Oscillations

Periodic Motion

A motion which repeats itself identically after a fixed interval of time is
called periodic motion, e.g. orbital motion of the earth around the sun,
motion of arms of a clock etc.

Oscillatory Motion

A periodic motion taking place to and fro or back and forth about a
fixed point is called oscillatory motion, e.g. motion of a simple
pendulum, motion of a loaded spring etc.

Note Every oscillatory motion is periodic motion but every periodic motion is not
oscillatory motion.

Harmonic Oscillation

The oscillation which can be expressed in terms of single harmonic
function, i.e. sine or cosine function is called harmonic oscillation.

Simple Harmonic Motion

A harmonic oscillation of constant amplitude and of single frequency
under a restoring force whose magnitude is proportional to the
displacement and always acts towards mean position is called Simple

Harmonic Motion (SHM).

A simple harmonic oscillation can be expressed as
y =a sin ot

or ¥y =a cos of

where, a = amplitude of oscillation.



Some Terms Related to SHM

(1)
(i)

(iii)

(iv)

Time Period Time taken by the body to complete one
oscillation i1s known as time period. It is denoted by T'.
Frequency The number of oscillations completed by the body
in one second is called frequency. It is denoted by v.

1

Frequency =
. Y Time period

Its SI unit is hertz or second ..
Angular Frequency The product of frequency with factor 2,
1s called angular frequency. It is denoted by .
Angular frequency (®) = 2nv
Its SI unit is radian per second.

Displacement A physical quantity which represents change in
position with respect to mean position or equilibrium position is
called displacement. It is denoted by y.

(v) Amplitude The maximum displacement in any direction from

(vi)

mean position is called amplitude. It i1s denoted by a.

Phase A physical quantity which express the position and
direction of motion of an oscillating particle is called phase. It is

denoted by ¢.

Some Important Formulae of SHM

(1)

(i)

(iii)

Displacement in SHM at any instant is given by
) y=a sin ot
or y =a cos ot
where, @ = amplitude
and ®=angular frequency.
Velocity of a particle executing SHM at any instant is given by

2 2
v=wy(a” - y)

At mean position, y = 0 and v 1s maximum
Upax = QO

At extreme position, y = a and v is zero.
Acceleration of a particle executing SHM at any instant is given
by Aor o =— @y

Negative sign indicates that the direction of acceleration is
opposite to the direction in which displacement increases, i.e.
towards mean position.

At mean position, y = 0 and acceleration is also zero.



At extreme position, y = ¢ and acceleration 1s maximum
A =— aw”
(iv) Time period in SHM is given by

T - o \/Inertla factor

Spring factor
In general, inertia factor = m, (mass of the particle)
spring factor = & (force constant)

Graphical Representation of SHM
(i) Displacement-Time Graph
When y(t) = a sin ot
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(i) Velocity-Time Graph
When v(t) = +®a cos ot
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(iii)) Acceleration-Time Graph
When a(t) = —»w’a sin ot
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Note The acceleration is maximum at a place where the velocity is minimum and
vice-versa.



From the above mentioned graphs, it can be concluded that for a
particle executing SHM, the phase difference between

(1) Instantaneous displacement and instantaneous velocity

_(5) rad

(11) Instantaneous velocity and instantaneous acceleration

_(5) rad

(1) Instantaneous acceleration and instantaneous displacement
=nrad

Note The graph between velocity and displacement for a particle executing SHM is
elliptical.

Force in SHM

We know that, the acceleration of body in SHM can be given as

a= —(sz.

Applying the equation of motion F = ma,

We have, F =— mo°x =— kx

where, ® = ,|— and k = mo” is a constant and sometimes it is called the
m

elastic constant.

Thus, in SHM, the force is directly proportional and opposite to the
displacement and is always directed towards the mean position.

Energy in SHM

The kinetic energy of the particle 1s K :% me* (a® —x?)

From this expression, we can see that, the kinetic energy is maximum
at the centre (x = 0) and zero at the extremes of oscillation (x £ a).

The potential energy of the particle is U =% mo’x”.

From this expression, we can see that, the potential energy has a
minimum value at the centre (x =0) and increases as the particle
approaches either extreme of the oscillation (x + a).

Total energy can be obtained by adding potential and kinetic energies.
Therefore,

E=K+U



1 1

== m(a® - x*) o® + = mo’x* == mw’a®
2 2 2

where, a = amplitude,
m = mass of particle executing SHM
and ® = angular frequency.

Changes in kinetic and potential energies during oscillations is
represented in the graph given below.

— E = KE + PE
/1 (Total energy)
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Some points related to energy of the particle executing SHM

(1) The frequency of kinetic energy or potential energy of a particle
executing SHM i1s double than that of the frequency in SHM.

(11) The frequency of total energy of particles executing SHM is zero
as total energy in SHM remains constant at all positions.

How the different physical quantities (e.g. displacement,
velocity, acceleration, kinetic energy etc) vary with time or
displacement are listed ahead in tabular form.

Expression of the

S.No. Name of the equation equation Remarks
1.  Displacement-time x = Acos (ot + ¢) x varies between
+ Aand - A
Lo ax v = - Awsin (ot + ¢) v varies between
2. Velocity-time | v = —
v [ ] + Ao and - Ao
_ 2 i
3. pccelerationdtime (a:d_v a=— Ao’ cos (wf + ¢)  a varies between
+ Ao“ and — Ao
4. Kinetic energy-time K = 1 mA2w? sinf(ot + ¢) K varies between
1 1
K = =mv? - = mA?w? and
2 2

1 2 2
—mA
2 w




Name of the

S.No. i Expression of the equation Remarks
equation
5.  Potential energy-time U = _lmm2A2 cos(ot + o) tlj varies between
[U = lmm2x2] =~ mA%e’® and O
2 2
6. Total energy-time = 1 M2 A2 E is constant
(E=K+U) 2
7. \Velocity-displacement v = @ /A% — x? v=0atx =+ A and
atx =0,v ==+ Ao
8.  Acceleration- a=— ox a=0atx =0 and
displacement a=+ oA at x =+ Ax
9. Kineticd. | t Kzl—m(r:)z(A2—X2) K:?atx:iAand
energy-displacemen K = 2 A2 at x = O
10. Potentizzjl_ | U= LIPS 1% U = ?at x = 0and
energy-displacemen
SEESR U = = mo?A?
2
atx =1+ A
11. Total energy- =L mea? E is constant
displacement 2

Simple Pendulum

A simple pendulum consists of a heavy point mass — aguu
suspended from a rigid support by means of an elastic Y
inextensible string. EAN

The time period of the simple pendulum is given by \

T=21'c\/z - ’,33
g O

where, [ = effective length of the pendulum and g = acceleration due to
gravity.

If the effective length [ of simple pendulum is very large and
comparable with the radius of earth (R), then its time period is given by

T_on | Bl
(l+ R)g

For a simple pendulum of length equal to radius of earth,

T =2n E=60min
\ 2¢




For a simple pendulum of infinite length (/ > > R),

T =2n \/Ez 84.6 min
8

If the bob of the simple pendulum is suspended by a metallic wire of
length /, having coefficient of linear expansion o, then due to increase
in temperature by d0, then

Effective length, /' =1(1+ o d)

and T' =921 w
\ g

When a bob of simple pendulum of density p oscillates in a fluid of
density p, (po <p), then time period get increased.

Increased time period, 7" =2n ek
V(b ~po)g

When simple pendulum is in a horizontally accelerated vehicle, then
its time period is given by

T =2n ;
| V(a® + &%)

where, a = horizontal acceleration of the vehicle.

When simple pendulum is in a vehicle sliding down an inclined plane,
then its time period is given by

T =2mn_| l
gcos0

where, 0 =inclination of plane.

When a bob of simple pendulum has positive ¢ and made to oscillate in
uniform electric field acting in upward direction, then

Second’s Pendulum

A simple pendulum having time period of 2 seconds is called second’s
pendulum.

The effective length of a second’s pendulum is 99.992 cm of
approximately 1 m on earth.



Conical Pendulum

If a simple pendulum is fixed at one end and the bob is rotating in a
horizontal circle, then it is called a conical pendulum.

In equilibrium, T sin 0 = mre”

mr
T sin O

Its time period, T =2n

Compound Pendulum

Any rigid body mounted, so that it is capable of swinging in a
vertical plane about some axis passing through it is called a
compound pendulum.

Its time period is given by

T =2n L
\ mgd

mg sin 6

where, I = moment of inertia of the body about an axis passing
through the centre of suspension,

m = mass of the body

and d =distance of centre of gravity from the centre of
suspension.



Torsional Pendulum

It consists of a disc (or some other object) suspended from a wire
suspended to a rigid support, which is then twisted and released,
resulting in oscillatory motion.

LLLLLLLLL LT

Time period of torsional pendulum is given by
T = QTE\/Z
C

where, I = moment of inertia of the body about the axis of
rotation

and C =restoring couple per unit twist.

Physical Pendulum

When a rigid body of any shape is capable of oscillating about an axis
(may or may not be passing through it), it constitutes a physical
pendulum.

(1) The simple pendulum whose time period is same as that of a
physical pendulum is termed as an equivalent simple pendulum.

T=2n L=2ﬂ\ﬁ
\ mgd g

(11) The length of an equivalent simple pendulum is given by /= id
m



Spring Pendulum

A point mass suspended from a massless (or light) spring
constitutes a spring pendulum. If the mass is once pulled
downwards so as to stretch the spring and then released, the
system oscillated up and down about its mean position simple
harmonically. Time period and frequency of oscillations are k

given by
T=2m1’ﬁ 0rv=i1[£
k 2n \'m

If the spring is not light but has a definite mass m,, then it
can be easily shown that period of oscillation will be

When two springs of force constants & and k, are connected in parallel
to mass m as shown in figure, then

(1) Effective force constant of the spring combination

k=k + k

(i) Time period, T = 2n \/T
(R + Ry)

When two springs of force constant & and k, are connected in
series to mass m as shown in figure, then

. . . . . Kk
(1) Effective force constant of the spring combination, 1
1 1 1
kR k ke

(i) Time period, 7 =2r | T2+ /)
Rk

mg



Oscillations of Liquid in a U-tube

If a liquid is filled up to height A in both limbs of a U-tube and now
liquid is depressed upto a small distance y in one limb and then
released, then liquid column in U-tube start executing SHM.

The time period of oscillation 1s given by 7' =2n \/Z
4

Oscillations of Ball in Bowl

If a small steel ball of mass m is placed at a small distance from O
inside a smooth concave surface of radius R and released, it will

oscillate about O.
T= ZR\/E
g

Oscillations of a Ball in a Tunnel through the
Earth

If a ball moves through a tunnel along a diameter of earth, then due to
gravitational force between ball and earth a restoring force is set up,
due to which the ball performs SHM, whose time period is given by

T =2n/Rig

where, R = radius of earth.

Free Oscillations

When a body which can oscillate about its mean position is displaced
from mean position and then released, it oscillates about its mean
position. These oscillations are called free oscillations and the
frequency of oscillations is called natural frequency.

Damped Oscillations

The oscillations in which amplitude decreases with time are called

damped oscillations.

The displacement of the damped oscillator at an instant ¢ is given by
x = xpe P"2™ cos(w t + &)

—0U2m is the amplitude of oscillator which decreases

where, x,e
continuously with time ¢ and .

The mechanical energy E of the damped oscillator at an instant £ is
given by



E = lkxg e—bﬂm
2

Forced Oscillations

Oscillations of any object with a frequency different from its natural
frequency under a periodic external force are called forced oscillations.

Resonant Oscillations

When a body oscillates with its own natural frequency with the help of
an external periodic force whose frequency is equal to the natural
frequency of the body, then these oscillations are called resonant
oscillations.

Lissajous’ Figures

If two SHMs are acting in mutually perpendicular directions, then due
to their superpositions the resultant motion, in general, is a curve/loop.
The shape of the curve depends on the frequency ratio of two SHMs
and initial phase difference between them. Such figures are called
Lissajous’ figures.

Let two SHMs be of same frequency (e.g. x=a, sin ot and y =a, sin(wt+ ¢),
then the general equation of resultant motion is found to be

2 2

x 2x; -
~+ y‘_ ycosd):smz(l)
2 2

a Qs 410 %)

The equation represents an ellipse. However, if ¢ =0° or nt or nn, then
the resultant curve is a straight inclined line.
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