

DETERMINANT

SOLVED EXAMPLES

Ex. 1 Prove that
$$\begin{vmatrix} a & b & c \\ x & y & z \\ p & q & r \end{vmatrix} = \begin{vmatrix} y & b & q \\ x & a & p \\ z & c & r \end{vmatrix}$$

Sol. $D = \begin{vmatrix} a & b & c \\ x & y & z \\ p & q & r \end{vmatrix} = \begin{vmatrix} a & x & p \\ b & y & q \\ c & z & r \end{vmatrix}$ (By interchanging rows & columns)

$$= -\begin{vmatrix} x & a & p \\ y & b & q \\ z & c & r \end{vmatrix} \qquad (C_1 \leftrightarrow C_2)$$
$$= \begin{vmatrix} y & b & q \\ x & a & p \\ z & c & r \end{vmatrix} \qquad (R_1 \leftrightarrow R_2)$$

Ex.2 If
$$D_r = \begin{vmatrix} r & r^3 & 2 \\ n & n^3 & 2n \\ \frac{n(n+1)}{2} & \left(\frac{n(n+1)}{2}\right)^2 & 2(n+1) \end{vmatrix}$$
, find $\sum_{r=0}^n D_r$.

Sol.
$$\sum_{r=0}^{n} D_{r} = \begin{vmatrix} \sum_{r=0}^{n} r & \sum_{r=0}^{n} r^{3} & \sum_{r=0}^{n} 2 \\ n & n^{3} & 2n \\ \frac{n(n+1)}{2} & \left(\frac{n(n+1)}{2}\right)^{2} & 2(n+1) \end{vmatrix} = \begin{vmatrix} \frac{n(n+1)}{2} & \left(\frac{n(n+1)}{2}\right)^{2} & 2(n+1) \\ n & n^{3} & 2n \\ \frac{n(n+1)}{2} & \left(\frac{n(n+1)}{2}\right)^{2} & 2(n+1) \end{vmatrix} = 0$$

Ex.3 Simplify
$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$$

Sol. Let $R_1 \rightarrow R_1 + R_2 + R_3$

$$\Rightarrow \begin{vmatrix} a+b+c & a+b+c & a+b+c \\ b & c & a \\ c & a & b \end{vmatrix} = (a+b+c) \begin{vmatrix} 1 & 1 & 1 \\ b & c & a \\ c & a & b \end{vmatrix}$$
Apply $C_1 \rightarrow C_1 - C_2, C_2 \rightarrow C_2 - C_2$

$$= (a + b + c) \begin{vmatrix} 0 & 0 & 1 \\ b - c & c - a & a \\ c - a & a - b & b \end{vmatrix}$$
$$= (a + b + c) ((b - c) (a - b) - (c - a)^{2})$$
$$= (a + b + c) (ab + bc - ca - b^{2} - c^{2} + 2ca - a^{2})$$
$$= (a + b + c) (ab + bc + ca - a^{2} - b^{2} - c^{2}) \equiv 3abc - a^{3} - b^{3} - c^{3}$$

Ex. 4 Determinant
$$\begin{vmatrix} a+b+nc & (n-1)a & (n-1)b \\ (n-1)c & b+c+na & (n-1)b \\ (n-1)c & (n-1)a & c+a+nb \end{vmatrix}$$
 is equal to -

Sol. Applying $C_1 \rightarrow C_1 + (C_2 + C_3)$

$$D = n(a+b+c) \begin{vmatrix} 1 & (n-1)a & (n-1)b \\ 1 & b+c+na & (n-1)b \\ 1 & (n-1)a & c+a+nb \end{vmatrix}$$

$$D = n(a+b+c) \begin{vmatrix} 1 & (n-1)a & (n-1)b \\ 0 & a+b+c & 0 \\ 0 & 0 & a+b+c \end{vmatrix} \begin{cases} R_2 \to R_2 - R_1 \\ R_3 \to R_3 - R_1 \end{cases}$$

 $= n(a+b+c)^3$

Ex. 5 Prove that
$$\begin{vmatrix} (x-a)^2 & (x-b)^2 & (x-c)^2 \\ (y-a)^2 & (y-b)^2 & (y-c)^2 \\ (z-a)^2 & (z-b)^2 & (z-c)^2 \end{vmatrix} = 2(x-y)(y-z)(z-x)(a-b)(b-c)(c-a)$$

Sol.
$$D = \begin{vmatrix} (x-a)^2 & (x-b)^2 & (x-c)^2 \\ (y-a)^2 & (y-b)^2 & (y-c)^2 \\ (z-a)^2 & (z-b)^2 & (z-c)^2 \end{vmatrix}$$

Using factor theorem, Put x = y

$$D = \begin{vmatrix} (y-a)^2 & (y-b)^2 & (y-c)^2 \\ (y-a)^2 & (y-b)^2 & (y-c)^2 \\ (z-a)^2 & (z-b)^2 & (z-c)^2 \end{vmatrix}$$

 R_1 and R_2 are identical which makes D = 0. Therefore, (x-y) is a factor of D. Similarly (y-z) & (z-x) are factors of D Now put a = b $D = \begin{vmatrix} (x-b)^2 & (x-b)^2 & (x-c)^2 \\ (y-b)^2 & (y-b)^2 & (y-c)^2 \\ (z-b)^2 & (z-b)^2 & (z-c)^2 \end{vmatrix}$

 C_1 and C_2 become identical which makes D = 0. Therefore, (a-b) is a factor of D. Similarly (b-c) and (c-a) are factors of D. Therefore, $D = \lambda(x-y)(y-z)(z-x)(a-b)(b-c)(c-a)$ To get the value of λ put x = -1 = a, y = 0 = b and z = 1 = c

$$D = \begin{vmatrix} 0 & 1 & 4 \\ 1 & 0 & 1 \\ 4 & 1 & 0 \end{vmatrix} = \lambda(-1)(-1)(2)(-1)(-1)(2)$$

$$\Rightarrow \quad 4\lambda = 8 \quad \Rightarrow \quad \lambda = 2$$

$$\therefore \qquad D = 2(x - y) (y - z) (z - x) (a - b) (b - c) (c - a)$$

Prove that
$$\begin{vmatrix} 1 & \alpha & \alpha^{2} \\ \alpha & \alpha^{2} & 1 \\ \alpha^{2} & 1 & \alpha \end{vmatrix} = -(1 - \alpha^{3})^{2}.$$

Sol. This is a cyclic determinant.

Ex.6

$$\Rightarrow \begin{vmatrix} 1 & \alpha & \alpha^{2} \\ \alpha & \alpha^{2} & 1 \\ \alpha^{2} & 1 & \alpha \end{vmatrix} = -(1 + \alpha + \alpha^{2})(1 + \alpha^{2} + \alpha^{4} - \alpha - \alpha^{2} - \alpha^{3})$$
$$= -(1 + \alpha + \alpha^{2})(-\alpha + 1 - \alpha^{3} + \alpha^{4}) = -(1 + \alpha + \alpha^{2})(1 - \alpha)^{2}(1 + \alpha + \alpha^{2})$$
$$= -(1 - \alpha)^{2}(1 + \alpha + \alpha^{2})^{2} = -(1 - \alpha^{3})^{2}$$

Ex. 7 If the system of equations $x + \lambda y + 1 = 0$, $\lambda x + y + 1 = 0$ & $x + y + \lambda = 0$. is consistent then find the value of λ . Sol. For consistency of the given system of equations

$$D = \begin{vmatrix} 1 & \lambda & 1 \\ \lambda & 1 & 1 \\ 1 & 1 & \lambda \end{vmatrix} = 0$$

$$\Rightarrow \qquad 3\lambda = 1 + 1 + \lambda^{3} \text{ or } \lambda^{3} - 3\lambda + 2 = 0 \qquad \Rightarrow \qquad (\lambda - 1)^{2} (\lambda + 2) = 0$$

$$\Rightarrow \qquad \lambda = 1 \text{ or } \lambda = -2$$

Ex.8 For a 3×3 skew-symmetric matrix A, show that adj A is a symmetric matrix.

Sol.
$$A = \begin{bmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{bmatrix}$$
 $cof A = \begin{bmatrix} c^2 & -bc & ca \\ -bc & b^2 & -ab \\ ca & -ab & a^2 \end{bmatrix}$

adj A =
$$(cof A)' = \begin{bmatrix} c^2 & -bc & ca \\ -bc & b^2 & -ab \\ ca & -ab & a^2 \end{bmatrix}$$
 which is symmetric.

Ex. 9 If a, b, c x, y, z
$$\in$$
 R, then prove that $\begin{vmatrix} (a - x)^2 & (b - x)^2 & (c - x)^2 \\ (a - y)^2 & (b - y)^2 & (c - y)^2 \\ (a - z)^2 & (b - z)^2 & (c - z)^2 \end{vmatrix} = \begin{vmatrix} (1 + ax)^2 & (1 + bx)^2 & (1 + cx)^2 \\ (1 + ay)^2 & (1 + by)^2 & (1 + cy)^2 \\ (1 + az)^2 & (1 + bz)^2 & (1 + cz)^2 \end{vmatrix}$

Sol. L.H.S. =
$$\begin{vmatrix} (a-x)^2 & (b-x)^2 & (c-x)^2 \\ (a-y)^2 & (b-y)^2 & (c-y)^2 \\ (a-z)^2 & (b-z)^2 & (c-z)^2 \end{vmatrix} = \begin{vmatrix} a^2 - 2ax + x^2 & b^2 - 2bx + x^2 & c^2 - 2cx + x^2 \\ a^2 - 2ay + y^2 & b^2 - 2by + y^2 & c^2 - 2cy + y^2 \\ a^2 - 2az + z^2 & b^2 - 2bz + z^2 & c^2 - 2az + z^2 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2} \end{vmatrix} \times \begin{vmatrix} a^{2} & -2a & 1 \\ b^{2} & -2b & 1 \\ c^{2} & -2c & 1 \end{vmatrix}$$
(Row by Row)
$$= \begin{vmatrix} 1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2} \end{vmatrix} \times (-1) \begin{vmatrix} a^{2} & 2a & 1 \\ b^{2} & 2b & 1 \\ c^{2} & 2c & 1 \end{vmatrix}$$
$$= \begin{vmatrix} 1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2} \end{vmatrix} \times (-1)(-1) \begin{vmatrix} 1 & 2a & a^{2} \\ 1 & 2b & b^{2} \\ 1 & 2c & c^{2} \end{vmatrix} (C_{1} \leftrightarrow C_{3})$$
$$= \begin{vmatrix} 1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2} \end{vmatrix} \times \begin{vmatrix} 1 & 2a & a^{2} \\ 1 & 2b & b^{2} \\ 1 & 2c & c^{2} \end{vmatrix}$$

Multiplying row by row

$$= \begin{vmatrix} 1+2ax + a^{2}x^{2} & 1+2bx + b^{2}x^{2} & 1+2cx + c^{2}x^{2} \\ 1+2ay + a^{2}y^{2} & 1+2by + b^{2}y^{2} & 1+2cy + c^{2}y^{2} \\ 1+2az + a^{2}z^{2} & 1+2bz + b^{2}z^{2} & 1+2cz + c^{2}z^{2} \end{vmatrix}$$
$$= \begin{vmatrix} (1+ax)^{2} & (1+bx)^{2} & (1+cx)^{2} \\ (1+ay)^{2} & (1+by)^{2} & (1+cy)^{2} \\ (1+az)^{2} & (1+bz)^{2} & (1+cz)^{2} \end{vmatrix} = R.H.S.$$

Ex. 10 For two non-singular matrices A & B, show that adj (AB) = (adj B) (adj A)

Sol. We have (AB) $(adj (AB)) = |AB| I_n$ $= |A| |B| I_n$ $A^{-1} (AB)(adj (AB)) = |A| |B| A^{-1}$ $\Rightarrow B adj (AB) = |B| adj A$ ($\therefore A^{-1} = \frac{1}{|A|} adj A$) $\Rightarrow B^{-1} B adj (AB) = |B| B^{-1} adj A$ $\Rightarrow adj (AB) = (adjB) (adj A)$ Ex. 11 If $D_1 = \begin{vmatrix} y^5 z^6 (z^3 - y^3) & x^4 z^6 (x^3 - z^3) & x^4 y^5 (y^3 - x^3) \\ y^2 z^3 (y^6 - z^6) & x z^3 (z^6 - x^6) & x y^2 (x^6 - y^6) \\ y^2 z^3 (z^3 - y^3) & x z^3 (x^3 - z^3) & x y^2 (y^3 - x^3) \end{vmatrix}$ and $D_2 = \begin{vmatrix} x & y^2 & z^3 \\ x^4 & y^5 & z^6 \\ x^7 & y^8 & z^9 \end{vmatrix}$. Then $D_1 D_2$ is equal to -

Sol. The given determinant
$$D_1$$
 is obtained by corresponding cofactors of determinant D_2 .
Hence $D_1 = D_2^2$

$$\Rightarrow \qquad \mathsf{D}_1\mathsf{D}_2 = \mathsf{D}_2^2\mathsf{D}_2 = \mathsf{D}_2^3$$

Ex. 12 Obtain the inverse of the matrix
$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$$
 using elementary operations.

Sol. Write A = IA, i.e.,
$$\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$$

or
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 3 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} A \quad (applying R_1 \leftrightarrow R_2)$$
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

or
$$\begin{bmatrix} 0 & 1 & 2 \\ 0 & -5 & -8 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -3 & 1 \end{bmatrix} A$$
 (applying $R_3 \rightarrow R_3 - 3R_1$)

or
$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & -5 & -8 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & -3 & 1 \end{bmatrix} A \quad (applying R_1 \rightarrow R_1 - 2R_2)$$

or
$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 1 & 0 & 0 \\ 5 & -3 & 1 \end{bmatrix} A \quad (applying R_3 \to R_3 + 5R_2)$$

or
$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 1 & 0 & 0 \\ \frac{5}{2} & \frac{-3}{2} & \frac{1}{2} \end{bmatrix} A \quad (applying R_3 \to \frac{1}{2} R_3)$$

or
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 0 \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \end{bmatrix} A \quad (Applying R_1 \to R_1 + R_3)$$

or
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{-1}{2} & \frac{1}{2} \\ -4 & 3 & -1 \\ \frac{5}{2} & \frac{-3}{2} & \frac{1}{2} \end{bmatrix} A \quad (Applying R_2 \to R_2 - 2R_3)$$

Hence
$$A^{-1} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -4 & 3 & -1 \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \end{bmatrix}$$

E	xercise # 1	[Single Correct Choice	Type Questions]
1.	If A and B are square matrices of order 3 such the $(A) - 9$ $(B) - 81$	A = -1, B = 3, then 3AB (C)-27	is equal to (D) 81
2.	If $\begin{vmatrix} \sin 2x & \cos^2 x & \cos 4x \\ \cos^2 x & \cos 2x & \sin^2 x \\ \cos^4 x & \sin^2 x & \sin 2x \end{vmatrix} = a_0 + a_1(\sin x) + a_1(\sin x)$	$a_{1}(\sin^{2}x) + \dots + a_{n}(\sin^{n}x)$ then	the value of a_0 is -
	(A) –1 (B) 1	(C) 0	(D) 2
3.	Let A = $\begin{bmatrix} \cos^{-1} x & \cos^{-1} y & \cos^{-1} z \\ \cos^{-1} y & \cos^{-1} z & \cos^{-1} x \\ \cos^{-1} z & \cos^{-1} x & \cos^{-1} y \end{bmatrix}$ such that A	A = 0, then maximum value of x	+y+z is
	(A) 3 (B) 0	(C) 1	(D) 2
4.	If $\begin{vmatrix} x^2 - 2x + 3 & 7x + 2 & x + 4 \\ 2x + 7 & x^2 - x + 2 & 3x \\ 3 & 2x - 1 & x^2 - 4x + 7 \end{vmatrix} = ax^6$	$+bx^{5}+cx^{4}+dx^{3}+ex^{2}+fx+$	g the value of g is
	(A) 2 (B) 1	(C) – 2	(D) none of these
5.	If $D_p = \begin{vmatrix} p & 15 & 8 \\ p^2 & 35 & 9 \\ p^3 & 25 & 10 \end{vmatrix}$, then $D_1 + D_2 + D_3 + D_3 + D_4 + D_5 + D$	$D_4 + D_5$ is equal to -	
	(A) 0 (B) 25	(C) 625	(D) none of these
6.	For any $\triangle ABC$, the value of determinant \sin^2	A cot A 1 B cot B 1 is equal to - C cot C 1	
	(A) 0 (B) 1	(C) sin A sin B sin C	(D) $\sin A + \sin B + \sin C$
7.	If $a_1, a_2, a_3, 5, 4, a_6, a_7, a_8, a_9$ are in H.P. and D =	$\begin{vmatrix} a_1 & a_2 & a_3 \\ 5 & 4 & a_6 \\ a_7 & a_8 & a_9 \end{vmatrix}$, then the value of	[D] is
	(Where [.] represents, the greatest integer fn.) (A) 0 (B) 1	(C) 2	(D) 3
8.	Let $\Delta = \begin{vmatrix} \sin\theta\cos\phi & \sin\theta\sin\phi & \cos\theta\\ \cos\theta\cos\phi & \cos\theta\sin\phi & -\sin\theta\\ -\sin\theta\sin\phi & \sin\theta\cos\phi & 0 \end{vmatrix}$, the	en	
	 (A) Δ is independent of θ (C) Δ is a constant 	(B) ∆ is indepedent of(D) none of these	ф

If A is a square matrix of order 3 and A' denotes transpose of matrix A, A' A = I and det A = 1, then 9. det (A - I) must be equal to **(A)**0 **(B)** – 1 **(C)**1 (D) none of these $3x + 2 \quad 2x - 1 \mid$ х 3x+1 = 0 is -The number of real values of x satisfying 2x-1 4x10. 7x-2 17x+6 12x-1**(A)**3 **(B)**0 **(C)**1 (D) infinite a^2 a 1 The value of the determinant $|\cos(nx) \cos(n+1)x \cos(n+2)x|$ is independent of : 11. $\sin(nx) \sin(n+1)x \sin(n+2)x$ (A) n **(B)** a (C) x (\mathbf{D}) a, n and x Three distinct points $P(3u^2, 2u^3)$; $Q(3v^2, 2v^3)$ and $R(3w^2, 2w^3)$ are collinear then 12. (A) uv + vw + wu = 0**(B)** uv + vw + wu = 3(C) uv + vw + wu = 2(D) uv + ww + wu = 1The determinant $\Delta = \begin{vmatrix} a^2(1+x) & ab & ac \\ ab & b^2(1+x) & bc \\ ac & bc & c^2(1+x) \end{vmatrix}$ is divisible by 13. **(B)** $(1 + x)^2$ (C) x^2 (A) 1 + x(D) $x^2 + 1$ $\Delta = \begin{vmatrix} 1+a^2+a^4 & 1+ab+a^2b^2 & 1+ac+a^2c^2 \\ 1+ab+a^2b^2 & 1+b^2+b^4 & 1+bc+b^2c^2 \\ 1+ac+a^2c^2 & 1+bc+b^2c^2 & 1+c^2+c^4 \end{vmatrix}$ is equal to 14. (A) $(a-b)^2 (b-c)^2 (c-a)^2$ **(B)** 2(a - b) (b - c) (c - a)(**D**) $(a+b+c)^3$ (C) 4(a-b)(b-c)(c-a)If D = $\begin{vmatrix} a^2 + 1 & ab & ac \\ ba & b^2 + 1 & bc \\ ca & cb & c^2 + 1 \end{vmatrix}$ then D = 15. **(B)** $a^2+b^2+c^2$ **(C)** $(a+b+c)^2$ (A) $1 + a^2 + b^2 + c^2$ (D) none

Let $f(x) = \begin{vmatrix} 1+\sin^2 x & \cos^2 x & 4\sin 2x \\ \sin^2 x & 1+\cos^2 x & 4\sin 2x \\ \sin^2 x & \cos^2 x & 1+4\sin 2x \end{vmatrix}$ then the maximum value of f(x) is 16. **(A)**4 **(B)**6 **(C)**8 **(D)** 12 The determinant $\begin{vmatrix} b_1 + c_1 & c_1 + a_1 & a_1 + b_1 \\ b_2 + c_2 & c_2 + a_2 & a_2 + b_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 + b_3 \end{vmatrix} =$ 17. (A) $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$ (B) $2\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$ (C) $3\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$ (D) none of these loga p 1 If a, b, c are pth, qth and rth terms of a GP, then log b q 1 is equal to -18. logc r 1 **(A)**0 (C) log abc **(B)**1 (D) pqr $If a_{1}, a_{2}, \dots, a_{n}, a_{n+1}, \dots, are in GP and a_{i} > 0 \ \forall i, then \begin{vmatrix} \log & a_{n} & \log & a_{n+2} & \log & a_{n+4} \\ \log & a_{n+6} & \log & a_{n+8} & \log & a_{n+10} \\ \log & a_{n+12} & \log & a_{n+14} & \log & a_{n+16} \end{vmatrix} is equal to -1$ 19. (C) $n(n+1) \log a_n$ (D) none of these **(A)**0 **(B)** n $\log a_n$ $\left|\cos\left(\theta+\phi\right) - \sin\left(\theta+\phi\right) - \cos 2\phi\right|$ The determinant $\sin \theta$ $\cos\theta$ 20. sinφ is: $-\cos\theta$ $\sin\theta$ $\cos \phi$ **(A)**0 **(B)** independent of θ **(C)** independent of ϕ (D) independent of $\theta \& \phi$ both 21. If A is a non singular maxrix satisfying AB - BA = A, then which one of the following holds true (A) det. B = 0**(B)** B = 0(C) det. A = 1(D) det. (B+I) = det. (B-I)Let a determinant is given by $A = \begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix}$ and suppose det. A = 6. If $B = \begin{vmatrix} p+x & q+y & r+z \\ a+x & b+y & c+z \\ a+p & b+q & c+r \end{vmatrix}$ then 22. (A) det. B = 6**(B)** det. B = -6(C) det. B = 12(**D**) det. B = -12Let $D_1 = \begin{vmatrix} a & b & a+b \\ c & d & c+d \\ a & b & a-b \end{vmatrix}$ and $D_2 = \begin{vmatrix} a & c & a+c \\ b & d & b+d \\ a & c & a+b+c \end{vmatrix}$ then the value of $\frac{D_1}{D_2}$ where $b \neq 0$ and $ad \neq bc$, is 23. (A) - 2**(B)**0 $(\mathbf{C}) - 2\mathbf{b}$ **(D)** 2b

24. If
$$A_{1} = \begin{vmatrix} 2a & b & e \\ 2d & e & f \\ 4x & 2y & 2z \end{vmatrix}$$
, $A_{2} = \begin{vmatrix} f & 2d & e \\ 2z & 4x & 2y \\ e & 2a & b \end{vmatrix}$, then the value of $A_{1} - A_{2}$ is
(A) $x + \frac{y}{2} + z$ (B) 2 (C) 0 (D) 3
25. If a, b, c are non zeros, then the system of equations
($(\alpha + a) x + ay + az = 0$
 $(\alpha + (\alpha + b)y + az = 0$
 $(\alpha + (\alpha + b)y + az = 0$
 $(\alpha + (\alpha + b)y + az = 0$
 $(\alpha + (\alpha + b)y + az = 0$
 $(\alpha + (\alpha + b)y + az = 0$
 $(\alpha + \alpha + \alpha + c)z = 0$
has a non-trivial solution if
(A) $\alpha^{-1} = -(\alpha^{-1} + b^{-1} + c^{-1})$ (B) $\alpha^{-1} = a + b + c$
(C) $\alpha + a + b + c = 1$ (D) none of these
26. If A, B are two $n \times n$ non-singular matrices, then
(A) AB is non-singular (B) AB is singular
(C) $(AB)^{-1} = A^{-1} B^{-1}$ (D) $(AB)^{-1}$ does not exist
27. The equation $\begin{vmatrix} (1 + x)^{2} & (1 - x)^{2} & -(2 + x^{2}) \\ 2x + 1 & 3x & 1 - 5x \\ x + 1 & 2x & 2 - 3x \end{vmatrix} + \begin{vmatrix} (1 - x)^{2} & 3x & 2x \\ 1 - 2x & 3x - 2 & 2x - 3 \end{vmatrix} = 0$
(A) has no real solution (B) has 4 real solutions
(C) has two real and two non-real solutions (D) has infinite number of solutions, real or non-real
28. The system of linear equations $x + y - z = 6$, $x + 2y - 3z = 14$ and $2x + 5y - \lambda z = 9$ ($\lambda \in \mathbb{R}$) has a unique solution if:
(A) $\lambda = 8$ (B) $\lambda = 8$ (C) $\lambda = 7$ (D) $\lambda \neq 7$
29. The value of 'k' for which the set of equations $3x + ky - 2z = 0, x + ky + 3z = 0, $2x + 3y - 4z = 0$ has a non-
trivial solution over the set of rational is:
(A) $33/2$ (B) $31/2$ (C) 16 (D) 15
30. If $U_{n} = \begin{vmatrix} n^{2} & 2N + 1 & 2N + 1 \\ n^{2} & 3N^{2} & 3N + 1 \end{vmatrix}$, then $\sum_{n=1}^{N} U_{n}$ is equal to
(A) $2 \sum_{n=1}^{N} n$ (B) $2 \sum_{n=1}^{N} n^{2}$ (C) $\frac{1}{2} \sum_{n=1}^{N} n^{2}$ (D) 0
31. If the system of equations $x + 2y + 3z = 4, x + py + 2z = 3, x + 4y + µz = 3$ has an infinite number of solutions, then:
(A) $p = 2, \mu = 3$ (B) $p = 2, \mu = 4$ (C) $3p = 2\mu$ (D) $p = 4, \mu = 2$$

32. If
$$a \ge b \ge c$$
 and $\begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ b+c & c+a & a+b \end{vmatrix} = 0$ then .
(A) $a + b + c = 0$ (B) $ab + b + ca = 0$
(C) $a^2 + b^2 + c^2 = ab + bc + ca$ (D) $ab = -0$
33. If $a, b, \& c$ are nonzero real numbers, then $\begin{vmatrix} b^2 c^2 & bc & b+c \\ c^2 a^2 & ca & c+a \\ a^2 b^2 & ab & a+b \end{vmatrix}$ is equal to .
(A) $a^2 b^2 c^2 (a + b + c)$ (B) $ab c (a + b + c)^2$ (C) zero (D) none of these
34. An equilateral triangle has each of its sides of length 6 cm. If (x_1, x_1) ; $(x_2, y_2) \& (x_1, y_3)$ are its vertices then the value
of the determinant, $\begin{vmatrix} x_1 & y_1 & 1 \\ x_3 & y_3 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$ is equal to .
(A) 192 (B) 243 (C) 486 (D) 972
35. If the system of equations $x + 2y + 3z = 4$, $x + py + 2z = 3$, $\mu x + 4y + z = 3$ has an infinite number of solutions, then-
(A) $p - 2, \mu = 3$ (B) $p - 2, \mu = 4$ (C) $3p - 2\mu$ (D) none of these
36. The values of 0, λ for which the following equations
 $sin0x - cos0y + (\lambda + 1)z = 0$; cos0x + $sin0y - \lambda z = 0$; $\lambda x + (\lambda + 1)y + cos0 z = 0$ have non trivial solution, is
(A) $\theta - n\pi, \lambda \in \mathbb{R} - \{0\}$ (B) $\theta - 2n\pi, \lambda$ is any rational number
(C) $\theta - (2n + 1)\pi, \lambda \in \mathbb{R}^n$, $n \in I$ (D) $\theta - (2n + 1)\frac{\pi}{2}, \lambda \in \mathbb{R}, n \in I$
37. The set of equations
 $\frac{\lambda x - y + (cos0)z = 0}{3x + y + 2z = 0}$
 $(cos0)x + y + 2z = 0$
 $(cos0)x = 0$ (D) for only one values of λ and θ
(C) for all values of λ and θ (B) for all values of λ and θ
(C) for all values of λ and θ (D) for only one value of λ and θ
(C) for all values of λ and θ (P) for only one value of the de(A²BC⁻¹) is equal to
 $(A) \frac{6}{5}$ (B) $\frac{12}{5}$ (C) $\frac{18}{5}$ (D) $\frac{24}{5}$
39. If a, b, c are real then the value of determinant $\begin{vmatrix} a^2 + 1 & ab & ac \\ ab & b^2 + 1 & bc \\ ac & bc & c^2 + 1 \end{vmatrix} = 1$ if $a, b & c = c = 0$
(C) $a + b + c = 0$ (B) $a + b + c = 1$ (C) $a + b + c = 1$ (D) $a = b - c = 0$

40. The system of equations $(\sin\theta)x + 2z = 0$, $(\cos\theta)x + (\sin\theta)y = 0$, $(\cos\theta)y + 2z = a$ has (A) no unique solution **(B)** a unique solution which is a function of a and θ (C) a unique solution which is independent of a and θ (**D**) a unique solution which is independent of θ only 41. If the system of equations x - 2y + z = a2x+y-2z=band x+3y-3z=chave atleast one solution, then the relationship between a, b and c is (A) a + b + c = 0**(B)** a - b + c = 0(C) - a + b + c = 0**(D)** a + b - c = 0The equation $\begin{vmatrix} (1+x)^2 & (1-x)^2 & -(2+x^2) \\ 2x+1 & 3x & 1-5x \\ x+1 & 2x & 2-3x \end{vmatrix} + \begin{vmatrix} (1+x)^2 & 2x+1 & x+1 \\ (1-x)^2 & 3x & 2x \\ 1-2x & 3x-2 & 2x-3 \end{vmatrix} = 0$ **42**. (A) has no real solution (B) has 4 real solutions (C) has two real and two non-real solutions (D) has infinite number of solutions, real or non-real 43. Three digit numbers x17, 3y6 and 12z where x, y, z are integers from 0 to 9, are divisible by a fixed constant k. Then |x 3 1|

(A) k				(B) k ²	(C) k ³	(D) None
	1	у	2			
the determinant	7	6	z	must be divisible by		
	Λ	5	1			

Exercise # 2 Part # I > [Multiple Correct Choice Type Questions] 1. Which of the following determinant(s) vanish(es)? (B) $\begin{vmatrix} 1 & ab & \frac{1}{a} + \frac{1}{b} \\ 1 & bc & \frac{1}{b} + \frac{1}{c} \\ 1 & ca & \frac{1}{c} + \frac{1}{a} \end{vmatrix}$ (A) $\begin{vmatrix} 1 & bc & bc(b+c) \\ 1 & ca & ca(c+a) \\ 1 & ab & ab(a+b) \end{vmatrix}$ (D) $\begin{vmatrix} \log_x xyz & \log_x y & \log_x z \\ \log_y xyz & 1 & \log_y z \\ \log_z xyz & \log_z y & 1 \end{vmatrix}$ (C) $\begin{vmatrix} 0 & a-b & a-c \\ b-a & 0 & b-c \\ c-a & c-b & 0 \end{vmatrix}$ If $D(x) = \begin{vmatrix} \sin 2x & e^x \sin x + x \cos x & \sin x + x^2 \cos x \\ \cos x + \sin x & e^x + x & 1 + x^2 \\ e^x \cos x & e^{2x} & e^x \end{vmatrix}$, then the value of $|\ln \cos (Dx)|$ will be -2. (A) independent of x (B) dependent on x **(C)**0 (D) non-existent The determinant $\begin{vmatrix} a & b & a\alpha + b \\ b & c & b\alpha + c \\ a\alpha + b & b\alpha + c & 0 \end{vmatrix}$ is equal to zero, if -3. (A) a, b, c are in AP (B) a, b, c are in GP (C) α is a root of the equation $ax^2 + bx + c = 0$ (B) a, b, c are in GP (D) $(x-\alpha)$ is a factor of $ax^2 + 2bx + c$ 4. If the system of linear equations x + ay + az = 0, x + by + bz = 0, x + cy + cz = 0 has a non-zero solution then (A) System has always non-trivial solutions. **(B)** System is consistent only when a = b = c(C) If $a \neq b \neq c$ then x = 0, y = t, $z = -t \forall t \in R$ (D) If a = b = c then $y = t_1$, $z = t_2$, $x = -a(t_1 + t_2) \forall t_1, t_2 \in R$ 5. The value of θ lying between $\theta = 0$ & $\theta = \pi/2$ & satisfying the equation : $\begin{vmatrix} 1 + \sin^2 \theta & \cos^2 \theta & 4\sin 4\theta \\ \sin^2 \theta & 1 + \cos^2 \theta & 4\sin 4\theta \\ \sin^2 \theta & \cos^2 \theta & 1 + 4\sin 4\theta \end{vmatrix} = 0 \text{ are }:$

(A)
$$\frac{7\pi}{24}$$
 (B) $\frac{5\pi}{24}$ (C) $\frac{11\pi}{24}$ (D) $\frac{\pi}{24}$

Let a, b > 0 and $\Delta = \begin{vmatrix} -x & a & b \\ b & -x & a \\ a & b & -x \end{vmatrix}$, then 6. (A) a + b - x is a factor of Δ (B) $x^2 + (a + b)x + a^2 + b^2 - ab$ is a factor of Δ (C) $\Delta = 0$ has three real roots if a = b(D) none of these The determinent $\Delta = \begin{vmatrix} b & c & b\alpha + c \\ c & d & c\alpha + d \\ b\alpha + c & c\alpha + d & a\alpha^3 - c\alpha \end{vmatrix}$ is equal to zero if 7. (A) b, c, d are in A.P. (B) b, c, d are in G.P. (D) α is a root of $ax^3 - bx^2 - 3cx - d = 0$ (C) b, c, d are in H.P. Let $\Delta = \begin{vmatrix} a & a^2 & 0 \\ 1 & 2a+b & (a+b)^2 \\ 0 & 1 & 2a+3b \end{vmatrix}$, then 8. (A) a + b is a factor of Δ **(B)** a + 2b is a factor of Δ (C) 2a + 3b is a factor of Δ (D) a^2 is a factor of Δ The value of θ lying between $-\frac{\pi}{4} \& \frac{\pi}{2}$ and $0 \le A \le \frac{\pi}{2}$ and satisfying the equation 9. $\begin{array}{c|cccc} 1+\sin^2 A & \cos^2 A & 2\sin 4\theta \\ \sin^2 A & 1+\cos^2 A & 2\sin 4\theta \\ \sin^2 A & \cos^2 A & 1+2\sin 4\theta \end{array} = 0 \ \text{are} \ \text{-} \ \end{array}$ (A) $A = \frac{\pi}{4}, \quad \theta = -\frac{\pi}{8}$ (B) $A = \frac{3\pi}{8} = \theta$ (C) $A = \frac{\pi}{5}, \quad \theta = -\frac{\pi}{8}$ (D) $A = \frac{\pi}{6}, \quad \theta = \frac{3\pi}{8}$ If $\begin{vmatrix} a & a & x \\ m & m & m \\ b & x & b \end{vmatrix} = 0$, then x may be equal to -10. (C) a + b **(A)** a **(B)** b **(D)** m The value of the determinant $\begin{vmatrix} \alpha & \beta & \ell \\ \alpha & x & n \\ \alpha & \beta & x \end{vmatrix}$ is 11. (A) independent of ℓ (B) independent of n (C) $\alpha(x-\ell)(x-\beta)$ (D) $\alpha\beta(x-\ell)(x-n)$ The determinant $\begin{vmatrix} a^2 & a^2 - (b - c)^2 & bc \\ b^2 & b^2 - (c - a)^2 & ca \\ c^2 & c^2 - (a - b)^2 & ab \end{vmatrix}$ is divisible by -12. **(B)** (a+b)(b+c)(c+a) **(C)** $a^2+b^2+c^2$ **(D)** (a-b)(b-c)(c-a)(A) a+b+c

- 13. Let A and B be two 2×2 matrix with real entries. If AB = O and tr(A) = tr(B) = 0 then
 - (A) A and B are comutative w.r.t. operation of multiplication.
 - (B) A and B are not commutative w.r.t. operation of multiplication.
 - (C) A and B are both null matrices.

(C) Adj. A = $\begin{bmatrix} 1/2 & -1/2 & 0 \\ 0 & -1 & 1/2 \\ 0 & 0 & -1/2 \end{bmatrix}$

(D) BA = 0

14. If
$$A^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$
, then

(A) |A| = 2

(B) A is non-singular

(D) A is skew symmetric matrix

15. If the system of equations x + y - 3 = 0, (1 + K)x + (2 + K)y - 8 = 0 & x - (1 + K)y + (2 + K) = 0 is consistent then the value of K may be -

(A) 1 (B)
$$\frac{3}{5}$$
 (C) $-\frac{5}{3}$ (D) 2

- **16.** The set of equations x y + 3z = 2, 2x y + z = 4, $x 2y + \alpha z = 3$ has -
 - (A) unique solution only for $\alpha = 0$
 - **(B)** unique solution for $\alpha \neq 8$
 - (C) infinite number of solutions of $\alpha = 8$
 - **(D)** no solution for $\alpha = 8$
- **17.** The determinant

$$\Delta = \begin{vmatrix} a^2 + x^2 & ab & ac \\ ab & b^2 + x^2 & bc \\ ac & bc & c^2 + x^2 \end{vmatrix}$$
 is divisible by

(A) x (B)
$$x^2$$
 (C) x^3 (D) x^4

18. If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ (where $bc \neq 0$) satisfies the equations $x^2 + k = 0$, then (A) a + d = 0 (B) k = -|A| (C) k = |A| (D) none of these

- 19. If the system of equations, $a^2 x by = a^2 b$ & $bx b^2 y = 2 + 4b$ possess an infinite number of solutions then the possible values of 'a' and 'b' are
 - (A) a=1, b=-1(B) a=1, b=-2(C) a=-1, b=-1(D) a=-1, b=-2

20. If p, q, r, s are in A.P. and
$$f(x) = \begin{vmatrix} p + \sin x & q + \sin x & p - r + \sin x \\ q + \sin x & r + \sin x & -1 + \sin x \\ r + \sin x & s + \sin x & s - q + \sin x \end{vmatrix}$$

such that $\int_{0}^{2} f(x)dx = -4$ then the common difference of the A.P. can be :
(A) -1 (B) $\frac{1}{2}$ (C) 1 (D) 2

Part # II [Assertion & Reason Type Questions]

These questions contains, Statement I (assertion) and Statement II (reason).

- (A) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.
- (B) Statement-I is true, Statement-II is true ; Statement-II is NOT a correct explanation for statement-I.
- (C) Statement-I is true, Statement-II is false.
- (D) Statement-I is false, Statement-II is true.
- 1. Statement I : Consider the system of equations,

$$2x + 3y + 4z = 5$$
 $x + y + z = 1$ $x + 2y + 3z = 4$

This system of equations has infinite solutions.

Statement - II : If the system of equations is

$$e_{1} : a_{1}x + b_{1}y + c_{1}z - d_{1} = 0$$

$$e_{2} : a_{2}x + b_{2}y + c_{2}z - d_{2} = 0$$

$$e_{3} : e_{1} + \lambda e_{2} = 0, \text{ where } \lambda \in \mathbb{R} \quad \& \quad \frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$$

Then such system of equations has infinite solutions.

2. Statement - I : Consider D = $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$

Let B_1 , B_2 , B_3 be the co-factors of b_1 , b_2 , and b_3 respectively then $a_1B_1 + a_2B_2 + a_3B_3 = 0$ Statement - II : If any two rows (or columns) in a determinant are identical then value of determinant is zero.

3. Statement - I : If a, b, $c \in R$ and $a \neq b \neq c$ and x,y,z are non zero. Then the system of equations

- ax + by + cz = 0
- bx + cy + az = 0
- cx + ay + bz = 0 has infinite solutions.

Statement - II : If the homogeneous system of equations has non trivial solution, then it has infinitely many solutions.

4. Statement-I : If
$$A = \begin{bmatrix} 2 & 1+2i \\ 1-2i & 7 \end{bmatrix}$$
 then det(A) is real.

Statement-II: If
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
, a_{ij} being complex numbers then det(A) is always real.

Exercise # 3 Part # I [Matrix Match Type Questions]

Following question contains statements given in two columns, which have to be matched. The statements in Column-I are labelled as A, B, C and D while the statements in Column-II are labelled as p, q, r and s. Any given statement in Column-I can have correct matching with one or more statement(s) in Column-II.

Column	1–I	Colum	n–II
(A)	If A is a skew–symmetric matrix of odd order then det(A) is	(p)	7
(B)	If A is a square matrix such that $A^2 = A$ and $(I + A)^3 = I + kA$, then k is equal to	(q)	8
(C)	If A and B are two invertible matrices such that AB = C and $ A = 2$, $ C = -2$, then det(B) is	(r)	0
(D)	If $A = [a_{ij}]_{3\times 3}$ is a scalar matrix with $a_{11} = a_{22} = a_{33}$ = 2 and $A(adjA) = kI_3$ then k is	(\$)	-1

2. **Column-I**

1.

Column-II

(A)	If the determinant $\begin{vmatrix} a+p & \ell+x & u+f \\ b+q & m+y & v+g \\ c+r & n+z & w+h \end{vmatrix}$	(p)	3
	splits into exactly K determinants of order 3, each element of which contains only one term, then the values of K is		
(B)	The values of λ for which the system of equations x + y + z = 6, x + 2y + 3z = 10 & $x + 2y + \lambda z = 12$	(q)	8
(C)	is inconsistent If x, y, z are in A.P. then the value of the determinant $\begin{vmatrix} a+2 & a+3 & a+2x \\ a+3 & a+4 & a+2y \\ a+4 & a+5 & a+2z \end{vmatrix}$ is	(r)	5
(D)	a+4 a+5 a+2z Let p be the sum of all possible determinants of order 2 having 0, 1, 2 & 3 as their four elements (without repeatition of digits). The value of 'p' is	(s)	0

Exercise # 4[Subjective Type Questions]1. Without expanding the determinant prove that :(A)
$$\begin{vmatrix} 0 & b & -c \\ -b & 0 & a \\ c & -a & 0 \end{vmatrix} = 0$$
(B) $\begin{vmatrix} 0 & p-q & p-r \\ q-p & 0 & q-r \\ r-p & r-q & 0 \end{vmatrix} = 0$ 2. Prove that :(A) $\begin{vmatrix} ax & by & cz \\ x^2 & y^2 & z^2 \\ 1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} a & b & c \\ x & y & z \\ yz & zx & xy \end{vmatrix}$ (B) $\begin{vmatrix} 1 & a & a^2 - bc \\ 1 & b & b^2 - ca \\ 1 & c & c^2 - ab \end{vmatrix} = 0$ 3. If $a^2 + b^2 + c^2 = 1$, then prove that $\begin{vmatrix} a^2 + (b^2 + c^2) \cos \phi \\ ba(1 - \cos \phi) \\ ca(1 - \cos \phi) \end{vmatrix}$ $b^2 + (c^2 + a^2) \cos \phi \\ bb(1 - \cos \phi) \\ cb(1 - \cos \phi) \end{vmatrix}$ $c^2 + (a^2 + b^2) \cos \phi$

is independent of a, b, c

4. Prove that
$$\begin{vmatrix} -bc & b^2 + bc & c^2 + bc \\ a^2 + ac & -ac & c^2 + ac \\ a^2 + ab & b^2 + ab & -ab \end{vmatrix} = (ab + bc + ca)^3$$
.

5. If a, b, c, x, y, $z \in R$, then prove that,

$$\begin{vmatrix} (a-x)^2 & (b-x)^2 & (c-x)^2 \\ (a-y)^2 & (b-y)^2 & (c-y)^2 \\ (a-z)^2 & (b-z)^2 & (c-z)^2 \end{vmatrix} = \begin{vmatrix} (1+ax)^2 & (1+bx)^2 & (1+cx)^2 \\ (1+ay)^2 & (1+by)^2 & (1+cy)^2 \\ (1+az)^2 & (1+bz)^2 & (1+cz)^2 \end{vmatrix}.$$

6. Using properties of determinants, prove that $\begin{vmatrix} b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix} = 2(a+b+c)(ab+bc+ca-a^2-b^2-c^2).$

7. Prove that : $\begin{vmatrix} a^2 + 2a & 2a + 1 & 1 \\ 2a + 1 & a + 2 & 1 \\ 3 & 3 & 1 \end{vmatrix} = (a - 1)^3$

8. Prove that
$$\begin{vmatrix} a & b-c & c+b \\ a+c & b & c-a \\ a-b & b+a & c \end{vmatrix} = (a+b+c)(a^2+b^2+c^2)$$

9. For a fixed positive integer n, if
$$D = \begin{vmatrix} n! & (n+1)! & (n+2)! \\ (n+1)! & (n+2)! & (n+3)! \\ (n+2)! & (n+3)! & (n+4)! \end{vmatrix}$$
 then show that $\left[\frac{D}{(n!)^3} - 4\right]$ is divisible by n.

10. If
$$D_r = \begin{vmatrix} 2^{r-1} & 2(3^{r-1}) & 4(5^{r-1}) \\ x & y & z \\ 2^n - 1 & 3^n - 1 & 5^n - 1 \end{vmatrix}$$
 then prove that $\sum_{r=1}^n D_r = 0$.

- 11. Using the properties of determinants, evaluate the following : $\begin{vmatrix} 0 & ab^2 & ac^2 \\ a^2b & 0 & bc^2 \\ a^2c & cb^2 & 0 \end{vmatrix}$.
- 12. Using properties of determinants prove the following : $\begin{vmatrix} x+y & x & x \\ 5x+4y & 4x & 2x \\ 10x+8y & 8x & 3x \end{vmatrix} = x^{3}$

13. Show that $\begin{vmatrix} x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c \end{vmatrix} = 0$, where a, b, c are in A.P.

14. Solve the following sets of equations using Cramer's rule and remark about their consistency.

x + y + z - 6 = 0 (A) $2x + y - z - 1 = 0$	x + 2y + z = 1 (B) $3x + y + z = 6$
x + y - 2z + 3 = 0	x + 2y = 0
x - 3y + z = 2 (C) $3x + y + z = 65x + y + 3z = 3$	7x - 7y + 5z = 3 (D) $3x + y + 5z = 7$ $2x + 3y + 5z = 5$

15. Let α_1, α_2 and β_1, β_2 be the roots of $ax^2 + bx + c = 0$ and $px^2 + qx + r = 0$ respectively. If the system of equations $\alpha_1 y + \alpha_2 z = 0$ and $\beta_1 y + \beta_2 z = 0$ has a non-trivial solution, then prove that $\frac{b^2}{q^2} = \frac{ac}{pr}$.

Exercise # 5 Part # I > [Previous Year Questions] [AIEEE/JEE-MAIN] loga p 1 [AIEEE-2002] If a, b, c are pth, qth and rth terms of a GP, and all are positive then $\begin{vmatrix} 3 & - & - \\ \log b & q & 1 \end{vmatrix}$ is equal to-1. logc r 1 (1)0 (2)1 (3) log abc (4) pqr If 1, ω , ω^2 are cube roots of unity and $n \neq 3p$, $p \in Z$, then $\begin{vmatrix} 1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1 \end{vmatrix}$ is equal to-[AIEEE-2003] 2. (1)0 (3) ω^2 **(2)** ω **(4)** 1 If $\begin{vmatrix} a & a^2 & 1+a^3 \\ b & b^2 & 1+b^3 \\ c & c^2 & 1+c^3 \end{vmatrix} = 0$ and vectors (1, a, a^2), (1, b, b^2) and (1, c, c^2) are non-coplanar, then the product abc equals-3. (1)1 (2)0 **(4)**-1 [AIEEE-2003] $If a_{1}, a_{2}, \dots, a_{n}, a_{n+1}, \dots, are in GP and a_{i} > 0 \ \forall i, then \begin{vmatrix} \log a_{n} & \log a_{n+2} & \log a_{n+4} \\ \log a_{n+6} & \log a_{n+8} & \log a_{n+10} \\ \log a_{n+12} & \log a_{n+14} & \log a_{n+16} \end{vmatrix} is equal to-$ **4**. [AIEEE-2004,05] (1)0 (2) n log a (3) $n(n+1) \log a_n$ (4) none of these If $a^2 + b^2 + c^2 = -2$ and $f(x) = \begin{vmatrix} 1 + a^2 x & (1 + b^2) x & (1 + c^2) x \\ (1 + a^2) x & 1 + b^2 x & (1 + c^2) x \\ (1 + a^2) x & (1 + b^2) x & 1 + c^2 x \end{vmatrix}$, then f(x) is a polynomial of degree- [AIEEE 2005] 5. (1)2 (3)0 (2) 3 (4)1 The system of equations $\alpha x + y + z = \alpha - 1$; $x + \alpha y + z = \alpha - 1$; $x + y + \alpha z = \alpha - 1$ has no solution. If α is 6. [AIEEE 2005] (3) either -2 or 1 (4) -2(1) 1 (2) not -2If D = $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1+x & 1 \\ 1 & 1 & 1+v \end{vmatrix}$ for $x \neq 0, y \neq 0$ then D is-7. [AIEEE - 2007] (1) Divisible by both x and y (2) Divisible by x but not y (3) Divisible by y but not x (4) Divsible by neither x nor y Let $A = \begin{bmatrix} 5 & 5\alpha & \alpha \\ 0 & \alpha & 5\alpha \\ 0 & 0 & 5 \end{bmatrix}$, if $|A^2| = 25$ then $|\alpha|$ equals-8. [AIEEE - 2007] (1)5 $(2) 5^2$ **(3)**1 (4) 1/5

9. Let a, b, c be any real numbers. Suppose that there are real numbers x, y, z not all zero such that

	x = cy + bz, y = az + cx an (1) 2	$dz = bx + ay$, then $a^2 + b^2 + (2) - 1$	$-c^2 + 2abc$ is equal to (3) 0	(4) 1	[AIEEE - 2008]
10.	Let a, b, c be such that b(a	$(a + c) \neq 0.$ If $\begin{vmatrix} a & a+1 & a \\ -b & b+1 & b \\ c & c-1 & c \end{vmatrix}$	$\begin{vmatrix} -1 \\ -1 \\ +1 \end{vmatrix} + \begin{vmatrix} a+1 & b+1 \\ a-1 & b-1 \\ (-1)^{n+2}a & (-1)^{n+1}b \end{vmatrix}$	$\begin{vmatrix} \mathbf{c} - 1 \\ \mathbf{c} + 1 \\ (-1)^{n} \mathbf{c} \end{vmatrix} = 0,$	
	then the value of n is :- (1) Any odd integer	(2) Any integer	(3) Zero	(4) Any even	[AIEEE - 2009] integer
11.	Consider the system of li	inear equations :			
	$x_1 + 2x_2 + x_3 = 3$				
	$2x_1 + 3x_2 + x_3 = 3$	3			
	$3x_1 + 5x_2 + 2x_3 =$				
	The system has				[AIEEE - 2010]
	(1) Infinite number of so	lutions	(2) Exactly 3 solutions		
	(3) A unique solution		(4) No solution		
12		1. for which the lines			
12.	The number of values of 4x + ky + 2z = 0 kx + 4y + z = 0 2x + 2y + z = 0 possess a non-zero soluti	k for which the linear equ	lations		[AIEEE - 2011]
	(1) 1	(2) zero	(3) 3	(4) 2	
13.	If the trivial solution is t x - ky + z = 0 kx + 3y - kz = 0 3x + y - z = 0	he only solution of the sys	stem of equations		
	Then the set of all values				[AIEEE - 2011]
	(1) {2,-3}	(2) $R - \{2, -3\}$	(3) $R - \{2\}$	(4) $R - \{-3\}$	
		3 1+f(1)	1 + f(2)		
14.	If α , $\beta \neq 0$, and $f(n) = \alpha^n$.	$+\beta^{n}$ and $ 1+f(1) + f(2)$	$1 + f(3) = K (1 - \alpha)^2 (1 - \alpha)^2$	$(\alpha - \beta)^2 (\alpha - \beta)^2$, th	en K is equal to :
		1 + f(2) 1 + f(3)	1 + 1(4)		
	(1) αβ	(2) $\frac{1}{\alpha\beta}$	(3) 1	(4) – 1	[Main 2014]
15.	The set of all values of λ $2x_1 - 2x_2 + x_3 = \lambda x$ $2x_1 - 3x_2 + 2x_3 = \lambda$ $-x_1 + 2x_2 = \lambda x_3$ has a non-trivial solution,	x ₂	ear equations :		[Main 2015]
	(1) contains two elements		(2) contains more than tw	vo elements	
	(3) is an empty set.		(4) is a singleton		

	Part # II >> [Previous Year Que	stions][IIT-JEE ADV	VANCED]
		0		
1.	Solve for x the equation	a^2 a sin(n+1)x sin nx	$\frac{1}{\sin(n-1)x} = 0$	[REE 2001, (Mains)]
2.	-	solve them when consist	ent, the following system	of equations for all values of λ :
	$x+y+z=1$ $x+3y-2z=\lambda$			
	$3x + (\lambda + 2)y - 3z$	$=2\lambda+1$		[JEE 2001, (Mains)]
3.	Let a, b, c, be real number	ers with $a^2 + b^2 + c^2 = 1$,	, Show that the equation	[JEE 2001 , (Mains)]
	ax - by - c $bx + a$	uy cx + a		
	bx + ay -ax + by	v - c $cy + b =$	0 represents a straight li	ne.
	cx + a cy + l	-ax - by + c		
4.	The number of values of	k for which the system (of equations	
	(k+1)x+8y=4k			
	kx + (k+3)y = 3k - 1			
	has infinitely many solution	ons is		[JEE 2002, (Screening)]
	(A) 0	(B) 1	(C) 2	(D) infinite
5.	The value of λ for which the	e system of equations 2x	-y-z=12, x-2y+z=-4	4, $x + y + \lambda z = 4$ has no solution is [JEE 2004 (Screening)]
	(A) 3	(B) -3	(C) 2	(D) -2
6. (a)	Consider three point $P =$	$(-\sin(\beta - \alpha), -\cos\beta), Q$	$g = (\cos(\beta - \alpha), \sin\beta)$ and	
		$-\theta$), sin($\beta - \theta$)), where (
	(A) P lies on the line segn			-
	(C) R lies on the line seg	ment QP	(D) P, Q, R are non co	onnear
(b)	Consider the system of ec Statement-I : The system		•	$\mathbf{y} + 4\mathbf{z} = 1.$
	Statement-II : The deterr	ninant $\begin{vmatrix} 1 & 3 & -1 \\ -1 & -2 & k \\ 1 & 4 & 1 \end{vmatrix} \neq$	0, for $k \neq 3$.	[JEE 2008]

(A) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.

- (B) Statement-I is true, Statement-II is true; Statement-II is NOT a correct explanation for statement-I.
- (C) Statement-I is true, Statement-II is false.

(D) Statement-I is false, Statement-II is true.

7. The number of all possible values of θ , where $0 < \theta < \pi$, for which the system of equations

 $(y+z)\cos 3\theta = (xyz)\sin 3\theta$

$$x\sin 3\theta = \frac{2\cos 3\theta}{y} + \frac{2\sin 3\theta}{z}$$

 $(xyz)\sin 3\theta = (y+2z)\cos 3\theta + y\sin 3\theta$

have a solution (x_0, y_0, z_0) with $y_0 z_0 \neq 0$, is [JEE 2010]

- 8. Let M and N be two 3 × 3 matrices such that MN = NM. Further, if M ≠ N² and M² = N⁴, then [JEE Ad. 2014]
 (A) determinant of (M² + MN²) is 0
 (B) there is a 3 × 3 non-zero matrix U such that (M² + MN²)U is the zero matrix
 (C) determinant of (M² + MN²) ≥ 1
 (D) for a 3 × 3 matrix U, if (M² + MN²)U equal the zero matrix then U is the zero matrix
- 9. Which of the following values of α satisfy the equation

$$\begin{vmatrix} (1+\alpha)^2 & (1+2\alpha)^2 & (1+3\alpha)^2 \\ (2+\alpha)^2 & (2+2\alpha)^2 & (2+3\alpha)^2 \\ (3+\alpha)^2 & (3+2\alpha)^2 & (3+3\alpha)^2 \end{vmatrix} = 648\alpha$$
(A)-4 (B)9 (C)-9 (D)4

10. The total number of distinct $x \in R$ for which $\begin{vmatrix} x & x^2 & 1+x^3 \\ 2x & 4x^2 & 1+8x^3 \\ 3x & 9x^2 & 1+27x^3 \end{vmatrix} = 10$ is [JEE Ad. 2016]

11. Let $a, \lambda, \mu, \in \mathbb{R}$. Consider the system of linear equations

$$ax + 2y = \lambda$$

$$3x-2y=\mu$$

Which of the following statements (s) is (are) correct ?

[JEE Ad. 2016]

[JEE Ad. 2015]

(A) If a = – 3, then the system has infinitely many solutions for all values of λ and μ

(B) If a \neq – 3, then the system has a unique solution for all values of λ and μ

- (C) If $\lambda + \mu$, = 0, then the system has infinitely many solutions for a = -3
- (D) If $\lambda + \mu, \neq 0$, then the system has no solution for a = -3

277

If a, b, c, are real numbers, and D = $\begin{vmatrix} a & 1+2i & 3-5i \\ 1-2i & b & -7-3i \\ 3+5i & -7+3i & c \end{vmatrix}$ then D is 9. (D) integer (A) purely real (B) purely imaginary (C) non real lnx $\ell ny \quad \ell nz$ **S**₁: The value of the determinant D = $\begin{vmatrix} \ell_{n}2x & \ell_{n}2y & \ell_{n}2z \\ \ell_{n}3x & \ell_{n}3y & \ell_{n}3z \end{vmatrix}$ is $\ell_{n}216$ xyz. 10. The roots of $\begin{vmatrix} x & a & b & 1 \\ \lambda & x & b & 1 \\ \lambda & \mu & x & 1 \\ \lambda & \mu & v & 1 \end{vmatrix} = 0$ are independent of λ , μ , v, a, b**S**₂: If a, b, c, are sides of a scalene triangle, then value of $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$ is negative **S**₃: $\mathbf{S_4}: \qquad \text{Let } \mathbf{f}(\mathbf{x}) = \begin{vmatrix} \frac{1}{\mathbf{x}} & \ell \mathbf{n} \ \mathbf{x} & \mathbf{x}^n \\ 1 & -\frac{1}{\mathbf{n}} & (-1)^n \\ 1 & \mathbf{a} & \mathbf{a}^2 \end{vmatrix}, \text{ if } \mathbf{f}^n(\mathbf{x}) \text{ is the } \mathbf{n}^{\text{th}} \text{ derivative of } \mathbf{f}(\mathbf{x}) \text{ then } \mathbf{f}^n(1) \text{ is independent of } \mathbf{a}.$ (A) FFTT (B) FTTT (C) FFFT (D) TTTT

SECTION - II : MULTIPLE CORRECT ANSWER TYPE

If A and B are invertible square matrices of the same order, then which of the following is correct ?
(A) adj(AB) = (adjB) (adjA)
(B) (adjA)' = (adjA')
(C) |adjA| = |A|ⁿ⁻¹, where n is the order of matrix A
(D) adj(adjB) = |B|ⁿ⁻² B, where n is the order of matrix B

12. Let $f(x) = \begin{vmatrix} 2\sin x & \sin^2 x & 0 \\ 1 & 2\sin x & \sin^2 x \\ 0 & 1 & 2\sin x \end{vmatrix}$, then (A) f(x) is independent of x (B) $f'(\pi/2) = 0$ (C) $\int_{-\pi/2}^{\pi/2} f(x) dx = 0$ (D) tangent to the curve y = f(x) at x = 0 is y = 013. System of equation x + 3y + 2z = 6 $x + \lambda y + 2z = 7$ $x + 3y + 2z = \mu$ has (A) unique solution if $\lambda = 2, \mu \neq 6$ (B) infinitely many solution if $\lambda = 4, \mu = 6$ (C) no solution if $\lambda = 5, \mu = 7$ (D) no solution if $\lambda = 3, \mu = 5$

14. Let
$$f(x) = \begin{vmatrix} 1/x & \log x & x^n \\ 1 & -1/n & (-1)^n \\ 1 & a & a^2 \end{vmatrix}$$
, then

- (A) $f^{n}(1)$ is independent of a
- **(B)** $f^{h}(1)$ is independent of n
- (C) $f^{n}(1)$ depends on a and n
- **(D)** $y = a(x f^{n}(1))$ represents a straight line through the origin
- 15. Which of the following statement is always true
 - (A) Adjoint of a symmetric matrix is a symmetric matrix
 - (B) Adjoint of a unit matrix is unit matrix
 - (C) A(adj A) = (adj A) A
 - (D) Adjoint of a diagonal matrix is diagonal matrix

SECTION - III : ASSERTION AND REASON TYPE

16. Statement-I: The system of equations possess a non trivial solution over the set of rationals x + ky + 3z = 0, 3x + ky - 2z = 0, 2x + 3y - 4z = 0, then the value of k is 31/2.

Statement-II: For non trivial solution $\Delta = 0$.

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True
- 17. Statement-I: The determinants of a matrix $A = [a_{ij}]_{5 \times 5}$ where $a_{ij} + a_{ji} = 0$ for i and j is zero Statement-II: The determinant of a skew symmetric matrix of odd order is zero.
 - (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I
 - (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
 - (C) Statement-I is True, Statement-II is False
 - (D) Statement-I is False, Statement-II is True
- **18.** Statement-I : For a singular square matrix A, if $AB = AC \implies B = C$ Statement-II : If |A| = 0 then A^{-1} does not exist
 - (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I
 - (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
 - (C) Statement-I is True, Statement-II is False
 - (D) Statement-I is False, Statement-II is True

19. Statement-I: $(a_{11}, a_{22}, ..., a_{nn})$ is a diagonal matrix then $A^{-1} = dia(a_{11}^{-1}, a_{22}^{-1}, ..., a_{nn}^{-1})$ Statement-II: If A = dia(2, 1, -3) and B = dia(1, 1, 2) then det $(AB^{-1}) = 3$

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True

20. Statement-I: If a, b, c are distinct and x, y, z are not all zero and ax + by + cz = 0, bx + cy + az = 0, cx + ay + bz = 0, then a + b + c = 0.

Statement-II: $a^2 + b^2 + c^2 > ab + bc + ca$, if a, b, c are distinct.

(A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I

(B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I

(C) Statement-I is True, Statement-II is False

(D) Statement-I is False, Statement-II is True

SECTION - IV : MATRIX - MATCH TYPE

21. Match the following

Column - I (A) If $\Delta(x) = \begin{vmatrix} x^2 - 5x + 3 & 2x - 5 & 3 \\ 3x^2 + x + 4 & 6x + 1 & 9 \\ 7x^2 + 6x + 9 & 14x - 6 & 21 \end{vmatrix} = ax^3 + bx^2 + cx + d$, (p) 3a + 4b + 5c + d = 141then (B) If $\Delta(x) = \begin{vmatrix} x - 1 & 5x & 7 \\ x^2 - 1 & x - 1 & 8 \\ 2x & 3x & 0 \end{vmatrix} = ax^3 + bx^2 + cx + d$, then (q) a + 2b + 3c + 5d = 156(C) If $\Delta(x) = \begin{vmatrix} 2x^3 - 3x^2 & 5x + 7 & 2 \\ 4x^3 - 7x & 3x + 2 & 1 \\ 7x^3 - 8x^2 & x - 1 & 3 \end{vmatrix}$ $a + bx + cx^2 + dx^3 + ex^4$, then (r) c - d = 19(s) b - c = 25(t) 3a + 2b + 5c + 5d = 187

22. Match the following

	Column - I	Colum	n - II
(A)	Let $ A = a_{ij} _{3 \times 3} \neq 0$. Each element a_{ij} is multiplied	(p)	0
	by k^{i-j} . Let $ B $ the resulting determinant, where		
	$k_1 A + k_2 B = 0$. Then $k_1 + k_2 =$		
(B)	The maximum value of a third order determinant	(q)	4
	each of its entries are ± 1 equals		
(C)	$\begin{vmatrix} 1 & \cos\alpha & \cos\beta \\ \cos\alpha & 1 & \cos\gamma \\ \cos\beta & \cos\gamma & 1 \end{vmatrix} = \begin{vmatrix} 0 & \cos\alpha & \cos\beta \\ \cos\alpha & 0 & \cos\gamma \\ \cos\beta & \cos\gamma & 0 \end{vmatrix}$	(r)	1
	$if \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma =$		
(D)	$\begin{vmatrix} x^{2} + x & x + 1 & x - 2 \\ 2x^{2} + 3x - 1 & 3x & 3x - 3 \\ x^{2} + 2x + 3 & 2x - 1 & 2x - 1 \end{vmatrix} = Ax + B \text{ where A and B}$	(s)	2
	are determinants of order 3. Then $A + 2B =$	(t)	$\begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix}$

SECTION - V : COMPREHENSION TYPE

23. Read the following comprehension carefully and answer the questions. Consider the determinant $\Delta = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ d_1 & d_2 & d_2 \end{vmatrix}$ M_{ii} = Minor of the element of ith row and jth column C_{ii} = Cofactor of the element of ith row and jth column Value of $b_1 \cdot C_{31} + b_2 \cdot C_{32} + b_3 \cdot C_{33}$ is 1. (A) 0 $(\mathbf{C}) 2\Delta$ (D) Δ^2 If all the elements of the determinant are multiplied by 2, then the value of new determinant is 2. **(A)**0 (D) $2^9 \cdot \Delta$ **(B)** 8Δ **(C)** 2Δ $a_3 M_{13} - b_3 \cdot M_{23} + d_3 \cdot M_{33}$ is equal to 3. **(A)**0 **(B)** 4Δ **(C)** 2Δ **(D)**Δ 24. Read the following comprehension carefully and answer the questions. Let $\Delta \neq 0$ and Δ^c denotes the determinant of cofactors, then $\Delta = \Delta^{n-1}$, where n(>0) is the order of Δ . If a, b, c are the roots of the equation $x^3 - px^2 + r = 0$, then the value of $\begin{vmatrix} bc - a^2 & ca - b^2 & c^2 \\ ca - b^2 & ab - c^2 & bc - a^2 \\ ab - c^2 & bc - a^2 & ca - b^2 \end{vmatrix}$ is 1. (A) p^2 **(B)** p⁴ (C) p⁶ (**D**) p^9 If $l_1, m_1, n_1; l_2, m_2, n_2; l_3, m_3, n_3$ are real quantities satisfying the six relations : $l_1^2 + m_1^2 + n_1^2 = l_2^2 + m_2^2 + n_2^2 = l_3^2 + m_3^2 + n_3^2 = 1$ 2. $l_2 l_3 + m_2 m_3 + n_2 n_3 = l_3 l_1 + m_3 m_1 + n_3 n_1 = l_1 l_2 + m_1 m_2 + n_1 n_2 = 0, \text{ then the value of } \begin{vmatrix} l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3 \end{vmatrix} \text{ is }$ **(A)**0 **(B)**±1 $(C) \pm 2$ **(D)** ± 3 If a, b, c are the roots of the equation $x^3 - 3x^2 + 3x + 7 = 0$, then the value of $\begin{vmatrix} 2bc - a^2 & c^2 & b^2 \\ c^2 & 2ac - b^2 & a^2 \\ b^2 & a^2 & 2ab - c^2 \end{vmatrix}$ is 3. (A) 9 **(B)** 27 (C) 81 (D)0

25. Read the following comprehension carefully and answer the questions.

Let A be a m × n matrix. If there exists a matrix L of type n × m such that $LA = I_n$, then L is called left inverse of A. Similarly, if there exists a matrix R of type n × m such that $AR = I_m$, then R is called right inverse of A. For example to find right inverse of matrix

$$A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 3 \end{bmatrix} \text{ we take } R = \begin{bmatrix} x & y & z \\ u & v & w \end{bmatrix} \text{ and solve } AR = I_3 \text{ i.e.}$$
$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x & y & z \\ u & v & w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$\Rightarrow \quad x - u = 1 \qquad y - v = 0 \qquad z - w = 0$$
$$x + u = 0 \qquad y + v = 1 \qquad z + w = 0$$
$$2x + 3u = 0 \qquad 2y + 3v = 0 \qquad 2z + 3w = 1$$

As this system of equations is inconsistent, we say there is no right inverse for matrix A.

		[1	-1]
1.	Which of the following matrices is NOT left inverse of matrix	1	1
		2	3

(A)
$$\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$
 (B) $\begin{bmatrix} 2 & -7 & 3 \\ -\frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$ (C) $\begin{bmatrix} -\frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$ (D) $\begin{bmatrix} 0 & 3 & -1 \\ -\frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$
The number of right inverses for the matrix $\begin{bmatrix} 1 & -1 & 2 \\ 2 & -1 & 1 \end{bmatrix}$
(A) 0 (B) 1 (C) 2 (D) infinite

3. For which of the following matrices number of left inverses is greater than the number of right inverses

$$(A) \begin{bmatrix} 1 & 2 & 4 \\ -3 & 2 & 1 \end{bmatrix} (B) \begin{bmatrix} 3 & 2 & 1 \\ 3 & 2 & 1 \end{bmatrix} (C) \begin{bmatrix} 1 & 4 \\ 2 & -3 \\ 5 & 4 \end{bmatrix} (D) \begin{bmatrix} 3 & 3 \\ 1 & 1 \\ 4 & 4 \end{bmatrix}$$

SECTION - VI : INTEGER TYPE

26. If f(x) satisfies the equation $\begin{vmatrix} f(x+1) & f(x+8) & f(x+1) \\ 1 & 2 & -5 \\ 2 & 3 & \lambda \end{vmatrix} = 0$ for all real x. If f is periodic with period 7, then find the value of $|\lambda|$.

27. Let
$$f(x) = \begin{vmatrix} x & 1 & 1 \\ \sin 2\pi x & 2x^2 & 1 \\ x^3 & 3x^4 & 1 \end{vmatrix}$$
. If $f(x)$ be an odd function and its odd values is equal $g(x)$, then find the value of λ .
If $f(1)g(1) = -4\lambda$

2.

28. If
$$f(x) = \begin{vmatrix} \cos(x+\alpha) & \cos(x+\beta) & \cos(x+\gamma) \\ \sin(x+\alpha) & \sin(x+\beta) & \sin(x+\gamma) \\ \sin(\beta-\gamma) & \sin(\gamma-\alpha) & \sin(\alpha-\beta) \end{vmatrix}$$
 and $f(2) = 6$, then find $\frac{1}{5} \sum_{r=1}^{25} f(r)$,

29. Find the coefficient of x in the determinant
$$\begin{vmatrix} (1+x)^{a_1b_1} & (1+x)^{a_1b_2} & (1+x)^{a_1b_3} \\ (1+x)^{a_2b_1} & (1+x)^{a_2b_2} & (1+x)^{a_2b_3} \\ (1+x)^{a_3b_1} & (1+x)^{a_3b_2} & (1+x)^{a_3b_3} \end{vmatrix}, \text{ where } a_i, b_j \in \mathbb{N}$$

30. If
$$p, q \in R$$
 and $p^2 + q^2 - pq - p - q + 1 \le 0$, $\alpha + \beta + \gamma = 0$, then $\begin{vmatrix} 1 & \cos \gamma & \cos \beta \\ \cos \gamma & p & \cos \alpha \\ \cos \beta & \cos \alpha & q \end{vmatrix} = 0$.

ANSWER KEY

EXERCISE - 1

 1. B
 2. A
 3. A
 4. D
 5. D
 6. A
 7. C
 8. B
 9. A
 10. D
 11. A
 12. A
 13. C

 14. A
 15. A
 16. B
 17. B
 18. A
 19. A
 20. B
 21. D
 22. C
 23. A
 24. C
 25. A
 26. A

 27. D
 28. B
 29. A
 30. B
 31. D
 32. A
 33. C
 34. D
 35. D
 36. D
 37. A
 38. B
 39. D

 40. B
 41. B
 42. D
 43. A

EXERCISE - 2 : PART # I

1. ABCD 2. AC 3. BD **4.** ACD 5. AC **6.** ABC 7. BD 8. AB 9. ABCD 13. AD 16. BD 17. ABCD 18. AC 10. AB 11. BC 12. ACD 14. BC 15. AC 19. ABCD 20. AC

PART - II

1. A 2. A 3. A 4. C

EXERCISE - 3 : PART # I

1. $A \rightarrow r B \rightarrow s C \rightarrow p D \rightarrow q$ 2. $A \rightarrow q B \rightarrow p C \rightarrow s D \rightarrow s$

PART - II

 Comprehension #1: 1. C
 2. A
 3. A
 Comprehension #2: 1. A
 2. D
 3. C

 Comprehension #3: 1. A
 2. B
 3. C

EXERCISE - 5 : PART # I

1. 1 **2.** 1 **3.** 4 **4.** 1 **5.** 1 **6.** 4 **7.** 1 **8.** 4 **9.** 4 **10.** 1 **11.** 4 **12.** 4 **13.** 2 **14.** 3 **15.** 2

PART - II

- 1. $x = n\pi, n \in I$
- 2. If $\lambda = 5$, system is consistent with infinite solution given by z = K,
 - $y = \frac{1}{2}(3K + 4)$ and $x = -\frac{1}{2}(5K + 2)$ where $K \in R$

If $\lambda \neq 5$, system is consistent with unique solution given by $z = \frac{1}{3}(1 - \lambda)$; $x = \frac{1}{3}(\lambda + 2)$ and y = 0. 4. B 5. D 6. A D B A 7. 3 8. AB 9. BC 10. 2 11. BCD

MOCK TEST

1. C	2. B	3. A	4. C	5. D	6. A	7. C	8. A	9. A
10. A	11. ABCD	12. BCD	13. BCD	14. ABD	15. ABCD	16. D	17. A	18. D
19. C	20. A							
21. $A \rightarrow p$	$B \rightarrow q, s C \rightarrow$	· r.t	22. $A \rightarrow p$,	$t B \rightarrow a C \rightarrow$	$r D \rightarrow p.t$			
		·	1 /		,			
23. 1. A	2. B 3.		24. 1. C	2. B 3.	1 /	25. 1. C	2. D 3.	С
	 B 3. 27. 1 	D	24. 1. C 29. 0	-	1 /	25. 1. C	2. D 3.	С

