow \mathrm{I}_{2}+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \longrightarrow$
meq of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \longrightarrow$ meq. of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
$30 \times \mathrm{N}=15 \times \frac{1}{20} \quad \mathrm{~N}=\frac{1}{40}$
meq. of $I_{2}=$ meq. of Hypo
meq. of $\mathrm{I}_{2}=$ meq. of KI
meq of $\mathrm{KI}=$ meq. of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
$24 \times \frac{1}{40}=$ meq. of $25 \mathrm{~mL} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
meq. of $500 \mathrm{~mL} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=\frac{24}{40} \times \frac{500}{25}$
$\frac{\mathrm{w} \times 6}{294} \times 1000=12 \quad \mathrm{w}=0.588$
$\%$ purity $=\frac{0.588}{0.8} \times 100=73.5 \%$
49. Meq of $I_{2}=$ Meq of Hypo solution

$$
=20 \times 2.5 \times 10^{-3}
$$

Meq of $10 \mathrm{ml} \mathrm{I}^{-}=$Meq of $\mathrm{I}_{2}=20 \times 2.5 \times 10^{-3}=0.05$
Meq of $100 \mathrm{~mL} \mathrm{I}^{-}=0.5$
Meq of $\mathrm{CaCO}_{3}=0.5$
$\frac{\mathrm{w}}{123.5} \times 1000=0.5 \quad \mathrm{w}=0.06175$
$\%=$ purity $=\frac{0.06175}{0.1} \times 100=61.75 \%$
50. $\mathrm{I}_{2}+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \rightarrow \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}^{2-}$
let x mL of I_{2} react with Hypo
meq of $\mathrm{I}_{2}=$ meq of Hypo
$\mathrm{xN}=15 \times 0.4 \quad \mathrm{xN}=6$
meq of $\mathrm{H}_{2} \mathrm{SO}_{4}$ used by base $=10 \times 0.3 \times 2=6$
meq of NaOH used by $\mathrm{I}_{2}=(30-6)$
$(150-x) N=24$..(ii)
from eq (i) \& eq (ii)
$\frac{150-x}{x}=4 \Rightarrow 5 x=150$
$\mathrm{x}=30 \mathrm{~mL}$
$30 \mathrm{~N}=6$
$\mathrm{N}=\frac{1}{5} \quad \mathrm{~N}=\mathrm{M} \times \mathrm{n}$-factor
$\frac{1}{5}=M \times 2$
$\mathrm{M}=\frac{1}{10}=0.1$

EXERCISE - 2
Part \# I : Multiple Choice

1. (A) $6 \mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$

$$
\left[\because \text { For } \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{Eq} \cdot \mathrm{wt} .=\frac{\mathrm{M} \cdot \mathrm{wt}}{6}\right]
$$

(C) $\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$
(B) and (D) are not possible.
2. equivalent of oxidising agent = equivalents of reducing agent.
$\mathrm{Eq}_{\mathrm{MnO}_{4}^{-}}=\mathrm{Eq}_{\mathrm{Fe}^{2+}}$
$\mathrm{n}_{\mathrm{MnO}_{4}^{-}} \times 5=\mathrm{n}_{\mathrm{Fe}^{2+}} \times 1$
$\mathrm{Eq}_{\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}}=\mathrm{Eq}_{\mathrm{Fe}^{2+}}$
$\mathrm{n}_{\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}} \times 6=\mathrm{n}_{\mathrm{Fe}^{2+}} \times 1$
$\mathrm{Eq}_{\mathrm{MnO}_{4}^{-}}=\mathrm{Eq}_{\mathrm{Cu}_{2} \mathrm{~S}}$
$\mathrm{n}_{\mathrm{MnO}_{4}^{-}} \times 6=\mathrm{n}_{\mathrm{Cu}_{2} \mathrm{~S}} \times 8$
$\mathrm{Eq}_{\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}}=\mathrm{Eq}_{\mathrm{Cu}_{2} \mathrm{~S}}$
$\mathrm{n}_{\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}} \times 6=\mathrm{n}_{\mathrm{Cu}_{2} \mathrm{~S}} \times 8$
4. $5 \mathrm{I}^{-}+\mathrm{IO}_{3}^{-}+6 \mathrm{H}^{+} \longrightarrow 3 \mathrm{I}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
$\frac{\text { moles of } \mathrm{KI} \text { used }}{\text { moles of } \mathrm{KIO}_{3} \text { used }}=5$
(A) For 0.004 mole KIO_{3}, moles of KI required $=$ $0.004 \times 5=0.02=0.1 \times V_{\mathrm{L}}$
$\therefore \quad \mathrm{V}_{\mathrm{L}}=0.2 \mathrm{~L}=200 \mathrm{~mL}$
(B) For 0.006 mole $_{2} \mathrm{SO}_{4}\left(0.012\right.$ mole $\left.\mathrm{H}^{+}\right)$, moles of KI required $=\frac{0.012 \times 5}{6}=0.01=0.1 \times \mathrm{V}_{\mathrm{L}}$
$\therefore \quad \mathrm{V}_{\mathrm{L}}=0.1 \mathrm{~L}=100 \mathrm{~mL}$
(C) From 0.5 L of KI solution $\left(\mathrm{n}_{\mathrm{KI}}=0.05\right)$, moles of I_{2} produced $=\frac{0.05 \times 3}{5}=0.03$
(D) Valency factor of $\mathrm{KIO}_{3}=5\left(\mathrm{IO}_{3}^{-} \longrightarrow \mathrm{I}_{2}\right)$
$\therefore \quad \mathrm{E}_{\mathrm{KIO}_{3}}=\frac{\text { mol. wt. }}{5}$
5. S undergoes increase in oxidation number from +2 to +2.5 , while I undergoes decrease in oxidation number from 0 to -1 .
6. For $\mathrm{HCl} \mathrm{N}=\mathrm{M}$

Final molarity $=\frac{V_{1} \times 1+V_{2} \times 0.25}{\left(V_{1}+V_{2}\right)}=0.75$
$0.75\left(\mathrm{~V}_{1}+\mathrm{V}_{2}\right)=\mathrm{V}_{1}+\mathrm{V}_{2} \times 0.25$
$0.75 \mathrm{~V}_{1}+0.75 \mathrm{~V}_{2}=\mathrm{V}_{1}+\mathrm{V}_{2} \times 0.25$
$0.5 \mathrm{~V}_{2}=0.25 \mathrm{~V}_{1}$
$\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=2$ (All options are possible)
7. No. of equivalents of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}=20 \times 0.3 \times 10^{-3}$

$$
=6 \times 10^{-3} \mathrm{eq}
$$

No. of equivalents of I_{2} produced $=6 \times 10^{-3} \mathrm{eq}$.
No. of equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}=6 \times 10^{-3} \mathrm{eq}$.
Wt of $\mathrm{H}_{2} \mathrm{O}_{2}$ present in 25 ml of solution $=6 \times 10^{-3} \times 17$
$\left(\because\right.$ Eq. $\left.\mathrm{wt}_{2} \mathrm{O}_{2}=17\right) \quad=0.102 \mathrm{~g}$
Statement (A) is correct.
Wt of $\mathrm{H}_{2} \mathrm{O}_{2}$ in 1 L of the solution $=\frac{0.102 \times 1000}{25}$

$$
=4.08 \mathrm{~g}
$$

Statement (C) is wrong.
\therefore molarity of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution $\quad=\frac{4.08}{34}=0.12 \mathrm{M}$
$\begin{array}{lll}\text { 8. } & 3 \mathrm{~A} \\ & 2 \mathrm{~B} \\ \text { initial mole } & 3 & 3\end{array} \mathrm{~A}_{3} \mathrm{~B}_{2}$ final mole $\begin{array}{llll}0 & 3-2 & 1\end{array}$ $\begin{array}{cc} & \mathrm{A}_{3} \mathrm{~B}_{2}+2 \mathrm{C} \\ \text { initial mole } & 1\end{array} \underset{1}{ } \quad \underset{0}{\mathrm{~A}_{3} \mathrm{~B}_{2} \mathrm{C}_{2}}$ final mole $\quad 1-\frac{1}{2} \quad 0 \quad \frac{1}{2}$
10. (A) Molarity of second solution is $=\frac{10 \times d \times x}{M}=1 \mathrm{M}$
(B) Volume $=100+100=200 \mathrm{ml}$
(D) Mass of $\mathrm{H}_{2} \mathrm{SO}_{4}=\frac{200 \times 1}{1000} \times 98=19.6 \mathrm{gm}$.
12. (A), (C) and (D) Explanation:
$4 \mathrm{Ag}+8 \mathrm{KCN}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 4 \mathrm{~K}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]+4 \mathrm{KOH}$
$\Rightarrow 4 \times 108 \mathrm{~g}$ of Ag reacts with $8 \times 65 \mathrm{~g}$ of KCN 100 g of Ag reacts with

$$
\frac{8 \times 65}{4 \times 108} \times 100=120
$$

Hence ,, to dissolve 100 g of Ag , the amount of KCN required $=120 \mathrm{~g}$
Hence, statement (A) is correct.
$\Rightarrow 4 \times 108 \mathrm{~g}$ of Ag require $32 \mathrm{~g} \mathrm{of}_{2}$
1 g of Ag require $\frac{32}{4 \times 108}=0.0740 \mathrm{~g}$
$\Rightarrow \quad 100 \mathrm{~g}$ of Ag require $=7.4 \mathrm{~g}$
Hence, choice (C) is correct.
Hence, volume of O_{2} required $=\frac{7.4}{32} \times 22.4=5.20$ litre
Hence, (A), (C), (D) are correct while (B) is incorrect.
14. Let W gas of SO_{2} and O_{2} are taken
moles of $\mathrm{SO}_{2}=\frac{\mathrm{W}}{64} \quad ; \quad$ moles of $\mathrm{O}_{2}=\frac{\mathrm{W}}{32} \quad ;$
molecules of $\mathrm{O}_{2}=\frac{\mathrm{WN}_{\mathrm{A}}}{32} ;$ molecules of $\mathrm{SO}_{2}=\frac{\mathrm{WN}_{\mathrm{A}}}{64}$
hence molecules of $\mathrm{O}_{2}>$ molecules of SO_{2} since moles of $\mathrm{O}_{2}>$ moles of SO_{2}, hence volume of O_{2} at $\mathrm{STP}>$ volume of SO_{2} at STP.
15.

CHEMISTRY FOR JEE MAIN \& ADVANCED

$\therefore \quad$ moles of R formed $=6$
$\%$ of Q left behind $=\frac{2}{8} \times 100=25 \%$
16. $\mathrm{m}=0.2$ mole $/ \mathrm{kg}$
weight of solvent $=1000$ gram
weight of solute $=0.2 \times 98=19.6$ gram
Total weight of solution $=1000+19.6=1019.6 \mathrm{ml}$.
17. $\mathrm{H}_{2}+\mathrm{S}+2 \mathrm{O}_{2} \rightarrow \quad \mathrm{H}_{2} \mathrm{SO}_{4}$
$\mathrm{n}_{\mathrm{H}_{2}}=\frac{5.6}{22.4}=\frac{1}{4} \quad \mathrm{n}_{\mathrm{s}}=\frac{8}{32}=\frac{1}{4} \quad \mathrm{n}_{\mathrm{O}_{2}}=\frac{1}{2}$
As all reactants are in stoichiometric ratios, none will be left behind.
Hence $1 / 4$ mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is formed.
18. (A) and (B) Explanation : 30% of molecule dissociated $\mathrm{N}_{2} \rightarrow 2 \mathrm{~N}$
Amount of N_{2} left $=\frac{2.8}{28} \times \frac{70}{100}=0.1 \times 0.7=0.07$
(in moles)
No. of moles of N atoms formed $=2 \times \frac{30}{100} \times 0.1=0.06$
(A) Total no . of moles $\quad=0.07+0.06=0.13$
(B) Total number of molecules $=0.07 \times 6.023 \times 10^{23}$

$$
\begin{aligned}
& =4.2 \times 10^{22} \text { molecule } \\
& =0.421 \times 10^{23}
\end{aligned}
$$

\because We have to calculate molecule of nitrogen not atoms.
19. (A) and (B) Explanation: M. Wt. $=0.001293 \times 22400$

$$
=28.96
$$

M.Wt. $=\mathrm{d} \times$ volume of 1 mole of gas at STP

$$
\text { V. D }=\frac{28.96}{2}=14.48
$$

So (A) and (B) are correct answer.
20. (A), (B) and (D). Explanation: (A) 1.0 mol of $\mathrm{O}_{2}=32 \mathrm{~g}$
(B) 6.02×10^{23} molecules of $\mathrm{SO}_{2}=64 \mathrm{~g}, 3.01 \times 10^{23}$ molecules of $\mathrm{SO}_{2}=32 \mathrm{~g}$
(C) 0.5 mole of $\mathrm{CO}_{2}=0.5 \times 44=22 \mathrm{~g}$ is not correct answer.
(D) 1 g atom of sulphur $=32 \mathrm{~g}$

Part \# II : Assertion \& Reason

7. Molality \& mole fraction are mass dependent terms while molarity is volume dependent term.
8. Due to temperature change volume get changed. Hence concentration units dependent on volume get changed.
9. meq of $\mathrm{NaOH}=\mathrm{N} \times \mathrm{V}=0.1 \times 200=20$; meq of $\mathrm{H}_{2} \mathrm{SO}_{4}$ $=\mathrm{N} \times \mathrm{V}=0.1 \times 200=20$.
\therefore Resulting solution is neutral.
EXERCISE-3
Part \# I : Matrix Match Type
10. (A) Molarity of cation $=\frac{M_{1} V_{1}+M_{2} V_{2}}{V_{1}+V_{2}}$

$$
=\frac{0.2 \times 100+0.1 \times 400}{500}=\frac{0.6}{5}=0.12
$$

Molarity of $\mathrm{Cl}^{-}=\frac{3(0.2) 100+0.1 \times 400}{500}$

$$
=\frac{0.6+0.4}{5}=0.2
$$

(B) Molarity of cation $=\frac{50 \times 0.4+0}{100}=0.2$

Molarity of $\mathrm{Cl}^{-} \quad=\frac{0.4 \times 50+0}{100}=0.2$
(C) Molarity of cation $=\frac{2(0.2) 30+0}{100}=0.12$

Molarity of $\mathrm{SO}_{4}^{2-}=\frac{30 \times 0.2}{100}=0.06$
(D) $24.5 \mathrm{gm} \mathrm{H}_{2} \mathrm{SO}_{4}$ in 100 ml solution

$$
\text { Molarity }=\frac{25.4}{\frac{98}{0.1}}=2.5
$$

\therefore Concentration of cation $=2 \times 2.5 \mathrm{M}$
Concentration of $\mathrm{SO}_{4}{ }^{2-}=2.5 \mathrm{M}$.
6. (A) Eq. of base $=N \times V_{L}=0.5 \times 0.2=0.1$

Eq. of $\mathrm{H}_{2} \mathrm{SO}_{3}=\frac{4.1}{82} \times 2=0.1$
Millimoles of O -atoms $=\left(\right.$ Millimoles of $\left.\mathrm{H}_{2} \mathrm{SO}_{3}\right) \times 3$

$$
=\left(\frac{4.1}{82} \times 1000\right) \times 3=150
$$

S is in +4 oxidation state $(\mathrm{Max}=+6)$
It may react with an oxidising agent and S may get oxidised from +4 to +6 .
(B) $\mathrm{Eq} \mathrm{of}_{3} \mathrm{PO}_{4}=\frac{4.9}{98} \times 3=0.15$

Millimoles of O -atoms $=\left(\right.$ Millimoles of $\left.\mathrm{H}_{3} \mathrm{PO}_{4}\right) \times 4$
$=\left(\frac{4.9}{98} \times 1000\right) \times 4=200$
P is in +5 oxidation state $(\mathrm{Max}=+5)$
It will not react with an oxidising agent as P is already in max O.S.

Millimoles of O -atoms $=\left(\right.$ Millimoles of $\left.\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right) \times 4$
$=\left(\frac{4.5}{90} \times 1000\right) \times 4=200$
C is in +3 oxidation state $(\mathrm{Max}=+4)$.
It may react with an oxidising agent and C may get oxidised from +3 to +4 .
(D) $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is itself basic in nature, so it will not react with a base.
Millimoles of O -atoms $=\left(\right.$ Millimoles of $\left.\mathrm{Na}_{2} \mathrm{CO}_{3}\right) \times 3$
$=\left(\frac{5.3}{106} \times 1000\right) \times 3=150$.
C is in +4 oxidation state $(\mathrm{Max}=+4)$.
It will not react with an oxidising agent as C is already in max oxidation state.
7. (A) Eq of $\mathrm{Sn}^{2+}=$ Moles \times v.f. $=3.5 \times 2=7$.

Eq of $\mathrm{MnO}_{4}^{-}=$Moles \timesv.f. $=1.2 \times 5=6$.
Since MnO_{4}^{-}(O.A) is the LR, so the amount of oxidant available decides the number of electron transfer.

Also, electron involved per mole of OA (5) $>$ electron involved per mole of RA (2).
(B) Eq of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=$ Moles \times v.f. $=8.4 \times 2=16.8$.

Eq of $\mathrm{MnO}_{4}{ }^{-}=$Moles \timesv.f. $=3.6 \times 5=18$.
Since $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ (RA) is the LR, so the amount of reductant available decides the number of electron transfer.

Also, electron involved per mole of $\mathrm{OA}(5)>$ electron per mole of RA (2).
(C) Eq of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}=$ Moles \times v.f. $=7.2 \times 1=7.2$.

Eq of $I_{2}=$ Moles \times v.f. $=3.6 \times 2=7.2$.
Since $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{RA})$ and $\mathrm{I}_{2}(\mathrm{OA})$ both completely get consumed, so both the amount of reductant and oxidant decides the number of electron transfer.
Also, electron involved per mole of OA (2) > electron involved per mole of RA (1).
(D) Eq of $\mathrm{Fe}^{2+}=$ Moles \times v.f. $=9.2 \times 1=9.2$.

Eq of $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}=$ Moles \times v.f. $=1.6 \times 6=9.6$.
Since Fe^{2+} (RA) is the LR, so the amount of reductant available decides the number of electron transfer.

Also, electron involved per mole of OA (6) $>$ electron involved per mole RA (1).

Part \# II : Comprehension

Comprehension \#1:

moles of $\mathrm{O}_{2}=\frac{11.2}{22.4}=0.5$
$\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}_{2}}$ required 0.5×2
$\mathrm{M}_{\mathrm{H}_{2} \mathrm{O}_{2}}=\frac{\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}_{2}}}{\mathrm{~V}_{\text {solution }}}=1 \mathrm{M}$
2. Strength in percentage mean how many $\mathrm{g} \mathrm{H}_{2} \mathrm{O}_{2}$ present per 100 mL
$\because \quad \mathrm{M} \Rightarrow 1$ and mol. wt. of $\mathrm{H}_{2} \mathrm{O}_{2}=34$
$\therefore 34 \mathrm{H}_{2} \mathrm{O}_{2}$ present per litre of solution or $3.4 \mathrm{H}_{2} \mathrm{O}_{2}$ present per 100 mL of solution.
3. m.eq. of $\mathrm{H}_{2} \mathrm{O}_{2}=$ m.eq. of KMnO_{4}
$20 \times \mathrm{N}=0.05 \times 5 \times 80 \Rightarrow \mathrm{~N}=1$
$\mathrm{N}=\frac{\text { volume strength of } \mathrm{H}_{2} \mathrm{O}_{2}}{5.6}$
\Rightarrow volume strength of $\mathrm{H}_{2} \mathrm{O}_{2}=5.6$
4. m-eq. of $\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}=\mathrm{m}$. eq. of $\mathrm{H}_{2} \mathrm{O}_{2}$

$$
\begin{aligned}
& \left(\because \mathrm{M}=\frac{33.6}{11.2} \Rightarrow 3\right) \\
& \frac{\mathrm{w}}{375} \times 10 \times 1000=3 \times 125 \times 2 ; \mathrm{w}=28.125 \\
& \% \text { purity }=\frac{\mathrm{w}}{40} \times 100=\frac{28.125}{40} \times 100=70.31
\end{aligned}
$$

Comprehension \# 2 :

1. $\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{3} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$;

18 g water combines with $80 \mathrm{~g} \mathrm{SO}_{3}$
$\therefore \quad 4.5 \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{O}$ combines with 20 g of SO_{3}
$\therefore \quad 100 \mathrm{~g}$ of oleum contains 20 g of SO_{3} or 20% free SO_{3}

CHEMISTRY FOR JEE MAIN \& ADVANCED

2. Initial moles of free SO_{3} present in oleum $=\frac{12}{18}=\frac{2}{3}$ moles $=$ moles of water that can combines with SO_{3} combined with water $=\frac{9}{18}=\frac{1}{2}$ mole
\therefore moles of free SO_{3} remains $=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}$ mole
$\therefore \quad$ volume of free SO_{3} at $\mathrm{STP}=\frac{1}{6} \times 22.4=3.73 \mathrm{~L}$
3. $\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
moles of CO_{2} formed $=$ moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ reacted $=\frac{5.3}{106}$ $=0.05$
volume of CO_{2} formed at 1 atm pressure and 300 K $=0.05 \times 24.63=1.23 \mathrm{~L}$
4. eq. of $\mathrm{H}_{2} \mathrm{SO}_{4}+$ eq. of $\mathrm{SO}_{3}=$ eq. of NaOH
$\frac{\mathrm{x}}{98} \times 2+\frac{(1-\mathrm{x}) \times 2}{80}=54 \times 0.4 \times 10^{-3}$
$\%$ of free $\mathrm{SO}_{3}=\frac{1-0.74}{1} \times 100=26 \%$

Comprehension \#3:

1. n -factor $=5 \times 2=10$
2. $\mathrm{H}_{3} \mathrm{PO}_{2}$ is a monobasic acid
\therefore n-factor $=1$
3. n -factor $=\left(3-\frac{2}{0.95}\right) \times 0.95=0.8075$
\therefore eq. wt. $=\frac{\mathrm{M}}{0.8075}$
4. n -factor of $\mathrm{VO}=3 ; \mathrm{Fe}_{2} \mathrm{O}_{3}=1 \times 2=2$;
$\therefore \mathrm{x}$ and y are 2 and 3
Comprehension \# 4 :
5. Let V mL of $\mathrm{H}_{2} \mathrm{O}_{2}$ is taken

Normality $=\frac{20}{5.6}$
meq of $\mathrm{H}_{2} \mathrm{O}_{2}=$ meq of I_{2} liberated $=$ meq of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$

$$
\mathrm{Vx} \frac{20}{5.6}=200 \times 0.1 \Rightarrow \mathrm{~V}=5.6 \mathrm{~mL}
$$

2. meq of $\mathrm{H}_{2} \mathrm{O}_{2}=$ meq of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

$$
5.6 \times \frac{20}{5.6}=\frac{\mathrm{x}}{294} \times 6 \times 1000
$$

$$
\mathrm{x}=\frac{20 \times 294}{6 \times 1000}=0.98
$$

$\therefore \quad$ Mass of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ needed $\mathrm{x}=0.98 \mathrm{~g}$
3. $1000 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow$ liberates $20 \mathrm{LO}_{2}$ at STP
$\therefore \quad 1 \mathrm{mLH}_{2} \mathrm{O}_{2} \longrightarrow \frac{20}{1000} \times 1000 \mathrm{mLO}_{2}$
$\therefore \quad 5.6 \longrightarrow 20 \times 5.6 \mathrm{~mL} \mathrm{ofO}_{2}=112 \mathrm{~mL}$ ofO ${ }_{2}$
Comprehension \# 5 :
2. $\mathrm{Fe}_{0.9} \mathrm{O}+\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \longrightarrow \mathrm{Fe}^{+3}+\mathrm{Cr}^{+3}$
n factor of $\mathrm{Fe}_{0.9} \mathrm{O}=0.9\left(3-\frac{2}{0.9}\right)=0.7$
$\therefore \quad$ Eq mass $=\frac{M}{0.7}=\frac{10 \mathrm{M}}{7}$
EXERCISE - 4

Subjective Type

1. $\mathrm{KMnO}_{4}+\mathrm{X}^{+\mathrm{n}} \longrightarrow \mathrm{XO}_{3}^{-}+\mathrm{Mn}^{+2}$ 1.61×10^{-3} mole $\quad 2.63 \times 10^{-3}$ mole
Eq. of $\mathrm{KMnO}_{4}=$ Eq. of $\mathrm{X}^{+\mathrm{n}}$
$1.61 \times 10^{-3} \times 5=2.63 \times 10^{-3} \times(5-\mathrm{n})$
$\mathrm{n}=2 \Rightarrow 56=\frac{\mathrm{M}}{2}+35.5 \quad \mathrm{M}=41$
2. (i) 4.0 , (ii) 0.0040 , (iiii) 0.224 , (iv) 56.00%, (v) 0.02 M , (vi) 0.0008 mol
3. $\mathrm{CuS}+\mathrm{Cu}_{2} \mathrm{~S}+\mathrm{KMnO}_{4} \longrightarrow \mathrm{Mn}^{+2}+\mathrm{Cu}^{+2}+\mathrm{SO}_{2}$
$6 \quad 8 \quad 5$
Eq. wt. of $\mathrm{CuS}=\mathrm{M}_{1} / 6$
Eq. wt. of $\mathrm{Cu}_{2} \mathrm{~S}=\mathrm{M}_{2} / 8$
Eq. wt. of $\mathrm{KMnO}_{4}=\mathrm{M}_{3} / 5$
4. $\begin{array}{lllll}\text { (a) }+3 & \text { (b) }+5 & \text { (c) }+6 & \text { (d) }+2 & \text { (e) } 8 / 3 \text { or }(2 \text { and } 3)\end{array}$
(f) +3
(g) +2
(h) +2
(i) $200 / 93=2.15$
5. (a) $\mathrm{S}_{4} \mathrm{O}_{6}^{2-}(\mathrm{aq})+6 \mathrm{Al}(\mathrm{s})+20 \mathrm{H}^{+} \longrightarrow 4 \mathrm{H}_{2} \mathrm{~S}(\mathrm{aq})+6 \mathrm{Al}^{3+}(\mathrm{aq})$ $+6 \mathrm{H}_{2} \mathrm{O}$
(b) $6 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+14 \mathrm{H}^{+} \longrightarrow 3 \mathrm{~S}_{4} \mathrm{O}_{6}^{2-}(\mathrm{aq})+$ $2 \mathrm{Cr}^{3+}(\mathrm{aq})+$ $7 \mathrm{H}_{2} \mathrm{O}$
(c) $14 \mathrm{ClO}_{3}^{-}(\mathrm{aq})+3 \mathrm{As}_{2} \mathrm{~S}_{3}(\mathrm{~s})+18 \mathrm{H}_{2} \mathrm{O} \longrightarrow 14 \mathrm{Cl}^{-}(\mathrm{aq})+$ $6 \mathrm{H}_{2} \mathrm{AsO}_{4}^{-}(\mathrm{aq})+9 \mathrm{HSO}_{4}^{-}(\mathrm{aq})+15 \mathrm{H}^{+}$
(d) $7 \mathrm{IO}_{3}^{-}(\mathrm{aq})+6 \mathrm{Re}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow 6 \mathrm{ReO}_{4}^{-}(\mathrm{aq})+7 \mathrm{I}^{-}(\mathrm{aq})$ $+6 \mathrm{H}^{+}$
(e) $30 \mathrm{HSO}_{4}^{-}(\mathrm{aq})+\mathrm{As}_{4}(\mathrm{~s})+10 \mathrm{~Pb}_{3} \mathrm{O}_{4}(\mathrm{~s})+26 \mathrm{H}^{+} \longrightarrow$ $30 \mathrm{PbSO}_{4}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{AsO}_{4}^{-}(\mathrm{aq})+24 \mathrm{H}_{2} \mathrm{O}$
(f) $3 \mathrm{HNO}_{2}(\mathrm{aq}) \longrightarrow \mathrm{HNO}_{3}+2 \mathrm{NO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}$
6. (a) $3 \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}{ }^{2-}(\mathrm{aq})+5 \mathrm{ClO}_{3}^{-}(\mathrm{aq})+18 \mathrm{OH}^{-} \longrightarrow$ $12 \mathrm{CO}_{3}^{2-}(\mathrm{aq})+5 \mathrm{Cl}^{-}(\mathrm{aq})+15 \mathrm{H}_{2} \mathrm{O}$
(b) $11 \mathrm{Al}(\mathrm{s})+3 \mathrm{BiONO}_{3}(\mathrm{~s})+21 \mathrm{H}_{2} \mathrm{O}+11 \mathrm{OH}^{-} \longrightarrow$ $3 \mathrm{Bi}(\mathrm{s})+3 \mathrm{NH}_{3}(\mathrm{aq})+11 \mathrm{Al}(\mathrm{OH})_{4}^{-}(\mathrm{aq})$
(c) $4 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{Cl}_{2} \mathrm{O}_{7}(\mathrm{aq})+2 \mathrm{OH}^{-} \longrightarrow 2 \mathrm{ClO}_{2}^{-}(\mathrm{aq})+$ $4 \mathrm{O}_{2}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}$
(d) $\mathrm{Tl}_{2} \mathrm{O}_{3}(\mathrm{~s})+4 \mathrm{NH}_{2} \mathrm{OH}(\mathrm{aq}) \longrightarrow 2 \mathrm{TlOH}(\mathrm{s})+2 \mathrm{~N}_{2}(\mathrm{~g})$ $+5 \mathrm{H}_{2} \mathrm{O}$
(e) $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}(\mathrm{aq})+\mathrm{S}_{2} \mathrm{O}_{4}{ }^{2-}(\mathrm{aq})+4 \mathrm{OH}^{-} \longrightarrow$ $2 \mathrm{SO}_{3}^{2-}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})+4 \mathrm{NH}_{3}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}$
(f) $3 \mathrm{Mn}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{MnO}_{4}^{-}(\mathrm{aq}) \longrightarrow 5 \mathrm{MnO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}$ $+2 \mathrm{OH}^{-}$
7. $1: 7: 4$
8. $\mathrm{N}=\left(\frac{5 \times 3}{250}\right)=0.06$
n -factor $=2$
$\mathrm{M}=\frac{0.06}{2}=0.03$
9. $\mathrm{H}_{2} \mathrm{SO}_{4}+\quad 2 \mathrm{NH}_{3} \longrightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
(30-25) Meq. $\quad 25$ Meq.
(30×0.2) Meq.
$\mathrm{V}_{\mathrm{NH}_{3}}=25 \times 10^{-3} \times 22400=537.6 \mathrm{ml}$
10. $\mathrm{CaCO}_{3}+2 \mathrm{HCl} \longrightarrow \mathrm{CaCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
0.1 mole 0.25

- 0.05
$\mathrm{HCl}+\mathrm{KOH} \longrightarrow \mathrm{KCl}+\mathrm{H}_{2} \mathrm{O}$
$0.05 \quad 2 \times \mathrm{V}$
$\mathrm{V}=\frac{0.05}{2} \mathrm{~L}=25 \mathrm{~mL}$

11. $2 \mathrm{NaOH}+\mathrm{NaH}_{2} \mathrm{PO}_{4} \longrightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
$1 \times \mathrm{V} \quad \frac{12}{120}=0.1$ Mole
$\mathrm{V} \times 1=0.1 \times 2$
$\mathrm{V}=0.2 \mathrm{lit}=200 \mathrm{ml}$.
12. $\mathrm{CaCO}_{3}+2 \mathrm{HCl} \longrightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
x mole $\quad 2 x$
$\mathrm{MgCO}_{3}+2 \mathrm{HCl} \longrightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
y mole $\quad 2 \mathrm{y}$
$2 x+2 y=\frac{(50 \times 0.8-16 \times 0.25)}{1000} \Rightarrow x+y=0.018$
$x \times 100+y \times 84=1.64$
$\left\{\begin{array}{l}\% \mathrm{CaCO}_{3}=\frac{\mathrm{x} \times 100}{1.64} \times 100=48.78 \% \\ \% \mathrm{MCO}_{3}=51.22 \%\end{array}\right.$
13. $\mathrm{n}_{1} \times 56+\mathrm{n}_{2} \times 74=4.2$
$\mathrm{n}_{1} \times 1+\mathrm{n}_{2} \times 2=0.1$
$\%$ of $\mathrm{KOH}=\frac{\mathrm{n}_{1} \times 56}{4.2} \times 100=35 \%$
$\mathrm{Ca}(\mathrm{OH})_{2}=65 \%$
14. $\mathrm{n} \times 106+\mathrm{n} \times 84=1$
$\mathrm{n} \times 2+\mathrm{n} \times 1=0.1 \times \mathrm{V} \times 1000$
$\mathrm{V}=157.89 \mathrm{ml}$
15. Eq. of $\mathrm{H}_{2} \mathrm{SO}_{4}=$ Eq. of NaOH
$\mathrm{n} \times 2=0.0267 \times 0.4$
$\mathrm{n}=[0.0267 \times 0.2]$ mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ total.
$[\mathrm{N} \times 98-0.5]=$ mass of $\mathrm{H}_{2} \mathrm{O}$ added
mole of $\mathrm{H}_{2} \mathrm{O}=$ mole of SO_{3}
$\%$ of $\mathrm{SO}_{3}=20.72 \%$
16. M Eq. of $\mathrm{CaCO}_{3}=\mathrm{M}$ Eq. of $\mathrm{HCl}-\mathrm{M} \mathrm{Eq}$. of NaOH
$\frac{\mathrm{w}}{(100 / 2)} \times 1000=10 \times 4-4 \times 18.75 \times 0.2=25$
$\mathrm{w}=1.25 \mathrm{gm}$
$\% \mathrm{CaCO}_{3}=\left(\frac{1.25}{1.5}\right) \times 100=83.33 \%$
17. $\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{NaHCO}_{3}$
$\mathrm{x} \quad \mathrm{g}$ milli mole
$\mathrm{x}=4 \times 1$
$2 x+4=10.5$
$\mathrm{y}=2.5, \quad \mathrm{x}=4$
$\mathrm{Na}_{2} \mathrm{CO}_{3}=4 \times 106 \mathrm{mg}=0.424 \mathrm{mg}$
$\mathrm{NaHCO}_{3}=0.21 \mathrm{gm}$
18. $\mathrm{Na}_{2} \mathrm{CO}_{3} \mathrm{NaOH}$
$\mathrm{x} \quad \mathrm{y}$ m mole
$\mathrm{x}+\mathrm{y}=19.5 \times 0.995=19.4025$
$2 \mathrm{x}+\mathrm{y}=25.0 .995=24.875$
$\mathrm{x}=5.4775 \mathrm{~m}$ mole
$\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{5.4725 \times 106}{25}=23.2 \mathrm{gm} / \mathrm{lit}$.
$\mathrm{NaOH}=22.28 \mathrm{gm} / \mathrm{lit}$.

CHEMISTRY FOR JEE MAIN \& ADVANCED

19. $\mathrm{Ce}^{+4}+\mathrm{Sn}^{+2} \longrightarrow \mathrm{Sn}^{+4}+\mathrm{Ce}^{+2}$
$40.05+20 \mathrm{ml}$
$1 \mathrm{M} \quad 1 \mathrm{M}$
Meq. of $\mathrm{Ce}^{+4}=$ Meq. Sn^{+2}
$40.05 \times 1 \times(4-n)=20 \times 1 \times 2$
$(4-\mathrm{n})=\frac{20 \times 2}{40.05} \simeq 1$
$\mathrm{n}=3$
20. $\mathrm{SeO}_{2}^{+4}+\mathrm{CrSO}_{4} \longrightarrow \mathrm{Cr}^{+3}+\mathrm{Se}^{+2}$

Meq. of $\mathrm{SeO}_{2}=$ Meq. of CrSO_{4}
$12.53 \times 0.05093 \times(4-\mathrm{n})=25.52 \times .1 \times 1$
$4-\mathrm{n} \simeq 4 \Rightarrow \mathrm{n}=0$
21. $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}+\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{+2}+\mathrm{CO}_{2}^{+4}$

> V ml,
0.1 M
$\left[\frac{1}{508}\right] \times 8 \times 1000=\mathrm{V} \times 0.1 \times 5$
$\Rightarrow \mathrm{V}=31.68 \mathrm{ml}$
22. $\mathrm{NaOH}+\mathrm{Na}_{2} \mathrm{CO}_{3}$
$\mathrm{x} \quad \mathrm{y} \quad \mathrm{mmole}$
$x+y=\frac{1}{10} \times 17.5=1.75$
$y=0.25 \ldots$ (2) $x=1.5, y=0.25 \mathrm{~m}$ mole
$\left.\begin{array}{l}\mathrm{NaOH}=\frac{1.5 \times 40}{1000} \mathrm{gm}=0.06 \mathrm{gm} \\ \mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{0.25 \times 106}{1000}=0.0265 \mathrm{gm}\end{array}\right\}$
23. $\mathrm{Na}_{2} \mathrm{CO}_{3} \mathrm{NaHCO}_{3}$
x y Meq.
$\mathrm{x}=2 \times 0.2=0.4$
$y+x=2.5 \times 0.4$
$=1$
$y=0.6 \quad x=0.4$
24. Same as 19 .
25. $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{KMnO}_{4} \longrightarrow \mathrm{Mn}^{+2}+\mathrm{O}_{2}$
$\frac{1 \times \mathrm{x} / 100}{(34 / 2)} \times 1000=\mathrm{x} \times \mathrm{N}$
$\mathrm{N}=\frac{20}{34}=0.5882$
26. $\mathrm{Sn}+\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \longrightarrow \mathrm{SnCl}_{4}+\mathrm{Cr}^{+3}$
$10.1 \mathrm{~N} \quad \mathrm{~V} \mathrm{ml}$
$\left(\frac{1}{\mathrm{M} / 4}\right) \times 1000=0.1 \times \mathrm{V} \Rightarrow \mathrm{V}=337 \mathrm{ml}$
27. Meq. of $\mathrm{Cu}=\frac{1000}{20}[20 \times 0.0327]=32.7$
$\frac{\mathrm{w}}{(63.5 / 1)} \times 1000=32.7 \Rightarrow \mathrm{w}=2.07645 \mathrm{gm}$
$\% \mathrm{Cu}=\frac{2.07645}{5} \times 100=41.53 \%$
28. Meq. of $\mathrm{Na}_{2} \mathrm{CO}_{3}=$ Meq of HCl
$\frac{\mathrm{w}}{106 / 2} \times 1000=50 \times 0.1-10 \times 0.16$
$\%$ purity $=\frac{w}{1} \times 100=90.1 \%$
29. x gm substance
$0.6 \mathrm{x} \mathrm{gm} \mathrm{NaCl}, 0.37 \mathrm{x} \mathrm{gm} \mathrm{KCl}$
$\left(\frac{0.6 \mathrm{x}}{58.5}+\frac{0.37 \mathrm{x}}{74.5}\right) \times 1000=25 \times 0.1-5.5 \times 0.1$
$x=0.1281 \mathrm{gm}$
30. $12=5.6 \times \mathrm{N} \Rightarrow \mathrm{N}=2.1428 .57$
$700 \times 2.1428=1000 \times \mathrm{N}$
$\mathrm{N}_{1}=1.5=\mathrm{M}_{1} \times 2$
$\mathrm{M}_{1}=0.75 \quad \Rightarrow \mathrm{gm} / \mathrm{lit}=0.75 \times 34=25.5$
Volume strength of final solution $=5.6 \times 1.5=8.4$
31. Meq. of $\mathrm{Fe}=$ Meq. of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
$\frac{0.84 \times \mathrm{x} / 100}{56} \times 1000=\mathrm{x} \times \mathrm{N}$
$\mathrm{N}=0.15$
32. $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{KHC}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}+\mathrm{NaOH} \rightarrow$ product x mole $\quad y$ mole $\quad 18.9 \mathrm{ml}, 0.5 \mathrm{~N}$
$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{KHC}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}+\mathrm{KMnO}_{4} \rightarrow \mathrm{Mn}^{+2}+\mathrm{CO}_{2}$
$\frac{\mathrm{x}}{4} \mathrm{~mol} \quad \frac{\mathrm{y}}{4} \mathrm{~mol} \quad 21.55 \mathrm{ml}, 0.25 \mathrm{~N}$
$\mathrm{x} \times 2+\mathrm{y} \times 1=\frac{18.9 \times 0.5}{1000}$
$\left(\frac{\mathrm{x}}{4}+\frac{\mathrm{y}}{4}\right) \times 2 \times 1000=21.55 \times 0.25$
$\% \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}=14.36 \%$
$\% \mathrm{KH}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}=81.7 \%$
33. Meq. of $\mathrm{Ca}(\mathrm{OH})_{2}=$ Meq of HCl
$\left(\frac{\mathrm{w}}{74 / 2}\right) \times 1000=(50 \times 0.5-0.3 \times 20)$
$\% \mathrm{Ca}(\mathrm{OH})_{2}=\frac{\mathrm{w}}{50} \times 100=1.406$
34. $50 \times \mathrm{N}=20 \times 0.1$
$\mathrm{N}=0.04=\mathrm{M} \times 2$
$\mathrm{M}=0.02 \Rightarrow \mathrm{gm} / \ell=0.02 \times 34$

$$
\mathrm{gm} / \ell=0.68
$$

35. $\frac{5}{100 \times 10^{3}} \times 10^{6}=41.66 \mathrm{ppm}$
36. $\frac{\left(\frac{1}{111}+\frac{1}{120}\right) \times 10^{-3} \times 100}{1000} \times 10^{6}=1.734 \mathrm{ppm}$
37. $100 \mathrm{ml} \longrightarrow 1.62 \mathrm{mg} \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$
$60 \times 10^{3} \mathrm{ml} \longrightarrow \frac{1.62}{100} \times 60 \times 10^{3}=972 \mathrm{mg}$
$\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \longrightarrow 2 \mathrm{CaCO}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
$\frac{\mathrm{w}}{74}=\left[\frac{0.972}{162}\right]$
$\mathrm{w}=\left(\frac{0.972}{162}\right) \times 74=0.444 \mathrm{gm}$
38. Bleaching powder + Mohr salt excess \longrightarrow product.

Mohr salt $+\mathrm{KMnO}_{4} \rightarrow$ product
39. Meq. of $\mathrm{SeO}_{3}^{-2}=$ Meq. of BrO_{3}^{-}used
$\frac{\mathrm{w}}{\mathrm{M}} \times 2 \times 1000=\left[20 \times \frac{1}{60} \times 5-5 \times \frac{1}{25} \times 2\right]$
$\mathrm{w}=0.084 \mathrm{gm}=84 \mathrm{mg}$
40. $\frac{0.001 \times 100}{1000} \times 10^{6}=100 \mathrm{ppm}$
41. Meq. of $\mathrm{H}_{2} \mathrm{O}_{2}=$ Meq. of KMnO_{4}
$\frac{x}{34 / 2}=\frac{0.632}{158 / 5}$
\% Purity $=\frac{x}{0.4} \times 100=85 \%$
42. $5 \times \mathrm{x}=5.5 \times \mathrm{N} \quad \frac{28}{5.5}=5.6 \times \mathrm{N}$
$5 \times \mathrm{x}=5.5 \times 0.909 \quad \mathrm{~N}=0.909$
$\mathrm{x}=1$
43. $\frac{1 \times 0.552}{M} \times 1000=\frac{100}{25} \times 17 \times 0.0167 \times n$
$\mathrm{n}=6=$ No. of electron taken up by oxidant.
44. First HCl will react with KIO_{3} to from $\mathrm{I}_{2} \& \mathrm{Cl}_{2}$ then this Cl_{2} produced will again react with KI to form I_{2}. Let initially x moles of KIO_{3} were mixed with y moles of HCl then

```
\(2 \mathrm{IO}_{3}^{-}+10 \mathrm{Cl}^{-} \longrightarrow \mathrm{I}_{2}+5 \mathrm{Cl}_{2}\)
x y
```

$\frac{y}{10} \quad \frac{y}{2}$
$\mathrm{Cl}_{2}+2 \mathrm{KI} \longrightarrow \mathrm{I}_{2}+2 \mathrm{KCl}$
$\frac{\mathrm{y}}{2}$
$-\quad \frac{\mathrm{y}}{2}$
Total moles of I_{2} formed $=\frac{y}{10}+\frac{y}{2}=\frac{3 y}{5}$
so $\frac{3 \mathrm{y}}{5}=\frac{0.021 \times 24 \times 10^{-3}}{2} \Rightarrow \mathrm{y}=0.00042$ mole
so concentration of $\mathrm{HCl}=\frac{0.00042}{0.025}=0.0168 \mathrm{M}=0.0168 \mathrm{~N}$
moles of KIO_{3} consumed $=\frac{0.00042}{5}$
volume of KIO_{3} consumed $=\frac{0.00042 \times 5}{5}=0.00042 \mathrm{~L}$
$=0.42 \mathrm{~mL}$
45. $\mathrm{As}_{2} \mathrm{O}_{3}+6 \mathrm{HCl} \longrightarrow 2 \mathrm{AsCl}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{AsCl}_{3}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{HAsO}_{2}+3 \mathrm{H}^{+}+3 \mathrm{Cl}^{-}$
gram equivalent of $\mathrm{I}_{2}=$ gram Eq. of HAsO_{2}
$=$ gram Eq. of AsCl_{3}
$=$ gram Eq. of $\mathrm{As}_{2} \mathrm{O}_{3}$
gram equivalent of $\mathrm{As}_{2} \mathrm{O}_{3}=2 \times 0.04134 \times 23.04 \times 10^{-3}$ $=0.9524 \times 10^{-3} \times 2$
gram equivalent of $\mathrm{KMnO}_{4}=0.9524 \times 10^{-3} \times 2$
Let amount of KMnO_{4} used $=\mathrm{wg}$ then

$$
\begin{aligned}
& \frac{\mathrm{w} \times 5}{158.5}=0.9524 \times 10^{-3} \times 2 \\
& \mathrm{w}=0.06 \mathrm{~g}
\end{aligned}
$$

46. $4 \mathrm{OH}^{-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2} \longrightarrow \mathrm{SO}_{4}^{2-}+4 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}$
$4 \mathrm{OH}^{-}+\mathrm{SO}_{2} \longrightarrow \mathrm{SO}_{4}^{2-}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}$
$2 \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{OH}^{-}$
$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{OH}^{-}$
Eq. (1) $+(2)$
$2 \mathrm{OH}^{-}+\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{SO}_{2} \longrightarrow \mathrm{SO}_{4}^{2-}+2 \mathrm{H}_{2} \mathrm{O} \ldots$ (3)
$\because \mathrm{NaOH}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
Meq. $30 \times 0.04 \quad 0.024 \times 22.48$
$1.2 \sim 0.53952$
0.66048×10^{-3}

From equation (3)
$2 \mathrm{OH}^{-}+\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{SO}_{2} \longrightarrow \mathrm{SO}_{4}^{2-}+2 \mathrm{H}_{2} \mathrm{O}$
$0.66048 \times 10^{-3} \quad 0.33024 \times 10^{-3}$
\therefore moles of $\mathrm{SO}_{2}=0.33024 \times 10^{-3}$
wt. $=0.33024 \times 10^{-3} \times 32=10.5676 \times 10^{-3}$
$\%$ of S sample $=\frac{10.5676 \times 10^{-3}}{0.6} \times 100=1.76 \%$
47. meq. of Hypo $=5=$ meq. of I_{2}
moles of $\mathrm{I}_{2}=2.5 \mathrm{~m}$ moles
$2 \mathrm{CuSO}_{4}+4 \mathrm{KI} \longrightarrow \mathrm{Cu}_{2} \mathrm{I}_{2}+2 \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{I}_{2}$
from reaction moles of $\mathrm{CuSO}_{4}=2.5 \times 2=5 \mathrm{~m}$ moles M_{w} of hydrated CuSO_{4}
$=159.5+18 \mathrm{x}$
so $\frac{1.2475}{159.5+18 x}=5 \times 10^{-3} \quad x=5$.
48. meq. of Hypo $=100 \times \frac{1}{10}=10=$ meq. of I_{2}
meq of $\mathrm{ClO}_{3}^{-}=10$
m moles of $\mathrm{ClO}_{3}^{-}=2$
$6 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{Cl}_{2} \longrightarrow 10 \mathrm{Cl}^{-}+2 \mathrm{ClO}_{3}+12 \mathrm{H}^{+}$
2 m moles
so moles of $\mathrm{Cl}_{2}=6 \mathrm{~m}$ moles
$6 \mathrm{e}^{-}+14 \mathrm{H}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2} \longrightarrow 2 \mathrm{Cr}^{+3}+7 \mathrm{H}_{2} \mathrm{O}$
$\left(2 \mathrm{Cl}^{-} \longrightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{-}\right) 3$
$14 \mathrm{H}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}+6 \mathrm{Cl}^{-} \longrightarrow 3 \mathrm{Cl}_{2}+2 \mathrm{Cr}^{+3}+7 \mathrm{H}_{2} \mathrm{O}$ 6 m moles
m moles of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}=2 \mathrm{~m}$ moles
wt. of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}=2 \times 10^{-3} \times 294=0.588 \mathrm{~g}$
$\%$ purity $=58.8 \%$
49. Let $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{x}$ g in 100 mL

On reaction with NaOH with phenolphthalein
g Eq. of acid in $50 \mathrm{~mL}=\frac{\mathrm{x} \times 2}{2 \times 126}$
g Eq. of $\mathrm{NaOH}=\frac{1}{10} \times 0.11905$
so $\frac{x \times 2}{2 \times 126}=\frac{0.11905}{10} \Rightarrow x=1.5 \mathrm{~g}$
so mass of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=2.5-1.5=1 \mathrm{~g}$
Now, in 0.5 g of same mixture
$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 0.3 \mathrm{~g}$
$\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \longrightarrow 0.2 \mathrm{~g}$
g Eq. of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$=\frac{0.3 \times 2}{126}$
g Eq. of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=\frac{0.2 \times 2}{134}$
g Eq. of $\mathrm{KMnO}_{4}=\frac{\mathrm{V}}{10} \times 10^{-3}$
so $\frac{0.3 \times 2}{126}+\frac{0.2 \times 2}{134}=\frac{\mathrm{V} \times 10^{-3}}{10} \quad \mathrm{~V}=77.46 \mathrm{~mL}$
50. $\left(\mathrm{Mn}^{2+} \longrightarrow \mathrm{Mn}^{3+}+\mathrm{e}^{-}\right)$
$4 \mathrm{e}^{-}+8 \mathrm{H}^{+}+\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{3+}+4 \mathrm{H}_{2} \mathrm{O}$
equation (1) $\times 4+$ equation (2)
$8 \mathrm{H}^{+}+4 \mathrm{Mn}^{2+}+\mathrm{MnO}_{4}^{-} \longrightarrow 4 \mathrm{Mn}^{3+}+\mathrm{Mn}^{3+}+4 \mathrm{H}_{2} \mathrm{O}$
or
$8 \mathrm{H}^{+}+4 \mathrm{Mn}^{2+}+\mathrm{MnO}_{4}^{-} \longrightarrow 5 \mathrm{Mn}^{3+}+4 \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{e}^{-}+8 \mathrm{H}^{+}+\mathrm{Mn}_{3} \mathrm{O}_{4} \longrightarrow 3 \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
from equation (1) milli equivalent of $\mathrm{MnO}_{4}^{-}=\mathrm{N} \times \mathrm{V}$
$=\mathrm{M} \times$ V.f. $\times \mathrm{V}=31.1 \times 11.7 \times 5=0.72774$
milli equivalent of $\mathrm{Mn}^{2+}=$ milli equivalent of $\mathrm{MnO}_{4}^{-} \times 4$ $=0.72774 \times 4=2.91096$
from equation (3) milli eq. of $\mathrm{Mn}_{3} \mathrm{O}_{4}=\frac{1}{3}$ milli equivalent of Mn^{2+}
$=\frac{1}{3} \times 2.91096=0.97032$
$\therefore \quad$ equivalent of $\mathrm{Mn}_{3} \mathrm{O}_{4}=0.97032 \times 10^{-3}$
$\frac{\mathrm{W}}{229}=0.97 \times 10^{-3}$
$\mathrm{W}=222.20 \times 10^{-3}$
$\%$ of $\mathrm{Mn}_{3} \mathrm{O}_{4}$ in the sample $=\frac{222.20}{0.545} \times 10^{-3} \times 100=40.77 \%$
51. $\mathrm{H}_{2} \mathrm{~S}+\mathrm{SO}_{2}$
$\begin{array}{ll}\mathrm{x} \\ \mathrm{S}^{-2} \longrightarrow & \mathrm{SO}_{4}^{2-}\end{array} \quad(\mathrm{n}$ - factor $=6)$
for $\mathrm{H}_{2} \mathrm{~S} \frac{\mathrm{x}}{34} \times 6=0.534975 \times 10^{-3}$
$=(20 \times 0.0066 \times 6-7.45 \times 0.0345) \times 10^{-3}$
$\mathrm{x}=3.031525 \times 10^{-3}$
$\mathrm{SO}_{2} \longrightarrow \mathrm{SO}_{4}^{2-} \quad(\mathrm{n}$-factor $=2)$
for $\mathrm{SO}_{2} \frac{\mathrm{y}}{64} \times 2$
$\frac{2 y}{64}=(25 \times 0.396-12.44 \times 0.0345) \times 10^{-3}$
$\frac{2 y}{64}=0.56082 \times 10^{-3}$
$\mathrm{y}=17.94624 \mathrm{~g}$
concentration of $\mathrm{H}_{2} \mathrm{~S}$
$=\frac{3.031525}{25} \times 10^{-3}=0.1212 \mathrm{mg}$
concentration of SO_{2}
$=\frac{17.94624}{25}=0.7178 \mathrm{mg} \mathrm{SO}_{2} / \mathrm{L}$
52. Let mass of $\mathrm{KClO}_{3} \rightarrow \mathrm{xg}$

Let mass of $\mathrm{KCl} \rightarrow \mathrm{yg}$
$\mathrm{KClO}_{3} \longrightarrow \mathrm{x} / 122.5 \mathrm{AgCl}=108+35.5$
$\mathrm{KCl} \longrightarrow \mathrm{y} / 74.5 \quad=143.5$
$6 \mathrm{e}^{-}+6 \mathrm{H}^{+}+\mathrm{ClO}_{3}^{-} \longrightarrow \mathrm{Cl}^{-}+3 \mathrm{H}_{2} \mathrm{O}$
$\frac{\mathrm{x}}{1225}+\frac{\mathrm{y}}{745}=\frac{0.1435}{143.5}=0.001$
for complete oxidation of an oxidizing agent $=$ reacted FeSO_{4} solution - unreacted FeSO_{4}
$=\mathrm{N}_{1} \mathrm{~V}_{1}-\mathrm{N}_{2} \mathrm{~V}_{2}$
$=30 \times 0.6-37.5 \times 0.8 \mathrm{~N}=3$ milli eq.
$\frac{\mathrm{x}}{1225}=\frac{0.003}{6}=0.0005$
put above value in eq. (i)
$\frac{\mathrm{y}}{745}=0.0005$
moisture $=1-(1225+745) \times 0.0005=0.015 \mathrm{~g}$
53 In presence of methyl orange, the whole NaOH and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ are neutralized
\Rightarrow meq of $\mathrm{HCl}=16 \times 0.25=4=$ meq of $\left(\mathrm{NaOH}+\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ $=$ meq. of NaOH original
\Rightarrow Total meq of NaOH in original 1.0 g sample $=4 \times 5=20$
\Rightarrow mass $\%$ of $\mathrm{NaOH}($ original $)=\frac{20 \times 40 \times 100}{1000}=80$

Now, let us assume that in $20 \mathrm{~mL}, \mathrm{x} \mathrm{m}$ mol of NaOH has got converted to $\mathrm{Na}_{2} \mathrm{CO}_{3}$
\Rightarrow In $20 \mathrm{~mL}, \quad \mathrm{mmol}$ of $\mathrm{NaOH}=4-\mathrm{x}$
mmol of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{\mathrm{x}}{2}$
In 2nd titration, HCl used in titration of $\mathrm{NaOH}+\mathrm{Na}_{2} \mathrm{CO}_{3}$ $=5 \times 0.1-9 \times 0.2=3.2$
\Rightarrow upto phenolphthalein end point, m mol of HCl required $=4-\mathrm{x}+\frac{\mathrm{x}}{2}=4-\frac{\mathrm{x}}{2}=3.2$
$\Rightarrow \mathrm{x}=1.6$
\Rightarrow Total $\mathrm{Na}_{2} \mathrm{CO}_{3}$ formed $=\frac{\mathrm{x}}{2} \times 5=\frac{5 \mathrm{x}}{2}=4$
m mol of NaOH left unreacted $=20-4 \times 2=12$
\Rightarrow weight of 1.0 g of exposed sample

$$
=1-\frac{8 \times 40}{1000}+\frac{4 \times(106+18)}{1000}=1.176 \mathrm{~g}
$$

\Rightarrow weight $\%$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in exposed sample
$=\frac{4 \times 106}{1000 \times 1.176} \times 100=36.05 \%$
54. $\mathrm{BaCrO}_{4} \longrightarrow 0.0549 \mathrm{~g}$
$\mathrm{Cr} \rightarrow \frac{0.0549}{253} \times 52 \times 25=0.282 \mathrm{~g}$
$\%$ of $\mathrm{Cr}=0.282 \times \frac{100}{10}=2.82 \%$
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2} \longrightarrow \frac{0.282}{52 \times 2}=0.002711 \mathrm{~mole}$
g Eq. of $\mathrm{MnO}_{4}^{-}=15.95 \times 10^{-3} \times 0.075 \times 25-0.002711 \times 6$ $=0.01364$
wt. $=0.01364 \times \frac{158.5}{5}=0.432388$
wt. of $\mathrm{Mn}=\frac{0.01364}{5} \times 55=0.15 \mathrm{~g}$
$\%$ of $\mathrm{Mn}=0.15 \times \frac{100}{10}=1.5 \%$
55. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{COOH}+\mathrm{O}_{2} \longrightarrow(\mathrm{n}+2) \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

$\mathrm{CO}_{2}{ }^{\mathrm{a}}+2 \mathrm{NaOH} \longrightarrow \quad$| $(\mathrm{n}+2) \mathrm{a}$ |
| :---: |
| $\mathrm{Na}_{2} \mathrm{CO}_{3}$ |

($\mathrm{n}+2$) ab

- $\quad \mathrm{b}-2(\mathrm{n}+2) \mathrm{a} \quad(\mathrm{n}+2) \mathrm{a}$
solution has $=$
$\mathrm{NaOH} \rightarrow \mathrm{b}-2(\mathrm{n}+2) \mathrm{a}$
$\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow(\mathrm{n}+2) \mathrm{a}$
On dividing in equal part moles get halfed.
Part-I :
$\frac{\mathrm{b}-2(\mathrm{n}+2) \mathrm{a}}{2}+\frac{(\mathrm{n}+2) \mathrm{a}}{2}=0.05$
Part-II :

$$
\begin{equation*}
\frac{\mathrm{b}-2(\mathrm{n}+2) \mathrm{a}}{2}+2 \times \frac{(\mathrm{n}+2) \mathrm{a}}{2}=0.08 \tag{ii}
\end{equation*}
$$

(ii) - (i)
$\frac{(\mathrm{n}+2) \mathrm{a}}{2}=0.03$

CHEMISTRY FOR JEE MAIN \& ADVANCED

$(\mathrm{n}+2) \mathrm{a}=0.06$
and $\frac{1.16}{60+14 n}=a$
from equation (iiii) \& (iv)
$\frac{1.16}{60+14 n}=\frac{0.06}{(n+2)}$
$19.33 n+38.66=60+14 n$
$5.33 \mathrm{n}=21.33 \Rightarrow \mathrm{n}=4$
from equation (iii)
$6 \mathrm{a}=0.06$
$\mathrm{a}=0.01$
from equation (i)
$\frac{\mathrm{b}}{2}-0.06+0.03=0.05$
$\frac{\mathrm{b}}{2}=0.08$ moles of NaOH
$\mathrm{b}=0.16$
mass $=0.16 \times 40=6.4 \mathrm{~g}$
56. Total m mol of AgCl from 20 mL solution $=\frac{0.4305 \times 1000}{143.5}=3$
m moles of AgCl from $\mathrm{HCl}=0.8 \Rightarrow \mathrm{~m}$ moles of AgCl from $\mathrm{CaCl}_{2}=2.2$
$\Rightarrow 1.1 \mathrm{~m}$ mole of CaCl_{2} was consumed for precipitation of oxalate from 20 mL solution.

Hence, total mmol of oxalic acid in 250 mL solution $=$ $\frac{1.1}{20} \times 250=13.75$
$\mathrm{m} \%$ of oxalic acid $=\frac{13.75 \times 10^{-3} \times 90}{1.5} \times 100=\mathbf{8 2 . 5}$
EXERCISE-5

Part \# I : AIEEE/JEE-MAIN

1. $\mathrm{x}+4(0)-2=+1$
$\mathrm{x}=3$
2. Final product will be $\mathrm{Cr}_{2} \mathrm{O}_{3}$ in this oxidation state of Cr is +3
3. In the reaction

$$
\stackrel{+4}{\mathrm{X}} \mathrm{eF}_{4}+\stackrel{+1}{\mathrm{O}_{2}} \mathrm{~F}_{2} \longrightarrow \stackrel{+6}{\mathrm{X}} \mathrm{eF}_{6}+\mathrm{O}_{2}^{0}
$$

Xenon undergoes oxidation while oxygen undergoes reduction.
5.
(i) $\quad\left[\mathrm{Fe}^{+2}(\mathrm{CN})_{6}\right]^{4}+\mathrm{H}_{2} \mathrm{O}_{2}^{-1}+2 \mathrm{H}^{+}$
\downarrow
$\left[\mathrm{Fe}^{+3}(\mathrm{CN})_{6}\right]^{3-}+2 \mathrm{H}_{2} \mathrm{O}^{-2}$
(ii) $\quad\left[\mathrm{Fe}^{+3}(\mathrm{CN})_{6}\right]^{3-}+\mathrm{H}_{2} \mathrm{O}_{2}^{-1}+2 \mathrm{OH}^{-}$
\downarrow
$\left[\mathrm{Fe}^{+2}(\mathrm{CN})_{6}\right]^{4-}+\mathrm{O}_{2}{ }^{0}+2 \mathrm{H}_{2} \mathrm{O}$

Part \# II : IIT-JEE ADVANCED

2. TIPS/Formulae

The highest O.S. of an element is equal to the number of its valence electrons
(i) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$, O.N. of $\mathrm{Fe}=+3$
$\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$, O.N. Of Co $=+3$
(ii) $\mathrm{CrO}_{2} \mathrm{Cl}_{2}, \mathrm{O} . \mathrm{N}$. of $\mathrm{Cr}=+6$, (Highest O.S. of Cr)
$\left[\mathrm{MnO}_{4}\right]^{-} \mathrm{O} . \mathrm{N}$. of $\mathrm{Mn}=+7$, (Highest O.S. of Mn)
(iii) $\mathrm{TiO}_{3}, \mathrm{O} . \mathrm{N}$. of $\mathrm{Ti}=+6$,

$$
\mathrm{MnO}_{2} \mathrm{O} . \mathrm{N} . \text { of } \mathrm{Mn}=+4
$$

(iv) $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$, O.N. of $\mathrm{Co}=+3$

MnO 3 , O.N. of $\mathrm{Mn}=+6$
9. TIPS/formulae

Use molarity equation to find volume of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solutions.
$\underset{\substack{63.2+12+48.98 \\=123.5 \mathrm{~g}}}{\mathrm{CuCO}_{3}}+\underset{98 \mathrm{~g}}{\mathrm{H}_{2} \mathrm{SO}_{4}} \longrightarrow \mathrm{CuSO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \uparrow$
\therefore For 123.5 gms of $\mathrm{Cu}(\mathrm{II})$ carbonate 98 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ are required. For 0.5 gms of $\mathrm{Cu}(\mathrm{II})$ carbonate weight of $\mathrm{H}_{2} \mathrm{SO}_{4}$
reqd. $=\frac{98 \times 0.5}{123.5} \mathrm{~g}=0.39676 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$
Weight of required $\mathrm{H}_{2} \mathrm{SO}_{4}=0.39676 \mathrm{~g}$
Weight of solution in grams

$$
=\frac{\text { mol. } \mathrm{wt} . \times \text { Molarity } \times \text { Volume in } \mathrm{mL}}{1000}
$$

$0.39676=\frac{98 \times 0.5 \times \mathrm{V}}{1000}$
or $\mathrm{V}=\frac{0.39676 \times 1000}{90 \times 0.5} \mathrm{ml}$
Volume of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution $=8.097 \mathrm{ml}$
11. $6 \mathrm{I}^{-}+\mathrm{ClO}_{3}^{-}+6 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Cl}^{-}+6 \mathrm{HSO}_{4}^{-}+3 \mathrm{I}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ Hence, I^{-}is oxidised to I_{2}
Coefficient of $\mathrm{HSO}_{4}^{-}=6$
and $\mathrm{H}_{2} \mathrm{O}$ is one of the product.
Hence (A), (B), (D)
12. $\mathrm{KlO}_{4}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{KlO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
$\mathrm{H}_{2} \mathrm{O}_{2}$ acts as a reductant
$2 \mathrm{NH}_{2} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{~N}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{2} \mathrm{O}_{2}$ acts as a oxidant. 1
13. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{2}\right)\right]^{2}+\mathrm{MnO}_{4}^{-}$

$\left[\mathrm{fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]^{2-}+\mathrm{MnO}_{4}^{-}$
$\rightarrow \mathrm{Mn}^{+2}+\mathrm{Fe}^{+3}+\mathrm{CO}_{2}$ If $=5 \quad$ If $=5$
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]^{2-} \longrightarrow \mathrm{Fe}^{+3}+4 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{e}^{-}$
$8 \mathrm{H}^{+}+\mathrm{MnO}_{4}+5 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{+2}+4 \mathrm{H}_{2} \mathrm{O}$
$8 \mathrm{H}^{+}+\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]^{2-}+\mathrm{MnO}_{4} \longrightarrow$

$$
\mathrm{Mn}^{+2}+\mathrm{Fe}^{+3}+4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

$$
\frac{1}{8}-\frac{\mathrm{d}\left[\mathrm{H}^{+}\right]}{\mathrm{dt}}=\frac{\mathrm{d}\left[\mathrm{MnO}_{4}^{-}\right]}{\mathrm{dt}}=8
$$

