

p-BLOCK

SOLVED EXAMPLES

- **Ex.1** What will happen if borontrifluoride is kept in moist air?
 - (A) It will strongly fumes.
 - (B) It will partially hydrolysed.
 - (C) It will completely hydrolysed.
 - (D) None of these
- Ans. (A)

Sol. In moist air it strongly fumes :but it is partially hydrolysed by excess of water.

$$4BF_3 + 6H_2O \longrightarrow 3H_3O^+ + 3BF_4^- + B(OH)_3$$

BF₃ is a colourless gas.

- Ex. 2 Al and Ga are trivalent in their compounds but monovalent compounds are the most stable down the 13th group. Why ?
- **Sol.** Down the group (13th), the stability of +3 state decreases and that of +1 state increases due to the prominent "inert pair" effect.

 $Al^{3+} > Ga^{3+} > ln^{3+} > Tl^{3+}$ Most stable $\xrightarrow{\qquad}$ lest stable $Tl^+ > ln^+ > Ga^+ > Al^+$

- Ex.3 If you have a mixture of CO and CO₂, how would you know about the relative proportions of the two gases in the given mixture ?
- Sol. (i) Pass mixture through the $Ca(OH)_2$ solution; CO_2 is absorbed by $Ca(OH)_2$. The residual volume will be that of CO

 $Ca(OH)_2 + CO_2 \longrightarrow CaCO_3 + H_2O$

(ii) Pass mixture through I_2O_5 ; CO reduces I_2O_5 to I_2 .

 $5CO + I_2O_5 \longrightarrow I_2 + 5CO_2$

 I_2 thus liberated is determined by titration with Na₂S₂O₃.

$$2Na_2S_2O_3 + I_2 \longrightarrow 2NaI + Na_2S_4O_6$$

This is the quantitative method of estimation of CO.

Ex.4 True / False

(a) BCl₃ in aqueous solution exists as B^{3+} and Cl^{-} .

- (b) Pure crystalline boron is very unreactive and it is attacked only at high temperatures by strong oxidising agents such as a mixture of hot concentrated H_2SO_4 and HNO_3 .
- (c) AIX_3 (X = Cl, Br) exists as dimer and retains dimer formula in non-polar solvents like ether, benzene etc.
- (d) Be_2C is called acetylide because it reacts with water yielding ethyne.
- (e) Pb_3O_4 a double oxide, is obtained by heating lead (II) oxide in air.
- Ans. (a) False (b) True (c) True (d) False (e) True

- Sol. (a) Statement is incorrect. BCl_3 hydrolyses in aqueous solution to give boric acid. Because it has large ionisation energies and to make the enthalpy of solution of BCl_3 negative, the enthalpy of hydration of B^{3+} should be very high (~ 600 g kJ) which is unlikely for the small B^{3+} cation.
 - (b) $2B + 6HNO_3(aq.) \longrightarrow 2H_3BO_3(aq.) + 6NO_2(g)$
 - (c) Statement is correct and its dimer structure is as follows. It acquires this structure for attaining an octet of electrons. Dimer formula retains in non-polar solvent like ether, benzene

(d) Statement is incorrect as it is methanide because it gives methane on reaction with water.

$$Be_2C + 4H_2O \longrightarrow 2Be(OH)_2 + CH_4$$

(e)
$$3PbO + O_2 \xrightarrow{\Delta} Pb_3O_4$$

- **Ex.5** What happens when : (write only chemical reactions)
 - (a) iodine is treated with SnCl₂.
 - (b) carbondioxide is passed through a concentrated aqueous solution of sodium chloride saturated with ammonia.
 - (c) red lead is treated with nitric acid.
 - (d) dilute nitric acid is slowly reacted with tin.

Sol. (d)
$$\text{Sn} + 10\text{HNO}_3$$
 (dilute) $\longrightarrow 4\text{Sn}(\text{NO}_3)_2 + \text{NH}_4\text{NO}_3 + 3\text{H}_2\text{O}$

(b) NaCl + NH₄OH + CO₂
$$\longrightarrow$$
 NaHCO₃ + NH₄Cl

- (a) $2\text{SnCl}_2 + \text{I}_2 \longrightarrow 2\text{SnCl}_2\text{I}_2 \longrightarrow \text{SnCl}_4 + \text{SnI}_4$
- (c) $Pb_3O_4 + 4HNO_3 \longrightarrow 2Pb(NO_3)_2 + PbO_2 + 2H_2O_3$
- **Ex.6** Write the chemical equations to represent the following reactions.
 - (a) The oxidation of HCl (aq) to $Cl_{2}(g)$ by PbO₂.
 - (b) The disproportionation of SnO to Sn and SnO₂.

Sol. (a)
$$PbO_2 + 4HCl \longrightarrow PbCl_2 + 2H_2O + Cl_2$$

(b)
$$2$$
SnO \longrightarrow Sn + SnO₂

- **Ex.7** What will happen if we take Si(CH₃)Cl₃ as a starting material for the preparation of commercial silicon polymer?
- Sol. With Si(CH₃)Cl₃ the chain will grow in three places and we will get cross-linked silicon polymer as shown below :

Ex. 8	Give th	ree properties of diamond.			
Sol.	Diamond is very hard, high melting solid. It is an electrical insulator.				
Fy 0					
Цл.)	Statem	ent = 2: Stability of Ph (II) > Ph (I	(V) on acco	unt of inert pair effect	
	(Δ) State	tement_1 is True Statement_2 is T	rue: Statem	pent-2 is a correct explanation for Statement-1	
	(\mathbf{R}) Sta	tement_1 is True, Statement_2 is T	rue: Statem	pent-2 is a correct explanation for Statement-1	
	(\mathbf{C}) Sta	tement-1 is True, Statement-2 is F	alse	inter is not a correct explanation for Statement-1	
	(\mathbf{D}) Sta	tement_1 is False Statement_2 is T	True		
Ans	(D) 5td	tement-1 is Parse, Statement-2 is i	Tuc		
Sol	Roth a	re correct statements and stateme	nt-2 is the c	correct explanation of statement.1	
501.	Bound	e correct statements and statements	int 2 15 the e		
Ex. 10	Which	of the following statement(s) is/a	re correct ?		
	$(\mathbf{A}) \mathbf{B}_2$	O_3 and SiO ₂ are acidic in nature and	nd are impo	ortant constituents of glass.	
	(B) Bo	rides and silicide are hydrolysed l	by water for	rming boranes and silanes respectively.	
	(C) Dil	porane on reaction with chlorine (g	g) forms B ₂ H	ł _s Cl.	
	(D) Si(D_4^{4-} gets hydrolysed by acid or wa	ter and form	n Si ₂ O ₇ ⁶⁻ .	
Ans.	(A), (B) and (D)			
Sol.	(A), (B) and (D) are correct statements b	ut <mark>(C)</mark> is inc	correct.	
		$B_2H_6 + 6Cl_2 \longrightarrow 2BCl_3 + 6HC$	C1		
Ex. 11	Match	the following :			
		Column - I		Column - II	
	(A)	Boron	(p)	Forms acidic oxides.	
	(B)	Carbon	(q)	Pure crystalline form is obtained by Van Arkel method.	
	(C)	Tin	(r)	Exists in allotropic forms.	
	(D)	Aluminium	(s)	Hydroxide is amphoteric in nature.	
Ans	(A - p,c	(r,r); (B - p,r); (C - r,s); (D - s)			
Sol.	(A)	Exists in various allotropic form	ns and its ox	kide, B_2O_3 is acidic in nature.	
		2BI ₃ <u>red hot W</u> Van Arkel method	$\rightarrow 2B+3I$		
	(B)	Exists in various allotropic form	ns like diam	hond, graphite etc. and its oxide CO_2 is acidic in nature.	
	(C)	Exists in allotropic forms like gr	rey tin (α-Si	n) and white tin (β -Sn). Hydroxide is amphoteric in nature.	
		$Sn(OH)_4 + 2OH^-$	→ [Sn(OH)	${}_{6}]^{2-}$	
		$Sn(OH) + 4H^+ \longrightarrow$	$-Sn^{4+} + 4H$	0	
	D	Hydroxide is amphoteric in nati	ire.	2 -	
	(2)		** * .		
		$AI(OH)_3 + OH^- \longrightarrow$	$[Al(OH)_4]$	-	

 $\mathrm{Al(OH)}_{3} + 3\mathrm{H}^{+} \longrightarrow \mathrm{Al}^{3+} + 3\mathrm{H}_{2}\mathrm{O}$

- **Ex. 12** The silicate anion in the mineral kionite is a chain of three SiO_4 tetrahedra that share corners with adjacent tetrahedra. The mineral also contains Ca^{2+} ions, Cu^{2+} ions, and water molecules in a 1 : 1 : 1 ratio.
 - (a) Give the formula and charge of the silicate anion.
 - (b) Given the complete formula for the mineral.
- Sol. (a) The silicate anion has three SiO₄ tetrahedra that share corners with adjacent tetrahedra thus silicate is Si_3O_{10} , hence it can be represented as with charge as $= 3 \times 4n + 10 \times (-2) = -8$

$$\begin{bmatrix} 0 & 0 & 0 \\ -i & i & i \\ 0 - Si - 0 - Si - 0 - Si - 0 \\ -i & i & i \\ 0 & 0 & 0 \end{bmatrix}^8$$

(b) Ca^{2+} , Cu^{2+} and H_2O are in the ratio of 1 : 1 : 1 and to balance (-8) charge of silicate as ion, (+8) charge is required thus there are two units each of Ca^{2+} , Cu^{2+} and H_2O thus, kinoite has formula $Ca_2Cu_2Si_3O_{10} \cdot 2H_2O$.

Ex. 13 Statement - 1: The thermal stability of hydrides of carbon family is in order :

$$CH_4 > SiH_4 > GeH_4 > SnH_4 > PbH_4$$

- Statement 2: E—H bond dissociation enthalpies of the hydrides of carbon family decrease down the group with increasing atomic size.
- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False
- (D) Statement-1 is False, Statement-2 is True

Ans. (A)

- **Sol.** Both are correct statements and statement-2 is the correct explanation of statement-1. Down the group the size of atom increases and thus bond length increases.
- **Ex.14** Which one of the following element does not dissolve in fused or aqueous alkalies ?

(A) Boron (B) Silicon (C) Aluminium (D) None of these

- Ans. (D)
- **Sol.** Boron dissolved in fused alkalies according to the following reaction.

 $2B + 6NaOH \longrightarrow 2Na_3BO_3 + 3H_2$

Silicon and aluminium dissolved in both fused and aqueous alkalies.

- **Ex.15** What happens when CO_2 (g) is passed through sodium meta borate solution ?
- **Sol.** $4 \text{NaBO}_2 + \text{CO}_2 \longrightarrow \text{Na}_2\text{B}_4\text{O}_7 + \text{Na}_2\text{CO}_3$
- **Ex. 16** Why anhydrous HF liquid is not electrolysed alone to get F₂?
- **Sol.** Anhydrous HF is only slightly ionized and is, therefore a poor conductor of electricity Thus a mixture of KF and HF is electrolysed to increase the conductivity.

Identify [A] [B] and [C] and gives the complete chemical reactions involved. **Ex.17**

 $[A] = Br^{-}; [B] = BrO_{3}^{-}; [C] = \text{concentrated } H_{2}SO_{4}$ Ans.

Sol. $3Br_2 + 6OH^- \rightarrow 5Br^- + BrO_3^- + 3H_2O$ $5Br^{-}+BrO^{-}_{3}+6H^{+}\rightarrow 3Br_{2}+3H_{2}O$

- Comment on the following. **Ex. 18**
 - (a) Electrolysis of ICN in pyridine solution.
 - (b) Iodine dissolves in oleum.
 - (c) Electrical conductivity of molten iodine.
- (a) Iodine is liberated at cathode indicating the ionisation of ICN into I⁺ and CN⁻. Sol.

(b) Bright blue solution is formed which has been shown to have I_2^+ and I_3^+ .

$$2 I_2 + 6H_2SO_4 \cdot SO_3 \longrightarrow 2I_2^+ + 2HS_3O_{10}^- + 5H_2SO_4 + SO_2$$
$$3 I_2 + 6H_2SO_4 \cdot SO_3 \longrightarrow 2I_3^+ + 2HS_3O_{10}^- + 5H_2SO_4 + SO_2.$$

(c) It is due to the presence of $(I_3^+ \text{ and } I_3^-)$ species produced by self ionisation of iodine $3I_2 = I_3^+ + I_3^-$

Ex. 19 Match the following.

Column - I

Column - II

(A)
$$\operatorname{CIO}_2 \longrightarrow \operatorname{CI}_2\operatorname{O}_3$$
 (p) Boiling with NaOH solution
(B) $[\operatorname{AI}(\operatorname{OH})_4]^- \longrightarrow \operatorname{AI}(\operatorname{OH})_3 \downarrow$ (q) On passing ozone.
(C) $\operatorname{P}_4 \longrightarrow \operatorname{PH}_3 + \operatorname{H}_2\operatorname{PO}_2^-$ (r) Reaction with hydrogen.
(D) $\operatorname{XeF}_2 \longrightarrow \operatorname{Xe}$ (s) On passing CO_2 gas.

Sol. (A-q); (B-s); (C-p); (D-p,r)

- $2\text{CIO}_2 + 2\text{O}_3 \longrightarrow \text{CI}_2\text{O}_6 + 2\text{O}_2$ oxidation by ozone. **(A)**
- $\operatorname{CO}_2 + \operatorname{H}_2\operatorname{O} \rightarrow \operatorname{H}_2\operatorname{CO}_3 \longrightarrow \operatorname{CO}_3^{2-} + 2\operatorname{H}^+$; $2\operatorname{AI}^{3+} + 3\operatorname{CO}_3^{2-} + 3\operatorname{H}_2\operatorname{O} \longrightarrow 2\operatorname{AI}(\operatorname{OH})_3 + 3\operatorname{CO}_2$ **(B)** As acidic property of AI(OH)₃ is very weak.
- P_4 + 3NaOH + 3H₂O $\xrightarrow{boil/warm}$ PH₃ + 3NaH₂PO₂. **(C)** AIkaline hydrolysis.
- $2 \mathrm{XeF}_2 + 4 \mathrm{OH}^{-} \longrightarrow 2 \mathrm{Xe} + 4 \mathrm{F}^{-} + 2 \mathrm{H}_2 \mathrm{O} + \mathrm{O}_2$ **(D)** Alkaline hydrolysis.

 $XeF_2 + H_2 \longrightarrow 2Xe + 2HF$ Reduction by hydrogen.

Ex. 20

Which of the following product(s) is/are obtained in the following reaction

 $KBrO_3 + F_2 + KOH \longrightarrow product(s)$ (A) KBrO₄ **(B)** KF (C) HOF **(D)** Br₂ $\text{KBrO}_3 + \text{F}_2 + 2\text{KOH} \longrightarrow \text{KBrO}_4 + 2\text{KF} + \text{H}_2\text{O}.$ Sol. Ans (A,B) Na₂S₂O₃ may react with the compounds given in column (I). Na₂S₂O₃ exhibits the properties of the type given in the Ex. 21 column (II), match the reactants given in column (I) with the type of property/properties given in column (II) Column - I Column - II (type of property shown) (reactant) (A) Chlorine (CI_2) (p) Complexing reagent (B) Silver bromide (q) Disproportionation (C) Hydrochloric acid (r) Only as reductant **(D)** Iodine (I_2) (s) An-antichlor (A - r, s); (B - p); (C - q); (D - r)Ans. (A) Na, $S_2^{+2}O_3 + 4CI_2 + 5H_2O \longrightarrow 2NaH \overset{+6}{S}O_4 + 8HCI$ Sol. It destroys any excess of chlorine on fabric in bleaching industry. Thus it acts as antichlor. **(B)** Ag⁺ + 2S₂O₃²⁻ \rightarrow [Ag (S₂O₃)₂]³⁻ (soluble complex) (C) Na₂ $\overset{+2}{S}_{2}O_{3}$ +2HCI \rightarrow 2NaCI + $\overset{+4}{S}O_{2}$ + $\overset{O}{S}$ +H₂O (**D**) $2Na_2 \overset{+2}{S_2} O_3 + I_2 \rightarrow Na_2S_4O_6 + 2NaI$

1	Exercise # 1		[Single Correct Choice Typ	be Questions]
1.	Boric acid polymerizes du (A) The presence of hydr (C) Its geometry	e to – ogen bonds	(B) Its acidic nature(D) Its monobasic nautr	e
2.	Aluminium is obtained by (A) Reduction of Al_2O_3 wi (B) Electrolysis of Al_2O_3 co (C) Reduction of Al_2O_3 wi (D) Heating cryolite and a	 th coke lissolved in Na ₃ All th chromium lumina	F ₆	
3.	In thermite welding, alum (A) A solder	inium acts as – (B) A flux	(C) An oxidising agent	(D) A reducing agent
4.	The final product obtained (A) Metaboric acid	d when boric acid (B) Tetraboric a	is heated to red heat is – cid (C) Boron oxide	(D) Pyroboric acid
5.	Which of the following ca (A) Ni ²⁺	an be detected by t (B) Co ²⁺	he borax-bead test ? (C) Pb ⁺²	(D) Both (A) & (B)
6.	The hydrides of boron are (A) Boron hydrogen com (C) Boranes	called pounds	(B) Hydrogen borides(D) Hydroboric acids	
7.	Which one of the followin (A) $K_2SO_4.Al_2(SO_4)_3.24H_2$ (C) $Na_2SO_4.Fe(SO_4)_3.24H_2$	ng mixed sulphates))	is not an alum ? (B) $K_2SO_4.Cr_2(SO_4)_3.24H$ (D) $CuSO_4.Al_2(SO_4)_3.24H$	L ₂ O L ₂ O
8.	Higher percentage of carb (A) Anthracite	oon is found in – (B) Lignite	(C) Bituminous	(D) Peat
9.	From B_2H_6 , all the followi (A) B_2O_3	ng can be prepared (B) H_3BO_3	except – (C) $B_2(CH_3)_6$	(D) NaBH ₄
10.	The product formed in the BCl ₃ + H ₂ O \longrightarrow Produc (A) H ₃ BO ₃ + HCl	e reaction, et is $-$ (B) B ₂ O ₃ + HOC	$(C) B_2 H_6 + HCl$	(D) No reaction
11.	Silicones have the general (A) SiO_4^{4-}	formula – (B) $\operatorname{Si}_2 \operatorname{O}_7^{6-}$	(C) $(R_2 SiO)_n$	(D) $(SiO_3)_n^{2-}$
12.	In which of the following (A) Diamond	there exists a pπ – (B) Graphite	$d\pi$ bonding – (C) Dimethylamine	(D) Trisilylamines
13.	Glass or silica soluble in – (A) HClO ₄	(B) HF	(C) Aqua-regia	(D) H ₂ SO ₄
14.	The species present in so (A) $CO_2, H_2CO_3, HCO_3^-, CO_3^-, CO_3^-, HCO_3^-$	bolution when CO_2	is dissolved in water are $-$ (B) H ₂ CO ₃ ,CO ₃ ²⁻ (D) CO ₂ ,H ₂ CO ₃	

15.	P_2O_5 is used extensively a (A) Dehydrating agent	as a – (B) Catalytic agent	(C) Reducing agent	(D) Preservative
16.	The number of molecules (A) 2	of water needed to convert o	one molecules of P_2O_5 into	orthophosphoric acid is –
17.	Producer gas is a mixture (A) CO and N_2	of $-$ (B) CO ₂ and H ₂	(C) CO and H_2	(D) CO_2 and N_2
18.	Which variety of glass is (A) Sodium glass	used for manufacture of opti (B) Flint glass	cal glasses ? (C) Ground glass	(D) Quartz
19.	The colour imparted by (A) Green	Co(II) compounds to glass (B) Deep–Blue	is – (C) Yellow	(D) Red
20.	In warfare smoke screens (A) PH_3	are prepared from – (B) CaC_2	$(\mathbf{C}) \mathbf{P}_2 \mathbf{O}_5$	(D) COCl_2
21.	In Haber's process for the (A) Finely divided nickel (C) Finely divided iron	e manufacture of ammonia, th	 e catalyst used is – (B) Finely divided moly (D) Finely divided platir 	bdenum num
22.	Which one of the followint (\mathbf{A}) N ₂ O	ng nitrogen oxides is the anhy (B) N_2O_3	ydride of nitrous acid ? (C) N ₂ O ₄	(D) NO
23.	A metal X on heating in n through $CuSO_4$ solution g (A) Mg(NO ₃) ₂	itrogen gas gives Y. Y on trea gives a blue colour. Y is $-$ (B) Mg ₃ N ₂	tment with H ₂ O gives a col (C) NH ₃	ourless gas which when passed (D) MgO
24.	Oil of vitriol is $-$ (A) H ₂ SO ₄	(B) H ₂ SO ₃	$(\mathbf{C})\mathrm{H}_{2}\mathrm{S}_{2}\mathrm{O}_{9}$	(D) $H_2S_2O_8$
25.	The compound which giv (A) Cupric oxide	ves off oxygen on moderate h (B) Mercuric oxide	eating is – (C) Zinc oxide	(D) Aluminium oxide
26.	Which acts both an oxidi (A) HNO ₃	sing as well as reducing agen (B) HNO ₂	$t - (C) H_2 SO_4$	(D) HCl
27.	NO_2 is released by heatin (A) Pb(NO_3)_2	$g - (B) KNO_3$	(C) NaNO ₂	(D) NaNO ₃
28.	A deep brown gas is form (A) NO_2 and O_2	the by mixing two colourless (B) N_2O and NO	gases which are $-$ (C) NO and O ₂	(D) NH ₃ and HCl
29.	When conc. H_2SO_4 comes (A) Hydrolysis	s in contact with sugar, it bec (B) Hydration	omes black due to – (C) Decolourisation	(D) Dehydration
30.	Which one of the followin (A) Au	ng reacts with conc. H ₂ SO ₄ ? (B) Ag	(C) Pt	(D)All
31.	HCOOH reacts with conc (A)CO	H_2SO_4 to produce – (B) CO_2	(C) NO	(D) NO ₂
32.	Which of the following re (A) $HClO_4 < HNO_3 < H_2CO_3$ (C) $B(OH)_3 < H_2CO_3 < HCO_3$	epresents the correct order of $D_3 < B(OH)_3$ $^{2}O_4 < HNO_3$	Fincreasing pK_a values of t (B) $HNO_3 < HCIO_4 < B(0)$ (D) $HCIO_4 < HNO_3 < B(0)$	he given acids – $DH_3 < H_2CO_3$ $DH_3 < H_2CO_3$
33.	The word Argon means – (A) Noble	(B) Now	(C) Strange	(D) Lazy

34.	lodine and hypo react to produce –					
	(A) Na_2S	(B) Na_2SO_3	(C) Na_2SO_4	(D) $\operatorname{Na}_2 \operatorname{S}_4 \operatorname{O}_6$		
35.	Chlorine is manufactured by –					
	(A) Brikland and Eyde's p	process	(B) Deacon's process			
	(C) Bosch process		(D) Solvey's process			
36.	When chlorine water is kept in sunlight oxygen is evolved therefore –					
	(A) Affinity of hydrogen	for oxygen is less	(B) Affinity of hydrogen f	or oxygen is more		
	(C) Affinity of hydrogen f	for chlorine is more	(D) Hydrogen is a reducir	ng agent		
37.	The following acids have	been arranged in the order of	of decreasing acid strength. Ic	lentify the correct order-		
	ClOH(I)	BrOH(II)	IOH(III)			
	$(\mathbf{A}) \mathbf{I} > \mathbf{II} > \mathbf{III}$	(B) II > I > III	(C) III>II>I	$\mathbf{(D)} \mathbf{I} > \mathbf{II} < \mathbf{II}$		
38.	Sea weed are important so	ource of –				
	(A) Iron	(B) Chlorine	(C) Iodine	(D) Bromine		
39.	Euchlorine is a mixture of	`_				
	(A) Cl_2 and SO_2	(B) Cl_2 and ClO_2	(C) Cl_2 and CO	(D) None of these		
40.	BCl ₃ does not exist as din	ner but BH ₃ exist as dimer (E	B_2H_6) because –			
	(A) Chlorine is more electronegative than hydrogen					
	(B) There is $p\pi - p\pi$ back bonding in BCl ₃ but BH ₃ does not contain such multiple bonding					
	(C) Large sized chlorine atoms do not fit in between the small boron atoms whereas small sized hydrogen atoms					
	(D) None of the above					
	(_)					
41.	Amorphous boron on bur	ning in air forms –	(D) Minutes of D. O. and I) N		
	$(A) B(OH)_3$		(b) Mixture of B_2O_3 and D N			
	(C) Only B_2O_3		(D) Only BN			
42.	Which of the following st	atements is correct ?				
	(A) BCl_3 and $AlCl_3$ are both Lewis acids and BCl_3 is stronger than $AlCl_3$					
	(B) BCl_3 and $AlCl_3$ both Lewis acids and $AlCl_3$ is stronger that BCl_3					
	(C) BCl ₃ and AlCl ₃ are both equally strong Lewis acids					
	(D) Both BCl_3 and $AlCl_3$	are not Lewis acids.				
43.	A mixutre of boric acid w	ith ehtyl alcohol burns with §	green edged flame due to the	formation of –		
	(A) Ethyl borax	(B) Ethyl borate	(C) Methyl borax	(D) Methyl borate		
44.	AlCl ₃ on hydrolysis gives	8 -				
	$(\mathbf{A}) \operatorname{Al}_2 \operatorname{O}_3.\operatorname{H}_2 \operatorname{O}$	$(\mathbf{B}) \operatorname{Al}(\operatorname{OH})_3$	$(\mathbf{C}) \operatorname{Al}_2 \operatorname{O}_3$	(D) $AlCl_3.6H_2O$		

45.	When a solution of sodium hydroxides is added in excess to the solution of potash alum, we obtain -					
	(A) A white precipitate		(B) Bluish white precip	(B) Bluish white precipitate		
	(C) A clear solution		(D) A crystalline mass			
46.	Which one of the following does not exist in the free form ?					
	(A) BF ₃	(B) BCl ₃	(C) BBr ₃	(D) BH ₃		
47.	Thermite is a mixture of-	-				
	(A) 3 Parts of powdered	Al and 1 part of Fe_2O_3	(B) 1 part of powdered	1 Al and 3 parts of Fe_2O_3		
	(C) 1 part of powdered A	Al and 1 part of Fe_2O_3	(D) 2 Parts of powdere	ed Al and 1 part of Fe_2O_3		
48.	Borax is used as cleansi	ng agent because on dissolv	ving in water it gives –			
	(A) Alkaline solution	(B) Acidic solution	(C) Bleching solution	(D) Colloidal solution		
49.	 SbCl₃ and BiCl₃ on hydrolysis gives – (A) Sb⁺³ and Bi⁺³ (C) SbOCl and BiOCl 		 (B) Sb(OH)₃ and Bi(Ol (D) None 	H) ₃		
50.	The percentage of nitrog (A) 70	en in urea is about – (B) 63	(C) 47	(D) 28		
51.	Sequence of acidic character is – (A) $SO_2 > CO_2 > CO > N_2O_5$ (C) $N_2O_5 > SO_2 > CO > CO_2$		(B) $SO_2 > N_2O_5 > CO > CO_2$ (D) $N_2O_5 > SO_2 > CO_2 > CO$			
52.	Trisilylamine [N(SiH ₃) ₃ (A) Planar geometry (C) Pyramidal geometry] has a –	(B) Tetrahedral geome(D) None of these	try		
53.	The halide that is not hy (A) SiCl ₄	drolysed is – (B) SiF ₄	(C) CCl ₄	(D) PbCl ₄		
54.	What is false about N_2O_5 ? (A) It is anhydride of HNO ₃ (C) Solid N_2O_5 is called nitronium nitrate		(B) It is a powerful oxi(D) Structure of N₂O₅	 (B) It is a powerful oxidizing agent (D) Structure of N₂O₅ contains no [N→O] bond 		
55.	 Tip of saftymatch stick are made up of – (A) Sulphur and potassium (C) Sulphur, dichromate and phosphorus 		(B) Sulphur(D) Sulphur, dichromate and potassium			
56.	Of the following, which (A) Nitrous oxide (C) Dinitrogen trioxide	has three electron bond in it	ts structure ? (B) Nitric oxide (D) Nitrogen pentoxide	2		
57.	Which of the following $(A) Pb(NO_3)_2$	leaves no residue on heating (B) NH ₄ NO ₃	g ? (C) Cu(NO ₃) ₂	(D) NaNO ₃		
58.	By passing H_2S gas in a (A) K_2S	cidified KMnO ₄ solution, w (B) S	the get – (C) $K_2 SO_3$	(D) MnO ₂		

59.	Chloride of lime is –			
	(A) CaOCl ₂	(B) Ca(OCl) ₂	(C) CaCl ₂	(D) $(CaO)_2 Cl$
60.	Which one of the follow	wing oxy acid of fluorine ex	xists ?	
	(A) HOF	(B) HFO ₃	(C) HFO ₄	(D) HFO ₂
61.	 H₂SO₄ has very high c (A) it reacts with protet (B) it acts as an oxidisi (C) it acts as a dehydrat (D) it acts as dehydrati 	orrosive action on skin bea ins ng agent ating agent ng agent and absorption of	cause – water is highly exothermic	
62.	A black sulphide when (A) ZnSO ₄	treated with ozone become (B) CaSO ₄	es white. The white compound (C) BaSO ₄	1 is – (D) PbSO ₄
63.	Which of the following (A) $Na_2S_2O_3$	g does not react with AgCl - (B) NH ₄ OH	(C) NaNO ₃	(D) NH ₃
64.	Chromyl chloride test i (A) SO ₄ ^{2–}	s performed for the confirm (B) Cr ⁺⁺⁺	action of the presence of the for (C) Cl ⁻	llowing in mixture – (D) Cr ⁺⁺⁺ and Cl [–]
65.	Iodine gas turns strach (A) Blue	iodide paper – (B) Red	(C) Colourless	(D) Yellow
66.	Essential trace element	involved in physiology of	thyroid glands –	
	(A) K	(B) Mg	(C) Ni	(D) I ₂
67.	HI can be prepared by	all the following methods e	xcept –	
	(A) $Pl_3 + H_2O$	(B) $KI + H_2SO_4$	$(\mathbf{C}) \operatorname{H}_2 + \operatorname{I}_2 \longrightarrow$	(D) $I_2 + H_2S$
68.	When I ₂ is passed thro	ugh KCl, KF, KBr solution	_	
	(A) Cl_2 and Br_2 are evo	lved	(B) Cl ₂ is evolved	
	(C) Cl_2 , Br_2 , F_2 are evo	lved	(D) None of these	
69.	Which two of the foll	owing salts are used for p	preparing iodized salt-	
	(i) KIO ₃	(ii) KI	(iii) I ₂	(iv) HI
	(A) (i) and (ii)	(B) (i) and (iii)	(C) (ii) and (iv)	(D) (iii) and (iv)
70.	When chlorine is passe (A) $Ca(ClO_2)_2$	d over dry slaked lime at ro (B) CaCl ₂	oom temperature, the main rea (C) CaOCl ₂	action product is – (D) $Ca(OCl_2)_2$
71.	Iodine is formed when	KI reacts with a solution of	[—	
	(A) ZnSO ₄	(B) CuSO ₄	(C) FeSO ₄	(D) $(NH_4)_2SO_4$
72.	Which amongst the fol (A) $2KBr + H_2SO_4(Con$ (B) $2NaCl + H_2SO_4(Con$ (C) $NaHSO_4 + NaCl$ (D) $CaF_2 + H_2SO_4(con$	lowing reactions cannot be $K_2SO_4 + 2HBr$ $mc.) \longrightarrow NaHSO_4 + HCl$ $\longrightarrow Na_2SO_4 + HCl$ $c.) \longrightarrow CaSO_4 + 2HF$	used for the preparation of t	he halogen acid ?

 (A) Natural gases trapped under rock formations. (B) Liquid air (C) Radioactive decay (D) Gasoline 74. The statement, which prompted Neil Bartlett to prepare the first noble gas compound was – (A) Xe-F bond has high bond energy (B) F₂ has exceptionally low bond energy (C) PUF₆ is a strong oxidant (D) O₂ molecule and Xe atom have very similar ionization energies. 75. Pick out the correct statement for XeF₆ (A) XeF₆ is hydrolysed partially to form XeOF₄ (B) It react with SiO₂ to form XeOF₄ (C) On complete hydrolysis, it forms XeO₃ (D) All 76. One mole of calcium phosphide on reaction with excess of water gives – (A) One mole of phosphine (B) Two moles of phosphoric acid (C) Two moles of phosphine (D) One mole of phosphorus penta-oxide 77. Ca + C₂ → CaC₂ → A Compound (A) is used as a'an – (A) Fertilizer (B) Dehydrating agent (C) Oxidising agent (D) Reducing agent 78. Which one of the following statements is not true regarding diborane? (A) It has two bridging hydrogens and four perpendicular to the rest. (B) When methylated, the product is Me₂B₂H₂ (C) The bridging hydrogens are in a plane perpendicular to the rest. (D) All the B-H bond distances are equal. 79. The molecular shapes of diborane is shown: Consider the following statements for diborane 1. Boron is approximately sp³ hybridised 2. B-H-B angle is 180⁶ 3. There are only 12 bonding electrons available Of these statements – (A) 1.3 and 4 are correct (B) 1, 2 and 3 are correct (C) 2, 3 and 4 are correct (D) 1, 2 and 4 are cor	73.	Helium is obtained from	om which of the following.?		
 (C) Radioactive decay (D) Gasoline 74. The statement, which prompted Neil Bartlett to prepare the first noble gas compound was - (A) Xe-F bond has high bond energy (B) F₂ has exceptionally low bond energy (C) PtF₆ is a strong oxidant (D) O₂ nolecule and Xe atom have very similar ionization energies. 75. Pick out the correct statement for XeF₆ (A) Xe-F is bly down and Xe atom have very similar ionization energies. 76. One mole of calcium phosphide on reaction with excess of water gives - (A) One mole of phosphine (B) Two moles of phosphoric acid (C) Two moles of phosphine (D) One mole of phosphine (D) One mole of phosphoric acid (C) Two moles of phosphine (D) One mole of phosphoric acid (C) Two moles of phosphine (D) One mole of phosphoric acid (C) Two moles of phosphine (D) One mole of phosphoric acid (C) Two moles of phosphine (D) One mole of phosphoric acid (C) Two moles of phosphine (D) One mole of phosphoric acid (C) Two moles of phosphine (D) One mole of phosphoric acid (C) Two moles of phosphine (D) One mole of phosphoric acid (C) Two moles of phosphine (D) One mole of phosphoric acid (C) Two moles of phosphine (D) One mole of phosphoric acid (C) Two moles of phosphine (D) One mole of phosphoric acid (E) The mole of the following statements is not true regarding diborane? (A) It has two bridging hydrogens are in a plane perpendicular to the rest. (D) All the B-H bond distances are equal. 79. The molecular shapes of diborane is shown: Consider the following statements for diborane Boron is approximately sp³ hybridised B-H-B angle is 180⁹ There are two terminal B-H bonds for each		(A) Natural gases tra	pped under rock formations.	(B) Liquid air	
 74. The statement, which prompted Neil Bartlett to prepare the first noble gas compound was – (A) Xe-F bond has high bond energy (B) F₂ has exceptionally low bond energy (C) PtF₆ is a strong oxidant (D) O₂ molecule and Xe atom have very similar ionization energies. 75. Pick out the correct statement for XeF₆ (A) XeF₆ is hydrolysed partially to form XeOF₄ (B) It react with SiO₂ to form XeOF₄ (C) On complete hydrolysis, it forms XeO₃ (D) All 76. One mole of calcium phosphide on reaction with excess of water gives – (A) One mole of phosphine (B) Two moles of phosphoric acid (C) Two moles of phosphine (D) One mole of phosphorus penta-oxide 77. Ca + C₂ → CaC₂ → A Compound (A) is used as a'an – (A) Fertilizer (B) Dehydrating agent (C) Oxidising agent (D) Reducing agen 78. Which one of the following statements is not true regarding diborane? (A) It has two bridging hydrogens and four perpendicular to the rest. (B) When methylated, the product is Me₄B₃H₂ (C) The bridging hydrogens are in a plane perpendicular to the rest. (D) All the B-H bond distances are equal. 79. The molecular shapes of diborane is shown: Consider the following statements for diborane 1. Boron is approximately sp³ hybridised 2. B-H-B angle is 180° 3. There are two terminal B-H bonds for each boron atom 4. There are only 12 bonding electrons available Of these statements – (A) 1, 3 and 4 are correct (B) 1, 2 and 3 are correct (C) 2, 3 and 4 are correct (D) 1, 2 and 4 are correct 80. Boron atom has four B-O bonds 2. Each boron atom has four B-O bonds 2. Each boron atom has three B-O bonds 3. Twob		(C) Radioactive deca	у	(D) Gasoline	
 75. Pick out the correct statement for XeF₆ (A) XeF₆ is hydrolysed partially to form XeOF₄ (B) It react with SiO₂ to form XeOF₄ (C) On complete hydrolysis, it forms XeO₃ (D) All 76. One mole of calcium phosphide on reaction with excess of water gives - (A) One mole of phosphine (B) Two moles of phosphorus penta-oxide 77. Ca + C₂ → CaC₂ → A Compound (A) is used as a'an - (A) Fertilizer (B) Dehydrating agent (C) Oxidising agent (D) Reducing agent 78. Which one of the following statements is not true regarding diborane? (A) It has two bridging hydrogens and four perpendicular to the rest. (B) When methylated, the product is Me₄B₂H₂ (C) The bridging hydrogens are in a plane perpendicular to the rest. (D) All the BH bond distances are equal. 79. The molecular shapes of diborane is shown: Consider the following statements for diborane 1. Boron is approximately sp³ hybridised 2. B-H-B angle is 180° 3. There are two terminal B-H bonds for each boron atom 4. There are orrect (D) 1, 2 and 3 are correct (C) 2, 3 and 4 are correct (D) 1, 2 and 4 are correct (D) 1, 2 and 4 are correct (D) 2, 3 and 4 are correct (D) All and 4 are orned the ollowing statements about borax: 1. Each boron atom has foru B-O bonds 2. Each boron atom has foru B-O bonds 3. Two born atom has one-OH groups Select correct statement(s) – 	74.	The statement, which (A) Xe-F bond has h (B) F_2 has exceptiona (C) PtF_6 is a strong o (D) O_2 molecule and	n prompted Neil Bartlett to prepa igh bond energy ally low bond energy xidant Xe atom have very similar ioniza	re the first noble gas compo tion energies.	und was –
 76. One mole of calcium phosphide on reaction with excess of water gives – (A) One mole of phosphine (B) Two moles of phosphoric acid (C) Two moles of phosphore (D) One mole of phosphorus penta-oxide 77. Ca + C₂ → CaC₂ - N → A Compound (A) is used as a/an – (A) Fertilizer (B) Dehydrating agent (C) Oxidising agent (D) Reducing agen 78. Which one of the following statements is not true regarding diborane? (A) It has two bridging hydrogens and four perpendicular to the rest. (B) When methylated, the product is Me₄B₂H₂ (C) The bridging hydrogens are in a plane perpendicular to the rest. (D) All the B-H bond distances are equal. 79. The molecular shapes of diborane is shown: Consider the following statements for diborane 1. Boron is approximately sp³ hybridised 2. B-H-B angle is 180° 3. There are two terminal B-H bonds for each boron atom 4. There are only 12 bonding electrons available Of these statements – (A) 1, 3 and 4 are correct (B) 1, 2 and 3 are correct (C) 2, 3 and 4 are correct (D) 1, 2 and 4 are correct 80. Borax is actually made of two tetrahedral and two triangular units joined together and should be writt Na₂[B₄O₅(OH)₄]· 8H₂O. Consider the following statements about borax: 1. Each boron atom has four B-O bonds 2. Each boron atom has one-OH groups Select correct statement(s) – 	75.	Pick out the correct s (A) XeF_6 is hydrolys (B) It react with SiO_2 (C) On complete hyd (D) All	tatement for XeF_6 ed partially to form $XeOF_4$ to form $XeOF_4$ rolysis, it forms XeO_3		
 (A) One mole of phosphine (B) Two moles of phosphoric acid (C) Two moles of phosphore (D) One mole of phosphorus penta-oxide 77. Ca + C2 → CaC2 - N→ A Compound (A) is used as a/an - (A) Fertilizer (B) Dehydrating agent (C) Oxidising agent (D) Reducing agen 78. Which one of the following statements is not true regarding diborane? (A) It has two bridging hydrogens and four perpendicular to the rest. (B) When methylated, the product is Me₄B₂H₂ (C) The bridging hydrogens are in a plane perpendicular to the rest. (D) All the B-H bond distances are equal. 79. The molecular shapes of diborane is shown: Consider the following statements for diborane 1. Boron is approximately sp³ hybridised 2. B-H-B angle is 180° 3. There are two terminal B-H bonds for each boron atom 4. There are only 12 bonding electrons available Of these statements - (A) 1, 3 and 4 are correct (B) 1, 2 and 3 are correct (C) 2, 3 and 4 are correct (D) 1, 2 and 4 are correct 80. Borax is actually made of two tetrahedral and two triangular units joined together and should be writt Na ₂ [B ₄ O ₅ (OH) ₄]· SH ₂ O. Consider the following statements about borax: 1. Each boron atom has four B-O bonds 2. Each boron atom has four B-O bonds 3. Two boron atom has three B-O bonds 4. Each boron atom has one-OH groups Select correct statement(s) - 	76.	One mole of calcium	phosphide on reaction with exce	ess of water gives –	
 (C) Two moles of phosphine (D) One mole of phosphorus penta-oxide 77. Ca+C2→CaC2^N→A Compound (A) is used as a/an – (A) Fertilizer (B) Dehydrating agent (C) Oxidising agent (D) Reducing agent 78. Which one of the following statements is not true regarding diborane? (A) It has two bridging hydrogens and four perpendicular to the rest. (B) When methylated, the product is Me₄B₂H₂ (C) The bridging hydrogens are in a plane perpendicular to the rest. (D) All the B–H bond distances are equal. 79. The molecular shapes of diborane is shown: Consider the following statements for diborane 1. Boron is approximately sp³ hybridised 2. B-H-B angle is 180° 3. There are two terminal B-H bonds for each boron atom 4. There are only 12 bonding electrons available Of these statements – (A) 1, 3 and 4 are correct (B) 1, 2 and 3 are correct (C) 2, 3 and 4 are correct (D) 1, 2 and 4 are correct 80. Borax is actually made of two tetrahedral and two triangular units joined together and should be writt Na₂[B₄O₅(OH)₄] · 8H₂O. Consider the following statements about borax: 1. Each boron atom has four B-O bonds 3. Two boron atoms have four B-O bonds while other two have three B-O bonds 4. Each boron atom has one-OH groups Select correct statement(s) – 		(A) One mole of phos	sphine	(B) Two moles of phosp	horic acid
 77. Ca + C₂ → CaC₂ - N→A Compound (A) is used as a/an - (A) Fertilizer (B) Dehydrating agent (C) Oxidising agent (D) Reducing agen 78. Which one of the following statements is not true regarding diborane? (A) It has two bridging hydrogens and four perpendicular to the rest. (B) When methylated, the product is Me₄B₂H₂ (C) The bridging hydrogens are in a plane perpendicular to the rest. (D) All the B-H bond distances are equal. 79. The molecular shapes of diborane is shown: Consider the following statements for diborane 1. Boron is approximately sp³ hybridised 2. B-H-B angle is 180° 3. There are two terminal B-H bonds for each boron atom 4. There are only 12 bonding electrons available Of these statements - (A) 1, 3 and 4 are correct (B) 1, 2 and 3 are correct (C) 2, 3 and 4 are correct (D) 1, 2 and 4 are correct 80. Borax is actually made of two tetrahedral and two triangular units joined together and should be writt Na₂[B₄O₅(OH)₄] · 8H₂O. Consider the following statements about borax: 1. Each boron atom has four B-O bonds 2. Each boron atom has one-OH groups Select correct statement(s) – 		(C) Two moles of pho	osphine	(D) One mole of phosph	orus penta-oxide
 78. Which one of the following statements is not true regarding diborane? (A) It has two bridging hydrogens and four perpendicular to the rest. (B) When methylated, the product is Me₄B₂H₂ (C) The bridging hydrogens are in a plane perpendicular to the rest. (D) All the B-H bond distances are equal. 79. The molecular shapes of diborane is shown: Consider the following statements for diborane 1. Boron is approximately sp³ hybridised 2. B-H-B angle is 180° 3. There are two terminal B-H bonds for each boron atom 4. There are only 12 bonding electrons available Of these statements - (A) 1, 3 and 4 are correct (B) 1, 2 and 3 are correct (C) 2, 3 and 4 are correct (D) 1, 2 and 4 are correct 80. Borax is actually made of two tetrahedral and two triangular units joined together and should be writt Na₂[B₄O₅(OH)₄] · 8H₂O. Consider the following statements about borax: 1. Each boron atom has four B-O bonds 3. Two boron atom has one-OH groups Select correct statement(s) – 	77.	$Ca + C_2 \longrightarrow CaC_2 - Compound (A)$ is use (A) Fertilizer	$ \begin{array}{c} \xrightarrow{N_2} A \\ ed as a/an - \\ (B) Dehydrating agent \end{array} $	(C) Oxidising agent	(D) Reducing agent
 79. The molecular shapes of diborane is shown: Consider the following statements for diborane Boron is approximately sp³ hybridised B-H-B angle is 180° There are two terminal B-H bonds for each boron atom There are only 12 bonding electrons available Of these statements - (A) 1, 3 and 4 are correct (B) 1, 2 and 3 are correct (C) 2, 3 and 4 are correct (D) 1, 2 and 4 are correct 80. Borax is actually made of two tetrahedral and two triangular units joined together and should be writt Na₂[B₄O₅(OH)₄] · 8H₂O. Consider the following statements about borax: Each boron atom has four B-O bonds Each boron atom has three B-O bonds Two boron atom has one-OH groups Select correct statement(s) - 	78.	 Which one of the fol (A) It has two bridgin (B) When methylated (C) The bridging hyd (D) All the B–H bond 	lowing statements is not true reg ng hydrogens and four perpendic d, the product is $Me_4B_2H_2$ drogens are in a plane perpendicu d distances are equal.	arding diborane? cular to the rest. alar to the rest.	
 80. Borax is actually made of two tetrahedral and two triangular units joined together and should be writ Na₂ [B₄O₅(OH)₄] · 8H₂O. Consider the following statements about borax: Each boron atom has four B-O bonds Each boron atom has three B-O bonds Two boron atoms have four B-O bonds while other two have three B-O bonds Each boron atom has one-OH groups Select correct statement(s) – 	79.	The molecular shape Consider the followin 1. Boron is approxin 2. B-H-B angle is 18 3. There are two tern 4. There are only 12 Of these statements (A) 1, 3 and 4 are corn (C) 2, 3 and 4 are corn	s of diborane is shown: ng statements for diborane nately sp ³ hybridised 0° ninal B-H bonds for each boron a bonding electrons available – rect	$H \rightarrow B$ atom (B) 1, 2 and 3 are correct (D) 1, 2 and 4 are correct	H H H H
(A) $1,2$ (B) $2,3$ (C) $3,4$ (D) $1,3$	80.	Borax is actually ma Na ₂ $[B_4O_5(OH)_4] \cdot 81$ Consider the followin 1. Each boron atom 2. Each boron atom 3. Two boron atoms 4. Each boron atom Select correct statem (A) 1, 2	ade of two tetrahedral and two tetrahedral and two tetrahedral and two tetrahedral and two tetrahedral. H_2O . H_2O . H_3O bonds H_3O bonds H_3	riangular units joined toget er two have three B-O bonds	ther and should be written as :

81. Three allotropes (A), (B) and (C) of phosphorous in the following change are respectively –

		$A - \frac{470 \text{ K}}{1200 \text{ atm}}$	→B	
		570 K CO ₂ - atr	$\xrightarrow{n} C$	
	(A) White, black, red	(B) Black, white, red	(C) Red, black, white	(D) Red, violet, black
82.	A red coloured mixed oxide a chloride compound (Z) w and (Z) will be $-$	(X) on treatment with conce which can also be produced	entrate HNO ₃ gives a compoun by treating (X) with concentra	d (Y). (Y) with HCl, produces te HCl. Compounds (X), (Y)
	(A) Mn_3O_4 , MnO_2 , $MnCl_2$,	(B) Pb_3O_4 , PbO_2 , $PbCl_2$	
	(C) Fe_3O_4 , Fe_2O_3 , FeCl_2		(D) Fe_3O_4 , Fe_2O_3 , FeCl_3	
83.	Match List-I with List-II			
	List-I Chemical reaction		List-II Name of process	
	(1) $4NH_3 + 5O_2 - \frac{800^{\circ}C/Pt}{1000}$	\rightarrow 4NO+6H ₂ O	(a) Contact process	
	(2) $4\text{HCl} + \text{O}_2 \frac{3230^{\circ}\text{C/CuCl}}{450-500^{\circ}/\text{V}_2\text{O}_2}$	$2 \rightarrow 2Cl_2 + 2H_2O$	(b) Ostwald's process	
	$(3) 2SO_2 + O_2 \longrightarrow 2SO_3$		(c) Deacon's process	
	(4) $2N_2 + 3H_2 \xrightarrow{Fe+M_0} 2I$	NH,	(d) Haber's process	
	(A) 1-a, 2-b, 3-d, 4-c	(B) 1-b, 2-c, 3-a, 4-d	(C) 1-a, 2-d, 3-c, 4-b	(D) 1-a, 2-c, 3-b, 4-d
84.	A gas which exists in three	allotropic forms α , β and γ	vis –	
	(A) SO ₂	(B) SO ₃	(C) CO ₂	(D) NH ₃
85.	$HNO_3 + P_4O_{10} \longrightarrow HPO_{10}$	$O_3 + A$; The product A is –		
	(A) N ₂ O	(B) N_2O_3	(C) NO ₂	(D) N_2O_5
86.	The solubility of anhydrou	is AlCl ₃ and hydrous AlCl ₃	in diethyl ether are S_1 and S_2	respectively. Then –
	(A) $S_1 = S_2$	(B) $S_1 > S_2$	(C) $S_1 < S_2$	(D) $S_1 < S_1$ but not $S_1 = S_2$
87.	Concentrated HNO ₃ reacts	s with iodine to give –		
	(A) HI	(B) HOI	(C) HOIO ₂	(D) HOIO ₃
88.	Conc. H_2SO_4 cannot be us	ed to prepare HBr from Na	Br because it –	
	(A) Reacts slowly with Nal	3r	(B) Oxidises HBr	
	(C) Reduces HBr		(D) Disproportionates HB	r
89.	Conc. HNO ₃ is yellow colo	oured liquid due to –		
	(A) Dissolution of NO in c	onc. HNO ₃		
	(B) Dissolution of NO_2 in	conc. HNO ₃		
	(C) Dissolution of N_2O in	conc. HNO ₃		
	(D) Dissolution of N_2O_3 in	i conc. HNO ₃		

90.	When chlorine gas is passed through an aqueous solution of a potassium halide in the presence of chlorofe voilet colouration is obtained. On passing more of chlorine water, the voilet colour is disappeared and so becomes colourless. This test confirms the presence of			the presence of chloroform, a is disappeared and solution
	(A) Chlorine	(B) Fluorine	(C) Bromine	(D) Iodine
91.	An inorganic salt (A) is dec temperature and is neutral t agent (D). compounds (A), (A) NH_4NO_3 , N_2O , H_2O , P (B) NH_4NO_2 , N_2O , H_2O , P (C) $CaCO_3$, CaO , H_2O , CaO (D) $CaCO_3$, CaO , H_2O , CaO	omposed at about 523 K to give b litmus paper while oxide (B), (C) and (D) will be ident ${}_{2}O_{5}$ ${}_{2}O_{5}$ ${}_{2}O_{5}$ ${}_{2}O_{5}$ ${}_{2}O_{5}$ ${}_{2}O_{5}$ ${}_{2}O_{5}$ ${}_{2}O_{5}$	ve products (B) and (C). com) on burning with white phosp tified as –	pound (C) is a liquid at room ohorous, given a dehydrating
92.	CH ₂ COOH	$O_{10}, 150^{\circ}C \longrightarrow X.$ Compound (X	X) is –	
	(A) Malonic acid	(B) Carbon suboxide	(C) Tartaric acid	(D) Acetic acid
93.	H ₃ BO ₃ $\xrightarrow{T_2}$ X $\xrightarrow{T_2}$ X (A) X = Metaboric acid and (B) X = Tetraboric acid and (C) X = Borax and Y = Met (D) X = Tetraboric acid and	$Y \xrightarrow{\text{redhot}} B_2O_2 \text{ if } T_1 < T_2 \text{ th}$ Y = Tetraboric acid Y = Metaboric acid aboric acid Y = Borax	en X and Y respectively are	_
94.	In a molecule of phosphoru	is (V) oxide, there are $-$		
	 (A) 4P - P, 10P - O and 4P (C) 2P - O and 4P = P bone 	= O bonds ds	 (B) 12P - O and 4P = O box (D) 6P - P, 12P - O and 4P 	nds = P bonds
95.	Aqueous solution of borax (A) Formation of 2 mol of E (B) Formation of 2 mol of [(C) Formation of 1 mol eac (D) Formation of 2 mol eac	reacts with 2 mol of acids. T $B(OH)_3$ only. $B(OH)_4]^-$ only. $h of B(OH)_3$ and $[B(OH)_4]^-$ $h of [B(OH)_4]^-$ and $B(OH)_3$,	°his is because of − of which only [B(OH)4] [−] read	cts with acid
96.	Borax is used as a buffer si (A) Its aqueous solution co (B) It is easily available (C) Its aqueous solution co (D) Statement that borax is	nce – ontains equal amount of weal ontains equal amount of stron a buffer, is wrong.	c acid and its salt	
97.	When fluoride is heated w (A) HF	ith conc.H ₂ SO ₄ and MnO ₂ th (B) F_2	the gas evolved is $-$	(D) None
		× / _	× / 4	

E	Exercise # 2 Part # I > [M	ultiple Correct Choice	e Type Questions]
1.	Which species exist:	(C) [GaF 13-	(D) [InF 13-
	$(A) [DF_6]^{*} \qquad (D) [AF_6]^{*}$	(C)[Oar ₆]	(\mathbf{D}) [\mathbf{m} \mathbf{e}].
•	Borax bead test is given by:		
	(A) An aluminium salt (B) A cobalt salt	(C) A copper salt	(D) A nickel salt
3.	Which of the following statement(s) is/are correc (A) The oxide, B_2O_3 and $B(OH)_3$ are acidic (B) The halides of B (except BF ₃) and Si are readi	t ? ly hydrolysed.	
	(C) The hydrides of B and Si are volatile, spontar (D) Aluminium hydride is a polymer, $(AlH_3)_n$.	eously flammable and readi	ly hydrolysed.
•	Which of the following statements about anhydro	us aluminium chloride is/are	e incorrect ?
	(A) It exists as $AlCl_3$ molecule in gaseous phase	(B) It is a strong Lewis	base
	(C) It sublimes at 100°C under vacuum	(D) It is not easily hydrogeneity hydrogen	rolysed
	Select the correct statement(s).		
	(A) The graphite is diamagnetic and diamond is p	aramagnetic in nature.	
	(B) Graphite acts as a metallic conductor a perpendicular to the layers of the carbon atom	along the layers of carbo ms.	on atoms and as semi-condu
	(C) Graphite is less denser than diamond		
	(D) C_{60} is called as Buckminster fullerene		
	Carbon monoxide is prepared by :		
	(A) heating formic acid with conc. H_2SO_4	(B) heating potassium	ferrocyanide with conc H_2SO_4
	(C) heating malonic acid with P_4O_{10}	(D) hydrolysis of Mg_2	\mathbb{C}_3
	Boric acid is used :		
	(A) as an antiseptic	(B) as a flux in solderin	g
	(C) in making optical glasses	(D) in making enamels	and pottery glazes
	Which is/are true in case of BF_3 ?		
	(A) It is volatile liquid even at room temperature	(B) It is Lewis acid	
	(C) It has planar geometry	(D) It forms adduct with	h NH ₃
	Which statement(s) is/are correct?		
	(A) Al acts as a reducing agent		
	(B) Al does not react with steam even at higher te	mperature	
	(C) Al forms a number of alloys with other metals		
	(D) Al is ionic in all its compounds		
0.	Which of the following statement(s) is/are false f	or soluble bicarbonates?	
~-	(A) They give pink colour with phenolphthalein.		
	(B) They do not liberate carbondioxide with phen	ol.	
	(C) They give white precipitate with magnesium r	nitrate in cold.	
	(D) They liberate carbondioxide on reaction with a	lil. H₂SO₄.	

11. Which of the following give(s) ethyne on reaction with water? (A) $Al_2(C_2)_3$ **(B)** Al_4C_3 (C) SrC_2 **(D)** Mg_2C_3 12. A complex cross-linked polymer (silicone) is formed by (B) hydrolysis of a mixture of (CH₃)₃SiCl and (CH₃)₂SiCl₂ (A) hydrolysis of $(CH_2)_2$ SiCl. (C) hydrolysis of CH₃ SiCl₃ (**D**) hydrolysis of $SiCl_4$. 13. Consider the following statements and which of the following are correct? S_1 : $B_4 O_7^{2-}$ on hydrolysis with acid / water yields B(OH)₃. S_2 : SiO₄⁴⁻ on hydrolysis with acid / water yields Si₂O₇⁶⁻. S_3 : MeSiCl₃ on hydrolysis and then condensations gives a complex cross-linked polymer of silicones. S₄: Among CO₂, CuO, CaO and H₂O, CO₂ is most acidic oxide while CaO is most basic oxide. (A) $S_1 S_2 S_3$ only **(B)** $S_1S_3S_4$ only $(\mathbf{C}) \mathbf{S}_1 \mathbf{S}_2 \mathbf{S}_3 \mathbf{S}_4$ (**D**) $S_2 S_2 S_4$ only 14. Which is / are the correct statement(s)? (A) BeF, readily coordinates two additional F^- ions forming the $[BeF_{4}]^{2-}$ complex. (B) One mole of borax in aqueous solution reacts with two moles of acid. (C) HCOONa as well as solid K, [Fe(CN),] both on heating with concentrated sulphuric acid evolve carbon monoxide gas. (D) Carbon mono oxide when passed through a solution of iodine pentaoxide, I₂O₅ liberates iodine and carbon dioxide gases. 15. Select the correct statement(s) (A) Double chain silicates are known as amphiboles. (B) In cyclic silicates two oxygen atoms per tetrahedron are shared. (C) Orthosilicates contain discrete $(SiO_4)^{4-}$ units. (D) Asbestos mineral is a double chain silicate and mica is a sheet silicate. 16. Boron can be obtained by : (A) reduction of Br_2O_2 by C. (B) reduction of BCl₃ with H₂ at 1270 K. (C) thermal decomposition of boron halides at 1173 K. (**D**) electrolytic reduction of KBF_4 in KF at 1073 K. 17. What products are expected from the reaction between colemanite powder and sodium carbonate solution, when they are heated ? (A) CaCO, **(B)** $Na_2B_4O_7$ (C) NaBO, (D) CaO 18. Diborane undergoes unsymmetrical cleavage reactions with : (A) dimethylamine (B) ammonia at low temperature (C) methylamine (D) carbon dioxide 19. Which of the following allotropic form(s) of carbon is/are good conductor of electricity? (A) Diamond (B) Graphite (C) Fullerences (D) Gas carbon. 20. Which is/are incorrect statement(s)? (A) Diamond is unaffected by conc acids but graphite reacts with hot conc HNO, forming mellitic acid. (B) CO is toxic because it forms a complex with haemoglobin in the blood cells. (C) Carbon sub oxide is prepared by the dehydration of succinic acid with phosphorus penta oxide (D) (Me), Si (Cl), on hydrolysis followed by condensation, produces (Me), Si (OH),.

21	Select the correct statement (s)					
<i>w</i> 1,	(A) CH SiCl under goes hydrolysis followed by inter molecular elimination of water to form a complex cross -					
	linked polymer (i.e silicone)					
	(B) Silicone fluids are thermally stable.					
	(C) In two dimensional sheet silicate, three oxygen atoms of each tetrahedral are shared with adjacent SiO_4^{4-}					
	tetrahedrals.					
	(D) Silica is attacked by HF and NaOH.					
22.	Ammonia, on reaction with hypochlorite anion, can form : [JEE 1999]					
	(A) NO (B) NH_4CI (C) N_2H_4 (D) HNO_2					
23.	As, Sb and Bi show little or no tendency to form negative ions of the type M ³⁻ . This is because					
	(A) these elements are less electronegative					
	(B) their atoms have larger size					
	(C) they are unable to hold the added electrons due to inert pair effect					
	(D) they do not posses half filled np subshells					
24.	Which of the following statements is (are) correct ?					
	(A) The hydrides of group 15 elements act as oxidising agents					
	(B) The hydrides of group 15 elements act as reducing agents					
	(C) The oxidising power increases in going from NH_3 to BiH_3					
	(D) The reducting power increases in going from NH_3 to BiH_3					
25.	What is true for hydrogen peroxide and ozone?					
	(A) H_2O_2 acts as a stronger reducing agent in alkaline medium than in acidic medium					
	(B) H_2O_2 and O_3 both are oxidising agents as well as bleaching agent					
	(C) H_2O_2 forms a hydrate, $H_2O_2.H_2O_3$					
	(D) Ozone is used in the manufacture of potassium permangnate from pyrolusite.					
26.	Sulphuric acid acts as					
	(A) hygroscopic agent (B) sulphonating agent (C) reducing agent (D) oxidising agent.					
27.	Which of the following statement (s) is/are true for sodium thiosulphate ?					
	(A) it acts as an antichlor					
	(B) it is used as an reducing agent in iodometric titration.					
	(C) it reacts with hydrochloric acid to form SO_2 and sulphur.					
	(D) it is used in photography as hypo to dissolves excess of AgBr as soluble complex.					
28.	Which of the following statement(s) is/are incorrect ?					
	(A) $SbH_3 > NH_3 > ASH_3 > PH_3$ (boiling point)					
	(B) $H_3PO_4 > H_3PO_3 > H_3PO_2$ (reducing character)					
	(C) $N_2O < NO < N_2O_3 < N_2O_5$ (oxidation state on nitrogen atom)					
	(D) $NH_3 > PH_3 > ASH_3 > SbH_3 \ge BiH_3$ (basicity)					

39.	Select the correct order of acidity : (A) HI>HBr>HCl>HF (C) HCIO <hbro>HIO</hbro>	(B) HClO ₄ > HBrO ₄ (D) HClO ₄ > HClO ₃	4>HIO4 5>HClO2>HClO
40.	 Which is / are true statement(s) ? (A) Basic nature of X⁻ is in order F⁻ > 0 (B) HI is strongest acid of HF, HCl, HE (C) The ionic character of M—X bond (D) Among F, Cl, Br and I, F has the h 	Cl ⁻ > Br ⁻ > I ⁻ Br and HI decreases in the order M—F > M— ighest enthalpy of hydration.	Cl > MBr > MI
41.	Electrolysis of aqueous solution of Bri (A) Cl_2 (B) H_2	ne (NaCl) gives : (C) NaOH	(D) None
42.	Which of the following salts will evolv (A) NaCl (B) KI	ve halogen on treatment with conc. I (C) NaBr	H ₂ SO ₄ ? (D) none of these
43.	Which of the following product(s) is/a (A) KCl (B) KClO ₂	re obtained when Cl_2O_6 reacts with (C) KClO ₃	КОН ? (D) КСЮ ₄
44.	Which of the following product(s) is/a (A) NO_2 (B) N_2	re obtained when Cl_2O reacts with N (C) NCl_3	NH ₃ ? (D) NH ₄ Cl
45.	Select the incorrect order. (A) $He > Ar > Kr > Ne > Xe - (abundar)$ (C) $XeF_6 > XeF_4 > XeF_2 - (melting point)$	the in air). (B) He $<$ Ne $<$ Ar $<$ (D) XeF ₆ $<$ XeF ₄ $<$	Kr $<$ Xe – (boiling point). XeF ₂ – (Xe – F bond length).
46.	 Which of the following statements(s) if (A) Its partial hydrolysis gives XeOF₄. (B) Its reaction with silica gives XeOF (C) It is prepared by the reaction of XeO (D) Its reaction with XeO₃ gives XeOF 	s /are true for XeF_6 ? $\overset{4}{\operatorname{eF}_4}$ and $\operatorname{O}_2\operatorname{F}_2$ $\overset{7}{\operatorname{4}}$.	
47.	Which of the following is/are properties(A) It is chemically inert.(C) It has extremely low boiling point.	es of helium? (B) It has very high (D) It has very low	n thermal conductivity. viscosity.
48.	Select the correct statement(s) regardin (A) All three fluorides are decomposed (B) All three fluorides are powerful ox (C) XeF_4 and XeF_6 can act as fluoride (D) All three fluorides are volatile, read	ng the fluorides of xenon. I by water, XeF_2 slowly and, XeF_4 ar idising agents. ion acceptors as well as fluoride ion lily subliming at room temperature (2	nd XeF ₆ rapidly. n donors. 298 K).
49.	Which of the following inert gas(es) for (A) Helium (B) Xenon	orm(s) clatharate compoud(s) with q (C) Krypton	uinol ? (D) Neon
50.	 Which among the following statement (A) XeF₄ and SbF₅ combine to form sa (B) He and Ne do not form clathrate. (C) He diffuses through rubber and po (D) He has lowest boiling point in its g 	s is / are correct ? lt. olyvinyl chloride. group.	

51.	Thermal decomposition product (s) of XeF ₆ is /are :					
	(A) Xe	(B) XeF ₂	(C) XeF_4	(D) F ₂		
52.	 Select correct statement(s) (A) ClO₂ and Cl₂O are used as bleaching agents for paper pulp and textiles. (B) OCl⁻ disproportionates in alkaline medium. (C) BrO₃⁻ liberates Br₂ with iodine in acidic medium. (D) HClO₂ liberates iodine from KI. 					
53.	What products are expect	ed from disproportionation	reaction of hypochlorous a	ncid ?		
	(A) HClO ₃	$(\mathbf{B}) \operatorname{HClO}_2$	(C) HCl	(D) $HClO_4$		
54.	Select the correct order (s). (A) HOCl>HOBr>HOI-Acid strength. (C) $ClO_4^- < BrO_4^- < IO_4^ oxidising power$		(B) $HClO_4 < HClO_3 < HClO_2 \le HClO - oxidising power$ (D) $IO^- > BrO^- > ClO^ ease of disproportionation.$			
55.	Which of the following pa (A) HCl and KMnO ₄	ir(s) will give chlorine gas (B) NaCl and H ₃ PO ₄	most quickly, upon reaction (C) NaCl and MnO ₂	(D) $CaCl_2$ and Br_2		
56.	Iodine is liberated from so	odium iodate by reacting wi	th :			
	(A) dilute H_2SO_4	(B) KMnO ₄	(C) NaHSO ₃	(D) concentrated H_2SO_4 & NaI		
57.	HI can be prepared by all the following methods except :					
	$(\mathbf{A}) \operatorname{Pl}_3 + \operatorname{H}_2 \operatorname{O}$	(B) KI + H_2SO_4	$(\mathbf{C}) \operatorname{H}_2 + \operatorname{I}_2 \xrightarrow{\operatorname{Pt}} \rightarrow$	(D) $I_2 + H_2 S$		
58.	A solution of KI, in water contains :					
	(A) K^{3+} ions	(B) I ⁻ ions	(C) K ⁺ ions	(D) I_3^- ions		
59.	Which of the following st (A) Argon is used in higher (B) Krypton and xenon for	atement (s) is/are incorrect er temperature metallurgica rm clathrate compounds wit	for noble gases ? Il process because of their in th quinol having chemical for	nert nature. rmula not exact but approximately		

- 3 quinol molecules : 1 gas molecule.
- (C) All the noble gases are monoatomic.
- **(D)** Noble gases are completely soluble in water.

```
Part # II
```

[Assertion & Reason Type Questions]

Each question has 5 choices (A), (B), (C), (D) and (E) out of which only one is correct.

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
- (C) Statement-1 is True, Statement-2 is False.
- (D) Statement-1 is False, Statement-2 is True.
- (E) Statement-1 and Statement-2 both are False.
- 1. Statement-1: Al forms $[AIF_6]^{3-}$ but B does not form $[BF_6]^{3-}$ Statement-2: BF₃ on hydrolysis gives HBF_4 .

2.	Statement-1: Boron forms only covalent compounds. Statement-2: Due to small size of boron, the sum of its first three ionisation enthalpies very high.
3.	Statement-1 : $AlCl_3$ forms dimer Al_2Cl_6 in gaseous state but it dissolves in H_2O forming $[Al(H_2O)_6]^{3+}$ and $3Cl^-$ ions. Statement-2 : Aqueous solution of $AlCl_3$ is acidic due to hydrolysis.
4.	Statement-1 : $Al(OH)_3$ is insoluble in NH_4OH but soluble in NaOH Statement-2 : NaOH is a stronger base.
5.	Statement-1: Boron has unusually high melting point. Statement-2: Boron shows non-metallic character.
6.	Statement-1 : Benzene is reactive while inorganic benzene is unreactive compound Statement-2 : Inorganic benzene is borazine, $B_3N_3H_6$
7.	Statement-1: Si–Si bonds are much weaker than Si–O bonds. Statement-2: Silicon forms double bonds with itself.
8.	Statement-1 : Pb ⁴⁺ can be reduced easily to Pb ²⁺ . Statement-2 : Pb ²⁺ is paramagnetic.
9.	Statement-1 : Al (OH) ₃ is amphoteric in nature. Statement-2 : Al–O and O–H bonds can be broken with equal ease in Al(OH) ₃ .
10.	Statement-1 : $SnCl_2 \cdot 2H_2O$ is soluble in water and its solution becomes milky on standing. Statement-2 : $SnCl_2 \cdot 2H_2O$ undergoes hydrolysis slowly forming $Sn(OH)_2$ and HCl.
11.	Statement-1 : SiF_6^{2-} is known but SiCl_6^{2-} is not. Statement-2 : Size of fluorine is small and its lone pair of electrons interacts with d-orbitals of Si strongly.
12.	Statement-1: Buckminister fullerene is the purest isomeric form of carbon. Statement-2: Graphite is thermodynamically most stable allotrope of carbon.
13.	Statement-1 : In the extraction of silicone, by reduction with high purity coke, the SiO_2 is taken in excess. Statement-2 : Excess of SiO_2 prevents the formation of the carbide SiC.
14.	Statement-1: Silicones are resistant to heat, oxidation and most chemicals. Statement-2: The silicones(a) have stable silica-like six electron owing to high bond energy of Si – O bond and (b) have high strength of Si – C
15.	Statement-1 : The borax $Na_2[B_4O_5(OH)_4]$. $8H_2O$ is a useful primary standard for titrating against acids. Statement-2 : Aqueous solution of borax contains equal amounts of weak acid and its salt.
10	State and 1. Demains is mean active the home

- 16. Statement-1 : Borazine is more reactive than benzene.Statement-2 : Borazine is polar while benzene is non-polar in nature.
- 17. Statement-1: AlCl₃ ionises in solution.
 Statement-2: The hydration energy of AlCl₃ exceeds the ionization energy.
- 18.Statement-1 : $T\ell^{3+}$ acts as an oxidising agentStatement-2 : $T\ell^+$ is more stable than $T\ell^{3+}$ due to inert pair effect.

19. **Statement-1**: PbI₄ is a stable compound. Statement-2: Pb²⁺ ions with concentrated solution of KI forms a soluble complex. 20. Statement-1: Nitrates are not wide spread in the earth's crust. Statement-2 : Nitrate are all very soluble in water. 21. **Statement-1**: Among nitrogen halides NX₃, the dipole moment is highest for NI₃ and lowest for NF₃. Statement-2: Nitrogen halides NX₃, have trigonal pyramidal structure. 22. Statement-1 : Bismith does not form a pentoxide. Statement-2: The stability of the highest oxidation states decreases on descending the group due to inert pair effect. 23. **Statement-1**: Ammonium nitrate on heating gives N₂O. Statement-2: The contaminant is NO which is removed by passing through ferrous sulphate solution. 24. Statement-1 : H₃PO₃ is a dibasic acid and shows reducing character. Statement-2:H₃PO₃ contains two OH⁻ groups and one hydrogen atom directly attached to P atom. 25. Statement-1 : Liquid NH₃ is used for refrigeration. **Statement-2**: Enthalpy of vaporisation of ammonia is very large. **26**. Statement-1: NaH,PO, is an acid salt. **Statement-2**: It contains no ionisable protons. 27. Statement-1: Both H₃PO₃ and H₃PO₄ have the same number of hydrogen atoms but H₃PO₄ is a tribasic acid and $H_{3}PO_{3}$ is a dibasic acid. **Statement-2**: 1 mol of H_2PO_3 is neutralised by 2 mol of NaOH while 1 mol of H_2PO_4 is neutralised by 3 mol of NaOH. 28. **Statement-1**: HNO₃ is stronger acid than HNO₂. Statement-2: In HNO, there are two nitrogen to oxygen bonds where as in HNO, there is only one 29. Statement-1: Mobility of mercury (Hg) decreases and its starts sticking to glass when it brought in contact with ozone. **Statement-2**: Ozone oxidises mercury to Hg₂O which dissolves in mercury. **30**. Statement-1: Sulphuric acid is less viscous than water due to intermolecular hydrogen bonding. Statement-2: Concentrated sulphuric acid is used as dehydrating agent. 31. **Statement-1**: In caro's acid the oxidation state of sulphur is +5. Statement-2: In caro's acid, there is one peroxolinkage. (-O-O-) Statement-1: Electrovalency of oxygen is two (O²⁻) 32. Statement-2: Dinegative anion of oxygen (O^2) is quite common but dinegative anion of sulphur (S^2) is less common. 33. Statement-1: At room temperature oxygen exists as a diatomic gas, where as sulphur exists as solid. Statement-2: The catenated -O - O - O - chains are less stable as compared to O = O molecule. 34. Statement-1 : Anhydrous BaO₂ is not used for preparing H₂O₂. **Statement-2** : H_2O_2 is prepared on large scale by air oxidation of 2-Ethyl anthraquinol.

- **35. Statement-1** : A pink coloured solution of acidified potassium permanganate turns green on passing O_3 through it. **Statement-2** : K_2MnO_4 is oxidised by O_3 to $KMnO_4$
- **36.** Statement-1 : H_2O_2 is stored in wax-lined glass. Statement-2 : Presence of traces of alkali metal ions in the glass catalyse the decomposition of H_2O_2 .
- 37. Statement-1 : Sulphur exhibits paramagnetic behaviour in vapour state. Statement-2 : In vapour state sulphur partly exists as S_2 molecule which has two unpaired electrons in antibonding π orbitals.
- 38. Statement-1 : Ozone is a stronger oxidising agent in acidic medium. Statement-2 : $O_3 + 2H^+ + 2e^- \rightarrow O_2 + H_2O$; SRP=+2.07V $O_3 + H_2O + 2e^- \rightarrow O_2 + 2OH^-$; SRP=+1.24V
- Statement-1: Hydrolysis of NCl₃ gives NH₄OH and HOCl, while PCl₃ on hydrolysis gives H₃PO₃ and HCl.
 Statement-2: The difference is due to the change in polarity of P^{+δ}-Cl^{-δ} bond in PCl₃ in contrast to N^{-δ}-Cl^{+δ} bond in NCl₃.
- Statement-1: Na₂HPO₃ is not an acid salt.
 Statement-2: Na₂HPO₃ on heating decomposes to give phosphine gas and a mixture of phosphates.
- 41. Statement-1 : NO_2 and ClO_2 both being odd electron molecules dimerise. Statement-2 : On dimerisation, NO_2 is converted to stable N_2O_4 molecule with even number of electrons.
- 42. Statement-1 : H₃PO₂ is a weak monobasic acid and is also strong reducing in nature.

- 43. Statement-1 : Ozone is a powerful oxidising agent in comparison to O₂.
 Statement-2 : O₃ molecule is diamagnetic but O₃⁻ is paramagnetic.
- 44. **Statement-1**: Sodium thiosulphate is not prepared by boiling Na₂SO₃ with S in acidic medium. **Statement-2**: Na₂S₂O₃ + H⁺ \longrightarrow 2Na⁺ + H₂SO₃ + S \downarrow (colloidal).
- 45. Statement-1: Most of the reactions of fluorine are exothermic.
 Statement-2: Fluorine atom is smaller in size and forms strong bonds with other elements and has low dissociation energy of the F—F bond.
- 46. Statement-1 : Halogens are more reactive than interhalogens.
 Statement-2 : Bond in the interhalogens (X-Y) is weaker than X-X bond in the halogens.
- 47. Statement-1 : Chlorine bleaches vegetable or organic substances in the presence of moisture. . Statement-2 : $Cl_2 + H_2O \longrightarrow 2 HCl + [O]$.
- 48. Statement-1 : Helium and beryllium both are chemically inert.
 Statement-2 : Helium and beryllium have similar outer electronic configuration of the type ns².
- 49. Statement-1 : Xenon forms fluorides.Statement-2 : 5 d-orbitals are available in xenon for valence shell expansion.

50.	Statement-1 : Noble gases have very low boiling points.Statement-2 : Noble gases being monoatomic have weak dispersion interatomic forces.
51.	Statement-1 : Chlorine and sulphur dioxide both are bleaching agents.Statement-2 : The bleaching action of chlorine and sulphur dioxide is performed through the process of oxidation.
52.	 Statement-1 : Fluorine is a stronger oxidising agent than chlorine because Statement-2 : It has (i) low enthalpy of dissociation of F – F bond and (ii) high hydration energy.
53.	Statement-1 : IO_3^- oxidises I ⁻ to I ₂ in acidic medium. Statement-2 : HIO ₃ is formed by oxidation of I ₂ with concentrated HNO ₃ .
54.	Statement-1 : Hydrolysis of XeF ₆ represents a redox reaction. Statement-2 : The products of hydrolysis are XeOF ₄ and XeO ₃ where the oxidation states of all the elements remain the same as it was in the reacting state.
55.	Statement-1 : Hypochlorous acid (HClO) acts as a powerful oxidising and bleaching agent. Statement-2 : Sodium hypochlorite in solution undergoes disproportionation reaction.
56.	 Statement-1: All interhalogens are paramagnetic. Statement-2: AB type of interhalogen undergoes hydrolysis giving a halide ion derived from the smaller halogen and a hypohalite ion derived from the larger halogen.
57.	Statement-1 : $HClO_4$ is a more stronger acid than $HClO_3$. Statement-2 : Oxidation state of Cl in $HClO_4$ is +7 and in $HClO_3$ is +5.
58.	Statement-1 : Fluorine is obtained by the interaction of K_2MnF_6 with lewis acid SbF ₅ . Statement-2 : Stronger lewis acid SbF ₅ displaces weaker acid MnF ₄ from K_2MnF_6 and MnF ₄ being unstable decomposes to give MnF ₃ and F ₂ .
59.	Statement-1 : Fluorine with sodium hydroxide solution does not undergo disproportionation reaction. Statement-2 : Fluorine has the highest SRP value, therefore, it is completely reduced only.
60.	Statement-1 : Xenon hexafluoride is kept in silica-lined vessel. Statement-2 : Xenon hexafluoride is not kept in silica-lined vessel.
61.	 Statement-1 : Argon is used in the laboratory for handling substances that are air-sensitive. Statement-2 : Argon is inert towards chemical reactivity due to the completely filled valence shell electronic configuration, high ionization enthalpy and more positive electron gain enthalpy.

	Exercise # 3	Part # I	[Matrix Match Type Questions]
1.	Match the reactions liste Column-I	ed in column-I with char	acteristic(s) / type of reactions listed in column-II. Column-II
	(A) $BBr_3 + H_2 \longrightarrow B$ (B) $Na_2B_4O_7$. 10 $H_2O + O_7$	$CuSO_4 \rightarrow Cu(BO_2)_2$	(p) Borax bead test(q) Reduction
	(C) $AlCl_3 + H_2O \longrightarrow$	HCl	(r) White fumes
	(D) $\operatorname{Cr}_2\operatorname{O}_3$ + Al \longrightarrow C	Cr	(s) Hydrolysis
2.	Match the reactions liste Column-I	ed in column-I with char	acteristic(s) / type of reactions listed in column-II. Column-II
	(A) $Al_2(C_2)_3 + H_2O$	\rightarrow	(p) One of the products contains both σ and π bonds
	(B) $CH_2(COOH)_2 + P_4C$	$D_{10} \longrightarrow$	(q) Hydrolysis
	(C) $CH_3 SiCl_3 + H_2O$	\rightarrow	(r) Dehydration
	(D) SnCl ₂ .2H ₂ O $\xrightarrow{\text{on}}_{\text{standing}}$		(s) complex crosslinked polymer
3.	Match the reactions lis Column–I (A) $B_2O_3 + H_2O$ (B) $B_2H_6 + H_2O$ (C) $B_3N_3H_6 + H_2O$ (D) $BCl_3 + H_2O$	sted in column-I with th	the product(s) listed in column-II. Column-II (p) H_3BO_3 (q) H_2 (r) HCl (s) NH_3 (t) N_2
4.	Match the type of silic. Column–I (A) Cyclic silicates (B) Single chain silicate (C) Pyro silicates (D) Sheet silicates (two	ates listed in column-I s dimensional)	 with characteristic(s) listed in column-II. Column-II (p) Tetrahedral hybridisation. (q) Si-O bonds are 50% ionic and 50% covalent. (r) General formula is (SiO₃)_n²ⁿ⁻ (s) Two oxygen atoms per tetrahedron are shared.
5.	Match the materials lis Column–I (A) Spondumene (B) Thorteveitite (C) Kaolin (D) Quartz	sted in column-I with ty	 pe of silicates listed in column-II. Column-II (p) Two dimensional sheet silicates (q) Pyrosilicates (r) Chain silicates (s) Three dimensional sheet silicates.
6.	Match the reactions lis	sted in column-I with cl	haracteristic(s) / type of reactions listed in column-II.
	Column – I		Column – II
	(A) $\operatorname{PCl}_5 \xrightarrow{\operatorname{Moist}}_{\operatorname{Air}}$		(p) Hydrolysis
	(B) P_4 + NaOH (conc.) +	$-H_2O \xrightarrow{\text{Warm}} \rightarrow$	(q) At least one of the products has tetrahedral hybridisation
	$(\mathbf{C}) \operatorname{H_{3}PO_{3}} \xrightarrow{\Delta} \rightarrow$		(r) Disproportionation
	(D) $P_4O_6 + H_2O \longrightarrow \Delta$		(s) At least one of the products has $p\pi$ -d π bonding.

7. Match the reactions listed in column-I with characteristic(s) / type of reactions listed in column-II.

Column – I	Column – II
(A) $(NH_4)_2S_2O_8 + H_2O$	(p) Hydrolysis
(B) NaBO ₂ + H ₂ O + H ₂ O ₂ \longrightarrow OH ⁻	(q) One of the product has peroxide linkage
(C) Na ₂ SO ₃ $\xrightarrow{\text{fusion}}_{\text{temperature}}$	(r) Disproportionation.
(D) 2–Ethyl anthraquinol + Air \longrightarrow	(s) In one of the products the central atom has sp ³ hybridisation.

8. Match the oxy-acids of phosphorus listed in column-I with type of bond(s) listed in column-II.

Column I	Column II
(Oxy acids of phosphoros)	(Characteristic bonds)
$(\mathbf{A}) \mathbf{H}_{4} \mathbf{P}_{2} \mathbf{O}_{7}$	(p) P—P bond (s)
(B) $H_4P_2O_5$	(q) P—O—P bond (s)
$(\mathbf{C}) \mathbf{H}_4 \mathbf{P}_2 \mathbf{O}_6$	(r) P—H bond (s)
(D) (HPO ₃) _n (cyclic)	(s) Three or four P—OH bonds

9. Match the reactions listed in column-I with characteristic(s) listed in column-II.

Column I	Column II
(A) $PbO_2 + HNO_3 \rightarrow$	(p) One of the products has bond order of two.
(B) $\operatorname{Cr}_2 \operatorname{O}_7^{2-} + \operatorname{H}^+ + \operatorname{H}_2 \operatorname{O}_2 \rightarrow$	(q) One of the products has peroxide linkage(s).
$(\mathbf{C}) \operatorname{H}_2\operatorname{O}_2 + \operatorname{ClO}_2 + \operatorname{OH}^- \rightarrow$	(r) One of the products is a hydride and is liquid at room temperature.
(D) $XeF_2 + NaOH \rightarrow$	(s) One of the products has bent shape with two lone pairs of electrons on central atom.

10. Match the reactions listed in column-I with characteristic(s) listed in column-II.

$(A) 2NO_2 \xrightarrow{\text{Cool}} \rightarrow$	(p) One of the products is a mixed anhydride.
(B) $\operatorname{ClO}_2 + \operatorname{O}_3 \xrightarrow{H^+} \rightarrow$	(q) One of the products is an acidic oxide.
(C) $K_4[Fe(CN)_6] + H_2SO_4(conc.) + H_2O \longrightarrow$	(r) The oxidation state of the central atom of one of the products is + 6.
(D) KOH + $O_3 \longrightarrow$	(s) One of the products is a colourless paramagnetic gas.

11. Match the reactions listed in column-I with the product(s) listed in column-II.

Column - I	Column - II
$(\mathbf{A}) \operatorname{Cl}_2 \operatorname{O}_6 + \operatorname{H}_2 \operatorname{O} \longrightarrow$	(p) ClO ₂
(B) NaClO ₄ (s) + HCl(conc.) \longrightarrow	(q) HClO ₃
(C) $\text{KClO}_3 + (\text{COOH})_2 \longrightarrow$	(r) Cl ₂ O
(D) HgO+ Cl ₂ $\xrightarrow{573K}$	(s) HClO ₄

12. Match the reaction products listed in column-I with the particulars listed in column-II

Column-I Column-II (A) $XeF_2 + H_2O \longrightarrow$ (p) Redox reaction (B) $XeF_4 + H_2O \longrightarrow$ (q) Disproportionation (C) $XeF_6 + H_2O \longrightarrow$ (r) O₂ formation (D) $XeO_3 + NaOH \longrightarrow$ (s) Xe formation (t) Etching glass

13. Match the compounds listed in column-I with characteristic(s)/type of reactions listed in column-II. **Column I Column II** (A) Bromine (ℓ) (p) Oxidising agent

(B) Ozone (C) XeF, (\mathbf{D}) SO₂

(C) $[HXeO_4]^- + OH^- \rightarrow$

(D) P_4 + NaOH + $H_2O \rightarrow$

14. Match the reactions listed in column-I with characteristic(s)/type of reactions listed in column-II. **Column I Column II** (A) Na₂CO₃ (aq) + Br₂ (ℓ) \rightarrow (p) Disproportionation reaction **(B)** KClO₃ + H₂SO₄ (conc.) \rightarrow

(q) One of the products is a paramagnetic gas.

(r) Liberates iodine from the halide ion. (s) Undergoes disproportionation with alkali.

(q) Non-polar (i.e. $\mu = 0$)

- (r) In one of the products, the central atom has oxidation state greater than + 6.
- (s) One of the products is used in Holme's signal.
- 15. Match the reactions listed in column-I with characteristic(s) listed in column-II. **Column I** Column-II
 - (A) $XeF_6 + SiO_2 \longrightarrow$ (B) P_4 (white) + SO₂Cl₂ \longrightarrow (C) $H_2SO_4 + P_2O_5 \longrightarrow$ **(D)** $XeF_6 + H_2O \xrightarrow{\text{Partial}} Hvdrolvsis$

(p) One of the products has square pyramidal shape.

- (q) One of the products has tetrahedral hybridisation
- (r) In one of the products there is $p\pi d\pi$ type overlapping.
- (s) One of the products has zero dipole moment.

16. Match the compounds listed in column-I with characteristic(s) / type of reaction(s) listed in column-II. **Column I** Column-II

(A) XeF_2	(p) Undergoes hydrolysis with water.
(B) XeF_{4}	(q) Acts as oxidising agent.
$(\mathbf{C}) \operatorname{XeF}_{6}$	(r) Undergoes addition reaction.
(\mathbf{D}) Xe O_3	(s) Has lone pair(s) of electrons.
5	(t) Gives disproportionation reaction with H_2O or OH^- .

Part # II

[Comprehension Type Questions]

Comprehension #1

Compound (A) on reaction with iodine in the solvent diglyme gives a hydride (B) and hydrogen gas. The product (B) is instantly hydrolysed by water or aqueous alkali forming compound (C) and liberating hydrogen gas. The compound (C) in aqueous solution behaves as a weak mono basic acid. But in presence of certain organic polyhydroxy compound behaves as a strong monobasic acid. The hydride (B) in air catches fire spontaneously forming oxide which gives coloured beads with transition metal compounds.

- Which of the following statement is correct for the product (C)? 1. (A) It is an odd electron molecule. (B) It in water acts as proton donor. (C) It in solid state have hydrogen bonding. (D) It is a useful primary standard for titrating against acids.
- Aqueous solution of product (C) can be titrated against sodium hydroxide using phenolphthalein indicator only in 2. presence of : (B) trans-1.2 diol (C) borax **(D)** Na₂HPO₄

(A) cis-1, 2 diol

3.

2.

3.

4.

Which of the following statement is correct for hydride (B)?

(A) One mole of it react with two moles of HCl.

(B) It reacts with excess of ammonia at low temperature to form an ionic compound.

(C) One mole of it reacts with one mole of trimethylamine.

(D) It reacts with methyl alcohol to form a trimethyl compound liberating oxygen gas.

Comprehension #2

The term carbide is generally applied to compounds in which carbon is bonded to the elements of lower or approximately same electronegativity. This definition excludes the compounds in which oxygen, sulphur, phosphorus, nitrogen and halogens are united with carbon. Reactive metals (i.e., of group1 and 2) form ionic carbides. They hydrolyse to liberate hydrocarbons. Most of them resembles with NaCl in crystal structure. Transition metals forms interstitial carbides.

1. Consider the following carbides ·

(A) I only

Consider ti	ie iono wing	curoraco .			
Ca	aC_2	Be ₂ C	MgC ₂	SrC ₂	
]		IĨ	III	IV	
Select the o	carbide whic	h gives differe	ent product on hydro	lysis, than oth	er carbides :
(A) I	(B) I		(C) III		(D) IV
(A)4	(B) 6		(C) 8		(D) 12
Select the r	nethanides f	rom compound	ls give below :		
A		Be C	MgC	CaC.	
	$_4 \cup_3$	20,0	1160,		

The conductance of transition metal is not much affected when it forms interstitial carbide because :

(C) I & II

(A) The carbide anion helps in conduction.

(B) I & IV

(B) The carbon atoms occupy octahedral holes and so does not affect electrical conductivity.

- (C) The carbon atoms react with metal and liberate electrons.
- **(D)** The conduction is due to holes.

Comprehension #3

All the boron trihalides except BI₃ may be prepared by direct reaction between the elements. Boron trihalides consist of trigonal - planar BX_3 molecules. Unlike the halides of the other elements in the group they are monomeric in the gas, liquid and solid states, BF₃ and BCl₃ are gases, BBr₃ is a volatile liquid and BI₃ is a solid. Boron trihalides are Lewis acids because they form simple Lewis complexes with suitable bases, as in the reaction :

(D) I, II, III & IV

$$BF_3(g) + : NH_3(g) \longrightarrow F_3B - NH_3(g)$$

However, boron chlorides, bromides and iodides are susceptible (sensitive) to protolysis by mild proton sources such as water, alcohols and even amines; for example BCl₃ undergoes rapid hydrolysis:

 $BCl_3(g) + 3H_2O(\ell) \longrightarrow B(OH)_3(aq) + 3HCl(aq)$

It is supposed that the first step in the above reaction is the formation of the complex $Cl_3B \leftarrow OH_2$ which then eliminates HCl and reacts further with water.

1. Which of the following is the best order of Lewis acid strength of BF₃, BCl₃ and BBr₃?

(A) $BF_3 > BCl_3 > BBr_3$ (C) $BF_3 < BCl_3 < BBr_3$ (D) $BBr_3 > BCl_3 < BBr_3$ (D) $BBr_3 > BCl_3 > BCl_3$

- 2. Which of the following is the correct prediction about observed B–X bond length, in BX₃ molecules ?
 - (A) B–F bond length in BF_3 is found to be less than theoretical value because the electronegativity values of B(2.04) and F(4.0) suggest the bond to be ionic and hence the attraction between oppositely charged ions must decrease the bond length
 - **(B)** BF_3 and $[BF_4]^-$ have equal B–F bond length
 - (C) The decrease in the B–F bond length in BF₃ is due to delocalised $p_{\pi} p_{\pi}$ bonding between vacant '2p' orbital of B and filled '2p' orbital of F.
 - (D) The correct B-X bond length order is B-F > B-Cl > B-Br > B-I
- 3. Which is correct about the hydrolysis of BX_3 ?
 - (A) All BX₃ undergo hydrolysis to produce B(OH)₃ (aq) and HX(aq).
 - (B) BF₃ does not undergo complete hydrolysis due to formation of HBF₄.
 - (C) BBr₃ does not undergo hydrolysis at all because it cannot form H–bonds with water.
 - (D) All the above are correct
- 4. Which of the following reactions is incorrect ?

(A) $BF_3(g) + F^-(aq) \longrightarrow [BF_4]^-(aq)$

(B) $BCl_3(g) + 3EtOH(\ell) \longrightarrow B(OEt)_3(\ell) + 3HCl(g)$

- (C) $BBr_3(\ell) + F_3BN(CH_3)_3(s) \longrightarrow BF_3(g) + Br_3BN(CH_3)_3(s)$
- (**D**) $BCl_3(g) + 2C_5H_5N(\ell) \longrightarrow Cl_3B(C_5H_5N)_2(s)$

(excess)

Comprehension #4

The highest oxidation state of p-block element is equal to the group number minus 10. Moving down the group, the oxidation state two less than the highest group oxidation state becomes more stable in groups 13 to 16 due to inert pair effect.

- 1. Which of the following statement is incorrect ?
 - (A) PbI_4 does not exist.
 - (B) Boron shows only +3 oxidation state.
 - (C) TlCl₃ does not undergo disproportionation reaction.
 - (D) In thallium +3 oxidation state is more stable than +1.

2.	The strongest reducing agent among the following is :					
	(A) Ge (II) chloride	(B) Sn (II) chloride	(C) Pb (II) chloride	(D) None		

3. The strongest oxidising agent among the following is :

(A) Pb (IV) oxide	(B) Si (II) oxide	(C) Sn (II) oxide	(D) Ge (II) oxide
-------------------	-------------------	-------------------	--------------------------

Comprehension #5

The small size and high charge of Al^{3+} ion gives it a high charge density which is responsible for its tendency to show (a) covalency in its compounds in the gaseous state (b) high hydration energy which stabilizes its compounds in solution, and (c) high lattice energy of its compounds in the solid state. Thus aluminium can forms both covalent and ionic bond.

Like halides of boron, halides of aluminium do not show back bonding because of increase in size of aluminium. Actually aluminium atoms complete their octets by forming dimers. Thus chloride and bromide of aluminium exist as dimers, both in the vapour state and in polar-solvents like benzene while the corresponding boron halides exists as monomer. In boron trihalides the extent of back bonding decreases with increase in size of halogens and thus lewis acid character increases. All BX₃ are hydrolysed by water but BF₃ shows a different behaviour.

- 1. The dimeric structure of aluminium chloride disappears when :
 - (A) it dissolves in water
 - (C) it dissolves in benzene

(B) it reacts with donor molecules like R_3N

(D) (A) & (B) both

- 2. Which one of the following statements is correct ?
 - (A) All boron trihalides are hydrolysed to boric acid.
 - (B) Anhydrous aluminium chloride is an ionic compound
 - (C) Aluminium halides make up the electron deficiency by bridging with halide or alkyl groups
 - (D) None of these
- 3. Which of the following statements about anhydrous aluminium chloride is correct?
 - (A) It is an ionic compound.

- (B) It is not easily hydrolysed.(D) It is a strong lewis base.
- 4. Which of the following reaction is incorrect ?

(C) It sublimes at 100°C under vaccum.

(A) $BF_3(g) + F^-(aq) \longrightarrow BF_4^-$ (B) $BF_3(g) + 2H_2O \longrightarrow [BF_3OH]^- + H_3O^+$ (C) $BCl_3(g) + 3Et OH(\ell) \longrightarrow B (Oet)_3(\ell) + 3HCl$ (D) $BCl_3(g) + 2C_5H_5N(\ell) \longrightarrow Cl_3B(C_5H_5N)_2(s)$

Comprehension #6

An inorganic iodide (A) on heating with a solution of KOH gives a gas (B) and a solution of a compound. The gas (B) on ignition in air gives a compound (C) and water. Copper sulphate is finally reduced to the metal on passing (B) through its solution.

- 1. Select the correct statement from the following for the gas (B).
 - (A) Its solution in water does not decompose in presence of light.
 - (B) It can be prepared by the alkaline hydrolysis of white phosphorus.
 - (C) It is non-inflammable owing to the presence of P_2H_4 .
 - (D) It can act as oxidising agent.
- **2.** The compound **(C)** :
 - (A) has sp³ hybridisation of central atom(s)
- (B) has sixteen sigma bonds.

(C) is used as a dehydrating agent

(D) all of these

- 3. What is true about gas (B) and compound (C) ?
 - (A) The oxidation number of central atom of gas (B) is + IV
 - (B) The gas (B) produces a black precipitate of metallic silver with silver nitrate solution.

(C) Compound (C) dissolves in water forming an acid which with sodium hydroxide forms three series of salts.

(D) (B) and (C) both

Comprehension #7

Nitrogen forms the largest number of oxides as it is capable of forming stable multiple bonds with oxygen. They range from N_2O (O.S of nitrogen +1) through NO, N_2O_3 , NO_2 , N_2O_4 to N_2O_5 (O.S of nitrogen +5). Following points are important regarding the study of oxides of nitrogen.

(a) All oxides of nitrogen except N_2O_5 are endothermic as a large amount of energy is required to dissociate the stable molecule of oxygen and nitrogen.

(b) The small electronegativity difference between oxygen and nitrogen make N–O bond easily breakble to give oxygen and hence oxides of nitrogen are said to be better oxidising agents.

(c) Except N₂O₅, all are gases at ordinary temperature. N₂O₃ is stable only at lower temperature (253 K).

(d) Except N_2O and NO which are neutral oxides, all are acidic oxides which dissolve in water forming corresponding oxy acids.

(e) They are also good example for illustrating the concept of resonance.

1. The gas which is acidic in nature is :

- 2. Which of the following statements is correct for the oxides of nitrogen ?
 - (A) Dinitrogen trioxide dissolves in potassium hydroxide forming potassium nitrate.
 - (B) Aqueous solution of nitrogen dioxide behaves both as a reducing agent and as an oxidising agent.
 - (C) Nitrous oxide is fairly soluble in cold water and turns blue litmus red.
 - (D) Nitrogen dioxide is not acidic oxide.

Comprehension #8

The property of hydrides of p-block elements mostly depends on :

- (i) electronegativity difference between central atom and hydrogen
- (ii) size of central atom

(iii) number of valence electrons in central atom

Some undergo hydrolysis in which central atom is less electronegative, react with OH^- to give hydrogen. While acidic property of hydride in a period depends on electronegativity of central atoms, i.e. more electronegative is the atom, more acidic is hydride. In a group, acidic property is proportional to size of central atom. Some electron deficient hydride behaves as Lewis acid while only one hydride of an element in p-block behaves as Lewis base with lone pair of electrons. Hydrides in which central atom's electronegativity is close to hydrogen has no reaction with water.

1. Which one is the weakest acid among the following ?

	(A) HF	(B) HCl	(C) HBr	(D) HI
2.	Which hydride ha	as no reaction with water?		
	$(\mathbf{A}) \operatorname{NH}_{3}$	(B) CH ₄	(C) PH ₃	(D) NaH
3.	Which one is stro	ongest base ?		

3.	Which one is strongest t	vhich one is strongest base ?				
	(A) OH⁻	(B) HS ⁻	(C) HSe ⁻	(D) HTe ⁻		

Comprehension #9

Oxygen differs from the other elements of the group. Compounds of oxygen with metals are more ionic in nature and hydrogen bonding is more important for oxygen compounds. Oxygen is never more than divalent because when it has formed two covalent bonds, there are no low energy orbitals which can be used to form further bonds. However, the elements S, Se, Te and Po have empty d-orbitals which may be used for bonding, and they can form four or six bonds by unpairing electrons. The higher oxidation states become less stable on descending the group.

The bond between S and O, or Se and O, are much shorter than might be expected for a single bond owing to $p\pi - d\pi$ interaction between the p-orbital of oxygen and d - orbital of S or Se.

1. Which of the following statement is incorrect ?

(A) Oxo-anions of sulphur have little tendency to polymerise compared with the phosphates and silicates.

(B) In pyrosulphurous acid ($H_2S_2O_5$), the oxidation states of both the sulphur atoms are not same, they are +V and +III

(C) Concentrated HNO₃ oxidises both sulphur and selenium to H_2SO_4 (+VI) and H_2SO_4 (+VI) respectively.

(D) Most metal oxides are ionic and basic in nature while non-metallic oxides are usually covalent and acidic in nature.

2. Which one of the following orders represents the correct order for the properties indicated against them ?

(A) $H_2O \le H_2S \le H_2Se \le H_2Te - acidic character$	(B) $H_2O < H_2S < H_2Se < H_2Te$ – thermal stability
(C) $H_2S > H_2Se < H_2Te < H_2O - reducing character$	(D) $H_2S < H_2Se < H_2O < H_2Te$ – boiling point

Comprehension #10

An orange solid (A) on heating gives a green residue (B), a colourless gas (C) and water vapours. The dry gas (C) on passing over heated Mg gave a white solid (D). (D) on reaction with water gave a gas (E) which formed black precipitate with mercurous nitrate solution.

- 1. Select the incorrect statement.
 - (A) The central atom (s) of the anion of solid (A) has sp³ hybridisation.
 - (B) The orange solid (A) is diamagnetic in nature.
 - (C) The anion of orange solid (A) is oxidising in nature.
 - (D) None
- 2. Which of the following is true for the gas (E)?
 - (A) It gives a deep blue colouration with $CuSO_4$ solution.
 - (B) It is oxidised to a colourless gas (neutral oxide) at 1200 K in presence of a catalyst Pt/Rh in air.
 - (C) It gives the same gas (C) with potassium permanganate solution.
 - (D) All of these.

3. The green residue **(B)** is :

(A) amphoteric in nature.

(B) used as green pigment.

(C) used in fire crackers to impart the red colour.

(**D**) (**A**) and (**B**) both.

Comprehension #11

Fifth group elements form hydrides of type AH_3 . The hydrides have a lone pair of electrons. The hydrides are reducing in nature and the reducing power is related to the stability of A – H bonds. The hydrides are covalent and low boiling. Their boiling points depends on their ability to form hydrogen bond and their molecular size which decide the intermolecular forces in the hydrides.

1. The H – M – H bond angle of V group hydrides decrease from 107° to 90° for NH₃ to SbH₃; this is due to :

(A) increase in strength of bases with molecular weight

(B) use of pure p-orbital for M – H bonding in hydrides of higher molecular weight

(C) bond energies of M – H bonds increase

(D) bond pairs of electrons go closer to central atom

2. Reducing power of V-group hydrides are in order : (A) $NH_3 > PH_3 > AsH_3 > SbH_3 > BiH_3$ (B) $BiH_3 > SbH_3 > AsH_3 > PH_3 > NH_3$ (C) $PH_3 > NH_3 > AsH_3 > SbH_3 > BiH_3$ (D) $BiH_3 > SbH_3 > AsH_3 > PH_3 > NH_3$

3. The boiling points of the hydrides of V-group elements are in the order :

$(A) NH_3 > PH_3 > AsH_3 > SbH_3$	(B) $NH_3 > AsH_3 > SbH_3 > PH_3$
$(C) SbH_3 > NH_3 > AsH_3 > PH_3$	(D) $AsH_3 > SbH_3 > NH_3 > PH_3$

Comprehension #12

Ozone is an unstable, dark blue diamagnetic gas. It absorbs strongly the UV radiation, thus protecting the people on the earth from the harmful UV radiation from the sun. The use of chlorofluorocarbon (CFC) in aerosols and refrigerators, and their subsequent escape into the atmosphere, is blamed for making holes in the ozone layer over the Antarctic, and Arctic.

Ozone acts as a strong oxidising agent in acidic and alkaline medium. For this property ozone is used as a germicide and disinfectant for sterilising water and improving the atmosphere of crowded places.

1. CFC damages ozone layer by reactions :

(A) $O_3 + hv \rightarrow O + O_2$ (B) $Cl + O_3 \rightarrow ClO + O_2$ (C) $ClO + O \rightarrow Cl + O_2$ (D) all of the above

2. Identify the incorrect statement with respect to ozone.

(A) Ozone is formed in the upper atmosphere by a photochemical reaction involving dioxygen.

(B) Ozone protects the earth's inhabitants by absorbing UV radiations.

(C) Ozone can also be made by heating O_2 over 2500°C and quenching

(**D**) Chloride gas is preferred over ozone for the purification of drinking water and for water treatment in swimming pools.

3. Which of the following statement is correct ?

(A) The dark blue colour of ozone is due to intense absorption of green light.

(B) Oxides of nitrogen and the halogen cannot damage the O_3 layer.

- (C) Ozone oxidises dry iodine to I_2O_5 .
- (D) Ozone forms orange coloured compound KO₃ with potassium hydroxide.

Comprehension #13

A red liquid (A) when treated with sodium carbonate gives a mixture of two salts (B) and (C) in the solution. The mixture then on acidification with sulphuric acid and distillation produces the red liquid (A) again.

- **1.** Select the correct statement for the liquid (A).
 - (A) It acts as an oxidising agent,
 - (B) It is sparingly soluble in water
 - (C) It converts the yellow-dye stuff fluorescein (I) into red colour compound

(D) All of these

- 2. Which of the following statement is false for salt (**B**)?
 - (A) Its solution in water gives pale yellow precipitate with silver nitrate solution
 - (B) Its solution in water gives white precipitate with lead nitrate solution
 - (C) Its acidified solution (with conc. H₂SO₄) liberates a coloured gas which produces orange red spots on starch paper
 - (D) None
- 3. Which of the following statement is correct ?
 - (A) Liquid (A) undergoes disproportionation reaction in aqueous solution of sodium carbonate
 - (B) The anion of compound (C) has sp³ hybridisation and is trigonal pyramidal in shape
 - (C) (A) and (B) both
 - (D) None of these

Comprehension #14

White crystalline solid (A) reacts with H_2 to form a highly associated liquid (B) and a monoatomic, colorless gas (C). The liquid (B) is used for etching glass. Compound (A) undergoes hydrolysis slowly to form (C), (B) and a diatomic gas (D) whose IE is almost similar to that of (C). (B) forms an addition compound with KF to form (E) which is electrolysed in the molten state to form a most reactive gas (F) which combines with (C) in 2:1 ratio to produce (A).

1. According to Molecular Orbital Theory, which of the following is correct about the molecule D?

(A) its bond order is 2.0	(B) it has two unpaired electrons in π -bonding M.O.
(C) both the above are correct	(D) none of these is correct

- 2. Which of the following is correct for the white crystalline solid (A)?
 - (A) It oxidises F^- to F_2
 - (B) It on hydrolysis with alkali under goes disproportionation.
 - (C) It is obtained by the reaction of (C) with O₂F₂ at 118°C.
 - (D) None of these.
- The compound 'A' reacts with sulphur to form a compound in which hybridisation state of sulphur atom is
 (A) sp³d
 (B) sp³d²
 (C) sp³
 (D) sp³d³

Comprehension #15

Read the following comprehension carefully and answer the following questions.

All the noble gases are colourless and tasteless monoatomic gases. In general, noble gases are least reactive and their inertness to chemical reactivity is attributed to the following reasons.

(i) Except helium, all have completely filled ns²np⁶ electronic configuration in their valence shells.

(ii) All have high ionisation enthalpy and more positive electron gain enthalpy.

However, a number of xenon compounds mainly with most electronegative elements like fluorine and oxygen have been synthesized under different conditions and fluorides of xenon have been used as an oxidising agent and a fluorinating agent in many of the chemical reactions.

- 1. Noble gases have very low melting and boiling points because,
 - (A) they have high ionisation enthalpy.
 - (B) they have more positive electron gain enthalpy.
 - (C) the type of interatomic interaction is weak metallic bonds.
 - (D) the type of interatomic interaction is weak dispersion forces.

2. The correct order of the abundance of various noble gases in air is :

(A) He > Ar > Kr > Ne > Xe(C) Ar > He > Ne > Kr > Xe

(B) Ar > Ne > Kr > He > Xe(D) Ar > Xe > He > Ne > Kr.

3. Select the correct statement.

(A) Neon does not form clatherate compound with para-quinol.

(B) Noble gases are sparingly soluble in water.

(C) Helium is a non-inflammable and light gas, therefore, it is used in filling balloons for meteorological observations.(D) All of these.

4. Identify the incorrect statement with respect to XeF₂.

(A) It is a colourless crystalline compound which sublimes at 298 K.

(B) BrO_3^- being good oxidising agent cannot be oxidised by XeF_2 to BrO_4^- .

(C) It undergoes hydrolysis more rapidly with alkali in comparision to water.

(D) XeF_2 can be prepared by heating Xenon with O_2F_2 at 118°C.

Exercise # 4 [Subjective Type Questions]

- **1.** How will you obtain ?
 - (A) Sodium peroxo borate from borax (in two steps only)
 - (B) Borazole from sodium borohydride (in three steps only)
 - (C) Borax from Boron (in two steps)
- 2. A certain salt x, gives the following results.
 - (i) Its aqueous solution is alkaline to litmus.
 - (ii) It swells up to a glassy material Y on strong heating.
 - (iii) When concentrated H_2SO_4 is added to a hot solution of X, white crystal of an acid Z separates out.

Write equations for all the above reactions and identify X, Y, and Z.

- **3.** What happens when :
 - (i) Borax is heated strongly.
 - (ii) Aluminium is heated with caustic soda solution.
 - (iii) A mixture of borax and cobalt oxide is heated in a flame.
 - (iv) Water is added to aluminium nitride.
 - (v) Aluminium reacts with HNO_3 .
- 4. Give reason for the following :

Although aluminium is above hydrogen in the electrochemical series, it is stable in air and water.

5. Identify A and B in the following reactions :

 $Colemanite + (A) \longrightarrow Na_2B_4O_7$

 $Na_2B_4O_7 + (B) \longrightarrow H_3BO_3$

- 6. (i) A white precipitate (B) is formed when a mineral (A) is boiled with Na₂CO₃ solution.
 - (ii) The precipitate is filtered and filtrate contains two compounds (C) and (D). The compound (C) is removed by crystallisation and when CO_2 is passed through the mother liquor left (D) changes to (C).
 - (iii) The compound (C) on strong heating gives two compounds (D) and (E).
 - (iv) (E) on heating with cobalt oxide produces blue coloured substances (F).

Identify (A) to (F) and gives chemical equations for the reactions at steps (i) to (iv).

7. Explain the following with relevent reason.

(i) Aluminium metal is frequently used as reducing agent for the extraction of metals such as Cr, Mn, Fe, etc.
(ii) Why boron does not form B³⁺ ion ?

- 8. Why does not silicon form an analogue of graphite?
- 9. Dilute HCl is preferred over dilute H_2SO_4 for the preparation of CO_2 from lime stone. Explain.
- **10.** How carbonates and bicarbonates can be differentiated from one another ?
- 11. Complete the following reaction : $C + HNO_3(conc.) \longrightarrow$
- 12. Like CO why its analogue of SiO is not stable ?
- 13. What is the importance of ultra pure elemental silicon ? How is it obtained ?
- 14. Give reactions to show that CO₂ is an acidic oxide and SnO₂ is an amphoteric oxide.
- 15. To which category do the following carbides belong ?
 (i) SiC (ii) VC (iii) WC (iv) Al₄C₃
- **16.** What are silicates ? How are they classified ?
- 17. What are silicones ? How are they manufactured ?
- 18. Why PbO, is not completely dissolved in HCl and H_2SO_4 but dissolves in HNO₃?
- **19.** Write balanced equations for the following reactions :
 - (A) SnO is treated with dilute HNO₃
 - (B) Tin is treated with an excess of chlorine gas.
 - (C) Lead sulphide is heated in air.
- **20.** Write down hydrolysis of :
 - (i) alkyl substituted chlorosilane (ii) trialkyl chlorosilane
- 21. What happens when,
 - (a) Mixture of R_2 -SiCl₂ and R_3 SiCl is subjected to hydrolysis.
 - (b) Malonic acid is heated in presence of P_4O_{10} .
 - (c) Tin (IV) Chloride is exposed to moist air.

- 22. An aqueous solution of borax is alkaline. Explain?
- 23. Borazine or borazole is more reactive than benzene. Explain ?
- 24. How many types of bonds are present in B_2H_6 ?
- 25. Why it is difficult to produce crystalline boron ?
- 26. What happens when NaOH (aq) is added drop wise to a solution of GaCl, in water ?
- 27. A certain salt (X) gives the following tests :
 - (i) Its aqueous solution is alkaline to litmus.
 - (ii) On strongly heating it swells to give glassy material.
 - (iii) When concentrated H₂SO₄ is added to hot concentrated solution of (X), white crystals of a weak acid separate out. Identify (X) and write down the chemical equations for reaction at steps (i), (ii), (iii)
- 28. An inorganic Lewis acid (X) shows the following reactions :

(i) It fumes in most air. (ii) The intensity of fumes increases when a rod dipped in NH₄OH is brought near it.

(iii) An acidic solution of (X) on addition of NH_4Cl and NH_4OH gives a precipitate which dissolves in NaOH solution. (iv) An acidic solution of (X) does not give precipitate with H_2S . Identify (X) and give chemical equations for reactions at steps (i) to (iii).

- **29.** Write balanced equation for
 - (i) $BF_3 + LiH \rightarrow$ (ii) $B_2H_6 + H_2O \rightarrow$ (iii) $NaH + B_2H_6 \rightarrow$ (iv) $Al + NaOH \rightarrow$
 - (v) $B_2H_6 + NH_3 \rightarrow$ (Low tempt and 200°C in 1 : 2 ratio)
- **30.** Complete the following reactions :

(i) $K_4 [Fe(CN)_6] + H_2SO_4 + H_2O \longrightarrow$ (ii) $CS_2 + NO \longrightarrow$ (iii) $Pb_3O_4 + HNO_3 \longrightarrow$ (iv) $CaF_2 + SiO_2 + H_2SO_4 \longrightarrow$ (v) $Pb^{+2} + H_2S + 2Cl^-$ (from saturated salt. of KCl) \longrightarrow **31.** $PbCl_4$ is less stable than $SnCl_4$. Explain.

32. $CaO + C \xrightarrow{\Delta} (A) + (B)$ $(A) + N_2 \xrightarrow{\Delta} (C) + carbon$ $(C) + H_2O \longrightarrow (D) + NH_3$ Identify (A), (B), (C) and (D)z

- **33.** Name two elements known for their semiconducting nature.
- **34.** Write at least three uses of silicones.
- **35.** During reduction of SiO₂ into Si, SiO₂ is taken in excess, why?
- **36.** Rationalise the given statements and give chemical reactions :
 - (i) Lead (II) chloride reacts with Cl_2 to give $PbCl_4$
 - (ii) Lead (IV) chloride is highly unstable towards heat.
 - (iii) lead is known not to form an iodide, PbI_4
- **37.** Suggest a reason as to why CO is poisonous.
- **38.** What happens when ?
 - (i) Ammonia reacts with $KMnO_4$ (neutral medium)
 - (ii) A mixture of NO and NO₂ is passed in Na₂CO₃ solution.
- **39.** What happens when ?
 - (i) Aqueous solution of $NaNO_3$ is heated with zinc dust and caustic soda.
 - (ii) CaO in water reacts with white phosphorus.
- **40.** Write down a reaction showing action of $N_2O_4(\ell)$ as non-aqueous solvent.
- **41.** What happens when:

(a) $NH_4Cl \& NaNO_3$ is heated strongly.	(b) $(NH_4)_2CO_3$ is heated.	(c) NH_4NO_2 is heated.
(d) Mg_3N_2 reacts with water.	(e) Mg is burnt in air and the pr	oduct is treated with water.

42. How will you obtain :

(A) Ammonia from quick lime (in three steps)

- **(B)** H_3PO_4 from phosphorite (in two steps only)
- 43. An orange solid (A) on heating gives a green residue (B), a colourless gas (C) and water vapour. The dry gas (C) on passing over heated Mg gave a white solid (D). (D) on reaction with water gave a gas (E) which formed dense white fumes with HCl. Identify (A) to (E) giving reactions.
- **44.** Give the equations for preparation of :

(A) Nitrolim. (B) Phosphine by P_4 and $I_2(aq)$.

- 45. A waxy crystalline solid (A) with a garlic odour is obtained by burning white P in a stream of air and nitrogen. (A) reacts vigorously with hot water forming a gas (B) and an acid (C). Gas (B) has unplesant odour of rotten fish and is neutral towards litmus. When passed through AgNO₃ solution, gas (B) produces a black precipitate (D). What are (A) to (D)? Give chemical equations of the reactions.
- 46. (i) An organic iodide (A) on heating with a solution of KOH gives a gas (B) and the solution of compound (C).
 - (ii) The gas (B) on ignition in air gives a compound (D) and water.
 - (iii) Copper sulphate is finally reduced to the metal on passing (B) through its solution.

(iv) Precipitate of compound (E) is formed on reaction of (C) with copper sulphate solution. Identify (A) to (E) and give chemical equations for steps (i) to (iv).

- 47. What do you understand by tailing of mercury ?
- 48. From the reactions given below, identify (A), (B), (C) and (D) and write their formulae.

(A) + dil. $H_2SO_4 + K_2Cr_2O_7 \longrightarrow$ (B) Green Solution

 $(\mathbf{A}) + \operatorname{dil.} \operatorname{H}_2\operatorname{SO}_4 + (\mathbf{C}) \longrightarrow \operatorname{MnSO}_4$

 $(\mathbf{A}) + \mathbf{O}_2 \xrightarrow{\mathsf{H}_2\mathsf{O}} (\mathbf{D})$

- **(D)** + BaCl₂ \longrightarrow White ppt.
- **49.** Complete the following equations

(i) $I_2 + O_3 + H_2O \rightarrow HIO_3 + \dots$ (ii) $CaS + H_2O + CO_2 \rightarrow \dots + \dots$

50. Complete and balance the following :

(i) $P_4O_{10} + PCl_5 \longrightarrow$ (ii) $NH_3 + NaOCl \longrightarrow$

- 51. In the following reaction, $A + 2B + H_2O \longrightarrow C + 2D$ ($A = HNO_2$, $B = H_2SO_3$, $C = NH_2OH$). Identify D. Draw the structures of A, B, C and D.
- **52.** What happens when :
 - (a) $K_2Cr_2O_7$ is strongly heated
 - (b) Silent electric discharge is passed through pure and dry O_2
 - (c) Ozone reacts with dry iodine
 - (d) 2-Ethyl anthraquinol undergoes air oxidation
 - (e) H_2S and SO_2 react in presence of moisture
 - (f) Burning magnesium is kept in the atmosphere of SO_2
 - (g) Acidified iodates react with SO_2
 - (h) Conc. H_2SO_4 is made to react with phosphorus pentaoxide
- 53. What happens when
 - (i) Hydrogen sulphide is bubbled through an aqueous solution of sulphur dioxide .
 - (ii) Hydrogen sulphide is passed through acidified ferric chloride.
- 54. Draw the structure of following acids.

(a) Marshall's acid	(b) Dithionic acid	(c) Caro's acid	(d) Thiosulphuric acid
---------------------	--------------------	-----------------	------------------------

- **55.** Give reason for the following:
 - (a) Formation of NH₃ from its elements at constant pressure is accompanied by a decrease in volume.
 - (b) Nitric oxide turns brown in air.
 - (c) Copper dissolves in HNO₃ but not in HCl.
 - (d) $Pb(NO_3)_2$ on heating produces a pale yellow gas which on strong heating produces brown gas.
- **56.** What happens when :
 - (i) Red phosporus is treated with I₂ and water.
 - (ii) Give balance equation : Cu reacts with HNO₃ to produce NO and NO₂ in the ratio 2 : 1
- 57. In P_4O_{10} , the number of oxygen atoms bonded to each phosphorus atom is
- 58. Nitrogen cannot be stored as liquid in sealed containers but ammonia can be, why?

59. Why does NO₂ dimerise ?

60. Complete and balance the following chemical equations :

(a) $HSO_3 NH_2 + HNO_3 (Conc.) \longrightarrow$ (b) $Ag_2N_2O_2 + HCl \xrightarrow{\text{ether}} \rightarrow$ (c) $HNO_3 (50\%) + As_2O_3 + H_2O \longrightarrow$ (d) $AgNO_3 + Cl_2 \xrightarrow{60-90°C} \rightarrow$ (e) $HPO_3 + H_3PO_4 \xrightarrow{100°C} \rightarrow$ (f) $Ca_3 (PO_4)_2 + SiO_2 + C \longrightarrow$ (taken in equimolar)

- 61. Write the names of substances which have higher oxidation potential than ozone.
- 62. Why sulphur is able to show oxidation state of +4 and +6 with fluorine and oxygen ?
- 63. Why is dioxygen a gas but sulphur a solid ?
- 64. An aqueous solution of a gas (X) gives the following reactions :
 - (i) It decolourizes an acified $K_2Cr_2O_7$ solution.
 - (ii) On boiling with H_2O_2 , cooling it and then adding an aqueous solution of $BaCl_2$, a precipitate insoluble in dilute HCl is obtained.
 - (iii) On passing H₂S gas in the solution, white turbidity is obtained. Identify (X) and give equations for steps (i), (ii) and (iii).
- 65. On heating rhombic sulphur it melts but viscosity of liquid increases upto 200⁰C and beyond that it decreases why ?
- **66.** How is the presence of SO_2 detected ?
- 67. Which aerosols deplete ozone ?
- 68. Oxygen almost invariably exhibits an oxidation state of -2 but other members of the family exhibit negative as well as positive oxidation state of +2, +4 and +6. Exaplain it ?

E	Exercise # 5	Part # I 🔰 [Previous Year Questio	ns] [AIEEE/JEE-	MAIN]
		Group	- 13th and 14th		
1.	The soldiers of Nap buttons of their uni	oolean army while at Alps d forms. White metallic tin bu	luring freezing winter suffer attons got converted to grey	ed a serious problem powder. This transfor	as regards to the tin rmation is related to [AIEEE 2004]
	(1) a change in the	crystalline structure of tin			
	(2) an interaction w	with nitrogen of the air at ve	ery low to temperature.		
	(3) a change in the	partial pressure of oxygen	in the air.		
	(4) an interaction w	vith water vapour contained	l in the humid air.		
2.	Aluminium chlorid When dissolved in	e exists as dimer, Al_2Cl_6 in s water, it gives :	solid state as well as in soluti	on of non-polar solver	nts such as benzene. [AIEEE 2004]
	(1) $[Al(OH)_6]^{3-}+3]$	HCl	(2) $[Al(H_2O)_6]^{3+}$ + (3Cl-	
	(3) $Al^{3+} + 3Cl^{-}$		$(4) \operatorname{Al}_2 \operatorname{O}_3 + 6 \operatorname{HCl}$		
3.	In silicon dioxide :				[AIEEE 2005]
	(1) there are doub	e bonds between silicon a	nd oxygen atoms		
	(2) silicon atom is	oonded to two oxygen aton	ns		
	(3) each silicon at	om is surrounded by two or	xygen atoms and each oxyg	en atom is bonded to	two silicon atoms
	(4) each silicon ato	m is surrounded by four or	xygen atoms and each oxyg	en atom is bonded to	two silicon atoms
4.	Heating an aqueou	s solution of aluminium ch	loride to dryness will give :		[AIEEE 2005]
	(1) Al(OH)Cl ₂	$(2) \operatorname{Al}_2 \operatorname{O}_3$	$(3) \operatorname{Al}_2 \operatorname{Cl}_6$	$(4) AlCl_3$	
5.	The stability of dih	alides of Si-Ge-Sn and Ph	increases steadily in the se	quence :	[ATEEE 2007]
	(1) GeX. \leq SiX. \leq S	$nX_1 < PbX_1$	(2) SiX. < GeX. < I	$PbX_{1} < SnX_{2}$	[]
	(3) SiX \leq GeX \leq S	nX < PbX	(4) $PbX < SnX < 0$	GeX < SiX	
6.	In context with the	industrial preparation of hy	vdrogen from water gas (CC	$(0 + \mathbf{H}_2)$, which of the f	ollowing is
	the correct stateme	nt?			[AIEEE 2008]
	(1) CO is removed	by absorption in aqueous C	Cu_2Cl_2 Solution.		
	(2) H_2 is removed t	hrough occlusion with Pd.			
	(3) CO is oxidized	to CO_2 with steam in the pro-	esence of a catalyst followed	d by absorption of CC	D_2 in alkali.
-	(4) CO and H_2 are	ractionally separated using	g differences in their densiti	es.	
7.	is :	ig substituted silanes the of	ne which will give rise to cro	oss linked silicone pol	[AIEEE 2008]
	(1) RSiCl_3	(2) $R_2 SiCl_2$	$(3) R_3 SiCl_2$	$(4) R_4 Si$	
8.	Which one of the f	ollowing is the correct state	ement?		[AIEEE 2008]
	(1) Beryllium exhib	its coordination number of	six.		
	(2) Chlorides of bo	th beryllium and aluminiur	n have bridged structures in	vapour phase.	
	(3) $B_2H_6.2NH_3$ is k	10wn as 'inorganic benzene	2.		
	(4) Boric acid is a p	rotonic acid.			

9.	Which of the following	statements regarding sulph	nur is incorrect ?		[AIEEE 2011]
	(1) S_2 molecule is parar (2) The vapour at 200° (3) At 600°C the gas m	nagnetic. C consists mostly of S ₈ ring	S.		
	(4) The oxidation state	of sulphur is never less that	n +4 in its compounds.		
10.	Boron cannot form whi	ich one of the following ani	ons?		[AIEEE 2011]
	(1) BF_6^{3-}	(2) BH_4^-	(3) $B(OH)_4^-$	(4) BO ₂ ⁻	
11.	Which of the following	g is the wrong statement?			[JEE (Main) 2013]
	(1) ONCl and ONO ⁻ are	e not isoelectronic.	(2) O_3 molecule is bent		
	(3) Ozone is violet-blac	ek in solid state	(4) Ozone is diamagnet	ic gas.	
12.	Which of the following	are Lewis acids?			[JEE(Main) 2018]
	(1) $AlCl_3$ and $SiCl_4$	(2) PH_3 and $SiCl_4$	$(3) \operatorname{BCl}_3 \operatorname{and} \operatorname{AlCl}_3$	(4) PH_3 and	l BCl ₃
		Group - 1	5th and 16th		
1.	The number of hydrog	gen atom (s) attached to pl	hosphorus atom in hypopł	nosphorus acid	l is : [AIEEE 2005]
	(1) zero	(2) two	(3) one	(4) three	
2.	Which of the following	chemical reactions depicts	the oxidizing behaviour of l	$H_2SO_4?$	[AIEEE 2006]
	(1) $2HI + H_2SO_4 \rightarrow I_2 + SO_2 + 2H_2O$		(2) Ca(OH), $+H_2SO_4 \rightarrow$	$CaSO_4 + 2H_2O$	1
	(3) NaCl + $H_2SO_4 \rightarrow Na$	$HSO_4 + HCl$	$(4) 2PCl_5 + H_2SO_4 \rightarrow 2P$	$OCl_3 + 2HCl + S$	SO ₂ Cl ₂
3.	Regular use of which o	f the following fertilizers in	creases the acidity of soil?		[AIEEE 2007]
	(1) Superphosphate of	lime	(2) Ammonium sulphate	e	
	(3) Potassium nitrate		(4) Urea		
4.	Which of the following	statement is wrong?			[AIEEE 2011]
	(1) The stability of hyd	rides increase from NH_to I	RiH in group 15 of the peri	odic table ·	t i
	(1) The submy of figure (2) Nitrogen cannot for	m d π . n π bond	Biri ₃ in group 15 of the peri		
	(2) Nurogen cannot for (3) Single N. N bond is	weaker than the single D	bond		
	(3) Single $N-N$ bound is	s weaker than the single I -I	bolla.		
	(4) N_2O_4 has two resol	lance structure			
5.	Which of the following statements regarding sulphur is incorrect ?			[AIEEE 2011]	
	(1) S_2 molecule is paramagnetic.				
	(2) The vapour at 200°	C consists mostly of S ₈ ring	S.		
	(3) At 600°C the gas ma	ainly consists of S2 molecule	es.		
	(4) The oxidation state	of sulphur is never less that	n +4 in its compounds.		
6.	Which of the following	; is the wrong statement ?			[JEE (Mains) 2013]
	(1) ONCl and ONO ⁻ are	e not isoelectronic.	(2) O_3 molecule is bent		
	(3) Ozone is violet-blac	ck in solid state	(4) Ozone is diamagnet	ic gas.	

7. The pair in which phosphorous atoms have a formal oxidation state of +3 is :

	(1) Pyrophosphorous	and hypophosphoric acids			
	(2) Orthophosphorou	s and hypophosphoric acids	1		
	(3) Pyrophosphorous	and pyrophosphoric acids			
	(4) Orthophosphorou	s and pyrophosphorous acid	ls		
8.	The reaction of zinc w	with dilute and concentrated r	nitric acid, respectively, pr	oduces:	
	(1) NO_2 and NO	(2) NO and N_2O	(3) NO_2 and N_2O	(4) N ₂ O a	nd NO ₂
9.	The compound that d	oes not produce nitrogen gas	s by the thermal decomposition	sition is :	[JEE(Mains) 2018]
	$(1)(NH_{4})_{2}Cr_{2}O_{7}$	$(2) NH_4 NO_2$	(3) (NH4), SO	D_{4}	$(4) Ba(N_3)_2$
	72 27	Group - Haloge	n and Noble Gases	7	52
1.	Which one of the follo	owing statements regarding h	elium is incorrect ?		[AIEEE 2004]
	(1) It is used to produ	ice and sustain powerful sur	perconducting magnets		
	(2) It is used as a cryo	genic agent for carrying out	experiments at low tempe	ratures	
	(3) It is used to fill ga	s balloons instead of hydrog	en because it is lighter and	l non-inflamma	ble
	(4) It is used in gas-co	ooled nuclear reactors	c		
2.	Which among the foll	owing factors is the most imp	portant in making fluorine	the strongest o	oxidizing halogen?
					[AIEEE-2004]
	(1) Hydration enthalp	У	(2) Ionization enthalp	у	
	(3) Electron affinity		(4) Bond dissociation	energy	
3.	The correct order of th	he thermal stability of hydrog	gen halides $(H - X)$ is :		[AIEEE 2005]
	(1) $HI > HBr > HCI > H$	1F	(2) HF > HCl > HBr > I	HI	
	(3) HCl <hf<hbr<< td=""><td>HI</td><td>(4) HI > HCI < HF < H</td><td>Br</td><td></td></hf<hbr<<>	HI	(4) HI > HCI < HF < H	Br	
4.	Which of the following	ng statements is true?			[AIEEE 2006]
	(1) H ₂ PO ₂ is a stronge	r acid than H_2SO_2	(2) In aqueous mediur	n HF is a stron	ger acid than HCl
	(3) HCIO ₄ is a weaker	acid than HClO ₃	(4) HNO ₃ is a stronger	r acid than HN	D,
5.	What products are exp	pected from the disproportio	nation reaction of hypoch	lorous acid?	[AIEEE 2006]
	(1) $HClO_3$ and Cl_2O	(2) HClO_2 and HClO_4	(3) HCl and Cl_2O	(4) HCl at	nd HClO ₃
6.	Identify the incorrect	statement among the followi	ng.		[AIEEE 2007]
	(1) Cl. reacts with exc	ess of NH. to give N. and HC			
	(2) Br. reacts with hot and strong NaOH solution to give NaBr. NaBrO and H O				
	(3) Ozone reacts with SO ₂ to given SO ₂ .				
	(4) Silicon reacts with	$1 \text{ NaOH}_{(a)}$ in the presence of a	air to give Na,SiO, and H,	0.	
		(aq)			
7.	Which one of the follo	owing reactions of Xenon co	ompounds is not feasible?		[AIEEE 2009]
	(1) $3 \text{XeF}_4 + 6 \text{H}_2 \text{O} \rightarrow 2$	$Xe + XeO_3 + 12HF + 1.5O_2$	(2) $2XeF_2 + 2H_2O \rightarrow 2$	$Xe + 4HF + O_2$	
	$(3) \operatorname{XeF}_6 + \operatorname{RbF} \to \operatorname{Rb}[$	[XeF ₇]	$(4) \operatorname{XeO}_3 + 6 \operatorname{HF} \to \operatorname{Xe}$	$F_{6} + 3H_{2}O$	
8.	The products obtained	d when chlorine gas reacts w	ith cold and dilute aqueou	is NaOH are :	[JEE Main 2017]
	(1) ClO^- and ClO_3^-	(2) ClO_2^- and ClO_3^-	(3) Cl ⁻ and ClO ⁻	(4) Cl⁻ an	d ClO ₂

	Part # II >> [Previous Ye	ar Questions][IIT-JEE ADVANCED]			
	Gi	roup- 13th and 14th			
1.	$B(OH)_3 + NaOH \longrightarrow Na[B(OH)_4](aq)$				
	Then addition of which of the	e following proceeds the reaction in the forward direction. [JEE 2006]			
	(A) cis-1, 2 diol (B) Trans 1, 2	diol (C) Borax (D) Na_2HPO_4			
2.	Match the reactions in Column-I with na	ure of the reactions in column-II. [JEE 2006]			
	Column-I	Column-II			
	(A) $\operatorname{Bi}^{3+} \to (\operatorname{BiO})^+$	(p)) Heat			
	(B) $[AIO_2]^- \rightarrow Al(OH)_3$	(q) Hydrolysis			
	(C) $\operatorname{SiO}_4^{4-} \rightarrow \operatorname{Si}_2 \operatorname{O}_7^{-6}$	(r)Acidification			
	(D) $(B_4O_7^{2-}) \rightarrow [B(OH)_3]$	(s) Dilution by water			
3.	Statement-1 : In water, orthoboric acid b	ehaves as a weak monobasic acid, because			
	Statement-2 : In water, orthoboric acid a	cts as a proton donor. [JEE 2007]			
	(A) Statement-1 is True, Statement-2 is T	rue; Statement-2 is a correct explanation for Statement-1.			
	(B) Statement-1 is True, Statement-2 is T	rue; Statement-2 is NOT a correct explanation for Statement-1			
	(C) Statement-1 is True, Statement-2 is F	alse			
	(D) Statement-1 is False, Statement-2 is T	rue			
4.	The Coordination number of Al in the cr	vstalline state of AlCl ₃ is ? [JEE 2009]			
5.	Starting from $SiCl_4$, prepare the fol (give reactions only):	lowing in steps not exceeding the number given in parenthesis [JEE 2001]			
	(i) Silicon (1) (ii) Linear silicone conta	ining methyl groups (4) (iii) Na_2SiO_3 (3)			
6.	(Me) ₂ SiCl ₂ on hydrolysis will produce :	[JEE 2003]			
	(A) (Me) ₂ Si(OH) ₂	(B) $(Me)_2 Si = O$			
	$(\mathbf{C}) - [\mathbf{O} - (\mathbf{M}\mathbf{e})_2 \operatorname{Si} - \mathbf{O} -]_n - \mathbf{O}$	(D) $Me_2SiCl(OH)$			
7.	Which of the following silicate is formed	when three oxygen atoms of $[SiO_4]^4$ tetrahedral units are shared ? [JEE 2005]			
	(A) Sheet silicate	(B) Pyrosilicate			
	(C) Three dimensional silicate	(D) linear chain silicate			
8.	Statement-1 : Pb ⁺⁴ compounds are stronger oxidizing agents than Sn ⁴⁺ compounds.				
	Statement-2 : The higher oxidation states for the group 14 elements are more stable for the heavier memb group due to 'inert pair effect'.				
	(A) Statement-1 is True, Statement-2 is T	rue; Statement-2 is a correct explanation for Statement-1.			
	(B) Statement-1 is True, Statement-2 is T	rue; Statement-2 is NOT a correct explanation for Statement-1			
	(C) Statement-1 is True, Statement-2 is F	alse			
	(D) Statement-1 is False, Statement-2 is T	rue			

9.	In the reaction, $2\mathbf{X} + \mathbf{B}_2\mathbf{H}_6 \longrightarrow [\mathbf{BH}_2(\mathbf{X})_2]^+ [\mathbf{BH}_4]^-$						
	the amine(s) X is(are):				[JEE 2009]		
	(A) NH_3	(B) CH_3NH_2	$(C) (CH_3)_2 NH$	(D) (C)	H ₃) ₃ N		
10.	The value of n in the mo	olecular formula Be _n Al ₂	Si ₆ O ₁₈ is :		[JEE 2010]		
11.	Three moles of B_2H_6 are is.	e completely reacted with	methanol. The numbe	er of moles of boron o	containing product formed		
					[JEE 2015]		
12.	The crystalline form of	borax has			[JEE(Advanced) 2016]		
	(A) teranuclea $[B_4O_5(O)]$	$H)_4$]2– unit					
	(B) all boron atoms in t	the sam plane					
	(C) equal number of sp	o ² and sp ³ hybridized bor	on atoms				
	(D) one terminal hydrox	xide per boron atom					
13.	Among the following th	he correct statement(s) is	s(are)		[JEE(Advanced) 2017]		
	(A) $Al(CH_3)_3$ has the th	(A) Al(CH ₂), has the three-centre two-electron bonds in its dimeric structure					
	(B) BH, has the three-c	centre two-electron bond	ls in its dimeric struct	ure			
	(C) The Lewis acidity of	(C) The Lewis acidity of BCl, is greater than that of AlCl,					
	(D) AlCl ₃ has the three-	(D) AICl, has the three-centre two-electron bonds in its dimeric structure					
		Group -	- 15th and 16th				
1.	$(NH_4)_2$ Cr ₂ O ₇ on heatin	g gives a gas which is al	so given by :		[JEE 2004]		
	(A) heating $NH_{1}NO_{2}$		(B) heating NI	H ₄ NO ₃			
	(C) treating Mg_3N_2 with H_2O (D) treating Na(compound)			a(compound) with H	I ₂ O ₂		
2.	A pale blue liquid is ob	tained by equimolar mix	ture of two gases at -3	30°C.	[JEE 2005]		
	$(\mathbf{A}) \mathbf{N}_2 \mathbf{O}$	(B) N_2O_3	$(\mathbf{C}) \mathrm{N}_{2}\mathrm{O}_{4}$	(D) N_2O_5			
3.	Thermodynamically me	ost stable allotrope of pł	nosphorus is :		[JEE 2005]		
	(A) Red	(B) White	(C) Black	(D) Yellow			
4.	(a) What amount of Ca	O in grams is required to	neutralise 852 g of P	$_{4}O_{10}$.	[JEE 2005]		
	(b) Write the structure of $P_4 O_{10}$.						
	Paragraph for Question Nos. 5 to 7						
	There are some deposit difficult to reduce und complexes with transitie PH ₃ . Phosphine is a flat	ts of nitrates and phosphater the laboratory condition metal ions. Hybridizate mmable gas and is prepared	ates in earth's crust. N tions but microbes do tion easily explains the ared from white phosp	litrates are more solution to it easily. Ammoni e ease of sigma dona bhorous.	uble in water. Nitrates are a forms large number of tion capability of NH ₃ and		
5.	Among the following, t	the correct statement is :			[JEE 2008]		

(A) phosphates have no biological significance in humans.

(B) between nitrates and phosphates, phosphates are less a abundant in earth's crust.

(C) between nitrates and phosphates, nitrates are less abundant in earth's crust.

(D) oxidation of nitrates is possible in soil.

6.	Among	the following,	the correct statement is				[JEE 2008]	
	(A) between NH ₃ and PH ₃ , NH ₃ is a better electron donor because the lone pair of electrons occupies sphere orbital and is less directional.							
	(B) between NH ₃ and PH ₃ , PH ₃ is a better electron donor because the lone pair of electrons occupies sp ³ is more directional.							
	(C) betw is n	veen NH ₃ and l nore directiona	PH_3 , NH_3 is a better elected.	tron donor bec	ause the lone pai	r of electrons occupie	es sp ³ orbital and	
	(D) betw orb	ween NH ₃ and ital and is less	PH_{3} , PH_{3} is a better electric directional.	etron donor be	cause the lone pa	air of electrons occup	oies spherical 's'	
7.	White p	hosphorus on	reaction with NaOH giv	ves PH ₃ as one	of the products.	. This is a :	[JEE 2008]	
	(A) dim	erization reacti	on	(B) di	isproportionation	n reaction		
	(C) con	densation reac	tion	(D) pi	recipitation react	ion		
8.	The read	ction of P_4 with	\mathbf{X} leads selectively to I	P_4O_6 . The X is	:		[JEE 2009]	
	(A) Dry	0,		(B)A	mixture of O ₂ an	dN,		
	(C) Moi	ist O,		(D) O	, in the presence	e of aqueous NaOH		
9.	Match e	each of the read	ctions given in column l	with the corre	esponding produ	cts (s) given in colum	nn II.	
		Column I			Column II		[JEE 2009]	
	(A)	Cu + dil HNO	3	(p)	NO			
	(B)	Cu + conc HN	NO ₃	(q)	NO ₂			
	(C)	Zn+dil HNO)	(r)	N ₂ O			
	(D)	Zn + conc HN	NO ₃	(s)	$Cu(NO_3)_2$			
			5	(t)	$Zn(NO_3)_2$			
10.	Extra pı	ure N_2 can be c	btained by heating				[JEE 2011]	
	(A) NH	, with CuO	(B) NH4NO3	(C) (N	MH_{4}) ₂ Cr ₂ O ₇	$\textbf{(D)} \operatorname{Ba}(N_3)_2$		
11.	Among P_4O_{10} .	the following,	the number of compound	ls that can reac	t with PCl ₅ to giv	ve POCl_3 is O_2 , CO_2 , S	O ₂ , H ₂ O, H ₂ SO ₄ , [JEE 2011]	
12.	Which ordering of compounds is according to the decreasing order of the oxidation state of nitrogen?							
	(A) HN0	O ₃ , NO, NH ₄ Cl,	N ₂	(B) H	(B) HNO_3 , NO , N_2 , NH_4Cl		[JEE 2012]	
	(C) HNO_3 , NH_4Cl , NO , N_2 (D) NO , HNO_3 , NH_4Cl , N_2			, N ₂				
13.	Which o	of the following	g oxoacids of sulphur ha	as –O–O– link	age ?		[JEE 2004]	
	(A) H ₂ S	O_2O_3	$\textbf{(B)} H_2 S_2 O_5$	(C) H	$S_2 S_2 O_6$	$\textbf{(D)}\mathrm{H}_{2}\mathrm{S}_{2}\mathrm{O}_{8}$		
14.	Which o	Which of the following is not oxidised by O ₃ ?			[JEE 2005]			
	(A) KI		(B) KMnO ₄	(C) K	$_2$ MnO ₄	(D) FeSO ₄		
15.	Which g	gas is evolved	when PbO ₂ is treated	with concentr	rated HNO ₃ ?		[JEE 2005]	
	(A) NO ₂	2	(B) O ₂	(C) N	2	(D) N ₂ O		
16.	Aqueou	s solution of N	$Ia_2S_2O_3$ on reaction with	Cl ₂ gives :			[JEE 2008]	
	(A) Na_2	S_4O_6	(B) NaHSO ₄	(C) Na	aCl	(D) NaOH		

17.	The product formed in the reaction of SOCl ₂ with white phosphorous is :				[JEE 2014]	
	(A) PCl ₃	(B) SO_2Cl_2	(C) SCl ₂	(D) POCl ₃		
18.	When O_2 is adsorbed on a regarding this adsorption (A) O_2 is physisorbed	a metallic surface, elec is (are)	etron transfer occurs fror	n the metal to O ₂ . The TRUE	statements(s) [JEE 2015]	
	(B) heat is released					
	(C) Occupancy of $\pi *_{2p}$ of	O_2 is increased				
	(D) bond length of O_2 is i	ncreased				
19.	The nitrogen containing compound produced in the reactino of HNO_3 with P_4O_{10} [JEE 2010]					
	(A) can also be prepared	by reaction of P_4 and I	HNO ₃			
	(B) is diamagnetic					
	(C) contains one N-N bo	nd				
	(D) reacts with Na metal	producing a brown ga	S			
20.	The order of the oxidation	n state of the phosphor	rus atom in H_3PO_2 , H_3PO_3	P_4 , H_3PO_3 , and $H_4P_2O_6$ is	[JEE 2017]	
	(A) $H_3PO_4 > H_3PO_2 > H_3PO_3 > H_4P_2O_6$					
	(B) $H_3PO_2 > H_3PO_3 > H_4P_2O_6 > H_3PO_4$					
	(C) $H_{3}PO_{3} > H_{3}PO_{2} > H_{3}PO_{4} > H_{4}P_{2}O_{6}$					
	(D) $H_3PO_4 > H_4P_2O_6 > H_3P_2O_6 > $	$PO_3 > H_3PO_2$				

Paragraph for Questions 21 & 22

Upon heating $KClO_3$ in the presence of catalytic amount of MnO_2 , a gas W is formed. Excess amount of W reacts with white phosphorus to give X. The reaction of X with pure HNO_3 gives Y and Z. [JEE(Advanced) 2017]

- 21. Y and Z are, respectively (A) N_2O_5 and HPO_3 (B) N_2O_3 and H_3PO_4 (C) N_2O_4 and H_3PO_3 (D) N_2O_4 and HPO_3
- 22. W and X are respectively (A) O_2 and P_4O_6 (B) O_2 and P_4O_{10} (C) O_3 and P_4O_6 (D) O_3 and P_4O_{10}
- 23. Based on the compounds of group 15 elements, the correct statement (s) is (are) [JEE(ADVANCED) 2018]
 (A) Bi₂O₅ is more basic than N₂O₅
 (B) NF₃ is more covalent than BiF₃
 (C) PH₃ boils at lower temperature than NH₃
 (D) The N-N single bond is stronger than the P-P single bond
- 24. The total number of compounds having at least one binding oxo group among the molecules given below is [JEE Advanced 2018] N₂O₃, N₂O₅, P₄O₆, P₄O₇, H₄P₂O₅, H₅P₃O₁₀, H₂S₂O₅, H₂S₂O₅

Group - Halogen and Noble Gases

Paragraph for Question Nos. 1 to 3

The noble gases have closed-shell electronic configuration and are monoatomic gases under normal conditions. The low boiling points of the lighter noble gases are due to weak dispersion forces between the atoms and the absence of other interatomic interactions.

The direct reaction of xenon with fluorine leads to a series of compounds with oxidation numbers +2, +4 and +6. XeF₄ reacts violently with water to give XeO₄. The compounds of xenon exhibit rich stereochemistry and their geometries can be deduced considering the total number of electron pairs in the valence shell.

1.	Argon is used in arc welding because of its :				
	(A) low reactivity with me	tal	(B) ability to lower the me	lting point of metal	
	(C) flammability		(D) high calorific value		
2.	The structure of XeO_3 is :				[JEE 2007]
	(A) linear	(B) planar	(C) pyramidal	(D) T-shaped	
3.	XeF_4 and XeF_6 are expect	ed to be :			[JEE 2007]
	(A) oxidizing	(B) reducing	(C) unreactive	(D) strongly basic	

4. All the compounds listed in Column-I react with water. Match the result of the respective reactions with the appropriate options listed in Column-II. [**JEE 2010**]

Column I	Column II
(A) $(CH_3)_2SiCl_2$	(p) Hydrogen halide formation
(B) XeF_4	(q) Redox reaction
(C) Cl ₂	(r) Reacts with glass
(D) VCl ₅	(s) Polymerization
	(t) O_2 formation

Paragraph for Questions 5 to 6

The reactions of Cl, gas with cold-dilute and hot-concentrated NaOH in water give sodium salts to two (different) oxoacids of chlorine, **P** and **Q**, respectively. The Cl, gas reacts with SO, gas, in presence of charcoal, to give a product R. R reacts with white phosphours to give a compound S. On hydrolysis, S gives an oxoacid of phosphours T.

5. **P** and **Q**, respectively, are the sodium salts of :

- (A) hypochlorus and chloric acids
 - (B) hypochlorus and chlorus acids
 - (C) chloric and perchloric acids
 - (D) chloric and hypochlorus acids
- **R**, **S** and **T**, respectively, are : 6. (A) SO_2Cl_2 , PCl_5 and H_3PO_4 (B) SO₂Cl₂, PCl₃ and H₃PO₃ (C) SOCl₂, PCl₃ and H₃PO₂ (D) SOCl₂, PCl₅ and H₂PO₄

[JEE(Advanced) 2013]

[JEE(Advanced) 2013]

7. Under ambient conditions, the total number of gases released as products in the final step of the reaction scheme shown below is :

XeF ₆ –	$\xrightarrow{\text{Complete}} P + \text{other product}$	$\xrightarrow{OH'/H_2O}$ Q slow disproportion	$\xrightarrow{\text{tation in OH} / H_2O} F$	Products
(A) 0	(B) 1	(C) 2	(D) 3	
The con	npound(s) with TWO lone pairs of	f electrons on the central atom is	s (are)	JEE(Advanced) 2016]
(A) BrF ₅	(B) ClF3	(C) XeF_4	(D)SF ₄	

- 9.The correct statement(s) about the oxoacids, $HClO_4$ and HClO, is(are)[JEE(Advanced) 2017](A) The central atom in both $HClO_4$ and HClO is sp^3 hybridized
 - **(B)** HClO₄ is formed in the reaction between Cl_2 and H_2O

8.

- (C) The conjugate base of $HClO_4$ is weaker base than H_2O
- (**D**) $HClO_4$ is more acidic than HClO because of the resonance stabilization of its anion

Na₂[B₄O₃(OH)₄].8H₂O
(a)

$$B \leftarrow (d)$$

 $B (OH)_3 \leftarrow (c)$
 B_2H
 $B + HF_2$
(b)

which of the following option correctly describes the reagents, products and the reaction conditions given in parentheses as small alphabets?

Option	(a)	(b)	(c)	(d)
(A)	Acidic hydrolysis	$\rm NH_3$ and $\rm NH_4BF_4$	Hydrolysis	Heating only
(B)	Acidc hydrolysis	NH_4BF_4	Hydrolysis	Heating in presence of Mg or Fe
(C)	Alkaline hydrolysis	NH_4BF_4	Hydrolysis	Heating only
(D)	Alkaline hydrolysis	$N_2 + BF_3$	Hydrolysis	Heating in presence of Mg or Fe

4. Select the correct statement about elements of group 15th

- (A) The order of stability of oxidation state for +3 is $Bi^{+3} > Sb^{+3} > As^{+3}$ and for +5 is $Bi^{+5} < Sb^{+5} < As^{+5}$
- (B) In case of nitrogen, all oxidation states from +1 to +4 tend to disproportionate in acid solution.
- (C) There is a considerable increase in covalent radius from N to P but also from As to Bi only a small increase in covalent radius is observed.

(D) All of the above.

- 5. For H_3PO_3 and H_3PO_4 the correct choice is :
 - (A) H_3PO_3 is dibasic and reducing agent
 - **(B)** H_3PO_3 is a dibasic and a non-reducing agent
 - (C) H_3PO_4 is a tribasic and a reducing agent
 - **(D)** H_3PO_3 is tribasic and a non-reeducing agent

6. The following flow diagram represents the industrial preparation of nitric acid from ammonia.

$$NH_{3} + O_{2} \text{ (from excess of air)} \xrightarrow{(p)}{850^{\circ}C} \xrightarrow{NO} \xrightarrow{(q)}{air} \text{(r)} \xrightarrow{(s)} HNO_{3} + NO \text{ and table.}$$
7. Which of the following is not oxidised by O3?
(A) KI
(B) FeSO_{4}
(C) KMnO_{4}
(D) K_{2}MnO_{4}
8. Hot concentrated sulphuric acid dissolves sulphur froming:
(A) SO_{3}
(B) SO_{2}
(C) H_{2}SO_{3}
(D) H_{2}S_{2}O_{3}

9. Which of the following is incorrect for the oxides of 16th group elements?

(A) Reducing property of their dioxides decreases from SO_2 to TeO_2

(B) Basic character of their dioxides increases down the group i.e acidic character decreases down the group.

(C) (A) and (B) Both.

(D) None of the above.

10. A brown coloured mixture of two gases is obtained by the reduction of 6N nitric acid with metallic copper. This mixture on cooling condenses to a blue liquid which on freezing (-30°) gives a blue solid. The correct choice for blue liquid or solid is :

(A) It is referred to as a anhydride of nitric acid.

(B) It is an acidic oxide and hence dissolves in alkalies producing nitrites.

(C) It can also be prepared by the action of 50% HNO3 on arsenious oxide and then cooling to 250K.

(D) All of these.

11. $HCN + H_2O \longrightarrow [X] + NH_3$

 $[X] \xrightarrow{\Lambda} [Y] + H_2O$

(Unbalanced equations)

[Y] may be prepared by which one of the following methbods?

(A) By dehydration of malonic acid with P_2O_5

- (B) By thermal decomposition of carbon sub-oxide in air.
- (C) By heating potassium hexacyanoferrate (II) with conc. H₂SO₄.
- **(D)** By the action of conc. HNO₃ on charcoal.
- 12. A gas 'X' is passed through water to form a saturated solution. the aquesou solution of treatment with silver nitrate gives a white precipitate. The saturated aqueous solution also dissolves magnesium ribbon with evolution of colourless gas 'Y'. 'X' and 'Y' are respectively :

(A)
$$CO_2, Cl_2$$
 (B) Cl_2, CO_2 (C) Cl_2, H_2 (D) H_2, Cl_2

- 13.Which of the following can be reduced by HF?
(A) H_2SO_4 (B) KMnO_4(C) $K_2Cr_2O_7$ (D) None of these
- 14. Which one of the following statements regarding helium is incorrect?

(A) It is used to produce and sustain powerful superconducting magnets.

(B) It is used as a cryogenic agent for carrying out experiments at low temperatures.

- (C) It is used in filling balloons for meterological observations because it is lighter and non-inflammable.
- (D) It is used as diluent for oxygen in modern diving apparatus because of its high solubility in blood

- **15.** Which of the following statement(s) is/are false for sulphurdioxide?
 - (A) It reacts with dry chlorine in presence of charcoal to form sulphuryl chloride.
 - (B) It reduces KIO₃ to iodine in acidic medium
 - (C) It when passed through a solution of sodium sulphide, produces Na_2SO_3 .
 - **(D)** It oxidises $SnCl_2$ to $SnCl_4$ in presence of HCl

SECTION - II : MULTIPLE CORRECT ANSWER TYPE

16. $Ca_2B_6O_{11} + Na_2CO_3 \xrightarrow{\Delta} [X] + CaCO_3 + NaBO_2$ (unbalanced equation)

Correct choice(s) for [X] is/are :

(A) structure of anion of crystalline [X] has one boron atom sp³ hybridised and other three boron atom sp² hybridised.

(B) X with NaOH (aq.) gives a compound which on reaction with hydrogen peroxide in alkaline medium yields a compound used as brightner in soaps.

(C) hydrolysis of [X] with HCl or H_2SO_4 yields a compound which on reaction with HF gives fluoroboric acid. (D) [X] on heating with chromium salts in oxidising flame gives green coloured bead.

- 17. Which of the following statement(s) is/are true?
 - (A) Boiling point of ammonia is greater than stibine
 - (B) Calcium carbide reacts with nitrogen gas at 1100°C to form a fertilizer, nitrolin.
 - (C) Nearly all intermediate oxidation states of phosphorus disproportionate in to +5 and -3 both in alkali and acid
 - (D) The melting point of antimony is less than arsenic.
- **18.** Which of the following order(s) is/are incorrect?

(A) $H_3PO_4 > H_3PO_3 > H_3PO_2$ (reducing character) (B) $N_2O < NO < N_2O_3 < N_2O_5$ (oxidation state on nitrogen atom) (C) $NH_3 > PH_3 < AsH_3 < SbH_3$ (basicity) (D) $SbH_3 > NH_3 > AsH_3 > PH_3$ (reducing character)

- 19. Which of the following statements regarding hydrogen peroxide is(are) incorrect?
 - (A) The two hydroxy groups in hydrogen peroxide lie in the same plane
 - (B) Aqueous solution of H₂O₂ turn blue litmus red.
 - (C) When H₂O₂ behaves as a reducing agent, the O–O bond in its molecules is not broken down.

(D) Aqueous solution of H_2O_2 is stored in plastic bottles and some urea, phosphoric acid or glycerol is added to that solution.

 (\mathbf{D}) H₂S₂O₈

- **20.** The compound(s) which (have) peroxo linkage is (are) : (A) $H_2S_2O_3$ (B) H_2SO_5 (C) $H_2S_2O_7$
- 21. A solution containing Br⁻ ions is treated with each of the following. Which of these will not liberate bromine gas? (A) Cl₂ (B) HI (C) I₂ (D) SO₃
- 22. Select the incorrect order(s) from the following : (A) $ClO^{-} < BrO^{-} < IO^{-} - disproportionation$ (B) $ClO_{4}^{-} < BrO_{4}^{-} < IO_{4}^{-} - oxidising power$ (C) $HClO < HClO_{2} < HClO_{3} < HClO_{4} - acid strength$ (D) $HClO < HClO_{2} < HClO_{3} < HClO_{4} - oxidising power$

23. $XeF_4 + O_2F_2 \longrightarrow [X] + O_2$ (unbalanced equation)

Select the correct statement(s) for [X].

- (A) Partial hydrolysis of [X] gives $XeOF_4$ as one of the product.
- **(B)** [X] gives yellow liquid on melting
- (C) [X] reacts with SiO_2 to form $XeOF_4$ and SiF_4
- **(D)** [X] reacts with XeO_3 to form $XeOF_4$

SECTION - III : ASSERTION AND REASON TYPE

- Statement 1: Mercury in contact with ozone loses its mobility and starts sticking to the glass surface.
 Statement 2: This is known as tailing of mercury.
 - (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
 - (B) Statemen-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
 - (C) Statement-1 is True, Statement-2 is False.
 - (D) Statement-1 is Fasle, Statement-2 is True.
- 25. Statement 1: Reddish brown gas, NO_2 when passed through alkalies gives nitrite only.
 - **Statement 2**: NO₂ is acidic in nature and is a mixed anhydride of nitric and nitrous acids.
 - (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
 - (B) Statemen-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
 - (C) Statement-1 is True, Statement-2 is False.
 - (D) Statement-1 is Fasle, Statement-2 is True.
- 26. Statement 1: Ammonium salts give yellow precipitates with both chloroplatinic acid and sodium cobaltinitrite Statement 2: Ammonium salt containing SO_4^{2-} anion on heating quite readily decomposes to give N₂O.
 - (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
 - (B) Statemen-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
 - (C) Statement-1 is True, Statement-2 is False.
 - **(D)** Statement-1 is Fasle, Statement-2 is True.
- **27. Statement 1**: SF_6 is used as a gaseous insulator in high voltage generators.
 - **Statement**-2: It is inert and has good dielectric properties.
 - (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
 - (B) Statemen-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
 - (C) Statement-1 is True, Statement-2 is False.
 - **(D)** Statement-1 is Fasle, Statement-2 is True.
- **28. Statement 1**: Hydrolysis of XeF_6 represents a redox reaction.

Statement – 2: The products of hydrolysis are $XeOF_4$ and XeO_2F_2 .

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (B) Statemen-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
- (C) Statement-1 is True, Statement-2 is False.
- (D) Statement-1 is Fasle, Statement-2 is True.

- **29. Statement 1**: Finally divided iron does not form ferric chloride with hydrochloric acid.
 - Statement -2: Hydrochloric acid produces hydrogen gas with iron.
 - (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
 - (B) Statemen-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
 - (C) Statement-1 is True, Statement-2 is False.
 - (D) Statement-1 is Fasle, Statement-2 is True.
- 30. Statement 1: Amongst the trihalides of nitrogen, NF₂, NCl₂, N Br₃ and NI₂, NF₃ is least basic.
 - Statement 2: In NF_{3} , the fluorine has the highest value of electronegativity and thus the lone pair of electrons on N-atom is strongly bound.
 - (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
 - (B) Statemen-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
 - (C) Statement-1 is True, Statement-2 is False.
 - **(D)** Statement-1 is Fasle, Statement-2 is True.
- **31. Statement 1**: Zeolite, which is hydrated sodium aluminium silicate is used as water softner.
 - Statement 2 : The sodium ions of zeolite are exchanged with calcium and magnesium ions when hard water is passed through it.
 - (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
 - (B) Statemen-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
 - (C) Statement-1 is True, Statement-2 is False.
 - (D) Statement-1 is Fasle, Statement-2 is True.
- 32. Statement 1: HNO₃ oxidises sulphur to H_2SO_4 acid (S + VI) but only oxidises selenium to H_2SO_3 (Se + IV).
 - Statement -2: In selenium atoms, the electrons are more tightly held by the nucleus on account of increases nuclear charge.
 - (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
 - (B) Statemen-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
 - (C) Statement-1 is True, Statement-2 is False.
 - (D) Statement-1 is Fasle, Statement-2 is True.

SECTION - IV : COMPREHENSION TYPE

Read the following comprehensions carefully and answer the questions.

Comprehension #1

A crystalline solid (A) reacts with hydrogen gas to form a monoatomic gas (B) and a highly associated liquid (C). (A) is soluble in water and undergoes hydrolysis slowoly to form (B), (C) and a diatomic gas (D). When pure and dry (D) is subjected to a silent electric discharge and another pale blue gas (E) is produced which like (A) also acts as a strong oxidising agent. (E) dissolves in potassium hydroxide forming an organge coloured solid which is paramagnetic in nature. (A) reacts with IF₅, SbF₅, PF₅ etc to form the addition compounds. (C) forms an addition compound (F) with KF which when electrolysed in molten state forms a most reactive gas (G). (B) and (G) (taken in 2 : 1 ratio) when heated in nickel tube at 400°C and 6 atm. pressure forms (A). The first ionization energy (IE₁) of (B) is fairly close to (D).

- **33.** Which is correct choice for (D) and (E).
 - (A) (E) reacts with dry iodine to form I_2O_5 .
 - (B) A fitter paper soaked in alcoholic benzidine becomes brown when brought in contact with (E).
 - (C) (D) is prepared by Brin's process.
 - (D) (B) and (C) both

34. Which of the following statement is true?

(A) Gas (G) reacts with conc NaOH to form OF,

(B) Pale blue gas (E) oxidises alkaline KI to KIO_3 and KIO_4 .

(C) Pale blue gas (E) in acidic medium reacts with K₂Cr₂O₇ to form a bright blue coloured compound (CrO₅)

(D) (B) and (C) both

Comprehension #2

Compound (A) on reduction with LiAlH₄ gives a hydride (P) containing 21.72% hydrogen along with other products. The one mole of hydride (P) and 2 mole of ammonia at higher temperature gives a compound (Q) which is known as inorganic benzene. (A) hydrolysis incompletely and formes a compound (R) and H_3BO_3 .

35. Which of the following statement is incorrect for the compound (A)?

$(\mathbf{A})\mathbf{sp}^2$	(B) sp ³	(C) sp	(D) sp ³ d

Comprehension #3

Oxygen differs from the otehr elements of the group. Compounds of oxygen with metals are more ionic in nature and hydrogen bonding is more important for oxygen compounds. Oxygen is never more than divalent because when it has formed two covalent bonds, there are no low energy orbitals which can be used to form further bonds. However, the elements S, Se, Te and Po have empty d-orbitals which may be used for bonding and they can form four or six bonds by unpairing electrons. However, the higher oxidation states becomes less stable on descending the group.

The bond between S and O or Se and O, are much shorter than might be expected for a single bond owing to $p\pi - d\pi$ interaction between the p-orbital of oxygen and d-orbital of S or Se.

- **36.** Which of the following statement is incorrect?
 - (A) Oxoanions of sulphur have little tendency to polymerise compared with the phosphates and silicates.
 - (B) In pyrosulphurous acid $(H_2S_2O_3)$ the oxidation states of both the sulphur atoms are not same, they are +V and +III.
 - (C) Concn. HNO₃ oxidises both sulphur and selenium to H_2SO_4 (+VI) and H_2SeO_4 (+VI) respectively.
 - (D) Most metal oxides are ionic and basic in nature while non-metallic oxides are usually covalent and acidic in nature.

37. Which one of the following orders represents the correct order for the properties indicated against them?

(A) $H_2O < H_2S < H_2Se < H_2Te - acidic character$ (B) $H_2O < H_2S < H_2Se < H_2Te - thermal stability$ (C) $H_2S > H_2Se < H_2T_3 < H_2O - reducting character$ (D) $H_2O < H_2S < H_2Se < H_2T_3 - boiling point$

38. In γ - SO₃(s) which exists as (SO₃)₃,

(A) all S – O bond lengths are shorter and identical due to $p\pi$ - $d\pi$ interaction between sulphur and oxygen

(B) all sulphur atoms are tetrahedrally surrounded by three oxygen and one sulphur atoms.

- (C) there are six $p\pi$ -d π bonds.
- (D) there are S–S linkages.

SECTION - V : MATRIX - MATCH TYPE

39. Match the reactions mentioned in column-I with the nature of the raction/characteristic(s) of the products mentioned in column-II.

Column - I	Column-II
(A) $H_3PO_2 \xrightarrow{(i) 415 \text{ K}}$	(p) One of the products acts as reducing agent.
(B) $PCl_3 + H_2O \xrightarrow{435K}$ (C) $NO_2 + H_2O \longrightarrow$	(q) One of the products is tribasic and non reducing(r) Dehydration
(D) HNO ₃ + $P_4O_{10} \xrightarrow{\Delta}$	(s) In one of the products the central atom is in $+5$ oxidation state.

40. Match the reactions mentioned in column-I with the nature of the raction/characteristic(s) of the products mentioned in column-II.

Column - I	Column-II
(A) $(NH_4)_2 S_2 O_8 + H_2 O \xrightarrow{\text{distillation}}$	(p) Hydrolysis
(B) NaBO ₂ + H ₂ O + H ₂ O ₂ \longrightarrow OH ⁻	(q) One of the product has peroxide linkage
(C) $Na_2SO_3 \xrightarrow{fusion}{temperature}$	(r) Disproportionation
(D) 2-Ethyl anthraquinol + air	(s) In one of the products the central atom has sp ³ hybridisation

41. Match the reactions mentioned in column-I with the nature of reaction/product(s) formed/characteristic(s) of the products mentioned in Column-II.

Column - (I)	Column - (II)
$(\mathbf{A}) \operatorname{Cl}_2 \operatorname{O}_6 + \operatorname{OH}^- \longrightarrow$	(p) sp ³ hybridisation
(B) KClO ₃ + H ₂ SO ₄ (conc.) $\xrightarrow{\Delta}$	(q) Chlorine dioxide and perchloric acid
$(C) H_2O_2 + HSO_3CI \longrightarrow$	(r) Disproportionation
(D) $H_3PO_3 \xrightarrow{\Delta}$	(s) Peroxide Linkage
$(5) N_2O_5 + H_2O_2 \longrightarrow$	(t) Caro's acid
	(u) Chlorate and perchlorate

42. Match the reactions mentioned in column-I with the nature of reaction / characteristic(s) of the products mentioned in column-II.

Column - (1)	Column - (II)
(A) $HNO_2(aq) \longrightarrow$	(p) Oneof the product is a diamagnetic colourless gas.
(B) $NH_4Cl(aq) + NaNO_2(aq) \longrightarrow$	(q) One of the product is a colourless paramagnetic gas
$(\mathbf{C}) \operatorname{HN}_3 + \operatorname{Li} \longrightarrow$	(r) Redox reaction
(D) Mg + HNO ₃ (cold and dilute) \longrightarrow	(s) One of the product gives brown ring test

43. Match the reactions mentioed in column-I with the nature of reaction/characteristic(s) of the products mentioned in column-II.

Column - (I)	Column - (II)
(A) $XeF_4 + H_2O \longrightarrow$	(p) Disproport ionation
(B) $[HXeO_4]^- + 2OH^- \longrightarrow$	(q) One of the products is a gas which is paramagnetic
(C) $H_2O + F_2(2:2 \text{ by mole}) \longrightarrow$	(r) One of the products is used in light bulbs
(D) NOCl + $O_2 \longrightarrow$	(s) One of the products is corrosive to glass and is stored in wax-lined bottles.

ANSWER KEY

EXERCISE - 1

1. A 2. B 3. D 4. C 5. D 6. C 7. D 8. A 9. C 10. A 11. C 12. D 13. B 14. A 15. A 16. B 17. A 18. B 19. B 20. A 21. C 22. B 23. B 24. A 25. B 26. B 27. A 28. C 29. D 30. B 31. A 32. A 33. D 34. D 35. B 36. C 37. A 38. C 39. B 44. B 45. C 46. D 47. B 48. A 49. C 40. C 41. B 42. A **43.** B 50. C 51. D 52. A 53. C 54. D 55. C 56. B 57. B 58. B 59. A 60. A 61. D 62. D 63. C 64. C 65. A 66. D 67. B 68. D 69. A 70. C 71. B 72. A 73. A,C 74. D 75. D 76. C 77. A 78. D 79. A 80. C 81. A 82. B 83. B 84. B 85. D 86. B 87. C 88. B 89. B 90. D 91. A 92. B 93. A 94. B 95. D 96. A 97. A

EXERCISE - 2 : PART # I

1.	B, C, D	2.	B,C	3. A,	B, C, D	4.	A, B, D	5.	B, C, D	6.	A, B	7.	A, C, D
8.	B, C, D	9.	A, B, C	10. A,	C	11.	A, C	12.	С	13.	С	14.	A, B, C, D
15.	A, B, C, D	16.	B,C,D	17. A,	B, C	18.	A, B, C	19.	B, D	20.	C, D	21.	A, B, C, D
22.	С	23.	A, B	24. B,	D	25.	A, B, C, D	26.	A, B, D	27.	A, B, C, 1	D	
28.	В	29.	A, C, D	30. A,	B,D	31.	В	32.	A, C, D	33.	A, D	34.	A, B, C, D
35.	B,C	36.	A, B	37. A,	C	38.	A, B	39.	A, B, D	40.	B,C	41.	A, B, C
42.	B,C	43.	C, D	44. B,	D	45.	A, C	46.	A, B, C, D	47.	A, B, C, 1	D	
48.	A, B, C, D	49.	B,C	50. A,	B, C, D	51.	B, C, D	52.	A, B, C, D	53.	A, C	54.	A, B, D
55.	А	56.	C, D	57. B	:	58.	C, D	59.	D				

PART # II

 1. B
 2. A
 3. B
 4. B
 5. B
 6. D
 7. C
 8. C
 9. A
 10. A
 11. A
 12. B
 13. A

 14. A
 15. A
 16. A
 17. A
 18. A
 19. D
 20. A
 21. B
 22. A
 23. B
 24. A
 25. A
 26. D

 27. B
 28. C
 29. A
 30. D
 31. D
 32. B
 33. B
 34. B
 35. D
 36. A
 37. A
 38. A
 39. A

 40. B
 41. D
 42. A
 43. B
 44. A
 45. A
 46. D
 47. A
 48. D
 49. B
 50. A
 51. C
 52. A

 53. B
 54. D
 55. B
 56. D
 57. B
 58. A
 59. A
 60. D
 61. A

EXERCISE - 3 : PART # I

1.	$A \rightarrow q, B \rightarrow p, C \rightarrow r, s, D \rightarrow q$	2.	$A \rightarrow p, q, B \rightarrow p, r, C \rightarrow q, s, D \rightarrow q$
3.	$A \rightarrow p, B \rightarrow p, q, C \rightarrow p, q, s, D \rightarrow p, r$	4.	$A \rightarrow p, q, r, s, B \rightarrow p, q, r, s, C \rightarrow p, q, D \rightarrow p, q$
5.	$A \rightarrow r, B \rightarrow q, C \rightarrow p, D \rightarrow s$	6.	$A \rightarrow p, q, s, B \rightarrow p, q, r, s, C \rightarrow q, r, s, D \rightarrow p, q, r, s$

- 7. $A \rightarrow p, q, s, B \rightarrow p, q, s, C \rightarrow r, s, D \rightarrow q, s$ 9. $A \rightarrow p, r, s, B \rightarrow q, r, s, C \rightarrow p, r, s, D \rightarrow p, r, s$ 11. $A \rightarrow q, s, B \rightarrow s, C \rightarrow p, D \rightarrow r$ **13.** $A \rightarrow p, q, r, s, B \rightarrow p, r, C \rightarrow p, q, r, D \rightarrow p, q, r$ **14.** $A \rightarrow p, B \rightarrow p, q, r, C \rightarrow p, r, D \rightarrow p, s$ **15.** $A \rightarrow p, q, r, s, B \rightarrow r, s, C \rightarrow q, r, s, D \rightarrow p, q, r$
- 8. $A \rightarrow q, s, B \rightarrow q, r, C \rightarrow p, s, D \rightarrow q, s$ **10.** $A \rightarrow p, q, B \rightarrow p, q, r, s, C \rightarrow r, D \rightarrow s$ **12.** $A \rightarrow p, q, r, s, t, B \rightarrow p, q, r, s, t, C \rightarrow t, D \rightarrow p, q, r, s$
- **16.** $A \rightarrow p, q, r, s, B \rightarrow p, q, r, s, t, C \rightarrow p, q, r, s, D \rightarrow q, s, t$

Comprehension #1:	1. C	2. A	3.	В
Comprehension # 2 :	1. B	2. B	3.	C 4. B
Comprehension # 3 :	1. C	2. C	3.	B 4. D
Comprehension #4:	1. D	2. A	3.	А
Comprehension # 5 :	1. D	2. C	3.	C 4. D
Comprehension # 6 :	1. B	2. D	3.	D
Comprehension # 7 :	1. C	2. B		
Comprehension #8:	1. A	2. B	3.	А
Comprehension # 9 :	1. C	2. A		
Comprehension # 10 :	1. D	2. D	3.	D
Comprehension # 11 :	1. B	2. B	3.	С
Comprehension # 12 :	1. D	2. D	3.	D
Comprehension # 13 :	1. D	2. D	3.	С
Comprehension # 14 :	1. A	2. C	3.	В
Comprehension # 15 :	1. D	2. B	3.	D 4. B

PART # II

EXERCISE - 5 : PART # I

Group - 13th and 14th

1.	1	2.	2	3.	4	4.	2	5.	3	6.	3	7.	1	8.	2	9.	4	10. 1						
11.	All	state	emen	t are	corr	ect t	here	is no	o ans	wer.	12.	3												
	Group - 15 th and 16 th																							
1.	2	2.	1	3.	2	4.	1,4	5.	4	6.	All	state	emer	nt are	cor	rect t	here	is no answer.	7.	4	8.	4	9.	3

Group - Halogen and Noble Gases

1. 3 **2.** 4 **3.** 2 **4.** 4 **5.** 4 **6.** 2 **7** 4 **8.** 3

PART # II

Group - 13th and 14th

- **1.** A **2.** A q,s; B r; C q,r,s; D q,r. **3.** C **4.** 6
- 5. (i) $3\text{SiCl}_4(\text{vapour}) + 4\text{Al(molten)} \longrightarrow 4\text{AlCl}_3 + 3\text{Si}$

(ii) (a)
$$3SiCl_4 + 4Al \longrightarrow 4AlCl_3 + 3Si$$

(b) Si + 2CH₃Cl
$$\xrightarrow{\text{Cu powder}}$$
 CH₃)₂SiCl₂

(c)
$$CH_3$$
 \downarrow
 $(CH_3)_2 SiCl_2 \xrightarrow{2H_2O} HO - Si - OH$
 $|$
 CH_3

(iii) (a) SiCl₄ + 4H₂O
$$\longrightarrow$$
 H₄SiO₄ or SiOH)₄ ortho silicic acid) + 4HCl

(b)
$$H_4SiO_4 \xrightarrow{\Delta} SiO_2 + 2H_2O$$

(c)
$$\operatorname{SiO}_2 + \operatorname{Na}_2\operatorname{CO}_3 \xrightarrow{1400^\circ \text{C}} \operatorname{Na}_2\operatorname{SiO}_3 + \operatorname{CO}_2$$

6. C 7. A 8. C 9. ABC 10. 3 11. 6 12. ABC 13. ABC

Group - 15th and 16th

5. C 6. C 7. B 8. B 9. A-p,s; B-q,s; C-r,t; D-q,t 10. D 11. 4 12. B 13. D 14. B 15. B 16. B 17. A 18. B,C,D 19. B,D 20. D 21. A 22. B 23. A,B,C 24. 6

Group - Halogen and Noble Gases

1. A **2.** C **3.** A **4.** $A \rightarrow p,s; B \rightarrow p,q,r,t; C \rightarrow p,q; D \rightarrow p$ **5.** A **6.** A **7.** C **8.** B,C **9.** A, D

MOCK TEST

1. D 2. A 3. B 4. D 5. A 6. A 7. C 8. B 9. D 10. D 11. C 12. C 13. D **17.** B,C,D **18.** A,D **19.** A,B **20.** B,D **21.** B,C **14.** D **15.** C **16.** B,C,D 22. B.D 23. A, B, C, D 24. B 25. D 26. D 27. A 28. D 29. A 30. A 31. A 32. A 33. D 34. B 35. D 36. C 37. A 38. C 39. $A \rightarrow p, q, s; B \rightarrow p, q, s; C \rightarrow p, s; D \rightarrow r, s$ 40. $A \rightarrow p, q, s; B \rightarrow p, q, s; C \rightarrow r, s; D \rightarrow q, s$ 41. $A \rightarrow p, r, u; B \rightarrow q, r; C \rightarrow p, t, s D \rightarrow p, r; E \rightarrow s$ 42. $A \rightarrow q, r, s; B \rightarrow p, r; C \rightarrow p, r; D \rightarrow p, r, s$ 43. $A \rightarrow p, q, r, s; B \rightarrow p, q, r; C \rightarrow q, s; D \rightarrow q$

