

CHEMISTRY FOR JEE MAIN & ADVANCED

SOLVED EXAMPLES

ALKANE

F _1				Laura (m. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	
Ex.1	-	reaction can be employed for		• •	$Anc(\mathbf{D})$
Sol.	(A) Wurtz reaction Wurtz reaction is suitabl	(B) Corey-House reactio e for symmetrical alkanes		(D) None of these	Ans.(B)
		-			
Ex.2		ecarboxylation with sodalin	-		
Sal	(A) Propane	(B) Ethane da lime results in the formati	(C) Butane	(D) Pentane	Ans.(B)
Sol.	Decarboxylation with so			ii less than the starting c	ompounds.
Ex.3	Which of the following carboxylic acids?	g alkanes cannot be produc	ced by Kolbe electrolysis	of sodium or potassiu	im salts of
	(A) Methane	(B) Ethane	(C) Butane	(D) Hexane	Ans.(A)
Sol.	In Kolbe electrolysis, the carbon atoms.	e alkane is formed by union	of two alkyl groups. The alk	ane formed has, thus, t	wo or more
Ex.4	The homolytic fission of	f hydrocarbon results in the	formation of –		
	(A) Free radicals	(B) Carbocations	(C) Carbanions	(D) Carbenes	Ans.(A)
Sol.	Homolytic fission result	s in the formation of free rac	dicasl.		
Ex.5	n-Heptane when heated to (A) 1-heptene	a temperature of about 800 K (B) 2-Methylhexane	under high pressure in the pr (C) Toluene	tesence of Cr_2O_3/Al_2O_3 ca (D) Xylene	ntalyst gives Ans.(C)
Sol.	$CH_{3} - (CH_{2})_{5} - CH_{3} - 4$	$\xrightarrow{H_2}$ O $-CH_3$			
		Toluene			
Ex.6	The reaction conditions	leading to the best yield of			
	(A) $C_2 H_5$ (excess) + Cl_2 -	UV light >	(B) $C_2H_6 + Cl_2 \frac{Dark}{room temp}$	perature	
	$(\mathbf{C}) \mathbf{C}_2 \mathbf{H}_6 + \mathbf{Cl}_2 (\text{excess})$	$\xrightarrow{\text{UV light}} \rightarrow$	(D) $C_2H_6 + Cl_2$ <u>UV light</u>	\rightarrow	Ans.(D)
Sol.	C_2H_6 should be used in e	excess, otherwise polychlori	nation will take place		
Ex.7	Number of isomer which	n can be theoretically obtain	ed on monochlorination of	2-methylbutane is –	
	(A) 1	(B) 2	(C) 3	(D) 4	Ans.(D)
Sol.	${}^{1}_{C}H_{3} - {}^{2}_{C}H - {}^{3}_{C}H_{2} - {}^{4}_{C}H_{3}$				
Ex.8	Complete oxidation of e	thane yields –			
	(A) Ethanol	(B) Ethanoic acid	(C) Ethanal	(D) CO ₂ and H ₂ O	Ans.(D)
Sol.	$2C_2H_6 + 7O_2 \rightarrow 4CO2 + 6$	5H ₂ O		2 2	
Ex.9	In iso-pentane, the H at	om that can be most easily	substituted is on –		
	¹ _C H ³ –	$\overset{2}{\operatorname{C}}\operatorname{H}-\overset{3}{\operatorname{C}}\operatorname{H}_{2}-\overset{4}{\operatorname{C}}\operatorname{H}_{3}$ $\overset{1}{\operatorname{C}}\operatorname{H}_{3}$			
	(A) C –1	(B) C-2	(C) C – 3	(D) C – 4	Ans.(B)

Ease of substitutation of various types of H atom is $3^{\circ} > 2^{\circ} > 1^{\circ}$. Sol. **Ex.10** 8 c.c. of gaseous hydrocarbon requires 40 c.c. of O2 for complete combustion. Identify hydrocarbon. Sol. Volume of hydrocarbon = 8 c.c.; Volume of $O_2 = 40$ c.c. $\frac{8}{40} = \frac{2}{3n+1}$ (For alkane) Formula No.1, $\frac{1}{5} = \frac{2}{3n+1}$ or 3n+1 = 10or 3n = 10 - 1 = 9, n = 2The value of n comes in whole number from 1st formula it means hydrocarbon is Alkane and it is of 3C atom. Hydrocarbon is C₃H₈ (Propane) ... 10 mL of a mixture of CH_{4} and $C_{2}H_{6}$ requires 41 mL of oxygen for complete combustion. What is the volume of CH_{4} **Ex.11** and $C_{3}H_{0}$ in the mixture. Suppose the volume of CH_4 in $(CH_4 + C_3H_9)$ mix = x c.c. Sol. = Volume of $C_{2}H_{0}$ will be = 10 - x c.c. For $CH_4 CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O_2$ ••• 1 vol. of CH_4 requires 2 vol. of O_2 for complete combustion ... x c.c. of CH_4 , 2x c.c. of O_2 For C_3H_8 $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$ 1 volume of C₃H₈ requires 5 ml of O₂ for complete combustion ... (10-x) c.c. of C₃H_e requires 5(10-x) c.c. of O₂ Total Volume of $O_2 = 2 x + 5 (10 - x)$ it is equivalent to 41 (according to question) \cdot 2x + (10 - x) = 41x = 3 c.c. ... Volume of CH₄ is 3 c.c. and volume of C₃H₈ is 7 c.c.

ALKENE

- Ex.1 90 mL of oxygen is required for complete combustion of unsatuarated 20 mL gaseous hydrocarbon, hydrocarbon is ?
- Sol. Following two formulae can be used for solution of the above asked question.

$$\frac{\text{Volume of Hydrocarbon}}{\text{Volume of O}_2} = \frac{2}{3n} \quad \text{(for Alkene)}$$

$$\frac{\text{Volume of Hydrocarbon}}{\text{Volume of O}_2} = \frac{2}{3n - 1}$$
 (for Alkyne)

By putting the values in above formulae we can find the hydrocarbon for which n is natural number.

$$\frac{20}{90} = \frac{2}{3n}$$
 $n = 3$ So hydrocarbon is Propene $[C_3H_6]$.

CHEMISTRY FOR JEE MAIN & ADVANCED

Ex.2 How many mole of oxygen is required for complete combustion of 1 mole of Alkene. Sol. $2C_nH_{2n} + 3nO_2 \longrightarrow 2nCO_2 + 2nH_2O$

keeping in mind, the above equation.

- for 2 mole of Alkene, 3n mole of O_2 is required for combustion.
- :. for 1 mole of Alkene, $\frac{3n}{2}$ mole of O_2 is required for combustion.

= 1.5n mole of O_2

- **Ex.3** 30 mL mixture of ethylene and Butylene is burnt in presence of oxygen then 150 mL of oxygen is required, what is the volume of Ethylene & Butylene in mixture.
- **Sol.** Let the volume of $C_2H_4 = x mL$

So volume of Butylene = (30-x) mL

For
$$C_2H_4 \rightarrow C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O_2$$

from equation

÷

- for 1 volume C_2H_4 , 3 volume of O_2 is required.
- for x mL vol. of C_2H_4 , 3x ml volume of O_2 is required.
 - For C_4H_8 $C_4H_8 + 6O_2 \longrightarrow 4CO_2 + 4H_2O$ for 1 volume C_4H_8 , 6 volume of O_2 is required.

 $\therefore \quad \text{for (30-x) mL} \quad " \quad " \quad , \ 6 \ (30-x) \text{ mL of } O_2 \text{ is required.}$ Total volume of $O_2 = 3x + 6 \ (30-x) \text{ mL} = 150 \text{ mL}(Given)$ x = 10

- : Volume of C_2H_4 in mixture is 10 mL
- : Volume of C_2H_4 in mixture is 20 mL

ALKYNE

 $R - CH_2 - CCl_2 - R \xrightarrow{\text{Reagent}} R - C \equiv C - R$. The reagent is – (A) Na (B) HCl in H₂O (C) KOF **Ex.1** (C) KOH in C, H, OH (D) Zn in alcohl Ans.(C) Alcoholic KOH brings about dehydrohalogenation Sol. **Ex.2** Acetylene when treated with dilue HCl at 60°C (333 K) in presence of HgCl, products – (A) Methyl chloride (B) Vinyl chloride (C) Acetaldehyde (D) Formaldehyde And.(B) **(B)** $H - C \equiv C - H + HCl \xrightarrow{HgCl_2} CH_2 = CH - Cl$ Sol.

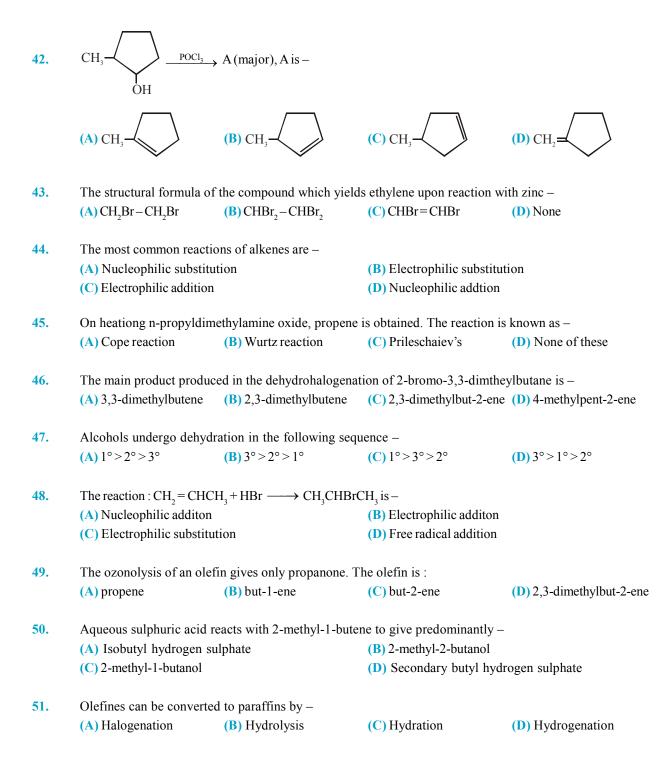
Vinyl chloride

- Ex.3When propyne is treated with aqueous H_2SO_4 in the presence of $HgSO_4$, the major product is –(A) Acetaldehyde(B) Propanal(C) 2-Propanol(D) PrtopanoneAns.(D)
- Sol. $CH_3 C \equiv CH + H_2O \longrightarrow CH_3 C = CH_2 \iff CH_3 C CH_3$ I = OH

HYDROCARBON

Ex.4 Alkaline KMnO₂, oxidizes acetylene to –
(A) Acetic acid (B) Glyoxal (C) Oxalic acid (D) Ethylene glycol Ans.(C)
Sol. H – C = C – H + 4H[O]
$$\rightarrow \bigcirc_{OOH}^{COOH}$$

Ex.5 Which of the following is most acidic –
(A) Ethyne (B) Propyne (C) 1-Butyne (D) 2-Butyne Ans.(A)
Sol. Because ethyne gives most stable anion.
Ex.6 Ozonolysis of acetylene gives –
(A) Oxalic acid (B) Ethylene glycol (C) Glkyoxal (D) CH₄CHO Ans.(C)
Sol. HC = CH $\frac{(i)}{(i)} \frac{(i)}{H,OZn} \rightarrow H - \bigcap_{C} - H$
(G) yraph on reaction with aquesou chlorine gives –
(A) 1, 1, 2, 2-Tetrachloropropane (B) 1, 2-Dichloropropene
(C) 1, 1-Dichloropropano (D) 2, 2-Dichloropropano Ans.(C)
Sol. CH₃ – C = CH + 2HOCI $\rightarrow \bigcirc_{CH} - \bigcirc_{C} - CHCl_3$
Ex.8 Mesitylene can be obtained by polymerization of –
(A) Ethyne (B) Ethene (C) Propene (D) Propyne Ans.(D)
Sol. Propyne on trimerization yields mesitylene 3CH₃C = CH $\rightarrow \bigvee_{CH_3} - \bigcirc_{CH_3} - \bigcirc_{CH_3} - (A) CH_1(HOOCCH_3) (B) Ethene (C) Propene (D) Propyne Ans.(D)
Sol. Propyne on trimerization yields mesitylene 3CH3C = CH $\rightarrow \bigcup_{CH_3} - \bigcirc_{CH_3} - (A) CH_1(HOOCCH_3) (B) Ethene (C) Propene (D) Propyne Ans.(D)
Sol. Propyne on trimerization yields mesitylene 3CH3C = CH $\rightarrow \bigcup_{CH_3} - (CH_3) -$$$


E	xercise # 1 Sin	gle Correct Choice 7	[ype Questions]
ι.	Which has least carbon bond length – (A) Ethane (B) Ethyne	(C) Ethene	(D) Ethanol
2.	 The highest boiling point is expected for – (A) isooctane (C) 2,2,3,3-tetramethylbutane 	(B) n-octane(D) n-butane	
	The reaction of chlorine with methane is carried out (A) To break Cl ₂ molecules into free radicals (C) To heat up the mixture	 in sunlight. The role of sur (B) To break Cl₂ molecul (D) To break C–H bonds 	es into ions
•	The chlorination of an alkane involves :(A) Cl free radicals(B) Cl ⁺ species	(C) Cl ⁻ species	(D) CH_4 free radicals
	The compound with highest boiling point is (A) n-hexane (B) n-pentane	(C) 2,2-dimethyl propane	(D) 2-methyl butane
•	Which of the following will have least hindered rota (A) Ethane (B) Ethylene	ation about carbon-carbon (C) Acetylene	bond? (D) Hexachloroethane
	Alkanes are readily attacked by – (A) Electrophiles (B) Nucleophiles	(C) Free radicals	(D) bases
	Isopropyl bromide undergoes Wurtz reaction to form (A) Hexane (B) 2, 3-Dimethyl butane		(D) Neohexane
	Alkanes can be prepared from Grignard reagents by (A) Alcohols (B) Primary amines	reacting with – (C) Alkynes	(D) All of them
0.	Which reducing agent is used in Clemmensen reduction (A) Zn/HCl (B) LiAlH ₄	tion – (C) Zn-Hg/HCl	(D) Na/ C_2 H ₅ OH
ι.	Isomerisation in alkane may be brought about by us (A) Al_2O_3 (B) Fe_2O_3	ing (C) AlCl ₃ and HCl	(D) concentrated H_2SO_2
2.	Formatio of alkane by the action of Zn on alkyl halic (A) Frankland reaction (B) Wurtz reaction	le is called – (C) Cannizzaro's reaction	(D) Kolbe's reaction
3.	The hydrocarbon which is a liquid at room temperat (A) butane (B) propane	ure is – (C) decane	(D) neopentane
4.	 The most important method of preparation of hydro. (A) Pyrolysis of higher carbon number hydrocarbor. (B) Electrolysis of salts of fatty acids. (C) Sabatier Senderen's reaction. (D) Direct synthesis 		ımber is –

15.	 Which of the following will not produce ethane (A) Reduction of CH₃COOH with HI/P₄ (B) Reduction of CH₃COCH₃ with HI/P₄ (C) Decarboxylation of sodium propionate with s (D) Hydrogenation of ethene in the presence of I 		
16.	The thermal decomposition of alkanes in the abs (A) oxidation (B) Combustion	sence of air is known as – (C) Hydrogenation	(D) pyrolysis
17.	Methane can be prepared by : (A) Wurtz reactions (B) hydrogenation	(C) decarboxylation	(D) dehydrohalogenation
18.	While of the following alkyl halides is not suita (A) CH_3l (B) C_2H_5Br	ble for Corey-House synthes (C) CH ₃ CH ₂ CH ₂ CH ₂ l	is of alkanes – (D) $(CH_3)_3 CBr$
19.	An alknae is most likely to react with – (A) A free radical (B) An alkali	(C) An electrophilic	(D) A nucleophile
20.	The most volatile alkane is : (A) n-pentane (B) isopentane	(C) neopentane	(D) n-hexane
21.	Which of the following reactions does not invol(A) Hydrolysis of a Grignard reagent(C) Corey-House synthesis of alkanes	ved a C–C bond formation? (B) Combination of two (D) RNa + R – Br \rightarrow R –	•
22.	Wurtz reaction on a mixture of ethyl halide and isobutyl halide gives –(A) Butane and isobutane(B) Butane and 2, 5-dimethylhexane(C) Butane,2,5-dimethylhexane and isohexane(D) Butane and isohexane		
23.	Which reducing agent is used in Clemmensen re (A) Zn/HCl (B) LiAlH ₄	eduction ? (C) Zn-Hg/HCl	(D) Na/ C_2H_5OH
24.	 The compound 1,3-butadiene has – (A) Only sp hybridized cabon atoms (B) Both sp and sp² hybridized carbon atoms 	 (B) Only sp² hybridized (D) sp, sp² and sp³ hybridized 	
25.	 Alkene can be formed from carbonium ion by (A) Combination of proton (C) Elimination of proton 	(B) Elimination of hydr (D) First combination o	
26.	In ethylene dichloride there are – (A) One π-bond and five σ-bond (C) One π-bond and six σ-bond	(B) Zero π -bond and se (D) One π -bond and six	
27.	Propylene is mnore stable than ethylene. The rea (A) Electromeric effect (B) Hyper conjugatio		(D) Resonance effect
28.	The disappearance of the charactheristic purple unsaturation. It is known as : (A) Maqrkownikoffs test (B) Baeyer's test	e colour of KMnO ₄ in its rea (C) Wurtz test	ction with an alkene is the test for (D) Grignard test

29.	The relative stability of t	he compounds		
	$CH_3 CH_3$ I = I $CH_3 - C = C - CH_3 CH_3$	CH_3 -C = CH-CH ₃ CH ₃ -CH	$= CH_2 CH_2 = CH_2$	
	Ι	II III	IV	
	is in the order – (A) I > II > III > IV	(B) IV>III>II>I	(C) I>III>III>IV	(D) II>I>IV>III
30.	Baeyer's reagentis used (A) Detection of double (C) Reduction		(B) Detection of glucose(D) Oxidation	
31.	The presence of unsatura	ation in an organic compo	und can be tested with –	
	(A) Schiff's reagent	(B) Tollen's reagent	(C) Fehling solution	(D) Baeyer's reagent
32.	In the sequence of reaction	ons, $CH_3CH_2CH_2OH - PC$	$\frac{l_5}{KOH} \rightarrow B$, the production	uct B is –
	(A) Propyne	(B) Propylene	(C) Propane	(D) Propanol
33.	Ethyl chloride on heating	g with alcoholic potash giv	ves :	
	$(\mathbf{A}) \mathbf{C}_2 \mathbf{H}_4$	(B) C_2H_2	$(\mathbf{C}) \mathbf{C}_2 \mathbf{H}_6$	(D) CH ₄
34.		of an alcohol with concen		
	(A) $3^\circ > 2^\circ > 1^\circ$	(B) 3° < 2° < 1°	(C) $3^{\circ} > 2^{\circ} < 1^{\circ}$	(D) $3^{\circ} < 2^{\circ} > 1^{\circ}$
35.	Propyl bromide on reacti	on with alcoholic KOH giv	/es –	
	(A) Propane	(B) Propene	(C) Butane	(D) Acetylene
36.	Which of the following c	ompound undegoes dehyd	rochlorination most easily w	when treated with alcoholic KOH –
	(A) CH ₃ -CH-CH ₂ Cl I CH ₃	(B) CH ₃ -CH-C ₂ H ₅ I Cl	$(C) CH_3 - CH_2 - CH_2 CI$	(D) $(CH_3)_3C - Cl$
37.	The formation of 2-buter	e from 2-butanol in the pr	esence of conc. H_2SO_4 in in	accordance with :
	(A) Hoffmann's rule	(B) Saytzeff's rule	(C) Markownikoff's rule	(D) Kharasch rule
38.	In the elimination of read the order –	tion,s that is, in the formation	tion of alkenes, the reactivit	y of halogens in alkyl halides is in
	(A) $I > Br > Cl$	(B) $Cl > Br > I$	(C) $Br > Cl > I$	(D) None
39.	(A) The halide ion	the base (alcoholic KOH		
			arbon to which the halogen	is attached
(C) The proton present on the carbon to which the halogen is attached(D) The proton on the α-carbon.				
		vu i 0011.		

- 40. The ease of dehydrohalogenation of alkyl halide with alcoholic KOH is (A) $3^\circ > 2^\circ > 1^\circ$ (B) $3^\circ < 2^\circ < 1^\circ$ (C) $3^\circ > 2^\circ > 1^\circ$ (D) $3^\circ < 2^\circ > 1^\circ$
- 41. The dehydrohalogenatin of 2-bromobutane with alcoholic KOH gives –
 (A) only 2-butene
 (B) only 1-butene
 - (C) 2-buten as the major product

(D) I-butene as the major product

CHEMISTRY FOR JEE MAIN & ADVANCED

- **52.** Anti-Markownikoff addition of HBr is not observed in **(B)** butene (C) 2-butene (D) 2-pentene (A) propene
- 53. The addition of HCl in the presence of peroxide does not follow anti-Markownikoffs rule because (A) HCl bond is too strong to be broken homolytically
 - (B) Cl atom is not reactive enough to add on to a double bond
 - (C) Cl combines with H to give back HCl
 - (D) HC is a reducing agent

54. 3-Methyl-2-penten on reaction with HOCl gives -

(A)
$$CH_{3}-CH_{2}-C-CH-CH_{3}$$

(B) $CH_{3}-CH_{2}-C-CH-CH_{3}$
(C) $CH_{3}-CH_{2}-C-C-CH_{3}$
(D) $CH_{3}-CH_{2}-C-CH_{3}$
(D) $CH_{3}-CH_{2}-C-CH_{3}$
(D) $CH_{3}-CH_{2}-C-CH_{3}$
(D) $CH_{3}-CH_{2}-C-CH_{3}$

55.	The addition of Br_2 to trans-2-butene produces	
	(A) (+) 2, 3-dibromobutane	(B) (–) 2,3-dibromobutane
	(C) rac-2,3-dibromobutane	(D) meso-2,3-dibromobutane

56.	$CH_2 = CH_2 - \frac{Cl_2}{Cl_2}$	$\rightarrow A \xrightarrow{AgOH}$? the prod	$\xrightarrow{\text{AgOH}} ? \text{ the product is a } -$ (B) Dial (C) Dioic acid (D) None of these			
	(A) Glycol	(B) Dial				
57.	The olefin which on ozonolysis gives CH ₃ CH ₂ CHO and CH ₃ CHO is –					

- (A) 1-butene **(B)** 2-butene (C) 1-pentene (D) 2-pentene
- Alkene $\xrightarrow{B_2H_5}$ $\xrightarrow{H_2O_2/OH^-}$ 2° alcohol. The alkene would be 58. **(B)** $CH_3CH_2 - CH = CH_2$ $(\mathbf{A}) \operatorname{CH}_3 - \operatorname{CH} = \operatorname{CH}_2$ $(C)(CH_3)_2C = CH_2$ (D) $CH_3 - CH = CH - CH_3$

(B) A free radical

59. Ethylene reacts with alkaline KMnO₄ to form – (A) Oxalic acid (B) HCHO (C) Ethyl alcohol (D) Glycol **60**. Which order is correct for bond length -(A) = C - H > - C - H > = C - H**(B)** $-C - H \le C - H \le C - H$ $(C) \equiv C - H \le C - H \le -C - H$ **(D)** None of these 61. Which one of these will react with sodium metal -(A) Ethyne (B) Ethene (C) Ethane (D) Ether **62**. Ethyne adds on HCl to first give a -

(C) A vinylic cation

(D) A biradical

166

(A) Carbanion

63.	The relative acidity of ethyne, ethene and ethane for (A) Ethane > Ethyne < Ethene (C) Ethyne < Ethene < Ethane	 bllows the order – (B) Ethyne > Ethene > E (D) Ethene < Ethane < E 	
64.	Dichloro acetone can be prepared by the reaction (A) $CH = CH$ and HCl (C) $CH_2 = CH - CH_3$ and $HOCl$	(B) $CH_3 - C \equiv CH \text{ and } HC$ (D) $CH_0CH_2CH = CH_2 \text{ and } HC$	
65.	Ethene can be separated from ethyne by passing th (A) concentrated H_2SO_4 (B) ammonical Cu_2Cl_2	e mixture through (C) pyrogallol	(D) charcoal powder
66.	Acetylene on passing into excess of HOCl solution (A) Ethylene chlorohydrin (B) Acetaldehyde	forms – (C) Dichloroacetaldehyd	le (D) Methyl Chloride
67.	 Give the following reactions propyne + HCl(g) → A A + HI (g) → B The compound A and B are respectively : (A) 1-chloropropene and 1-chloro-1-iodopropane (C) 2-chloropropene and 2-chloro-2-iodopropane 		l 1-chloro-2-iodopropane l 1-iodo-2-iodopropane
68.	Which of the following is most acidic ?(A) Methane(B) Ethane	(C) Ethylene	(D) Acetylene
69.	Acetylene reacts with ammonical silver nitrate to fo (A) Silver mirror (B) Metallic silver	orm – (C) Silver acetate	(D) Silver acetylide
70.	The compounds 1-butyne and 2-butyne can be dis(A) bromine water(B) KMnO ₄ solution	tinguished by using (C) Tollens reagent	(D) chlorine gas
71.	Lindlar's catalyst is : (A) Na in liquid NH ₃ (B) Pt in ethanol	(C) Ni in ether	(D) Pd with $BaSO_4$
72.	1-Butyne reacts with cold alkaline KMnO4 to produ (A) CH_3CH_2COOH (C) $CH_3CH_2COOH + CO_2$	(B) CH ₃ CH ₂ CH ₂ COOH (D) CH ₃ CH ₂ COOH + HCO	ЮН
73.	$CH_3 - C \equiv CH + H_2O \xrightarrow{H^+}_{Hg^{+2}} A' Here is:$		
	(A) Aldehyde (B) Ketone	(C) Alkane	(D) Alcohol
74.	Water can be added across a triple bond in the pres (A) acidic medium (B) alkaline medium	sence of (C) neutral medium	(D) acid and $HgSO_4$
75.	Distinction is pentene-1 and pentyne-1 is done by $(A) [Ag(NH_3)_2]^+$ (B) Conc. H_2SO_4	- (C) HCl	(D) Br ₂

	CHEMISTRY FOR JEE MAIN & ADVANCED				
76.	Which of the following r (A) CH_4	eacts wisth metal by displa (B) $C_2 H_6$	cing H-atom? (C) C_2H_4	$(\mathbf{D}) \mathbf{C}_2 \mathbf{H}_2$	
77.	Acetylene when passed th (A) Anhydrous AlCl ₃	nrough 20% H ₂ SO ₄ at 80°C (B) HgSO ₄	givs acetaldehyde. The cata (C) Pd	alyst required for this conversion is (D) Pt	
78.	Addition of HCN to ethy (A) 1, 1-dicyanoethane	(B) Ethyl cyanide	as catalyst gives – (C) Vinyl cyanide	(D) Divinyl cyanide	
79.	$KMnO_4$ solution. The ga	s may be :	-	ecipitate but decolourises alkaline	
	$(\mathbf{A}) \mathbf{C}_2 \mathbf{H}_5$	(B) C2H4	$(\mathbf{C}) \mathbf{C}_{3} \mathbf{H}_{4}$	(D) C3H3	
80.	The smallest alkane whice (A) 5 carbons	ch can show optical isomer (B) 6 carbons	rism possesses – (C) 7 carbons	(D) 8 carbons	
81.	The appropriate reagent	for the transformation.			
	НО	$H_3 \longrightarrow HO$	is-		
	(A) Zn(Hg)/HCl	(B) NH_2NH_2 , OH^-	(C) H ₂ /Ni	(D) NaBH ₄	
82.	Propene is allowed to rea (A) 1-deuteriopropane	act with B_2D_6 and the product (B) 2-deuteriopropane	act is treated with acetic ac (C) 1-deuteriopropene	 id. The final product obtained is – (D) 2-deuteriopropene 	
83.	The least reactive alkane (A) CH_4	e towards free-radical subst (B) (CH ₃) ₃ CH	titution reaction is – (C) CH_3CH_3	(D) $CH_3CH_2CH_3$	
84.	The relative reactivity of 1°H, 2°H and 3°H in bromination reaction has been found to be $1:82:1600$ respectively. In the reaction –				
	CH ₃ CH ₃ -CH-CH ₃ (excess)	$+ \operatorname{Br}_{2} \xrightarrow{\operatorname{hv}} \operatorname{CH}_{3} \xrightarrow{\operatorname{CH}_{3}} \operatorname{CH}_{3} \xrightarrow{\operatorname{CH}_{3}} \operatorname{CH}_{3} \xrightarrow{\operatorname{CH}_{3}} \operatorname{CH}_{3} \xrightarrow{\operatorname{H}_{3}} \operatorname{CH}_{3} \operatorname{CH}_{3} \xrightarrow{\operatorname{H}_{3}} \operatorname{CH}_{3} \operatorname{CH}_{3} \xrightarrow{\operatorname{H}_{3}} \operatorname{CH}_{3} \xrightarrow{\operatorname{H}_{3}} \operatorname{CH}_{3} \xrightarrow{\operatorname{H}_{3}} \operatorname{CH}_{3} \operatorname{CH}_{3} \operatorname{CH}_{3} \operatorname{CH}_{3} \operatorname{CH}_{3} \operatorname{CH}_{3} CH$	$H_3 + CH_3 - CH - CH_2 - Br$ (B)		
	the percentage yields of (A) 99.4%, 0.6%	the products (A) and (B) and (B) 50%, 50%	re expected to be – (C) 0.6%, 99.4%	(D) 80%, 20%	
85.	For the reaction				
	$-CH_2OH - \frac{H_2SO_4}{H_2SO_4}$	>			
	the major product is : (A) $\Box = CH_2$	(B) CH ₃	(C)	(D)	

86. 1-Methylcyclohexene is allowed to react with B_2H_6 . The product is then treated with H_2O_2 and NaOH. The reaction is –

$$CH_3 \xrightarrow{1.B_2H_6} 2.H_2O_2/OH \rightarrow$$

The product formed is

(A) 1-methylcyclohexanol

(C) methylcyclohexane

(B) 2-methylcyclohexanol(D) cyclohexanol

87. The intermediate formed during the addition of HCl to propene in the presence of peroxide is –

(A) CH_3CHCH_2CI (B) $CH_3CH_2CH_2$ (C) $CH_3CH_2H_3$ (D) $CH_3CH_2CH_2$

88. Consider the reaction

$$\begin{bmatrix} CH_{3} \\ CH_{3}CH_{2}CH_{2}-\overset{+I}{N}-CH_{2}CH_{3} \end{bmatrix} OH^{-} \xrightarrow{Heat} \\ \overset{I}{CH_{3}} \\ CH_{3} \end{bmatrix} OH^{-} \xrightarrow{Heat}$$

Which of the following is formed in major amount

(A) $CH_2 = CH_2$ (C) Both (A) and (B) in equal amount (D) None, as no reaction takes place

- 89. Propene on reaction with ICl produces mainly –
 (A) 1-chloro-2-iodopropene
 (B) 2-chloro-1-iodopropane
 (D) (±)-1-chloro-2-iodopropane
- **90.** The major product obtained in the reaction of 1,3-Butadiene with HCl (1 mole) at a higher temperawtrue (100°C or above) is

(A) 3,4-0dichloro-1-butene
(B) 3-chloro-1-butene
(C) 1-chloro-2-butene
(D) 2-chloro-2butene

91. In the reaction

 $CH_{3}CH_{2}CH = CH_{2} \xrightarrow{1.Hg(OAc)_{2},H_{2}O} \xrightarrow{2.NaBD_{4}}$ the product obtained is – (A) CH_{3}CH_{2}CHOHCH_{2}D (B) CH_{3}CH_{2}CHDCH_{2}OH (C) CH_{3}CH_{2}CHOHCH_{3} (D) CH_{3}CH_{2}CHDCH_{2}OH

92. In the addition of HBr to propene in the absence of a peroxide, the first step involves the addition of –

	(A) H ⁺	(B) Br⁻	(C) H [•]	(D) Br
--	--------------------	------------------	--------------------	--------

The ease of formation of free radicals follows the order -

	(A) $3^{\circ} > 2^{\circ} > 1^{\circ} > CH_3$	(B) $\dot{CH}_3 > 1^\circ > 2^\circ > 3^\circ$
	(C) $1^\circ > 2^\circ > 3^\circ > CH_3$	(D) $2^{\circ} > 1^{\circ} > 3^{\circ} > CH_3$
94.	The addition of HCl to 1-phenylpropene gives –	
	(A) C ₆ H ₅ CHClCH ₂ CH ₃	(B) C ₆ H ₅ CH ₂ CHClCH ₃
	$(C) C_6 H_5 CH_2 CH_2 CH_2 CH_2 CI$	(D) $C_6H_5CH(CH_3)CH_2Cl$
95.	An optically active hydrocarbon (X) on catalytic hy The hydrocarbon (X) is –	drogenation gives an optically inactive compound (Y), C_6H_{14} .
	(A) 3-methyl-1pentene	(B) 3-methyl-2pentene
	(C) 2-ethyl-1-butene	(D) 3-methylcyclopentene
96.	The reduction of 4-octyne with H_2 in the presence of	of Pd/CaCO ₃ quinoline gives –
	(A) trans-4-octene	(B) cis-4-octene
	(C) a mixture of cis-and trans-4-octene	(D) a completely reduced product $C_8 H_{18}$
97.	Which of the following has the lowest heat of hydr	ogenation per mole –
	(A) cis-2-Butene	(B) trans-2-Butene
	(C) 1-Butene	(D) 1,3-Butadiene

93.

E	xercise # 2 Part # I	Multiple Correct Choice Type Questions]	
1.	 cis-2-Butene on reaction with Br₂ in CCl₄ prod (A) 1-bromo-2-butene (C) meso-2,3-dibromobutane 	 luces mainly – (B) 2,3-dibromobutane (D) (±) 2, 3-dibromobutane 	
2.	A hydrocarbon which decolourises KMnO ₄ b (A) Benzene (B) Acetylene	ut does not give nay precipitate with ammoniated AgNO ₃ (C) Butyne (D) 2-Butene	
3.	Which reagent converts propene to 1-propan (A) H ₂ O, H ₂ SO ₄ (C) Hg(OAc) ₂ , NaBH ₄ /H ₂ O	ol (B) B_2H_6, H_2O_2, OH^- (D) Aq. KOH	
4.	Which of the following reactions will result in (A) $CH_3CH = CHCH_3 + HB_4 \longrightarrow$ (C) $CH_3CH_2CH = CH_2 + HBr \longrightarrow$	the formation of a chiral centre in the prodeut – (B) $CH_3CH = CH_2 + HOBr \longrightarrow$ (D) $CH_3CH_2CH = CH_2 + HBr \longrightarrow$	
5.	Propene on reaction with N-bromosuccinimid (A) 1, 2-dibromopropane (C) 1-bromopropene	e in CCl ₄ produces – (B) 3-bromopropene (D) 2-bromopropene	
6.	Which one of the following alkenes will react [R = Alkyl Substituent] (A) $\stackrel{R}{} \stackrel{R}{} \stackrel{R}{} (B) \stackrel{R}{} \stackrel{R}{} \stackrel{R}{} H$	faster with H ₂ under catalytic hydrogenation conditions : (C) $\stackrel{R}{} \stackrel{H}{} \stackrel{R}{} $ (D) $\stackrel{R}{} \stackrel{H}{} \stackrel{H}{} $	
7.	Which of the following decolourises alkaline (A) C_3H_5 (B) C_2H_4	$\frac{\text{KMnO}_4 \text{ solution}}{\text{(C) CH}_4} \qquad \text{(D) CCl}_4$	
8.	The bond dissociation energies of the following CH_3-H CH_3CH_2-H $CH_2=CH-CH_2-H$	-	
	$I \qquad II \qquad III \\ vary in the order : \\ (A) I > II > III > IV \qquad (B) IV > III > II > I$	IV (C) IV>I>II>III (D) II>I>IV>III	
9.	Compounds capable of reacting with ammonia (A) CH_3 -CH-C CH (B) $HC \equiv CH$ L CH_3	cal AgNO₃ solution are(C) 1-Butyne(D) all the above	
10.	Compound 'A' on chlorination gives compou	nd 'B', compound 'B' reacts with alc. KOH gives gas 'C' mpound 'C' gives only HCHO compound. 'A' is : (C) C_4H_{10} (D) C_2H_5Cl	, whicl
11.	Which of the following will react with sodium(A) Ethyne(B) 1-Butyne	metal : (C) 2-Butyne (D) Ethane	
12.	What are the products obtained upon the oze (A) CH ₃ CH ₂ CHO (B) CH ₃ CHO	nolysis of 2-pentene? (C) CH_3COCH_3 (D) $CH_3COCH_2CH_3$	

CHEMISTRY FOR JEE MAIN & ADVANCED

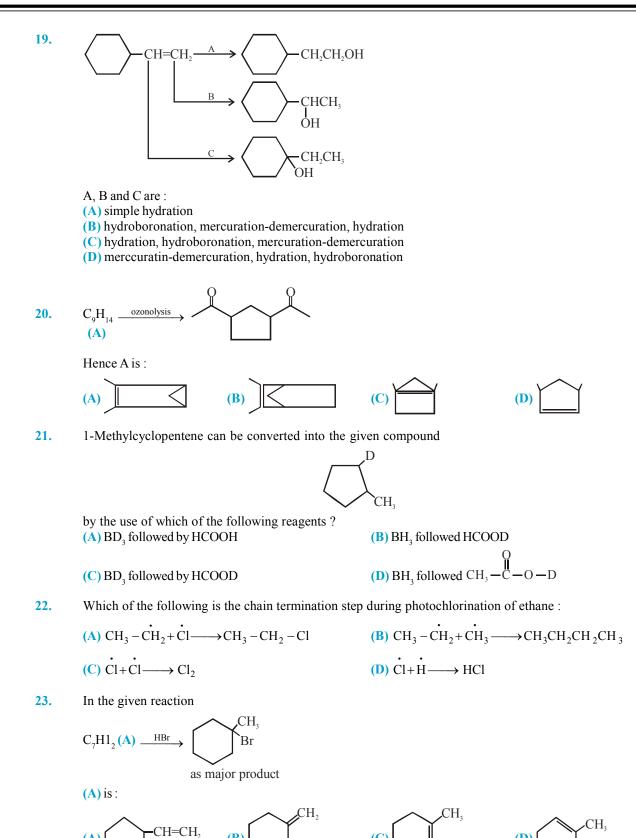
- 13. 2-Bromo-3-phenylpropane can be synthesised by (A) $C_6H_5CH_2CH(OH)CH_3 + PBr_3 \longrightarrow$ (B) $C_6H_4CH = CHCH_3 + HB_4 + benzoyl peroxide \longrightarrow$ (C) $C_6H_5CH_2CH_2CH_3 + Br_2 + light \longrightarrow$ (D) none of these
- 14.Arrange the following in order of increase/decrease in boiling point.
 $CH_3CH_2CH_2CH_2CH_3$ (CH_3)2 $CHCH_2CH_3$ (CH_3)4C
IIIIIII(A) I > II > III(B) II > I > III(C) III > I > II(D) III < II < I</td>
- 15. Which of the following can be used for the preparation of propane?

(A)
$$CH_{3}CH = CH_{2} \xrightarrow{1.B_{2}H_{6}}$$

(B) $CH_{3}CH_{2}CH_{2}Cl \xrightarrow{1.Mg/ether}$
(C) $CH_{3}CH_{2}CH_{2}I \xrightarrow{\text{Red P/HI/150°C}}$
(D) $CH_{3}CH_{2}CH_{2}COONa \xrightarrow{\text{NaOH/CaO}}$

16. The nitration of propane with concentrated HNO_3 gives :

(A)
$$CH_3CH_2CH_2NO_2$$
 (B) $\begin{array}{c} CH_3CHCH_3 \\ NO_2 \end{array}$ (C) $CH_3CH_2NO_2$ (D) CH_3NO_2


17. Which of the following are correct :

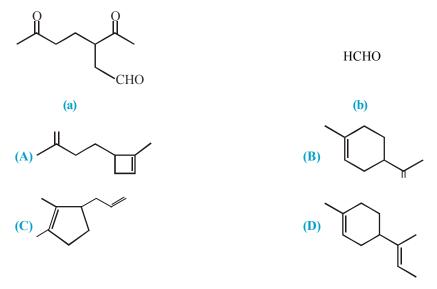
(B) X -II, Y -I

(C) X - I, Y -I

(A) X - I, Y-II

18.

(C)


(B)

(A)

(D)

24. The reactions that lead to product (a) and (b) on ozonolysis are

25. $HgSO_4/H_2SO_4$ and $B_2H_6/NaOH H_2O_2$ will give same major product, when react with which of the following.

$$(A) O_2 N - C \equiv CH \qquad (B) \qquad (C) \qquad (D) \qquad (H)$$

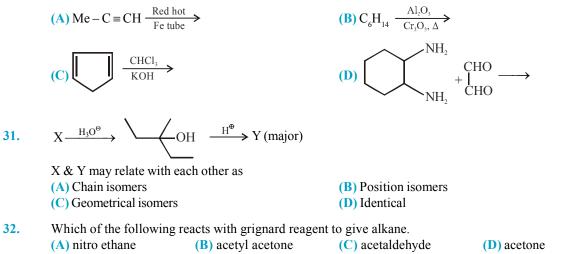
26. Methane will be produced in which of the following reaction :

(A)
$$\operatorname{Be}_2 C \xrightarrow{\operatorname{HIO}}$$
 (B) $\operatorname{CH}_3 \operatorname{OH} \xrightarrow{\operatorname{LAH}}$
(C) $\operatorname{CH}_3 - \operatorname{Cl} \xrightarrow{\operatorname{Na}}$ (D) $\operatorname{Al}_4 C_3 \xrightarrow{\operatorname{H}_2 O}$

27. Which of the following will decolourise bromine water

(A)
$$CH_2 = CH_2$$
 (B) $HC = CH$ (C) (D) (D)

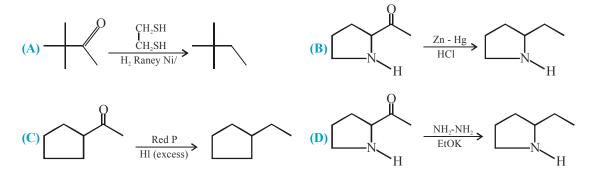
28. Select correct statement :

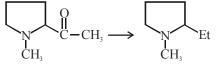

- (A) Methane cannot be prepared by catalytic hydrogenation of alkene
- **(B)** Al isomers of the formula C_6H_{14} can be prepared by catalytic hydrogenation of alkene **(C)** All isomers of the formula C_5H_{12} can be prepared by catalytic hydrogenation of alkene

(D)
$$\sum_{D} \xrightarrow{D} \xrightarrow{H_2}$$
 product obtained show no optical rotation

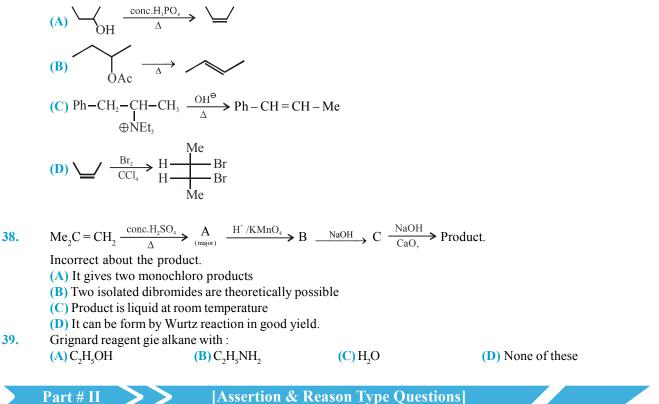
29. Which of following reaction product is Diastereomer.

(A)
$$\longrightarrow$$
 CH₃ $\xrightarrow{\text{Br}_2}$ (B) D $\xrightarrow{\text{CHO}}$ H $\xrightarrow{\text{(i)NaCN}}$
(C) $\xrightarrow{\text{CH}_3}$ C=C $\xrightarrow{\text{CH}_3}$ HBr $\xrightarrow{\text{CHO}}$ (D) CH₃-CH-CH=CH-Ph $\xrightarrow{\text{HCI}}$ peroxide

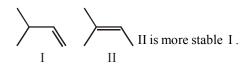

30. Which of the following produce aromatic product.


33. Which of the following will not produce same product when treated with $dilH_2SO_4$ with $HgSO_4$ or when udergo hydroboration oxidation?

34. Which of the following represent correct product formation.



- 35. 1-Pentyne reacts with :
 (A) Sodium
 (C) Ammonical silver nitrate
 (B) Sodamide
 (D) Ammonical cuprous chloride
- **36.** Suitable reagent(s) to carry out following conversion is/are



37. Select option(s) in which incorrect major product is shwon :

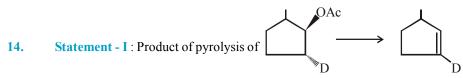
These questions contains, Statement-I (assertion) and Statement - II (reason).

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I.
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I.
- (C) Statement-I is True, Statement-II is False.
- (D) Statement-I is False, Statement-II is True.
- Statement I: Buta-1,3-diene is less stable than Penta-1, 4-diene.
 Statement II: Buta-1, 3-diene has greater number of resonating structrures and delocalised electron cloud.
- Statement-I: Neopentane forms only one monochlorinated prodcut.
 Statement-II: Neopentane has four identical methyl group attached to a quaternary carbon.
- Statement I : Alkynes are more reactive than alkanes towards electrophilic reagents like H⁺.
 Statement-II : The alkyl carbocation formed from alkene is more stable than the vinyl carbocation formed from alkyne.
- 4. **Statement-I** : Of two isomeric alkenes shown,

Statement-II : The alkene (I) has sp²- hybridized carbons.

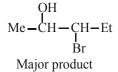
5. Statement-I : Addition of HBr to 1-butene gives two optical isomers. Statement-II : The product contains one asymmetric carbon.

- 6. **Statement-I**: 1-Butene on reaction with HBr in the presence of a peroxide produces 1-bromobutane. **Statement-II**: It involves the formation of a primary radical.
- 7. Statement I : Propene is more reactive than ethane with HCl. Statement II : Propene is more stable than thane.
- Statement I : Addition of Br₂⁻ water containing dissolved NaCl to ethylene gives a mixture of 1, 2-dibromoethane, 1-bromo-2-chloroethane and 2-bromoethanol.
 Statement II : Addition occurs through a carbocation intermediate.
- 9. Statement-I: Addition of bromine to trans-2-butene yields meso-2,3-dibromobutane. Because Statement-II: Bromine addition to an alkene is an electrophilic addition.
- **10. Statement-I** : Iodination of alkanes is carried out in the presence of iodic acid. **Statement-II** : Iodic acid removes I, gas from the reaction mixture.
- 11. Statement-I: $\bigcap_{\Delta} \xrightarrow{\text{major}}$


Statement - II : 2-buttene is more stable than 1-butene as it is having more α – H.

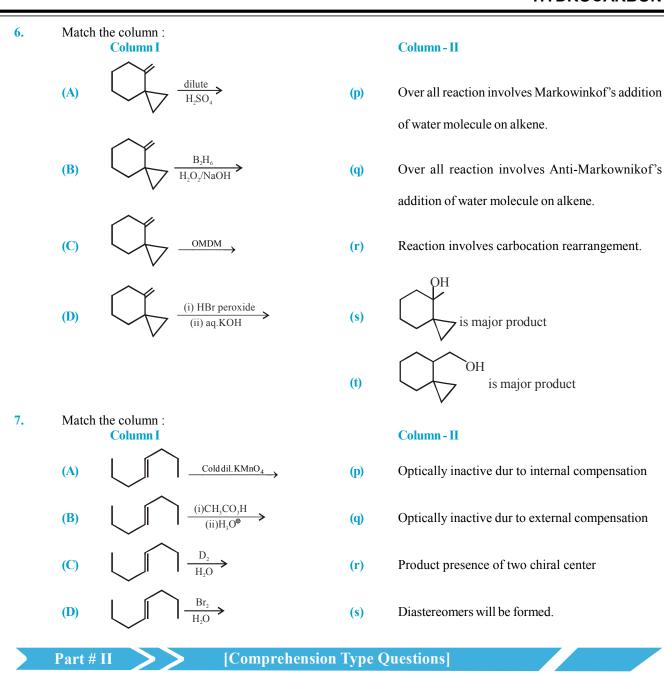
12. Statement-I: Me - C = C - D
$$\xrightarrow{\text{Na}}_{\text{liq. NH}_3} \xrightarrow{\text{Me}}_{\text{H}} C = C \xrightarrow{\text{H}}_{\text{D}}$$

Statment-II : Birch reduction is anti addition.


13.
$$\begin{array}{c} \begin{array}{c} CH_2 \\ \hline \\ CH_2 \end{array} \end{array} \xrightarrow{hot. conc.} \\ \hline \\ CH_2 \end{array} \xrightarrow{hot. conc.} \\ \hline \\ NaOI \end{array} \xrightarrow{A} + 2B \\ \downarrow NaOI \\ \downarrow Lime water$$

Statement - I : "C" product of above conversion is sodium salt of Pentan-1,5-dioic acid. **Statement - II** : R.D.S. of $A \rightarrow C$ conversion is attack of enolate ion on Halogen molecule.

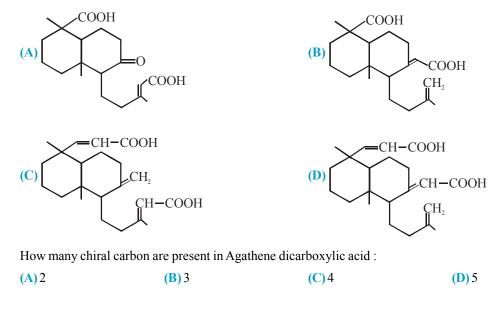
Statement - II : C - H bond is weaker than C - D bond.


15. Statement-I: Me-CH=CH-Et
$$\xrightarrow{Br_2}$$
 Me-CH-CH-Et $\xrightarrow{H_2O}$

In above reaction sequence Non classical carbocation opens from the side of –Me group. **Statement-II** : Me exert less steric hindrance than –Et group.

CHEMISTRY FOR JEE MAIN & ADVANCED

E	xercise # 3 Part # I >	[Matrix	Match Type Questions]
1	Match the second Links of some H		
1.	Match the coumn I with column II. Column - I		Column - II
	(A) Wurtz reaction	(p)	Electrophilic substitution reaction
	(B) Hydration of alkenes	(q) (q)	Free radical substitution
	(C) Nitration of alkane	(q) (r)	Electrophilic addition reaction
	(D) Reaction of alkene with NBS	(s)	Nucleophilic substitution
2.	Match the column I with column II.		
<i>L</i> .	Column - I		Column - II
	(A) Dehydrohalogenation	(p)	Kolbe reaction
	of alkyl halides	U 7	
	(B) Electrolysis of sodium salt	(q)	Alc. KOH
	(C) Ozonolysis	(r)	Addition product of ethylene
	(D) Dichloro ethylene	(s)	Sodalime
	(E) Decarboxylation	(t)	Alkene
3.	Match the column I with column II.		
	Column - I		Column - II
	(A) CH ₂ -CH ₂ -CH ₂ Br	(p)	HBr
	$CH - CH = CH $ $(B) \qquad CH - CHBr - CH$	(q)	HBr + peroxide
	(C) (C)	(r)	NBS
	$CH_{3}-CH=CH_{2} \xrightarrow{(A)} CH_{3}-CH_{2}-CH_{2}Br$ $CH_{3}-CH=CH_{2} \xrightarrow{(B)} CH_{3}-CHBr -CH_{3}$ $(C) \xrightarrow{(C)} CH_{3}-CHBr -CH_{2}Br$ $(D) \xrightarrow{(D)} BrCH_{2}-CH=CH_{2}$	(s)	Br ₂ , low temp., dark
	$\blacksquare \blacksquare $		-
4.	Column I		Column - II
	(A) 1-Phenylbut-1-yne $\frac{\text{Dil } \text{H}_2\text{SO}_4}{\text{Hg}^{+2}}$	()	1 1 11 / 1
	(A) 1-Phenylbut-1-yne $\xrightarrow{1}{Hg^{+2}}$	(p)	1-phenylbutan-1-one
	(B) 1-Phenylbut-1-yne $\frac{(1) BH_3+THF}{(2) H,O,+\overline{O}H}$	(q)	1-Phenylbutan-2-one
	(C) But-2-ene (cis) $\xrightarrow{Br_2+CCl_4}$	(r)	Syn addition
	(D) But-2-ene (trans) $\xrightarrow{Br_2+CCl_4}$	(s)	Antiaddition
		(t)	Optically inactive
5	Column I (Reactions)		Column - II
5.	(Reactant) (Major Product)		(Intermediate involve)
	Br		
		()	
	(A) $_{Ph}$ $\xrightarrow{HBr}_{Peroxide}$ $_{Ph}$	(p)	Free Radical
	(B) $_{Ph}$ $\xrightarrow{HCl}_{Peroxide}$ $_{Ph}$	(q)	Carbanion
	Ph Ph		
	A Br		
	() NBS	(r)	Carbocation
	$\operatorname{Or}\operatorname{Br}_2+\Delta^-$	(1)	
	~		
	$(\mathbf{D}) \bigcup \xrightarrow{\mathbf{D}, \mathbf{n}_2} \bigcup \bigcup_{\mathbf{CCl}_4} \bigcup_{\mathbf{D}, \mathbf{n}_4} \bigcup_{\mathbf{D}, \mathbf{D}, \mathbf{n}_4} \bigcup_{\mathbf{D}, \mathbf{D}, $	(s)	Two isomers are formed
	✓ ✓ bī		

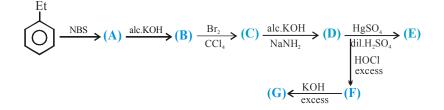

Comprehension #1

Ozonolysis of a compound Agathene dicarboxylic acid gives following compounds.



On complete reduction by Na-EtOH Agathene dicarboxylic acid give hydrocarbon $C_{20}H_{38}$ which have 5 chiral carbon in it.

1. The struture of Agathene dicarboxylci acid is


- 3.Total stereoisomers possible for Agathene dicarboxylic acid are :(A) 16(B) 18(C) 32(D) 64
- 4. Structrue of product formed when Agathene dicarboxylic acid is heated with soda lime is :

- 5. True statement about Agathene dicarboxylic acid is :
 - (A) it gives ppt. with Tollen's reagent
 - **(B)** it gives red colour with 2,4-dinitrophenyl hydrazine
 - (C) it gives off effervescence of ${}^{12}O_2$ with NaH ${}^{14}O_3$
 - (D) none of the above

Comprehension #2

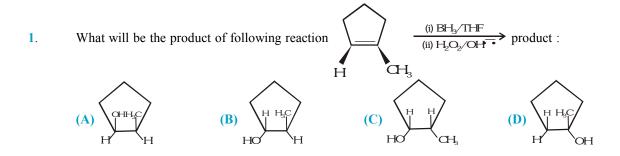
Dr. Sandy Robertson worked out following reaction sequenec.

2.

1. Select true statement(s) :

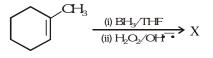
(A) when D is treated with $D_2 Pd BaSO_4$ it gives alkene

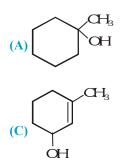
- (B) when D is treated with Na liq. ND₃ it gives trans alkene.
- (C) both
- (D) none
- **2.** True about E is :
 - (A) It gives positive Fehling test.
 - (B) It does not give positive test with Braddy's reagent
 - (C) It gives positive IOdoform test
 - (D) It gives effervescence with NaHCO₃

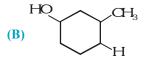

3. G is :

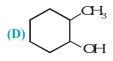
(A)
$$Ph-C-CH \xrightarrow{OH} OH$$

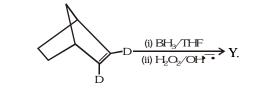
(B) $Ph-C-CHO$
(C) $Ph-CH-CHO$
(D) $Ph-CH-COOK$
(D) $Ph-CH-COOK$
(D) $Ph-CH-COOK$

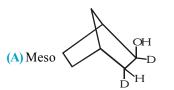

Comprehension #3

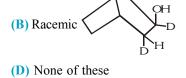

Borane is an electron deficient compound. It has only six valence electrons, so the boron atom lacks an octet. Acquiring an octet is the driving force for the unusual bonding structure found in boron compounds. As an electron deficient compound, BH_3 is a strong electrophile, capable of adding to a double bond. This hydroboration of double bond is though to occur in one step, with the boron atom adding to the less highly substituted end of the double bond. In transition state, the boron atom withdraws electrons from the pi bond and the carbon at the other end of the double bond acquires a partial positive charge. This positive charge is more stable on the more highly substituted carbon atom. The second step is the oxidation of boron atom, removing it from carbon and replacing it with a hydroxyl group by using H_2O_2/OH^- .


The simultaneous addition of boron and hydrogen to the double bond leads to a syn addition. Oxidation of the trialkyl borane replaces boron with a hydroxyl group in the same stereochemical position. Thus, hydroboration of alkene is an example of stereospecific reaction, in which different stereoisomers of starting compounds react to give different stereoisomers of the product.




2. Find the product of following reaction





Y is :

CH3-

3.

.

Z is :
(A) Optically active 1°-alcohol
(B) Optically active 2°-alcohol
(C) Optically inactive 1°-alcohol
(D) Optically inactive 3°-alcohol

-a⊢aH

I CH

5.

(A) Three cyclic alcohol $(i) BH_3/THF$ $(i) H_2O_2/OHF$ Product. The product is

 $\xrightarrow{\text{(i) BH}_3/\text{THF}} Z.$

(C) Optically active alcohol

(B) Erythreo cyclic alcohol(D) Both (B) and (C)

Comprehension #4

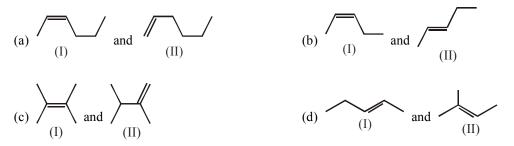
3

(A) Compound W has 2 DU

(B) Y & W are functional isomers

(C) W can be converted into Y with Lindlar catalyst

(D) W can be converted into Y with Ni/Pt


Comprehension #5

Hydrocarbon (A) C₆H₁₀ on treatment with H₂/Ni, H₂/Lindlar's catalyst or Na/liq. NH₃ forms three different reduction products (B), (C), (D) respectively. (A) does not form any salt with ammonical AgNO3 solution, but (E) forms salt on heating with NaNH₂ in an inert solvent. Compound (E) reacts with CH_3I to give (F). Compound (D) on oxidative ozonolysis gives n-butanoic acid along with other product.

1. (D) and (C) are (A) Isomeric alkane (B) Isomeric alkene (C) Not isomers (D) (C) is an alkene and (D) is salt 2. If (E) is reacted with acetaldehyde followed by acidification, product is (A) acid (B) ketone (C) ether (D) alcohol 3. (F) on ozonolysis will produce -(A) acetic aicd (B) formic acid (C) propanoic acid (D) formaldehyde Exercise # 4

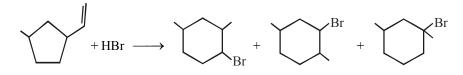
[Subjective Type Questions]

1. Select one from the following pair of isomer that has higher heat of combustion, justifying your choice.

- 2. Why n-Pentane has higher boiling point than neopentane?
- 3. A hydrocarbon (A) was found to have vapour 36. It forms only single mono chlorosubstitution product.
- 4. Find out reagents involved in following conversions :

$$(a) \rightarrow CH_3 - CH_2 - C - CH_3$$

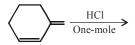
$$(b) \rightarrow CH_3 - CH_2 - CH_2 - CH_3$$

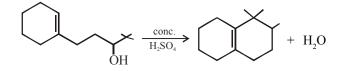

$$(b) \rightarrow CH_3 - CH_2 - CH_2 - C - H_3$$

$$(c) \rightarrow CH_3 - CH_2 - C - CH_3$$

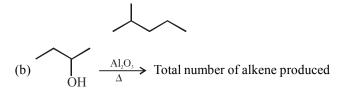
$$(d) \rightarrow CH_3 - CH_2 - C - CH_3$$

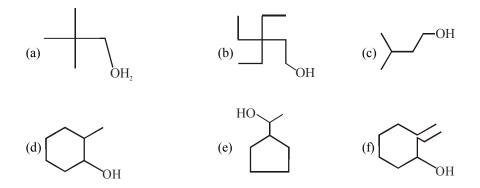
$$(e) \rightarrow CH_3 - CH_2 - C - CH_3$$


- 5. Write major product in the following reactions : (a) $F_3C - CH = CH_2 + HI \longrightarrow$ (b) $C_6H_5 - CH = CHCH_3 + HBr \xrightarrow{Peroxide}$ (c) $CH_3CH=C-CH_3 + CHBr_3 \xrightarrow{Peroxide}$ (d) $C_6H_5 - CH = CH_2 + B_2H_6 \xrightarrow{H_2O_2}$ (e) $CH_3 - CH = CH - CH = CH_2 \xrightarrow{HCl}{50^{\circ}C}$
- 6. An olefin was treated with ozone and the resulting product on reductive hydrolysis gave 2-pentanone and acetaldehyde. What is the structure of olefin ? Write reactions.
- 7. Propose mechanism :

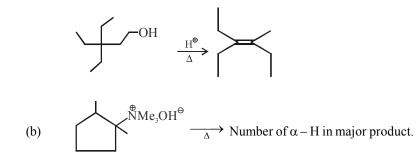

8. (Y)
$$\leftarrow \frac{Na, NH_3}{C} = C = C$$
 H_2 H_2 (X).

What are X and Y in above reaction .


9. The reaction of the diene shown below with dry HCl can lead to four products. Provide structural formula of all the products.


10. Write a plausible mechanism for the following transformation.

11. (a) How many alkene on catalytic reduction will produce



12. How many alcohols out of following on dehydration with hot conc. H_2SO_4 will give alkene having 9 α H as major product.

13.

(a) How many 1,2-shifts are involed.

14. Propane reacts with chlorine in sunlight to give two products. 1-chloropropane is obtained in 44% yield and 2chloropropane is obtained 56% yield of the total product. What will be the precent yield of the major product obtained when butane is treated with Cl₂ similar conditions.

15.

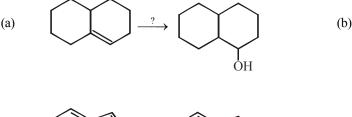
$$\xrightarrow{OMDM} Major product$$

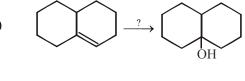
$$\xrightarrow{HBO} Major product$$

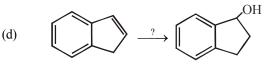
$$\xrightarrow{dil.H_2SO_4} Major product$$

- (a) Number of stereoisomers possible for reactant (P).
- (b) Number of stereoisomers formed during reaction (A) as major product (Q).
- (c) Number of stereoisomers formed during reaction (B) as major product (R).
- (d) Number of stereoisomers formed during reaction (C) as major products (S).

16.
$$X \xrightarrow{2H_2}{Ni}$$


- (a) Number of 'X' which can show geometrical isomerism.
- (b) Number of 'X' which can show optical isomerism.


17. OsO_4 NaOH,H₂O

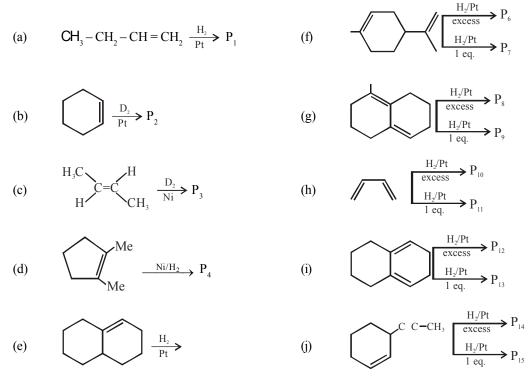

- (a) Number of organic product formed during this reaction.
- (b) Number of stereoisomers possible for major organic product of this reaction are.

OH

- (c) Oxidation state of Os before reaction.
- (d) Oxidation stawte of Os after reaction.
- 18. Explain why iso octane is less viscous than n-octane.
- **19.** Which reagent are suitable for following transformation?

(c)

(D) $\xrightarrow{H_2/Pt}$ Cyclopentane


20. How many alkene on catalytic reduction give normal butane as product.

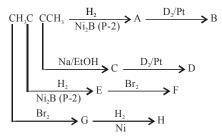
(i)	(A) $\xrightarrow{H_2/Pt}$ n-butane	(ii)	(B) $\xrightarrow{H_2/Pt}$ Iso-pentane

(iii) (C) $\xrightarrow{H_2/Pt}$ Neo-pentane (iv)

(v) (E)
$$\xrightarrow{H_2}{Pt}$$

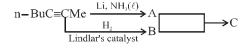
- 21. Match each of the following isomer with the correct boiling point and melting point. Explain your choice. Compound : 2,2,3,3-tetramethyl butane and n-octane Boiling point : 106.5°C, 125.7°C Melting point : -56.8°C, + 100.7°C
- 22. Give the expected major product for each reaction, including stereochemistry where applicable.

- Write one reagent in each case to make distinction between
 (a) 1-butyne and 2-butyne
 (b) 1-butene and 1-butyne
 (c) ethene and ehane
- 24. A hydrocarbon $A(C_{10}H_{12})$ has no chiral carbon. A gives a white precipitate with ammonical solution of silver nitrate. A on treatment with H_2/Pt gives $B(_{10}H_{20})$. A on ozonolysis gives $C(C_8H_{12}O_4)$ as one product which on heating with soda lime gives $D(C_6H_{12})$. D on monochlorination with Cl_2/hv gives $C_6H_{11}Cl$ as sole isomer. Identify A to D.


26. Identify the products in the following, giving their configurations. (if any)

27. Idenfity A to D in the following scheme.

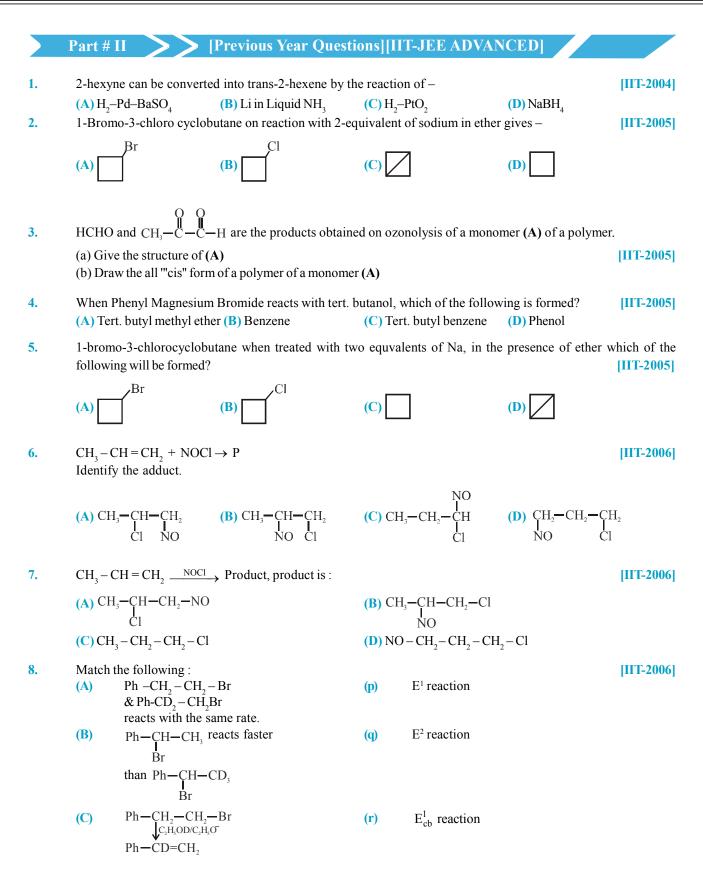
 $CH_{3}Br \xrightarrow{Mg/ether} A \xrightarrow{D_{2}O} B \xrightarrow{Cl_{2}, hv} one mol \geq C \xrightarrow{Na/ether} D$

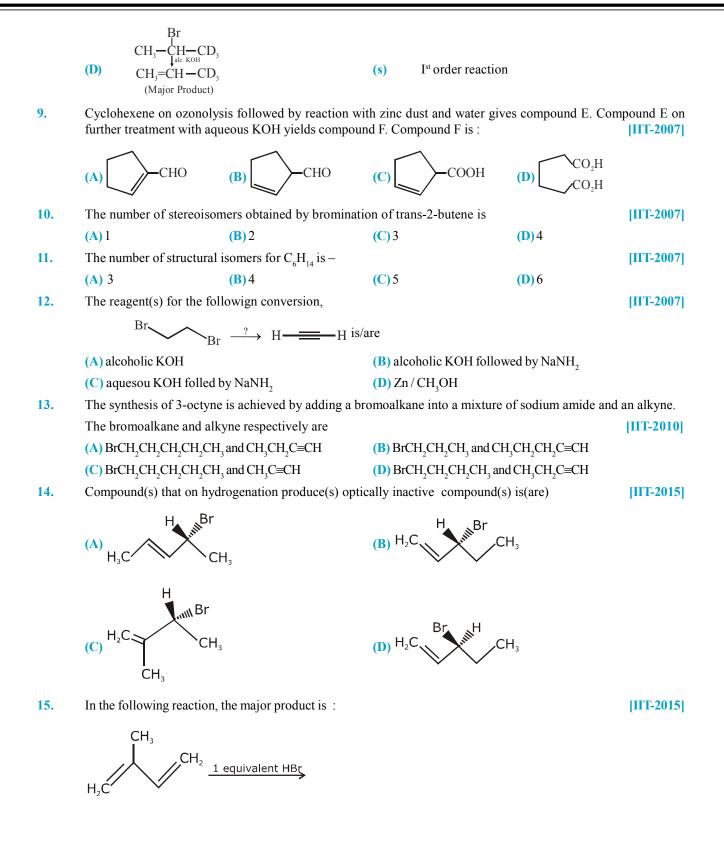

28. 2-Butyne undergoes following reactions in steps as indicated. Idenfity A to H.

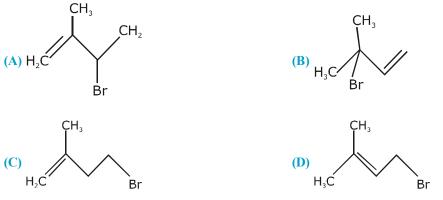
- 29. C_5H_{10} represents three isomeric alkenes A_1 , A_2 and A_3 . Each on hydrogenation gives 2-methylbutane. A_1 and A_2 on oxymercuration-demercuration give the same 3° alcohol. A_2 and A_3 on hydroboration oxidation give different 1° alcohol. Assign structure to A_1 , A_2 and A_3 explain the reaction.
- 30. $\overrightarrow{C_4H_9Cl} \xrightarrow{Na/ether} \overrightarrow{CH_3}_{CH_3}CHCH_2CH_2CH_{CH_3}$

Write structure of C_4H_9Cl .

- 31.Specity the reagents in which addition to alkene is syn or anti
(i) Br_2 water
(ii) H_2/pd
(iii) MnO_4^-/OH^-
(v) HCO_3H
(v) MCPBA(vi) OSO_4 in ether, followed by \overline{OH}/H_2O
- 32. Identify A, B, C with proper explanation.


Exercise # 5	Part # I	> [Previous Year Questions] [AIEEE/JEE-MAIN]


1.	Which one of the following is reduced with 2(A) Butan-2-one(B) Acetic acid	Zn–Hg/HCl to give the correspond (C) Acetamide	<pre>ding hydrocarbon. [AIEEE-2004] (D) Ethyl acetate</pre>
2.	Which one of the following has the minimum (A) isobutane (B) 1-butyne	n boiling point : (C) 1-butene	[AIEEE-2004] (D) n-butane
3.	2-Methylbutane on reacting with bromine in(A) 2-bromo-2-methylbutane(C) 1-bromo-3-methylbutane	the presence of sunlight gives m (B) 1-bromo-2-methylbu (D) 2-bromo-3-methylbu	ıtane
4.	Alkyl halides react with dialkyl copper reage (A) alkyl copper halides (C) alkenyl halides	ent to give (B) alkenes (D) alkanes	[AIEEE-2005]
5.	Reaction of one molecule of HBr with one mo (A) 1-bromo-2-butene under thermodynamic (B) 3-bromobutene under kinetically control (C) 1-bromo-2-butene under kinetically cont (D) 3-bromobutene under thermodynamicall	cally controlled conditions led conditions rolled conditions	ves predominantly [AIEEE-2005]
6.	Acid catalyzed hydration of alkenes except of (A) secondary or tertiary alcohol (B) primary alcohol (C) mixture of secondary and tertiary alcoho (D) mixture of primary and secondary alcoho	ls	[AIEEE-2005]
7.	Elimination of bromine from 2-bromobutane (A) predominantly 2-butene (C) predominantly 2-butyne	results in the formation of (B) equimolar mixture o (D) predominantly 1-bu	
8.	$\overbrace{n-Bu}^{Me} \stackrel{\Theta}{\to} H \xrightarrow{\Delta}$	above elimination reaction is –	[AIEEE-2006]
	(A) Me (B) $CH_2 = CH_2$	(C) Me	(D) Me
9.	Reaction of trans-2-phenyl-1-bromocyclo pe (A) 4-phenyl cyclopentene (C) 1-phenyl cyclopentene	(B) 2-phenyl cyclopento (D) 3-phenyl cyclopento	ene
10.	Phenyl magnesium bromide reacts with meth (A) A mixture of anisole and Mg(OH)Br (C) A mixture of toluene and Mg(OH)Br	(B) A mixture of benzen (D) A mixture of phenol	
11.	Which of the following reactions will yield, 2 (A) $CH_3 - C \equiv CH + 2HBr$ (C) $CH \equiv CH + 2HBr \longrightarrow$	2,2-dibromopropane (B) $CH_3CH = CHBr + 1$ (D) $CH_3 - CH = CH_2 + H_3$	


CHEMISTRY FOR JEE MAIN & ADVANCED

$CH_{3}CH = CHCH_{3} \xrightarrow{O_{3}} A \xrightarrow{H_{2}O} B.$ The compound B is – (A) CH_{3}CH_{2}CHO (B) CH_{3}COCH_{3} (C) CH_{3}CH_{2}CHCH_{3} (D) CH_{3}CH	O [AIEEE-2009]
The compound B is –	
(A) CH_3CH_2CHO (B) CH_3COCH_3 (C) $CH_3CH_2CHCH_3$ (D) $CH_3CH_3CH_3$	
	[AIFFF 2000]
13. The hydrocarbon which can react with sodium in liquid ammonia is	[AILLE-2007]
(A) $CH_3CH_2CH_2C \equiv CCH_2CH_2CH_3$ (B) $CH_3CH_2C \equiv CH$	
(C) $CH_3CH = CHCH_3$ (D) $CH_3CH_2C \equiv CCH_2CH_3$	
14. The treatment of CH_3MgX with $CH_3C \equiv C - H$ produces	[AIEEE-2011]
(A) $CH_3 - CH = CH_2$ (B) $CH_3C = C - CH_3$ (C) $CH_3 - C = C - CH_3$ (D) CH_4	
(A) $CH_3 - CH = CH_2$ (B) $CH_3 C \equiv C - CH_3$ (C) $CH_3 - C - C - CH_3$ (D) CH_4 15. The main product of the following reaction is	[AIEEE-2011]
$C_{6}H_{5}CH_{5}CH_{6}(OH)CH_{6}(CH_{3})_{2} \xrightarrow{Conc.H_{2}SO_{4}} ?$	
$\begin{array}{c} H_{3}C_{6}CH_{2}CH_{2} \\ \hline \textbf{(A)} \\ H_{2}C_{6}CH_{2}C=CH_{2} \\ \hline \textbf{(B)} \\ H_{3}C_{6}C=C \\ \hline \textbf{(B)} \\ H_{3}C_{6}C=C \\ \hline \textbf{(C)} \hline \textbf{(C)} \\ \hline \textbf{(C)} \\ \hline \textbf{(C)} \hline \textbf{(C)} \hline \textbf{(C)} \\ \hline \textbf{(C)} \hline$	
$H_{3}C \qquad \qquad H_{3}C \qquad \qquad H \qquad CH(CH_{3})_{2}$	
$C_6H_5CH_2$ /CH ₃ C_6H_5 /CH(CH ₃),	
(B) $C_6H_5CH_2$ $C=C$ CH_3 (D) C_6H_5 $C=C$ $CH(CH_3)_2$	
H' CH_3 H' H	
16. One mole of a symetrical alkene on ozonolysis gives two moles of an aldehyde having a mo	
The alkene is – (A) ethene (B) propene (C) 1-butene (D) 2-buten	[AIEEE-2012]
 Ozonolysis of an organic compound gives formaldehyde as one of the products. This confin 	
	[JEE-Main 2013]
(A) an isopropyl groups (B) an acetylenic triple bond	
(C) two ethylenic double bonds (D) a vinyl group	
 Ozonolysis of an organic gives formaldehyde as one of the products. This confirms the pre 'A' from the following compounds :- 	sence of : - [JEE-Main 2015]
	nyl-2-pentene
19. 2-Hexyne gives trans-2-Hexne on treatment with –	[JEE-Main 2015]
(A) LiAlH_4 (B) Pt/H_2 (C) Li/NH_3 (D) Pd/BaS	O_4
20. In the given transformation, which of the following is the most appropriates reagent ?	[JEE-Main 2015]
CH=CHCOCH ₃ CH=CHCH ₂ CH ₃	
Reagent	
HO' V HO' V	
(A) NaBH ₄ (B) NH ₂ NH ₂ , $\stackrel{\Theta}{O}$ H (C) Zn – Hg / HCl (D) Na, Liq	.NH ₃

- The major organic compound formed by the reaction of 1, 1, 1– trichloroethane with silver powder is : 21. [**JEE - Main 2014**] (B) 2-Butene (C) Acetylene (D) Ethene (A) 2-Butyne 22. Which compound would give 5 - keto - 2 - methyl hexanal upon ozonolysis? [JEE - Main 2015] CH₃ ÇH₃ CH₃ ĊΗ₃ H. ,CH₃ **(D) (A) (B**) **(C)** ĊH₃ CH₃
- 23.The trans alkenes are formed by the reduction of alkynes with :(A) NaBH4(B) Na/Liq. NH3(C) Sn HCI
- **[JEE Main 2018]** (**D**) H₂ - Pd/C, BaSO₄

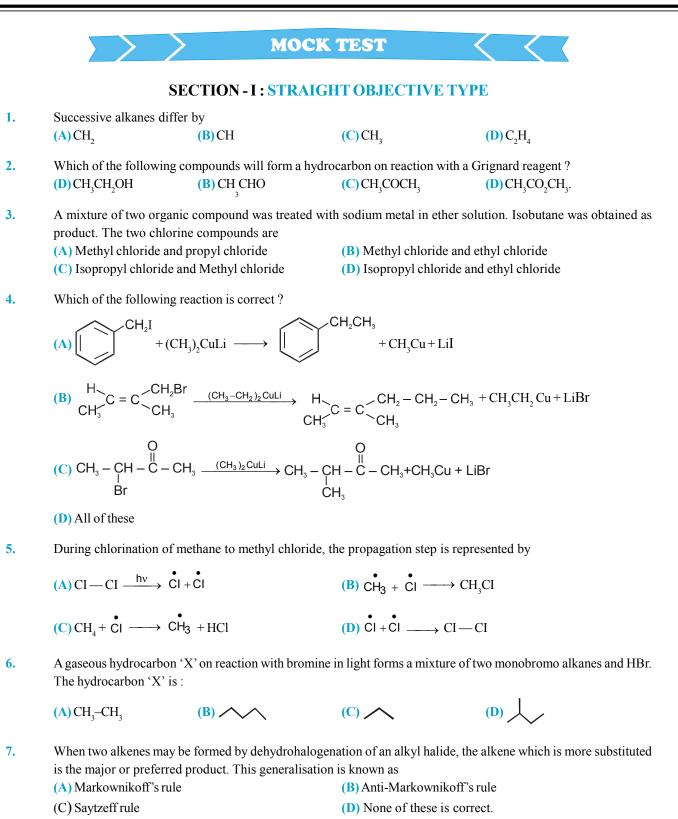
16. The number of hydroxyl group(s) in \mathbf{Q} is

 $H_{H_{1}}$ H_{0} H_{0} H_{0} H_{0} H_{1} H_{0} H_{1} H_{0} H_{1} H_{1} H_{0} H_{1} H_{1} H_{0} H_{1} H_{1}

17. The correct statement(s) for the following addition reactions is(are)

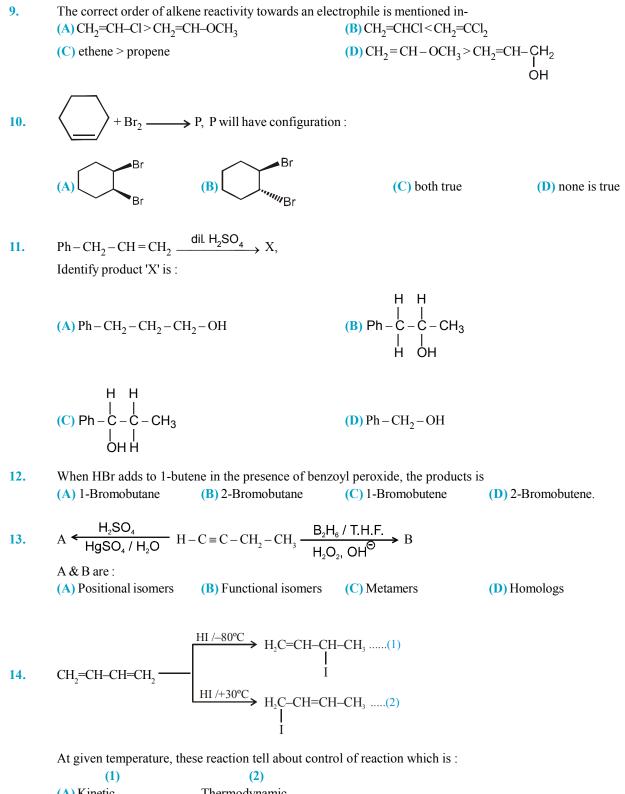
(i) $\begin{array}{c} H_{3}C \\ H \\ CH_{3} \end{array} \xrightarrow{H_{2}/CHCl_{3}} M \text{ and } N$ (ii) $\begin{array}{c} H_{3}C \\ H \\ H \\ H \end{array} \xrightarrow{CH_{3}} Br_{2}/CHCl_{3} \\ H \\ H \end{array} O \text{ and } P$

(A) (M and O) and (N and P) are two pairs of enantiomers


(B) Bromination proceeds through trans-addition in both the reactions

(C) O and P are identical molecules

(D) (M and O) and (N and P) are two pairs of diastereomers


[IIT-2016]

[IIT-2017]

8. Ethyne can be prepared in a single step from(A) Calcium carbide(B) Ethylidene bromide

(C) Ethylene bromide (D) All of these.

(A) Kinetic	Thermodynamic
(B) Thermodynamic	Kinetic
C) Kinetic	Kinetic
D) Thermodynamic	Thermodynamic

SECTION - II : MULTIPLE CORRECT ANSWER TYPE

15. The correct products have been reported in reactions.

(A)
$$CH_2 = CH - CHO \xrightarrow{HCl(g)(-10^{\circ}C)} CH_2 - CH_2 - CHO$$

(B) $CH_2 = CH - COOH \xrightarrow{H_2O/H_2SO_4} CH_2 - CH_2 - COOH$
OH

(C)
$$CH_3 - C = CH - C - CH_3 \xrightarrow{CH_3OH/H_2SO_4} CH_3 - CH - CH - CH - CH_3$$

O $CH_3 - C = CH - CH_3 \xrightarrow{CH_3OH/H_2SO_4} CH_3 - CH - CH - CH - CH_3$

(**D**)
$$CH_3 - CH = CH - OCH_3 \xrightarrow{CH_3OH/H^+} CH_3 - CH_2 - CH - OCH_3$$

16.Which of following will react with But-1-yne ?(A)
$$AgNO_3 + NH_4OH$$
(B) $Cu_2Cl_2 + NH_4OH$ (C) Na(D) $KMnO_4/KOH$ cold

17. Acetone (CH_3COCH_3) is the major product in :

I
$$CH_2 = C = CH_2 \xrightarrow{H_3O^{\oplus}}$$

II $CH_3C = CH \xrightarrow{H_2SO_4 / HgSO_4 / H_2O}$
III $CH_3C = CH \xrightarrow{BH_3.THF}_{H_2O_2 / OH^{\oplus}}$
(A) I (B) II (C) III (D) none

SECTION - III : ASSERTION AND REASON TYPE

- Statement-1 : When double and triple bonds are in conjugation, addition takes place at triple bond.
 Statement-2 : When double and triple bond are not in the conjugation, addition takes place at double bond
- 19. Statement-1: $CH_3 CHBrCH_3 \xrightarrow{alcoKOH} CH_3 CH = CH_2 \xrightarrow{BrCl} CH_3CHCl CH_2Br$

Statement-2 : In above reaction product formed, is based on the principle of E2 & electrophilic addition reaction by markownikov's rule.

- 20. Statements-1 : Reaction of HCl with But-2-ene in the presence or absence of peroxide will give same products. Statement-2 : Above reaction is regioselective reaction.
- Statement-1 : Addition of bromine to trans-2-butene yields meso-2. 3-dibromobutane.
 Statement-2 : Bromine addition to an alkene is an electrophilic addition

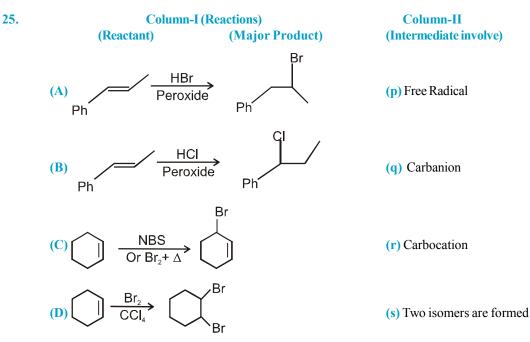
SECTION - IV : COMPREHENSION TYPE

Read the following comprehensions carefully and answer the questions.

Comprehension #1

 $X(C_{4}H_{9}Br) \xrightarrow{\text{alc. KOH}} Y \xrightarrow{Br_{2}} Z \text{ (Dibromide)} \xrightarrow{\text{NaNH}_{2}} W \text{ (gas)} \xrightarrow{\text{AgNO}_{3}} White ppt$

22. X, Y and Z are :


XYZ(A)
$$CH_3 - CH_2CH_2CH_2Br$$
 $CH_3 - CH = CH - CH_3$ $CH_3 - CH - CH_2 - CH_3$ (B) $CH_3 - CH_2CH_2CH_2Br$ $CH_3 - CH_2 - CH = CH_2$ $CH_3 - CH_2 - CH - CH_2$ (C) $CH_3 - CH - CH_2 - CH_3$ $CH_3 - CH = CH - CH_3$ $CH_3 - CH_2 - CH - CH_2$ (D) $CH_3 - CH_2 - CH - CH_3$ $CH_3 - CH_2 - CH = CH_2$ $CH_3 - CH_2 - CH - CH_2$ (D) $CH_3 - CH_2 - CH - CH_3$ $CH_3 - CH_2 - CH = CH_2$ $CH_3 - CH_2 - CH - CH_2$ (D) $CH_3 - CH_2 - CH - CH_3$ $CH_3 - CH_2 - CH = CH_2$ $CH_3 - CH_2 - CH - CH_2$ (D) $CH_3 - CH_2 - CH - CH_3$ $CH_3 - CH_2 - CH = CH_2$ $CH_3 - CH_2 - CH - CH_2$ (D) $CH_3 - CH_2 - CH - CH_3$ $CH_3 - CH_2 - CH = CH_2$ $CH_3 - CH_2 - CH - CH_3$ (D) $CH_3 - CH_2 - CH - CH_3$ $CH_3 - CH_2 - CH = CH_2$ $CH_3 - CH_2 - CH - CH_3$ (D) $CH_3 - CH_2 - CH - CH_3$ $CH_3 - CH_2 - CH = CH_2$ $CH_3 - CH_2 - CH - CH_3$ (D) $CH_3 - CH_2 - CH - CH_3$ $CH_3 - CH_2 - CH = CH_2$ $CH_3 - CH_2 - CH - CH_3$ (D) $CH_3 - CH_2 - CH - CH_3$ $CH_3 - CH_2 - CH = CH_2$ $CH_3 - CH_2 - CH - CH_3$ (D) $CH_3 - CH_2 - CH - CH_3$ $CH_3 - CH_2 - CH = CH_2$ $CH_3 - CH_2 - CH - CH_3$ (D) $CH_3 - CH_2 - CH_3 - CH_3$ $CH_3 - CH_2 - CH_3$ $CH_3 - CH_3 - CH_3$ (D) $CH_3 - CH_3 - CH_3 - CH_3$ $CH_3 - CH_3$ $CH_3 - CH_3$ (D) $CH_3 - CH_3 - CH_3$ $CH_3 - CH_3$ $CH_3 - CH_3$ (D) $CH_3 - CH_3 - CH_3$ $CH_3 - CH_3$ $CH_3 - CH_3$ (D) $CH_3 - CH_3$ $CH_3 - CH_3$ $CH_3 - CH_3$ (D) $CH_3 - CH_3$ $CH_3 - CH_3$ $CH_$

23. Reductive ozonolysis of Y yields (A) 2 moles of CH_3CHO (C) $CH_3 - C - CH_3 \& HCHO$ O

(B) CH₃CH₂CHO & HCHO
(D) CH₃CH₂COOH & HCOOH

24. Which of the following statement is correct
(A) Y and W distinguish by bromine water test
(B) Y & W are functional isomers
(C) W can be converted into Y with Lindlar's catalyst
(D) W can be converted into Y with H₂/Pt

SECTION - V : MATRIX - MATCH TYPE

SECTION - VI : SUBJECTIVE TYPE

- 26. Convert the following molecule in given product : a. CH,CH,CH,CH,I to CH,CH,CH,CH,Br
 - **b.** Cyclohexyl acetylene to ethylcyclohexylacetylene.
 - c. CH=CH to (A) 2-butanone and (B) butanal
 - d. Cyclohexane to cyclohexene and 1,3-cyclohexadiene
 - e. 2-bromobutane to cis and trans-2-butene
 - **f.** 1-Butyne to (A) 1-butanol and (B) 2-butanol
 - g. 1-butene to 1,3-butadiene

27. (A)
$$\xrightarrow{CH_3}$$
 (X) (B) \xrightarrow{HBr} Y
Identify X, Y and Z.

ANSWER KEY

EXERCISE - 1

1. B	2. B	3. A	4. A	5. A	6. A	7. C	8. B	9. D	10. C	11. C	12. A	13. C
14. B	15. B	16. D	17. C	18. D	19. A	20. C	21. A	22. C	23. C	24. B	25. C	26. B
27. B	28. B	29. A	30. A	31. D	32. B	33. A	34. A	35. B	36. D	37. B	38. A	39. B
40. A	41. C	42. A	43. A	44. C	45. A	46. C	47. B	48. B	49. D	50. B	51. D	52. C
53. A	54. D	55. D	56. A	57. D	58. D	59. D	60. C	61. A	62. C	63. B	64. B	65. B
66. C	67. C	68. D	69. D	70. C	71. D	72. C	73. B	74. D	75. A	76. D	77. B	78. C
79. B	80. C	81. B	82. B	83. A	84. A	85. C	86. B	87. C	88. A	89. B	90. C	91. A
92. A	93. A	94. A	95. A	96. B	97. D							

EXERCISE - 2 : PART # I

1.	D	2.	D	3.	В	4.	A, B, D
5.	В	6.	В	7.	В	8.	С
9.	D	10.	А	11.	A, B	12.	A, B
13.	A, B	14.	A, D	15.	A,B, C	16.	A, B, C, D
17.	A, B, C, D	18.	А	19.	В	20.	В
21.	B,D	22.	A, B, C	23.	A, B, C	24.	A, B, C
25.	A, B, C	26.	A, C, D	27.	A, B	28.	A, B, D
29.	A, B, D	30.	A, B, C	31.	A, B, C, D	32.	A, B
33.	A, B, C	34.	A, C, D	35.	A, B, C, D	36.	A, C
37.	A, B, D	38.	A, B, C, D	39.	A, B, C		

PART # II

1. D 2. A 3. D 4. C 5. A 6. C 7. B 8. A 9. B 10. C 11. D 12. D 13. C 14. B 15. B

EXERCISE - 3 : PART # I

1.	$A \rightarrow (s), B \rightarrow (r), C \rightarrow (p), D \rightarrow (q)$	2.	$A \rightarrow (q), B \rightarrow (p), C \rightarrow (t), D \rightarrow (r), D \rightarrow (s)$
3.	$A \rightarrow (q), B \rightarrow (p), C \rightarrow (s), D \rightarrow (r)$	4.	$A \rightarrow (p, t), B \rightarrow (q, t), C \rightarrow (s, t), D \rightarrow (s, t)$
5.	$A \rightarrow (p, s), B \rightarrow (r, s), C \rightarrow (p, s), D \rightarrow (s)$	6.	$A \rightarrow (p, r), B \rightarrow (q, t), C \rightarrow (p, s), D \rightarrow (q, t)$
7.	$A \rightarrow (q, r), B \rightarrow (p, r), C \rightarrow (q, r), D \rightarrow (q, r)$		

PART # II

Comprehension #1:	1.	А	2.	С	3.	С	4.	А	5.	D
Comprehension #2:	1.	А	2.	С	3.	D				
Comprehension #3:	1.	В	2.	D	3.	В	4.	С	5.	D
Comprehension #4:	1.	В	2.	В	3.	A, C				
Comprehension # 5 :	1.	В	2.	D	3.	A				

EXERCISE - 5 : PART # I

1. A 2. A 3. A 4. D 5. A 6. A 7. A 8. B 9. D 10. B 11. A 12. D 13. B 14. D 15. B 16. D 17. D 18. D 19. C 20. B 21. A 22. D 23. B

PART # II

1.	В	2.	C 3	3. a. (A)	$\rightarrow CH_3$ -	C−CH= ■ CH ₂	CH ₂	b. ^{СН} ₃ , С	C=C C	$H_2 \xrightarrow{CH_2} C=$	CCCH2 H	CH ₃ CH ₂ C=C	< ^H
4. 12.	B B	5. 13.	D D	6. 14.	A B,D	7. 15.	A D	9. 16.	В 4	10. 17.	A B,D	11.	C

MOCK TEST

1.	А	2.	D	3.	С	4.	D	5.	С
6.	С	7.	С	8.	D	9.	D	10.	В
11.	С	12.	А	13.	В	14.	А		
15.	A, B, D	16.	A, B, C, D	17.	A, B	18.	В	19.	Α
20.	С	21.	В	22.	В	23.	В	24.	С
25.	$A\!\rightarrow\!(p,\!s),B\!\rightarrow\!$	(r, s), C –	\rightarrow (p,s), D \rightarrow (s)						

