DCAM classes Dynamic Classes for Academic Mastery

MATRIX

SOLVED EXAMPLES

Ex. 1 Construct a 3 × 2 matrix whose elements are given by $a_{ij} = \frac{1}{2} |i-3j|$. $\begin{bmatrix} a_{11} & a_{12} \end{bmatrix}$

Sol. In general a 3 × 2 matrix is given by A = $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$ $a_{ij} = \frac{1}{2} | i - 3j |, i = 1, 2, 3 \text{ and } j = 1, 2$ Therefore $a_{11} = \frac{1}{2} | 1 - 3 \times 1 | = 1$ $a_{12} = \frac{1}{2} | 1 - 3 \times 2 | = \frac{5}{2}$ $a_{21} = \frac{1}{2} | 2 - 3 \times 1 | = \frac{1}{2} | a_{22} = \frac{1}{2} | 2 - 3 \times 2 | = 2$ $a_{31} = \frac{1}{2} | 3 - 3 \times 1 | = 0$ $a_{32} = \frac{1}{2} | 3 - 3 \times 2 | = \frac{3}{2}$ Hence the required matrix is given by A = $\begin{bmatrix} 1 & \frac{5}{2} \\ \frac{1}{2} & 2 \\ 0 & \frac{3}{2} \end{bmatrix}$

Ex. 2 If
$$\begin{bmatrix} 1 \ x \ 2 \end{bmatrix} \begin{bmatrix} 2 & 3 & 1 \\ 0 & 4 & 2 \\ 0 & 3 & 2 \end{bmatrix} \begin{bmatrix} x \\ 1 \\ -1 \end{bmatrix} = \mathbf{O}$$
, then the value of x is :-

Sol. The LHS of the equation

Thus

$$= \begin{bmatrix} 2 & 4x+9 & 2x+5 \end{bmatrix} \begin{bmatrix} x \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 2x+4x+9-2x-5 \end{bmatrix} = 4x+4$$

$$4x+4=0 \implies x=-1$$

Ex.3 Find the value of x, y, z and w which satisfy the matrix equation

$$\begin{bmatrix} x+3 & 2y+x \\ z-1 & 4w-8 \end{bmatrix} = \begin{bmatrix} -x-1 & 0 \\ 3 & 2w \end{bmatrix}$$

Sol.

 $\lfloor z-1 \quad 4w-8 \rfloor^- \lfloor 3 \quad 2w \rfloor$ As the given matrices are equal so their corresponding elements are equal. $x+3=-x-1 \implies 2x=-4$

Ex.4 Prove that if A is non-singular matrix such that A is symmetric then A^{-1} is also symmetric.

Sol. $A^{T} = A$ [:: A is a symmetric matrix] $(A^{T})^{-1} = A^{-1}$ [since A is non-singular matrix] \Rightarrow $(A^{-1})^{T} = A^{-1}$ Hence proved

⇒

Ex. 5 If $\begin{bmatrix} x+3 & z+4 & 2y-7 \\ -6 & a-1 & 0 \\ b-3 & -21 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 6 & 3y-2 \\ -6 & -3 & 2c+2 \\ 2b+4 & -21 & 0 \end{bmatrix}$, then find the values of a, b, c, x, y and z.

Sol. As the given matrices are equal, therefore, their corresponding elements must be equal. Comparing the corresponding elements, we get

$$x + 3 = 0 z + 4 = 6 2y - 7 = 3y - 2$$

$$a - 1 = -3 0 = 2c + 2 b - 3 = 2b + 4$$

$$a = -2, b = -7, c = -1, x = -3, y = -5, z = 2$$

Ex.6 Let $A = \begin{bmatrix} 1 & -3 & 2 \\ 2 & 1 & -3 \\ 4 & -3 & -1 \end{bmatrix}, B = \begin{bmatrix} 1 & 4 & 1 & 0 \\ 2 & 1 & 1 & 1 \\ 1 & -2 & 1 & 2 \end{bmatrix} \& C = \begin{bmatrix} 1 & 1 & -1 & -2 \\ 3 & -2 & -1 & -1 \\ 2 & -5 & -1 & 0 \end{bmatrix}$ be the matrices then, prove that in matrix

multiplication cancellation law does not hold.

Sol. We have to show that AB = AC; though B is not equal to C.

We have AB =
$$\begin{bmatrix} 1 & -3 & 2 \\ 2 & 1 & -3 \\ 4 & -3 & -1 \end{bmatrix} \begin{bmatrix} 1 & 4 & 1 & 0 \\ 2 & 1 & 1 & 1 \\ 1 & -2 & 1 & 2 \end{bmatrix} = \begin{bmatrix} -3 & -3 & 0 & 1 \\ 1 & 15 & 0 & -5 \\ -3 & 15 & 0 & -5 \end{bmatrix}_{3\times 4}$$

Now, AC = $\begin{bmatrix} 1 & -3 & 2 \\ 2 & 1 & -3 \\ 4 & -3 & -1 \end{bmatrix} \begin{bmatrix} 2 & 1 & -1 & -2 \\ 3 & -2 & -1 & -1 \\ 2 & -5 & -1 & 0 \end{bmatrix} = \begin{bmatrix} -3 & -3 & 0 & 1 \\ 1 & 15 & 0 & -5 \\ -3 & 15 & 0 & -5 \end{bmatrix}_{3\times 4}$

Here, AB = AC though B is not equal to C. Thus cancellation law does not hold in general.

Ex. 7 If
$$A = \begin{bmatrix} 0 & -1 & 2 \\ 2 & -2 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $M = AB$, then M^{-1} is equal to-
Sol. $M = \begin{bmatrix} 0 & -1 & 2 \\ 2 & -2 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -2 & 2 \end{bmatrix}$
 $|M| = 6$, adj $M = \begin{bmatrix} 2 & -2 \\ 2 & 1 \end{bmatrix}$
 $\therefore \qquad M^{-1} = \frac{1}{6} \begin{bmatrix} 2 & -2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1/3 & -1/3 \\ 1/3 & 1/6 \end{bmatrix}$

Ex.8 If A, B are two matrices such that
$$A + B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$
, $A - B = \begin{bmatrix} 3 & 2 \\ -2 & 0 \end{bmatrix}$ then find AB.

Sol. Given $A + B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ (i) & $A - B = \begin{bmatrix} 3 & 2 \\ -2 & 0 \end{bmatrix}$(ii)

Adding (i) & (ii)

$$2\mathbf{A} = \begin{bmatrix} 4 & 4 \\ 0 & 4 \end{bmatrix} \implies \mathbf{A} = \begin{bmatrix} 2 & 2 \\ 0 & 2 \end{bmatrix}$$

Subtracting (ii) from (i)

$$2\mathbf{B} = \begin{bmatrix} -2 & 0\\ 4 & 4 \end{bmatrix} \implies \mathbf{B} = \begin{bmatrix} -1 & 0\\ 2 & 2 \end{bmatrix}$$

Now AB = $\begin{bmatrix} 2 & 2 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 4 & 4 \end{bmatrix}$

Ex.9If A and B are matrices of order $m \times n$ and $n \times m$ respectively, then order of matrix $B^T(A^T)^T$ is -Sol.Order of B is $n \times m$ so order of B^T will be $m \times n$ Now $(A^T)^T = A$ & its order is $m \times n$. For the multiplication $B^T(A^T)^T$ Number of columns in prefactor \neq Number of rows in post factor.Hence this multiplication is not defined.Hence the given matrix A is involutory.

Ex. 10 If
$$f(x) = x^2 - 3x + 3$$
 and $A = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix}$ be a square matrix then prove that $f(a) = \mathbf{O}$. Hence find A^4 .
Sol. $A^2 = A \cdot A = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ -3 & 0 \end{bmatrix}$

Hence
$$A^2 - 3A + 3I = \begin{bmatrix} 3 & 3 \\ -3 & 0 \end{bmatrix} - 3\begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix} + 3\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \mathbf{O}$$

Ex. 11 If
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
, show that $5A^{-1} = A^2 + A - 5I$

Sol. We have the characteristic equation of A.

|A - xI| = 0

i.e.
$$\begin{vmatrix} 1-x & 2 & 0\\ 2 & -1-x & 0\\ 0 & 0 & -1-x \end{vmatrix} = 0$$

i.e. $x^3 + x^2 - 5x - 5 = 0$

Using Cayley - Hamilton theorem

$$A^{3} + A^{2} - 5A - 5I = \mathbf{O} \implies 5I = A^{3} + A^{2} - 5A$$

Multiplying by A^{-1} , we get $5A^{-1} = A^2 + A - 5I$

Ex. 12 Show that the matrix
$$A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$$
 is idempotent.

Sol.
$$A^2 = A \cdot A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix} \times \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$$

$$= \begin{bmatrix} 2.2 + (-2).(-1) + (-4).1 & 2(-2) + (-2).3 + (-4).(-2) & 2.(-4) + (-2).4 + (-4).(-3) \\ (-1).2 + 3.(-1) + 4.1 & (-1).(-2) + 3.3 + 4.(-2) & (-1).(-4) + 3.4 + 4.(-3) \\ 1.2 + (-2).(-1) + (-3).1 & 1.(-2) + (-2).3 + (-3).(-2) & 1.(-4) + (-2).4 + (-3).(-3) \end{bmatrix}$$

 $= \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix} = \mathbf{A}$

Hence the matrix A is idempotent.

Ex. 13 Show that the matrix $A = \begin{bmatrix} -5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1 \end{bmatrix}$ is involutory. Sol. $A^2 = A \cdot A = \begin{bmatrix} -5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1 \end{bmatrix} \times \begin{bmatrix} -5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 25 - 24 + 0 & 40 - 40 + 0 & 0 + 0 + 0 \\ -15 + 15 + 0 & -24 + 25 + 0 & 0 + 0 + 0 \\ -5 + 6 - 1 & -8 + 10 - 2 & 0 + 0 + 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = 1$$

Ex. 14 If
$$A = \begin{bmatrix} 1 & 3 & 5 \\ 3 & 5 & 1 \\ 5 & 1 & 3 \end{bmatrix}$$
, then adj A is equal to -
Sol. adj. $A = \begin{bmatrix} 14 & -4 & -22 \\ -4 & -22 & 14 \\ -22 & 14 & -4 \end{bmatrix}^{T} = \begin{bmatrix} 14 & -4 & -22 \\ -4 & -22 & 14 \\ -22 & 14 & -4 \end{bmatrix}$

Ex. 15
$$\begin{bmatrix} 1 & -\tan\theta/2 \\ \tan\theta/2 & 1 \end{bmatrix} \begin{bmatrix} 1 & \tan\theta/2 \\ -\tan\theta/2 & 1 \end{bmatrix}^{-1} \text{ is equal to } -$$
Sol.
$$\begin{bmatrix} 1 & \tan\theta/2 \\ \tan\theta/2 & 1 \end{bmatrix}^{-1} = \frac{1}{\sec^2\theta/2} \begin{bmatrix} 1 & -\tan\theta/2 \\ \tan\theta/2 & 1 \end{bmatrix}$$

$$\therefore \quad \text{Product} = \frac{1}{\sec^2\theta/2} \begin{bmatrix} 1 & -\tan\theta/2 \\ \tan\theta/2 & 1 \end{bmatrix} \begin{bmatrix} 1 & -\tan\theta/2 \\ \tan\theta/2 & 1 \end{bmatrix} \begin{bmatrix} 1 & -\tan\theta/2 \\ \tan\theta/2 & 1 \end{bmatrix}$$

$$= \frac{1}{\sec^2\theta/2} \begin{bmatrix} 1 - \tan^2\theta/2 & -2\tan\theta/2 \\ 2\tan\theta/2 & 1 - \tan^2\theta/2 \end{bmatrix}$$

$$= \begin{bmatrix} \cos^2\theta/2 & \sin^2\theta/2 & -2\sin\theta/2\cos\theta/2 \\ 2\sin\theta/2 & \cos^2\theta/2 - \sin^2\theta/2 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

x+y+z=16Ex. 16 Solve the system x-y+z=2 using matrix method. 2x+y-z=1

Sol. Let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 2 & 1 & -1 \end{bmatrix}$$
, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ & $B = \begin{bmatrix} 6 \\ 2 \\ 1 \end{bmatrix}$

Then the system is AX = B.

$$|A| = 6$$
, hence A is non singular,

Cofactor A =
$$\begin{bmatrix} 0 & 3 & 3 \\ 2 & -3 & 1 \\ 2 & 0 & -2 \end{bmatrix}$$

adj A =
$$\begin{bmatrix} 0 & 2 & 2 \\ 3 & -3 & 0 \\ 3 & 1 & -2 \end{bmatrix}$$

A⁻¹ =
$$\frac{1}{|A|}$$
 adj A =
$$\frac{1}{6} \begin{bmatrix} 0 & 2 & 2 \\ 3 & -3 & 0 \\ 3 & 1 & -2 \end{bmatrix} = \begin{bmatrix} 0 & 1/3 & 1/3 \\ 1/2 & -1/2 & 0 \\ 1/2 & 1/6 & -1/3 \end{bmatrix}$$

X = A⁻¹ B =
$$\begin{bmatrix} 0 & 1/3 & 1/3 \\ 1/2 & -1/2 & 0 \\ 1/2 & 1/6 & -1/3 \end{bmatrix} \begin{bmatrix} 6 \\ 2 \\ 1 \end{bmatrix}$$
 i.e.
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

 \Rightarrow x = 1, y = 2, z = 3

Ex. 17	IF A = $\begin{bmatrix} 8 & 0 \\ 4 & -2 \\ 3 & 6 \end{bmatrix}$ and B = $\begin{bmatrix} 2 & -2 \\ 4 & 2 \\ -5 & 1 \end{bmatrix}$, then find the matrix X, such that 2A + 3X = 5B
Sol.	We have $2A + 3X = 5B$.
	\Rightarrow 3X = 5B - 2A
	$\Rightarrow \qquad X = \frac{1}{3} (5B - 2A)$
	$\Rightarrow \qquad X = \frac{1}{3} \left(5 \begin{bmatrix} 2 & -2 \\ 4 & 2 \\ -5 & 1 \end{bmatrix} - 2 \begin{bmatrix} 8 & 0 \\ 4 & -2 \\ 3 & 6 \end{bmatrix} \right) = \frac{1}{3} \left(\begin{bmatrix} 10 & -10 \\ 20 & 10 \\ -25 & 5 \end{bmatrix} + \begin{bmatrix} -16 & 0 \\ -8 & 4 \\ -6 & -12 \end{bmatrix} \right)$
	$\Rightarrow \qquad X = \frac{1}{3} \begin{bmatrix} 10 - 16 & -10 + 0 \\ 20 - 8 & 10 + 4 \\ -25 - 6 & 5 - 12 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} -6 & -10 \\ 12 & 14 \\ -13 & -7 \end{bmatrix} = \begin{bmatrix} -2 & \frac{-10}{3} \\ 4 & \frac{14}{3} \\ \frac{-31}{3} & \frac{-7}{3} \end{bmatrix}$
Ex. 18	If $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{bmatrix}$, then show that $A^3 - 23A - 40$ I = O
Sol.	We have $A^2 = A \cdot A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 19 & 4 & 8 \\ 1 & 12 & 8 \\ 14 & 6 & 15 \end{bmatrix}$
	So $A^{3} = AA^{2} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{bmatrix} \begin{bmatrix} 19 & 4 & 8 \\ 1 & 12 & 8 \\ 14 & 6 & 15 \end{bmatrix} = \begin{bmatrix} 63 & 46 & 69 \\ 69 & -6 & 23 \\ 92 & 46 & 63 \end{bmatrix}$
	Now $A^3 - 23A - 40I = \begin{bmatrix} 63 & 46 & 69 \\ 69 & -6 & 23 \\ 92 & 46 & 63 \end{bmatrix} - 23 \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{bmatrix} - 40 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
	$= \begin{bmatrix} 63 & 46 & 69 \\ 69 & -6 & 23 \\ 92 & 46 & 63 \end{bmatrix} + \begin{bmatrix} -23 & -46 & -69 \\ -69 & 46 & -23 \\ -92 & -46 & -23 \end{bmatrix} + \begin{bmatrix} -40 & 0 & 0 \\ 0 & -40 & 0 \\ 0 & 0 & -40 \end{bmatrix}$
	$= \begin{bmatrix} 63-23-40 & 46-46+0 & 69-69+0\\ 69-69+0 & -6+46-40 & 23-23+0\\ 90-92+0 & 46-46+0 & 63-23-40 \end{bmatrix}$
	$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \mathbf{O}$

Ex. 19 If
$$A = \begin{bmatrix} -2 \\ 4 \\ 5 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 3 & -6 \end{bmatrix}$, verify that (AB)' = B'A'.

Sol. We have

$$A = \begin{bmatrix} -2\\4\\5 \end{bmatrix}, B = \begin{bmatrix} 1 & 3 & -6 \end{bmatrix}$$

Then $AB = \begin{bmatrix} -2\\4\\5 \end{bmatrix} \begin{bmatrix} 1 & 3 & -6 \end{bmatrix} = \begin{bmatrix} -2 & -6 & 12\\4 & 12 & -24\\5 & 15 & -30 \end{bmatrix}$
Now $A' = \begin{bmatrix} -2 & 4 & 5 \end{bmatrix}, B' = \begin{bmatrix} 1\\3\\-6 \end{bmatrix}$
 $B'A' = \begin{bmatrix} 1\\3\\-6 \end{bmatrix} \begin{bmatrix} -2 & 4 & 5 \end{bmatrix} = \begin{bmatrix} -2 & 4 & 5\\-6 & 12 & 15\\12 & -24 & -30 \end{bmatrix} = (AB)'$

Clearly (AB)' = B'A'

MATHS FOR JEE MAIN & ADVANCED

188

11. If A is a skew symmetric matrix such that $A^{T}A = I$, then A^{4n-1} ($n \in N$) is equal to -(A) - A^T (B) I (C) - I (D) A^T

12.Suppose A is a matrix such that $A^2 = A$ and $(I + A)^{10} = I + kA$, then k is(A) 127(B) 511(C) 1023(D) 1024

13. Which of the following is an orthogonal matrix -

	6/7	2/7	-3/7		6/7	2/7	3/7
(A)	2/7	3/7	6/7	(B)	2/7	-3/7	6/7
	3/7	-6/7	2/7		3/7	6/7	-2/7

- (C) $\begin{bmatrix} -6/7 & -2/7 & -3/7 \\ 2/7 & 3/7 & 6/7 \\ -3/7 & 6/7 & 2/7 \end{bmatrix}$ (D) $\begin{bmatrix} 6/7 & -2/7 & 3/7 \\ 2/7 & 2/7 & -3/7 \\ -6/7 & 2/7 & 3/7 \end{bmatrix}$
- 14. Given $A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$, $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. If $A \lambda I$ is a singular matrix then (A) $\lambda \in \phi$ (B) $\lambda^2 - 3\lambda - 4 = 0$ (C) $\lambda^2 + 3\lambda + 4 = 0$ (D) $\lambda^2 - 3\lambda - 6 = 0$
- **15.** If A is an orthogonal matrix & |A| = -1, then A^T is equal to -(A) -A (B) A (C) -(adjA) (D) (adjA)
- 16. If $A = \begin{bmatrix} 1 & -2 \\ 3 & 0 \end{bmatrix}$, $B = \begin{bmatrix} -1 & 4 \\ 2 & 3 \end{bmatrix}$ and $ABC = \begin{bmatrix} 4 & 8 \\ 3 & 7 \end{bmatrix}$, then C equals -(A) $\frac{1}{66} \begin{bmatrix} 72 & -32 \\ 57 & -29 \end{bmatrix}$ (B) $\frac{1}{66} \begin{bmatrix} -54 & -110 \\ 3 & 11 \end{bmatrix}$ (C) $\frac{1}{66} \begin{bmatrix} -54 & 110 \\ 3 & -11 \end{bmatrix}$ (D) $\frac{1}{66} \begin{bmatrix} -72 & 32 \\ -57 & 29 \end{bmatrix}$
- 17. A is an involutary matrix given by $A = \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix}$ then the inverse of $\frac{A}{2}$ will be (A) 2A (B) $\frac{A^{-1}}{2}$ (C) $\frac{A}{2}$ (D) A^2

18. A and B are two given matrices such that the order of A is 3×4, if A' B and BA' are both defined then
(A) order of B' is 3×4
(B) order of B'A is 4×4
(C) order of B'A is 3×3
(D) B'A is undefined

19. If
$$A = \begin{bmatrix} 0 & 5 \\ 0 & 0 \end{bmatrix}$$
 and $f(x) = 1 + x + x^2 + \dots + x^{16}$, then $f(A) =$
(A) 0 **(B)** $\begin{bmatrix} 1 & 5 \\ 0 & 1 \end{bmatrix}$ **(C)** $\begin{bmatrix} 1 & 5 \\ 0 & 0 \end{bmatrix}$ **(D)** $\begin{bmatrix} 0 & 5 \\ 1 & 1 \end{bmatrix}$

MATHS FOR JEE MAIN & ADVANCED

20. If
$$\begin{bmatrix} 2 & 1 \\ 7 & 4 \end{bmatrix} A \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, then matrix A equals .
(A) $\begin{bmatrix} 7 & 5 \\ -11 & -8 \end{bmatrix}$ (B) $\begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}$ (C) $\begin{bmatrix} 7 & 1 \\ 34 & 5 \end{bmatrix}$ (D) $\begin{bmatrix} 5 & 3 \\ 13 & 8 \end{bmatrix}$
21. If $F'(\alpha) = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $G(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$, then $[F(\alpha)G(\beta)]^{-1} = \begin{bmatrix} (\alpha)G(\beta)]^{-1} (F(\alpha))^{-1} \\ (A) F(\alpha) - G(\beta) (B) - F(\alpha) - G(\beta) (C) [F(\alpha)]^{-1} [G(\beta)]^{-1} (D) [G(\beta)]^{-1} [F(\alpha)]^{-1} \\ (A) F(\alpha) - G(\beta) (B) - F(\alpha) - G(\beta) (C) [F(\alpha)]^{-1} [G(\beta)]^{-1} (D) [G(\beta)]^{-1} [F(\alpha)]^{-1} \\ (A) F(\alpha) - G(\beta) (B) - F(\alpha) - G(\beta) (C) [F(\alpha)]^{-1} [G(\beta)]^{-1} (D) [G(\beta)]^{-1} [F(\alpha)]^{-1} \\ (A) F(\alpha) - G(\beta) (B) - F(\alpha) - G(\beta) (C) [F(\alpha)]^{-1} [G(\beta)]^{-1} (D) [G(\beta)]^{-1} [F(\alpha)]^{-1} \\ (A) F(\alpha) - G(\beta) (B) - F(\alpha) - G(\beta) (C) [F(\alpha)]^{-1} [G(\beta)]^{-1} \\ (A) \alpha (B) \beta (C) \alpha - \beta (D) \alpha + \beta \\ (A) \alpha (B) \beta (C) \alpha - \beta (D) \alpha + \beta \\ (A) \alpha (B) \beta (C) \alpha - \beta (D) \alpha + \beta \\ (A) \alpha (B) \beta (C) \alpha - \beta (D) \alpha + \beta \\ (A) \alpha (B) \beta (C) \alpha - \beta (D) \alpha + \beta \\ (A) \alpha (B) \beta (C) \alpha - \beta (D) \alpha + \beta \\ (A) \alpha (B) \beta (C) \alpha - \beta (D) \alpha + \beta \\ (A) \alpha (B) \beta (C) \alpha - \beta (D) \alpha + \beta \\ (A) \alpha (B) \beta (C) \alpha - \beta (D) \alpha + \beta \\ (A) \alpha (B) \beta (C) \alpha - \beta (D) \alpha + \beta \\ (A) \alpha (B) \beta (C) \alpha - \beta (D) \alpha + \beta \\ (A) \alpha (B) \beta (C) \alpha - \beta (D) \alpha + \beta \\ (B) \alpha (B$

190

27.	Consider a matrix $A(\theta) =$	$\begin{bmatrix} \sin\theta & \cos\theta \\ -\cos\theta & \sin\theta \end{bmatrix}$ then		
	(A) $A(\theta)$ is symmetric		(B) $A(\theta)$ is skew symmetric	c
	$(\mathbf{C})\mathbf{A}^{-1}(\theta) = \mathbf{A}(\pi - \theta)$		(D) $A^2(\theta) = A\left(\frac{\pi}{2} - 2\theta\right)$	
28.	The equation $\begin{bmatrix} 1 & 2 & 2 \\ 1 & 3 & 4 \\ 3 & 4 & k \end{bmatrix}$	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ has a solution for	or (x, y, z) besides (0, 0, 0).	The value of k equals
	(A) 0	(B) 1	(C) 2	(D) 3
29.	A is a 2×2 matrix such the	hat $A\begin{bmatrix}1\\-1\end{bmatrix} = \begin{bmatrix}-1\\2\end{bmatrix}$ and A^2	$\begin{bmatrix} 1\\ -1 \end{bmatrix} = \begin{bmatrix} 1\\ 0 \end{bmatrix}$. The sum of	the elements of A, is
	(A) -1	(B) 0	(C) 2	(D) 5
30.	If A is an idempotent matrix $(I - 0.4A)^{-1} = I - I^{-1}$	ix satisfying, αA		
	where I is the unit matrix	of the same order as that of	A then the value of α is equ	al to
	(A) 2/5	(B) 2/3	(C) -2/3	(D) 1/2

MATHS FOR JEE MAIN & ADVANCED

k	Exercise # 2	Part # I 🔰 [M	ultiple Correct Choic	e Type Questions]
l .	If A is a invertible ide	empotent matrix of order n, t	hen adj A is equal to -	
	(A) $(adj A)^2$	(B) I	(C) A ⁻¹	(D) none of these
•	A square matrix can a (A) sum of a symmetr (B) difference of a sym (C) skew symmetric m (D) symmetric matrix	Ilways be expressed as a ic matrix and skew symmetri nmetric matrix and skew syn atrix	c matrix of the same order nmetric matrix of the same of	rder
•	Choose the correct ar	nswer :		
	(A) every scalar matri	x is an identity matrix.		
	(B) every identity mat	rix is a scalar matrix		
	(C) transpose of trans	pose of a matrix gives the m	atrix itself.	
	(D) for every square r	natrix A there exists another	matrix B such that $AB = I =$	BA.
•	Let A, B, C, D be ($D^{T} = ABC$ for the matrix	not necessarily square) real trix S = ABCD, then which o	I matrices such that $A^{T} = 1$ of the following is/are true	BCD ; $B^{T} = CDA$; $C^{T} = DAB$;
	$(\mathbf{A})\mathbf{S}^3 = \mathbf{S}$	(B) $S^2 = S^4$	(C) $S = S^2$	(D) none of these
	Let A be an invertible	matrix then which of the fol	lowing is/are true :	
	(A) $ A^{-1} = A ^{-1}$	(B) $(A^2)^{-1} = (A^{-1})^2$	(C) $(A^T)^{-1} = (A^{-1})^T$	(D) none of these
	Let a _{ij} denote the elem is an -	ent of the i th row and j th colun	nn in a 3 × 3 matrix and let a_{ij}	$=-a_{ji}$ for every i and j then this ma
	(A) orthogonal matrix			(B) singular matrix
	(C) matrix whose prin	cipal diagonal elements are a	all zero	(D) skew symmetric matrix
	If A and B are two inv	vertible matrices of the same	order, then adj (AB) is equa	l to -
	(A) adj (B) adj (A)	(B) $ \mathbf{B} \mathbf{A} \mathbf{B}^{-1} \mathbf{A}^{-1}$	(C) $ B A A^{-1}B^{-1}$	(D) $ A B (AB)^{-1}$
	If $A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$, the set of the se	nen-		
	(A) AdjA is zero matri	x	(B) Adj A = $\begin{bmatrix} 0 & 0 \\ 0 & -1 \\ -1 & 0 \end{bmatrix}$	$\begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$
	(C) $A^{-1} = A$		(D) $A^2 = I$	

If $A = \begin{bmatrix} 1 & 9 & -7 \\ i & \omega^n & 8 \\ 1 & 6 & \omega^{2n} \end{bmatrix}$, where $i = \sqrt{-1}$ and ω is complex cube root of unity, then tr(a) will be-9. (A) 1, if $n = 3k, k \in N$ **(B)** 3, if $n = 3k, k \in \mathbb{N}$ (C) 0, if $n \neq 3k, k \in \mathbb{N}$ (D) -1, if $n \neq 3k$, $n \in N$ If $A^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -1 \end{bmatrix}$, then 10. (A) |A| = 2**(B)** A is non-singular (C) Adj. A = $\begin{vmatrix} 1/2 & -1/2 & 0 \\ 0 & -1 & 1/2 \\ 0 & 0 & -1/2 \end{vmatrix}$ (**D**) A is skew symmetric matrix Which of the following is true for matrix $A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$ 11. (A) A + 4I is a symmetric matrix **(B)** $A^2 - 4A + 5I_2 = 0$ (C) A – B is a diagonal matrix for any value of α if B = $\begin{bmatrix} \alpha & -1 \\ 2 & 5 \end{bmatrix}$ (D) A - 4I is a skew symmetric matrix If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ satisfies the equation $x^2 + k = 0$, then -12. **(B)** k = -|A| **(C)** $k = a^2 + b^2 + c^2 + d^2$ **(D)** k = |A|(A) a + d = 0Matrix $\begin{bmatrix} a & b & (a\alpha - b) \\ b & c & (b\alpha - c) \\ 2 & 1 & 0 \end{bmatrix}$ is non invertible if -13. (A) $\alpha = 1/2$ (B) a, b, c are in A.P. (C) a, b, c are in G.P. (D) a, b, c are in H.P. 14. If A and B are 3×3 matrices and $|A| \neq 0$, then which of the following are true? (A) $|AB| = 0 \implies |B| = 0$ **(B)** $|AB| = 0 \implies B = 0$ (C) $|A^{-1}| = |A|^{-1}$ (D) |A+A| = 2 |A|If AB = A and BA = B, then 15. (A) $A^2B = A^2$ **(B)** $B^2A = B^2$ (C)ABA=A **(D)** BAB = B

16. Given the matrices A and B as $A = \begin{bmatrix} 1 & -1 \\ 4 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 \\ 2 & -2 \end{bmatrix}$.

The two matrices X and Y are such that XA = B and AY = B then which of the following hold(s) true?

(A)
$$X = \frac{1}{3} \begin{bmatrix} 1 & -1 \\ -2 & 2 \end{bmatrix}$$
 (B) $Y = \frac{1}{3} \begin{bmatrix} 3 & 0 \\ 4 & 0 \end{bmatrix}$ (C) det. $X = \det. Y$ (D) $3(X+Y) = \begin{bmatrix} 4 & -1 \\ 4 & 2 \end{bmatrix}$

17. If A and B are two 3×3 matrices such that their product AB is a null matrix then

(A) det. $A \neq 0$ \Rightarrow B must be a null matrix. (B) det. $B \neq 0$ \Rightarrow A must be a null matrix.

(C) If none of A and B are null matrices then atleast one of the two matrices must be singular.

(D) If neither det. A nor det. B is zero then the given statement is not possible.

18. Let $P = \begin{bmatrix} 3 & -5 \\ 7 & -12 \end{bmatrix}$ and $Q = \begin{bmatrix} 12 & -5 \\ 7 & -3 \end{bmatrix}$ then the matrix $(PQ)^{-1}$ is (A) nilpotent (B) idempotent (C) involutory (D) symmetric 19. Let $A = a_{ij}$ be a matrix of order 3 where $a_{ij} = \begin{bmatrix} x & \text{if } i = j, x \in \mathbb{R} \\ 1 & \text{if } |i-j|=1 \\ 0 & \text{otherwise} \end{bmatrix}$ then which of the following hold(s) good ?

(A) for x = 2, A is a diagonal matrix.

(B) A is a symmetric matrix

(C) for x = 2, det A has the value equal to 6

(D) Let $f(x) = \det A$, then the function f(x) has both the maxima and minima.

20. If $A = \begin{bmatrix} 1 & \tan x \\ -\tan x & 1 \end{bmatrix}$ then let us define a function $f(x) = \det (A^T A^{-1})$ then which of the following can be the value of $\underbrace{f(f(f(f...,f(x))))}_{n \text{ times}}$ $(n \ge 2)$ (A) $f^n(x)$ (B) 1 (C) $f^{n-1}(x)$ (D) nf(x)

Part # II

[Assertion & Reason Type Questions]

These questions contains, Statement I (assertion) and Statement II (reason).

- (A) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.
- (B) Statement-I is true, Statement-II is true ; Statement-II is NOT a correct explanation for statement-I.
- (C) Statement-I is true, Statement-II is false.
- (D) Statement-I is false, Statement-II is true.

Statement - I : If A is skew symmetric matrix of order 3 then its determinant should be zero
 Statement - II : If A is square matrix, then det A = det A' = det(-A')

- 2. Statement-I : If A is a non-singular symmetric matrix, then its inverse is also symmetric. Statement-II : $(A^{-1})^{T} = (A^{T})^{-1}$, where A is a non-singular symmetric matrix.
- 3. A and B be 3×3 matrices such that AB + A + B = 0Statement-I: AB = BAStatement-II: $PP^{-1} = I = P^{-1}P$ for every matrix P which is invertible.
- 4. Let A be any 3×2 matrix. Statement-I : Inverse of AA^T does not exist. Statement-II : AA^T is a singular matrix.
- 5. Let $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ -\sin \theta & -\cos \theta \end{bmatrix}$ Statement-I: A^{-1} exists for every $\theta \in \mathbb{R}$. Statement-II: A is orthogonal.
- 6. **Statement I :** There are only finitely many 2×2 matrices which commute with the matrix $\begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix}$. **Statement - II :** If A is non-singular, then it commutes with I, adj A and A⁻¹.

Exercise # 3 Part # I [Matrix Match Type Questions]

Following question contains statements given in two columns, which have to be matched. The statements in Column-I are labelled as A, B, C and D while the statements in Column-II are labelled as p, q, r and s. Any given statement in Column-I can have correct matching with one or more statement(s) in Column-II.

1.		Column-I	Colum	n-II	
		Matrix	Type of	matrix	
	(A)	$\begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$	(p)	Idempotent	
	(B)	$\begin{bmatrix} -5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1 \end{bmatrix}$	(q)	Involutary	
	(C)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(r)	Nilpotent	
	(D)	$\begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$	(s)	Orthogonal	
2.		Column-I	Column-II		
	(A)	If A is a square matrix of order 3 and	(p)	6	
	(B)	det A = 162 then det $\left(\frac{A}{3}\right)$ = If A is a matrix such that A ² = A and $(I + A)^5 = I + \lambda A$ then $\frac{2\lambda + 1}{7}$	(q)	5	
	(C)	If $A = \begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix}$ and $A^2 - xA + yI = 0$ then $y - x =$	(r)	0	
	(D)	If $A = \begin{bmatrix} 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \\ 17 & 18 & 19 & 20 \end{bmatrix}$ and	(\$)	9	
		$B = \begin{bmatrix} 1 & 3 & 5 & 7 \\ -3 & -3 & -10 & -10 \\ 5 & 10 & 5 & 0 \\ 7 & 10 & 0 & 7 \end{bmatrix} $ then (AB) ₂₃			

	Part # II 📏	[Comprehension	Type Questions]	
		Comprehe	ension # 1	
	Consider some special type A square matrix A is said to A matrix A is said to be a Ni A square matrix is said to b Consider the following mat $A = \begin{bmatrix} 2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4 \end{bmatrix};$	e of matrices. b be an Idempotent Matrix ilpotent Matrix if $A^k = 0$, e an Involutary Matrix, if rrices $B = \begin{bmatrix} 1 & -3 & -4 \\ -1 & 3 & 4 \\ 1 & -3 & -4 \end{bmatrix};$	if $A^2 = A$. for $k \in N$. $A^2 = I$. $C = \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix}$	
1.	Which one of the following (A) A	g is a Nilpotent Matrix? (B) B	(C) C	(D) AC ²
2.	Which one of the following $(A) A^3 C^2$	g is not an Idempotent Ma (B) A ² C ²	trix? (C) BC ²	(D) C ² A
3.	Which one of the following (A) BC ²	g matrices posses an inve (B) A ³ C ²	rse? (C) A ² B	(D) C ³

Comprehension # 2

If A is a symmetric and B skew symmetric matrix and A + B is non singular and $C = (A + B)^{-1}(A - B)$ then

1.	$C^{T}(A+B)C =$ (A) A+B	(B) A–B	(C)A	(D) B
2.	$C^{T}(A-B)C =$ (A) A+B	(B*) A–B	(C)A	(D) B
3.	$C^{T}AC$ (A) A+B	(B) A–B	(C*)A	(D) B

Comprehension # 3

Matrix A is called orthogonal matrix if $AA^{T} = I = A^{T}A$. Let $A = \begin{bmatrix} a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3} \end{bmatrix}$ be an orthogonal matrix. Let

 $\vec{a} = a_1 \tilde{i} + a_2 \tilde{j} + a_3 \tilde{k} , \ \vec{b} = b_1 \tilde{i} + b_2 \tilde{j} + b_3 \tilde{k} , \ \vec{c} = c_1 \tilde{i} + c_2 \tilde{j} + c_3 \tilde{k} . \ Then \ | \ \vec{a} \ | = | \ \vec{b} \ | = | \ \vec{c} \ | = 1 \ \& \ \vec{a} . \vec{b} = \vec{b} . \vec{c} = \vec{c} . \vec{a} = 0$ i.e. $\vec{a}, \vec{b} \& \vec{c}$ forms mutually perpendicular triad of unit vectors.

If abc = p and $Q = \begin{bmatrix} a & b & c \\ c & a & b \\ b & c & a \end{bmatrix}$, where Q is an orthogonal matrix. Then.

On the basis of above information, answer the following questions :

1.	The values of a	a + b + c is -			
	(A) 2	(B) p	(C) 2p	(D) ±1	
2.	The values of a	ab + bc + ca is -			
	(A) 0	(B) p	(C) 2p	(D) 3p	
3.	The value of a ³	$a^{3} + b^{3} + c^{3}$ is -			
	(A) p	(B) 2p	(C) 3p	(D) None of these	
4.	The equation w	whose roots are a, b, c is -			
	(A) $x^3 - 2x^2 + p$	$\mathbf{p} = 0$	(B) $x^3 - px^2 + px + p = 0$		
	(C) $x^3 - 2x^2 + 2$	$2\mathbf{p}\mathbf{x} + \mathbf{p} = 0$	(D) $x^3 \pm x^2 - p =$	= 0	

Exercise # 4

1. If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & -4 \\ 5 & 6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & 5 & 6 \\ 7 & -8 & 2 \end{bmatrix}$, will AB be equal to BA. Also find AB & BA.

2. If
$$A = \begin{bmatrix} 0 & -\tan\frac{\alpha}{2} \\ \tan\frac{\alpha}{2} & 0 \end{bmatrix}$$
 show that $(I + A) = (I - A) \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix}$

Let X be the solution set of the equation $A^x = I$, where $A = \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix}$ and I is the corresponding unit matrix and 3.

 $x\in N \text{ then find the minimum value of } \sum (\cos^x\theta + \sin^x\theta), \theta\in R.$

4. If
$$A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & 1 \\ 1 & 0 & 2 \end{bmatrix}$$
, show that $A^3 = (5A - I) (A - I)$

Γ 1

5. If and B are square matrices of order n, then prove that A and B will commute iff $A - \lambda I$ and $B - \lambda I$ commute for every scalar λ .

6. If
$$AB = A$$
 and $BA = B$, then show that $A^2 = A$, $B^2 = B$.

7. Find
$$\left\{\frac{1}{2}\left(A - A' + I\right)\right\}^{-1}$$
 for $A = \begin{bmatrix} -2 & 3 & 4 \\ 5 & -4 & -3 \\ 7 & 2 & 9 \end{bmatrix}$ using elementary transformation.

8. If
$$a^2 + b^2 + c^2 = 1$$
, then prove that $\begin{vmatrix} a^2 + (b^2 + c^2)\cos\phi & ab(1-\cos\phi) & ac(1-\cos\phi) \\ ba(1-\cos\phi) & b^2 + (c^2 + a^2)\cos\phi & bc(1-\cos\phi) \\ ca(1-\cos\phi) & cb(1-\cos\phi) & c^2 + (a^2 + b^2)\cos\phi \end{vmatrix}$

is independent of a, b, c

9. Investigate for what values of λ , μ the simultaneous equations x + y + z = 6; x + 2y + 3z = 10 & $x + 2y + \lambda z = \mu$ have;

- **(A)** A unique solution **(B)** An infinite number of solutions.
- **(C)** No solution.

- 10. An amount of Rs 5000 is put into three investments at the rate of interest of 6%, 7%, 8% per annum respectively. The total annual income is Rs 358. If the combined income from the first two investments is Rs 70 more than the income from the third, find the amount of each investment by matrix method.
- **11.** Consider the system of linear equations in x, y, z:

 $(\sin 3\theta) x - y + z = 0$ $(\cos 2\theta) x + 4y + 3z = 0$ 2x + 7y + 7z = 0

Find the values of θ for which this system has non – trivial solution.

12. If
$$f(x) = x^2 - 5x + 7$$
, find $f(a)$ where $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$

13. If
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$$
, then show that matrix A is a root of polynomial $x^3 - 6x^2 + 7x + 2I = 0$.

14. Given
$$A = \begin{bmatrix} 2 & 0 & -\alpha \\ 5 & \alpha & 0 \\ 0 & \alpha & 3 \end{bmatrix}$$
 For what values of α does A^{-1} exists. Find A^{-1} & prove that

$$A^{-1} = A^2 - 6A + 11I$$
, when $\alpha = 1$.

Exercise # 5 Part # I > [Previous Year Questions] [AIEEE/JEE-MAIN] If $A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$ and $A^2 = \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix}$ then 1. [AIEEE 2003] (1) $\alpha = a^2 + b^2$, $\beta = a^2 - b^2$ (2) $\alpha = a^2 + b^2$, $\beta = ab$ (3) $\alpha = a^2 + b^2$, $\beta = 2ab$ (4) $\alpha = 2ab, \beta = a^2 + b^2$ $If A = \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix} then-$ 2. **[AIEEE 2004]** (1) A^{-1} does not exist (2) $A^2 = I$ (3) A = 0(4) A = (-1) IIf $A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$ and $10B = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{bmatrix}$ where $B = A^{-1}$, then α is equal to-3. **[AIEEE 2004]** (1)2 (2) - 1(3) - 2(4) 5 **4**. If $A^2 - A + I = 0$, then the inverse of A [AIEEE 2005] (2) A - I(1) I – A (3) A (4) A + IIf $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then which one of the following holds for all $n \ge 1$, (by the principal of 5. [AIEEE-2005] mathematical induction) (1) $A^n = nA - (n-1)I$ (2) $A^n = 2^{n-1}A + (n-1)I$ (4) $A^n = 2^{n-1}A - (n-1)I$ (3) $A^n = nA + (n-1)I$ If A and B are square matrices of size $n \times n$ such that $A^2 - B^2 = (A - B)(A + B)$, then which of the following will be 6. always true-[AIEEE- 2006] (1) AB = BA(2) Either of A or B is a zero matrix (3) Either of A or B is an identity matrix (4)A = BLet $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$, $a, b \in N$. Then-7. [AIEEE- 2006] (1) there exist more than one but finite number of B's such that AB = BA(2) there exist exactly one B such that AB = BA(3) there exist infinitely many B's such that AB = BA(4) there cannot exist any B such that AB = BALet $A = \begin{bmatrix} 5 & 5\alpha & \alpha \\ 0 & \alpha & 5\alpha \\ 0 & 0 & 5 \end{bmatrix}$ If $|A^2| = 25$, then $|\alpha|$ equals-8. [AIEEE- 2006] (1) 5^2 (2) 1 (3) 1/5 (4) 5

- 9. Let A be a 2×2 matrix with real entries. Let I be the 2×2 identity matrix. Denoted by tr(A), the sum of diagonal entries of A. Assume that $A^2 = I$. **Statement** -1: If $A \neq I$ and $A \neq -I$, then det A = -1[AIEEE- 2008] **Statement** -2: If $A \neq I$ and $A \neq -I$, then tr(A) $\neq 0$. (1) Statement -1 is false, Statement -2 is true. (2) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1. (3) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1. (4) Statement–1 is true, Statement–2 is false 10. Let A be a square matrix all of whose entries are integers. Then which one of the following is true? [AIEEE-2008] (1) If det $A = \pm 1$, then A^{-1} exists but all its entries are not necessarily integers (2) If det $A \neq \pm 1$, then A^{-1} exists and all its entries are non-integers (3) If det $A = \pm 1$, then A^{-1} exists and all its entries are integers (4) If det $A = \pm 1$, then A^{-1} need not exist 11. Let A be a 2×2 matrix [AIEEE- 2009] Statement-1 : adj (adj A) = A**Statement-2**: |adj A| = |A|(1) Statement–1 is true, Statement–2 is false. (2) Statement-1 is false, Statement-2 is true. (3) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1. (4) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for statement-1. 12. The number of 3×3 non-singular matrices, with four entries as 1 and all other entries as 0, is :-[AIEEE-2010] (1) Less than 4 (2) 5 **(3)** 6 (4) At least 7 13. Let A be a 2 \times 2 matrix with non-zero entries and let $A^2 = I$, where I is 2 \times 2 identity matrix. Define Tr(A) = sum of diagonal elements of A and |A| = determinant of matrix A.[AIEEE-2010] **Statement**-1: Tr(A) = 0. Statement-2: $|\mathbf{A}| = 1$.
 - (1) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
 - (2) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for statement-1.
 - (3) Statement–1 is true, Statement–2 is false.
 - (4) Statement–1 is false, Statement–2 is true.
- 14. Let A and B be two symmetric matrices of order 3.

Statement-1 : A(BA) and (AB)A are symmetric matrices.

Statement-2 : AB is symmetric matrix if matrix multiplication of A with B is commutative. [AIEEE-2011]

- (1) Statement-1 is true, Statement-2 is false.
- (2) Statement-1 is false, Statement-2 is true
- (3) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1
- (4) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.

15.	Statement-1 : Determinant of a skew-symmetric matrix of order 3 is zero. Statement-2 : For any matrix A, $det(A^T) = det(A)$ and $det(-A) = -det(A)$.					
	Where det	(B) denotes the determinar	nt of matrix B. Then :		[AIEEE-2011]	
	(1) Statement-1 is true as	nd statement-2 is false	(2) Both statements are	true		
	(3) Both statements are	false	(4) Statement-1 is false	and statement-2 is	true.	
16.	If $\omega \neq 1$ is the complex of	ube root of unity and matr	ix H = $\begin{bmatrix} \omega & 0 \\ 0 & \omega \end{bmatrix}$, then H ⁷⁰	is equal to:	[AIEEE-2011]	
	(1) H	(2) 0	(3) –H	(4) H ²		
17.	Let P and Q be 3 \times (P ² + Q ²) is equal to :	3 matrices with $P \neq Q$	Q. If $P^3 = Q^3$ and P^2Q	$Q = Q^2 P$, then d	eterminant of [AIEEE-2012]	
	(1) -1	(2) –2	(3) 1	(4) 0		
18.	Let $A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}$. If u	u_1 and u_2 are column matrice	es such that $Au_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ and	d Au ₂ = $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, then	$u_1 + u_2$ is equal	
	to :				[AIEEE-2012]	
	$(1) \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$	$ (2) \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} $	$(3) \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}$	$ (4) \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix} $		
19.	If A is an 3×3 non - sing	ular matrix such that $AA' =$	A'A and $B = A^{-1}A'$ then BI	3' equals:	[Main 2014]	
171	(1)I+B	(2) I	(3) B^{-1}	$(4)(B^{-1})$		
	$\begin{bmatrix} 1 & 2 & 2 \end{bmatrix}$					
20.	$IfA = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b \end{bmatrix} is a m$	atrix satisfying the equation	$AA^{T} = 9I$, where I is 3×3 is	dentify matrix, then	the ordered pair	
	(a, b) is equal to				[Main 2015]	
	(1)(2,1)	(2) (-2, -1)	(3) (2, -1)	(4) (-2, 1)		
21.	The system of linear equ	ations			[Main 2016]	
	$x + \lambda y - z = 0$					
	$\lambda x - y - z = 0$					
	$x+y-\lambda z\!=\!0$					
	has a non-trivial solution	for :				
	(1) exactly one value of λ		(2) exactly two values of	fλ		
	(3) exactly three values o	fλ	(4) infinitely many value	sofλ		
22.	If $A = \begin{bmatrix} 5a & -b \\ 3 & 2 \end{bmatrix}$ and A as	dj A = AA ^T , then 5a + b is ea	qual to :		[Main 2016]	
	(1) 5	(2) 4	(3) 13	(4) – 1		

1. If matrix $A = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}$ where a,b,c are real positive numbers, abc = 1 and $A^T A = I$, then find the value of $a^3 + b^3 + c^3$.

2. If
$$A = \begin{bmatrix} \alpha & 2 \\ 2 & \alpha \end{bmatrix}$$
 and $|A^3| = 125$, then α is equal to - [JEE 2004 (Screening)]
(A) ± 3 (B) ± 2 (C) ± 5 (D) 0

3. If M is a 3×3 matrix, where $M^T M = I$ and det (M) = 1, then prove that det (M–I) = 0. [JEE 2004 (Mains)]

4.
$$A = \begin{bmatrix} a & 1 & 0 \\ 1 & b & d \\ 1 & b & c \end{bmatrix}, B = \begin{bmatrix} a & 1 & 1 \\ 0 & d & c \\ f & g & h \end{bmatrix}, U = \begin{bmatrix} f \\ g \\ h \end{bmatrix}, V = \begin{bmatrix} a^2 \\ 0 \\ 0 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

If AX = U has infinitely many solutions, then prove that BX = V cannot have a unique solution. If further afd $\neq 0$, then prove that BX = V has no solution [JEE 2004 (Mains)]

5.
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4 \end{bmatrix}, I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ and } A^{-1} = \frac{1}{6} (A^2 + cA + dI), \text{ then the value of c and d are -}$$

[JEE 2005 (Screening)]

6. If
$$P = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$
, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $Q = PAP^T$ and $x = P^T Q^{2005} P$, then x is equal to - [JEE 2005 (Screening)]

(A)
$$\begin{bmatrix} 1 & 2005 \\ 0 & 1 \end{bmatrix}$$

(B) $\begin{bmatrix} 4 + 2005\sqrt{3} & 6015 \\ 2005 & 4 - 2005\sqrt{3} \end{bmatrix}$
(C) $\frac{1}{4} \begin{bmatrix} 2+\sqrt{3} & 1 \\ -1 & 2-\sqrt{3} \end{bmatrix}$
(D) $\frac{1}{4} \begin{bmatrix} 2005 & 2-\sqrt{3} \\ 2+\sqrt{3} & 2005 \end{bmatrix}$

Comprehension (3 questions)

	[1	0	0		[1]	2		2	
7.	A =	2	1	0	, if $\mathrm{U}_1,\mathrm{U}_2$ and U_3 are columns matrices satisfying. AU $_1$ =	0	$, AU_2 =$	3	, AU ₃ =	3	and U
		3	2	1		0		0	ļ	1	

is 3×3 matrix whose columns are U_1, U_2, U_3 then answer the following questions -

(A) The value of |U| is -

	(A) 3	(B) -3	(C) 3/2	(D) 2	
(B)	The sum of the elemen	ts of U^{-1} is -			
	(A) -1	(B) 0	(C) 1	(D) 3	
(C)	The value of $\begin{bmatrix} 3 & 2 \end{bmatrix}$	$D \bigg] U \begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix} $ is -			
	(A) [5]	(B) [5/2]	(C) [4]	(D) [3/2]	[JEE 2006]

8. Match the Statement / Expressions in Column I with the Statements / Expressions in Column II and indicate your answer by darkening the appropriate bubbles in the 4×4 matrix given in the ORS.

	Column I	Colu	mn II	
(A)	The minimum value of $\frac{x^2 + 2x + 4}{x + 2}$ is	(p)	0	
(B)	Let A and B be 3×3 matrices of real numbers,	(q)	1	
	where A is symmetric, B is skew-symmetric, and			
	$(A+B)(A-B) = (A-B) (A+B)$. If $(AB)^{t} = (-1)^{k} AB$, where $(AB)^{t}$			
	is the transpose of the matrix AB, then the possible values of k are			
(C)	Let $a = \log_3 \log_3 2.$ An integer k satisfying $1 < 2^{(-k+3^{-a})} < 2$, must be less than	(r)	2	
(D)	If $\sin\theta = \cos\phi$, then the possible values of $\frac{1}{\pi} \left(\theta - \phi - \frac{\pi}{2} \right)$ are	(s)	3	
			[JEE 2 0	08]
T / A 1		6.1	• 1 1(c

- 9. Let A be the set of all 3×3 symmetric matrices all of whose entries are either 0 or 1. Five of these entries are 1 and four of them are 0.
- (A) The number of matrices in A is -
 - (A) 12 (B) 6 (C) 9 (D) 3

MATHS FOR JEE MAIN & ADVANCED

The number of matrices A in \mathcal{A} for which the system of linear equations $A\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ has a unique solution, is -**(B)** (A) less than 4 (B) at least 4 but less than 7 (C) at least 7 but less than 10 (D) at least 10 The number of matrices A in \mathcal{A} for which the system of linear equations $A\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ is inconsistent, is -**(C)** (B) more than 2 **(D)**1 [**JEE 2009**] **(A)**0 **(C)**2 **10. (A)** The number of 3 × 3 matrices A whose entries are either 0 or 1 and for which the system $A\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ has

exactly two distinct solutions, is

(B) $2^9 - 1$ (A) 0 **(C)** 168 **(D)** 2

(B) Let k be a positive real number and let

$$A = \begin{bmatrix} 2k - 1 & 2\sqrt{k} & 2\sqrt{k} \\ 2\sqrt{k} & 1 & -2k \\ -2\sqrt{k} & 2k & -1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & 2k - 1 & \sqrt{k} \\ 1 - 2k & 0 & 2\sqrt{k} \\ -\sqrt{k} & -2\sqrt{k} & 0 \end{bmatrix}.$$

If det (adj A) + det(adj B) = 10^6 , then [k] is equal to

[Note : adj M denotes the adjoint of a square matrix M and [k] denotes the largest integer less than or equal to k]. Let p be an odd prime number and $T_{\rm p}$ be the following set of 2 \times 2 matrices : **(C)**

$$T_{p} = \left\{ A = \begin{bmatrix} a & b \\ c & a \end{bmatrix} : a, b, c \in \left\{ 0, 1, 2, \dots, p-1 \right\} \right\}$$

- The number of A in T_p such that A is either symmetric or skew-symmetric or both, and det(A) divisible by p is **(i)** (C) $(p-1)^2 + 1$ **(B)** 2 (p – 1) (A) $(p-1)^2$ **(D)** 2p -1
- The number of A in T_p such that the trace of A is not divisible by p but det (A) is divisible by p is -**(ii)** [Note : The trace of a matrix is the sum of its diagonal entries.] (D) $(p - 1) (p^2 - 2)$ (D) $p^3 - p^2$ [JEE 2010] **(A)** $(p-1)(p^2-p+1)$ **(B)** $p^3 - (p-1)^2$ **(C)** $(p-1)^2$

The number of A in T_p such that det (A) is not divisible by p is -(iii)

> **(B)** $p^3 - 5p$ **(C)** $p^3 - 3p$ (A) $2p^2$

11.	Let M and N be two 3 × 3 non-singular skew-symmetric matrices such that $MN = NM$. If P^{T} denotes the transpose of P, then $M^{2}N^{2}(M^{T}N)^{-1}$ (MN^{-1}) ^T is equal to - [JEE 2011]				
	(A) M ²	(B) $-N^2$	(C) –M ²	(D) MN	
12.	Let ∞≠1 be a cu	be root of unity and S be the	set of all non-singular n	natrices of the form $\begin{bmatrix} 1 \\ \alpha \\ \omega \end{bmatrix}$	$\begin{bmatrix} a & b \\ 0 & 1 & c \\ 2 & \omega & 1 \end{bmatrix}$, where
	each of a,b and	c is either ω or ω^2 . Then the	e number of distinct ma	atrices in the set S is-	
	(A) 2	(B) 6	(C) 4	(D) 8	[JEE 2011]
13.	Let M be 3×3 m	atrix satisfying			
	$\mathbf{M}\begin{bmatrix}0\\1\\0\end{bmatrix} = \begin{bmatrix}-1\\2\\3\end{bmatrix}, \mathbf{N}$	$\mathbf{M}\begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix} = \begin{bmatrix} 1\\ 1\\ -1 \end{bmatrix} \text{ and } \mathbf{M}\begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$	$= \begin{bmatrix} 0\\0\\12 \end{bmatrix}$		
	Then the sum of	the diagonal entries of M is			[JEE 2011]
14.	Let $P = [a_{ij}]$ be a then the determine	3×3 matrix and let Q = [b] inant of the matrix Q is -	$_{ij}$], where $b_{ij} = 2^{i+j} a_{ij}$ for 1	$1 \le i, j \le 3$. If the determined is a set of the determined of the set of the determined of the dete	rminant of P is 2, [JEE 2012]
	(A) 2^{10}	(B) 2^{11}	(C) 2^{12}	(D) 2^{13}	
15.	If P is a 3×3 mat	trix such that $P^T = 2P + I$, where	\mathbf{P}^{T} is the transpose of P a	and I is the 3×3 identity	matrix, then there
	exists a column r	matrix $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ such that	at		[JEE 2012]
	$(\mathbf{A}) \mathbf{PX} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	(B) PX = X	(C) PX=2X	(D) PX = -X	
16.	If the adjoint of a	3×3 matrix P is $\begin{bmatrix} 1 & 4 & 4 \\ 2 & 1 & 7 \\ 2 & 1 & 3 \end{bmatrix}$, the set of the	nen the possible value(s) of	f the determinant of P is (are) - [JEE 2012]
	(A) -2	(B) -1	(C) 1	(D) 2	
17.	Let M be a 2 × 2 : (A) the first colu (B) the second ro (C) M is a diagon	symmetric matrix with integer ann of M is the transpose of th ow of M is the transpose of the nal matrix with nonzero entries	entries. Then M is invertil e second row of M e first column of M in the main diagonal	ble if	[JEE Ad. 2014]

(D) the product of entries in the main diagonal of M is not the square of an integer

MATHS FOR JEE MAIN & ADVANCED

18. Let X and Y be two arbitrary, 3×3 non-zero, skew-symmetric matrics and z be an arbitrary 3×3 , non-zero, symmetric matrix. Then which of the following matrices is (are) skew symmetric? [JEE Ad. 2015] (A) $Y^{3}Z^{4} - Z^{4}Y^{3}$ **(B)** $X^{44} + Y^{44}$ (C) $X^4Z^3 - Z^3X^4$ (D) $X^{23} + Y^{23}$ Let $P = \begin{bmatrix} 3 & -1 & -2 \\ 2 & 0 & a \\ 3 & -5 & 0 \end{bmatrix}$, where $\alpha \in R$. Suppose $Q = [q_{ij}]$ is a matric such that PQ = kI, where $k \in R$, $k \neq 0$ and I is 19. the identify matrix of order 3. If $q_{23} = -\frac{k}{8}$ and det (Q) = $\frac{k^2}{2}$, then [JEE Ad. 2015] **(B)** 4a - k + 8 = 0(A) a = 0, k = 8(C) det (P adj(Q)) = 2^9 (D) det (Q adj (P)) = 2^{13} Let $P = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1 \end{bmatrix}$ and I be the identity matrix of order 3. If $Q = [q_{ij}]$ is a matrix such that $P^{50} - Q = I$, then 20. $\frac{q_{31} + q_{32}}{q_{21}} \text{ equal}$ [**JEE Ad. 2016**]

(1) 50	() 102	(0) 201	()
(A) 52	(B) 103	(C) 201	(D) 205

	\rightarrow	MOCH	K TEST	
	SE	CTION - I : STRAIG	HT OBJECTIVE TYP	E
1.	Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$	$= \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ are two matrice}$	es such that AB = BA and	$c \neq 0$, then value of $\frac{a-d}{3b-c}$ is :
	(A) 0	(B) 2	(C) –2	(D) –1
2.	If $\mathbf{A} = \begin{bmatrix} 3 & 1 & -1 \\ 0 & 1 & 2 \end{bmatrix}$, then A	AA' is		
	(A) symmetric matrix(C) orthogonal matrix		(B) skew - symmetric matrix(D) none of these	x
3.	Let A and B are two not respectively, then which (A) B ^T AB is symmetric f (B) B ^T AB is symmetric f (C) B ^T AB is skew symm (D) B ^T AB is skew symm	on-singular square matrice of the following is correc matrix if and only if A is syn matrix if and only if B is syn etric matrix for every matri etric matrix if B is skew syn	es, A^T and B^T are the t mmetric mmetric x A mmetric	transpose matrices of A and B
4.	If A and B are two squar (A) $7 (A+B)$	e matrices of order 3×3 w (B) $7.I_{3 \times 3}$	which satisfy $AB = A$ and E (C) 64 (A + B)	$BA = B$ then $(A + B)^7$ is (D) 128 $I_{3 \times 3}$
5.	If $A^3 = O$, then $I + A + A$ (A) $I - A$	² equals (B) $(I - A)^{-1}$	(C) $(I + A)^{-1}$	(D) none of these
6.	Let A = $\begin{bmatrix} x + \lambda & x \\ x & x + \lambda \\ x & x \end{bmatrix}$	$\begin{bmatrix} x \\ x \\ x + \lambda \end{bmatrix}$, then \mathbf{A}^{-1} exists if		
	$(\mathbf{A}) \mathbf{x} \neq 0$	(B) $\lambda \neq 0$	(C) $3x + \lambda \neq 0, \lambda \neq 0$	(D) $x \neq 0, \lambda \neq 0$
7.	If $A = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$ then $\lim_{n \to \infty}$	$\frac{1}{n}A^n$ is		
	$(\mathbf{A})\begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix}$	$ (\mathbf{B}) \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} $	$(\mathbf{C})\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$	(D) Does not exist
8.	If $\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} A \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix}$	$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \text{ then } \mathbf{A} =$		
	$(\mathbf{A})\begin{bmatrix}1 & 1\\1 & 0\end{bmatrix}$	$ (\mathbf{B}) \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} $	$(\mathbf{C})\begin{bmatrix}1 & 0\\1 & 1\end{bmatrix}$	$(\mathbf{D}) - \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$

9.	If A a	nd B are two matrices, then	
	(A) A	B=BA	(B) AB = O
	(C)A	B=I	(D) AB cannot necessarily be defined
10.	S ₁ :	Square matrix A is non-singular and symmetric then $((A^{-1})^{-1})^{-1}$ is skew symme	
	S ₂ :	Adjoint of a symmetric matrix is a symmetric matrix	
	S ₃ :	Adjoint of a diagonal matrix is diagonal	onal matrix
	S ₄ :	Product of two invertible square ma	trices of same order is also invertible.

(A) FTFT (B) FTTF	(C) FTTT	(D) TFFT
-------------------	----------	----------

SECTION - II : MULTIPLE CORRECT ANSWER TYPE

11.	If A is a square matrix, the	n		
	(A) AA' is symmetric		(B) AA' is skew - symmetr	ric
	(C) A'A is symmetric		(D) A'A is skew - symmetr	ic
12.	Let $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$, then			
	(A) $A^2 - 4A - 5I_3 = 0$	(B) $A^{-1} = \frac{1}{5} (A - 4I_3)$	(C) A ³ is not invertible	(D) A^2 is invertible
13.	Matrix $\begin{bmatrix} a & b & (a\alpha - b) \\ b & c & (b\alpha - c) \\ 2 & 1 & 0 \end{bmatrix}$	is non invertible if		
	(A) $\alpha = 1/2$	(B) a, b, c are in A.P.	(C) a, b, c are in G.P.	(D) a, b, c are in H.P.
14.	If $A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$, then			
	(A) $adj(adjA) = A$	(B) $ adj(adjA) = 1$	(C) $ adjA = 1$	(D) None of these
15.	If $\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$, then			
	$(\mathbf{A})\mathbf{A}^3 = 9\mathbf{A}$	(B) $A^3 = 27A$	$(C) A + A = A^2$	(D) A ⁻¹ does not exist

SECTION - III : ASSERTION AND REASON TYPE

16. Statement -I : The inverse of the matrix $A = [a_{ij}]_{n \times n}$ where $a_{ij} = 0, i \ge j$ is $B = [a_{ij}^{-1}]_{n \times n}$

Statement -II : The inverse of singular matrix does not exist.

(A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I.

- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True

17. Statement-I: If
$$A = \begin{pmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{pmatrix}$$
, then adj (adj A) = A

Statement-II: $|adj(adj A)| = |A|^{(n-1)^2}$, A be n rowed non singular matrix.

(A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I.

- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True

18. Statement-I : If $f_1(x)$, $f_2(x)$, $f_9(x)$ are polynomials whose degree ≥ 1 , where

$$f_{1}(\alpha) = f_{2}(\alpha) = f_{2}(\alpha) \dots = f_{9}(\alpha) = 0 \text{ and } A(x) = \begin{bmatrix} f_{1}(x) & f_{2}(x) & f_{3}(x) \\ f_{4}(x) & f_{5}(x) & f_{6}(x) \\ f_{7}(x) & f_{8}(x) & f_{9}(x) \end{bmatrix} \text{ and } \frac{A(x)}{x - \alpha} \text{ is also}$$

a matrix of 3×3 whose entries are also polynomials

- **Statement -II** : $x \alpha$ is a factor of polynomial f(x) if $f(\alpha) = 0$
- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I.
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True
- **19. Statement-I**: The rank of a unit matrix of order $n \times n$ is n.

Statement-II: The rank of a non singular matrix of order $n \times n$ is not n.

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I.
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True

20. Statement-I: If A is a skew symmetric matric of order 3×3 , then det(A) = 0 or |A| = 0. Statement-II: If A is square matrix, then det(A) = det(A') = det(-A').

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I.
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True

SECTION - IV : MATRIX - MATCH TYPE

21. Match the following

	Colui	Column - I		Column - II		
	(A)	(A) A is a real skew symmetric matrix such that $A^2 + I = 0$.		BA-AB		
		Then				
	(B)	A is a matrix such that $A^2 = A$. If $(I + A)^n = I + \lambda A$,	(q)	A is of even order		
		then λ equals $(n \in N)$				
	(C)	If for a matrix A, $A^2 = A$, and $B = I - A$, then	(r)	А		
		$AB + BA + I - (I - A)^2$ equals				
	(D)	A is a matrix with complex entries and A* stands for	(s)	$2^{n} - 1$		
		transpose of complex conjugate of A. If $A^* = A \& B^* = B$,				
		then $(AB - BA)^*$ equals				
			(t)	${}^{n}C_{1} + {}^{n}C_{2} \dots + {}^{n}C_{n}$		
22.	Matc	h the following				
	Colui	nn - I	Colu	nn - II		
	(A)	If A, B and C be 2×2 matrices with entires from the	(p)	A * B = B * A		
		set of real numbers. Define * as follows :				
		$A * B = \frac{1}{2}(AB + BA)$, then				
	(B)	If A, B and C be 2×2 matrices with entires from the	(q)	$A^{*}(B+C) = A^{*}B + A^{*}C$		
		set of real numbers. Define * as follows :				
		$A * B = \frac{1}{2}(AB' + A'B)$ then				
		2 If A B and C be 2 × 2 matrices with entires from the		$\Lambda * \Lambda = \Lambda^2$		
	(C)	set of real number. Define $*$ as follows :	(1)	Λ Λ-Λ		
		1				
		$A * B = \frac{1}{2}(AB - BA)$, then	(s)	A * I = A		
			(t)	A * I = O		

SECTION - V : COMPREHENSION TYPE

23. Read the following comprehension carefully and answer the questions.

			(1 3	$\lambda + 2$) (3	2	4
	Let A and B are	two matrices of same orde	er 3×3 , where $A = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$	2 4	8	, B = 3	2	5
				3 5	10) (2	1	4
1.	If A is singular r	matrix, then $tr(A+B)$ is eq	ual to		,			
	(A) 6	(B) 12	(C) 24			(D) 17		
2.	If matrix 2A+2	B is singular, then the valu	ie of 2λ is					
	(A) 11	(B) 13	(C) 15			(D) 17		
3.	If $\lambda = 3$, then $\frac{1}{7}$	(tr(AB) + tr(BA)) is equal	to					
	(A) 34	(B) 42	(C) 84			(D) 63		

24.	Read the following	comprehension	carefully and	answer the questions.
-----	--------------------	---------------	---------------	-----------------------

1.	A and B are two	matrices of same order 3 >	\times 3, where A = $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 5 & 6 & 8 \end{pmatrix}$	and B = $\begin{pmatrix} 3 & 2 & 5 \\ 2 & 3 & 8 \\ 7 & 2 & 9 \end{pmatrix}$	
	(A) 2A	(B) 4A	(C) 8A	(D) 16A	
2.	The value of adj (A) 9	(adj A) is equal to (B) 16	(C) 25	(D) 81	
3.	The value of adj (A) 24	B is equal to (B) 24 ²	(C) 24 ³	(D) 8 ²	
25.	Read the followin Let $A = [a_{ij}]_3$ be a formed so that the	ag comprehension carefully a square matrix of order 3 a sum of numbers in ever	y and answer the questions. whose elements are distin y row, column & diagonal	ct integers from 1, 2,9 th is a multiple of 9.	e matrix is
1.	The number of p	ossible combinations of t	hree distinct numbers from	1 to 9 that have a sum of 9 of	or 18 is

	(A) 10	(B) 7	(C) 8	(D) 9
2.	The element a ₂₂ n	nust be a multiple of		
	(A) 2	(B) 3	(C) 4	(D) 9
3.	The maximum val	lue of trace of the matrix A	is :	
	(A) 18	(B) 19	(C) 12	(D) None

SECTION - VI : INTEGER TYPE

26. If
$$A = \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix}$$
, $abc = 1$, $A'A = I$, then find maximum value of $a^3 + b^3 + c^3$

27. If
$$A = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$$
 and $\phi(x) = (1+x)(1-x)^{-1}$ and $\phi(A) = -\lambda A$, then find the value of λ .
 $\begin{bmatrix} 1 & -1 & 1 \end{bmatrix}$

28. If
$$A = \begin{bmatrix} 0 & 2 & -3 \\ 2 & 1 & 0 \end{bmatrix}$$
 and $B = (adj A)$ and $C = 5A$, then find the value of $\frac{|adjB|}{|C|}$.

29. Let P =
$$\begin{bmatrix} \cos\frac{\pi}{9} & \sin\frac{\pi}{9} \\ -\sin\frac{\pi}{9} & \cos\frac{\pi}{9} \end{bmatrix}$$
 and α , β , γ be non-zero real numbers such that $\alpha p + \beta p^3 + \gamma I$

is the zero matrix. Then find value of $(\alpha^2+\beta^2+\gamma^2)^{(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)}$.

30. Let 'A' is (4×4) matrix such that sum of elements in each row is 1. Find out sum of all the elements in A¹⁰.

ANSWER KEY

EXERCISE - 1

 1. A
 2. A
 3. A
 4. A
 5. B
 6. C
 7. B
 8. A
 9. A
 10. B
 11. D
 12. C
 13. A

 14. B
 15. C
 16. B
 17. A
 18. B
 19. B
 20. A
 21. D
 22. C
 23. C
 24. C
 25. C
 26. D

 27. C
 28. C
 29. D
 30. C

EXERCISE - 2 : PART # I

4. AB **1.** ABC **2.** AB **3.** BC **5.** ABC 6. BCD **7.** ABD 8. BCD 9. BC 10. BC 11. BC 12. AD **13.** AC 14. AC 15. ABCD 16. CD 17. ABCD 18. BCD 19. BD **20.** ABC

PART - II

1. C 2. A 3. A 4. A 5. A 6. D

EXERCISE - 3 : PART # I

1. $A \rightarrow p \ B \rightarrow q \ C \rightarrow s \ D \rightarrow r$ 2. $A \rightarrow p \ B \rightarrow s \ C \rightarrow q \ D \rightarrow r$

PART - II

 Comprehension #1: 1.
 B
 2.
 C
 3.
 D
 Comprehension #2: 1.
 A
 2.
 B
 3.
 C

 Comprehension #3: 1.
 D
 2.
 A
 3.
 D
 4.
 D

EXERCISE - 5 : PART # I

 1. 3
 2. 2
 3. 4
 4. 1
 5. 1
 6. 1
 7. 3
 8. 3
 9. 4
 10. 3
 11. 4
 12. 4
 13. 3

 14. 4
 15. 1
 16. 1
 17. 4
 18. 1
 19. 2
 20. 2
 21. 3
 22. 1

PART - II

 1. 4
 2. A
 5. C
 6. A
 7. A. A
 B. B
 C. A
 8. $A \rightarrow R B \rightarrow q, s C \rightarrow r, s D \rightarrow p, r$

 9. A. A
 B. B
 C. B
 10. A. A
 B. 4
 C. (i) D
 (ii) C
 (iii) D
 11. Bonus
 12. A
 13. 9

 14. D
 15. D
 16. AD
 17. CD
 18. CD
 19. BC
 20. B

MOCK TEST

3. A 1. D 2. A **4.** C 5. B 6. C 7. A 8. A 9. D 10. C 11. AC 12. ABD 13. AC 14. ABC 15. AD 16. D 18. A 17. B 19. C **20.** C **21.** $A \rightarrow q B \rightarrow s, t C \rightarrow r D \rightarrow p$ **22.** $A \rightarrow p,q,r,s B \rightarrow p,q C \rightarrow q,t$ 23. 1. C 2. D **3.** A 24. 1. A **2.** B **3.** B 25. 1. A 2. B 3. A **26.** 4 **27.** 1 **28.** 1 **29.** 1 **30.** 4

214