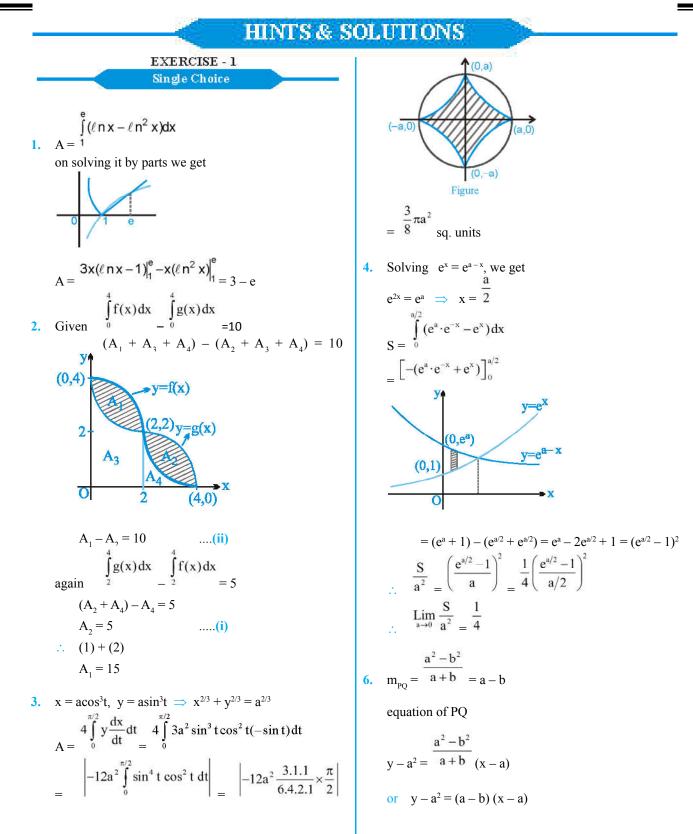
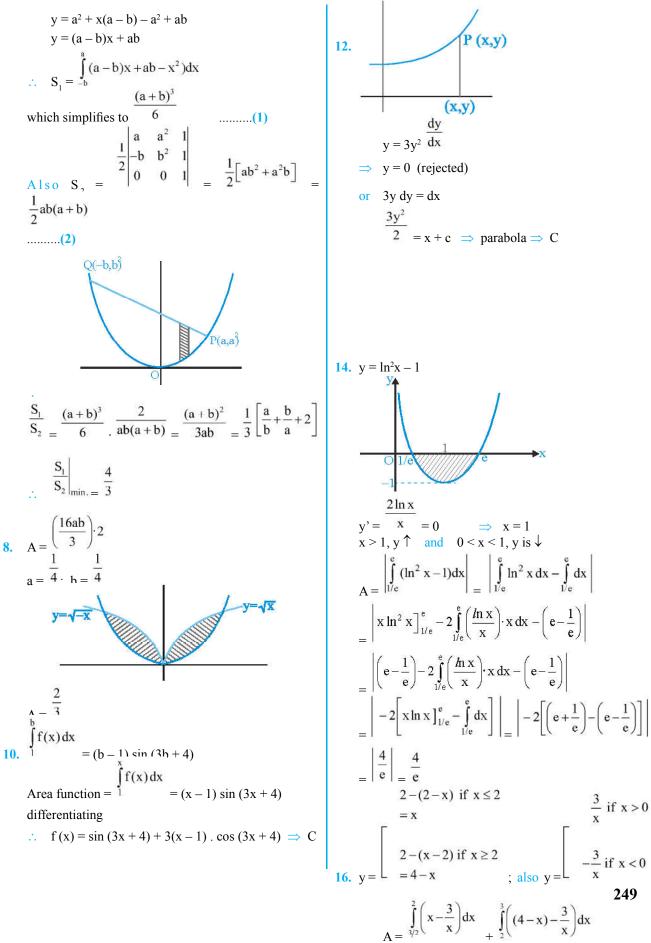
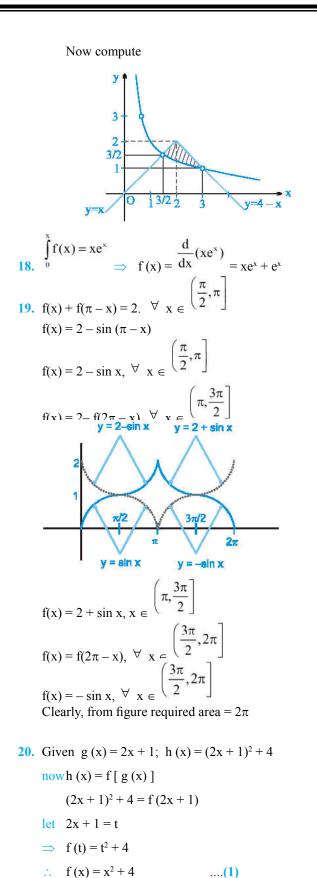
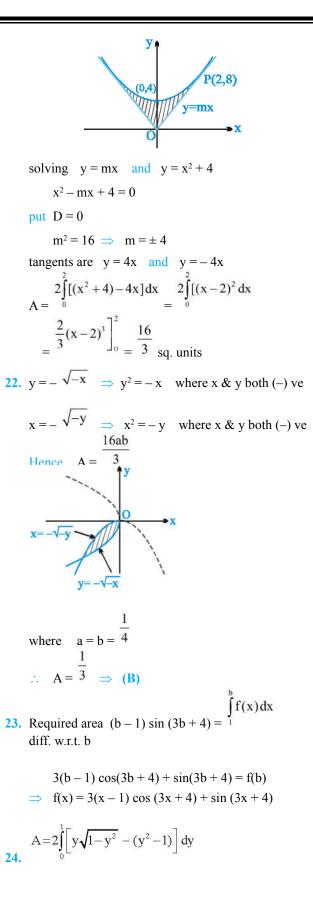


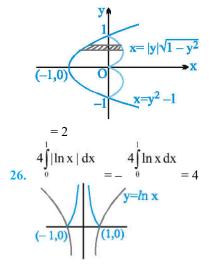
MATHS FOR JEE MAIN & ADVANCED











28. (a, 0) lies on the given curve $\sqrt{2}$

$$\therefore \quad 0 = \sin 2a - \frac{\sqrt{3}}{3} \sin a$$

$$\Rightarrow \quad \sin a = 0 \quad \text{or } \cos a = \frac{\sqrt{3}}{2} / 2$$

$$\Rightarrow \quad a = \frac{\pi}{6} \quad (\text{as } a > 0 \quad \text{and} \text{intersection})$$

positive X-axis)

and

$$A = \int_{0}^{\pi/6} (\sin 2x - \sqrt{3} \sin x) dx = \left(-\frac{\cos 2x}{2} + \sqrt{3} \cos x \right)_{0}^{\pi/6}$$
$$= \left(-\frac{1}{4} + \frac{3}{2} \right) - \left(-\frac{1}{2} + \sqrt{3} \right) = \frac{7}{4} - \sqrt{3} = \frac{7}{4} - 2 \cos a$$
$$\implies 4A + 8 \cos a = 7$$

the first point of

with

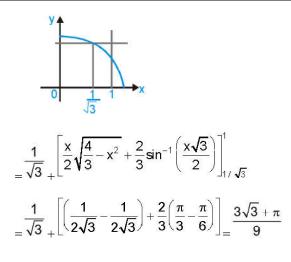
EXERCISE - 2
Part # I : Multiple Choice
1.
$$S = \int_{0}^{a/2} (e^{a-x} - e^{x}) dx$$

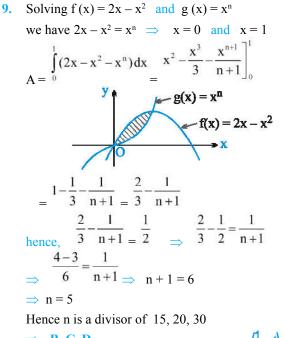
 $= -[2e^{a/2} - (e^{a} + 1)]$
 $\lim_{n \to 0} \frac{e^{a} - 2e^{a/2} + 1}{a^{2}} = \lim_{a \to 0} \left(\frac{e^{a/2} - 1}{a/2}\right)^{2} \frac{1}{4} = \frac{1}{4}$
 $\int_{(\frac{\pi}{2} - x)^{2}} \frac{1}{\pi/2} \leq x < \pi$
and f is periodic with period π
 \therefore Let us draw the graph of $y = f(x)$
From the graph, the range of the function is
 $\left[0, \frac{\pi^{2}}{4}\right]_{\Rightarrow}$ (A)
It is discontinuous at $x = n\pi$, $n \in I$. It is not
differentiable at $x = \frac{\pi\pi}{2}$, $n \in I$.
 $\int_{1}^{\frac{\pi}{2}} \frac{1}{\pi} \int_{1}^{\frac{\pi}{2}} \frac{1}{\pi$

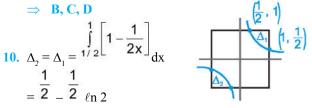
$$= \frac{2n\int_{0}^{3} f(x) dx}{\int_{0}^{3} cosx dx} + \int_{3/2}^{3} \left(\frac{\pi}{2} - x\right)^{2} dx = 2n\left(1 + \frac{\pi^{3}}{24}\right)$$

8. $A = \frac{1}{\sqrt{3}} \int_{+1/\sqrt{3}}^{1} \sqrt{\frac{4}{3} - x^{2}} dx$

MATHS FOR JEE MAIN & ADVANCED







$$A = 4 - (\Delta_1 + \Delta_2) = 4 - (1 - \ell n \ 2) = 3 + \ell n \ 2$$

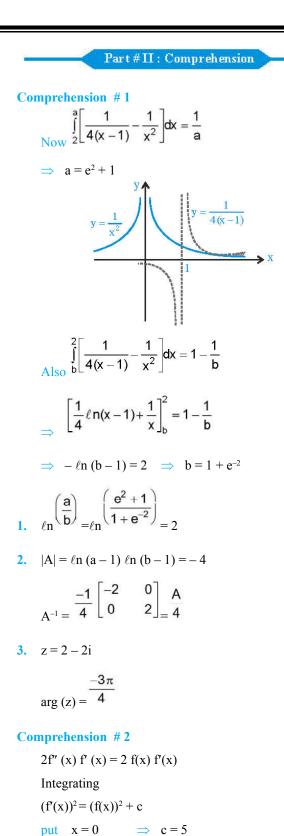
11. The two curves meet at $mx = x - x^{2} \text{ or } x^{2} = x(1 - m) \qquad \therefore \quad x = 0, 1 - m$ $\int_{0}^{1-m} (y_{1} - y_{2}) dx = \int_{0}^{1-m} (x - x^{2} - mx) dx$

$$= \left[(1-m)\frac{x^{2}}{2} - \frac{x^{3}}{3} \right]_{0}^{1-m} = \frac{9}{2} \text{ if } m < 1$$

or $(1-m)^{3} \left[\frac{1}{2} - \frac{1}{3} \right]_{0}^{2} = \frac{9}{2} \text{ or } (1-m)^{3} = 27$
 $\therefore m = -2$
But if m > 1 then 1 - m is negative, then
 $\left[(1-m)\frac{x^{2}}{2} - \frac{x^{3}}{3} \right]_{1-m}^{0} = \frac{9}{2}$
 $- (1-m)^{3} \left(\frac{1}{2} - \frac{1}{3} \right)_{0}^{2} = \frac{9}{2}$
 $\therefore - (1-m)^{3} = -27 \text{ or } 1-m = -3 \therefore m = 4.$
Part # II : Assertion & Reason
 $A = \prod_{\alpha}^{\beta} (kx + 2 - x^{2} + 3)dx$
 $= \left(\frac{kx^{2}}{2} - \frac{x^{3}}{3} + 5x \right)_{\alpha}^{\beta}$
 $= \left(\frac{k(\alpha + \beta)}{2} - ((\alpha + \beta)^{2} - \alpha\beta)\frac{1}{3} + 5 \right)_{(\beta - \alpha)}$
 $= \sqrt{k^{2} + 20} \left[\frac{k^{2}}{2} - \left(\frac{k^{2} + 5}{3} \right) + 5 \right]_{0}^{2} = \frac{1}{6} (k^{2} + 20)^{3/2}$

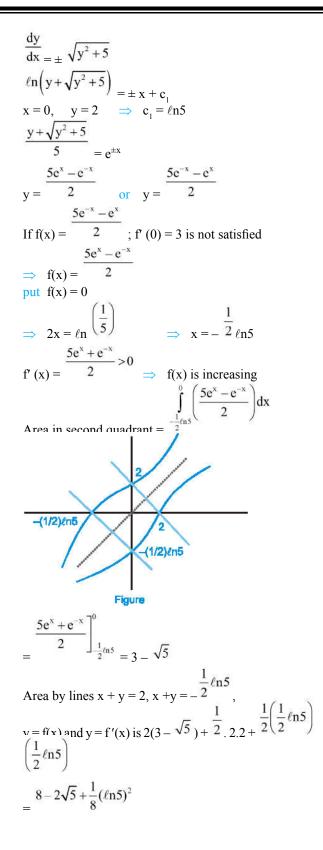
Hence statement I is true & II is false.

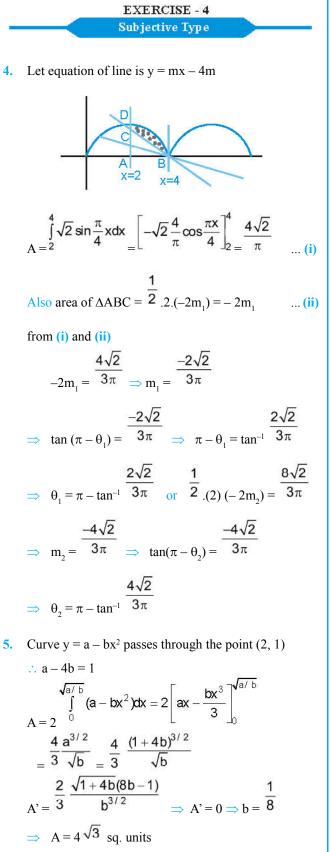
3.



 $(f'(x))^2 = (f(x))^2 + 5$

put y = f(x)





8. According to question

$$\int_{0}^{a'} (-f^{-1}(y) + \sqrt{y}) dy = \int_{0}^{a} \left(x^{2} - \frac{x^{2}}{2}\right) dx$$

$$\Rightarrow [f^{-1}(a^{2}) - a] 2a$$

$$\Rightarrow f^{-1}(a^{2}) = \frac{3a}{4}$$

$$\Rightarrow f^{-1}(a^{2}) = \frac{3a}{4}$$

$$\Rightarrow f^{-1}(a^{2}) = \frac{16}{9}x^{2}$$
f(x) = Maximum {x^{2}, (1 - x)^{2}, 2x(1 - x)}
We draw the graph of
y = x^{2} (1)
y = 2x (1 - x) (2)
y = 2x (1 - x) (3)
Solving (1) and (3), we get x^{2} = 2x (1 - x)
$$\Rightarrow 3x^{2} = 2x \Rightarrow x = 0 \text{ or } x = \frac{2}{3}.$$
Solving (2) and (3) we get $(1 - x)^{2} = 2x (1 - x)$

$$\Rightarrow x = \frac{1}{3} \text{ and } x = 1.$$

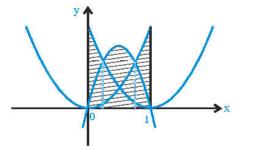
$$y = (1 - x)^{2}$$

$$Figure$$
From figure it is clear that
$$\begin{cases} (1 - x)^{2} \text{ for } 0 \le x \le 1/3 \\ 2x(1 - x) \text{ for } 1/3 \le x \le 2/3 \\ x^{2} \text{ for } 2/3 \le x \le 1 \end{cases}$$

9.

The required area A is given by

$$A = {\stackrel{\int}{_{0}}{_{0}}} f(x) dx = {\stackrel{\int}{_{0}}{_{0}}{_{0}}} (1-x)^{2} dx + {\stackrel{\int}{_{2/3}}{_{2/3}}} 2x(1-x) dx + {\stackrel{\int}{_{2/3}}{_{2/3}}} x^{2} dx$$



17. $A_n = \int_0^{\pi/4} (\tan x)^n dx$ $A_n + A_{n-2} = \int_0^{\pi/4} [(\tan x)^n + (\tan x)^{n-2}] dx$

$$\int_{0}^{\pi/4} (\tan x)^{n-2} \sec^2 x = \left[\frac{t^{n-1}}{n-1}\right]_{0}^{1} = \frac{1}{n-1}$$

Also
$$A_{n+2} \le A_n \le A_{n-2}$$

$$\Rightarrow \frac{1}{n+1} \le 2A_n \le \frac{1}{n-1}$$

18. (i) $0 < \tan x < 1$, when $0 < x < \pi/4$, we have $0 < (\tan x)^{n+1} < (\tan x)^n$ for each $n \in N$

$$y = (tanx)^{n}$$
(ii) we have $A_n = \int_{0}^{\pi/4} (tan x)^n dx$
(ii) we have $A_n = \int_{0}^{\pi/4} (tan x)^n dx$

$$\Rightarrow \int_{0}^{\pi/4} (tan x)^{n+1} dx < \int_{0}^{\pi/4} (tan x)^n dx$$

$$\Rightarrow \int_{0}^{\pi/4} (tan x)^{n+1} dx < \int_{0}^{\pi/4} (tan x)^n dx$$

$$\Rightarrow \int_{0}^{\pi/4} (tan x)^n + (tan x)^{n+2}] dx$$

$$= \int_{0}^{\pi/4} (tan x)^n (sec^2 x) dx$$

$$\left[\frac{1}{(n+1)} (tan x)^{n+1} \right]_{0}^{\pi/4} = \frac{1}{(n+1)} (1-0)$$
Similarly $A_n + A_{n-2} = \frac{1}{n-1}$
since $A_{n+2} < A_{n+1} < A_n$ we get $A_n + A_{n+2} < 2A_n$

$$\Rightarrow \frac{1}{n+1} < 2A_n \Rightarrow \frac{1}{2n+2} < A_n$$
(1)
Also for $n > 2$, $A_n + A_n < A_n + A_{n-2} = \frac{1}{n-1}$

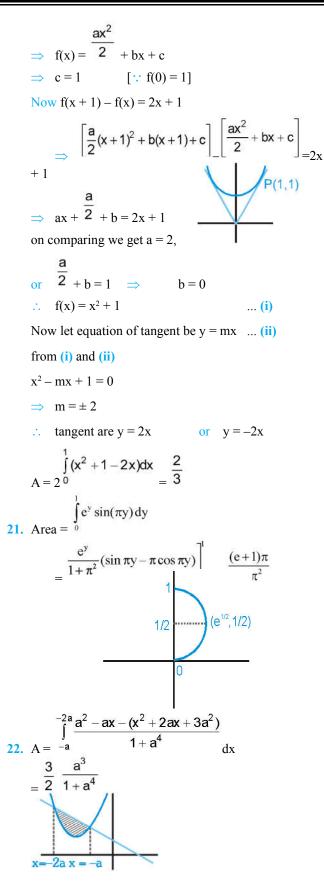
$$\Rightarrow 2A_n < \frac{1}{2n-2}$$
Combining (1) and (2) we get $\frac{1}{2n+2} < A_n < \frac{1}{2n-2}$
Hence Proved.

20.
$$f(x + 1) = f(x) + 2x + 1$$

$$\Rightarrow f''(x + 1) = f''(x) \quad \forall x \in \mathbb{R}$$

Let
$$f''(x) = a$$

$$\Rightarrow f'(x) = ax + b$$



Now
$$f(a) = \frac{3}{2} \frac{a^3}{1 + a^4}$$

$$\Rightarrow f'(a) = 0$$

$$\Rightarrow (1 + a^4) 3a^2 - a^3 4a^3 = 0$$

$$\Rightarrow a_{min} = 0, a_{max} = 3^{1/4}$$

23. Distance of point P from origin is less then distance of P from y = 1

$$\sqrt{h^{2} + k^{2}} < k - 1; \sqrt{h^{2} + k^{2}} < -k - 1$$

$$\Rightarrow x^{2} + y^{2} < (y - 1)^{2}; x^{2} + y^{2} < y^{2} + 2y + 1$$

$$\Rightarrow x^{2} < -2 \left(y - \frac{1}{2} \right); x^{2} < 2 \left(y + \frac{1}{2} \right)$$
similarly $y^{2} < -2 \left(x - \frac{1}{2} \right); y^{2} < 2 \left(x + \frac{1}{2} \right)$

$$\Rightarrow y^{2} - \frac{x^{2} - 1}{-2} \text{ or } y = x = \frac{x^{2} - 1}{-2}$$

$$\Rightarrow x^{2} + 2x - 1 = 0$$

$$\Rightarrow x = -1 \pm \sqrt{2}$$

$$A = \int_{0}^{\sqrt{2} - 1} \left[\frac{1 - x^{2}}{2} - \sqrt{2} + 1 \right] dx + 4(\sqrt{2} - 1)^{2}$$

$$= \frac{16\sqrt{2} - 20}{3}$$
24. (i) $f(x) = \min \left\{ x + 1, \sqrt{1 - x} \right\} = \left\{ \begin{array}{c} x + 1 & -1 < x < 0 \\ \sqrt{1 - x} & 0 < x < 1 \end{array}$

$$\therefore \frac{12}{7} \int_{-1}^{1} f(x) dx$$

$$\therefore \frac{12}{7} \int_{-1}^{1} f(x) dx$$

$$= \frac{12}{7} \left[\int_{-1}^{0} (x + 1) dx + \int_{0}^{1} \sqrt{1 - x} dx \right]$$

$$= \frac{12}{7} \left[\left(\frac{x^2}{2} + x \right) \right]_{-1}^{0} - \frac{2}{3} (1 - x)^{3/2} \right]_{0}^{1} \right]$$

$$= \frac{12}{7} \left[0 - \left(\frac{1}{2} - 1 \right) - \frac{2}{3} (0 - 1) \right] = \frac{12}{7} \left(\frac{1}{2} + \frac{2}{3} \right)_{= 2}$$
(ii) $\because 0 < x < \frac{1}{2}$ $f(x) = x$

$$A = \int_{0}^{1/2} x.dx = \left(\frac{x^2}{2} \right)_{0}^{1/2} = \frac{1}{8}$$

$$\begin{cases} x^2 + ax + b \quad ; \quad x < -1 \\ 2x \quad ; \quad -1 \le x \le 1 \end{cases}$$
26. $f(x) = \begin{cases} x^2 + ax + b \quad ; \quad x < -1 \\ 2x \quad ; \quad -1 \le x \le 1 \end{cases}$
 $\therefore f(x) \text{ is continuous at } x = -1 \text{ and } x = 1$
 $\therefore (-1)^2 + a(-1) + b = -2$
and $2 = (1)^2 + a. 1 + b$
i.e., $a - b = 3$
and $a + b = 1$
on solving we get $a = 2, b = -1$
 $\therefore f(x) = \begin{cases} x^2 + 2x - 1 \quad ; \quad x < -1 \\ 2x \quad ; \quad -1 \le x \le 1 \end{cases}$
Given curves are

$$y = f(x), x = -2y^2$$
 and $8x + 1 = 0$

solving $x = -2y^2$, $y = x^2 + 2x - 1$ (x < -1) we get

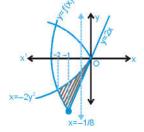
$$x = -2.$$

Also y = 2x, $x = -2y^2$ meet at (0, 0)

and
$$\left(-\frac{1}{8}, -\frac{1}{4}\right)$$

The required area is the shaded region in the figure.

... Required area



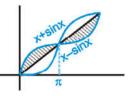
$$\int_{-2}^{-1} \left[\sqrt{\frac{-x}{2}} - (x^{2} + 2x - 1) \right] dx + \int_{-1}^{-1/8} \left[\sqrt{\frac{-x}{2}} - 2x \right] dx$$

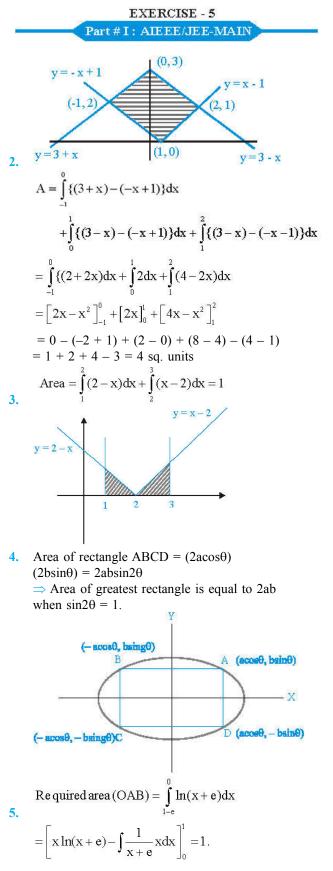
$$= \left[\frac{1}{\sqrt{2}} \frac{2(-x)^{3/2}}{3} - \frac{x^{3}}{3} - x^{2} + x \right]_{-2}^{-1}$$

$$+ \left[\frac{1}{\sqrt{2}} \frac{2(-x)^{3/2}}{3} - x^{2} \right]_{-1}^{-1/8}$$

$$= \frac{257}{192} \text{ square units}$$

$$A = 4 \int_{0}^{\infty} [x + \sin x - x)] dx$$





6. 258 = 4x and $x^2 = 4y$ are symmetric about line y = xarea bounded between $y^2 = 4x$

and y = x is $\int_{0}^{1} (2\sqrt{x} - x) dx = \frac{8}{3}$ $A_{s_2} = \frac{16}{3} \text{ and } A_{s_1} = A_{s_3} = \frac{16}{3}$ $\Rightarrow \begin{array}{c} \mathbf{A_{s_1}: \ A_{s_2}: A_{s_3}:: 1:1:1.} \\ \end{array}$ Given that $\int_{\pi/4}^{\beta} f(x) dx = \beta \sin \beta + \frac{\pi}{4} \cos \beta + \sqrt{2} \beta$ 7. Differentiating w.r.t β $f(\beta)\cos\beta + \sin\beta - \frac{\pi}{4}\sin\beta + \sqrt{2}$ $f\left(\frac{\pi}{2}\right) = \left(1 - \frac{\pi}{4}\right)\sin\frac{\pi}{2} + \sqrt{2} = 1 - \frac{\pi}{2} + \sqrt{2}$. $A = \int \left(\sqrt{x} - x\right) dx$ 8. $=\left[\frac{2}{3}x^{3/2}-\frac{x^2}{2}\right]^1$ (1, 1) $=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}$.

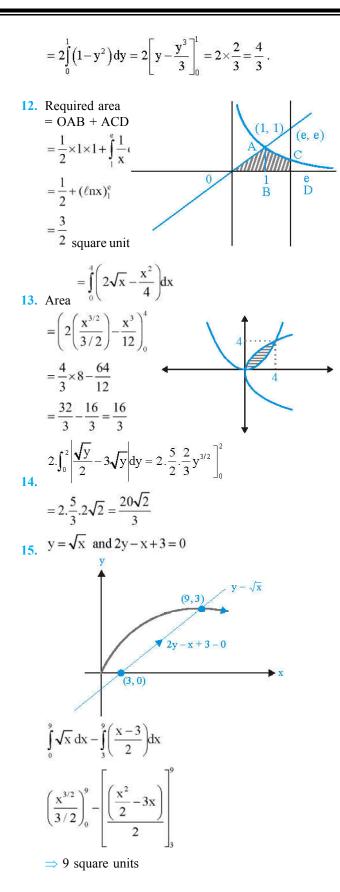
9. Solving the equations we get the points of intersection (-2, 1) and (-2, -1)

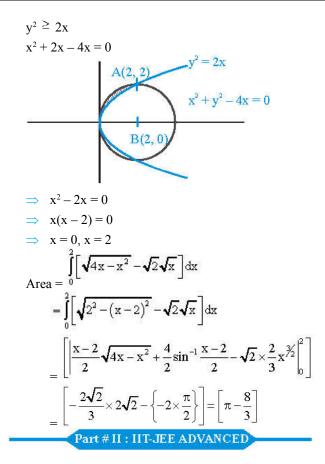
The bounded region is shown as shaded region.



(-2, -1)

The required area =





3. The given curves are $y = x^2$

which is an upward parabola with vertex at (0, 0)

 $y = |2 - x^{2}|$ or $y = \begin{cases} 2 - x^{2} & \text{if } -\sqrt{2} < x < \sqrt{2} \\ x^{2} - 2 & \text{if } x < -\sqrt{2} \text{ or } x > \sqrt{2} \end{cases}$ or $x^{2} = -(y - 2); -\sqrt{2} < x < \sqrt{2} \qquad \dots (2)$ a downward parabola with vertex at (0, 2)

$$x^2 = y + 2;$$
 $x < -\sqrt{2}, x > \sqrt{2}$ (3)

On upward parabola with vertex at (0, -2)

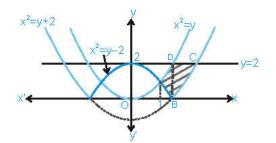
Straight line parallel to x-axis

$$x = 1$$
(5)

Straight line parallel to y-axis

18. $x^2 + y^2 - 4x \le 0$

The graph of these curves is as follows.



 \therefore Required area = BCDEB

$$\int_{1}^{\sqrt{2}} [x^{2} - (2 - x^{2})dx + \int_{2}^{2} [2 - (x^{2} - 2)]dx$$

$$= \int_{1}^{\sqrt{2}} (2x^{2} - 2)dx + \int_{\sqrt{2}}^{2} (4 - x^{2})dx = \left(\frac{20}{3} - 4\sqrt{2}\right) \text{ sq. units}$$

$$\begin{bmatrix} 4a^{2} & 4a & 1\\ 4b^{2} & 4b & 1\\ 4c^{2} & 4c & 1 \end{bmatrix} \begin{bmatrix} f(-1)\\ f(1)\\ f(2) \end{bmatrix} = \begin{bmatrix} 3a^{2} + 3a\\ 3b^{2} + 3b\\ 3c^{2} + 3c \end{bmatrix}$$

$$\implies 4a^{2}f(-1) + 4af(1) + f(2) = 3a^{2} + 3a$$

$$4b^{2}f(-1) + 4bf(1) + f(2) = 3b^{2} + 3b$$

$$4c^{2}f(-1) + 4cf(1) + f(2) = 3c^{2} + 3c$$

Consider the equation

8.

$$4x^{2}f(-1) + 4xf(1) + f(2) = 3x^{2} + 3x$$

or
$$[4f(-1) - 3]x^{2} + [4f(1) - 3]x + f(2) = 0$$

Then clearly this equation is satisfied by

x = a, b, c

A quadratic equation satisfied by more than two values of x means it is an identity and hence

$$4f(-1) - 3 = 0 \implies f(-1) = 3/4$$

$$4f(1) - 3 = 0 \implies f(1) = 3/4$$

$$f(2) = 0 \implies f(2) = 0$$
Let $f(x) = px^2 + qx + r [f(x) \text{ being a quad. equation}]$

$$f(-1) = \frac{3}{4} \implies p - q + r = \frac{3}{4}$$

$$f(1) = \frac{3}{4} \implies p + q + r = \frac{3}{4}$$

$$f(2) = 0 \implies 4p + 2q + r = 0$$
260

Solving the above we get q = 0, p = 4, r = 1 $\therefore f(\mathbf{x}) = -\overline{\mathbf{4}} \mathbf{x}^2 + 1$ It's maximum value occur at f'(x) = 0i.e., x = 0 then f(x) = 1∴ V(0, 1) A (-2, 0) is the pt. where curve meet x-axis $h, \frac{4-h^2}{2}$ Let B be the pt. As $\angle AVB = 90^{\circ}$ $m_{AV} \times m_{BV} = -1$ $\frac{1}{2} \times \left(\frac{-h}{4}\right) = -1$ h = 8 $\therefore B(8, -15)$ Equation of chord AB is (15) 0

$$y + 15 = \frac{0 - (-15)}{-2 - 8}$$

$$(-2,0)A \xrightarrow{(-2,0)A} B(8, -15)$$

Required area is the area of shadded

region given by

$$\int_{=-2}^{8} \left[\left(-\frac{x^2}{4} + 1 \right) - \left(\frac{-6 - 3x}{2} \right) \right] dx$$

$$= \frac{125}{3}$$
 sq. units.

9. (C) By inspection, the point of intersection of two curves y = 3^{x-1} log x and y = x^x - 1 is (1, 0)

For first curve
$$\frac{dy}{dx} = \frac{3^{x-1}}{x} + 3^{x-1} \log 3 \log x$$

$$\Rightarrow \frac{\left(\frac{dy}{dx}\right)_{(1,0)=1}}{1 = m_1}$$

For second curve $\frac{dy}{dx} = x^{x} (1 + \log x)$

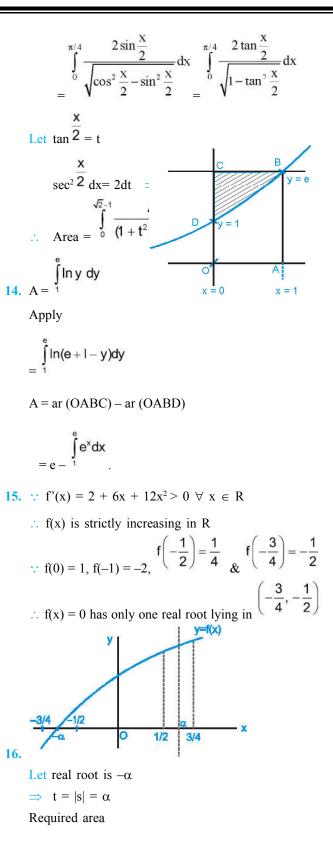
$$\Rightarrow \frac{\left(\frac{dy}{dx}\right)}{(1,0)=1} = m_2$$

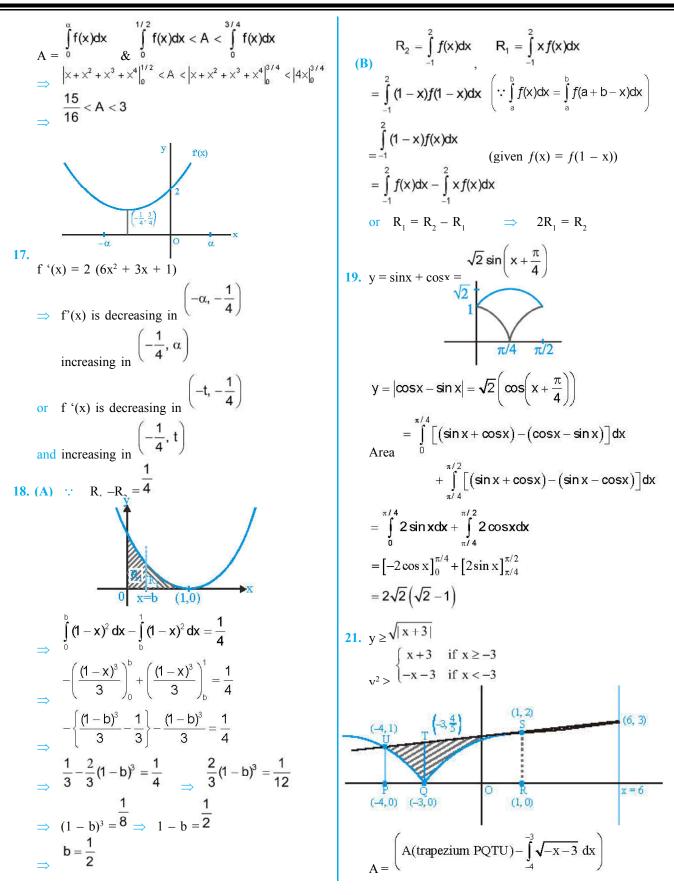
$$\Rightarrow m_1 = m_2 \implies \text{two curves touch each other}$$

$$\Rightarrow \text{ angle between them is 0°}$$

$$\therefore \cos \theta = 1$$

10. $y^3 - 3y + x = 0$
 $3y^2y^2 - 3y^2 + 1 = 0$ $y^2 = \frac{-1}{3(y^2 - 1)}$
 $f(-10\sqrt{2}) = 2\sqrt{2}$
 $f^{\circ}(-10\sqrt{2}) = -\frac{1}{3(7)} = -\frac{1}{21}$
 $6y(y')^2 + 3y^2y' - 3y'' = 0$
 $\frac{2y(y')^2}{y'' = -\frac{y^2 - 1}{y^2 - 1}}$
 $f^{\circ}(-10\sqrt{2}) = \frac{-2(2\sqrt{2})}{441 \times 7} = \frac{-4\sqrt{2}}{7^3 3^2}$
11. $\int_{a}^{b} f(x)dx = [xf(x)]_{a}^{b} - \frac{a}{a}$
 $= bf(b) - af(a) + \int_{a}^{b} \frac{x}{3[(f(x))^2 - 1]} dx$
 $= \frac{b}{3} \frac{x}{3[(f(x))^2 - 1]} dx + bf(b) - af(a)$
12. $\int_{-1}^{1} g'(x)dx$
 $= g(1) - g(-1)$
Now $g(1) = -(g(-1))$
 $(as g'(x) is an even function)$
 $\int_{1}^{1} g'(x)dx$
so $-1 = 2g(1)$
13. Area $= \int_{0}^{\pi/4} \left(\frac{\sqrt{1 + \sin x}}{\sqrt{\cos^2 2} - \sin^2 \frac{x}{2}} - \frac{(\cos \frac{x}{2} - \sin \frac{x}{2})}{\sqrt{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}} dx$





$$= \left(\frac{11}{10} - \frac{2}{3}\right) + \frac{16}{15} = \frac{3}{2}$$
1. $y = 8x^2 - x^5 = x^2 (8 - x^3)$
Case 1 $a < 1$

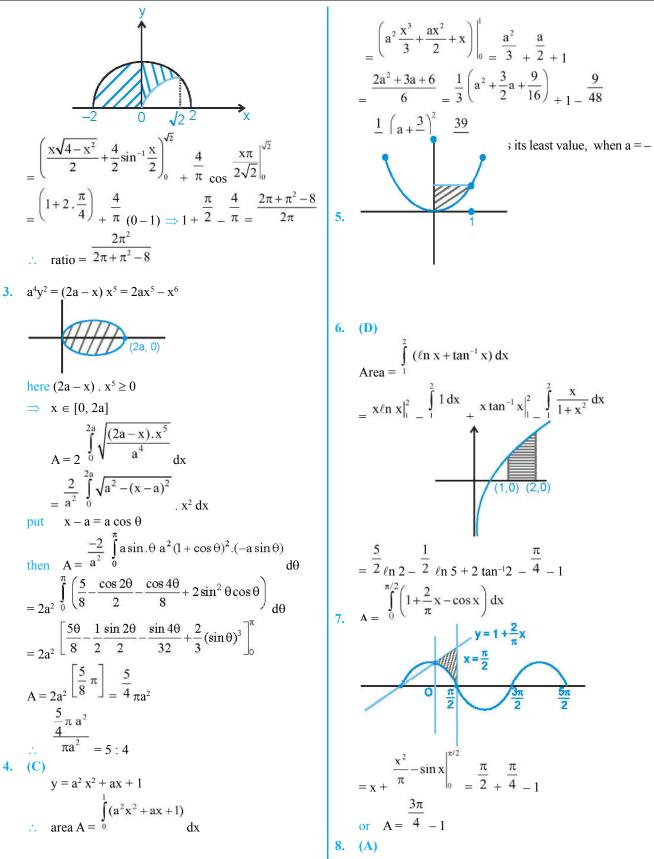
$$= \left(\frac{11}{10} - \frac{2}{3}\right) + \frac{16}{15} = \frac{3}{2}$$
1. $y = 8x^2 - x^5 = x^2 (8 - x^3)$
Case 1 $a < 1$

$$= \frac{1}{6} \left(\frac{8x^2 - x^5}{3x} + \frac{a^5}{6x} + \frac{16}{3x} + \frac{16}{3x}$$

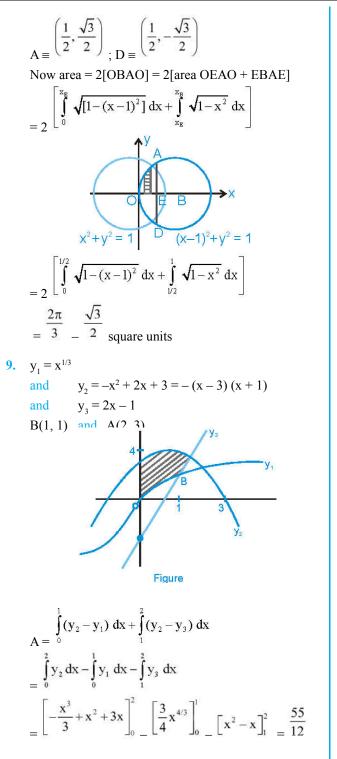
Area of the left of y-axis is π Area to the right of y-axis = $\int_{1}^{\sqrt{2}} \left(\int_{1}^{1} \int_{1}^{2} \int_{1$

$$\int_{0}^{\pi} \left(\sqrt{4 - x^2} - \sqrt{2} \sin \frac{x\pi}{2\sqrt{2}} \right)_{dx}$$

MATHS FOR JEE MAIN & ADVANCED

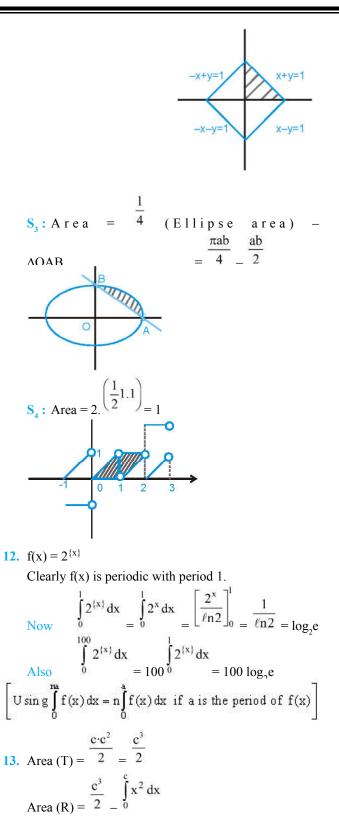


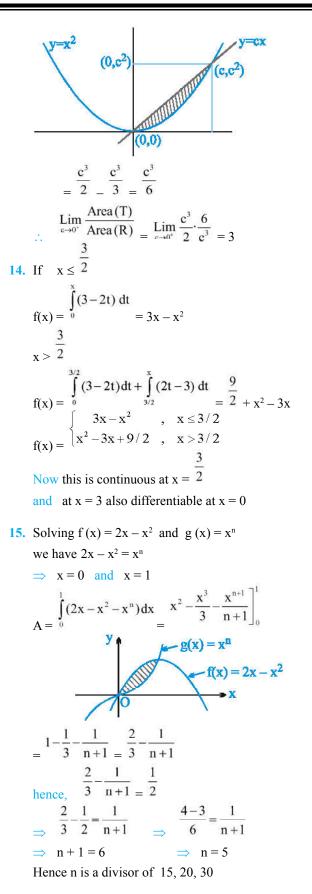
Solving the given equation of circle, we get



10. (A)

 S_1 : Obvious S_2 : Area = 4 $\left(\frac{1}{2} \cdot 1 \cdot 1\right) = 2$





16. (C)

Statement-I Let $\frac{p}{\sqrt{p^2 + q^2}} = \frac{q}{\sqrt{p^2 + q^2}} = U$ and $\frac{q}{\sqrt{p^2 + q^2}} = \sqrt{p^2 + q^2} = V$ Then the axis get rotated through an angle θ ,

where $\cos\theta = \frac{p}{\sqrt{p^2 + q^2}}$ and $\sin\theta = \frac{q}{\sqrt{p^2 + q^2}}$

:. the equation of the given curve becomes |U| + |V| = a

- \therefore the area bounded = $2a^2$.
- :. statement-1 is true

Statement-II the equation of the curve is $|\alpha x + \beta y| + |\beta x - \alpha y| = a$ which is equivalent to

$$\left| \frac{\alpha}{\sqrt{\alpha^2 + \beta^2}} x + \frac{\beta}{\sqrt{\alpha^2 + \beta^2}} y \right|_{I} \left| \frac{\beta}{\sqrt{\alpha^2 + \beta^2}} x - \frac{\alpha}{\sqrt{\alpha^2 + \beta^2}} y \right|$$
$$= \frac{a}{\sqrt{\alpha^2 + \beta^2}}$$

area bounded =
$$\frac{2a}{\alpha^2 + \beta^2}$$

- :. statement-2 is false.
- **17.** Equation of tangent

$$Y - y = m(X - x)$$

$$Y = y - mx$$

hence initial ordinate is

$$y - mx = x - 1 \implies mx - y = 1 - x$$

 $\frac{dy}{dx} - \frac{1}{x}y = \frac{1 - x}{x}$ which is a linear differential equation

P(x,y)

0

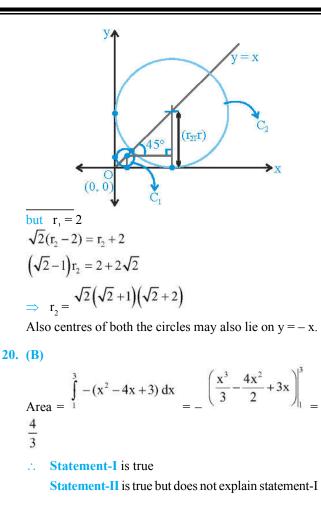
Hence statement-1 is correct and its degree is 1

 \Rightarrow statement-2 is also correct. Since every 1st

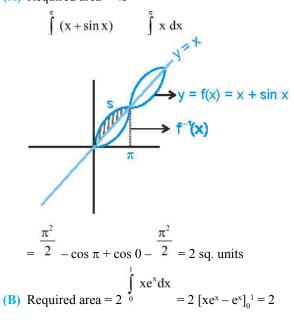
degree differential equation need not be linear hence statement-2 is not the correct explanation of statement-1.

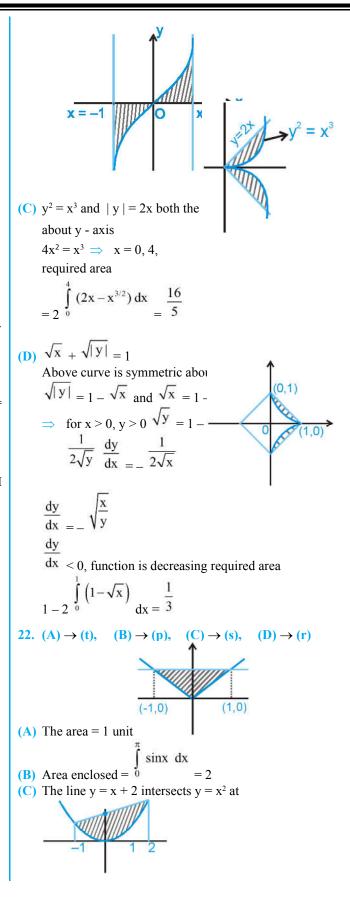
19. From the diagram,

$$\sqrt{2(r_2 - r_1)} = r_2 + r_1$$



21. (A) \rightarrow (t), (B) \rightarrow (t), (C) \rightarrow (r), (D) \rightarrow (s) (A) Required area = 4s





x = -1 and x = 2the given region is shaded region area $\frac{15}{2}$ $\int_{-1}^{1} x^2 dx = \frac{9}{2}$ (D) Here $a^2 = 9$, $b^2 = 5$, $b^2 = a^2(1 - e^2)$ $\Rightarrow e^2 = 9$ \Rightarrow e = 3 $2, \frac{-}{3}$ Equation of tangent at $\frac{2x}{9} + \frac{y}{3} = 1$ x intercept = 2, y intercept = 3Area = $4 \times \overline{2} \times 3 \times \overline{2} = 27$ sq. units 24. **1. (A)** $(y-4) x^2 + x + 2 = 0$ the coefficient of the highest power of x i.e. x^2 is y - 4 = 0y - 4 = 0 is the asymptote parallel to the x-axis. The coefficient of the highest power of y is x, so x = 0is also a asymptotes. 2. (B) $\phi_3(m) = 1 + m^3, \phi_2(m) = -3m$ Putting $\phi_2(m) = 0$ or $m^3 + 1 = 0$ $(m + 1) (m^2 - m + 1) = 0$ or $1 \pm \sqrt{1-4}$ 2 m = -1, m =Only real value of m is -1 $\phi_{n-1}(m)$ $\phi'_{n}(m)$ Now we find c from the equation c =3m 1 $c = 3m^2 = m = -1$ On putting m = -1 and c = -1 in y = mx + c. The equation of asymptote is

y = (-1) x + (-1) or x + y + 1 = 03. (B) The coefficient of the highest power of y is (2 - x), So x = 2 is asymptotes. \therefore a = 1, b = 0, c = -2 $\therefore |a+b+c|=1$ **26.** Here f(x + y) = f(x) + f(y) - 8xy. Replacing x, y by 0 we obtain f(0) = 0Now, $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{1}$ $\lim \frac{f(x+y)-f(x)}{x}$ = y→0 У f(x) + f(y) - 8xy - f(x)lim y f(y) = 8xy $\lim_{y\to 0}$ У = f'(0) - 8x = 8 - 8x [given f'(0) = 8] \Rightarrow f'(x) = 8 - 8x Integrating both side, $f(x) = 8x - 4x^2 + c$ as f(0) = 0 \Rightarrow c = 0 \Rightarrow f(x) = 8x - 4x² also g(x + y) = g(x) + g(y) + 3xy (x + y)Replacing x, y by 0, we obtain g(0) = 0 $\lim \frac{g(x+y) - g(x)}{2}$ Now $g'(x) = y \rightarrow 0$ $g(x)+g(y)+3x^{2}y+3xy^{2}-g(x)$ y=f(x)y = |g(x)|2.0)lim $= g'(0) + 3x^2 = -4 + 3x^2$ \therefore g(x) = x³ - 4x (as g(0) = 0)(ii)

lim

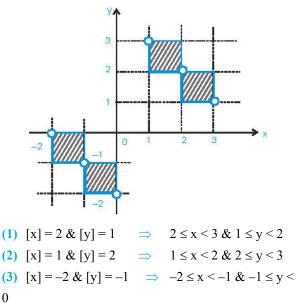
 $v \rightarrow 0$

 $\begin{cases} x^3 - 4x, x \in [-2, 0] \cup [2, \infty) \\ 4x - x^3, x \in (-\infty, -2) \cup (0, 2) \end{cases}$ Points where f(x) and |g(x)| meets, we have f(x) = |g(x)| $\Rightarrow x = 0$, 2. Area bounded by y = f(x) and y = |g(x)|, between x = 0 to x = 2 is $\int_0^2 (x^3 - 4x^2 + 4x) dx = \frac{4}{3}.$

27. (4)

 $[x] \cdot [y] = 2$

Here four cases arise

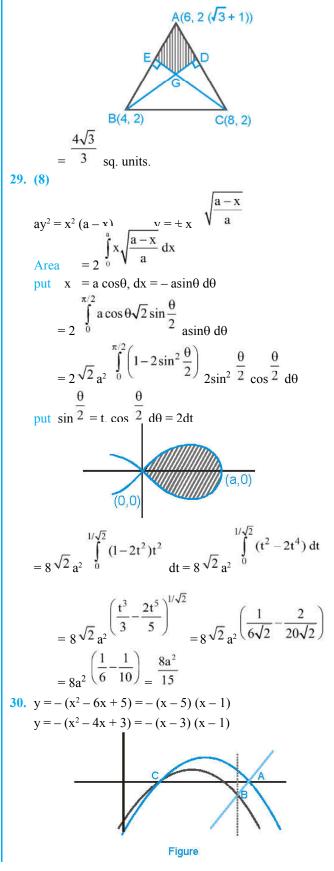


(4) $[x] = -1 \& [y] = -2 \implies -1 \le x < 0 \& -2 \le y < -1$

Area enclosed by solution set = 4

28. As the given triangle is equilateral with side lengths 4. BD and CE are angle bisectors of angle B and C resp. Any point inside the \triangle AEC is nearer to AC than BC and any point inside the \triangle BDA is nearer to AB than BC. So points inside the quadrilateral AEGD will satisfy the given condition

$$\therefore \quad \text{Required area} = 2 (\Delta EAG)$$
$$= \frac{2 \times \frac{1}{2} \times AE \times EG}{2}$$



$$y = 3x - 15$$
A (5, -0) B(4, -3) C (1, 0).
Area = $\int_{1}^{4} \left(\left(-x^{2} + 6x - 5 \right) - \left(-x^{2} + 4x - 3 \right) \right) dx \cdot + \int_{4}^{5} \left(\left(-x^{2} + 6x - 5 \right) - \left(3x - 15 \right) \right) dx$

$$= \int_{1}^{5} (-x^{2} + 6x - 5) dx - \int_{1}^{4} (-x^{2} + 4x - 3) dx - \int_{4}^{5} (3x - 15) dx$$

$$= \left(-\frac{x^{3}}{3} + 3x^{2} - 5x \right)_{1}^{5} - \left(-\frac{x^{3}}{3} + 2x^{2} - 3x \right)_{1}^{4}$$

$$- \left(\frac{3x^{2}}{2} - 15x \right)_{4}^{5} = \frac{32}{3} - (0) + \frac{3}{2}$$
Area = $\frac{73}{6}$

