Dynemic classes tor Acasemic mastery

## MATHS FOR JEE MAIN \& ADVANCED

## HIMISE SOLTHIONS

EXERCISE - 1

## Single Choice

1. $\mathrm{A}=\int_{1}^{\mathrm{e}}\left(\ell \mathrm{n} x-\ell \mathrm{n}^{2} \mathrm{x}\right) \mathrm{dx}$
on solving it by parts we get

$A=\left.3 x(\ell n x-1)\right|_{1} ^{e}-\left.x\left(\ell n^{2} x\right)\right|_{1=3} ^{e}-e$
2. Given $\int_{0}^{4} f(x) d x \int_{0}^{4} g(x) d x=10$


$$
\begin{equation*}
\mathrm{A}_{1}-\mathrm{A}_{2}=10 \tag{iii}
\end{equation*}
$$

again $\int_{2}^{4} g(x) d x \int_{-2}^{4} f(x) d x=5$
$\left(\mathrm{A}_{2}+\mathrm{A}_{4}\right)-\mathrm{A}_{4}=5$
$\mathrm{~A}_{2}=5$
$\therefore \quad(1)+(2)$

$$
\mathrm{A}_{1}=15
$$

3. $x=\operatorname{acos}^{3} t, y=a \sin ^{3} t \Rightarrow x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$
$A=4 \int_{0}^{\pi / 2} y \frac{d x}{d t} d t=4 \int_{0}^{\pi / 2} 3 a^{2} \sin ^{3} t \cos ^{2} t(-\sin t) d t$
$=\left|-12 \mathrm{a}^{2} \int_{0}^{\pi / 2} \sin ^{4} \mathrm{t} \cos ^{2} \mathrm{tdt}\right|=\left|-12 \mathrm{a}^{2} \frac{3.1 .1}{6.4 .2 .1} \times \frac{\pi}{2}\right|$


Figure
$=8^{\frac{3}{8}} \pi \mathrm{a}^{2}$ sq. units
4. Solving $e^{x}=e^{a-x}$, we get

$$
\begin{aligned}
& =\left(e^{a}+1\right)-\left(e^{a / 2}+e^{a / 2}\right)=e^{a}-2 e^{a / 2}+1=\left(e^{a / 2}-1\right)^{2} \\
& \frac{S}{a^{2}}=\left(\frac{e^{a / 2}-1}{a}\right)^{2}=\frac{1}{4}\left(\frac{e^{a / 2}-1}{a / 2}\right)^{2}
\end{aligned}
$$

$$
\operatorname{Lim}_{a \rightarrow 0} \frac{S}{a^{2}}=\frac{1}{4}
$$


equation of PQ
$y-a^{2}=\frac{a^{2}-b^{2}}{a+b}(x-a)$
or $\quad y-a^{2}=(a-b)(x-a)$

$$
\begin{aligned}
& \mathrm{e}^{2 \mathrm{x}}=\mathrm{e}^{\mathrm{a}} \Rightarrow \mathrm{x}=\frac{\mathrm{a}}{2} \\
& S=\int_{0}^{a / 2}\left(e^{a} \cdot e^{-x}-e^{x}\right) d x \\
& =\left[-\left(e^{a} \cdot e^{-x}+e^{x}\right)\right]_{0}^{\mathrm{a} / 2}
\end{aligned}
$$

$$
\begin{align*}
y & =a^{2}+x(a-b)-a^{2}+a b \\
y & =(a-b) x+a b \\
\therefore \quad S_{1} & \left.=\int_{-b}^{a}(a-b) x+a b-x^{2}\right) d x \\
\text { which simplifies to } & \frac{(a+b)^{3}}{6} \tag{1}
\end{align*}
$$

Also $S_{2}=\frac{1}{2}\left|\begin{array}{ccc}a & a^{2} & 1 \\ -b & b^{2} & 1 \\ 0 & 0 & 1\end{array}\right|=\frac{1}{2}\left[a b^{2}+a^{2} b\right]=$ $\frac{1}{2} a b(a+b)$
..........(2)

$\frac{\mathrm{S}_{1}}{\mathrm{~S}_{2}}=\frac{(\mathrm{a}+\mathrm{b})^{3}}{6} \cdot \frac{2}{\mathrm{ab}(\mathrm{a}+\mathrm{b})}=\frac{(\mathrm{a}+\mathrm{b})^{2}}{3 \mathrm{ab}}=\frac{1}{3}\left[\frac{\mathrm{a}}{\mathrm{b}}+\frac{\mathrm{b}}{\mathrm{a}}+2\right]$

$$
\left.\frac{\mathrm{S}_{1}}{\mathrm{~S}_{2}}\right|_{\min .}=\frac{4}{3}
$$

8. $\mathrm{A}=\left(\frac{16 \mathrm{ab}}{3}\right) \cdot 2$
$\mathrm{a}=\frac{1}{4} \cdot \mathrm{~h}=\frac{1}{4}$

9. $\int_{1}^{\hat{b}-\frac{2}{3}} f(x) d x=\left(b-x_{x}\right) \sin (2 h+4)$

Area function $=\int_{1}^{x} f(x) d x=(x-1) \sin (3 x+4)$
differentiating
$\therefore \quad f(x)=\sin (3 x+4)+3(x-1) \cdot \cos (3 x+4) \Rightarrow C$
12.

or $\quad 3 y d y=d x$

$$
\frac{3 y^{2}}{2}=x+c \Rightarrow \text { parabola } \Rightarrow C
$$

14. $\mathrm{y}=\ln ^{2} \mathrm{x}-1$


$$
2 \ln x
$$

$$
\begin{aligned}
& y^{\prime}=\frac{2}{x}=0 \quad \Rightarrow \quad x=1 \\
& x>1, y \uparrow \quad \text { and } \quad 0<x<1, y \text { is } \downarrow
\end{aligned}
$$

$$
A=\left|\int_{1 / e}^{e}\left(\ln ^{2} x-1\right) d x\right|=\left|\int_{1 / e}^{e} \ln ^{2} x d x-\int_{1 / e}^{e} d x\right|
$$

$$
\left.=\mid \mathrm{x} \ln ^{2} \mathrm{x}\right] \left._{1 / \mathrm{e}}^{\mathrm{e}}-2 \int_{1 / \mathrm{e}}^{\mathrm{e}}\left(\frac{\ln \mathrm{x}}{\mathrm{x}}\right) \cdot \mathrm{xdx}-\left(\mathrm{e}-\frac{1}{\mathrm{e}}\right) \right\rvert\,
$$

$$
=\left|\left(\mathrm{e}-\frac{1}{\mathrm{e}}\right)-2 \int_{1 / \mathrm{e}}^{\mathrm{e}}\left(\frac{\ln \mathrm{x}}{\mathrm{x}}\right) \cdot \mathrm{xdx}-\left(\mathrm{e}-\frac{1}{\mathrm{e}}\right)\right|
$$

$$
\left.=\mid-2[x \ln x]_{1 / \mathrm{e}}^{\mathrm{e}}-\int_{1 / \mathrm{e}}^{\mathrm{e}} \mathrm{dx}\right]\left|=\left|-2\left[\left(\mathrm{e}+\frac{1}{\mathrm{e}}\right)-\left(\mathrm{e}-\frac{1}{\mathrm{e}}\right)\right]\right|\right.
$$

$$
=\left|\frac{4}{\mathrm{e}}\right|=\frac{4}{\mathrm{e}}
$$

$$
\begin{aligned}
& 2-(2-x) \text { if } x \leq 2 \\
& =x
\end{aligned} \quad \frac{3}{x} \text { if } x>0
$$

$$
A=\int_{3 / 2}^{2}\left(x-\frac{3}{x}\right) d x \quad \int_{2}^{3}\left((4-x)-\frac{3}{x}\right) d x
$$

$$
249
$$

Now compute

18. $\int_{0}^{x} f(x)=x e^{x} \Rightarrow f(x)=\frac{d}{d x}\left(x e^{x}\right)=x e^{x}+e^{x}$
19. $\mathrm{f}(\mathrm{x})+\mathrm{f}(\pi-\mathrm{x})=2 . \quad \forall \mathrm{x} \in\left(\frac{\pi}{2}, \pi\right]$
$f(x)=2-\sin (\pi-x)$
$f(x)=2-\sin x, \forall x \in\left(\frac{\pi}{2}, \pi\right]$
$f(x)=9-\underset{\substack{f \\ y=2 \pi-\sin x}}{(2 \pi} \underset{y=2+\sin x}{f}$

$\mathrm{f}(\mathrm{x})=2+\sin \mathrm{x}, \mathrm{x} \in\left(\pi, \frac{3 \pi}{2}\right]$
$\mathrm{f}(\mathrm{x})=\mathrm{f}(2 \pi-\mathrm{x}), \forall \mathrm{x} \in\left(\frac{3 \pi}{2}, 2 \pi\right]$
$f(x)=-\sin x, \forall x \in\left(\frac{3 \pi}{2}, 2 \pi\right]$
Clearly, from figure required area $=2 \pi$
20. Given $\mathrm{g}(\mathrm{x})=2 \mathrm{x}+1 ; \mathrm{h}(\mathrm{x})=(2 \mathrm{x}+1)^{2}+4$ nowh $(x)=f[g(x)]$
$(2 x+1)^{2}+4=f(2 x+1)$
let $2 \mathrm{x}+1=\mathrm{t}$
$\Rightarrow \mathrm{f}(\mathrm{t})=\mathrm{t}^{2}+4$
$\therefore \quad \mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+4$

solving $y=m x$ and $y=x^{2}+4$

$$
x^{2}-m x+4=0
$$

put $\mathrm{D}=0$

$$
\mathrm{m}^{2}=16 \Rightarrow \mathrm{~m}= \pm 4
$$

tangents are $y=4 x$ and $y=-4 x$

$$
\begin{aligned}
A & =2 \int_{0}^{2}\left[\left(x^{2}+4\right)-4 x\right] d \mathrm{dx}=2 \int_{0}^{2}\left[(x-2)^{2} d x\right. \\
& \left.=\frac{2}{3}(x-2)^{3}\right]_{0}^{2}=\frac{16}{3} \text { sq. units }
\end{aligned}
$$

22. $y=-\sqrt{-x} \Rightarrow y^{2}=-x \quad$ where $x \& y$ both $(-)$ ve $x=-\sqrt{-y} \Rightarrow x^{2}=-y \quad$ where $x \& y$ both $(-)$ ve

where $\quad a=b=\frac{1}{4}$
$\therefore A=\frac{1}{3} \Rightarrow(B)$
23. Required area $(b-1) \sin (3 b+4)=\int_{1}^{b} f(x) d x$ diff. w.r.t. b

$$
\begin{aligned}
& 3(b-1) \cos (3 b+4)+\sin (3 b+4)=f(b) \\
\Rightarrow & f(x)=3(x-1) \cos (3 x+4)+\sin (3 x+4)
\end{aligned}
$$

24. 

$$
\mathrm{A}=2 \int_{0}^{1}\left[\mathrm{y} \sqrt{1-\mathrm{y}^{2}}-\left(\mathrm{y}^{2}-1\right)\right] \mathrm{dy}
$$


$=2$
26. $4 \int_{0}^{1}|\ln x| \mathrm{dx}=-4 \int_{0}^{1} \ln x d x=4$

28. $(a, 0)$ lies on the given curve
$\therefore \quad 0=\sin 2 a-\sqrt{3}$ sin $a$
$\Rightarrow \sin a=0$ or $\cos a=\sqrt{3} / 2$
$\Rightarrow \mathrm{a}=\frac{\frac{\pi}{6}}{6} \quad$ (as $\mathrm{a}>0$ and the first point of intersection with positive X -axis)
and

$$
\begin{aligned}
A & =\int_{0}^{\pi / 6}(\sin 2 x-\sqrt{3} \sin x) d x \\
& \left.=\left(-\frac{1}{4}+\frac{3}{2}\right)-\left(-\frac{1}{2}+\sqrt{3}\right)=\frac{7}{4}-\sqrt{3}=\frac{7}{3} \cos x\right)_{0}^{\pi / 6} \\
& \Rightarrow 4 A+8 \cos a=7
\end{aligned}
$$

## EXERCISE - 2

## Part \# I : Multiple Choice

1. $S=\int_{0}^{a / 2}\left(e^{a-x}-e^{x}\right) d x$
$=-\left[2 \mathrm{e}^{\mathrm{a} / 2}-\left(\mathrm{e}^{\mathrm{a}}+1\right)\right]$

$\lim _{\text {Now }} \frac{e^{a}-2 e^{a / 2}+1}{a^{2}} \lim _{=a \rightarrow 0}\left(\frac{e^{a / 2}-1}{a / 2}\right)^{2} \frac{1}{4}=\frac{1}{4}$
2. Given $\mathrm{f}(\mathrm{x})= \begin{cases}\cos \mathrm{x} & 0 \leq \mathrm{x}<\frac{\pi}{2} \\ \left(\frac{\pi}{2}-\mathrm{x}\right)^{2} & \pi / 2 \leq \mathrm{x}<\pi\end{cases}$ and f is periodic with period $\pi$
$\therefore \quad$ Let us draw the graph of $\mathrm{y}=\mathrm{f}(\mathrm{x})$
From the graph, the range of the function is $\left[0, \frac{\pi^{2}}{4}\right) \Rightarrow$

It is discontinuous at $\mathrm{x}=\mathrm{n} \pi,{ }^{\mathrm{n}} \in \mathrm{I}$. It is not differentiable at $x=\frac{n \pi}{2} \quad n \in I$.


Area bounded by $\mathrm{y}=\mathrm{f}(\mathrm{x})$ and the X -axis from $-\mathrm{n} \pi$
to $n \pi$ for $n \in N$
$=2 n \int_{0}^{x} f(x) d x=2 n\left[\int_{0}^{x / 2} \cos x d x+\int_{x / 2}^{x}\left(\frac{\pi}{2}-x\right)^{2} d x\right]=2 n\left(1+\frac{\pi^{3}}{24}\right)$
8. $A=\frac{1}{\sqrt{3}}+1 / \sqrt{3} \sqrt{\frac{4}{3}-x^{2}} d x$

$=\frac{1}{\sqrt{3}}+\left[\frac{x}{2} \sqrt{\frac{4}{3}-x^{2}}+\frac{2}{3} \sin ^{-1}\left(\frac{x \sqrt{3}}{2}\right)\right]_{1 / \sqrt{3}}^{1}$
$=\frac{1}{\sqrt{3}}+\left[\left(\frac{1}{2 \sqrt{3}}-\frac{1}{2 \sqrt{3}}\right)+\frac{2}{3}\left(\frac{\pi}{3}-\frac{\pi}{6}\right)\right]=\frac{3 \sqrt{3}+\pi}{9}$
9. Solving $\mathrm{f}(\mathrm{x})=2 \mathrm{x}-\mathrm{x}^{2}$ and $\mathrm{g}(\mathrm{x})=\mathrm{x}^{\mathrm{n}}$
we have $2 x-x^{2}=x^{n} \Rightarrow x=0$ and $x=1$
$\left.A=\int_{0}^{1}\left(2 x-x^{2}-x^{n}\right) d x=x^{2}-\frac{x^{3}}{3}-\frac{x^{n+1}}{n+1}\right]_{0}^{1}$


$$
=1-\frac{1}{3}-\frac{1}{\mathrm{n}+1}=\frac{2}{3}-\frac{1}{\mathrm{n}+1}
$$

hence, $\frac{2}{3}-\frac{1}{\mathrm{n}+1}=\frac{1}{2} \Rightarrow \frac{2}{3}-\frac{1}{2}=\frac{1}{\mathrm{n}+1}$
$\Rightarrow \frac{4-3}{6}=\frac{1}{n+1} \Rightarrow n+1=6$
$\Rightarrow \mathrm{n}=5$
Hence n is a divisor of $15,20,30$
$\Rightarrow \mathrm{B}, \mathrm{C}, \mathrm{D}$
10. $\Delta_{2}=\Delta_{1}=1 / 2\left[1-\frac{1}{2 x}\right] d x$
$=\frac{1}{2}-\frac{1}{2} \ln 2$

$\mathrm{A}=4-\left(\Delta_{1}+\Delta_{2}\right)=4-(1-\ln 2)=3+\ell \mathrm{n} 2$
11. The two curves meet at
$\mathrm{mx}=\mathrm{x}-\mathrm{x}^{2}$ or $\mathrm{x}^{2}=\mathrm{x}(1-\mathrm{m}) \quad \therefore \mathrm{x}=0,1-\mathrm{m}$
$\int_{0}^{1-m}\left(y_{1}-y_{2}\right) d x=\int_{0}^{1-m}\left(x-x^{2}-m x\right) d x$
$=\left[(1-m) \frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{1-m}=\frac{9}{2}$ if $m<1$
or $\quad(1-\mathrm{m})^{3}\left[\frac{1}{2}-\frac{1}{3}\right]=\frac{9}{2} \quad$ or $\quad(1-\mathrm{m})^{3}=27$
$\therefore \quad \mathrm{m}=-2$
But if $m>1$ then $1-m$ is negative, then
$\left[(1-m) \frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{1-m}^{0}=\frac{9}{2}$

$$
\begin{aligned}
& -(1-m)^{3}\left(\frac{1}{2}-\frac{1}{3}\right)=\frac{9}{2} \\
\therefore & -(1-m)^{3}=-27 \text { or } 1-m=-3 \therefore m=4 .
\end{aligned}
$$

## Part \# II: Assertion \& Reason

3. $\mathrm{A}=\int_{\alpha}^{\beta}\left(\mathrm{kx}+2-\mathrm{x}^{2}+3\right) \mathrm{dx}$

$$
\begin{aligned}
& =\left(\frac{k x^{2}}{2}-\frac{x^{3}}{3}+5 x\right)_{\alpha}^{\beta} \\
& =\left(\frac{k(\alpha+\beta)}{2}-\left((\alpha+\beta)^{2}-\alpha \beta\right) \frac{1}{3}+5\right) \\
& =\sqrt{k^{2}+20}\left[\frac{k^{2}}{2}-\left(\frac{k^{2}+5}{3}\right)+5\right]=\frac{1}{6}\left(k^{2}+20\right)^{3 / 2}
\end{aligned}
$$

Hence statement I is true \& II is false.

## Part \#II: Comprehension

Comprehension \# 1
Now $\int_{2}^{a}\left[\frac{1}{4(x-1)}-\frac{1}{x^{2}}\right] d x=\frac{1}{a}$
$\Rightarrow \mathrm{a}=\mathrm{e}^{2}+1$


Also $\int_{b}^{2}\left[\frac{1}{4(x-1)}-\frac{1}{x^{2}}\right] d x=1-\frac{1}{b}$

$$
\Rightarrow\left[\frac{1}{4} \ell n(x-1)+\frac{1}{x}\right]_{b}^{2}=1-\frac{1}{b}
$$

$$
\Rightarrow-\ln (\mathrm{b}-1)=2 \Rightarrow \mathrm{~b}=1+\mathrm{e}^{-2}
$$

1. $\ln \left(\frac{a}{b}\right)=\ln \left(\frac{e^{2}+1}{1+e^{-2}}\right)=2$
2. $|\mathrm{A}|=\ln (\mathrm{a}-1) \ln (\mathrm{b}-1)=-4$

$$
\mathrm{A}^{-1}=\frac{-1}{4}\left[\begin{array}{cc}
-2 & 0 \\
0 & 2
\end{array}\right]_{=} \frac{\mathrm{A}}{4}
$$

3. $\mathrm{z}=2-2 \mathrm{i}$

$$
\arg (\mathrm{z})=\frac{\frac{-3 \pi}{4}}{4}
$$

Comprehension \#2
$2 f^{\prime \prime}(x) f^{\prime}(x)=2 f(x) f^{\prime}(x)$
Integrating
$\left(\mathrm{f}^{\prime}(\mathrm{x})\right)^{2}=(\mathrm{f}(\mathrm{x}))^{2}+\mathrm{c}$

$$
\text { put } \mathrm{x}=0 \quad \Rightarrow \mathrm{c}=5
$$

$\left(\mathrm{f}^{\prime}(\mathrm{x})\right)^{2}=(\mathrm{f}(\mathrm{x}))^{2}+5$
put $y=f(x)$
$\frac{\mathrm{dy}}{\mathrm{dx}}= \pm \sqrt{\mathrm{y}^{2}+5}$
$\ln \left(y+\sqrt{y^{2}+5}\right)= \pm x+c_{1}$
$\mathrm{x}=0, \quad \mathrm{y}=2 \quad \Rightarrow \quad \mathrm{c}_{1}=\ln 5$
$\frac{y+\sqrt{y^{2}+5}}{5}=e^{ \pm x}$
$y=\frac{5 e^{x}-e^{-x}}{2} \quad$ or $\quad y=\frac{5 e^{-x}-e^{x}}{2}$
If $f(x)=\frac{5 e^{-x}-e^{x}}{2} ; f^{\prime}(0)=3$ is not satisfied
$\Rightarrow f(x)=\frac{5 e^{x}-e^{-x}}{2}$
put $f(x)=0$
$\Rightarrow 2 x=\ell n\left(\frac{1}{5}\right) \quad \Rightarrow x=-\frac{1}{2} \ell n 5$
$f^{\prime}(x)=\frac{5 e^{x}+e^{-x}}{2}>0 \Rightarrow f(x)$ is increasing


Figure
$\left.=\frac{\frac{5 e^{x}+e^{-x}}{2}}{-}\right]_{\frac{1}{2} \ln 5}^{0}=3-\sqrt{5}$
Area by lines $x+y=2, x+y=-\frac{1}{2} \ln 5$,
$v=f(x)$ and $y=f^{\prime}(x)$ is $2(3-\sqrt{5})+\frac{1}{2} \cdot 2.2+\frac{1}{2}\left(\frac{1}{2} \ln 5\right)$
$\left(\frac{1}{2} \ln 5\right)$
$=8-2 \sqrt{5}+\frac{1}{8}(\ell \mathrm{n} 5)^{2}$

## EXERCISE - 4

## Subjective Type

4. Let equation of line is $y=m x-4 m$

$\mathrm{A}=2 \int_{2}^{4} \sqrt{2} \sin \frac{\pi}{4} \mathrm{xdx}=\left[-\sqrt{2} \frac{4}{\pi} \cos \frac{\pi x}{4}\right]_{2}^{4} \frac{4 \sqrt{2}}{\pi}$
Also area of $\Delta A B C=\frac{1}{2} .2 .\left(-2 m_{1}\right)=-2 m_{1}$
from (i) and (ii)

$$
\begin{aligned}
& -2 \mathrm{~m}_{1}=\frac{4 \sqrt{2}}{3 \pi} \Rightarrow \mathrm{~m}_{1}=\frac{-2 \sqrt{2}}{3 \pi} \\
\Rightarrow & \tan \left(\pi-\theta_{1}\right)=\frac{-2 \sqrt{2}}{3 \pi} \Rightarrow \pi-\theta_{1}=\tan ^{-1} \frac{2 \sqrt{2}}{3 \pi} \\
\Rightarrow & \theta_{1}=\pi-\tan ^{-1} \frac{2 \sqrt{2}}{3 \pi} \text { or } \frac{1}{2} \cdot(2)\left(-2 \mathrm{~m}_{2}\right)=\frac{8 \sqrt{2}}{3 \pi} \\
\Rightarrow & \mathrm{~m}_{2}=\frac{-4 \sqrt{2}}{3 \pi} \Rightarrow \tan \left(\pi-\theta_{2}\right)=\frac{-4 \sqrt{2}}{3 \pi} \\
\Rightarrow & \theta_{2}=\pi-\tan ^{-1} \frac{4 \sqrt{2}}{3 \pi}
\end{aligned}
$$

5. Curve $y=a-b x^{2}$ passes through the point $(2,1)$

$$
\begin{aligned}
& \therefore a-4 b=1 \\
& A=2 \int_{0}^{\sqrt{a / b}}\left(a-b x^{2}\right) d x=2\left[a x-\frac{b x^{3}}{3}\right]_{0}^{\sqrt{a / b}} \\
& =\frac{4}{3} \frac{a^{3 / 2}}{\sqrt{b}}=\frac{4}{3} \frac{(1+4 b)^{3 / 2}}{\sqrt{b}} \\
& A^{\prime}=\frac{2}{3} \frac{\sqrt{1+4 b}(8 b-1)}{b^{3 / 2}} \Rightarrow A^{\prime}=0 \Rightarrow b=\frac{1}{8} \\
& \Rightarrow A=4 \sqrt{3} \text { sq. units }
\end{aligned}
$$

8. According to question
$\int_{0}^{a^{2}}\left(-f^{-1}(y)+\sqrt{y}\right) d y=\int_{0}^{a}\left(x^{2}-\frac{x^{2}}{2}\right) d x$
$\Rightarrow\left[\mathrm{f}^{-1}\left(\mathrm{a}^{2}\right)-\mathrm{a}\right] 2 \mathrm{a}$
$\Rightarrow f^{\left(\frac{3 a}{4}\right)}=a^{2}$
or $f(x)=\frac{16}{9} x^{2}$
9. $\mathrm{f}(\mathrm{x})=$ Maximum $\left\{\mathrm{x}^{2},(1-\mathrm{x})^{2}, 2 \mathrm{x}(1-\mathrm{x})\right\}$

We draw the graph of
$y=x^{2}$
$y=2 x(1-x)$
$y=2 x(1-x)$
Solving (1) and (3), we get $x^{2}=2 x(1-x)$
$\Rightarrow 3 x^{2}=2 x \quad \Rightarrow x=0 \quad$ or $\quad x=\frac{2}{3}$.
Solving (2) and (3) we get $(1-x)^{2}=2 x(1-x)$
$\Rightarrow \mathrm{x}=\frac{\frac{1}{3}}{}$ and $\mathrm{x}=1$.


Figure
From figure it is clear that

$$
f(x)=\left\{\begin{array}{l}
(1-x)^{2} \text { for } 0 \leq x \leq 1 / 3 \\
2 x(1-x) \text { for } 1 / 3 \leq x \leq 2 / 3 \\
x^{2} \text { for } 2 / 3 \leq x \leq 1
\end{array}\right.
$$

The required area A is given by
$A=\int_{0}^{1} f(x) d x \int_{0}^{1 / 3}(1-x)^{2} d x+$
$\int_{1 / 3}^{2 / 3} 2 x(1-x) d x+\int_{2 / 3}^{1} x^{2} d x$

$$
\begin{aligned}
= & {\left[-\frac{1}{3}(1-x)^{3}\right]_{0}^{1 / 3}+\left[\left(x^{2}-\frac{2 x^{3}}{3}\right)\right]_{1 / 3}^{2 / 3}+\left[\frac{x^{3}}{3}\right]_{2 / 3}^{1} } \\
= & -\frac{1}{3}\left(\frac{2}{3}\right)^{3}+\frac{1}{3}+\left(\frac{2}{3}\right)^{2}-\frac{2}{3}\left(\frac{2}{3}\right)^{3}-\left(\frac{1}{3}\right)^{2} \\
& +\frac{2}{3}\left(\frac{1}{3}\right)^{3}+\frac{1}{3}-\frac{1}{3}\left(\frac{2}{3}\right)^{3}=\frac{17}{27} \text { sq. units. } \\
\text { 16. } \mathrm{A}= & \int_{0}^{1 / 3}(x-1)^{2} \mathrm{dx} \int_{1 / 3}^{2 / 3} 2 x(1-x) d x+\int_{2 / 3}^{1} x^{2} d x
\end{aligned}
$$


17. $A_{n}=\int_{0}^{\pi / 4}(\tan x)^{n} d x$

$$
\begin{aligned}
A_{n}+A_{n-2}= & \int_{0}^{\pi / 4}\left[(\tan x)^{n}+(\tan x)^{n-2}\right] d x \\
& =\int_{0}^{\pi / 4}(\tan x)^{n-2} \sec ^{2} x \quad d x=\left[\frac{t^{n-1}}{n-1}\right]_{0}^{1}=\frac{1}{n-1}
\end{aligned}
$$

Also $\mathrm{A}_{\mathrm{n}+2}<\mathrm{A}_{\mathrm{n}}<\mathrm{A}_{\mathrm{n}-2}$
$\Rightarrow \frac{1}{n+1}<2 A_{n}<\frac{1}{n-1}$
18. (i) $0<\tan x<1$, when $0<x<\pi / 4$, we have $0<(\tan \mathrm{x})^{\mathrm{n}+1}<(\tan \mathrm{x})^{\mathrm{n}} \quad$ for each $\mathrm{n} \in \mathrm{N}$

(ii) we have $A_{n}=\int_{0}^{\pi / 4}(\tan x)^{n} d x$

$$
\Rightarrow \int_{0}^{\pi / 4}(\tan x)^{n+1} d x<\int_{0}^{\pi / 4}(\tan x)^{n} d x \Rightarrow A_{n+1}<A_{n}
$$

$$
\text { Now, for } \mathrm{n}>0, \mathrm{~A}_{\mathrm{n}} \quad+\mathrm{A}_{\mathrm{n}}
$$

$$
\begin{aligned}
& \left.\int_{0}^{\pi / 4}(\tan x)^{n}+(\tan x)^{n+2}\right] d x \\
& \int_{0}^{\pi / 4}(\tan x)^{n}\left(\sec ^{2} x\right) d x
\end{aligned}
$$

$$
\left[\frac{1}{(\mathrm{n}+1)}(\tan \mathrm{x})^{\mathrm{n}+1}\right]_{0}^{\pi / 4}=\frac{1}{(\mathrm{n}+1)}(1-0) .
$$

Similarly $A_{n}+A_{n-2}=\frac{1}{n-1}$
since $\quad A_{n+2}<A_{n+1}<A_{n}$, we get $A_{n}+A_{n+2}<2 A_{n}$

$$
\begin{equation*}
\Rightarrow \frac{1}{\mathrm{n}+1}<2 \mathrm{~A}_{\mathrm{n}} \quad \Rightarrow \quad \frac{1}{2 \mathrm{n}+2}<\mathrm{A}_{\mathrm{n}} \tag{1}
\end{equation*}
$$

Also for $\mathrm{n}>2, \quad \mathrm{~A}_{\mathrm{n}}+\mathrm{A}_{\mathrm{n}}<\mathrm{A}_{\mathrm{n}}+\mathrm{A}_{\mathrm{n}-2}=\frac{1}{\mathrm{n}-1}$
$\Rightarrow 2 \mathrm{~A}_{\mathrm{n}}<\frac{1}{\mathrm{n}-1}$
$\Rightarrow A_{n}<\frac{1}{2 n-2}$
Combining (1) and (2) we get $\frac{1}{2 n+2}<A_{n}<\frac{1}{2 n-2}$ Hence Proved.
20. $f(x+1)=f(x)+2 x+1$
$\Rightarrow \mathrm{f} "(\mathrm{x}+1)=\mathrm{f} "(\mathrm{x}) \forall \mathrm{x} \in \mathrm{R}$
Let $\mathrm{f} "(\mathrm{x})=\mathrm{a}$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\mathrm{ax}+\mathrm{b}$

$$
\begin{array}{ll}
\Rightarrow & f(x)=\frac{\mathrm{ax}^{2}}{2} \\
\Rightarrow \mathrm{c}=1 \quad \mathrm{bx}+\mathrm{c} \\
\Rightarrow \because \mathrm{f}(0)=1]
\end{array}
$$

Now $f(x+1)-f(x)=2 x+1$

$$
\begin{aligned}
& \Rightarrow\left[\frac{a}{2}(x+1)^{2}+b(x+1)+c\right]\left[\frac{a x^{2}}{2}+b x+c\right]_{=2 x} \\
& a x+\frac{a}{2}+b=2 x+1 \\
& \text { comparing we get } a=2,
\end{aligned}
$$

$$
\begin{array}{ll} 
& \frac{a}{2}+b=1 \quad \\
\text { or } & \quad \Rightarrow \quad b=0  \tag{i}\\
\therefore & f(x)=x^{2}+1
\end{array}
$$

Now let equation of tangent be $\mathrm{y}=\mathrm{mx}$
from (i) and (ii)

$$
\begin{aligned}
& \mathrm{x}^{2}-\mathrm{mx}+1=0 \\
& \Rightarrow \mathrm{~m}= \pm 2
\end{aligned}
$$

$\therefore \quad$ tangent are $\mathrm{y}=2 \mathrm{x}$
or $y=-2 x$

$$
A=\int_{0}^{1}\left(x^{2}+1-2 x\right) d x=\frac{2}{3}
$$

21. Area $=\int_{0}^{1} \mathrm{e}^{\mathrm{y}} \sin (\pi \mathrm{y}) \mathrm{dy}$

$$
=\left.\frac{\mathrm{e}^{\mathrm{y}}}{1+\pi^{2}}(\sin \pi \mathrm{y}-\pi \cos \pi \mathrm{y})\right|^{1} \quad \frac{(\mathrm{e}+1) \pi}{\pi^{2}}
$$

22. $A=\int_{-a}^{-2 a} \frac{a^{2}-a x-\left(x^{2}+2 a x+3 a^{2}\right)}{1+a^{4}} d x$


Now $f(a)=\frac{3}{2} \frac{a^{3}}{1+a^{4}}$
$\Rightarrow f^{\prime}(a)=0$
$\Rightarrow\left(1+a^{4}\right) 3 a^{2}-a^{3} 4 a^{3}=0$
$\Rightarrow \mathrm{a}_{\text {min }}=0, \mathrm{a}_{\text {max }}=3^{1 / 4}$
23. Distance of point $P$ from origin is less then distance of P from $\mathrm{y}=1$


$$
\begin{aligned}
& \sqrt{\mathrm{h}^{2}+\mathrm{k}^{2}}<\mathrm{k}-1 ; \sqrt{\mathrm{h}^{2}+\mathrm{k}^{2}}<-\mathrm{k}-1 \\
\Rightarrow & \mathrm{x}^{2}+\mathrm{y}^{2}<(\mathrm{y}-1)^{2} ; \mathrm{x}^{2}+\mathrm{y}^{2}<\mathrm{y}^{2}+2 \mathrm{y}+1
\end{aligned}
$$

$$
\Rightarrow x^{2}<-2^{\left(y-\frac{1}{2}\right)} ; x^{2}<2^{\left(y+\frac{1}{2}\right)}
$$

similarly $y^{2}<-2^{\left(x-\frac{1}{2}\right)} ; y^{2}<2^{\left(x+\frac{1}{2}\right)}$
$\Rightarrow y=\frac{x^{2}-1}{-2}$ or $y=x=\frac{x^{2}-1}{-2}$
$\Rightarrow \mathrm{x}^{2}+2 \mathrm{x}-1=0$
$\Rightarrow \mathrm{x}=-1 \pm \sqrt{2}$

$$
\begin{aligned}
A & =8 \int_{0}^{\sqrt{2}-1}\left[\frac{1-x^{2}}{2}-\sqrt{2}+1\right] d x+4(\sqrt{2}-1)^{2} \\
= & \frac{16 \sqrt{2}-20}{3}
\end{aligned}
$$

24. (i) $f(x)=\min \{x+1, \sqrt{1-x}\}=\left\{\begin{array}{cc}x+1 & -1<x<0 \\ \sqrt{1-x} & 0<x<1\end{array}\right.$

$$
\frac{12}{7} \int_{-1}^{1} f(x) d x
$$

$$
=\frac{12}{7}\left[\int_{-1}^{0}(x+1) d x+\int_{0}^{1} \sqrt{1-x} d x\right]
$$

$$
\begin{aligned}
& =\frac{12}{7}\left[\left.\left(\frac{x^{2}}{2}+x\right)\right|_{-1} ^{0}-\left.\frac{2}{3}(1-x)^{3 / 2}\right|_{0} ^{1}\right] \\
= & \frac{12}{7}\left[0-\left(\frac{1}{2}-1\right)-\frac{2}{3}(0-1)\right]=\frac{12}{7}\left(\frac{1}{2}+\frac{2}{3}\right)=2 \\
\text { (iii) } \because & \because<\mathrm{x}<\frac{1}{2} \\
& \mathrm{~A}=\int_{0}^{1 / 2} \mathrm{x} \cdot \mathrm{dx}=\left(\frac{\mathrm{x}^{2}}{2}\right)_{0}^{1 / 2}=\frac{1}{8}
\end{aligned}
$$

26. $f(x)=\left\{\begin{array}{ccc}x^{2}+a x+b & ; & x<-1 \\ 2 x & ; & -1 \leq x \leq 1 \\ x^{2}+a x+b & ; & x>1\end{array}\right.$
$\because f(\mathrm{x})$ is continuous at $\mathrm{x}=-1$ and $\mathrm{x}=1$
$\therefore \quad(-1)^{2}+\mathrm{a}(-1)+\mathrm{b}=-2$
and $2=(1)^{2}+\mathrm{a} .1+\mathrm{b}$
i.e., $a-b=3$
and $\mathrm{a}+\mathrm{b}=1$
on solving we get $\mathrm{a}=2, \mathrm{~b}=-1$

$$
\therefore \quad f(x)=\left\{\begin{array}{ccc}
x^{2}+2 x-1 & ; & x<-1 \\
2 x & ; & -1 \leq x \leq 1 \\
x^{2}+2 x-1 & ; & x>1
\end{array}\right.
$$

Given curves are

$$
\mathrm{y}=f(\mathrm{x}), \mathrm{x}=-2 \mathrm{y}^{2} \quad \text { and } \quad 8 \mathrm{x}+1=0
$$

solving $x=-2 y^{2}, y=x^{2}+2 x-1(x<-1)$ we get

$$
\mathrm{x}=-2
$$

Also $\mathrm{y}=2 \mathrm{x}, \mathrm{x}=-2 \mathrm{y}^{2}$ meet at $(0,0)$
and $\left(-\frac{1}{8},-\frac{1}{4}\right)$
The required area is the shaded region in the figure.
$\therefore \quad$ Required area


$$
=\int_{-2}^{-1}\left[\sqrt{\frac{-x}{2}}-\left(x^{2}+2 x-1\right)\right] \mathrm{dx} \int_{-1}^{-1 / 8}\left[\sqrt{\frac{-x}{2}}-2 x\right] d x
$$

$$
=\left[\frac{1}{\sqrt{2}} \frac{2(-x)^{3 / 2}}{3}-\frac{x^{3}}{3}-x^{2}+x\right]_{-2}^{-1}
$$

$$
+\left[\frac{1}{\sqrt{2}} \frac{2(-x)^{3 / 2}}{3}-x^{2}\right]_{-1}^{-1 / 8}
$$

$$
=\frac{257}{192} \text { square units }
$$

$$
\left.A=4 \int_{0}^{\pi}[x+\sin x-x)\right] d x
$$



EXERCISE - 5

## Part \# I : ALEEE/JEE-MAIN

2. 



$$
\begin{aligned}
A= & \int_{-1}^{0}\{(3+x)-(-x+1)\} d x \\
& +\int_{0}^{1}\{(3-x)-(-x+1)\} d x+\int_{1}^{2}\{(3-x)-(-x-1)\} d x
\end{aligned}
$$

$$
=\int_{-1}^{0}\left\{(2+2 x) d x+\int_{0}^{1} 2 d x+\int_{1}^{2}(4-2 x) d x\right.
$$

$$
=\left[2 x-x^{2}\right]_{-1}^{0}+[2 x]_{0}^{1}+\left[4 x-x^{2}\right]_{1}^{2}
$$

$$
=0-(-2+1)+(2-0)+(8-4)-(4-1)
$$

$$
=1+2+4-3=4 \text { sq. units }
$$

3. 

$$
\text { Area }=\int_{1}^{2}(2-x) d x+\int_{2}^{3}(x-2) d x=1
$$


4. Area of rectangle $\mathrm{ABCD}=(2 \mathrm{a} \cos \theta)$
$(2 b \sin \theta)=2 a b \sin 2 \theta$
$\Rightarrow$ Area of greatest rectangle is equal to 2 ab when $\sin 2 \theta=1$.

5.

$$
\text { Re quired area }(\mathrm{OAB})=\int_{1-e}^{0} \ln (x+e) d x
$$

$$
=\left[x \ln (x+e)-\int \frac{1}{x+e} x d x\right]_{0}^{1}=1
$$

6. $\mathbf{2 5} \mathfrak{H}^{2}=4 x$ and $x^{2}=4 y$ are symmetric about line $y=x$
$\mathbf{2 5 8 8}=4 x$ and $x^{2}=4 y$ are symmetric

$$
\int_{0}^{4}(2 \sqrt{x}-x) d x=\frac{8}{3}
$$

$$
\begin{aligned}
& A_{s_{2}}=\frac{16}{3} \text { and } A_{s_{1}}=A_{s_{3}}=\frac{16}{3} \\
\Rightarrow & A_{s_{1}}: A_{s_{2}}: A_{s_{3}}:: 1: 1: 1 .
\end{aligned}
$$

7. Given that $\int_{\pi / 4}^{\beta} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\beta \sin \beta+\frac{\pi}{4} \cos \beta+\sqrt{2} \beta$

Differentiating w.r.t $\beta$
$\mathrm{f}(\beta) \cos \beta+\sin \beta-\frac{\pi}{4} \sin \beta+\sqrt{2}$
$\mathrm{f}\left(\frac{\pi}{2}\right)=\left(1-\frac{\pi}{4}\right) \sin \frac{\pi}{2}+\sqrt{2}=1-\frac{\pi}{2}+\sqrt{2}$.
$A=\int_{0}^{1}(\sqrt{x}-x) d x$
$=\left[\frac{2}{3} \mathrm{x}^{3 / 2}-\frac{\mathrm{x}^{2}}{2}\right]_{0}^{1}$

$=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}$.
9. Solving the equations we get the points of intersection $(-2,1)$ and $(-2,-1)$
The bounded region is shown as shaded region.
The required area $=2 \int_{0}^{1}\left(1-3 y^{2}\right)-\left(-2 y^{2}\right)$

$=2 \int_{0}^{1}\left(1-y^{2}\right) d y=2\left[y-\frac{y^{3}}{3}\right]_{0}^{1}=2 \times \frac{2}{3}=\frac{4}{3}$.
12. Required area
$=\mathrm{OAB}+\mathrm{ACD}$
$=\frac{1}{2} \times 1 \times 1+\int_{1}^{e} \frac{1}{x}($
$=\frac{1}{2}+(\ell n x)_{1}^{\text {e }}$
$=\frac{3}{2}$ square unit

13. Area $=\int_{0}^{4}\left(2 \sqrt{x}-\frac{x^{2}}{4}\right) d x$
$=\left(2\left(\frac{\mathrm{x}^{3 / 2}}{3 / 2}\right)-\frac{\mathrm{x}^{3}}{12}\right)_{0}^{4}$
$=\frac{4}{3} \times 8-\frac{64}{12}$
$=\frac{32}{3}-\frac{16}{3}=\frac{16}{3}$

$\left.2 . \int_{0}^{2}\left|\frac{\sqrt{\mathrm{y}}}{2}-3 \sqrt{\mathrm{y}}\right| \mathrm{dy}=2 \cdot \frac{5}{2} \cdot \frac{2}{3} \mathrm{y}^{3 / 2}\right]_{0}^{2}$
$=2 \cdot \frac{5}{3} \cdot 2 \sqrt{2}=\frac{20 \sqrt{2}}{3}$
15.
$y=\sqrt{x}$ and $2 y-x+3=0$

$\int_{0}^{9} \sqrt{x} d x-\int_{3}^{9}\left(\frac{x-3}{2}\right) d x$
$\left(\frac{\mathrm{x}^{3 / 2}}{3 / 2}\right)_{0}^{9}-\left[\frac{\left(\frac{\mathrm{x}^{2}}{2}-3 \mathrm{x}\right)}{2}\right]_{3}^{9}$
$\Rightarrow 9$ square units

$$
\begin{aligned}
& y^{2} \geq 2 x \\
& x^{2}+2 x-4 x=0
\end{aligned}
$$


$\Rightarrow \mathrm{x}^{2}-2 \mathrm{x}=0$
$\Rightarrow \mathrm{x}(\mathrm{x}-2)=0$

$$
\Rightarrow \quad x=0, x=2
$$

$$
\text { Area }=\int_{0}^{2}\left[\sqrt{4 x-x^{2}}-\sqrt{2} \sqrt{x}\right] d x
$$

$$
=\int_{0}^{2}\left[\sqrt{2^{2}-(x-2)^{2}}-\sqrt{2} \sqrt{x}\right] d x
$$

$$
=\left[\left|\frac{x-2}{2} \sqrt{4 x-x^{2}}+\frac{4}{2} \sin ^{-1} \frac{x-2}{2}-\sqrt{2} \times \frac{2}{3} x^{3 / 2}\right|_{0}^{2}\right]
$$

$$
=\left[-\frac{2 \sqrt{2}}{3} \times 2 \sqrt{2}-\left\{-2 \times \frac{\pi}{2}\right\}\right]=\left[\pi-\frac{8}{3}\right]
$$

Part \# II : IIT-JEE ADVANCED
3. The given curves are $y=x^{2}$
which is an upward parabola with vertex at $(0,0)$
$y=\left|2-x^{2}\right|$
or $\mathrm{y}=\left\{\begin{array}{llc}2-\mathrm{x}^{2} & \text { if } & -\sqrt{2}<\mathrm{x}<\sqrt{2} \\ \mathrm{x}^{2}-2 & \text { if } & \mathrm{x}<-\sqrt{2} \text { or } \mathrm{x}>\sqrt{2}\end{array}\right.$
or $\quad x^{2}=-(y-2) ;-\sqrt{2}<x<\sqrt{2}$
a downward parabola with vertex at $(0,2)$
$x^{2}=y+2 ; \quad x<-\sqrt{2}, x>\sqrt{2}$
On upward parabola with vertex at $(0,-2)$

$$
\begin{equation*}
y=2 \tag{4}
\end{equation*}
$$

Straight line parallel to x -axis

$$
\begin{equation*}
x=1 \tag{5}
\end{equation*}
$$

Straight line parallel to $y$-axis
18. $\mathrm{x}^{2}+\mathrm{y}^{2}-4 \mathrm{x} \leq 0$

The graph of these curves is as follows.

$\therefore \quad$ Required area $=\mathrm{BCDEB}$

$$
=\int_{1}^{\sqrt{2}}\left[x^{2}-\left(2-x^{2}\right) \mathrm{dx}+\int_{\sqrt{2}}^{2}\left[2-\left(x^{2}-2\right)\right] \mathrm{d} x\right.
$$

$$
=\int_{1}^{\sqrt{2}}\left(2 x^{2}-2\right) d x+\int_{\sqrt{2}}^{2}\left(4-x^{2}\right) d x=\left(\frac{20}{3}-4 \sqrt{2}\right) \text { sq. units }
$$

8. We have, $\left[\begin{array}{lll}4 a^{2} & 4 a & 1 \\ 4 b^{2} & 4 b & 1 \\ 4 c^{2} & 4 c & 1\end{array}\right]\left[\begin{array}{c}f(-1) \\ f(1) \\ f(2)\end{array}\right]=\left[\begin{array}{l}3 a^{2}+3 a \\ 3 b^{2}+3 b \\ 3 c^{2}+3 c\end{array}\right]$

$$
\begin{aligned}
\Rightarrow \quad 4 \mathrm{a}^{2} f(-1)+4 \mathrm{a} f(1)+f(2) & =3 \mathrm{a}^{2}+3 \mathrm{a} \\
4 \mathrm{~b}^{2} f(-1)+4 \mathrm{~b} f(1)+f(2) & =3 \mathrm{~b}^{2}+3 \mathrm{~b} \\
4 \mathrm{c}^{2} f(-1)+4 \mathrm{c} f(1)+f(2) & =3 \mathrm{c}^{2}+3 \mathrm{c}
\end{aligned}
$$

Consider the equation

$$
\begin{array}{ll} 
& 4 x^{2} f(-1)+4 \mathrm{x} f(1)+f(2)=3 \mathrm{x}^{2}+3 \mathrm{x} \\
\text { or } \quad & {[4 f(-1)-3] \mathrm{x}^{2}+[4 f(1)-3] \mathrm{x}+f(2)=0}
\end{array}
$$

Then clearly this equation is satisfied by

$$
x=a, b, c
$$

A quadratic equation satisfied by more than two values of $x$ means it is an identity and hence

$$
\begin{array}{ll}
4 f(-1)-3=0 & \Rightarrow f(-1)=3 / 4 \\
4 f(1)-3=0 & \Rightarrow f(1)=3 / 4 \\
f(2)=0 & \Rightarrow f(2)=0
\end{array}
$$

Let $f(\mathrm{x})=\mathrm{px}^{2}+\mathrm{qx}+\mathrm{r}[f(\mathrm{x})$ being a quad. equation $]$
$f(-1)=\frac{3}{4} \Rightarrow \mathrm{p}-\mathrm{q}+\mathrm{r}=\frac{3}{4}$
$f(1)=\frac{3}{4} \Rightarrow \mathrm{p}+\mathrm{q}+\mathrm{r}=\frac{\frac{3}{4}}{4}$
$f(2)=0 \quad \Rightarrow \quad 4 \mathrm{p}+2 \mathrm{q}+\mathrm{r}=0$

Solving the above we get $q=0, p=\frac{-1}{4}, r=1$
$\therefore f(\mathrm{x})=-\frac{1}{4} \mathrm{x}^{2}+1$
It's maximum value occur at $f^{\prime}(\mathrm{x})=0$
i.e., $\mathrm{x}=0$ then $f(\mathrm{x})=1 \quad \therefore \mathrm{~V}(0,1)$
$\mathrm{A}(-2,0)$ is the pt. where curve meet x -axis
Let $B$ be the pt. $\left(h, \frac{4-h^{2}}{4}\right)$

As $\quad \angle \mathrm{AVB}=90^{\circ}$

$$
\mathrm{m}_{\mathrm{AV}} \times \mathrm{m}_{\mathrm{BV}}=-1
$$

$$
\Rightarrow \quad \frac{1}{2} \times\left(\frac{-h}{4}\right)=-1
$$

$$
\Rightarrow \quad h=8 \quad \therefore B(8,-15)
$$

Equation of chord AB is

Required area is
the area of shadded
region given by

$$
\begin{aligned}
& \int_{-2}^{8}\left[\left(-\frac{x^{2}}{4}+1\right)-\left(\frac{-6-3 x}{2}\right)\right] d x \\
= & \frac{125}{3} \\
= & \text { sq. units. }
\end{aligned}
$$

9. (C) By inspection, the point of intersection of two curves $y=3^{x-1} \log x$ and $y=x^{x}-1$ is $(1,0)$

For first curve $\frac{d y}{d x}=\frac{3^{x-1}}{x}+3^{x-1} \log 3 \log x$ $\Rightarrow\left(\frac{d y}{d x}\right)_{(1,0)=1=m_{1}}$

For second curve $\frac{d y}{d x}=x^{x}(1+\log x)$

$$
\begin{aligned}
& y+15=\frac{0-(-15)}{-2-8} \\
& \Rightarrow \quad 3 x+2 y+6=0
\end{aligned}
$$

$\Rightarrow\left(\frac{d y}{d x}\right)_{(1,0)=1=m_{2}}$
$\because \quad \mathrm{m}_{1}=\mathrm{m}_{2} \quad \Rightarrow$ two curves touch each other
$\Rightarrow$ angle between them is $0^{\circ}$
$\therefore \quad \cos \theta=1$
10. $y^{3}-3 y+x=0$
$3 y^{2} y^{\prime}-3 y^{\prime}+1=0 \quad y^{\prime}=\frac{-1}{3\left(y^{2}-1\right)}$
$\mathrm{f}\left(-10^{\sqrt{2}}\right)=2^{\sqrt{2}}$
$\mathrm{f}^{\prime}\left(-10^{\sqrt{2}}\right)=-\frac{1}{3(7)}=-\frac{1}{21}$
$6 y\left(y^{\prime}\right)^{2}+3 y^{2} y^{\prime \prime}-3 y^{\prime \prime}=0$
$y^{\prime \prime}=-\frac{2 y\left(y^{\prime}\right)^{2}}{y^{2}-1}$
$f^{\prime \prime}(-10 \sqrt{2})=\frac{-2(2 \sqrt{2})}{441 \times 7}=\frac{-4 \sqrt{2}}{7^{3} 3^{2}}$
11. $\int_{a}^{b} f(x) d x=[x f(x)]_{a}^{b}-\int_{a}^{b} x f^{\prime}(x) d x$

$$
\begin{aligned}
& =b f(b)-a f(a)+\int_{a}^{b} \frac{x}{3\left[(f(x))^{2}-1\right]} d x \\
& =\int_{a}^{b} \frac{x}{3\left[(f(x))^{2}-1\right]} d x+b f(b)-a f(a)
\end{aligned}
$$

12. $\begin{aligned} & \int_{-1}^{1} g^{\prime}(x) d x \\ & \text { Now } g(1)=-(g(-1))-g(-1)\end{aligned}$
(as $g^{\prime}(x)$ is an even function)
so $\int_{-1}^{1} g^{\prime}(x) d x=2 g(1)$
13. Area $=\int_{0}^{1}\left(\sqrt{\frac{1+\sin x}{\cos x}}-\sqrt{\frac{1-\sin x}{\cos x}}\right) d x$

$$
=\int_{0}^{\pi / 4} \frac{\left(\cos \frac{x}{2}+\sin \frac{x}{2}\right)-\left(\cos \frac{x}{2}-\sin \frac{x}{2}\right)}{\sqrt{\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}}} d x
$$

$$
=\int_{0}^{\pi / 4} \frac{2 \sin \frac{x}{2}}{\sqrt{\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}}} d x=\int_{0}^{\pi / 4} \frac{2 \tan \frac{x}{2}}{\sqrt{1-\tan ^{2} \frac{x}{2}}} d x
$$

Let $\tan ^{\frac{x}{2}}=\mathrm{t}$


Apply

$$
\begin{aligned}
&=\int_{1}^{e} \ln (e+1-y) d y \\
& A=\operatorname{ar}(O A B C)-\operatorname{ar}(O A B D) \\
&=e-\int_{1}^{e} e^{x} d x
\end{aligned}
$$

15. $\because \mathrm{f}^{\prime}(\mathrm{x})=2+6 \mathrm{x}+12 \mathrm{x}^{2}>0 \forall \mathrm{x} \in \mathrm{R}$
$\therefore \mathrm{f}(\mathrm{x})$ is strictly increasing in R
$\because \mathrm{f}(0)=1, \mathrm{f}(-1)=-2$,
$f\left(-\frac{1}{2}\right)=\frac{1}{4} \quad f\left(-\frac{3}{4}\right)=-\frac{1}{2}$
$\therefore f(x)=0$ has only one real root lying in $\left(-\frac{3}{4},-\frac{1}{2}\right)$


Let real root is $-\alpha$
$\Rightarrow \mathrm{t}=|\mathrm{s}|=\alpha$
Required area
$A=\int_{0}^{a} f(x) d x \quad \int_{0}^{1 / 2} f(x) d x<A<\int_{0}^{3 / 4} f(x) d x$
$\Rightarrow\left|x+x^{2}+x^{3}+x^{4}\right|_{0}^{1 / 2}<A<\left|x+x^{2}+x^{3}+x^{4}\right|_{0}^{3 / 4}<|4 x|_{0}^{3 / 4}$
$\Rightarrow \quad \frac{15}{16}<A<3$
17.

$f^{\prime}(x)=2\left(6 x^{2}+3 x+1\right)$
$\Rightarrow f^{\prime}(x)$ is decreasing in $\left(-\alpha,-\frac{1}{4}\right)$
increasing in $\left(-\frac{1}{4}, \alpha\right)$
or $f$ ' $(x)$ is decreasing in $\left(-t,-\frac{1}{4}\right)$
and increasing in $\left(-\frac{1}{4}, t\right)$
18. (A) :

$\Rightarrow \int_{0}^{b}(1-x)^{2} d x-\int_{b}^{1}(1-x)^{2} d x=\frac{1}{4}$

$$
\Rightarrow \quad-\left(\frac{(1-x)^{3}}{3}\right)_{0}^{b}+\left(\frac{(1-x)^{3}}{3}\right)_{b}^{1}=\frac{1}{4}
$$

$$
-\left\{\frac{(1-b)^{3}}{3}-\frac{1}{3}\right\}-\frac{(1-b)^{3}}{3}=\frac{1}{4}
$$

$\Rightarrow \frac{1}{3}-\frac{2}{3}(1-b)^{3}=\frac{1}{4} \Rightarrow \frac{2}{3}(1-b)^{3}=\frac{1}{12}$
$\Rightarrow(1-\mathrm{b})^{3}=\frac{\frac{1}{8}}{8} \Rightarrow 1-\mathrm{b}=\frac{1}{2}$
$\Rightarrow \quad b=\frac{1}{2}$
$R_{2}=\int_{-1}^{2} f(x) d x \quad R_{1}=\int_{-1}^{2} x f(x) d x$
$=\int_{-1}^{2}(1-\mathrm{x}) f(1-\mathrm{x}) \mathrm{dx}\left(\because \int_{\mathrm{a}}^{\mathrm{b}} f(\mathrm{x}) \mathrm{dx}=\int_{\mathrm{a}}^{\mathrm{b}} f(\mathrm{a}+\mathrm{b}-\mathrm{x}) \mathrm{dx}\right)$
$\int_{-1}^{2}(1-x) f(x) d x \quad($ given $f(x)=f(1-x))$
$=\int_{-1}^{2} f(x) d x-\int_{-1}^{2} x f(x) d x$
or $R_{1}=R_{2}-R_{1} \quad \Rightarrow \quad 2 R_{1}=R_{2}$
19. $y=\sin x+\cos x=\sqrt{2} \sin \left(x+\frac{\pi}{4}\right)$

$y=|\cos x-\sin x|=\sqrt{2}\left(\cos \left(x+\frac{\pi}{4}\right)\right)$

Area

$$
=\int_{0}^{\pi / 4}[(\sin x+\cos x)-(\cos x-\sin x)] d x
$$

$$
+\int_{\pi / 4}^{\pi / 2}[(\sin x+\cos x)-(\sin x-\cos x)] d x
$$

$=\int_{0}^{\pi / 4} 2 \sin x d x+\int_{\pi / 4}^{\pi / 2} 2 \cos x d x$
$=[-2 \cos x]_{0}^{\pi / 4}+[2 \sin x]_{\pi / 4}^{\pi / 2}$
$=2 \sqrt{2}(\sqrt{2}-1)$
21. $\mathrm{y} \geq \sqrt{|\mathrm{x}+3|}$
$v^{2}>\left\{\begin{array}{cc}x+3 & \text { if } x \geq-3 \\ -x-3 & \text { if } x<-3\end{array}\right.$

$A=\left(A(\right.$ trapezium PQTU $\left.)-\int_{-4}^{-3} \sqrt{-x-3} d x\right)$

# $+\left(A\left(\right.\right.$ trapezium QRST) $\left.-\int_{3}^{1} \sqrt{x+3} d x\right)$ $=\left(\frac{11}{10}-\frac{2}{3}\right)+\frac{16}{15}=\frac{3}{2}$ 



1. $\mathrm{y}=8 \mathrm{x}^{2}-\mathrm{x}^{5}=\mathrm{x}^{2}\left(8-\mathrm{x}^{3}\right)$

Case I $a<1$
$A=\int_{a}^{1}\left(8 x^{2}-x^{5}\right) d x=\frac{16}{3}$
or $\frac{8}{3}-\frac{1}{6}-\frac{8 a^{3}}{3}+\frac{a^{6}}{6}=\frac{16}{3}$

or $\quad\left(a^{3}-17\right)\left(a^{3}+1\right)=0$
$\Rightarrow \mathrm{a}=-1 \quad, \quad \mathrm{a}=(17)^{1 / 3}$ is not possible
Case II $\mathrm{a} \in[1,2]$
$A=\int_{1}^{a}\left(8 x^{2}-x^{5}\right) d x=\frac{16}{3}$
or $16 a^{3}-a^{6}-15=32$
or $a^{6}-16 a^{3}+47=0$
This equation is not satisfied by $\mathrm{a}=1, \mathrm{a}=2$
Case III $\mathrm{a}>2$
There is no option
Hence one solution is -1
2. (D)
$y=\sqrt{4-x^{2}}, y=\sqrt{2} \sin \left(\frac{x \pi}{2 \sqrt{2}}\right)$
intersect at $\mathrm{x}=\sqrt{2}$
Area of the left of $y$-axis is $\pi$
Area to the right of $y$-axis $=$
$\int_{0}^{\sqrt{2}}\left(\sqrt{4-x^{2}}-\sqrt{2} \sin \frac{x \pi}{2 \sqrt{2}}\right) d x$

$=\left(\frac{x \sqrt{4-x^{2}}}{2}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right)_{0}^{\sqrt{2}}+\left.\frac{4}{\pi} \cos \frac{x \pi}{2 \sqrt{2}}\right|_{0} ^{\sqrt{2}}$
$=\left(1+2 \cdot \frac{\pi}{4}\right)+\frac{4}{\pi}(0-1) \Rightarrow 1+\frac{\pi}{2}-\frac{4}{\pi}=\frac{2 \pi+\pi^{2}-8}{2 \pi}$
$\therefore \quad$ ratio $=\frac{2 \pi^{2}}{2 \pi+\pi^{2}-8}$
3. $a^{4} y^{2}=(2 a-x) x^{5}=2 a x^{5}-x^{6}$

here $(2 a-x) . x^{5} \geq 0$
$\Rightarrow \mathrm{x} \in[0,2 \mathrm{a}]$

$$
\begin{aligned}
& A=2 \int_{0}^{2 a} \sqrt{\frac{(2 a-x) \cdot x^{5}}{a^{4}}} d x \\
&= \frac{2}{a^{2}} \int_{0}^{2 a} \sqrt{a^{2}-(x-a)^{2}} \\
& \text { put } \quad x-a=a \cos \theta \quad x^{2} d x
\end{aligned}
$$

then $A=\frac{-2}{a^{2}} \int_{0}^{\pi} a \sin \cdot \theta a^{2}(1+\cos \theta)^{2} \cdot(-a \sin \theta) d \theta$
$=2 \mathrm{a}^{2} \int_{0}^{\pi}\left(\frac{5}{8}-\frac{\cos 2 \theta}{2}-\frac{\cos 4 \theta}{8}+2 \sin ^{2} \theta \cos \theta\right) d \mathrm{~d} \theta$
$=2 \mathrm{a}^{2}\left[\frac{5 \theta}{8}-\frac{1}{2} \frac{\sin 2 \theta}{2}-\frac{\sin 4 \theta}{32}+\frac{2}{3}(\sin \theta)^{3}\right]_{0}^{\pi}$
$\mathrm{A}=2 \mathrm{a}^{2}\left[\frac{5}{8} \pi\right]=\frac{5}{4} \pi \mathrm{a}^{2}$
$\therefore \quad \frac{\frac{5}{4} \pi \mathrm{a}^{2}}{\pi \mathrm{a}^{2}}=5: 4$
4. (C)

$$
\begin{aligned}
& y=a^{2} x^{2}+a x+1 \\
\therefore \quad & \operatorname{area} A=\int_{0}^{1}\left(a^{2} x^{2}+a x+1\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\left.\left(a^{2} \frac{x^{3}}{3}+\frac{a x^{2}}{2}+x\right)\right|_{0} ^{1}=\frac{a^{2}}{3}+\frac{a}{2}+1 \\
& =\frac{2 a^{2}+3 a+6}{6}=\frac{1}{3}\left(a^{2}+\frac{3}{2} a+\frac{9}{16}\right)+1-\frac{9}{48}
\end{aligned}
$$


; its least value, when $a=-$
5.
6. (D)

$$
\text { Area }=\int_{1}^{2}\left(\ell \ln x+\tan ^{-1} x\right) d x
$$



$$
=\frac{5}{2} \ln 2-\frac{1}{2} \ln 5+2 \tan ^{-1} 2-\frac{\pi}{4}-1
$$

$$
\text { 7. } A=\int_{0}^{\pi / 2}\left(1+\frac{2}{\pi} x-\cos x\right) d x
$$



$$
\text { or } \quad \mathrm{A}=\frac{\frac{3 \pi}{4}}{-1}
$$

8. (A)

Solving the given equation of circle, we get
$\mathrm{A} \equiv\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) ; \mathrm{D} \equiv\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$
Now area $=2[\mathrm{OBAO}]=2[$ area OEAO +EBAE$]$

$$
=2\left[\int_{0}^{x_{\mathrm{E}}} \sqrt{\left[1-(\mathrm{x}-1)^{2}\right]} \mathrm{dx}+\int_{\mathrm{x}_{\mathrm{E}}}^{\mathrm{x}_{\mathrm{E}}} \sqrt{1-\mathrm{x}^{2}} \mathrm{dx}\right]
$$


$=2^{\left[\int_{0}^{1 / 2} \sqrt{1-(\mathrm{x}-1)^{2}} \mathrm{dx}+\int_{1 / 2}^{1} \sqrt{1-\mathrm{x}^{2}} \mathrm{dx}\right]}$
$=\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}$ square units
9. $y_{1}=x^{1 / 3}$

$$
\begin{array}{ll}
\text { and } & y_{2}=-x^{2}+2 x+3=-(x-3)(x+1) \\
\text { and } & y_{3}=2 x-1
\end{array}
$$



Figure

$$
\begin{aligned}
& A=\int_{0}^{1}\left(y_{2}-y_{1}\right) d x+\int_{1}^{2}\left(y_{2}-y_{3}\right) d x \\
& =\int_{0}^{2} y_{2} d x-\int_{0}^{1} y_{1} d x-\int_{1}^{2} y_{3} d x \\
& =\left[-\frac{x^{3}}{3}+x^{2}+3 x\right]_{0}^{2}\left[\frac{3}{4} x^{4 / 3}\right]_{0}^{1}\left[x^{2}-x\right]_{1}^{2}=\frac{55}{12}
\end{aligned}
$$

10. (A)
$\mathrm{S}_{1}$ : Obvious
$\mathrm{S}_{2}:$ Area $=4^{\left(\frac{1}{2} \cdot 1 \cdot 1\right)}=2$

$\mathrm{S}_{3}:$ Area $=\frac{1}{4}$
(Ellipse area) $=\frac{\pi \mathrm{ab}}{4}-\frac{\mathrm{ab}}{2}$

$$
\wedge \cap \mathrm{AR}
$$



12. $f(x)=2^{\{x\}}$

Clearly $f(x)$ is periodic with period 1 .
Now $\int_{0}^{1} 2^{\{x\}} d x=\int_{0}^{1} 2^{x} d x=\left[\frac{2^{x}}{\ell \ln 2}\right]_{0}^{1}=\frac{1}{\ell n 2}=\log _{2} \mathrm{e}$
Also $\int_{0}^{100} 2^{\{x\}} \mathrm{dx}=100^{\int_{0}^{1} 2^{\{x\}} \mathrm{dx}}=100 \log _{2} \mathrm{e}$
$\left[U \sin g \int_{0}^{n a} f(x) d x=n \int_{0}^{a} f(x) d x\right.$ if $a$ is the period of $\left.f(x)\right]$
13. $\operatorname{Area}(\mathrm{T})=\frac{\mathrm{c} \cdot \mathrm{c}^{2}}{2}=\frac{\mathrm{c}^{3}}{2}$
$\operatorname{Area}(R)=\frac{c^{3}}{2} \int_{0}^{c} x^{2} d x$


$$
=\frac{\mathrm{c}^{3}}{2}-\frac{\mathrm{c}^{3}}{3}=\frac{\mathrm{c}^{3}}{6}
$$

$\operatorname{Lim}_{\mathrm{c} \rightarrow 0^{+}} \frac{\operatorname{Area}(\mathrm{T})}{\operatorname{Area}(\mathrm{R})}=\operatorname{Lim}_{\mathrm{c} \rightarrow 0^{+}} \frac{\mathrm{c}^{3}}{2} \cdot \frac{6}{\mathrm{c}^{3}}=3$
14. If $\mathrm{x} \leq \frac{3}{2}$
$f(x)=\int_{0}^{x}(3-2 t) d t=3 x-x^{2}$
$x>\frac{3}{2}$
$f(x)=\int_{0}^{3 / 2}(3-2 t) d t+\int_{3 / 2}^{x}(2 t-3) d t \quad=\frac{9}{2}+x^{2}-3 x$
$f(x)=\left\{\begin{array}{cc}3 x-x^{2}, & x \leq 3 / 2 \\ x^{2}-3 x+9 / 2, & x>3 / 2 \\ 3\end{array}\right.$
Now this is continuous at $x=\frac{3}{2}$
and at $\mathrm{x}=3$ also differentiable at $\mathrm{x}=0$
15. Solving $f(x)=2 x-x^{2}$ and $g(x)=x^{n}$
we have $2 x-x^{2}=x^{n}$
$\Rightarrow \quad \mathrm{x}=0$ and $\mathrm{x}=1$
$\left.A=\int_{0}^{1}\left(2 x-x^{2}-x^{n}\right) d x=x^{2}-\frac{x^{3}}{3}-\frac{x^{n+1}}{n+1}\right]_{0}^{1}$


$$
\begin{aligned}
& =1-\frac{1}{3}-\frac{1}{\mathrm{n}+1}=\frac{2}{3}-\frac{1}{\mathrm{n}+1} \\
& \text { hence, } \quad \frac{2}{3}-\frac{1}{\mathrm{n}+1}=\frac{1}{2}
\end{aligned}
$$

$$
\Rightarrow \quad \frac{2}{3}-\frac{1}{2}=\frac{1}{n+1} \quad \Rightarrow \quad \frac{4-3}{6}=\frac{1}{n+1}
$$

$$
\Rightarrow \mathrm{n}+1=6
$$

$$
\Rightarrow \mathrm{n}=5
$$

Hence n is a divisor of $15,20,30$

$$
\Rightarrow \mathbf{B}, \mathbf{C}, \mathbf{D}
$$

16. (C)

Statement-I Let $\frac{p}{\sqrt{p^{2}+q^{2}}} x+\frac{q}{\sqrt{p^{2}+q^{2}}} y=U$

$$
\text { and } \frac{q}{\sqrt{p^{2}+q^{2}}} x-\frac{p}{\sqrt{p^{2}+q^{2}}} y=V
$$

Then the axis get rotated through an angle $\theta$,
where $\cos \theta=\frac{\mathrm{p}}{\sqrt{p^{2}+q^{2}}} \quad$ and $\quad \sin \theta=\frac{q}{\sqrt{p^{2}+q^{2}}}$
$\therefore \quad$ the equation of the given curve becomes $|\mathrm{U}|+|\mathrm{V}|=$ a
$\therefore \quad$ the area bounded $=2 \mathrm{a}^{2}$.
$\therefore$ statement-1 is true
Statement-III the equation of the curve is $|\alpha x+\beta y|+$ $|\beta \mathrm{x}-\quad \alpha \mathrm{y}|=\mathrm{a}$ which is equivalent to
$\left|\frac{\alpha}{\sqrt{\alpha^{2}+\beta^{2}}} \mathrm{x}+\frac{\beta}{\sqrt{\alpha^{2}+\beta^{2}}} \mathrm{y}\right|\left|\frac{\beta}{\sqrt{\alpha^{2}+\beta^{2}}} \mathrm{x}-\frac{\alpha}{\sqrt{\alpha^{2}+\beta^{2}}} \mathrm{y}\right|$
$=\frac{a}{\sqrt{\alpha^{2}+\beta^{2}}}$
$\therefore$ area bounded $=\frac{2 a^{2}}{\alpha^{2}+\beta^{2}}$
$\therefore$ statement-2 is false.
17. Equation of tangent

$$
Y-y=m(X-x)
$$

put $\mathrm{X}=0, \quad \mathrm{Y}=\mathrm{y}-\mathrm{mx}$

hence initial ordinate is
$y-m x=x-1 \Rightarrow m x-y=1-x$
$\frac{d y}{d x}-\frac{1}{x} y=\frac{1-x}{x}$ which is a linear differential equation
Hence statement-1 is correct and its degree is 1
$\Rightarrow \quad$ statement- 2 is also correct. Since every $1^{\text {st }}$
degree differential equation need not be linear hence statement-2 is not the correct explanation of statement-1.
19. From the diagram,

$$
\sqrt{2}\left(r_{2}-r_{1}\right)=r_{2}+r_{1}
$$



$$
\begin{aligned}
& \text { but } r_{1}=2 \\
& \sqrt{2}\left(r_{2}-2\right)=r_{2}+2 \\
& (\sqrt{2}-1) r_{2}=2+2 \sqrt{2} \\
& \Rightarrow \quad r_{2}=\sqrt{2}(\sqrt{2}+1)(\sqrt{2}+2)
\end{aligned}
$$

Also centres of both the circles may also lie on $y=-x$.
20. (B)

$$
\begin{aligned}
& \text { Area }=\int_{1}^{3}-\left(x^{2}-4 x+3\right) d x=-\left.\left(\frac{x^{3}}{3}-\frac{4 x^{2}}{2}+3 x\right)\right|_{1} ^{3}= \\
& \frac{4}{3}
\end{aligned}
$$

$\therefore$ Statement-II is true
Statement-III is true but does not explain statement-I
21. (A) $\rightarrow$ (t),
(B) $\rightarrow$ (t),
$(C) \rightarrow(r)$,
(D) $\rightarrow$ (s)
(A) Required area $=4 \mathrm{~s}$

$$
\int^{\pi}(x+\sin x) \quad \int^{\pi} x d x
$$


$=\frac{\pi^{2}}{2}-\cos \pi+\cos 0-\frac{\pi^{2}}{2}=2$ sq. units
(B) Required area $=2 \int^{1} \mathrm{xe}^{\mathrm{x}} \mathrm{dx}=2\left[\mathrm{xe}^{\mathrm{x}}-\mathrm{e}^{\mathrm{x}}\right]_{0}{ }^{1}=2$
 about $y$ - axis

$$
4 x^{2}=x^{3} \Rightarrow x=0,4
$$

required area
$=2 \int_{0}^{4}\left(2 x-x^{3 / 2}\right) d x=\frac{16}{5}$
(D) $\sqrt{x}+\sqrt{|y|}=1$

Above curve is symmetric abol $\sqrt{|y|}=1-\sqrt{x}$ and $\sqrt{x}=1-$ $\Rightarrow$ for $x>0, y>0 \sqrt{y}=1-$

$$
\frac{1}{2 \sqrt{y}} \frac{d y}{d x}=-\frac{1}{2 \sqrt{x}}
$$

$\frac{d y}{d x}=-\sqrt{\frac{x}{y}}$
$\frac{d y}{d x}$
$\mathrm{dx}<0$, function is decreasing required area
$1-2 \int_{0}^{1}(1-\sqrt{\mathrm{x}}) \mathrm{dx}=\frac{1}{3}$
22. (A) $\rightarrow$ (t),
$(\mathrm{B}) \rightarrow(\mathrm{p})$,
(D) $\rightarrow$ (r)

(A) The area $=1$ unit

(B) Area enclosed $=\int_{0}^{1} \sin x d x=2$
(C) The line $y=x+2$ intersects $y=x^{2}$ at

$\mathrm{x}=-1$ and $\mathrm{x}=2$
the given region is shaded region area

$$
\frac{15}{2} \int_{-1}^{2} x^{2} d x=\frac{9}{2}
$$

(D) Here $\mathrm{a}^{2}=9, \mathrm{~b}^{2}=5, \mathrm{~b}^{2}=\mathrm{a}^{2}\left(1-\mathrm{e}^{2}\right)$
$\Rightarrow e^{2}=\frac{\frac{4}{9}}{} \quad \Rightarrow e=\frac{\frac{2}{3}}{3}$

$\frac{2 x}{9}+\frac{y}{3}=1$
x intercept $=\frac{9}{2}, \mathrm{y}$ intercept $=3$
Area $=4 \times \frac{9}{2} \times 3 \times \frac{\frac{1}{2}}{}=27$ sq. units
24.

1. (A)
$(y-4) x^{2}+x+2=0$
the coefficient of the highest power of $x$
i.e. $x^{2}$ is $y-4=0$
$y-4=0$ is the asymptote parallel to the $x$-axis.
The coefficient of the highest power of $y$ is $x$, so $x=0$ is also a asymptotes.
2. (B)
$\varphi_{3}(m)=1+m^{3}, \varphi_{2}(m)=-3 m$
Putting $\varphi_{3}(\mathrm{~m})=0$ or $\mathrm{m}^{3}+1=0$
or $\quad(\mathrm{m}+1)\left(\mathrm{m}^{2}-\mathrm{m}+1\right)=0$

$$
\mathrm{m}=-1, \mathrm{~m}=\frac{\frac{1 \pm \sqrt{1-4}}{2}}{2}
$$

Only real value of $m$ is -1

Now we find c from the equation

$$
\mathrm{c}=-\frac{\phi_{\mathrm{n}-1}(\mathrm{~m})}{\phi_{\mathrm{n}}^{\prime}(\mathrm{m})}
$$

$\mathrm{c}=\frac{3 \mathrm{~m}}{3 \mathrm{~m}^{2}}=\frac{1}{\mathrm{~m}}=-1$
On putting $\mathrm{m}=-1$ and $\mathrm{c}=-1$ in $\mathrm{y}=\mathrm{mx}+\mathrm{c}$.
The equation of asymptote is

$$
y=(-1) x+(-1) \text { or } x+y+1=0
$$

3. (B)

The coefficient of the highest power of $y$ is $(2-x)$,
So $\mathrm{x}=2$ is asymptotes.
$\therefore \quad a=1, b=0, c=-2$
$\therefore|a+b+c|=1$
26. Here $f(x+y)=f(x)+f(y)-8 x y$.

Replacing $x$, y by 0 we obtain $f(0)=0$
Now, $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$=\lim _{y \rightarrow 0} \frac{f(x+y)-f(x)}{y}$
$=\lim _{y \rightarrow 0} \frac{f(x)+f(y)-8 x y-f(x)}{y}$
$=\lim _{y \rightarrow 0}\left\{\frac{f(y)}{y}-\frac{8 x y}{y}\right\}=f^{\prime}(0)-8 x=8-8 x$
[given f'(0)
$=8]$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=8-8 \mathrm{x}$
Integrating both side,
$f(x)=8 x-4 x^{2}+c$
as $f(0)=0 \quad \Rightarrow c=0$
$\Rightarrow \mathrm{f}(\mathrm{x})=8 \mathrm{x}-4 \mathrm{x}^{2}$
also $g(x+y)=g(x)+g(y)+3 x y(x+y)$
Replacing $x$, y by 0 , we obtain $g(0)=0$

$\underline{g(x)+g(y)+3 x^{2} y+3 x y^{2}-g(x)}$

$=\lim _{y \rightarrow 0}\left[\frac{g(y)}{y}+\frac{y\left(3 x^{2}+3 x y\right)}{y}\right]_{=} g^{\prime}(0)+3 x^{2}=-4+3 x^{2}$
$\therefore \quad \mathrm{g}(\mathrm{x})=\mathrm{x}^{3}-4 \mathrm{x} \quad($ as $\mathrm{g}(0)=0)$
$|g(x)|=\left\{\begin{array}{c}x^{3}-4 x, x \in[-2,0] \cup[2, \infty) \\ 4 x-x^{3}, x \in(-\infty,-2) \cup(0,2)\end{array}\right.$
Points where $f(x)$ and $|g(x)|$ meets, we have
$f(x)=|g(x)|$
$\Rightarrow \mathrm{x}=0,2$.
Area bounded by $y=f(x)$ and $y=|g(x)|$,
between $\mathrm{x}=0$ to $\mathrm{x}=2$ is

$$
\int_{0}^{2}\left(x^{3}-4 x^{2}+4 x\right) d x=\frac{4}{3}
$$

27. (4)
$[\mathrm{x}] \cdot[\mathrm{y}]=2$
Here four cases arise

(1) $[x]=2 \&[y]=1 \quad \Rightarrow \quad 2 \leq x<3 \& 1 \leq y<2$
(2) $[x]=1 \&[y]=2 \quad \Rightarrow \quad 1 \leq x<2 \& 2 \leq y<3$
(3) $[x]=-2 \&[y]=-1 \quad \Rightarrow \quad-2 \leq x<-1 \&-1 \leq y<$ 0
(4) $[x]=-1 \&[y]=-2 \Rightarrow-1 \leq x<0 \&-2 \leq y<$ -1

Area enclosed by solution set $=4$
28. As the given triangle is equilateral with side lengths 4 .
$B D$ and $C E$ are angle bisectors of angle $B$ and $C$ resp.
Any point inside the $\triangle \mathrm{AEC}$ is nearer to AC than BC and any point inside the $\triangle \mathrm{BDA}$ is nearer to AB than BC . So points inside the quadrilateral AEGD will satisfy the given condition
$\therefore$ Remuired area $=9(\triangle \mathrm{EAG})$

$$
=2 \times \frac{1}{2} \times \mathrm{AE} \times \mathrm{EG}
$$


29. (8)

$$
\begin{aligned}
& {a y^{2}=x^{2}(a-x)}_{v}^{x}=t x \quad \sqrt{\frac{a-x}{a}} \\
& \text { Area }=2 \int_{0}^{a} x \sqrt{\frac{a-x}{a}} d x
\end{aligned}
$$

$$
\text { put } x=a \cos \theta, d x=-a \sin \theta d \theta
$$

$$
=2 \int_{0}^{\pi / 2} a \cos \theta \sqrt{2} \sin \frac{\theta}{2} a \sin \theta d \theta
$$

$$
=2 \sqrt{2} \mathrm{a}^{2} \int_{0}^{\pi / 2}\left(1-2 \sin ^{2} \frac{\theta}{2}\right) \quad 2 \sin ^{2} \frac{\theta}{2} \cos \frac{\theta}{2} \mathrm{~d} \theta
$$

$$
\text { put } \sin \frac{\theta}{2}=\mathrm{t} \cdot \cos \frac{\theta}{2} \mathrm{~d} \theta=2 \mathrm{dt}
$$



$$
=8 \sqrt{2} a^{2} \int_{0}^{1 / \sqrt{2}}\left(1-2 t^{2}\right) t^{2} d t=8 \sqrt{2} a^{2} \int_{0}^{1 / \sqrt{2}}\left(t^{2}-2 t^{4}\right) d t
$$

$$
=8^{\sqrt{2}} \mathrm{a}^{\left(\frac{\mathrm{t}^{3}}{3}-\frac{2 \mathrm{t}^{5}}{5}\right)^{1 / \sqrt{2}}}=8^{\sqrt{2}} \mathrm{a}^{2}\left(\frac{1}{6 \sqrt{2}}-\frac{2}{20 \sqrt{2}}\right)
$$

$$
=8 \mathrm{a}^{2}\left(\frac{1}{6}-\frac{1}{10}\right)=\frac{8 \mathrm{a}^{2}}{15}
$$

30. $y=-\left(x^{2}-6 x+5\right)=-(x-5)(x-1)$
$y=-\left(x^{2}-4 x+3\right)=-(x-3)(x-1)$


Figure

$$
\begin{aligned}
& \begin{array}{l}
y=3 x-15 \\
\text { A }(5,-0) B(4,-3) C(1,0) . \\
\text { Area }=\int_{1}^{4}\left(\left(-x^{2}+6 x-5\right)-\left(-x^{2}+4 x-3\right)\right) d x . \\
\\
+\int_{4}^{5}\left(\left(-x^{2}+6 x-5\right)-(3 x-15)\right) d x
\end{array} \\
& \begin{aligned}
\int_{1}^{5}\left(-x^{2}+6 x-5\right) d x-\int_{1}^{4}\left(-x^{2}+4 x-3\right) d x-\int_{4}^{5}(3 x-15) d x
\end{aligned} \\
& =\left(-\frac{x^{3}}{3}+3 x^{2}-5 x\right)_{1}^{5}-\left(-\frac{x^{3}}{3}+2 x^{2}-3 x\right)_{1}^{4} \\
& \text { Area } \left.=\frac{3 x^{2}}{2}-15 x\right)_{4}^{5}=\frac{32}{3}-(0)+\frac{3}{2}
\end{aligned}
$$

