HINTS \& SOLUTIONS

EXERCISE - 1

Single Choice

2. There are 6 possible arrangements of a, b, c and only one of them is in alphabetical order.

Alternatively $\frac{{ }^{6} \mathrm{C}_{3}(\text { for } \mathrm{a}, \mathrm{b}, \mathrm{c}) \cdot 3!}{6!}=\frac{1}{6}$
3. Let the roots of the quadratic equation be α, β

After squaring α^{2}, β^{2}

$$
\begin{align*}
& \alpha \beta=(\alpha \beta)^{2} \Rightarrow \alpha \beta(\alpha \beta-1)=0 \\
& \Rightarrow \alpha \beta=0 \tag{i}\\
& \Rightarrow \alpha \beta=1 \tag{ii}
\end{align*}
$$

Now $\quad \alpha^{2}+\beta^{2}=\alpha+\beta$
$(\alpha+\beta)^{2}-2 \alpha \beta=(\alpha+\beta)$
$\Rightarrow(\alpha+\beta)^{2}-(\alpha+\beta)-2 \alpha \beta=0$
$(\alpha+\beta)\{(\alpha+\beta)-1\}=0$

$$
\begin{align*}
& \alpha+\beta=0 \ldots \text { (3) } \\
& \alpha+\beta=1 \ldots \text { (4) }
\end{align*}
$$

solving (1) \& (3)

$$
\alpha=0, \beta=0
$$

solving (1) \& (4)

$$
\begin{aligned}
\alpha(1-\alpha)=0 & \Rightarrow \alpha=0,1 \\
& \Rightarrow \beta=1,0
\end{aligned}
$$

solving (2) \& (4)

$$
\begin{aligned}
& \alpha+\frac{1}{\alpha}=1 \\
& \alpha^{2}-\alpha+1=0 \\
& (\alpha, \beta) \in\left(\omega, \omega^{2}\right)
\end{aligned}
$$

Hence sample space $\rightarrow(0,0)(1,1)(0,1)\left(\omega, \omega^{2}\right)$
$\therefore \quad \mathrm{P}(\mathrm{A})=\frac{2}{4}=\frac{1}{2}$
6. $\quad \begin{aligned} & W W \\ & R R R\end{aligned}$
$S=\{W W$ or $\underbrace{R W W}_{W R W}$ or $\underbrace{\text { RRW }}_{\underbrace{\text { RRWW }}_{\text {RWRW }}}\}$
$\mathrm{P}($ last drawn ball is white $)=\frac{2}{5} \cdot \frac{1}{4}+(2)\left(\frac{3}{5} \cdot \frac{2}{4} \cdot \frac{1}{3}\right)+$
(3) $\left(\frac{3}{5} \cdot \frac{2}{4} \cdot \frac{2}{3} \cdot \frac{1}{2}\right)=\frac{1}{10}+\frac{1}{5}+\frac{3}{10}=\frac{6}{10}$
7. $\left|\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right|=\mathrm{ad}-\mathrm{bc}<0$
$\mathrm{P}(\mathrm{E}) \rightarrow$ when determinant value is negative

a	d	b	c
0	0	1	1
0	1	1	1
1	0	1	1

$\therefore \quad$ Probability will be $\rightarrow 1-\frac{3}{16}=\frac{13}{16}$
8. $P(H)=p ; P(T)=1-p$

A wins if A throws a Tail before B tosses a Head
$\mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{T}$ or HTT or HTHTT or \qquad ...)
$[\mathrm{HTT} \Rightarrow \mathrm{A}$ throws Head and B throws Tail and again A
throws a Tail]
$\therefore \frac{1-\mathrm{p}}{1-\mathrm{p}(1-\mathrm{p})}=\frac{1}{2} \Rightarrow 1-\mathrm{p}+\mathrm{p}^{2}=2-2 \mathrm{p}$
$\Rightarrow \mathrm{p}^{2}+\mathrm{p}-1=0$
$\Rightarrow \mathrm{p}=\frac{-1 \pm \sqrt{1+4}}{2}=\frac{\sqrt{5}-1}{2}$
10. Determinant $=a d-b c$
probability that randomly chosen product (xy) will be
odd $\quad=\mathrm{P}($ both odd $)=\mathrm{p}^{2}$
$\therefore \quad$ Probability (xy) is even $=1-\mathrm{p}^{2}$
Now ($a d-b c$) is even
\Rightarrow both odd or both even $=p^{4}+\left(1-p^{2}\right)^{2}$
Hence $\mathrm{p}^{4}+\left(1-\mathrm{p}^{2}\right)^{2}=\frac{1}{2}$
put $\mathrm{p}^{2}=\mathrm{t} ; \mathrm{t}^{2}+(1-\mathrm{t})^{2}=\frac{1}{2} \Rightarrow 2 \mathrm{t}^{2}-2 \mathrm{t}+\frac{1}{2}=0$
$\Rightarrow 4 t^{2}-4 \mathrm{t}+1=0$
$(2 \mathrm{t}-1)^{2}=0 \Rightarrow \mathrm{t}=\frac{1}{2} ; \quad \therefore \quad \mathrm{p}^{2}=\frac{1}{2} ;$
Hence $\mathrm{p}=\frac{1}{\sqrt{2}}$
13. letters

Digits

| | | |
| :--- | :--- | :--- | :--- | :--- |
| $26 \times 26 \times 1$ | | |
| $10 \times 10 \times 1$ | | |

$\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$

$$
\begin{aligned}
& =\frac{26 \times 26 \times 1}{(26)^{3}}+\frac{10 \times 10 \times 1}{(10)^{3}}-\frac{26 \times 26 \times 1}{(26)^{3}} \cdot \frac{10 \times 10 \times 1}{(10)^{3}} \\
& =\frac{1}{26}+\frac{1}{10}-\frac{1}{260}=\frac{7}{52}
\end{aligned}
$$

14. We have $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$\therefore \quad \frac{2}{3}=\frac{1}{2}+\mathrm{P}(\mathrm{B})-\frac{1}{2} \mathrm{P}(\mathrm{B})=\frac{1}{2}+\frac{1}{2} \mathrm{P}(\mathrm{B})$
$\mathrm{P}(\mathrm{B})=\frac{4}{3}-1=\frac{1}{3}=\mathrm{p}_{1}$
$\mathrm{P}(\mathrm{A} / \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}=\frac{\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})}{\mathrm{P}(\mathrm{B})}=\mathrm{P}(\mathrm{A})=\frac{1}{2}=\mathrm{p}_{2}$
Again $\mathrm{P}\left(\mathrm{B}^{\mathrm{c}} / \mathrm{A}\right)=\frac{\mathrm{P}\left(\mathrm{B}^{\mathrm{c}} \cap \mathrm{A}\right)}{\mathrm{P}(\mathrm{A})}=\frac{(1-\mathrm{P}(\mathrm{B})) \mathrm{P}(\mathrm{A})}{\mathrm{P}(\mathrm{A})}$
$=1-\frac{1}{3}=\frac{2}{3}=\mathrm{p}_{3}$
$\frac{1}{3}, \frac{1}{2}, \frac{2}{3}$ are in A.P.
15. $\mathrm{n}(\mathrm{S})=\underbrace{713 \times \times \times \times}=3\left(\frac{4!}{(2!)(1!)(1!)}\right)=36$
$\mathrm{n}(\mathrm{A})=1 ; \mathrm{p}=\frac{1}{36}$
odds in favour 1:35
16. H : tossing a Head, $\mathrm{P}(\mathrm{H})=\frac{1}{2} ; \mathrm{A}:$ event of tossing a 2 with die, $\mathrm{P}(\mathrm{A})=\frac{1}{6}$

E: tossing a 2 before tossing a head
$\mathrm{P}(\mathrm{E})=\mathrm{P}(\overline{\mathrm{H}} \cap \mathrm{A} \quad$ or $\{(\overline{\mathrm{H}} \cap \overline{\mathrm{A}})$ and $(\overline{\mathrm{H}} \cap \mathrm{A})\}$ or $\ldots \ldots .$.
$=\left(\frac{1}{2} \cdot \frac{1}{6}\right)+\left(\frac{1}{2} \cdot \frac{5}{6}\right) \cdot\left(\frac{1}{2} \cdot \frac{1}{6}\right)+\ldots \ldots$.
$=\frac{1}{12}+\frac{5}{12} \cdot \frac{1}{12}+$ \qquad
$\mathrm{P}(\mathrm{E})=\frac{\frac{1}{12}}{1-\frac{5}{12}}=\frac{1}{7}$
21. $n(S)=216$
x_{1} : number appearing on first dice.
x_{2} : number appearing on second dice.
x_{3} : number appearing on third dice.
$x_{1}+x_{2}+x_{3} \leq 10 \quad\left(x_{1}, x_{2}, x_{3} \in[1,6]\right)$
$\Rightarrow \quad x_{1}+x_{2}+x_{3} \leq 7 \quad$ (after giving 1 each to x_{1}, x_{2}, x_{3})
$\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{X}=7$ (adding X as a false beggar)
Total number of solutions ${ }^{(7+3)} \mathrm{C}_{3}={ }^{10} \mathrm{C}_{3}=120$
Now, number of solutions when any one of x_{1}, x_{2}, x_{3} takes the value 7 is $x_{1}+x_{2}+x_{3}+X=1$
$\Rightarrow{ }^{(1+3)} \mathrm{C}_{3}={ }^{4} \mathrm{C}_{3}=4$
\therefore total number of ways are ${ }^{10} \mathrm{C}_{3}-{ }^{4} \mathrm{C}_{3} \times{ }^{3} \mathrm{C}_{1}$

$$
=120-12=108
$$

$\therefore \quad$ required probability is $\frac{108}{216}=\frac{1}{2}$
24. Given $\mathrm{P}(\mathrm{A})=\frac{1}{16} ; \mathrm{P}(\mathrm{B})=\frac{1}{16} ; \mathrm{P}(\mathrm{C})=\frac{2}{16}$;

$$
\mathrm{P}(\mathrm{D})=\frac{3}{16} ; \mathrm{P}(\mathrm{e})=\frac{4}{16} ; \mathrm{P}(\mathrm{f})=\frac{5}{16} ;
$$

$P(a, c, e)=P(A)=\frac{1}{16}+\frac{2}{16}+\frac{4}{16}=\frac{7}{16} ; A^{c}=\{b, d, f\}$
$P(c, d, e, f)=P(B)=\frac{2}{16}+\frac{3}{16}+\frac{4}{16}+\frac{5}{16}=\frac{14}{16}$
$P(b, c, f)=P(C)=\frac{1}{16}+\frac{2}{16}+\frac{5}{16}=\frac{8}{16}$
$\mathrm{p}_{1}=\mathrm{P}(\mathrm{A} / \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}=\frac{\mathrm{P}(\mathrm{c}, \mathrm{e})}{\mathrm{P}(\mathrm{B})}=\frac{6}{14}=\frac{3}{7}$
$\mathrm{p}_{2}=\mathrm{P}(\mathrm{B} / \mathrm{C})=\frac{\mathrm{P}(\mathrm{B} \cap \mathrm{C})}{\mathrm{P}(\mathrm{C})}=\frac{\mathrm{P}(\mathrm{c}, \mathrm{f})}{\mathrm{P}(\mathrm{C})}=\frac{7}{8}=\frac{7}{8}$
$p_{3}=P\left(C / A^{c}\right)=\frac{\mathrm{P}\left(\mathrm{C} \cap \mathrm{A}^{\mathrm{c}}\right)}{\mathrm{P}\left(\mathrm{A}^{\mathrm{c}}\right)}=\frac{\mathrm{P}(\mathrm{b}, \mathrm{f})}{\mathrm{P}(\mathrm{b}, \mathrm{d}, \mathrm{f})}=\frac{6}{9}=\frac{2}{3}$
$\mathrm{p}_{4}=\mathrm{P}\left(\mathrm{A}^{\mathrm{c}} / \mathrm{C}\right)=\frac{\mathrm{P}\left(\mathrm{A}^{\mathrm{c}} \cap \mathrm{C}\right)}{\mathrm{P}(\mathrm{C})}=\frac{\mathrm{P}(\mathrm{b}, \mathrm{f})}{\mathrm{P}(\mathrm{b}, \mathrm{c}, \mathrm{f})}=\frac{6}{8}=\frac{3}{4}$

Hence $\mathrm{p}_{1}=\frac{72}{168} ; \mathrm{p}_{2}=\frac{147}{168} ; \mathrm{p}_{3}=\frac{112}{168} ; \mathrm{p}_{4}=\frac{126}{168}$;

$$
\mathrm{p}_{1}<\mathrm{p}_{3}<\mathrm{p}_{4}<\mathrm{p}_{2} \Rightarrow(\mathrm{C})
$$

25. Probability that 3 people out of 7 born on

Wednesday $=\frac{{ }^{7} C_{3}}{7^{3}}$
Probability that 2 people out of remaining 4, born on
Thursday is $\frac{{ }^{4} \mathrm{C}_{2}}{7^{2}}$
Probability of remaining 2 born on Sunday is $\frac{{ }^{2} \mathrm{C}_{2}}{7^{2}}$
\therefore required probability $=\frac{{ }^{7} \mathrm{C}_{3}}{7^{3}} \times \frac{{ }^{4} \mathrm{C}_{2}}{7^{2}} \times \frac{{ }^{2} \mathrm{C}_{2}}{7^{2}}=\frac{\mathrm{K}}{7^{6}}$
$\Rightarrow \mathrm{K}=30$
27. Events are defined as
$\mathrm{E}_{1}=$ A rigged die is chosen
$\mathrm{E}_{2}=\mathrm{A}$ fair die is chosen
$\mathrm{A}=$ die shows 5 in all the three times
using Baye's Theorem :
$P\left(E_{1} / A\right)=\frac{P\left(E_{1}\right) P\left(A / E_{1}\right)}{P\left(E_{1}\right) P\left(A / E_{1}\right)+P\left(E_{2}\right) P\left(A / E_{2}\right)}$

$$
=\frac{\frac{1}{4} \times(1)^{3}}{\frac{1}{4} \times(1)^{3}+\frac{3}{4} \times\left(\frac{1}{6}\right)^{3}}=\frac{216}{219}
$$

28. 'a' can take only one value i.e. 2 Note: absolute
' b ' can be 1 or 3 i.e. two values
'c' can be 2 or 4 i.e. two values
and 'd' can take only one value i.e. 5
hence total favourable ways $=1 \times 2 \times 2=4$
$n(S)=6^{4}=1296$
$P(E)=\frac{4}{1296}=\frac{1}{324}$

EXERCISE - 2

Part \# I : Multiple Choice

5. E_{1} : Both even or both odd

$$
\begin{aligned}
& P\left(\mathrm{E}_{1}\right)=\frac{{ }^{5} \mathrm{C}_{2}+{ }^{6} \mathrm{C}_{2}}{{ }^{11} \mathrm{C}_{2}}=\frac{10+15}{55}=\frac{5}{11} \\
& \Rightarrow \mathrm{P}\left(\mathrm{E}_{2}\right)=1-\mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{6}{11}
\end{aligned}
$$

(i) $P\left(E_{1} / E_{2}\right)=\frac{P\left(E_{1} \cap E_{2}\right)}{P\left(E_{2}\right)}=0$
$\Rightarrow P\left(E_{2} / E_{1}\right)=\frac{P\left(E_{1} \cap E_{2}\right)}{P\left(E_{1}\right)}=0$
(ii) E_{1} and E_{2} exhaustive (iii) $\mathrm{P}\left(\mathrm{E}_{2}\right)>\mathrm{P}\left(\mathrm{E}_{1}\right)$
6.

$\mathrm{P}(\mathrm{M})+\mathrm{P}(\mathrm{N})-2 \mathrm{P}(\mathrm{M} \cap \mathrm{N})$
$\mathrm{P}(\overline{\mathrm{M}})+\mathrm{P}(\overline{\mathrm{N}})-2 \mathrm{P}(\overline{\mathrm{M}} \cap \overline{\mathrm{N}})(\mathrm{C}$
$\mathrm{P}(\overline{\mathrm{M}} \cup \overline{\mathrm{N}})+\mathrm{P}(\overline{\mathrm{M}} \cup \overline{\mathrm{N}})$

8. $\mathrm{P}(\mathrm{B}) \neq 1$
(A) $\mathrm{P}\left(\frac{\mathrm{A}}{\mathrm{B}^{\mathrm{C}}}\right)=\frac{\mathrm{P}\left(\mathrm{AB}^{\mathrm{C}}\right)}{\mathrm{P}\left(\mathrm{B}^{\mathrm{C}}\right)}=\frac{\mathrm{P}(\mathrm{A})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{1-\mathrm{P}(\mathrm{B})}$
(B) $1 \geq \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$

$$
\mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) \geq \mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-1
$$

(D) $\mathrm{P}\left(\frac{\mathrm{A}}{\mathrm{B}^{\mathrm{C}}}\right)+\frac{\mathrm{P}\left(\mathrm{A}^{\mathrm{C}}\right)}{\mathrm{P}\left(\mathrm{B}^{\mathrm{C}}\right)}$

$$
\begin{aligned}
& =\frac{\mathrm{P}(\mathrm{~A})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})}{1-\mathrm{P}(\mathrm{~B})}+\frac{\mathrm{P}\left(\mathrm{~A}^{\mathrm{C}}\right)-\mathrm{P}\left(\mathrm{~A}^{\mathrm{C}} \cap \mathrm{~B}\right)}{1-\mathrm{P}(\mathrm{~B})} \\
& =\frac{\mathrm{P}(\mathrm{~A})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})+1-\mathrm{P}(\mathrm{~A})-\mathrm{P}(\mathrm{~B})+\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})}{1-\mathrm{P}(\mathrm{~B})}=1
\end{aligned}
$$

9. $\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.8$
$\therefore \quad \mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.5+0.4-0.8=0.1$
$\mathrm{P}(\overline{\mathrm{A}} \cap \mathrm{B})=\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.5-0.1=0.4$
$\Rightarrow(\mathbf{A})$ is correct
$\mathrm{P}(\mathrm{B} / \overline{\mathrm{A}})=\frac{\mathrm{P}(\mathrm{B} \cap \overline{\mathrm{A}})}{\mathrm{P}(\overline{\mathrm{A}})}=\frac{0.4}{1-\mathrm{P}(\mathrm{A})}=\frac{0.4}{0.6}=\frac{2}{3}$
$\Rightarrow \quad(B)$ is correct
$\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})=0.2 \Rightarrow \mathrm{P}(\mathrm{A} \cap \mathrm{B})<\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$
$\Rightarrow \quad(\mathrm{C})$ is correct
$\mathrm{P}(\mathrm{A}$ or B but not both $)=0.9-2 \times 0.1=0.7$
10.

$$
P\left(\frac{C}{F}\right)=\frac{\frac{7}{10} \times \frac{2}{10}}{\frac{7}{10} \times \frac{2}{10} \times \frac{3}{10} \times \frac{9}{10}}=\frac{14}{41}
$$

13. $(\mathrm{p}+\mathrm{q})^{99} \mathrm{r} \leq \frac{99+1}{1+\left|\frac{1 / 2}{1 / 2}\right|}$
$\Rightarrow \mathrm{r} \leq \frac{100}{2} \Rightarrow \mathrm{r} \leq 50$
Terms 49 or 50 are highest
14. After removing face cards \& tens remaning cards

$$
\begin{aligned}
& =52-16=36 \\
& \mathrm{P}(\mathrm{~A})=\frac{4}{36}, \mathrm{P}(\mathrm{H})=\frac{9}{36}, \mathrm{P}(\mathrm{~S})=\frac{9}{36} \\
& \mathrm{P}(\mathrm{~A} \cap \mathrm{~S})=\frac{1}{36} \\
& \mathrm{P}(\mathrm{~A} \cap \mathrm{H})=\frac{1}{36} \\
& \mathrm{P}(\mathrm{~A} \cup \mathrm{~S})=\frac{12}{36}
\end{aligned}
$$

15. $0 \leq x \leq 1,0 \leq y \leq 1$

Let A be the event $y^{2} \leq x$
B the event $x^{2} \leq y$
total area $=1$
$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{\text { Shaded area }}{\text { Total area }}=\frac{1}{3}$
16. $E^{c}=F ; E \cap E^{c}=\phi ; P(E)+P(n o t E)=1 ; E$ and E^{c} can always be equally likely
17. $\mathrm{P}\left(\mathrm{E}_{\mathrm{o}}\right)=\frac{3!\left(1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}\right)}{3!}=\frac{1}{3} \Rightarrow \mathrm{P}\left(\mathrm{E}_{1}\right)$

$$
=\frac{{ }^{3} \mathrm{C}_{1}(1) \cdot 2!\left(1-\frac{1}{1!}+\frac{1}{2!}\right)}{3!}=\frac{1}{2}
$$

$$
\mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{{ }^{3} \mathrm{C}_{2}(1)^{2} \cdot 1!\left(1-\frac{1}{1!}\right)}{3!}=0 \quad \Rightarrow \mathrm{P}\left(\mathrm{E}_{3}\right)
$$

$$
=\frac{{ }^{3} \mathrm{C}_{3}(1)^{3}}{3!}=\frac{1}{6}
$$

So $P\left(E_{0}\right)+P\left(E_{3}\right)=P\left(E_{1}\right)$

$$
\mathrm{P}\left(\mathrm{E}_{0}\right) \cdot \mathrm{P}\left(\mathrm{E}_{1}\right)=\mathrm{P}\left(\mathrm{E}_{3}\right) \quad \because \quad \mathrm{E}_{0} \cap \mathrm{E}_{1}=\phi
$$

So $P\left(E_{0} \cap E_{1}\right)=0 \quad$ So $P\left(E_{0} \cap E_{1}\right)=P\left(E_{2}\right)$
20.

$$
\begin{aligned}
& \mathrm{p}(\mathrm{x}=4)={ }^{\mathrm{n}} \mathrm{c}_{4}\left(\frac{1}{2}\right)^{\mathrm{n}} \\
& \mathrm{p}(\mathrm{x}=5)={ }^{\mathrm{n}} \mathrm{c}_{5}\left(\frac{1}{2}\right)^{\mathrm{n}} \\
& \left.\mathrm{p}(\mathrm{x}=6)={ }^{\mathrm{n}} \mathrm{c}_{6}\left(\frac{1}{2}\right)^{\mathrm{n}}\right] \\
& 2{ }^{\mathrm{n}} \mathrm{c}_{5}={ }^{\mathrm{n}} \mathrm{c}_{4}+{ }^{\mathrm{n}} \mathrm{c}_{6} \\
& 4{ }^{\mathrm{n}} \mathrm{c}_{5}={ }^{\mathrm{n}+1} \mathrm{c}_{5}+{ }^{\mathrm{n}+1} \mathrm{c}_{6} \\
& 4{ }^{\mathrm{n}} \mathrm{c}_{5}={ }^{\mathrm{n}+2} \mathrm{c}_{6}+{ }^{\mathrm{n}} \mathrm{c}_{6} \\
& \\
& 4 \cdot \frac{\mathrm{n}!}{5!(\mathrm{n}-5)!}=\frac{(\mathrm{n}+2)!}{6!(\mathrm{n}-4)!} \Rightarrow 4=\frac{(\mathrm{n}+2)(\mathrm{n}+1)}{6(\mathrm{n}-4)} \\
& \Rightarrow 24(\mathrm{n}-4)=(\mathrm{n}+2)(\mathrm{b}+1) \\
& \mathrm{n}=7,14
\end{aligned}
$$

21. $\mathrm{P}(\mathrm{A})$: denotes passing in A
$P(B)$: denotes passing in B
$P(C)$: denotes passing in C
$\mathrm{P}(\mathrm{A})=\mathrm{p}, \mathrm{P}(\mathrm{B})=\mathrm{q}, \mathrm{P}(\mathrm{C})=\frac{1}{2}$
probability that student is successful $=\frac{1}{2}$
$=\mathrm{p} \cdot \frac{\mathrm{q}}{2}+\mathrm{p} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{2}$
$2 \mathrm{pq}+\mathrm{p}=2$
Now check options
22. $\mathrm{B}_{1}=$ Journey by car
$\mathrm{B}_{2}=$ Journey by motor cycle
$B_{3}=$ Journey on foot
$\mathrm{P}\left(\mathrm{B}_{1}\right)=\frac{1}{2} ; \mathrm{P}\left(\mathrm{B}_{2}\right)=\frac{1}{6} ; \mathrm{P}\left(\mathrm{B}_{3}\right)=\frac{1}{3}$

Let $\mathrm{A}=$ accident occurs

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{~A} / \mathrm{B}_{1}\right)=\frac{1}{5} ; \mathrm{P}\left(\mathrm{~A} / \mathrm{B}_{2}\right)=\frac{2}{5} ; \mathrm{P}\left(\mathrm{~A} / \mathrm{B}_{3}\right)=\frac{1}{10} \\
& \mathrm{P}(\mathrm{~A})=\mathrm{P}\left(\mathrm{~A} \cap \mathrm{~B}_{1}\right)+\mathrm{P}\left(\mathrm{~A} \cap \mathrm{~B}_{2}\right)+\mathrm{P}\left(\mathrm{~A} \cap \mathrm{~B}_{3}\right) \\
& =\mathrm{P}\left(\mathrm{~B}_{1}\right) \cdot \mathrm{P}\left(\mathrm{~A} / \mathrm{B}_{1}\right)+\mathrm{P}\left(\mathrm{~B}_{2}\right) \cdot \mathrm{P}\left(\mathrm{~A} / \mathrm{B}_{2}\right)+\mathrm{P}\left(\mathrm{~B}_{3}\right) \cdot \mathrm{P}\left(\mathrm{~A} / \mathrm{B}_{3}\right) \\
& =\frac{1}{2} \cdot \frac{1}{5}+\frac{1}{6} \cdot \frac{2}{5}+\frac{1}{3} \cdot \frac{1}{10} \Rightarrow=\frac{3}{30}+\frac{2}{30}+\frac{1}{30}=\frac{6}{30}=\frac{1}{5}
\end{aligned}
$$

Ans. $\Rightarrow(A)$ is correct
$\mathrm{P}\left(\mathrm{B}_{1} / \mathrm{A}\right)=\frac{\frac{1}{2} \cdot \frac{1}{5}}{\frac{1}{5}}=\frac{1}{10} \cdot \frac{5}{1}=\frac{1}{2}$
Ans. $\quad \Rightarrow \quad(B)$ is correct
$\mathrm{P}\left(\mathrm{B}_{2} / \mathrm{A}\right)=\frac{\frac{1}{6} \cdot \frac{2}{5}}{\frac{1}{5}}=\frac{2}{30} \cdot \frac{5}{1}=\frac{1}{3}$
Ans. $\quad \Rightarrow \quad(C)$ is incorrect
$\mathrm{P}\left(\mathrm{B}_{3} / \mathrm{A}\right)=\frac{\frac{1}{3} \cdot \frac{1}{10}}{\frac{1}{5}}=\frac{1}{30} \cdot \frac{5}{1}=\frac{1}{6}$
Ans. $\quad \Rightarrow \quad(D)$ is incorrect

Part \# II : Assertion \& Reason

1. Statement-I :

$$
\begin{aligned}
& \mathrm{P}\left(\frac{\mathrm{~A} \cap \overline{\mathrm{~B}}}{\mathrm{C}}\right)=\frac{\mathrm{P}((\mathrm{~A} \cap \overline{\mathrm{~B}}) \cap \mathrm{C})}{\mathrm{P}(\mathrm{C})} \\
& =\frac{\mathrm{P}(\mathrm{~A} \cap \mathrm{C})-\mathrm{P}((\mathrm{~A} \cap \mathrm{~B}) \cap \mathrm{C})}{\mathrm{P}(\mathrm{C})}
\end{aligned}
$$

Statement-II :

$$
\begin{aligned}
P(A \cap \bar{B})= & P(A)-P(A \cap B) \\
& \{\because A \cap \bar{B}=A-(A \cap B)\}
\end{aligned}
$$

2. Mean $=\mu=n p=16\left(\frac{1}{4}\right)=4$
and \quad variance $=\sigma^{2}=n p q=16\left(\frac{1}{4}\right)\left(\frac{3}{4}\right)=3$
3. (A) Here, $n(s)=1$ length of the interval $[0,5]=5$; $n(E)=$ length of the interval $\leq[0,5]$ in which P belongs such that the given equation has real roots.

Now $\mathrm{x}^{2}+\mathrm{Px}+\frac{1}{4}(\mathrm{P}+2)=0$ will have real roots
if $\quad \mathrm{P}^{2}-4 \cdot 1 \cdot \frac{1}{4}(\mathrm{P}+2) \geq 0 \Rightarrow \mathrm{P}^{2}-\mathrm{P}-2 \geq 0$
$\Rightarrow(P+1)(P-2) \geq 0 \quad \Rightarrow \quad P \leq-1$ or $P \geq 2$
But $\mathrm{P} \in[0,5]$. So, $\mathrm{E}=[2,5]$
$\therefore \quad \mathrm{n}(\mathrm{E})=$ length of the interval $[2,5]=3$
$\therefore \quad$ Required Probability $=\frac{3}{5}$
4. We have $f^{\prime}(x)=3 x^{2}-2 a x+b$

Now $y=f(x)$ is increasing
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x}) \geq 0 \forall \mathrm{x}$ and for $\mathrm{f}^{\prime}(\mathrm{x})=0$ should not form an interval.
$\Rightarrow(2 \mathrm{a})^{2}-4 \times 3 \times \mathrm{b} \leq 0 \quad \Rightarrow \mathrm{a}^{2}-3 \mathrm{~b} \leq 0$
This is possible for exactly 16 ordered pairs
(a, b), $1 \leq \mathrm{a}, \mathrm{b} \leq 6$ namely
$(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,2),(2,3),(2,4)$,
$(2,5),(2,6),(3,3),(3,4),(3,5),(3,6) \&(4,6)$
Thus, required probability $=\frac{16}{36}=\frac{4}{9}$
7. If $\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}, \mathrm{p}_{4}$ are the probabilities of success in a single throw for $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D then
$\mathrm{P}(\mathrm{A})=\mathrm{p}_{1}=\frac{1}{2}$
$\mathrm{P}(\mathrm{B})=\mathrm{p}_{2}=\frac{1}{8}+{ }^{3} \mathrm{C}_{1}\left(\frac{1}{8}\right)$
(Alleven + Exactly one even)
$\mathrm{P}(\mathrm{C})=\mathrm{p}_{3}=\frac{1}{2^{5}}+\frac{{ }^{5} \mathrm{C}_{1}}{2^{5}}+\frac{{ }^{5} \mathrm{C}_{2}}{2^{5}}=\frac{16}{2^{5}}=\frac{1}{2}$
[(i) Alleven; (ii) one even \& 4 odd
(iii) 3 even and 2odd]

$$
\begin{aligned}
P(D) & =p_{4}=\underbrace{\frac{1}{2^{7}}}_{\text {all even }}+\underbrace{}_{\begin{array}{l}
\text { exactly } \\
\text { oneeven }
\end{array} \frac{{ }^{7} \mathrm{C}_{1}}{2^{7}}}+\underbrace{\text { even }}_{\begin{array}{l}
{ }^{7} \mathrm{C}_{3} \\
2^{7} \\
2^{7}
\end{array}}+\underbrace{2^{7}}_{\begin{array}{c}
{ }^{7} \mathrm{C}_{5} \\
5 \text { evactly }
\end{array}} \\
& =\frac{1+7+35+21}{2^{7}}=\frac{64}{2^{7}}=\frac{1}{2}
\end{aligned}
$$

Hence probability of success is same for all in the single throw.
All equiprobable to win.
If they thow is succession i.e. $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D then

$$
\mathrm{P}(\mathrm{~A})=\mathrm{P}(\mathrm{~S} \text { or F F F F S or })
$$

$$
=\frac{\mathrm{P}(\mathrm{~S})}{1-(\mathrm{P}(\mathrm{~F}))^{4}}=\frac{1}{2} \cdot \frac{1}{1-\frac{1}{16}}=\left(\frac{1}{2}\right)\left(\frac{16}{15}\right)=\frac{8}{15}
$$

$\mathrm{P}(\mathrm{B})=\frac{4}{15} ; \mathrm{P}(\mathrm{C})=\frac{2}{15} ; \mathrm{P}(\mathrm{D})=\frac{1}{15}$
Hence both the statements are correct and S-2 is not the correct explanation.
10. We must have
$0 \leq \frac{1+4 \mathrm{P}}{4} \leq 1, \quad 0 \leq \frac{1-\mathrm{P}}{4} \leq 1 \quad$ and $\quad 0 \leq \frac{1-2 \mathrm{P}}{4} \leq 1$

$$
\Rightarrow-\frac{1}{4} \leq \mathrm{P} \leq \frac{3}{4},-3 \leq \mathrm{P} \leq 1,-\frac{3}{2} \leq \mathrm{P} \leq \frac{1}{2}
$$

Again the events are pair-wise mutually exclusive so

$$
0 \leq \frac{1+4 \mathrm{P}}{4}+\frac{1-\mathrm{P}}{4}+\frac{1-2 \mathrm{P}}{4} \leq 1
$$

$$
\Rightarrow-3 \leq \mathrm{P} \leq 1
$$

Taking intersection of all four intervals of ' P '

We get $-\frac{1}{4} \leq \mathrm{P} \leq \frac{1}{2}$

EXERCISE - 3

Part \# I : Matrix Match Type

1. (B) Selecting two box out of 5 which
remain empty $={ }^{5} \mathrm{C}_{2}$
Favourable ways $={ }^{5} \mathrm{C}_{2}\left(3^{5}-3\left(2^{5}-2\right)-3\right)$
Total ways $=5^{5}$
probability $=\frac{{ }^{5} \mathrm{C}_{2}\left(3^{5}-3\left(2^{5}-2\right)-3\right)}{5^{5}}=\frac{12}{25}$
(C) Let $\mathrm{P}(\mathrm{A})$ be the probability that the selected letters came from London
$P(B)$ be the probability that the selected letters came from clifton
$\mathrm{P}(\mathrm{E})$ denotes the probability that ON is legible
$\mathrm{P}(\mathrm{A})=\frac{2}{5}, \mathrm{P}(\mathrm{B})=\frac{1}{6}$
$P\left(\frac{A}{E}\right)=\frac{P(A) \cdot P\left(\frac{E}{A}\right)}{P(E)}=\frac{\frac{1}{2} \cdot \frac{2}{5}}{\frac{1}{2}\left(\frac{2}{5}+\frac{1}{6}\right)}=\frac{12}{17}$
2. (A) $\mathrm{P}(\mathrm{R})=\mathrm{P}(\mathrm{T} ;$ HTT ; HTHTT ; HHTTT $) \Rightarrow 11 / 16$
(B) $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=0.6 ; \mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.2 \quad$ [JEE '87, 2]
$\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$\because \quad \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})=0.6+0.2=0.8$
$\mathrm{P}(\overline{\mathrm{A}})+\mathrm{P}(\overline{\mathrm{B}})=2-0.8=1.2 \Rightarrow(\mathrm{R})$
(C) $\mathrm{P}(\mathrm{X})=\frac{2}{3} ; \mathrm{P}(\mathrm{Y})=\frac{3}{4} ; \mathrm{P}(\mathrm{Z})=\mathrm{p}$

E : exactly two bullets hit
$P(E)=P(X Y \bar{Z})+P(Y Z \bar{X})+P(Z X \bar{Y})$
$\frac{11}{24}=\frac{2}{3} \cdot \frac{3}{4}(1-\mathrm{p})+\frac{3}{4} \cdot \frac{1}{3} \mathrm{p}+\mathrm{p} \frac{2}{3} \cdot \frac{1}{4} \Rightarrow \mathrm{p}=\frac{1}{2}$
3. (A) Even integers ends in $0,2,4,6,8$. Square of an even integer ends in 4 only when the integer ends either in 2 or 8.
\therefore probability $=\frac{2}{5}$
(B) $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{6} \quad \Rightarrow \mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})=\frac{1}{6}$
$\mathrm{P}(\overline{\mathrm{A}})=\frac{2}{3} \Rightarrow \mathrm{P}(\mathrm{A})=\frac{1}{3} \quad \Rightarrow \mathrm{P}(\mathrm{B})=\frac{1}{2}$
$\therefore \quad 6 \mathrm{P}\left(\frac{\mathrm{B}}{\overline{\mathrm{A}}}\right)=6 \mathrm{P}(\mathrm{B})=3$
(C) Total number of mapping $=\mathrm{n}^{\mathrm{n}}$.

Number of one-one mapping $={ }^{n} C_{1} \cdot{ }^{n-1} C_{1} \ldots \ldots . .{ }^{1} C_{1}=n$!
Hence the probability $=\frac{n!}{n^{n}}=\frac{3}{32}=\frac{4!}{4^{4}}$
Comparing, we get $\mathrm{n}=4$.
(D) $625 \mathrm{p}^{2}-175 \mathrm{p}+12<0$ gives $\mathrm{p} \in\left(\frac{3}{25}, \frac{4}{25}\right)$

$$
\left(\frac{4}{5}\right)^{\mathrm{n}-1} \cdot \frac{1}{5}=\mathrm{p}
$$

$\therefore \frac{3}{25}<\left(\frac{4}{5}\right)^{\mathrm{n}-1} \cdot \frac{1}{5}<\frac{4}{25}$ i.e. $\frac{3}{5}<\left(\frac{4}{5}\right)^{\mathrm{n}-1}<\frac{4}{5}$
value of n is 3
4. Interpret from the venn diagram

Part \# II : Comprehension

Comprehension-2

1. $P=1-P(A \cup B \cup C)$

$$
\begin{array}{r}
=1-\mathrm{P}(\mathrm{~A})-\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{C})+\mathrm{P}(\mathrm{~A} \cap \mathrm{C})+\mathrm{P}(\mathrm{C} \cap \mathrm{~A})- \\
\mathrm{P}(\mathrm{~A} \cap \mathrm{~B} \cap \mathrm{C})
\end{array}
$$

$$
\begin{array}{r}
=\mathrm{P}(\mathrm{~A} \cap \mathrm{~B} \cap \mathrm{C})^{1}-\mathrm{P}(\mathrm{~A})-\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{C})+\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})+ \\
\mathrm{P}(\mathrm{~B} \cap \mathrm{C})+\mathrm{P}(\mathrm{C} \cap \mathrm{~A}) \\
=\mathrm{P}(\overline{\mathrm{~A}} \cup \overline{\mathrm{~B}} \cup \overline{\mathrm{C}})-\mathrm{P}(\mathrm{~A})-\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{C})+\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})+ \\
\mathrm{P}(\mathrm{~B} \cap \mathrm{C})+\mathrm{P}(\mathrm{C} \cap \mathrm{~A})
\end{array}
$$

2.

3.

$=1-\mathrm{P}(\mathrm{A} \cup \mathrm{B} \cup \mathrm{C})^{\mathrm{c}}+\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})+\mathrm{P}(\mathrm{C})$
$-\mathrm{P}(\mathrm{A} \cap \mathrm{B})-\mathrm{P}(\mathrm{B} \cap \mathrm{C})-\mathrm{P}(\mathrm{C} \cap \mathrm{A})$

Comprehension-3
$\operatorname{Bag} \mathrm{A}<\begin{aligned} & 1 \mathrm{~W} \\ & 5 \mathrm{~B}\end{aligned} ; \operatorname{Bag} \mathrm{B}\left\langle\begin{array}{l}2 \mathrm{~W} \\ 4 \mathrm{~B}\end{array} ; \operatorname{Bag} \mathrm{C}<\begin{array}{l}3 \mathrm{~W} \\ 3 \mathrm{~B}\end{array}\right.$

Let E : Event of drawing 1Black marble and 1White marble from any 2 selected bags.
E_{1} : Event of selecting the bags $\mathrm{B} \& \mathrm{C}$
E_{2} : Event of selecting the bags C \& A
E_{3} : Event of selecting the bags A \& B
A: Event of drawing 1 White marble from bag A
B : Event of drawing 1 White marble from bag B
C : Event of drawing 1 White marble from bag C
Now $\quad \mathrm{E}=\left(\mathrm{E} \cap \mathrm{E}_{1}\right)+\left(\mathrm{E} \cap \mathrm{E}_{2}\right)+\left(\mathrm{E} \cap \mathrm{E}_{3}\right)$
$P\left(E \cap E_{1}\right)=P\left(E_{1}\right) \cdot P\left(E / E_{1}\right)=\frac{1}{3}\left(\frac{4 \cdot 3+2 \cdot 3}{6 \cdot 6}\right)=\frac{18}{108}$
$P\left(E \cap E_{2}\right)=P\left(E_{2}\right) \cdot P\left(E / E_{2}\right)=\frac{1}{3} \cdot \frac{3 \cdot 1+3 \cdot 5}{6 \cdot 6}=\frac{18}{108}$

$P\left(E \cap E_{3}\right)=P\left(E_{3}\right) \cdot P\left(E / E_{3}\right)=\frac{1}{3} \cdot \frac{5 \cdot 2+1 \cdot 4}{6 \cdot 6}=\frac{14}{108}$
$\therefore \mathrm{P}(\mathrm{E})=\mathrm{P}\left(\mathrm{E} \cap \mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E} \cap \mathrm{E}_{2}\right)+\mathrm{P}\left(\mathrm{E} \cap \mathrm{E}_{3}\right)$

$$
=\frac{18}{108}+\frac{18}{108}+\frac{14}{108}=\frac{50}{108}=\frac{25}{54}
$$

Ans.(i)
$\therefore P\left(E_{1} / E\right)=\frac{P\left(E_{1} \cap E\right)}{P(E)}=\frac{18 / 108}{50 / 108}=\frac{9}{25} ;$
let $E_{1} / E=H_{1}$
$P\left(E_{2} / E\right)=\frac{P\left(E_{2} \cap E\right)}{P(E)}=\frac{18 / 108}{50 / 108}=\frac{9}{25} ;$
let $\mathrm{E}_{2} / \mathrm{E}=\mathrm{H}_{2}$

$\mathrm{P}\left(\mathrm{E}_{3} / \mathrm{E}\right)=\frac{\mathrm{P}\left(\mathrm{E}_{3} \cap \mathrm{E}\right)}{\mathrm{P}(\mathrm{E})}=\frac{14 / 108}{50 / 108}=\frac{7}{25} \quad$ Ans.(ii) ;
let $\mathrm{E}_{3} / \mathrm{E}=\mathrm{H}_{3}$
Let H : drawing 1 white marble from third bag
i.e. $\mathrm{P}(\mathrm{H}) \rightarrow \mathrm{P}$
$\mathrm{P}(\mathrm{H})=\mathrm{P}\left(\mathrm{H} \cap \mathrm{H}_{1}\right)+\mathrm{P}\left(\mathrm{H} \cap \mathrm{H}_{2}\right)+\mathrm{P}\left(\mathrm{H} \cap \mathrm{H}_{3}\right)$
$\mathrm{P}\left(\mathrm{H}_{1}\right) \cdot \mathrm{P}\left(\mathrm{H} / \mathrm{H}_{1}\right)+\mathrm{P}\left(\mathrm{H}_{2}\right) \cdot \mathrm{P}\left(\mathrm{H} / \mathrm{H}_{2}\right)+\mathrm{P}\left(\mathrm{H}_{3}\right) \cdot \mathrm{P}\left(\mathrm{H} / \mathrm{H}_{3}\right)$
$=\mathrm{P}\left(\mathrm{H}_{1}\right) \mathrm{P}(\mathrm{A})+\mathrm{P}\left(\mathrm{H}_{2}\right) \mathrm{P}(\mathrm{B})+\mathrm{P}\left(\mathrm{H}_{3}\right) \mathrm{P}(\mathrm{C})$
$=\frac{9}{25} \cdot \frac{1}{6}+\frac{9}{25} \cdot \frac{2}{6}+\frac{7}{25} \cdot \frac{3}{6}=\frac{48}{25 \cdot 6}=\frac{8}{25}=\frac{m}{n}$
$\Rightarrow(\mathrm{m}+\mathrm{n})=33 \quad$ Ans.(ii)

Comprehension-4
$\mathrm{P}($ studies 10 hrs per day $)=0.1=\mathrm{P}\left(\mathrm{B}_{1}\right)$
$\mathrm{P}($ studies 7 hrs per day $)=0.2=\mathrm{P}\left(\mathrm{B}_{2}\right)$
$P($ studies 4 hrs per day $)=0.7=P\left(B_{3}\right)$
A : successful

1. $\mathrm{P}(\mathrm{A})=\mathrm{P}\left(\mathrm{A} \cap \mathrm{B}_{1}\right)+\mathrm{P}\left(\mathrm{A} \cap \mathrm{B}_{2}\right)+\mathrm{P}\left(\mathrm{A} \cap \mathrm{B}_{3}\right)$

$$
=\frac{1}{10} \times \frac{80}{100}+\frac{2}{10} \times \frac{60}{100}+\frac{7}{10} \times \frac{40}{100}=\frac{48}{100}=\frac{12}{25}
$$

2. $\mathrm{P}\left(\mathrm{B}_{3} / \mathrm{A}\right)=\frac{\mathrm{P}\left(\mathrm{B}_{3}\right) \cdot \mathrm{P}\left(\mathrm{A} / \mathrm{B}_{3}\right)}{\sum \mathrm{P}\left(\mathrm{B}_{1}\right) \cdot \mathrm{P}\left(\mathrm{A} / \mathrm{B}_{1}\right)}=\frac{\frac{7}{10} \times \frac{40}{100}}{\frac{12}{25}}=\frac{7}{12}$
3. $\mathrm{P}\left(\mathrm{B}_{3} / \overline{\mathrm{A}}\right)=\frac{\mathrm{P}\left(\mathrm{B}_{3}\right) \cdot \mathrm{P}\left(\overline{\mathrm{A}} / \mathrm{B}_{3}\right)}{\sum \mathrm{P}\left(\mathrm{B}_{1}\right) \cdot \mathrm{P}\left(\overline{\mathrm{A}} / \mathrm{B}_{1}\right)}$

$$
\begin{aligned}
& =\frac{\frac{7}{10} \times \frac{60}{100}}{\frac{1}{10} \times \frac{20}{100}+\frac{2}{10} \times \frac{40}{100}+\frac{7}{10} \times \frac{60}{100}} \\
& =\frac{420}{520}=\frac{21}{26}
\end{aligned}
$$

Comprehension-5
$52 \xrightarrow[40]{\text { face cards }}\left\langle\begin{array}{l}4 \text { aces } \\ 36 \text { non aces }\end{array}\right.$
(i) 10 cards are drawn before the $1^{\text {st }}$ ace - first 10 cards are all non aces and $11^{\text {th }}$ card is an ace.

$$
\begin{aligned}
\therefore \quad P_{1} & =\frac{{ }^{36} \mathrm{C}_{10}}{{ }^{40} \mathrm{C}_{10}} \cdot \frac{4}{30} \\
& =\frac{(36)!}{(10!)(26!)} \frac{(30!)(10!)}{40!} \cdot \frac{4}{30} \\
P_{1}= & \frac{(30)(29)(28)(27)}{(40)(39)(38)(37)} \cdot \frac{4}{30}=\frac{(27)(28)(29)}{(10)(37)(38)(39)}
\end{aligned}
$$

Ans.
(ii) Position of pack now

$$
\begin{gathered}
\left.\left.\frac{10}{\text { non ace }}\right|_{20 \text { card }} ^{11^{\text {th }}} \xrightarrow[1^{\text {st }} \text { ace }]{\longleftrightarrow}\right|_{2^{\text {nd }} \text { ace }} ^{21^{\text {th }} \text { card }} \\
\mathrm{P}_{2}=\frac{{ }^{26} \mathrm{C}_{9}}{{ }^{29} \mathrm{C}_{9}} \cdot \frac{3}{20} \mathrm{P}_{1} \\
=\frac{26!}{(9!)(17!)} \cdot \frac{(9!)(20!)}{29!} \cdot \frac{3}{20} \cdot \mathrm{P}_{1} \\
=\frac{(20)(19)(18)}{(29)(28)(27)}\left(\frac{(27)(28)(29)}{(37)(38)(39)} \cdot \frac{1}{10}\right) \frac{3}{20}
\end{gathered}
$$

$$
=\frac{(18)(3)}{(37)(39)} \frac{1}{20}=\frac{9}{(10)(13)(37)} \quad \text { Ans. }
$$

(iii) $\mathrm{P}_{3}=20 \mathrm{P}_{2}=(20)\left(\frac{9}{(10)(13)(37)}\right)=\frac{18}{(13)(37)}$

EXERCISE - 4

Subjective Type

2. $E_{r}=$ Scored exactly r points

$$
\begin{aligned}
& P\left(E_{n}\right)=P\left(E_{n-2} H \cup E_{n-1} T\right) \\
& \quad=P\left(E_{n-2}\right) P(H)+P\left(E_{n-1}\right) P(T) \\
& P_{n}=P_{n-2} \frac{1}{2}+\frac{1}{2} P_{n-1} \\
& P_{n}-P_{n-1}=\frac{1}{2}\left(P_{n-2}-P_{n-1}\right)
\end{aligned}
$$

3. $\mathrm{P}(\mathrm{A})=\frac{5}{10} ; \mathrm{P}(\mathrm{B})=\frac{3}{10} ; \mathrm{P}(\mathrm{C})=\frac{2}{10}$
after the race
$P^{\prime}(A)=\frac{1}{3}$
$\mathrm{P}^{\prime}(\mathrm{B})+\mathrm{P}^{\prime}(\mathrm{C})=\frac{2}{3}$
That will increase probability of $\mathrm{B} \& \mathrm{C}$ in $3: 2$ respectively.
$\therefore \quad \mathrm{P}^{\prime}(\mathrm{B})=\frac{2}{3} \times \frac{3}{5}=\frac{2}{5}$
$\therefore \quad \mathrm{P}^{\prime}(\mathrm{C})=\frac{2}{3} \times \frac{2}{5}=\frac{4}{15}$
4. Let the first event A_{1}

Let the second event A_{2}
Let $P\left(A_{1}\right)=\frac{p^{2}}{q^{2}}$

$$
\mathrm{P}\left(\mathrm{~A}_{2}\right)=\frac{\mathrm{p}}{\mathrm{q}}
$$

odds against seconds $=\frac{q-p}{p}$
odds against first $=\frac{q^{2}-p^{2}}{p^{2}}$
$\Rightarrow\left(\frac{q-p}{p}\right)^{3}=\frac{q^{2}-p^{2}}{p^{2}}$
$\Rightarrow(\mathrm{q}-\mathrm{p})^{2}=(\mathrm{q}+\mathrm{p}) \mathrm{p}$
$\Rightarrow \mathrm{q}^{2}=3 \mathrm{pq} \Rightarrow \frac{\mathrm{p}}{\mathrm{q}}=\frac{1}{3}$
$\mathrm{P}\left(\mathrm{A}_{1}\right)=\frac{1}{9} \quad ; \quad \mathrm{P}\left(\mathrm{A}_{2}\right)=\frac{1}{3}$
6. $\operatorname{Bot}-2 \mathrm{R}+3 \mathrm{~B}$.
$\mathrm{p}($ Rad, blue $)=\frac{2}{5} \times \frac{3}{4}=\frac{3}{10}=\mathrm{p}$

x	0	1	2	3
p	${ }^{3} C_{o}{ }^{0}(1-p)^{3}$	${ }^{3} \mathrm{C}_{1} p(1-p)^{2}$	${ }^{3} \mathrm{C}_{2} p^{2}(1-p)$	${ }^{3} \mathrm{C}_{3} \mathrm{p}^{3}$

7. Let three independent critics A, B \& C

Odd in favour for A is $\frac{5}{2}$ hence $\mathrm{P}(\mathrm{A})=\frac{5}{7}$
Odd in favour for B is $\frac{4}{3}$ hence $\mathrm{P}(\mathrm{B})=\frac{4}{7}$
Odd in favour for C is $\frac{3}{4}$ hence $\mathrm{P}(\mathrm{C})=\frac{3}{7}$
Probability that majorty will be
favourable $=P(A) P(B) P(\bar{C})+P(B) \cdot P(C) \cdot P(\bar{A})+$
$P(C) \cdot P(A) \cdot P(\bar{B})+P(A) \cdot P(B) \cdot P(C)$
$=\frac{5}{7} \times \frac{4}{7} \times \frac{4}{7}+\frac{4}{7} \times \frac{3}{7} \times \frac{3}{7}+\frac{3}{7} \times \frac{5}{7} \times \frac{3}{7}+\frac{5}{7} \times \frac{4}{7} \times \frac{3}{7}$
$=\frac{209}{343}$
8. By symmetry the probability of more wins than losses equals the probability of more losses than wins. We calculate the probability of the same number of wins and losses.
$\therefore \quad \mathrm{P}(\mathrm{L})=\mathrm{P}(\mathrm{W})=\mathrm{P}(\mathrm{D})=1 / 3$
Case-I Probability of no wins and no losses

$$
=P\left(\mathrm{D} \mathrm{D} \mathrm{D} \mathrm{D} \mathrm{D} \mathrm{D}^{2}=\frac{1}{3^{6}}\right.
$$

Case-III Probability of 1 win, 1 loss and 4 draws

$$
=P(W \text { L D D D D })=\frac{6!}{4!} \cdot \frac{1}{3^{6}}=\frac{30}{3^{6}}
$$

Case-IIII Probability of 2 wins, 2 losses and 2 draws

$$
=P(W \text { W L L D D })=\frac{6!}{2!2!2!} \cdot \frac{1}{3^{6}}=\frac{90}{3^{6}}
$$

Case-IV Probability of 3 wins and 3 losses

$$
=\mathrm{P}(\mathrm{~W} W \mathrm{~W} \text { L L L })=\frac{{ }^{6} \mathrm{C}_{3}}{3^{6}}=\frac{20}{3^{6}} .
$$

Hence probability of the same number of wins or losses

$$
=\frac{(1+30+90+20)}{729}=\frac{141}{729}=\frac{47}{243} .
$$

Hence probability more wins than losses = probability more losses than wins

$$
=\frac{1}{2}\left[1-\frac{47}{243}\right]=\frac{1}{2}\left[\frac{196}{243}\right]=\frac{98}{243}
$$

$\Rightarrow \mathrm{p}+\mathrm{q}=341$
10. A: Target hit in 1st shot

B: Target hit in 2nd shot
C : Target hit in 3rd shot
E_{1} : destroyed in exactly one shot
E_{2} : destroyed in exactly two shot
E_{3} : destroyed in exactly three shot
$P\left(E_{1}\right)=P\left(E_{1} A \bar{B} \bar{C} \cup E_{1} \bar{A} \bar{B} C \cup E_{1} \bar{A} B \bar{C}\right)$
$=\frac{1}{3}\left[\frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{4}+\frac{1}{2} \cdot \frac{1}{3} \cdot \frac{3}{4}+\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{1}{4}\right]=\frac{1+3+2}{3.24}=\frac{1}{12}$
$P\left(E_{2}\right)=P\left(E_{2} \bar{A} B C \cup E_{2} A B \bar{C} \cup E_{3} A \bar{B} C\right)$
$=\frac{7}{11}\left[\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4}+\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{1}{4}+\frac{1}{2} \cdot \frac{1}{3} \cdot \frac{3}{4}\right]=\frac{7 \cdot 11}{11.24}=\frac{7}{24}$
$\mathrm{P}\left(\mathrm{E}_{3}\right)=\mathrm{P}\left(\mathrm{E}_{3} \mathrm{ABC}\right)=1 \cdot \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4}=\frac{1}{4}$
$P\left(E_{1} \cup E_{2} \cup E_{3}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)+P\left(E_{3}\right)$
$=\frac{1}{12}+\frac{7}{24}+\frac{1}{4}=\frac{2+7+6}{24}=\frac{15}{24}=\frac{5}{8}$
11. A : A solves correctly

B : B solves correctly
E: Commit same mistake
F: same result

$$
\begin{aligned}
\mathrm{P}(\mathrm{AB} / \mathrm{F}) & =\frac{\mathrm{P}(\mathrm{AB})}{\mathrm{P}(\mathrm{AB})+\mathrm{P}(\overline{\mathrm{~A}} \overline{\mathrm{~B}} \mathrm{E})}=\frac{\frac{1}{8} \cdot \frac{1}{12}}{\frac{1}{8} \cdot \frac{1}{12}+\frac{7}{8} \cdot \frac{11}{12} \cdot \frac{1}{1001}} \\
& =\frac{1001}{1078}=\frac{13}{14}
\end{aligned}
$$

12. $\mathrm{P}(\overline{\mathrm{A}} \cup \mathrm{B})=\mathrm{P}(\overline{\mathrm{A}})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\overline{\mathrm{A}} \cap \mathrm{B})$
also $\frac{P(\bar{A} \cap \bar{B})}{P(\bar{B})}=0.1 \Rightarrow P(\overline{A \cup B})=0.02$
$\mathrm{P}(\mathrm{A} \cup \mathrm{B})=0.98$
$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.4+0.8-0.98$

$$
\begin{equation*}
=0.22 \tag{iii}
\end{equation*}
$$

Put (2) in (1)

$$
\begin{gathered}
\mathrm{P}(\overline{\mathrm{~A}} \cup \mathrm{~B})=0.6+0.8-[\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})] \\
=0.6+0.8-(0.8-0.22)=0.82
\end{gathered}
$$

(ii) $\mathrm{P}(\overline{\mathrm{A}} \cup \mathrm{B})+\mathrm{P}(\mathrm{A} \cap \overline{\mathrm{B}})$

$$
\begin{aligned}
& =\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-2 \mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) \\
& =0.4+0.8-2(0.22)=0.76
\end{aligned}
$$

15. (A) : puzzle solved by A
(B) : puzzle solved by B
(D) : puzzle solved by D
(C) : support either A or B
$(\mathrm{A})=\mathrm{p}, \mathrm{P}(\mathrm{B})=\mathrm{p}, \mathrm{P}(\mathrm{D})=\mathrm{p}$
If C supports $\mathrm{A} \quad \mathrm{P}(\mathrm{C})=\frac{1}{2}$

$$
\mathrm{P}(\overline{\mathrm{C}})=\frac{1}{2}
$$

for team $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}=\mathrm{P}(\mathrm{A}) \frac{1}{2}+\mathrm{P}(\mathrm{B}) \frac{1}{2}$

$$
=\frac{p}{2}+\frac{p}{2}=p
$$

which is equal to $P(D)$
\Rightarrow both are equally likely.
16. $\mathrm{P}(\mathrm{C})=\frac{1}{{ }^{4} \mathrm{C}_{1}+{ }^{4} \mathrm{C}_{4}}=\frac{1}{2^{4}-1}=\frac{1}{15}$
$P($ correct $)=1-\mathrm{P}($ all wrong $)$

$$
=1-\frac{14}{15} \times \frac{13}{14} \times \frac{12}{13} \times \frac{11}{12} \times \frac{10}{11}=\frac{1}{3}
$$

17. A: Weather is favourable
$\overline{\mathrm{A}}$: Weather not good or low cloud
B : Reliability (instrument functions probability)
C : Safe landing
$\mathrm{P}(\mathrm{C} / \mathrm{A})=\mathrm{p}_{1} . \quad \mathrm{P}(\mathrm{B})=\mathrm{P} . \mathrm{P}(\mathrm{C} / \mathrm{B})=\mathrm{p}_{1}$
$\mathrm{P}(\mathrm{C} / \overline{\mathrm{B}})=\mathrm{p}_{2} \cdot \mathrm{P}(\overline{\mathrm{A}})=\frac{\mathrm{K}}{100}$
$\mathrm{P}(\mathrm{C})=\mathrm{P}(\mathrm{AC} \cup \overline{\mathrm{A}} \mathrm{BC} \cup \overline{\mathrm{A}} \overline{\mathrm{B}} \mathrm{C})$
$=\left(1-\frac{K}{100}\right) p_{1}+\frac{K}{100}\left[P p_{1}+(1-P) p_{2}\right]$
$\mathrm{P}((\overline{\mathrm{A}} \mathrm{BC} \cup \overline{\mathrm{A}} \overline{\mathrm{B}} \mathrm{C}) / \mathrm{C})$
$=\frac{\frac{\mathrm{K}}{100}\left[\mathrm{Pp}_{1}+(1-\mathrm{P}) \mathrm{p}_{2}\right]}{\left(1-\frac{\mathrm{K}}{100}\right) \mathrm{p}_{1}+\frac{\mathrm{K}}{100}\left(\mathrm{Pp}_{1}+(1-\mathrm{P}) \mathrm{p}_{2}\right)}$
18. Let B_{1} : pack A was selected $\Rightarrow P\left(B_{1}\right)=\frac{1}{2}$;

PackA $\underset{\downarrow}{4 \text { aces }} 48$ cards in 12 different denominations B_{2} : pack B was selected $\Rightarrow P\left(B_{2}\right)=\frac{1}{2}$; Pack

A : two cards drawn all of same rank.
Now $A=\left(A \cap B_{1}\right)+\left(A \cap B_{2}\right)$
$\therefore \quad \mathrm{P}(\mathrm{A})=\mathrm{P}\left(\mathrm{A} \cap \mathrm{B}_{1}\right)+\mathrm{P}\left(\mathrm{A} \cap \mathrm{B}_{2}\right)$

$$
=\mathrm{P}\left(\mathrm{~B}_{1}\right) \mathrm{P}\left(\mathrm{~A} / \mathrm{B}_{1}\right)+\mathrm{P}\left(\mathrm{~B}_{2}\right) \mathrm{P}\left(\mathrm{~A} / \mathrm{B}_{2}\right)
$$

$\mathrm{P}\left(\mathrm{A} / \mathrm{B}_{1}\right)=\frac{{ }^{12} \mathrm{C}_{1} \cdot{ }^{4} \mathrm{C}_{2}}{{ }^{48} \mathrm{C}_{2}}$
$\mathrm{P}\left(\mathrm{A} / \mathrm{B}_{2}\right)=\frac{{ }^{9} \mathrm{C}_{1} \cdot{ }^{4} \mathrm{C}_{2}+{ }^{4} \mathrm{C}_{1} \cdot{ }^{3} \mathrm{C}_{2}}{{ }^{48} \mathrm{C}_{2}}$

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{~B}_{1} / \mathrm{A}\right) & =\frac{\mathrm{P}\left(\mathrm{~A} \cap \mathrm{~B}_{1}\right)}{\mathrm{P}(\mathrm{~A})} \\
& =\frac{\mathrm{P}\left(\mathrm{~B}_{1}\right) \mathrm{P}\left(\mathrm{~A} / \mathrm{B}_{1}\right)}{\mathrm{P}\left(\mathrm{~B}_{1}\right) \mathrm{P}\left(\mathrm{~A} / \mathrm{B}_{1}\right)+\mathrm{P}\left(\mathrm{~B}_{2}\right) \mathrm{P}\left(\mathrm{~A} / \mathrm{B}_{2}\right)} \\
& =\frac{{ }^{12} \mathrm{C}_{1} \cdot{ }^{4} \mathrm{C}_{2}}{{ }^{12} \mathrm{C}_{1} \cdot{ }^{4} \mathrm{C}_{2}+{ }^{9} \mathrm{C}_{1} \cdot{ }^{4} \mathrm{C}_{2}+{ }^{4} \mathrm{C}_{1} \cdot{ }^{3} \mathrm{C}_{2}} \\
& =\frac{(12)(6)}{(12)(6)+(9)(6)+(4)(3)}=\frac{12}{23} \Rightarrow \mathrm{~m}+\mathrm{n}=35
\end{aligned}
$$

19. P (identify high grade tea correctly $)=\frac{9}{10}$
P (identify low grade tea correctly) $=\frac{8}{10}$
$P($ Given high grade tea $)=\frac{3}{10}$
$P($ Given low grade tea $)=\frac{7}{10}$
P (Low grade tea / says high grade tea)

$$
=\frac{\frac{7}{10} \times \frac{2}{10}}{\frac{7}{10} \times \frac{2}{10}+\frac{3}{10} \times \frac{9}{10}}=\frac{14}{41}
$$

21. Let the probability hitting the enemy plane in I, II, III \& IV shotsaredenoted by $\mathrm{P}\left(\mathrm{G}_{1}\right), \mathrm{P}\left(\mathrm{G}_{2}\right), \mathrm{P}\left(\mathrm{G}_{3}\right) \& P\left(\mathrm{G}_{4}\right)$
$\mathrm{P}\left(\mathrm{G}_{1}\right)=\frac{4}{10}, \mathrm{P}\left(\mathrm{G}_{2}\right)=\frac{3}{10}, \mathrm{P}\left(\mathrm{G}_{3}\right)=\frac{2}{10}, \mathrm{P}\left(\mathrm{G}_{4}\right)=\frac{1}{10}$
P (All four shots do not hit the plane)

$$
\begin{aligned}
& =\mathrm{P}\left(\overline{\mathrm{G}}_{1}\right) \cdot \mathrm{P}\left(\overline{\mathrm{G}}_{2}\right) \cdot \mathrm{P}\left(\overline{\mathrm{G}}_{3}\right) \cdot \mathrm{P}\left(\overline{\mathrm{G}}_{4}\right) \\
& =\frac{6}{10} \times \frac{7}{10} \times \frac{8}{10} \times \frac{9}{10}=\frac{189}{625}
\end{aligned}
$$

so probability of hitting the plane

$$
=1-\frac{189}{625}=\frac{436}{625}
$$

22. $\mathrm{P}(\mathrm{HA})=0.8 ; \mathrm{P}(\mathrm{HB})=0.4$

A = Only one bullet in bear
$\mathrm{B}_{1}=$ Shot by HA \& missed by $\mathrm{HB}=\mathrm{P}\left(\mathrm{B}_{1}\right)$
$=0.8 \times 0.61$
$\mathrm{B}_{2}=$ Shot by HB \& missed by HA $=\mathrm{P}\left(\mathrm{B}_{2}\right)=0.4 \times 0.2$

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{~B}_{1} / \mathrm{A}\right) & =\frac{\mathrm{P}\left(\mathrm{~A} / \mathrm{B}_{1}\right) \mathrm{P}\left(\mathrm{~B}_{1}\right)}{\mathrm{P}\left(\mathrm{~A} / \mathrm{B}_{1}\right) \mathrm{P}\left(\mathrm{~B}_{1}\right)+\mathrm{P}\left(\mathrm{~A} / \mathrm{B}_{2}\right) \mathrm{P}\left(\mathrm{~B}_{2}\right)} \\
& =\left(\frac{0.8 \times 0.6}{0.8 \times 0.6+0.2 \times 0.4}\right)=\frac{48}{48+8}=240 \\
\mathrm{E}_{\mathrm{A}}=280 & \times \mathrm{P}\left(\mathrm{~B}_{1} / \mathrm{A}\right) \quad \mathrm{E}_{\mathrm{B}}=\mathrm{E}-\mathrm{E}_{\mathrm{A}}
\end{aligned}
$$

23. Let $\mathrm{q}=1-\mathrm{p}=$ probability of getting the tail. We have $\alpha=$ probability of A getting the head on tossing firstly
$=\mathrm{P}\left(\mathrm{H}_{1}\right.$ or $\mathrm{T}_{1} \mathrm{~T}_{2} \mathrm{~T}_{3} \mathrm{H}_{4}$ or $\mathrm{T}_{1} \mathrm{~T}_{2} \mathrm{~T}_{3} \mathrm{~T}_{4} \mathrm{~T}_{5} \mathrm{~T}_{6} \mathrm{H}_{7}$ or $\left.\ldots\right)$ $=\mathrm{P}(\mathrm{H})+\mathrm{P}(\mathrm{H}) \mathrm{P}(\mathrm{T})^{3}+\mathrm{P}(\mathrm{H}) \mathrm{P}(\mathrm{T})^{6}+\ldots$
$=\frac{P(H)}{1-P(T)^{3}}=\frac{p}{1-q^{3}}$
Also,
$\beta=$ probability of B getting the head on tossing secondly
$=\mathrm{P}\left(\mathrm{T}_{1} \mathrm{H}_{2}\right.$ or $\mathrm{T}_{1} \mathrm{~T}_{2} \mathrm{~T}_{3} \mathrm{~T}_{4} \mathrm{H}_{5}$ or $\mathrm{T}_{1} \mathrm{~T}_{2} \mathrm{~T}_{3} \mathrm{~T}_{4} \mathrm{~T}_{5} \mathrm{~T}_{6} \mathrm{~T}_{7} \mathrm{H}_{8}$ or $\left.\ldots\right)$
$=\mathrm{P}(\mathrm{H}) \mathrm{P}(\mathrm{T})+\mathrm{P}(\mathrm{H}) \mathrm{P}(\mathrm{T})^{4}+\mathrm{P}(\mathrm{H}) \mathrm{P}(\mathrm{T})^{7}+\ldots$
$=\mathrm{P}(\mathrm{T})\left[\mathrm{P}(\mathrm{H})+\mathrm{P}(\mathrm{H}) \mathrm{P}(\mathrm{T})^{3}+\mathrm{P}(\mathrm{H}) \mathrm{P}(\mathrm{T})^{6}+\ldots\right]$
$=\mathrm{q} \alpha=(1-\mathrm{p}) \alpha=\frac{\mathrm{p}(1-\mathrm{p})}{1-\mathrm{q}^{3}}$
Again we have $\alpha+\beta+\gamma=1$
$\Rightarrow \gamma=1-(\alpha+\beta)=1-\frac{p+p(1-p)}{1-q^{3}}$
$=1-\frac{p+p(1-p)}{1-(1-p)^{3}}=\frac{1-(1-p)^{3}-p-p(1-p)}{1-(1-p)^{3}}$
$=\frac{1-(1-p)^{3}-2 p+p^{2}}{1-(1-p)^{3}}=\frac{p-2 p^{2}+p^{3}}{1-(1-p)^{3}}$
Also, $\quad \alpha=\frac{p}{1-(1-p)^{3}}, \beta=\frac{p(1-p)}{1-(1-p)^{3}}$
24. Let $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}$ are coins.

4 coins tossed twice \rightarrow each coin is tossed twice.
Let S : denotes the success that a coin is discarded $\mathrm{P}(\mathrm{S})=1-$ coin is not discarded

$$
=1-\mathrm{P}(\mathrm{HH})=1-\frac{1}{4}=\frac{3}{4}
$$

Hence S can take value $0,1,2,3,4$
$\mathrm{P}(\mathrm{S}=3$ or 4$)=\mathrm{P}(\mathrm{S}=3)+\mathrm{P}(\mathrm{S}=4)$
$={ }^{4} \mathrm{C}_{1}\left(\frac{3}{4}\right)^{3}\left(\frac{1}{4}\right)+{ }^{4} \mathrm{C}_{4}\left(\frac{3}{4}\right)^{4}=\left(\frac{3}{4}\right)^{3}\left(1+\frac{3}{4}\right)$
$=\frac{(27)(7)}{256}=\frac{189}{256}=\frac{\mathrm{m}}{\mathrm{n}}$
$\therefore \mathrm{m}+\mathrm{n}=445$

EXERCISE - 5

Part \# I : AIEEE/JEE-MAIN

1. Probability problem is not solved by $\mathrm{A}=1-\frac{1}{2}=\frac{1}{2}$

Probability problem is not solved by $\mathrm{B}=1-\frac{1}{3}=\frac{2}{3}$
Probability problem is not solved by $\mathrm{C}=1-\frac{1}{4}=\frac{3}{4}$
Probability of solving the problem $=1-\mathrm{P}$ (not solved by any body)
$\therefore \mathrm{P}=1-\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4}=1-\frac{1}{4}=\frac{3}{4}$
2. $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\frac{3}{4}, \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{4}$

$$
\begin{aligned}
& \mathrm{P}(\overline{\mathrm{~A}})=\frac{2}{3} \Rightarrow \mathrm{P}(\mathrm{~A})=\frac{1}{3} \\
\therefore & \mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \cup \mathrm{~B}) \\
& \frac{1}{4}=\frac{1}{3}+\mathrm{P}(\mathrm{~B})-\frac{3}{4} \Rightarrow \mathrm{P}(\mathrm{~B})=\frac{2}{3} \\
& \mathrm{P}(\overline{\mathrm{~A}} \cap \mathrm{~B})=\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) \\
& =\frac{2}{3}-\frac{1}{4}=\frac{8-3}{12}=\frac{5}{12} .
\end{aligned}
$$

3. Probability of getting odd $\mathrm{p}=\frac{3}{6}=\frac{1}{2}$

Probability of getting others $\mathrm{q}=\frac{3}{6}=\frac{1}{2}$
Variance $=n p q=5 \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{5}{4}$
4. Out of 5 horses only one is the winning horse. The probability that Mr. A selected the losing horse $=\frac{4}{5} \times \frac{3}{4}$
\therefore The probability that Mr. A selected the winning horse

$$
=1-\frac{4}{5} \times \frac{3}{4}=\frac{2}{5}
$$

7. $E=\{x$ is a prime number $\}$
$\mathrm{P}(\mathrm{E})=\mathrm{P}(2)+\mathrm{P}(3)+\mathrm{P}(5)+\mathrm{P}(7)=0.62$
$\mathrm{F}=(\mathrm{x}<4), \mathrm{P}(\mathrm{F})=\mathrm{P}(1)+\mathrm{P}(2)+\mathrm{P}(3)=0.50$
$\therefore \quad \mathrm{P}(\mathrm{E} \cup \mathrm{F})=\mathrm{P}(\mathrm{E})+\mathrm{P}(\mathrm{F})-\mathrm{P}(\mathrm{E} \cap \mathrm{F})$

$$
=0.62+0.50-0.35=0.77
$$

8. $\left.\begin{array}{c}\mathrm{np}=4 \\ \mathrm{npq}=2\end{array}\right\} \Rightarrow \mathrm{q}=\frac{1}{2}, \mathrm{p}=\frac{1}{2}, \mathrm{n}=8$
$\mathrm{P}(\mathrm{X}=2)={ }^{8} \mathrm{C}_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{6}=28 \cdot \frac{1}{2^{8}}=\frac{28}{256}$
9. For a particular house being selected,

Probability $=\frac{1}{3}$
Probability (all the persons apply for the same house)

$$
=\left(\frac{1}{3} \times \frac{1}{3} \times \frac{1}{3}\right) 3=\frac{1}{9} .
$$

14. Let A be the event that sum of digits is 8
exhaustive cases $\rightarrow{ }^{50} \mathrm{C}_{1}$
favourable cases $\rightarrow 08,17,26,35,44={ }^{5} \mathrm{C}_{1}$
$P(A)=\frac{{ }^{5} C_{1}}{{ }^{50} C_{1}}$
Let B be the event that product of digits is zero favourable cases \rightarrow

$$
\begin{aligned}
& \{00,01,---, 09,10,20,30,40\}={ }^{14} \mathrm{C}_{1} \\
\therefore & \mathrm{P}(\mathrm{~B})=\frac{{ }^{14} \mathrm{C}_{1}}{{ }^{50} \mathrm{C}_{1}} \\
\therefore & \mathrm{P}(\mathrm{~A} / \mathrm{B})=\frac{\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})}{\mathrm{P}(\mathrm{~B})}=\frac{1 /{ }^{50} \mathrm{C}_{1}}{{ }^{14} \mathrm{C}_{1} /{ }^{50} \mathrm{C}_{1}}=\frac{1}{14}
\end{aligned}
$$

15. The probability of at least one success
$1-\left(\frac{3}{4}\right)^{\mathrm{n}} \geq \frac{9}{10}$
$\left(\frac{3}{4}\right)^{\mathrm{n}} \leq \frac{1}{10}$
$\mathrm{n} \geq \log _{3 / 4}\left(\frac{1}{10}\right)$
$\mathrm{n} \geq \frac{-\log 10}{\log _{10} 3-\log _{10} 4}$
$\mathrm{n} \geq \frac{1}{\log _{10} 4-\log _{10} 3}$
16. Required probability $=\frac{{ }^{3} C_{1}}{{ }^{9} C_{1}} \quad \frac{{ }^{4} C_{1}}{{ }^{8} C_{1}} \quad \frac{{ }^{2} C_{1}}{{ }^{7} C_{1}} \quad 3!=\frac{2}{7}$
17. Let terms of an AP
$a, a+d, a+2 d, a+3 d$
$\because a \geq 1, a+3 d \leq 20$
$3 \mathrm{~d} \leq 19 \Rightarrow \mathrm{~d} \leq \frac{19}{3}$
so $\mathrm{d}= \pm 1, \pm 2, \pm 3, \pm 4, \pm 5$ and ± 6
statement 2 is wrong
if $d=1$
then $\mathrm{a}+3 \mathrm{~d} \leq 20$ similarly $\mathrm{d}=-1$
$\mathrm{a} \leq 17 \quad$ so in this case also
so 17 cases will 17 cases will be there be there
Total case for $\mathrm{d}= \pm 1$ is 34
18. $\mathrm{P}\left(\frac{\mathrm{C}}{\mathrm{D}}\right)=\frac{\mathrm{P}(\mathrm{C} \cap \mathrm{D})}{\mathrm{P}(\mathrm{D})}=\frac{\mathrm{P}(\mathrm{C})}{\mathrm{P}(\mathrm{D})}$
$P(D)=\frac{P(C)}{P\left(\frac{C}{D}\right)} \leq 1$
$\mathrm{P}(\mathrm{C}) \leq \mathrm{P}\left(\frac{\mathrm{C}}{\mathrm{D}}\right)$
$\mathrm{P}\left(\frac{\mathrm{C}}{\mathrm{D}}\right) \geq \mathrm{P}(\mathrm{C})$
19. at least one failure $=1-$ all sucess

$$
\begin{aligned}
& 1 \geq 1-\mathrm{p}^{5} \geq \frac{31}{32} \\
& 0 \leq \mathrm{p}^{5} \leq \frac{1}{32} \\
& 0 \leq \mathrm{p} \leq \frac{1}{2} \\
& \mathrm{p} \in\left[0, \frac{1}{2}\right]
\end{aligned}
$$

20. $\mathrm{P}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})=0$

$$
\begin{aligned}
& P\left(\frac{\overline{\mathrm{~A}} \cap \overline{\mathrm{~B}}}{\mathrm{C}}\right)=\frac{\mathrm{P}\{(\overline{\mathrm{~A}} \cap \overline{\mathrm{~B}}) \cap \mathrm{C}\}}{\mathrm{P}(\mathrm{C})}=\frac{\mathrm{P}(\overline{\mathrm{~A}} \cap \overline{\mathrm{~B}}) \mathrm{P}(\mathrm{C})}{\mathrm{P}(\mathrm{C})} \\
& =\frac{[1-\mathrm{P}(\mathrm{~A})-\mathrm{P}(\mathrm{~B})+\mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{~B})] \mathrm{P}(\mathrm{C})}{\mathrm{P}(\mathrm{C})}
\end{aligned}
$$

$$
(\because \mathrm{P}(\mathrm{~A} \cap \mathrm{~B} \cap \mathrm{C})=0)
$$

$=\frac{P(C)-P(A) P(C)-P(B) P(C)}{P(C)}$
$=1-\mathrm{P}(\mathrm{A})-\mathrm{P}(\mathrm{B})=\mathrm{P}\left(\mathrm{A}^{\mathrm{C}}\right)-\mathrm{P}(\mathrm{B})$
21. Let Events A denotes the getting min No. is
$3 \& B$ denotes the max. no. is 6
$\mathrm{P}\left(\frac{\mathrm{A}}{\mathrm{B}}\right)=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}=\frac{{ }^{2} \mathrm{C}_{1}}{{ }^{5} \mathrm{C}_{2}}=\frac{2}{10}=\frac{1}{5}$
Aliter
$P\left(\frac{A}{B}\right)=\frac{P(A \cap B)}{P(B)}=\frac{\frac{{ }^{4} C_{3}-(2)}{{ }^{8} C_{3}}}{\frac{{ }^{6} C_{3}-{ }^{5} C_{3}}{{ }^{8} C_{3}}}=\frac{2}{10}=\frac{1}{5}$
22. $\mathrm{P}(4$ correct $)+\mathrm{P}(5$ correct $)$
$={ }^{5} \mathrm{C}_{4}\left(\frac{1}{3}\right)^{4}\left(\frac{2}{3}\right)+\left(\frac{1}{3}\right)^{5}=\frac{11}{3^{5}}$
25. A $\frac{4}{2}=12$

L $\quad 4=24$
M $\quad \frac{4}{2}=12$
SA $\quad \frac{3}{2}=3$
SL $\quad 3=6$
Total 57
Next word is SMALL..

Part \# II : IIT-JEE ADVANCED

1. p_{n} denotes the probability that no two (or more) consecutive heads occur
$\Rightarrow p_{n}$ denotes the probability that 1 or no head occur. For $\mathrm{n}=1, \mathrm{p}_{1}=1$ because in both cases we get less than two heads (H, T)
For $\mathrm{n}=2$

$$
\begin{aligned}
\mathrm{p}_{2} & =1-\mathrm{p}(\text { two head simultaneously occur }) \\
& =1-\mathrm{p}(\mathrm{HH})=1-\mathrm{pp}=1-\mathrm{p}^{2}
\end{aligned}
$$

(probability of head is given as p not $1 / 2$)
For $n \geq 3, p_{n}=p_{n-1}(1-p)+p_{n-2}(1-p) p$
$=(1-p) p_{n-1}+p(1-p) p_{n-2} \quad$ Hence proved.
2. (a) Let $\mathrm{w}_{1} \rightarrow$ ball drawn in the first draw is white.
$\mathrm{b}_{1} \rightarrow$ ball drawn in the first draw is black.
$\mathrm{w}_{2} \rightarrow$ ball drawn in the second draw is white.

Then

$$
\begin{aligned}
& P\left(w_{2}\right)=P\left(w_{1}\right) \cdot P\left(w_{2} / w_{1}\right)+P\left(b_{1}\right) P\left(w_{2} / b_{1}\right) \\
& =\left(\frac{m}{m+n}\right)\left(\frac{m+k}{m+n+k}\right)+\left(\frac{n}{m+n}\right)\left(\frac{m}{m+n+k}\right) \\
& =\frac{m(m+k)+m n}{(m+n)(m+n+k)} \\
& =\frac{m(m+n+k)}{(m+n)(m+n+k)}=\frac{m}{m+n}
\end{aligned}
$$

2. (b) Total number of favourable cases

$$
=\left(3^{\mathrm{n}}-3 \cdot 2^{\mathrm{n}}+3\right) \cdot{ }^{6} \mathrm{C}_{3}
$$

\Rightarrow required probability

$$
=\frac{\left(3^{n}-3.2^{n}+3\right) \times{ }^{6} C_{3}}{6^{n}}
$$

5. (a) Here, $\mathrm{P}(\mathrm{A} \cup \mathrm{B}) \cdot \mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)$
$\Rightarrow \quad\{\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})\}\left\{\mathrm{P}\left(\mathrm{A}^{\prime}\right) \cdot \mathrm{P}\left(\mathrm{B}^{\prime}\right)\right\}$
$\left\{\right.$ Since A, B are independent $\Rightarrow A^{\prime}, B^{\prime}$ are independent $\}$
$\therefore \quad \mathrm{P}(\mathrm{A} \cup \mathrm{B}) \cdot \mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)$
$\leq\{\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})\} \cdot\left\{\mathrm{P}\left(\mathrm{A}^{\prime}\right) \cdot \mathrm{P}\left(\mathrm{B}^{\prime}\right)\right\}$
$=P(A) \cdot P\left(A^{\prime}\right) \cdot P\left(\mathrm{~B}^{\prime}\right)+\mathrm{P}(\mathrm{B}) \cdot \mathrm{P}\left(\mathrm{A}^{\prime}\right) \cdot \mathrm{P}\left(\mathrm{B}^{\prime}\right)$

$$
\begin{equation*}
\leq \mathrm{P}(\mathrm{~A}) \cdot \mathrm{P}\left(\mathrm{~B}^{\prime}\right)+\mathrm{P}(\mathrm{~B}) \cdot \mathrm{P}\left(\mathrm{~A}^{\prime}\right) \tag{i}
\end{equation*}
$$

$\left\{\right.$ Since in $(1), \mathrm{P}\left(\mathrm{A}^{\prime}\right) \leq 1$ and $\left.\mathrm{P}\left(\mathrm{B}^{\prime}\right) \leq 1\right\}$
$\Rightarrow \mathrm{P}(\mathrm{A} \cup \mathrm{B}) \cdot \mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right) \leq \mathrm{P}(\mathrm{A}) \cdot \mathrm{P}\left(\mathrm{B}^{\prime}\right)+\mathrm{P}(\mathrm{B}) \cdot \mathrm{P}\left(\mathrm{A}^{\prime}\right)$
$\Rightarrow \mathrm{P}(\mathrm{A} \cup \mathrm{B}) \cdot \mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right) \leq \mathrm{P}(\mathrm{C})$
$\left\{\right.$ as $\left.\mathrm{P}(\mathrm{C})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}\left(\mathrm{B}^{\prime}\right)+\mathrm{P}(\mathrm{B}) \cdot \mathrm{P}\left(\mathrm{A}^{\prime}\right)\right\}$
5. (b) Using Baye's theorem; $\mathrm{P}(\mathrm{B} / \mathrm{A})$

$$
=\frac{\sum_{i=1}^{3} P\left(A_{i}\right) \cdot P\left(B / A_{i}\right)}{\sum_{i=1}^{3} P\left(A_{i}\right)}
$$

where A be the event at least 4 white balls have been drawn.
A_{i} be the event exactly 4 white balls have been drawn.
A_{2} be the event exactly 5 whitle balls have been drawn.
A_{3} be the event exactly 6 white balls have been drawn B be the event exactly 1 white ball is drawn from two draws.
$\therefore \mathrm{P}(\mathrm{B} / \mathrm{A})$

$$
\begin{aligned}
& \frac{\frac{{ }^{12} \mathrm{C}_{2} \cdot{ }^{6} \mathrm{C}_{4}}{{ }^{18} \mathrm{C}_{6}} \cdot \frac{{ }^{10} \mathrm{C}_{1} \cdot{ }^{2} \mathrm{C}_{1}}{{ }^{12} \mathrm{C}_{2}}+\frac{{ }^{12} \mathrm{C}_{1} \cdot{ }^{6} \mathrm{C}_{5}}{{ }^{18} \mathrm{C}_{6}} \cdot \frac{{ }^{11} \mathrm{C}_{1} \cdot{ }^{1} \mathrm{C}_{1}}{{ }^{12} \mathrm{C}_{2}}}{\frac{{ }^{12} \mathrm{C}_{2} \cdot{ }^{6} \mathrm{C}_{4}}{{ }^{18} \mathrm{C}_{6}}+\frac{{ }^{12} \mathrm{C}_{1} \cdot{ }^{6} \mathrm{C}_{5}}{{ }^{18} \mathrm{C}_{6}}+\frac{{ }^{12} \mathrm{C}_{0} \cdot{ }^{6} \mathrm{C}_{6}}{18} \mathrm{C}_{6}} \\
= & \frac{\left({ }^{12} \mathrm{C}_{2} \cdot{ }^{6} \mathrm{C}_{4} \cdot{ }^{10} \mathrm{C}_{1} \cdot{ }^{2} \mathrm{C}_{1}\right)+\left({ }^{12} \mathrm{C}_{1} \cdot{ }^{6} \mathrm{C}_{5} \cdot{ }^{11} \mathrm{C}_{1} \cdot{ }^{1} \mathrm{C}_{1}\right)}{{ }^{12} \mathrm{C}_{2}\left({ }^{12} \mathrm{C}_{2} \cdot{ }^{6} \mathrm{C}_{4}+{ }^{12} \mathrm{C}_{1} \cdot{ }^{6} \mathrm{C}_{5}+{ }^{12} \mathrm{C}_{0} \cdot{ }^{6} \mathrm{C}_{6}\right)}
\end{aligned}
$$

5. (c) As three distinct numbers are to be selected from first 100 natural numbers
$\Rightarrow \mathrm{n}(\mathrm{S})={ }^{100} \mathrm{C}_{3}$
$\mathrm{E}_{(f \text { avourable events })}=$ All three of them are divisible by both 2 and 3 .
\Rightarrow divisible by 6 i.e., $\{6,12,18, \ldots ., 96\}$
$\mathrm{n}(\mathrm{E})={ }^{16} \mathrm{C}_{3}$

$$
P(E)=\frac{16 \times 15 \times 14}{100 \times 99 \times 98}=\frac{4}{1155}
$$

10. Statement I : If $P\left(H_{i} \cap E\right)=0$ for some i, then

$$
\mathrm{P}\left(\frac{\mathrm{H}_{\mathrm{i}}}{\mathrm{E}}\right)=\mathrm{P}\left(\frac{\mathrm{E}}{\mathrm{H}_{\mathrm{i}}}\right)=0
$$

If $\mathrm{P}\left(\mathrm{H}_{\mathrm{i}} \cap \mathrm{E}\right) \neq 0$ for $\forall \mathrm{i}=1,2, \ldots, \mathrm{n}$
Then $P\left(\frac{H_{i}}{E}\right)=\frac{P\left(H_{i} \cap E\right)}{P\left(H_{i}\right)} \times \frac{P\left(H_{i}\right)}{P(E)}$

$$
=\frac{P\left(\frac{E}{H_{i}}\right) \times P\left(H_{i}\right)}{P(E)}>P\left(\frac{E}{H_{i}}\right) P\left(H_{i}\right) \quad[\operatorname{as} 0<P(E)<1]
$$

Hence statement I may not always be true.
Statement II : Clearly, $\mathrm{H}_{1} \cup \mathrm{H}_{2} \cup \ldots \cup \mathrm{H}_{\mathrm{n}}=\mathrm{S}$ (sample space)
$\Rightarrow \mathrm{P}\left(\mathrm{H}_{1}\right)+\mathrm{P}\left(\mathrm{H}_{2}\right)+\ldots+\mathrm{P}\left(\mathrm{H}_{\mathrm{n}}\right)=1$
12. Let B have n number of outcomes.

$$
\text { so } P(B)=\frac{\mathrm{n}}{10}, \mathrm{P}(\mathrm{~A})=\frac{4}{10}
$$

$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{4}{10} \times \frac{\mathrm{n}}{10}=\frac{2 \mathrm{n} / 5}{10}$
$\Rightarrow \frac{2 n}{5}$ is an integer
$\Rightarrow \mathrm{n}=5$ or 10
17. C: Correct signal is transmitted
$\overline{\mathrm{C}}$:false signal is transmitted
G : Original signal is green
R : Original signal is red
K : Signal received at station B is green.

$$
\begin{aligned}
& P(G / K)=\frac{P(G) \cdot P(K / G)}{P(K)} \\
& =\frac{P(G C C)+P(G \bar{C} \bar{C})}{P(G C C)+P(G \bar{C} \bar{C})+P(R C \bar{C})+P(R \bar{C} C)}
\end{aligned}
$$

$$
=\frac{\frac{4}{5} \times \frac{3}{4} \times \frac{3}{4}+\frac{4}{5} \times \frac{1}{4} \times \frac{1}{4}}{\frac{4}{5} \times \frac{3}{4} \times \frac{3}{4}+\frac{4}{5} \times \frac{1}{4} \times \frac{1}{4}+\frac{1}{5} \times \frac{3}{4} \times \frac{1}{4}+\frac{1}{5}+\frac{1}{4} \times \frac{3}{4}}
$$

$$
=\frac{40}{46}=\frac{20}{23}
$$

Paragraph for Question 18 and 19

18. (B)

Required probability

$$
\begin{aligned}
& =\frac{1}{2}\left(\frac{3}{5} \cdot 1+\frac{2}{5} \cdot \frac{1}{2}\right)+\frac{1}{2}\left(\frac{{ }^{3} \mathrm{C}_{2}}{{ }^{5} \mathrm{C}_{2}} \cdot 1+\frac{{ }^{2} \mathrm{C}_{2}}{{ }^{5} \mathrm{C}_{2}} \cdot \frac{1}{3}+\frac{{ }^{3} \mathrm{C}_{1}{ }^{2} \mathrm{C}_{1}}{{ }^{5} \mathrm{C}_{2}} \cdot \frac{2}{3}\right) \\
& =\frac{1}{2}\left(\frac{4}{5}\right)+\frac{1}{2}\left(\frac{3}{10}+\frac{1}{30}+\frac{2}{5}\right)=\frac{2}{5}+\frac{11}{30}=\frac{23}{30}
\end{aligned}
$$

19. (D)

Required probability
$=\frac{2 / 5}{2 / 5+11 / 30}$ (using Baye's theorem)
$=\frac{12}{23}$
21. $\mathrm{P}(\mathrm{X})=\mathrm{E}_{1} \mathrm{E}_{2} \mathrm{E}_{3}+\mathrm{E}_{1} \mathrm{E}_{2} \overline{\mathrm{E}}_{3}+\mathrm{E}_{1} \overline{\mathrm{E}}_{2} \mathrm{E}_{3}+\overline{\mathrm{E}}_{1} \mathrm{E}_{2} \mathrm{E}_{3}$

$$
=\frac{1}{2} \times \frac{1}{4} \times \frac{1}{4}+\frac{1}{2} \times \frac{1}{4} \times \frac{3}{4}+\frac{1}{2} \times \frac{3}{4} \times \frac{1}{4}+\frac{1}{2} \times \frac{1}{4} \times \frac{1}{4}
$$

$\Rightarrow \mathrm{P}(\mathrm{X})=\frac{1}{4}$

$$
\mathrm{P}\left(\frac{\mathrm{X}_{1}^{\mathrm{c}}}{\mathrm{X}}\right)=\frac{\mathrm{P}\left(\mathrm{X}_{1}^{\mathrm{C}} \cap \mathrm{X}\right)}{\mathrm{P}(\mathrm{X})}=\frac{1 / 32}{1 / 4}=\frac{1}{8}
$$

P (Exactly two engines are functioning $\mid \mathrm{x}$)

$$
\begin{aligned}
& =\frac{7 / 32}{1 / 4}=\frac{7}{8} \\
& P\left(\frac{X}{X_{2}}\right)=\frac{P\left(X \cap X_{2}\right)}{P\left(X_{2}\right)}=\frac{5 / 32}{1 / 4}=\frac{5}{8} \\
& P\left(\frac{X}{X_{1}}\right)=\frac{P\left(X \cap X_{1}\right)}{P\left(X_{1}\right)}=\frac{7 / 32}{1 / 2}=\frac{7}{16}
\end{aligned}
$$

22. $1-\frac{{ }^{6} \mathrm{C}_{1} \cdot 5^{3}}{6^{4}}=\frac{91}{216}$
23. $\mathrm{P}(\mathrm{X} \cap \mathrm{Y})=\mathrm{P}(\mathrm{X}), \mathrm{P}(\mathrm{Y} / \mathrm{X})$
$\Rightarrow \quad \mathrm{P}(\mathrm{X})=\frac{1}{2}$
Also $\mathrm{P}(\mathrm{X} \cap \mathrm{Y})=\mathrm{P}(\mathrm{Y}) \cdot \mathrm{P}(\mathrm{X} / \mathrm{Y})$
$\Rightarrow \quad \mathrm{P}(\mathrm{Y})=\frac{1}{3}$
$\Rightarrow \quad \mathrm{P}(\mathrm{X} \cap \mathrm{Y})=\mathrm{P}(\mathrm{X}) \cdot \mathrm{P}(\mathrm{Y})$
$\Rightarrow \quad \mathrm{X}, \mathrm{Y}$ are independent
$\mathrm{P}(\mathrm{X} \cup \mathrm{Y})=\mathrm{P}(\mathrm{X})+\mathrm{P}(\mathrm{Y})-\mathrm{P}(\mathrm{X} \cap \mathrm{Y})$

$$
=\frac{1}{3}+\frac{1}{2}-\frac{1}{6}=\frac{2}{3}
$$

$$
\mathrm{P}\left(\mathrm{X}^{\mathrm{C}} \cap \mathrm{Y}\right)=\mathrm{P}(\mathrm{Y})-\mathrm{P}(\mathrm{X} \cap \mathrm{Y})=\frac{1}{3}-\frac{1}{6}=\frac{1}{6}
$$

$\Rightarrow(\mathrm{A}, \mathrm{B})$ are correct
24. P (Problem is solved by at least one of them)
$=1-\mathrm{P}($ solved by none $)$
$=1-\left(\frac{1}{2} \times \frac{1}{4} \times \frac{3}{4} \times \frac{7}{8}\right)$
$=1-\frac{21}{256}=\frac{235}{256}$
25. Let $\mathrm{P}\left(\mathrm{E}_{1}\right)=\mathrm{p}_{1}, \mathrm{P}\left(\mathrm{E}_{2}\right)=\mathrm{p}_{2}, \mathrm{P}\left(\mathrm{E}_{3}\right)=\mathrm{p}_{3}$
given that $p_{1}\left(1-p_{2}\right)\left(1-p_{3}\right)=\alpha$
and $\quad\left(1-p_{1}\right)\left(1-p_{2}\right)\left(1-p_{3}\right)=p$

$$
\Rightarrow \frac{p_{1}}{1-p_{1}}=\frac{\alpha}{p}, \frac{p_{2}}{1-p_{2}}=\frac{\beta}{p} \quad \& \frac{p_{3}}{1-p_{3}}=\frac{\gamma}{p}
$$

Also $\beta=\frac{\alpha p}{\alpha+2 p}=\frac{3 \gamma p}{p-2 \gamma}$
$\Rightarrow \alpha p-2 \alpha \gamma=3 \alpha \gamma+6 p \gamma$
$\Rightarrow \alpha p-6 p \gamma=5 \alpha \gamma$
$\Rightarrow \frac{p_{1}}{1-p_{1}}-\frac{6 p_{3}}{1-p_{3}}=\frac{5 p_{1} p_{3}}{\left(1-p_{1}\right)\left(1-p_{3}\right)}$
$\Rightarrow \mathrm{p}_{1}-6 \mathrm{p}_{3}=0$
$\Rightarrow \frac{\mathrm{p}_{1}}{\mathrm{p}_{3}}=6$

Paragraph for Question 26 to 27
26. (D)
(2)
(2W

$\mathrm{A}=$ Total drawn balls are drawn $\&$ one is white, another is Red
$\mathrm{P}\left(\mathrm{B}_{2} \mid \mathrm{A}\right)$ is to be determined $\mathrm{P}\left(\mathrm{B}_{2} \mid \mathrm{A}\right)$
$=\frac{\mathrm{P}\left(\mathrm{A} \mid \mathrm{B}_{2}\right) \mathrm{P}\left(\mathrm{B}_{2}\right)}{\mathrm{P}\left(\mathrm{A} \mid \mathrm{B}_{1}\right) \mathrm{P}\left(\mathrm{B}_{1}\right)+\mathrm{P}\left(\mathrm{A} \mid \mathrm{B}_{2}\right) \mathrm{P}\left(\mathrm{B}_{2}\right)+\mathrm{P}\left(\mathrm{A} \mid \mathrm{B}_{3}\right) \mathrm{P}\left(\mathrm{B}_{3}\right)}$
$\mathrm{P}\left(\mathrm{B}_{1}\right)=\mathrm{P}\left(\mathrm{B}_{2}\right)=\mathrm{P}\left(\mathrm{B}_{3}\right)=\frac{1}{3}$
$\mathrm{P}\left(\frac{\mathrm{A}}{\mathrm{B}_{1}}\right)=\frac{{ }^{1} \mathrm{C}_{1} \times{ }^{3} \mathrm{C}_{1}}{{ }^{6} \mathrm{C}_{2}}$
$\mathrm{P}\left(\mathrm{A} \mid \mathrm{B}_{2}\right)=\frac{{ }^{2} \mathrm{C}_{1} \times{ }^{3} \mathrm{C}_{1}}{{ }^{9} \mathrm{C}_{2}}$
$\mathrm{P}\left(\mathrm{A} \mid \mathrm{B}_{3}\right)=\frac{{ }^{3} \mathrm{C}_{1} \times{ }^{4} \mathrm{C}_{1}}{{ }^{9} \mathrm{C}_{2}}$
By putting the values
$\mathrm{P}\left(\mathrm{B}_{2} \mid \mathrm{A}\right)=\frac{55}{181}$
27. (A)
$B_{1}\left\{\begin{array}{l}1 W \\ 3 R \\ 2 B\end{array} \quad B_{2}\left\{\begin{array}{l}2 W \\ 3 R \\ 4 B\end{array} \quad B_{3}\left\{\begin{array}{l}3 W \\ 4 R \\ 5 B\end{array}\right.\right.\right.$
Probability of 3 drawn balls of same colour
$=\frac{1}{6} \times \frac{2}{9} \times \frac{3}{12}+\frac{3}{6} \times \frac{3}{9} \times \frac{4}{12}+\frac{2}{6} \times \frac{4}{9} \times \frac{5}{12}=\frac{82}{648}$
34. (C)
$\mathrm{P}(\mathrm{T} 1)=\frac{1}{5}$
$P(T 2)=\frac{4}{5}$
$P(D)=\frac{7}{100}$
$\mathrm{P}\left(\frac{\mathrm{D}}{\mathrm{T}_{1}}\right)=10 \cdot \mathrm{P}\left(\frac{\mathrm{D}}{\mathrm{T}_{2}}\right)$. Let $\mathrm{P}\left(\frac{\mathrm{D}}{\mathrm{T}_{1}}\right)=\mathrm{x}$
Now, $P\left(T_{1}\right) \times P\left(\frac{D}{T_{1}}\right)+P\left(T_{2}\right) \cdot P\left(\frac{D}{T_{2}}\right)=\frac{7}{100}$
$=\frac{1}{5} \times 10 x+\frac{4}{5} \times x=\frac{7}{100} \Rightarrow x=\frac{1}{40}$
$\therefore P\left(\frac{T_{2}}{D}\right)=\frac{\frac{4}{5} \times \frac{39}{40}}{\frac{93}{100}}=\frac{78}{93}$
35. $\mathrm{P}(\mathrm{X}>\mathrm{Y})=\left(\frac{1}{2} \times \frac{1}{2}\right)+\left(\frac{1}{2} \times \frac{1}{6}\right)+\left(\frac{1}{6} \times \frac{1}{2}\right)=\frac{5}{12}$
36. $\mathrm{P}(\mathrm{X}=\mathrm{Y})=\left(\frac{1}{2} \times \frac{1}{3} \times 2\right)+\left(\frac{1}{6} \times \frac{1}{6}\right)=\frac{13}{36}$

MOCK TEST

1. $\mathrm{P}={ }^{14} \mathrm{C}_{13} \frac{1}{2}\left(\frac{1}{2}\right)^{14-13}=14 \times \frac{1}{2^{13}} \frac{1}{2}=\frac{7}{2^{13}}$
2. (B)

Since the two boys came out are a girl and a boy, therefore remaining 2 are boys iff among the 4 students 3 are boys and 1 is a girl
\therefore probability $={ }^{4} \mathrm{C}_{3}\left(\frac{1}{2}\right)^{4}=\frac{1}{4}$
3. A ball from first urn can be drawn is two mannars ball is white or ball is black

$$
\mathrm{P}(\mathrm{w})=\frac{\mathrm{m}}{\mathrm{~m}+\mathrm{n}} \quad \mathrm{P}(\mathrm{~B})=\frac{\mathrm{n}}{\mathrm{~m}+\mathrm{n}}
$$

Let $\mathrm{E} \rightarrow$ selecting a white ball from second urn after a ball from urn first has been placed into it

$$
\begin{aligned}
P(E) & =P(w) P(E / W)+P(B) P(E / B) \\
& =\frac{m}{m+n} \times \frac{p+1}{p+q+1}+\frac{n}{m+n} \frac{p}{p+q+1} \\
& =\frac{m(p+1)+n p}{(m+n)(p+q+1)}
\end{aligned}
$$

4. (A)

Total number of functions from A to $B=n(S)=5^{7}$ total number of onto functions from A to B is

$$
\begin{aligned}
& n(E)=\frac{7!}{3!4!} \times 5!+\frac{7!}{3!2!} \times \frac{1}{2!2!} \times 5!=\frac{7!\times 20}{6} \\
& \therefore \quad P(E)=\frac{n(E)}{n(S)}=\frac{7!\times 2}{3 \times 5^{6}}
\end{aligned}
$$

5. Last place can be occupied by $(0-9) 10$ methods. to get ' 6 ' at unit place of x^{4} Last digit should be 2, 4,6 or 8 is 4 ways

$$
\Rightarrow \quad \mathrm{P}=\frac{4}{10} \equiv 40 \%
$$

6. (A)
$P(E)=\frac{\frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} \times \frac{1}{5}}{\frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} \times \frac{1}{5}+\frac{4}{5} \times \frac{1}{2} \times \frac{1}{3} \times \frac{1}{4}\left(\frac{1}{4}\right)^{3}}=\frac{96}{97}$
7. $\mathrm{P}=\mathrm{P}(1$ person lies $)+\mathrm{P}(2$ person lies $) \mathrm{P}(\mathrm{A} 1$ lies
first / 2 person lied $)+\mathrm{P}(3$ person lied $)$
P (A 1 died first / 3 person lied)
$={ }^{\mathrm{n}} \mathrm{C}_{1} \mathrm{pq}^{\mathrm{n}-1} \times \frac{1}{\mathrm{n}}+{ }^{\mathrm{n}} \mathrm{C}_{1} \mathrm{p}^{2} \mathrm{q}^{\mathrm{n}-2} \times \frac{1}{2}+{ }^{\mathrm{n}} \mathrm{C}_{2} \mathrm{p}^{3} \mathrm{q}^{\mathrm{n}-3} \times \frac{1}{3}+\ldots \ldots$.
$=\mathrm{pq}^{\mathrm{n}-1}+{ }^{\mathrm{n}-1} \mathrm{C}_{\mathrm{r}-1} \mathrm{p}^{2} \mathrm{q}^{\mathrm{n}-2} \frac{1}{2}+{ }^{\mathrm{n}} \mathrm{C}_{3} \mathrm{p}^{3} \mathrm{q}^{\mathrm{n}-3} \frac{1}{3}+\ldots \ldots$.
$=p q^{n-1}+\sum_{r=2}^{n-1} C_{r-1} p^{r} q^{n-r} \frac{1}{r}$
As $\frac{{ }^{n-1} C_{r-1}}{r}=\frac{{ }^{n} C_{1}}{n}$
$\mathrm{P}=\mathrm{Pq}^{\mathrm{n}-1}+\frac{1}{\mathrm{n}} \sum_{\mathrm{r}=2}^{\mathrm{n}}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{P}^{\mathrm{r}} \mathrm{q}^{\mathrm{n}-\mathrm{r}}$
$\Rightarrow \mathrm{P}=\mathrm{pq}^{\mathrm{n}-1}+\frac{1}{\mathrm{n}}\left(1-{ }^{\mathrm{n}} \mathrm{C}_{0} \mathrm{p}^{0} \mathrm{q}^{\mathrm{n}-\mathrm{n}} \mathrm{C}_{1} \mathrm{P}^{1} \mathrm{q}^{\mathrm{n}-1}\right)$
$\mathrm{P}=\mathrm{Pq}^{\mathrm{n}-1}+\frac{1}{\mathrm{n}}\left(1-\mathrm{q}^{\mathrm{n}}-\mathrm{nPq}^{\mathrm{n}-1}\right)=\frac{1-(1-\mathrm{p})^{\mathrm{n}}}{\mathrm{n}}$
8. (C)

Favourable cases are 29, 92, 36, 63
\therefore required probabiltiy $={ }^{4} \mathrm{C}_{3} \times\left(\frac{4}{100}\right)^{3} \frac{96}{100}$

$$
=\frac{96}{390625}
$$

9. $n(S)=$ ways of sitting of 10 boys and 5 girls $=15$! $\begin{array}{cccccccc}S_{1} \ldots \ldots \ldots \ldots . S_{a} \ldots \ldots \ldots \ldots S_{5} \\ \text { Girl } & x & \text { Girl } & y & \text { Girl } & z & \text { Girl } & \\ & & & \text { Girl }\end{array}$

Let end seats are occupied by the girls \& between first and second girl x boys are seated similarly between second and third y boys
\qquad so on then
$x+y+z+w=10$
where $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}$ are $(2 \mathrm{k}+1)$ type
$2 \mathrm{k}_{1}+1+2 \mathrm{k}_{2}+1+2 \mathrm{k}_{3}+1+2 \mathrm{k}_{4}+1=10$
$\Rightarrow \mathrm{k}_{1}+\mathrm{k}_{2}+\mathrm{k}_{3}+\mathrm{k}_{4}=3 \quad$ where $\mathrm{k}_{\mathrm{i}} \geq 0$
number of solution are ${ }^{3+4-1} \mathrm{C}_{4-1}={ }^{6} \mathrm{C}_{3}$
$\mathrm{n}(\mathrm{E})=\frac{{ }^{6} \mathrm{C}_{3} \times 10!\times 5!}{15!}$
10. (A)
$\mathrm{S}_{1} . \mathrm{P}=\frac{{ }^{4} \mathrm{C}_{3} \times{ }^{3} \mathrm{C}_{2}+{ }^{4} \mathrm{C}_{3} \times{ }^{2} \mathrm{C}_{2}+{ }^{3} \mathrm{C}_{3} \times{ }^{4} \mathrm{C}_{2}+{ }^{3} \mathrm{C}_{3} \times{ }^{2} \mathrm{C}_{2}}{{ }^{10} \mathrm{C}_{5}}$

$$
=\frac{4 \times 3+4 \times 1+1 \times 6+1}{{ }^{10} \mathrm{C}_{5}}=\frac{23}{{ }^{10} \mathrm{C}_{5}}
$$

S_{2}. Two adjacent row can be selected out of 5 rows in 4 ways. Total ways of selecting 2 rows is ${ }^{5} \mathrm{C}_{2}$ hence
$\mathrm{P}=\frac{4}{{ }^{5} \mathrm{C}_{2}}=\frac{2}{5}$
S_{3}. Required probability
$=\frac{\mathrm{P}(\mathrm{A} \overline{\mathrm{B}} \overline{\mathrm{C}})}{\mathrm{P}(\overline{\mathrm{A}} \overline{\mathrm{B}} \overline{\mathrm{C}})+\mathrm{P}(\mathrm{A} \overline{\mathrm{B}} \overline{\mathrm{C}})+\mathrm{P}(\overline{\mathrm{A}} \mathrm{B} \overline{\mathrm{C}})+\mathrm{P}(\overline{\mathrm{A}} \overline{\mathrm{B}} \mathrm{C})}$
$=\frac{\frac{4}{5} \cdot \frac{1}{4} \cdot \frac{1}{3}}{\frac{1}{5} \cdot \frac{1}{4} \cdot \frac{1}{3}+\frac{4}{5} \cdot \frac{1}{4} \cdot \frac{1}{3}+\frac{1}{5} \cdot \frac{3}{4} \cdot \frac{1}{3}+\frac{1}{5} \cdot \frac{1}{4} \cdot \frac{2}{3}}$
$=\frac{4}{10}=\frac{2}{5}$
11. $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{a}, \mathrm{P}(\mathrm{A})=\mathrm{a}+\mathrm{d}, \quad \mathrm{P}(\mathrm{B})=\mathrm{a}+2 \mathrm{~d}$
$P(A \cup B)=a+3 d$
also $a+d=d \Rightarrow a=0$
$\Rightarrow \mathrm{P}(\mathrm{A} \cap \mathrm{B})=0, \mathrm{P}(\mathrm{A})=\mathrm{d}, \mathrm{P}(\mathrm{B})=2 \mathrm{~d}$

$$
P(A \cup B)=3 d
$$

12. (A, B)

Area of the shaded region

$$
\begin{aligned}
& =\int_{0}^{1}\left(\sqrt{x}-x^{2}\right) d x \\
& =\left.\left(\frac{2}{3} x^{3 / 2}-\frac{x^{3}}{3}\right)\right|_{0} ^{1}=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}
\end{aligned}
$$

Area of the square $=1$
$\therefore \quad$ Probability $=1 / 3$
$A \cup B=$ whole of the region enclosed in $0 \leq x \leq 1,0 \leq y \leq 1$
$\therefore \quad \mathrm{A}$ and B are exhaustive events.
$\mathrm{P}(\mathrm{A})=\int_{0}^{1} \sqrt{\mathrm{x}} \mathrm{dx}=\left.\frac{2}{3} \mathrm{x}^{\frac{3}{2}}\right|_{0} ^{1}=\frac{2}{3}, \mathrm{P}(\mathrm{B})=\frac{1}{3}$
$\therefore \quad \mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})=\frac{2}{9} \neq \mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$\therefore \quad \mathrm{A}$ and B are not independent
14. (A, B, C)

Let S denote the set of points inside a squre with corners $(\mathrm{x}, \mathrm{y}),(\mathrm{x}, \mathrm{y}+1),(\mathrm{x}+1, \mathrm{y}),(\mathrm{x}+1, \mathrm{y}+1), \mathrm{x}$ and y are integers. Clearly each of the four points belong to the set X .

Let P denote the set of points in S with distance less than $\frac{1}{4}$
from any corner point. P consists of four quarter circles each of radius $\frac{1}{4}$.
A coin, whose centre falls in S, will cover a point of X if and only if its centre falls in P.
hence, the required probability,
$\mathrm{p}=\frac{\text { area of } \mathrm{P}}{\text { area of } \mathrm{S}}=\frac{\pi\left(\frac{1}{4}\right)^{2}}{1 \times 1}=\frac{\pi}{16}$
15. $\mathrm{n}(\mathrm{S})=$ ways of selecting 3 number from 10 is ${ }^{10} \mathrm{C}_{3}$
$\mathrm{n}(\mathrm{E}) \rightarrow \mathrm{n}(\mathrm{A} \cup \mathrm{B})$ where $\mathrm{A} \rightarrow$ min. number chosen is 3 $\mathrm{n}(\mathrm{A})={ }^{7} \mathrm{C}_{2}$
$\mathrm{B} \rightarrow$ max number chosen is 7

$$
\mathrm{n}(\mathrm{~B})={ }^{6} \mathrm{C}_{2} \quad \text { also } \mathrm{n}(\mathrm{~A} \cap \mathrm{~B})={ }^{3} \mathrm{C}_{1}=3
$$

$\mathrm{n}(\mathrm{E})={ }^{7} \mathrm{C}_{2}+{ }^{6} \mathrm{C}_{2}-3$
16. (A)
$\mathrm{P}(\mathrm{A} \cap \mathrm{A})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{A})$
17. (B)

$$
\begin{aligned}
& Z=5-x-y \quad \therefore x y+y z+z x=3 \\
\Rightarrow & y^{2}+y(x-5)+\left(3+x^{2}-5 x\right)=0 \\
\because & y \in R \quad \therefore D \geq 0 \\
\Rightarrow & (3 x-13)(x+1) \leq 0 \\
\Rightarrow & x \in\left[-1, \frac{13}{3}\right]
\end{aligned}
$$

So Maximum value of $x=\frac{13}{3}$
and Minimum value of $x=-1$
Then required probability $=\frac{\frac{13}{3}-0}{\frac{13}{3}+1}=\frac{13}{16}$
18. (C)

Let the two non-negative integers be x and y
Then $x=5 a+\alpha$ and $y=5 b+\beta$
where $0 \leq \alpha \leq 4,0 \leq \beta \leq 4$
Now $x^{2}+y^{2}=(5 a+\alpha)^{2}+(5 b+\beta)^{2}$

$$
=25\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)+10(\mathrm{a} \alpha+\mathrm{b} \beta)+\alpha^{2}+\beta^{2} .
$$

$\therefore \quad x^{2}+y^{2}$ is divisible by 5 if and only if 5 divides $\alpha^{2}+\beta^{2}$
The total number of ways of choosing α and $\beta=5 \times 5=25$.
Further, $\alpha^{2}+\beta^{2}$ will be divisible by 5 if
$\left(\alpha_{1} \beta\right) \in\{(0,0),(1,2),(1,3),(2,1),(2,4),(3,1),(3,4)$, $(4,2),(4,3)\}$
\therefore Favourable number of ways of choosing α and $\beta=9$
$\therefore \quad$ Required probability $=\frac{9}{25}$.
19. (D)
$2 \mathrm{n}+1=5$
$2 \mathrm{n}=4$
$\mathrm{n}=2 ; \mathrm{P}(\mathrm{E})=\frac{3 \mathrm{n}}{4 \mathrm{n}^{2}-1}=\frac{6}{15}=\frac{2}{5}$
For $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in A.P. $\mathrm{a}+\mathrm{c}=2 \mathrm{~b}$
$\Rightarrow \mathrm{a}+\mathrm{c}$ is even, so a and c both are even or both odd So, a and c can be chosen in ${ }^{n} C_{2}+{ }^{n+1} C_{2}=n^{2}$ ways
$\therefore \quad P(E)=\frac{n^{2}}{(2 n+1)} C_{3}=\frac{n^{2} \times 3 \times 2 \times 1}{(2 n+1) 2 n(2 n-1)}=\frac{3 n}{4 n^{2}-1}$
20. (D)

Statement-2 true (by definition)
Statement-1 false
$\because \quad \mathrm{A} \cap \mathrm{B} \cap \mathrm{C}=\phi$
21. (A) $\rightarrow \mathrm{q},(\mathrm{B}) \rightarrow \mathrm{p},(\mathrm{C}) \rightarrow \mathrm{r},(\mathrm{D}) \rightarrow \mathrm{q}$

Let E_{i} denotes the event that the bag contains i black and $(12-i)$ white balls $(i=0,1,2, \ldots \ldots . ., 12)$ and A denotes the event that the four balls drawn are all black. Then
$P\left(E_{i}\right)=\frac{1}{13}(i=0,1,2, \ldots \ldots ., 12) ; P\left(\frac{A}{E_{i}}\right)=0$
for $i=0,1,2,3 ; P\left(\frac{A}{E_{i}}\right)=\frac{{ }^{i} C_{4}}{{ }^{12} C_{4}}$ for $i \geq 4$
(A) $\mathrm{P}(\mathrm{A})=$
$\sum_{\mathrm{i}=0}^{12} \mathrm{P}\left(\mathrm{E}_{\mathrm{i}}\right) \mathrm{P}\left(\frac{\mathrm{A}}{\mathrm{E}_{\mathrm{i}}}\right)=\frac{1}{13} \times \frac{1}{{ }^{12} \mathrm{C}_{4}}\left[{ }^{4} \mathrm{C}_{4}+{ }^{5} \mathrm{C}_{4}+\ldots . .+{ }^{12} \mathrm{C}_{4}\right]$
$\left\lvert\,=\frac{{ }^{13} \mathrm{C}_{5}}{13 \times{ }^{12} \mathrm{C}_{4}}=\frac{1}{5}\right.$
(B) Clearly, $\mathrm{P}\left(\frac{\mathrm{A}}{\mathrm{E}_{10}}\right)=\frac{{ }^{10} \mathrm{C}_{4}}{{ }^{12} \mathrm{C}_{4}}=\frac{14}{33}$
(C) By Baye's theorem,

$$
P\left(\frac{E_{10}}{A}\right)=\frac{P\left(E_{10}\right) P\left(\frac{A}{E_{10}}\right)}{P(A)}=\frac{\frac{1}{13} \times \frac{14}{33}}{\frac{1}{5}}=\frac{70}{429}
$$

(D) Let B denotes the probability of drawing 2 white and 2 black balls then
$P\left(\frac{B}{E_{i}}\right)=0$ if $i=0,1$ or 11,12
$P\left(\frac{B}{E_{i}}\right)=\frac{{ }^{i} C_{2} \times{ }^{12-i} C_{2}}{{ }^{12} C_{4}}$ for $i=2,3$, \qquad
$\therefore \quad \mathrm{P}(\mathrm{B})=\sum_{\mathrm{i}=0}^{12} \mathrm{P}\left(\mathrm{E}_{\mathrm{i}}\right) \mathrm{P}\left(\frac{\mathrm{B}}{\mathrm{E}_{\mathrm{i}}}\right)=\frac{1}{13} \times \frac{1}{{ }^{12} \mathrm{C}_{4}}\left[{ }^{2} \mathrm{C}_{2} \times{ }^{10} \mathrm{C}_{2}+\right.$
$\left.{ }^{3} \mathrm{C}_{2} \times{ }^{9} \mathrm{C}_{2}+{ }^{4} \mathrm{C}_{2} \times{ }^{8} \mathrm{C}_{2}+\ldots \ldots .+{ }^{10} \mathrm{C}_{2} \times{ }^{2} \mathrm{C}_{2}\right]$
$=\frac{1}{13} \times \frac{1}{{ }^{12} \mathrm{C}_{4}}\left[2\left\{{ }^{2} \mathrm{C}_{2} \times{ }^{10} \mathrm{C}_{2}+{ }^{3} \mathrm{C}_{2} \times{ }^{9} \mathrm{C}_{2}+{ }^{4} \mathrm{C}_{2} \times{ }^{8} \mathrm{C}_{2}+{ }^{5} \mathrm{C}_{2} \times\right.\right.$
$\left.\left.{ }^{7} \mathrm{C}_{2}\right\}+{ }^{6} \mathrm{C}_{2} \times{ }^{6} \mathrm{C}_{2}\right]=\frac{1}{13} \times \frac{1}{495}(1287)=\frac{1}{5}$
22. $(\mathrm{A}) \rightarrow(\mathrm{s}),(\mathrm{B}) \rightarrow(\mathrm{t}),(\mathrm{C}) \rightarrow(\mathrm{q}),(\mathrm{D}) \rightarrow \mathrm{s}$
(A) Let $\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}, \mathrm{E}_{4}$ be the events that the bag contains 1 white, 2 white, 3 white, 4 white ball respectively.
let $P\left(E_{1}\right)=P\left(E_{2}\right)=P\left(E_{3}\right)=P\left(E_{4}\right)=\frac{1}{4}$
let W be the event that the ball drawn is white.
Then
$\mathrm{P}(\mathrm{W})=\sum \mathrm{P}\left(\mathrm{E}_{1}\right) \mathrm{P}\left(\mathrm{W} / \mathrm{E}_{1}\right)=\frac{1}{4}\left(\frac{1}{4}+\frac{2}{4}+\frac{3}{4}+\frac{4}{4}\right)=\frac{5}{8}$
$\operatorname{Now} P\left(E_{4} / W\right)=\frac{P\left(E_{4}\right) P\left(W / E_{4}\right)}{P(W)}=\frac{1 / 4}{5 / 8}=\frac{2}{5}$
$\therefore \quad \frac{2}{5}=\frac{\mathrm{p}}{15} \quad \Rightarrow \mathrm{p}=6$
(B) ${ }^{12} \mathrm{c}_{1}+{ }^{12} \mathrm{c}_{2}\left({ }^{2} \mathrm{c}_{1}+2 .{ }^{2} \mathrm{c}_{2}\right)+{ }^{12} \mathrm{c}_{3}\left({ }^{3} \mathrm{C}_{1}+2^{3} \mathrm{C}_{2}\right)+\ldots \ldots \ldots .+{ }^{12} \mathrm{c}_{12}$
$\left({ }^{12} \mathrm{c}_{1}+2 .{ }^{12} \mathrm{c}_{2}\right)$

$$
\begin{aligned}
=\left({ }^{12} \mathrm{c}_{1}+2{ }^{12} \mathrm{c}_{2}+3{ }^{12} \mathrm{c}_{3}\right. & \left.+\ldots \ldots \ldots .+12{ }^{12} \mathrm{c}_{2}\right)+2\left({ }^{12} \mathrm{c}_{2} \cdot{ }^{2} \mathrm{c}_{2}\right. \\
& \left.+{ }^{12} \mathrm{c}_{3} \cdot{ }^{3} \mathrm{c}_{2}+\ldots \ldots .+{ }^{12} \mathrm{c}_{12} \cdot{ }^{12} \mathrm{c}_{2}\right)
\end{aligned} \quad \begin{aligned}
& 12 \\
&= \sum_{\mathrm{r}=1}^{12} \mathrm{r}{ }^{12} \mathrm{c}_{\mathrm{r}}+12 \times 11 \times \sum_{\mathrm{r}=2}^{12}{ }^{10} \mathrm{c}_{\mathrm{r}-2} \\
&=12 \times 2^{11}+12 \times 11 \times 2^{10} \\
&=12 \times 2^{10}(2+11)=13 \times 2^{10} \times 12 \\
& \therefore \quad 13 \times 2^{10} \times 12=13 \times 2^{10} \times \mathrm{m} \\
& \therefore \quad \mathrm{~m}=12
\end{aligned}
$$

(C) $\frac{5 x}{2-x}+\frac{5 y}{2-y}+\frac{5 z}{2-z}=5\left[\frac{x}{2-x}+\frac{y}{2-y}+\frac{z}{2-z}\right]$

$$
\begin{aligned}
& =5\left[\frac{x-2+2}{2-x}+\frac{y-2+2}{2-y}+\frac{z-2+2}{2-z}\right] \\
& =5\left[-3+2\left[\frac{1}{2-x}+\frac{1}{2-y}+\frac{1}{2-z}\right]\right]
\end{aligned}
$$

Now $2-x+2-y+2-z=5$
$\therefore \quad \frac{5}{3} \geq \frac{3}{\frac{1}{2-x}+\frac{1}{2-y}+\frac{1}{2-z}}$
ie $\quad \frac{1}{2-x}+\frac{1}{2-y}+\frac{1}{2-z} \geq \frac{9}{5}$
Hence $\frac{5 x}{2-x}+\frac{5 y}{2-y}+\frac{5 z}{2-z} \geq 5\left[-3+2 . \frac{9}{5}\right]=3$
$\therefore \quad$ least value is 3 .
(D) $\sum_{\mathrm{k}=1}^{12} 12 \cdot \mathrm{~K} \cdot{ }^{12} \mathrm{c}_{\mathrm{k}} \cdot{ }^{11} \mathrm{c}_{\mathrm{k}-1}=12^{2} \sum_{\mathrm{k}=1}^{12}\left({ }^{11} \mathrm{c}_{\mathrm{k}-1}\right)^{2}=12^{2} \cdot \frac{22!}{11!11!}$
$=12 . \frac{21.19 \ldots \ldots .3 .}{11!} \cdot 2^{12} \cdot 6$
$\therefore \quad \mathrm{p}=6$
23.

1. (C)

$$
\mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{1}{10} \times 1+\frac{2}{10} \times \frac{1}{2}+\frac{3}{10} \times \frac{1}{3}+\frac{4}{10} \times \frac{1}{4}=\frac{2}{5} .
$$

2. (B)
$P\left(\mathrm{~A}_{3} / \mathrm{E}_{2}\right)=\frac{\frac{3}{10} \times \frac{1}{3}}{\frac{2}{10} \times \frac{1}{2}+\frac{3}{10} \times \frac{1}{3}+\frac{4}{10} \times \frac{1}{4}}=\frac{1}{3}$
3. (A)

Expectation $=\frac{4}{10} \times 1+\frac{3}{10} \times 2+\frac{2}{10} \times 3+\frac{1}{10} \times 4=2$.
24.

1. (D)

A can be drawn out only at even numbered round. Therefore A will not be drained out at the 11th round.
2. (C)

To finish at the 12 th round he must have exactly 1 head in the first 10 rounds, and a tail at the $11^{\text {th }}$ and the 12 th round. The probability of this is ${ }^{10} \mathrm{C}_{1} \mathrm{pq}^{11}$.
3. (A)

To drain out at the $14^{\text {th }}$ round, two cases arise
(i) He gets exactly 2 heads in the first 10 rounds
\therefore probability in this case is ${ }^{10} \mathrm{C}_{2} \mathrm{p}^{2} \mathrm{q}^{8} \cdot \mathrm{q}^{4}=45 \mathrm{p}^{2} \mathrm{q}^{12}$
(iii) He gets exactly 1 head in the first 10 rounds and then exactly one head at the next two rounds
$\therefore \quad$ probability in this case is ${ }^{10} \mathrm{C}_{1} \mathrm{pq}{ }^{9} \cdot{ }^{2} \mathrm{C}_{1} \mathrm{pq} \cdot \mathrm{q}^{2}$ $=20 p^{2} q^{12}$

Therefore required probability $=65 p^{2} q^{12}$
25. $\mathrm{n}=10 \mathrm{k}+\mathrm{r}, \mathrm{k}, \mathrm{r} \in \mathrm{N}, 0 \leq \mathrm{r} \leq 9$
unit place of a^{2} will contain $0,1,4,5,6,9$ only.
$\therefore \quad a^{2}-1$ is divisible by 10 only if unit place of a^{2} contain 1.

If unit place of a^{2} is 1
then unit place of a will be 1 or 9 .

1. (A)
$\mathrm{n}=10 \mathrm{k}+\mathrm{r}$
$\mathrm{r}=0$
$\mathrm{n}=10 \mathrm{k} \quad$ no. of a whose unit place is 1 or 9
$\therefore \mathrm{k}=1, \mathrm{n}=10$ no. of a whose unit place is $=2$
$\therefore \mathrm{k}=2, \mathrm{n}=20$ no. of a whose unit place is $=4$
$\therefore \mathrm{k}=\mathrm{k}, \mathrm{n}=10 \mathrm{k}$ no. of a whose unit place is $=2 \mathrm{k}$
$\therefore \mathrm{p}_{\mathrm{n}}=\frac{2 \mathrm{k}}{\mathrm{n}}$
2. (B)
$\mathrm{n}=10 \mathrm{k}+9$
no. of a whose unit place is 1 or $9=2(k+1)$
$\therefore \mathrm{p}_{\mathrm{n}}=\frac{2(\mathrm{k}+1)}{\mathrm{n}}$
3. (C)
$\therefore \quad$ no. of a whose unit place is 1
or $9=2 k+1$.
$\therefore \quad \mathrm{p}_{\mathrm{n}}=\frac{2 \mathrm{k}+1}{\mathrm{n}}$
4. Let quadratic equation is $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$

Since $\alpha+\beta=\alpha^{2}+\beta^{2} \& \alpha \beta=\alpha^{2} \beta^{2}$
$\Rightarrow \alpha \beta=0$ or $\alpha \beta=1$
$\Rightarrow \alpha=0$ or $\beta=0$ or $\alpha \beta=1$
If $\alpha=0, \beta=\beta^{2}$
$\Rightarrow \quad \beta=0$ or 1
\Rightarrow roots are $(0,0)(0,1)$
If $\beta=0 \quad \alpha=\alpha^{2}$
$\Rightarrow \alpha=0$ or 1
\Rightarrow roots are $(0,0)(1,0)$
When $\alpha \beta=1 \alpha+\beta=(\alpha+\beta)^{2}-2 \alpha \beta$
$\Rightarrow(\alpha+\beta)=(\alpha+\beta)^{2}-2$
$\Rightarrow(\alpha+\beta)^{2}-(\alpha+\beta)-2=0$
$\Rightarrow \alpha+\beta=2$ or $\alpha+\beta=-1$
When $\alpha+\beta=2$ we get $\alpha=\beta=1$
When $\alpha+\beta=-1$ we get $\alpha+\frac{1}{\alpha}=-1$ give imaginary roots
\Rightarrow roots are $(0,0)(1,0)(0,1)(1,1)$
$\Rightarrow \mathrm{P}=\frac{2}{4}=\frac{1}{2}$
27. (5)

$$
\begin{aligned}
& \Rightarrow \mathrm{P}\left(\mathrm{~A}_{1}\right) \quad=\mathrm{P}(\omega)+\mathrm{P}(\mathrm{BB} \omega)+\mathrm{P}(\mathrm{BBBB} \omega) \\
&=\frac{3}{10}+\frac{5}{10} \cdot \frac{4}{9} \cdot \frac{3}{8}+\frac{5}{10} \cdot \frac{4}{9} \cdot \frac{3}{8} \cdot \frac{2}{7} \cdot \frac{3}{6} \\
&=\frac{3}{10}+\frac{1}{12}+\frac{1}{12 \times 7}=\frac{332}{840}=\frac{83}{210} \\
& \Rightarrow \mathrm{P}\left(\mathrm{~A}_{2}\right) \quad=(\mathrm{B} \omega)+(\mathrm{BBB} \omega)+\mathrm{P}(\mathrm{BBBBB} \omega) \\
&= \frac{5}{10} \cdot \frac{3}{9}+\frac{5}{10} \cdot \frac{4}{9} \cdot \frac{3}{8} \cdot \frac{3}{7}+\frac{5}{10} \cdot \frac{4}{9} \cdot \frac{3}{8} \cdot \frac{2}{7} \cdot \frac{1}{6} \cdot \frac{3}{5} \\
&= \frac{1}{6}+\frac{1}{28}+\frac{1}{420}=\frac{86}{420}=\frac{43}{210} \\
& \mathrm{P}(\mathrm{~B})=1-\mathrm{P}\left(\mathrm{~A}_{1}\right)-\mathrm{P}\left(\mathrm{~A}_{2}\right)=\frac{2}{5}
\end{aligned}
$$

28. $\mathrm{P}\left(\frac{\mathrm{A}+}{\mathrm{R}+}\right)=\frac{\mathrm{P}(\mathrm{A}+) \cdot \mathrm{P}\left(\frac{\mathrm{R}+}{\mathrm{A}+}\right)}{\mathrm{P}(\mathrm{A}+) \cdot \mathrm{P}\left(\frac{\mathrm{R}+}{\mathrm{A}+}\right)+\mathrm{P}(\mathrm{A}-) \cdot \mathrm{P}\left(\frac{\mathrm{R}+}{\mathrm{A}-}\right)}$
$\mathrm{A}+: \mathrm{A}$ wrotes + sign
A - : A wrotes - sign
$\mathrm{R}+$: Refree got + sign
$\mathrm{P}\left(\frac{\mathrm{R}+}{\mathrm{A}+}\right)=$ No change or two change and 1 will remain same $={ }^{3} \mathrm{C}_{0}\left(\frac{1}{3}\right)^{3}+{ }^{3} \mathrm{C}_{2}\left(\frac{2}{3}\right)^{2} \cdot \frac{1}{3}$
$P\left(\frac{R+}{A+}\right)=$ one change or all three change the sign

$$
={ }^{3} \mathrm{C}_{1} \frac{2}{3}\left(\frac{1}{3}\right)^{2}+{ }^{3} \mathrm{C}_{3}\left(\frac{2}{3}\right)^{3}=\frac{13}{41}
$$

29. (4)

Let $A=\left\{a_{1}, a_{2}, \ldots . a_{n}\right\}$. For each $a_{i} \in A(1 \leq i \leq n)$ we have the following four cases ;
(i) $a_{i} \in P$ and $a_{i} \in Q$
(ii) $\mathrm{a}_{\mathrm{i}} \notin \mathrm{P}$ and $\mathrm{a}_{\mathrm{i}} \in \mathrm{Q}$
(iii) $\mathrm{a}_{\mathrm{i}} \in \mathrm{P}$ and $\mathrm{a}_{\mathrm{i}} \notin \mathrm{Q}$
(iv) $\mathrm{a}_{\mathrm{i}} \notin \mathrm{P}$ and $\mathrm{a}_{\mathrm{i}} \notin \mathrm{Q}$

Thus the total number of ways of choosing P and Q is 4^{n}
$\mathrm{P} \cap \mathrm{Q}$ contains exactly two element in $\left({ }^{\mathrm{n}} \mathrm{C}_{2}\right)\left(3^{\mathrm{n}-2}\right)$.
\therefore Probability of $\mathrm{P} \cap \mathrm{Q}$ contains two elements

$$
=\frac{{ }^{\mathrm{n}} \mathrm{C}_{2} \cdot 3^{\mathrm{n}-2}}{4^{\mathrm{n}}}
$$

