HINTS \& SOLUTIONS

EXERCISE - 1

Single Choice

1. $60=2^{2} \times 3^{1} \times 5^{1}$

Number of divisor $=12$
3. $\mathrm{A}_{\alpha}=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$
$\Rightarrow A_{\alpha} A_{\beta}=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]\left[\begin{array}{cc}\cos \beta & \sin \beta \\ -\sin \beta & \cos \beta\end{array}\right]$

$$
=\left[\begin{array}{cc}
\cos (\alpha+\beta) & \sin (\alpha+\beta) \\
-\sin (\alpha+\beta) & \cos (\alpha+\beta)
\end{array}\right]=A_{\alpha+\beta}
$$

4. $\mathrm{A}=\left[\begin{array}{lll}\mathrm{a} & 0 & 0 \\ 0 & \mathrm{~b} & 0 \\ 0 & 0 & \mathrm{c}\end{array}\right]$
$\mathrm{abc}=120=2^{3} \times 3^{1} \times 5^{1}$
Case-II $={ }^{5} \mathrm{C}_{2} \times{ }^{3} \mathrm{C}_{2} \times{ }^{3} \mathrm{C}_{2}=90$
Case-I $=3 \times\left({ }^{5} \mathrm{C}_{2} \times{ }^{3} \mathrm{C}_{2} \times{ }^{3} \mathrm{C}_{2}\right)=270$

$$
=90+270=360
$$

5. $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & 1+2 \\ 0 & 1\end{array}\right]$
$\left[\begin{array}{cc}1 & 1+2 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & 1+2+3 \\ 0 & 1\end{array}\right]$
on multiplying the matrix we get

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1 & 1+2+\ldots . .+\mathrm{n} \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 378 \\
0 & 1
\end{array}\right]} \\
& \Rightarrow \mathrm{n}(\mathrm{n}+1)=378 \times 2 \Rightarrow \mathrm{n}=27
\end{aligned}
$$

6. Hint : $x=11-y \& x+5=y$
7. $\mathrm{A}^{2}-2 \mathrm{~A}+\mathrm{I}=0$
$\Rightarrow(\mathrm{A}-\mathrm{I})^{2}=0$

$$
\begin{aligned}
\mathrm{A}^{\mathrm{n}}= & (\mathrm{A}-\mathrm{I}+\mathrm{I})^{\mathrm{n}} \\
= & { }^{\mathrm{n}} \mathrm{C}_{0}(\mathrm{~A}-\mathrm{I})^{\mathrm{n}}+\ldots \ldots . .+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}-2}(\mathrm{~A}-\mathrm{I})^{2} \cdot \mathrm{I}^{\mathrm{n}-2}+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}-1} \\
& \quad(\mathrm{~A}-\mathrm{I}) \cdot \mathrm{I}^{\mathrm{n}-1}+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} \mathrm{I}^{\mathrm{n}} \\
= & 0+0+\ldots \ldots \ldots .+0+\mathrm{n}(\mathrm{~A}-\mathrm{I})+\mathrm{I}=\mathrm{nA}-(\mathrm{n}-1) \mathrm{I}
\end{aligned}
$$

11. $\mathrm{A}^{\mathrm{T}}=-\mathrm{A} . \& \mathrm{~A}^{\mathrm{T}} \mathrm{A}=\mathrm{I}$
$\Rightarrow \mathrm{A}^{2}=-\mathrm{I} \quad \Rightarrow \mathrm{A}^{4 \mathrm{n}}=\mathrm{I}$
$A^{4 n-1}=A^{-1} \quad \Rightarrow A^{4 n-1}=A^{T}(A$ is orthogonal $)$
12. A is involutary

$$
\begin{array}{ll}
\Rightarrow A^{2}=I & \Rightarrow A=A^{-1} \\
\text { now } A^{2}=\left(\frac{A}{2}\right)(2 A)=I & \Rightarrow 2 A=\left(\frac{A}{2}\right)^{-1}
\end{array}
$$

18. $A=3 \times 4 ; A^{\prime}=4 \times 3$

As $A^{\prime} B$ is defined $\quad \Rightarrow$ let order of $B=3 \times n$ now $\mathrm{BA}^{\prime}=(3 \times n) \times(4 \times 3) \Rightarrow \mathrm{n}=4$
$\therefore \quad$ order of B is 3×4
$\therefore \quad$ order of $\mathrm{B}^{\prime}=4 \times 3$
order of $\mathrm{B}^{\prime} \mathrm{A}=(4 \times 3) \times(3 \times 4)=4 \times 4$
22. $\mathrm{AB}=\left(\begin{array}{cc}\cos ^{2} \alpha & \sin \alpha \cos \alpha \\ \sin \alpha \cos \alpha & \sin ^{2} \alpha\end{array}\right)$

$$
\left(\begin{array}{cc}
\cos ^{2} \beta & \sin \beta \cos \beta \\
\sin \beta \cos \beta & \sin ^{2} \beta
\end{array}\right)
$$

$=\left(\begin{array}{l}\cos ^{2} \alpha \cos ^{2} \beta+\sin \alpha \cos \alpha \sin \beta \cos \beta \\ \cos ^{2} \beta \sin \alpha \cos \alpha+\sin ^{2} \alpha \sin \beta \cos \beta\end{array}\right.$

$$
\left.\begin{array}{l}
\cos ^{2} \alpha \sin \beta \cos \beta+\sin \alpha \cos \alpha \sin ^{2} \beta \\
\sin \alpha \cos \alpha \sin \beta \cos \beta+\sin ^{2} \alpha \sin ^{2} \beta
\end{array}\right)
$$

$\left(\begin{array}{ll}\cos \alpha \cos \beta \cos (\alpha-\beta) & \cos \alpha \sin \beta \cos (\alpha-\beta) \\ \sin \alpha \cos \beta \cos (\alpha-\beta) & \sin \alpha \sin \beta \cos (\alpha-\beta)\end{array}\right)$
$\Rightarrow \alpha-\beta \quad$ must be an odd integral multiple of $\pi / 2$
$\Rightarrow \quad(C)$
23. $\mathrm{t}_{\mathrm{r}}(\mathrm{A})+2 \mathrm{t}_{\mathrm{r}}(\mathrm{B})=-1 \quad$ (from the given matrix) and $2 \mathrm{t}_{\mathrm{r}}(\mathrm{A})-\mathrm{t}_{\mathrm{r}}(\mathrm{B})=3$ (from the given matrix) Let $\mathrm{t}_{\mathrm{r}}(\mathrm{A})=\mathrm{x}$ and $\mathrm{t}_{\mathrm{r}}(\mathrm{B})=\mathrm{y}$
$x+2 y=-1$
$2 x-y=3$
solving $\mathrm{x}=1$ and $\mathrm{y}=-1$
Hence $\mathrm{t}_{\mathrm{r}}(\mathrm{A})-\mathrm{t}_{\mathrm{r}}(\mathrm{B})=\mathrm{x}-\mathrm{y}=2$
24. Obv. A is orthogonal as $\mathrm{a}_{11}^{2}+\mathrm{a}_{12}^{2}=1=\mathrm{a}_{21}^{2}+$ $a_{22}^{2}=a_{11}^{2}+a_{22}^{2}$
for skew symmetric matrix $\mathrm{a}_{\mathrm{ii}}=0 \Rightarrow \theta=(2 \mathrm{n}+1) \frac{\pi}{2}$ for symmetric matrix, $\mathrm{A}=\mathrm{A}^{\mathrm{T}} \Rightarrow \sin \theta=0 \Rightarrow \theta=\mathrm{n} \pi$ Also $\operatorname{adj} \mathrm{A}=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$ and $|\mathrm{A}|=1$
hence $\mathrm{A}=\mathrm{A}^{-1}$ is possible if $\sin \theta=0$
25. A. $\operatorname{adj} \mathrm{A}=|\mathrm{A}| \mathrm{I}$
$|\mathrm{A}|=\mathrm{xyz}-8 \mathrm{x}-3(\mathrm{z}-8)+2(2-2 \mathrm{y})$
$|A|=x y z-(87 x+3 z+4 y)+28 \Rightarrow 60-20+28=68$
$\Rightarrow \quad(C)$
26. $A=\left[\begin{array}{cc}1 & \tan x \\ -\tan x & 1\end{array}\right]$
hence $\operatorname{det} . \mathrm{A}=\sec ^{2} \mathrm{x}$
$\therefore \quad \operatorname{det} \mathrm{A}^{\mathrm{T}}=\sec ^{2} \mathrm{x}$
nowf $(x)=\operatorname{det} .\left(\mathrm{A}^{\mathrm{T}} \mathrm{A}^{-1}\right)$

$$
=\left(\operatorname{det} \cdot \mathrm{A}^{\mathrm{T}}\right)\left(\operatorname{det} \cdot \mathrm{A}^{-1}\right)
$$

$$
=\left(\operatorname{det} . \mathrm{A}^{\mathrm{T}}\right)(\operatorname{det} . \mathrm{A})^{-1}
$$

$$
=\frac{\operatorname{det} \cdot\left(\mathrm{A}^{\mathrm{T}}\right)}{\operatorname{det} \cdot(\mathrm{A})}=1
$$

hence $f(x)=1$
27. As $A(\theta)=\left[\begin{array}{cc}\sin \theta & \cos \theta \\ -\cos \theta & \sin \theta\end{array}\right]$
$A(\theta)$ is certainly neither symmetric nor skew symmetric
Further, $A(\pi-\theta)=\left[\begin{array}{cc}\sin \theta & -\cos \theta \\ \cos \theta & \sin \theta\end{array}\right]$
and $A(\theta) \cdot A(\pi-\theta)=\left[\begin{array}{cc}\sin \theta & \cos \theta \\ -\cos \theta & \sin \theta\end{array}\right]\left[\begin{array}{cc}\sin \theta & -\cos \theta \\ \cos \theta & \sin \theta\end{array}\right]$
$=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \Rightarrow \mathrm{A}^{-1}(\theta)=\mathrm{A}(\pi-\theta)$

$$
\begin{aligned}
A^{2}(\theta) & =\left[\begin{array}{cc}
\sin \theta & \cos \theta \\
-\cos \theta & \sin \theta
\end{array}\right]\left[\begin{array}{cc}
\sin \theta & \cos \theta \\
-\cos \theta & \sin \theta
\end{array}\right] \\
& =\left[\begin{array}{cc}
-\cos 2 \theta & \sin 2 \theta \\
-\sin 2 \theta & -\cos 2 \theta
\end{array}\right] \neq \mathrm{A}\left(\frac{\pi}{2}-2 \theta\right)
\end{aligned}
$$

28. $\left|\begin{array}{ccc}1 & 2 & 2 \\ 1 & 3 & 4 \\ 3 & 4 & \mathrm{k}\end{array}\right|=0$
$1(3 \mathrm{k}-16)-2(\mathrm{k}-12)+2(4-9)=0$
$3 \mathrm{k}-16-2 \mathrm{k}+24-10=0$
$\mathrm{k}=2$
29. $A\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$
and $\mathrm{A}^{2}\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
Let A be given by $\mathrm{A}=\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right]$;
Hence $\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right]\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{c}-1 \\ 2\end{array}\right] ;\left[\begin{array}{l}\mathrm{a}-\mathrm{b} \\ \mathrm{c}-\mathrm{d}\end{array}\right]=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$
The first equation gives

$$
\begin{equation*}
a-b=-1 \tag{iii}
\end{equation*}
$$

and $\mathrm{c}-\mathrm{d}=2$
For second equation, $\mathrm{A}^{2}\left[\begin{array}{c}1 \\ -1\end{array}\right]=\mathrm{A}\left(\mathrm{A}\left[\begin{array}{c}1 \\ -1\end{array}\right]\right)$

$$
=\mathrm{A}\left(\left[\begin{array}{c}
-1 \tag{v}\\
2
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

This gives $-a+2 b=1$
and $\quad-c+2 d=0$
(iii) $+(\mathrm{v}) \Rightarrow \mathrm{b}=0$ and $\mathrm{a}=-1$
(iv) $+($ vi) $\Rightarrow d=2$ and $c=4$
so the sum $a+b+c+d=5$
30. Given $A^{2}=A$

$$
\begin{aligned}
\mathrm{I} & =(\mathrm{I}-0.4 \mathrm{~A})(\mathrm{I}-\alpha \mathrm{A}) \\
& =\mathrm{I}-\mathrm{I} \alpha \mathrm{~A}-0.4 \mathrm{AI}+0.4 \alpha \mathrm{~A}^{2} \\
& =\mathrm{I}-\mathrm{A} \alpha-0.4 \mathrm{~A}+0.4 \alpha \mathrm{~A} \\
& =\mathrm{I}-\mathrm{A}(0.4+\alpha)+0.4 \alpha \mathrm{~A}
\end{aligned}
$$

hence $\quad 0.4 \alpha=0.4+\alpha \Rightarrow \alpha=-2 / 3$

EXERCISE - 2

Part \# I : Multiple Choice

1. $\mathrm{A}^{2}=\mathrm{A} \Rightarrow|\mathrm{A}|^{2}=|\mathrm{A}| \quad \Rightarrow|\mathrm{A}|=1$
$\mathrm{A}(\operatorname{adj} \mathrm{A})=|\mathrm{A}| \mathrm{I}$
$\operatorname{adj} \mathrm{A}=\mathrm{A}^{-1}$
also $\mathrm{A}^{2}=\mathrm{A}$
$\mathrm{A}=\mathrm{I}$
$\Rightarrow \operatorname{adj} A=I$
$(\operatorname{adj} \mathrm{A})^{2}=\mathrm{I}$
$\Rightarrow(\operatorname{adj} A)^{2}=\operatorname{adj} A$
2. $\mathrm{A}^{\mathrm{T}}=\mathrm{BCD}$
$\mathrm{AA}^{\mathrm{T}}=\mathrm{ABCD}$
$\Rightarrow \mathrm{AA}^{\mathrm{T}}=\mathrm{S}$
$\Rightarrow \mathrm{AA}^{\mathrm{T}}=\mathrm{S}^{\mathrm{T}}$
$\Rightarrow \mathrm{S}=\mathrm{S}^{\mathrm{T}}$
$D^{T} C^{T} B^{T} A^{T}=A B C . D A B . C D A . B C D$
$(A B C D)^{T}=(A B C D)(A B C D)(A B C D)$

$$
\mathrm{S}^{\mathrm{T}}=\mathrm{S}^{3} \quad \Rightarrow \mathrm{~S}=\mathrm{S}^{3}
$$

$\Rightarrow \mathrm{S}^{2}=\mathrm{S}^{4}$
11. $\mathrm{A}=\left[\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right]$
$\mathrm{A}^{2}=\left[\begin{array}{cc}-1 & -4 \\ 8 & 7\end{array}\right]-\left[\begin{array}{cc}8 & -4 \\ 8 & 2\end{array}\right]+\left[\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=0$
$C=A-B\left[\begin{array}{cc}1-\alpha & 0 \\ 0 & -2\end{array}\right]$ is diagonal matrix, $\forall \alpha \in R$
12. $|\mathrm{A}-\lambda \mathrm{I}|=0 \Rightarrow\left|\begin{array}{cc}\mathrm{a}-\lambda & \mathrm{b} \\ \mathrm{c} & \mathrm{d}-\lambda\end{array}\right|=0$
$\Rightarrow \lambda^{2}-\lambda(a+d)+a d-b c=0$
This is characteristic equation. Comparing with given equation we get
$k=a d-b c=|A|, \quad a+d=0$
14. For $|\mathrm{AB}|=0 \Rightarrow|\mathrm{~A}| \cdot|\mathrm{B}|=0$
$\Rightarrow|\mathrm{A}|=0$ or $|\mathrm{B}|=0$
$\mathrm{AA}^{-1}=\mathrm{I} \quad \Rightarrow|\mathrm{A}| \cdot|\mathrm{A}|^{-1}=|\mathrm{I}|=1$
$\Rightarrow\left|\mathrm{A}^{-1}\right|=\frac{1}{|\mathrm{~A}|}=|\mathrm{A}|^{-1}$
15. We have $A^{2} B=A(A B)=A A=A^{2}, B^{2} A=B(B A)=B B=B^{2}$, $\mathrm{ABA}=\mathrm{A}(\mathrm{BA})=\mathrm{AB}=\mathrm{A}$, and $\mathrm{BAB}=\mathrm{B}(\mathrm{AB})=\mathrm{BA}=\mathrm{B}]$
16. Note that A is non singular but B is singular hence only
A^{-1} exists
Now $\quad \mathrm{XA}=\mathrm{B} \Rightarrow \mathrm{X}=\mathrm{BA}^{-1}$
and $\quad A Y=B \Rightarrow Y=A^{-1} B$
Also $\quad A^{-1}=\frac{1}{3}\left[\begin{array}{ll}-1 & 1 \\ -4 & 1\end{array}\right]$ now verify
17. $\mathrm{AB}=\mathrm{O}$
$\therefore|\mathrm{AB}|=0 \Rightarrow|\mathrm{~A}||\mathrm{B}|=0$
$\therefore \quad \operatorname{det} \mathrm{A} \neq 0$
$\therefore \quad \mathrm{A}^{-1}$ exist
$\therefore \quad \mathrm{A}^{-1}(\mathrm{AB})=\mathrm{A}^{-1}(0)=0$
$\mathrm{IB}=0$
$B=0 \quad \Rightarrow \quad B$ must be null matrix.
18. $\left.\mathrm{PQ}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \Rightarrow \mathrm{B}, \mathrm{C}, \mathrm{D}\right]$
19. $\mathrm{A}=\left[\begin{array}{lll}\mathrm{x} & 1 & 0 \\ 1 & \mathrm{x} & 1 \\ 0 & 1 & \mathrm{x}\end{array}\right] ; \mathrm{x}\left(\mathrm{x}^{2}-1\right)-1(\mathrm{x})=6-2=4$
20. $\left|\mathrm{A}^{\mathrm{T}} \mathrm{A}^{-1}\right|=\left|\mathrm{A}^{\mathrm{T}} \| \mathrm{A}^{-1}\right|=\left|\mathrm{A}^{\mathrm{T}}\right| \frac{1}{|\mathrm{~A}|}=1$
$\Rightarrow f(\mathrm{x})=1$

Part \# II : Assertion \& Reason

3. Given $\mathrm{AB}+\mathrm{A}+\mathrm{B}=\mathrm{O}$

$$
\begin{aligned}
& A B+A+B+I=I \\
& A(B+I)+(B+I)=I \\
& (\mathrm{~A}+\mathrm{I})(\mathrm{B}+\mathrm{I})=\mathrm{I} \\
\Rightarrow & (\mathrm{~A}+\mathrm{I}) \text { and }(\mathrm{B}+\mathrm{I}) \text { are inverse of each other } \\
\Rightarrow & (\mathrm{A}+\mathrm{I})(\mathrm{B}+\mathrm{I})=(\mathrm{B}+\mathrm{I})(\mathrm{A}+\mathrm{I}) \\
\Rightarrow & \mathrm{AB}=\mathrm{BA}
\end{aligned}
$$

4. Let $A=\left[\begin{array}{ll}a & p \\ b & q \\ c & r\end{array}\right] A^{T}=\left[\begin{array}{lll}a & b & c \\ p & q & r\end{array}\right]$
$\mathrm{AA}^{\mathrm{T}}=\left[\begin{array}{ccc}\mathrm{a}^{2}+\mathrm{p}^{2} & a b+\mathrm{pq} & \mathrm{ac}+\mathrm{pr} \\ \mathrm{ab}+\mathrm{pq} & \mathrm{b}^{2}+\mathrm{q}^{2} & \mathrm{bc}+\mathrm{qr} \\ \mathrm{ac}+\mathrm{pr} & \mathrm{bc}+\mathrm{qr} & \mathrm{c}^{2}+\mathrm{r}^{2}\end{array}\right]$
$\left|A A^{T}\right|=\left|\begin{array}{lll}a & p & 0 \\ b & q & 0 \\ c & r & 0\end{array}\right|\left|\begin{array}{ccc}a & b & c \\ p & q & r \\ 0 & 0 & 0\end{array}\right|=0$
$\Rightarrow \mathrm{AA}^{\mathrm{T}}$ is singular.
5. Statement-I :

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1 & 2 \\
-1 & -1
\end{array}\right]\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
-1 & -1
\end{array}\right]} \\
& {\left[\begin{array}{cc}
\mathrm{a}+2 \mathrm{c} & \mathrm{~b}+2 \mathrm{~d} \\
-\mathrm{a}-\mathrm{c} & -\mathrm{b}-\mathrm{d}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{a}-\mathrm{b} & 2 \mathrm{a}-\mathrm{b} \\
\mathrm{c}-\mathrm{d} & 2 \mathrm{c}-\mathrm{d}
\end{array}\right]} \\
& \Rightarrow \quad 2 \mathrm{c}=-\mathrm{b} \quad \& \mathrm{~b}=\mathrm{a}-\mathrm{d}
\end{aligned}
$$

$\therefore \quad$ infinite matrix are there.

EXERCISE - 3

Part \# II : Comprehension

1. $\quad \operatorname{det} . \mathrm{A}=\left|\begin{array}{ccc}2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4\end{array}\right|$

$$
\begin{aligned}
& =2(-16+15)+1(12-15)+1(-15+20) \\
& =-2-3+5=0 \Rightarrow \mathrm{~A} \text { is singular }
\end{aligned}
$$

$\operatorname{det} . \mathrm{B}=\left|\begin{array}{ccc}1 & -3 & -4 \\ -1 & 3 & 4 \\ 1 & -3 & -4\end{array}\right|$

$$
=1(-12+12)+1(12-12)+1(-12+12)
$$

$$
=0
$$

$\Rightarrow B$ is also singular

$$
\begin{aligned}
\operatorname{det} . & =\left|\begin{array}{ccc}
0 & 1 & -1 \\
4 & -3 & 4 \\
3 & -3 & 4
\end{array}\right|=-1(16-12)-1(-12+9) \\
& =-4+3=-1
\end{aligned}
$$

$\Rightarrow C$ is non singular again

$$
\begin{aligned}
& \mathrm{A}^{2}=\left[\begin{array}{ccc}
2 & -3 & -5 \\
-1 & 4 & 5 \\
1 & -3 & -4
\end{array}\right]\left[\begin{array}{ccc}
2 & -3 & -5 \\
-1 & 4 & 5 \\
1 & -3 & -4
\end{array}\right] \\
&=\left[\begin{array}{ccc}
2 & -3 & -5 \\
-1 & 4 & 5 \\
1 & -3 & -4
\end{array}\right]=\mathrm{A} \Rightarrow \mathrm{~A} \text { is idempotent } \\
& \mathrm{B}^{2}=\left[\begin{array}{ccc}
1 & -3 & -4 \\
-1 & 3 & 4 \\
1 & -3 & -4
\end{array}\right]\left[\begin{array}{ccc}
1 & -3 & -4 \\
-1 & 3 & 4 \\
1 & -3 & -4
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
\Rightarrow \quad(\mathrm{B}) \text { is nilpotent }
$$

$$
\mathrm{C}^{2}=\left[\begin{array}{ccc}
0 & 1 & -1 \\
4 & -3 & 4 \\
3 & -3 & 4
\end{array}\right]\left[\begin{array}{ccc}
0 & 1 & -1 \\
4 & -3 & 4 \\
3 & -3 & 4
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\mathrm{I}
$$

$$
\Rightarrow \mathrm{C} \text { is involutary }
$$

(i) obvious (B) as B is nilpotent
(iii) $\mathrm{P}=\mathrm{A}^{3} \mathrm{C}^{2}=\mathrm{A}^{3}=\mathrm{A} \quad \Rightarrow \mathrm{P}^{2}=\mathrm{A}^{2}=\mathrm{A}$
$\therefore \quad \mathrm{P}^{2}=\mathrm{P}$
ly in B and D
hence BC^{2} is not Idempotent.
(iii) Let $\mathrm{X}=\mathrm{BC}^{2} \Rightarrow \operatorname{det} \mathrm{X}=0$

$$
\begin{array}{ll}
\mathrm{Y}=\mathrm{A}^{2} \mathrm{C}^{2} & \Rightarrow \operatorname{det} . \mathrm{Y}=0 \\
\mathrm{Z}=\mathrm{A}^{2} \mathrm{~B} & \Rightarrow \operatorname{det} \cdot \mathrm{Z}=0
\end{array}
$$

but $\mathrm{W}=\mathrm{C}^{3} \quad \Rightarrow \operatorname{det} . \mathrm{W} \neq 0$
hence C^{3} has an inverse \Rightarrow (D)
2.
(i) $(\mathrm{A}+\mathrm{B}) \mathrm{C}=(\mathrm{A}+\mathrm{B})(\mathrm{A}+\mathrm{B})^{-1}(\mathrm{~A}-\mathrm{B})$
$\Rightarrow \quad(\mathrm{A}+\mathrm{B}) \mathrm{C}=\mathrm{A}-\mathrm{B}$
$C^{T}=(A-B)^{T}\left((A+B)^{-1}\right)^{T}$

$$
=(\mathrm{A}+\mathrm{B})\left((\mathrm{A}+\mathrm{B})^{\mathrm{T}}\right)^{-1} \quad\{\text { as }|\mathrm{A}+\mathrm{B}| \neq 0
$$

$\left.\Rightarrow\left|(A+B)^{T}\right| \neq 0 \Rightarrow|A-B| \neq 0\right\}$

$$
\begin{equation*}
=(\mathrm{A}+\mathrm{B})(\mathrm{A}-\mathrm{B})^{-1} \tag{2}
\end{equation*}
$$

(1) \& (2) $\mathrm{C}^{\mathrm{T}}(\mathrm{A}+\mathrm{B}) \mathrm{C}=(\mathrm{A}+\mathrm{B})(\mathrm{A}-\mathrm{B})^{-1}(\mathrm{~A}-\mathrm{B})$

$$
=(\mathrm{A}+\mathrm{B}) \quad \ldots .(3) \quad \text { Ans. }
$$

(ii) taking transpose in (3)

$$
\begin{align*}
& C^{T}(A+B)^{T}\left(C^{T}\right)^{T}=(A+B)^{T} \\
& C^{T}(A-B) C=A-B \tag{4}
\end{align*}
$$

Ans.
(ii) adding (3) and (4)

$$
\begin{aligned}
& \mathrm{C}^{\mathrm{T}}[\mathrm{~A}+\mathrm{B}+\mathrm{A}-\mathrm{B}] \mathrm{C}=2 \mathrm{~A} \\
& \mathrm{C}^{\mathrm{T}} \mathrm{AC}=\mathrm{A}
\end{aligned}
$$

Ans.

EXERCISE - 4

 Subjective Type1. $\mathrm{A}=\left[\begin{array}{cc}1 & 2 \\ 3 & -4 \\ 5 & 6\end{array}\right] \mathrm{B}=\left[\begin{array}{ccc}4 & 5 & 6 \\ 7 & -8 & 2\end{array}\right]$

$$
\begin{aligned}
\mathrm{AB} & =\left[\begin{array}{ccc}
4+14 & 5-16 & 6+4 \\
-12+28 & 15+32 & 18-10 \\
20-62 & 25-48 & 30+12
\end{array}\right] \\
\Rightarrow \mathrm{AB} & =\left[\begin{array}{ccc}
18 & -11 & 10 \\
-16 & 47 & 10 \\
62 & -23 & 42
\end{array}\right] \\
\mathrm{BA} & =\left[\begin{array}{cc}
4+15+30 & 8-20+36 \\
7-24+10 & 14+32+12
\end{array}\right] \\
\Rightarrow \mathrm{BA} & =\left[\begin{array}{cc}
49 & 24 \\
-7 & 58
\end{array}\right]
\end{aligned}
$$

2. $(\mathrm{I}+\mathrm{A})=(\mathrm{I}-\mathrm{A})\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$

$$
\text { L.H.S. }=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{cc}
0 & -\tan \frac{\alpha}{2} \\
\tan \frac{\alpha}{2} & 0
\end{array}\right]
$$

$$
\Rightarrow\left[\begin{array}{cc}
1 & -\tan \frac{\alpha}{2} \\
\tan \frac{\alpha}{2} & 1
\end{array}\right]
$$

R.H.S.

$$
\begin{aligned}
& \left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{cc}
1 & -\tan \frac{\alpha}{2} \\
\tan \frac{\alpha}{2} & 0
\end{array}\right]\right)\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cc}
1 & +\tan \frac{\alpha}{2} \\
-\tan \frac{\alpha}{2} & 1
\end{array}\right]\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cc}
\cos \alpha+\sin \alpha \tan \frac{\alpha}{2} & -\sin \alpha+\tan \frac{\alpha}{2} \cos \alpha \\
-\tan \frac{\alpha}{2} \cos \alpha+\sin \alpha & \sin \alpha \tan \frac{\alpha}{2}+\cos \alpha
\end{array}\right]
\end{aligned}
$$

$\Rightarrow\left[\begin{array}{cc}\cos \alpha+2 \sin \frac{\alpha}{2} \sin \alpha & \sin \frac{\alpha}{2}\left(-2 \cos \frac{\alpha}{2}+\frac{\cos \alpha}{\cos \frac{\alpha}{2}}\right) \\ \sin \alpha\left(-\frac{\cos \alpha}{\cos \frac{\alpha}{2}}+2 \cos \frac{\alpha}{2}\right) & \cos \alpha+2 \sin ^{2} \frac{\alpha}{2}\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}1 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 1\end{array}\right]$
4. $\mathrm{A}=\left[\begin{array}{lll}1 & 1 & 2 \\ 0 & 2 & 1 \\ 1 & 0 & 2\end{array}\right] ; \mathrm{A}^{3}=5 \mathrm{~A}^{2}-6 \mathrm{AI}+\mathrm{I}^{2}$
$\mathrm{A}^{2}=\left[\begin{array}{lll}3 & 3 & 7 \\ 1 & 4 & 4 \\ 3 & 1 & 6\end{array}\right] \quad \mathrm{A}^{3}=\left[\begin{array}{ccc}10 & 9 & 23 \\ 5 & 9 & 14 \\ 9 & 5 & 19\end{array}\right]$
$5 A^{2}+6 A+I=\left[\begin{array}{ccc}10 & 9 & 23 \\ 5 & 9 & 14 \\ 9 & 5 & 19\end{array}\right]=\mathrm{A}^{3}$
5. We have, $\mathrm{A}-\lambda \mathrm{I}$ and $\mathrm{B}-\lambda$ I commute
$\Leftrightarrow(\mathrm{A}-\lambda \mathrm{I})(\mathrm{B}-\lambda \mathrm{I})=(\mathrm{B}-\lambda \mathrm{I})(\mathrm{A}-\lambda \mathrm{I})$
$\Leftrightarrow \mathrm{AB}-\lambda \mathrm{IA}-\lambda \mathrm{IB}+\lambda^{2} \mathrm{I}^{2}=\mathrm{BA}-\lambda \mathrm{BI}-\lambda \mathrm{IA}+\lambda^{2} \mathrm{I}^{2}$
$\Leftrightarrow \mathrm{AB}-\lambda \mathrm{A}-\lambda \mathrm{B}+\lambda^{2} \mathrm{I}=\mathrm{BA}-\lambda \mathrm{B}-\lambda \mathrm{A}+\lambda^{2} \mathrm{I}$
$\Leftrightarrow \mathrm{AB}=\mathrm{BA}$
A and B commute
6. We have,

$$
\mathrm{AB}=\mathrm{A} \quad \text { and } \quad \mathrm{BA}=\mathrm{B}
$$

Now

$$
\mathrm{AB}=\mathrm{A}
$$

$\Rightarrow \quad(\mathrm{AB}) \mathrm{A}=\mathrm{AA}$
[Multiplying both sides on right by A]
$\Rightarrow \mathrm{A}(\mathrm{BA})=\mathrm{A}^{2}$
[By associ. of matrix multip]
$\Rightarrow \mathrm{AB}=\mathrm{A}^{2}$
$[\because B A=B]$
$\Rightarrow A=A^{2}$
$[\because \mathrm{AB}=\mathrm{A}]$
Similarly, $\mathrm{B}^{2}=\mathrm{B}$.
7. $\left\{\frac{1}{2}\left(\mathrm{~A}-\mathrm{A}^{\prime}+\mathrm{I}\right)\right\}^{-1}$ for $\mathrm{A}=\left[\begin{array}{ccc}-2 & 3 & 4 \\ 5 & -4 & -3 \\ 7 & 2 & 9\end{array}\right]$

$$
\begin{aligned}
& \frac{1}{2}\left(\mathrm{~A}-\mathrm{A}^{\mathrm{T}}+\mathrm{I}\right)^{-1}=\left[\frac{1}{2}\left[\begin{array}{ccc}
1 & -2 & -3 \\
2 & 1 & -5 \\
3 & 5 & 1
\end{array}\right]\right]^{-1}=\left(\frac{1}{2} \mathrm{~B}\right)^{-1} \\
& {[\mathrm{~B}]=\frac{-39}{8}}
\end{aligned}
$$

$$
\text { Adj } B=\frac{1}{4}\left[\begin{array}{ccc}
26 & -17 & 7 \\
-13 & 10 & -11 \\
13 & -1 & 5
\end{array}\right]^{\mathrm{T}}=\frac{1}{4}\left[\begin{array}{ccc}
26 & -13 & 13 \\
-17 & 10 & -1 \\
7 & -11 & 5
\end{array}\right]
$$

$$
\Rightarrow \mathrm{A}^{-1}=\frac{2}{39}\left[\begin{array}{ccc}
26 & -13 & 13 \\
-17 & 10 & -1 \\
7 & -11 & 5
\end{array}\right]
$$

8. $a^{2}+b^{2}+c^{2}=1$

$$
\begin{aligned}
& \Delta=\left|\begin{array}{ccc}
a^{2}+\left(b^{2}+c^{2}\right) \cos \phi & a b(1-\cos \phi) & a c(1-\cos \phi) \\
b a(1-\cos \phi) & b^{2}+\left(c^{2}+a^{2}\right) \cos \phi & b c(1-\cos \phi) \\
c a(1-\cos \phi) & c b(1-\cos \phi) & c^{2}+\left(a^{2}+b^{2}\right) \cos \phi
\end{array}\right| \\
& \Delta=\frac{1}{a b c}
\end{aligned}
$$

$\left|\begin{array}{ccc}a^{3}+a\left(b^{2}+c^{2}\right) \cos \phi & b^{2} a(1-\cos \phi) & a c^{2}(1-\cos \phi) \\ b a^{2}(1-\cos \phi) & b^{3}+b\left(c^{2}+a^{2}\right) \cos \phi & b c^{2}(1-\cos \phi) \\ {c a^{2}}^{2}(1-\cos \phi) & c b(1-\cos \phi) & c^{3}+c\left(a^{2}+b^{2}\right) \cos \phi\end{array}\right|$
$\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$
$\frac{a b c}{a b c}$

$$
\left|\begin{array}{ccc}
\mathrm{a}^{2}+\left(\mathrm{b}^{2}+\mathrm{c}^{2}\right) \cos \phi & \mathrm{b}^{2}(1-\cos \phi) & \mathrm{c}^{2}(1-\cos \phi) \\
\mathrm{a}^{2}(1-\cos \phi) & \mathrm{b}^{2}+\left(\mathrm{c}^{2}+\mathrm{a}^{2}\right) \cos \phi & \mathrm{c}^{2}(1-\cos \phi) \\
\mathrm{a}^{2}(1-\cos \phi) & \mathrm{b}^{2}(1-\cos \phi) & \mathrm{c}^{2}+\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right) \cos \phi
\end{array}\right|
$$

$$
=\left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}\right)
$$

$$
\left|\begin{array}{ccc}
1 & \mathrm{~b}^{2}(1-\cos \phi) & \mathrm{c}^{2}(1-\cos \phi) \\
1 & \mathrm{~b}^{2}+\left(\mathrm{c}^{2}+\mathrm{a}^{2}\right) \cos \phi & \mathrm{c}^{2}(1-\cos \phi) \\
1 & \mathrm{~b}^{2}(1-\cos \phi) & \mathrm{c}^{2}+\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right) \cos \phi
\end{array}\right|
$$

$$
\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1} \text { or } \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}
$$

9. $\Delta=\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 2 & \lambda\end{array}\right|=\lambda-3$
$\Delta_{\mathrm{x}}=\left|\begin{array}{ccc}6 & 1 & 1 \\ 10 & 2 & 3 \\ \mu & 2 & \lambda\end{array}\right|=2 \lambda+\mu-16$
$\Delta_{y}=\left|\begin{array}{ccc}1 & 6 & 1 \\ 1 & 10 & 3 \\ 1 & \mu & \lambda\end{array}\right|=4(\lambda-\mu+7)$
$\Delta_{z}=\left|\begin{array}{ccc}1 & 1 & 6 \\ 1 & 2 & 10 \\ 1 & 2 & \mu\end{array}\right|=(\mu-10)$
(i) $\Delta \neq 0 \therefore \lambda \neq 3$
(ii) infinite solutions $\Delta=0, \Delta_{\mathrm{x}}=0, \Delta_{\mathrm{y}}=0, \Delta_{\mathrm{z}}=0$.
$\therefore \lambda=3, \mu=10$
(iii) $\Delta=0, \Delta_{x}, \Delta_{y}, \Delta_{z}$
$\therefore \lambda=3, \mu \neq 10$
10. $\mathrm{x}, \mathrm{y}, \mathrm{z}$

$$
\begin{align*}
& x+y+z=5000 \tag{i}\\
& 6 x+7 y+8 z=35800 \tag{ii}\\
& 6 x+7 y-8 z=7000 \tag{iii}
\end{align*}
$$

$\left[\begin{array}{ccc}1 & 1 & 1 \\ 6 & 7 & 8 \\ 6 & 7 & -8\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}500 \\ 35800 \\ 7000\end{array}\right]$
$\mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}$
$|\mathrm{A}|=-16$
$\operatorname{adj}=\left[\begin{array}{ccc}-112 & 96 & 0 \\ 15 & -14 & -1 \\ 1 & -2 & 1\end{array}\right]=\left[\begin{array}{ccc}-112 & 15 & 1 \\ 96 & -14 & -2 \\ 0 & -1 & 1\end{array}\right]$
$X=A^{-1} B=-\frac{1}{16}\left[\begin{array}{ccc}-112 & 15 & 11 \\ 96 & -14 & -2 \\ 0 & -1 & 1\end{array}\right]\left[\begin{array}{c}5000 \\ 35800 \\ 7000\end{array}\right]$
$\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\ \mathrm{z}\end{array}\right]=\left[\begin{array}{c}1000 \\ 2200 \\ 1800\end{array}\right], x=1000, y=2200, \mathrm{z}=1800$
14. $A=\left|\begin{array}{ccc}2 & 0 & -\alpha \\ 5 & \alpha & 0 \\ 0 & \alpha & 3\end{array}\right|$

$$
\begin{aligned}
& |\mathrm{A}|=\left|\begin{array}{ccc}
2 & 0 & -\alpha \\
5 & \alpha & 0 \\
0 & \alpha & 3
\end{array}\right| \neq 0 \\
& 6 \alpha-5 \alpha^{2} \neq=0 \\
& \alpha(6-5 \alpha) \neq 0 \\
& \alpha=0,6 / 5 \\
& \alpha=1
\end{aligned}
$$

$$
A=\left|\begin{array}{ccc}
2 & 0 & -1 \\
5 & 1 & 0 \\
0 & 1 & 3
\end{array}\right| \Rightarrow|A|=6-5=1
$$

$$
\Rightarrow \quad \operatorname{Adj} A=\left|\begin{array}{ccc}
3 & -1 & -1 \\
-5 & 6 & 5 \\
3 & -2 & 2
\end{array}\right|
$$

$$
\therefore \quad \mathrm{A}^{-1}=\left|\begin{array}{ccc}
3 & -1 & -1 \\
-5 & 6 & 5 \\
5 & -2 & 2
\end{array}\right|
$$

$$
|A-x I|=0
$$

$$
|A-x I|=0) \Rightarrow\left|\begin{array}{ccc}
2-x & 0 & -1 \\
5 & 1-x & 0 \\
0 & 1 & 3-x
\end{array}\right|=0
$$

$$
\Rightarrow \quad x^{3}-6 x^{2}+11 x-1=0
$$

$$
\mathrm{A}^{3}-6 \mathrm{~A}^{2}+11 \mathrm{~A}=\mathrm{I}
$$

$$
\Rightarrow \quad \mathrm{A}^{-1}=\mathrm{A}^{2}-6 \mathrm{~A}+11 . \mathrm{I}
$$

$$
\left(a^{2}+b^{2}+c^{2}\right)
$$

$$
\left|\begin{array}{ccc}
1 & \mathrm{~b}^{2}(1-\cos \phi) & \mathrm{c}^{2}(1-\cos \phi) \\
0 & \left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}\right) \cos \phi & 0 \\
0 & 0 & \left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}\right) \cos \phi
\end{array}\right|
$$

$$
=\left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}\right) \cos ^{2} \phi=\cos ^{2} \phi
$$

$\mathrm{a}, \mathrm{b}, \mathrm{c}$

EXERCISE-5

Part \# I : AIEEE/JEE-MAIN

3. $\mathrm{A}=\left|\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right|$
$10 B=\left|\begin{array}{ccc}4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3\end{array}\right|$
$\mathrm{B}=\mathrm{A}^{-1}$
$\mathrm{AB}=\mathrm{AA}^{-1}=\mathrm{I}$
$10 \mathrm{AB}=10 \mathrm{I}$
(A) $(10 \mathrm{~B})=10 \mathrm{I}$

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & 1 & -3 \\
1 & 1 & 1
\end{array}\right] \times\left[\begin{array}{ccc}
4 & 2 & 2 \\
-5 & 0 & \alpha \\
1 & -2 & 3
\end{array}\right]} \\
\\
=\left[\begin{array}{ccc}
10 & 0 & 0 \\
0 & 10 & 0 \\
0 & 0 & 10
\end{array}\right]
\end{gathered}
$$

$$
\left[\begin{array}{ccc}
10 & 0 & 5-\alpha \\
0 & 10 & \alpha-5 \\
0 & 0 & 5+\alpha
\end{array}\right]=\left[\begin{array}{ccc}
10 & 0 & 0 \\
0 & 10 & 0 \\
0 & 0 & 10
\end{array}\right]
$$

$5-\alpha=0$
$\alpha=5$
4. $\mathrm{A}^{2}-\mathrm{A}+\mathrm{I}=0$
multiplying by A^{-1}
$\mathrm{A}^{-1} \mathrm{AA}-\mathrm{A}^{-1} \mathrm{~A}+\mathrm{A}^{-1} \mathrm{I}=0$
$\mathrm{IA}-\mathrm{I}+\mathrm{A}^{-1}=0$
$A^{-1}=I-A$
7. $\mathrm{A}=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$
$B=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$
$a, b \in N$
$A B=\left(\begin{array}{cc}a & 2 b \\ 3 a & 4 b\end{array}\right)$
$B A=\left(\begin{array}{cc}a & 2 b \\ 3 b & 4 b\end{array}\right)$
For $\mathrm{AB}=\mathrm{BA}$
$\mathrm{b}=\mathrm{a} \rightarrow$ their are infinite
Natural number for which $\mathrm{a}=6$
so Infinite matrix B possible
8. $\left|\mathrm{A}^{2}\right|=25$
$|A|^{2}=25$
$|\mathrm{A}|= \pm 5$
$\left|\begin{array}{ccc}5 & 5 \alpha & \alpha \\ 0 & \alpha & 5 \alpha \\ 0 & 0 & 5\end{array}\right|= \pm 5$
$25 \alpha= \pm 5$
$\alpha= \pm \frac{1}{5}$
9. $\mathrm{A}^{2}=\mathrm{I}$
$\left|A^{2}\right|=|I|$
$\left|\mathrm{A}^{2}\right|=1$
$|A|= \pm 1$
statement-1 :
If $\quad A \neq I, \quad A \neq-I$
but $|\mathrm{A}|= \pm 1$
so this statement is true
statement-2 :
Let $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
$|\mathrm{A}|=-1 \quad \operatorname{tr}(\mathrm{~A})=0$
but $\mathrm{A} \neq \mathrm{I}, \quad \mathrm{A} \neq-\mathrm{I}$
so statement-2 is false
14. $\mathrm{A}^{\mathrm{T}}=\mathrm{A}$
$\mathrm{B}^{\mathrm{T}}=\mathrm{B}$
Statement-1 :
$(\mathrm{A}(\mathrm{BA}))^{\mathrm{T}} \quad=(\mathrm{BA})^{\mathrm{T}} \mathrm{A}^{\mathrm{T}}$

$$
=\mathrm{A}^{\mathrm{T}} \mathrm{~B}^{\mathrm{T}} \mathrm{~A}^{\mathrm{T}}=\mathrm{A}(\mathrm{BA}) \rightarrow \text { symetric }
$$

$((\mathrm{AB}) \mathrm{A}))^{\mathrm{T}}=\mathrm{A}^{\mathrm{T}} \mathrm{B}^{\mathrm{T}} \mathrm{A}^{\mathrm{T}}=(\mathrm{AB}) \mathrm{A} \rightarrow$ symetric
Statement - 1 is true

Statement-2 :
$(\mathrm{AB})^{\mathrm{T}}=\mathrm{B}^{\mathrm{T}} \mathrm{A}^{\mathrm{T}}=\mathrm{BA}$
if $\mathrm{AB}=\mathrm{BA}$ then
$(\mathrm{AB})^{\mathrm{T}}=\mathrm{BA}=\mathrm{AB}$
Statement.- 2 is true
but Not a correct expalnation.
15. Statement-1: The value of det. of skew sym. matrix of odd order is always zero. So Statement-I. is true.

Statement-III: This st. is not always true depends on the order of matrix.
$|-\mathrm{A}|=-|\mathrm{A}|$ if order is odd, so Statement- -II is wrong.
Statement-I is true and Statement-II is false.
16. Since H is a diagonal matrix.

We know that product of two diagonal matrix is always a diagonal matrix.

So $H^{70}=\left[\begin{array}{ll}\omega & 0 \\ 0 & \omega\end{array}\right]\left[\begin{array}{cc}\omega & 0 \\ 0 & \omega\end{array}\right] \cdots\left[\begin{array}{cc}\omega & 0 \\ 0 & \omega\end{array}\right] \quad 70$ times
$=\left[\begin{array}{cc}\omega^{70} & 0 \\ 0 & \omega^{70}\end{array}\right]=\left[\begin{array}{ll}\omega & 0 \\ 0 & \omega\end{array}\right]=\mathrm{H}$
17. $\left(\mathrm{P}^{2}+\mathrm{Q}^{2}\right) \mathrm{P}=\mathrm{P}^{3}+\mathrm{Q}^{2} \mathrm{P}$
$\left(\mathrm{P}^{2}+\mathrm{Q}^{2}\right) \mathrm{Q}=\mathrm{P}^{2} \mathrm{Q}+\mathrm{Q}^{3}$
Equation (i) - Equation (ii)
$\left(\mathrm{P}^{2}+\mathrm{Q}^{2}\right)(\mathrm{P}-\mathrm{Q})=\mathrm{P}^{3}-\mathrm{Q}^{3}+\mathrm{Q}^{2} \mathrm{P}-\mathrm{P}^{2} \mathrm{Q}$
$\left(\mathrm{P}^{2}+\mathrm{Q}^{2}\right)(\mathrm{P}-\mathrm{Q})=0 \quad \because \quad(\mathrm{P} \neq \mathrm{Q})$
$\mathrm{P}^{2}+\mathrm{Q}^{2}=0$
So $\left|\mathrm{P}^{2}+\mathrm{Q}^{2}\right|=0$
18. $\mathrm{A}^{-1}=\left(\begin{array}{ccc}1 & -2 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1\end{array}\right)^{\mathrm{T}}=\left(\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & -2 & 1\end{array}\right)$
and $A^{-1} A \quad U_{1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & -2 & 1\end{array}\right)\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)$

$$
\mathrm{A}^{-1} \mathrm{~A} \mathrm{U}_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{ii}\\
-2 & 1 & 0 \\
1 & -2 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
0 \\
1 \\
-2
\end{array}\right) .
$$

Eq. (i) + (i)

$$
\mathrm{U}_{1}+\mathrm{U}_{2}=\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right)
$$

21.

$$
\left|\begin{array}{ccc}
1 & \lambda & -1 \\
\lambda & -1 & -1 \\
1 & 1 & -\lambda
\end{array}\right|=0
$$

$$
\begin{aligned}
& (1 \lambda+1)-1\left(-\lambda^{2}+1\right)-(\lambda+1)=0 \\
& (\lambda+1)(\lambda+1(\lambda-1)-1)=0 \\
& \lambda=-1 \quad \text { or } 0 \text { or } 1
\end{aligned}
$$

22. $\mathrm{A}(\operatorname{adj} \mathrm{A})=|\mathrm{A}| \mathrm{I}_{\mathrm{n}}=\mathrm{AA}^{\mathrm{T}} \quad$ [Given]

$$
\begin{aligned}
& |A|=10 a+3 b \\
& A^{T}=\left[\begin{array}{cc}
5 a & 3 \\
-b & 2
\end{array}\right] \\
& {A A^{T}}^{T}\left[\begin{array}{cc}
5 a & -b \\
3 & 2
\end{array}\right]\left[\begin{array}{cc}
5 a & 3 \\
-b & 2
\end{array}\right]=\left[\begin{array}{cc}
10 a+3 b & 0 \\
0 & 10 a+3 b
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cc}
25 a^{2}+b^{2} & 15 a-2 b \\
15 a-2 b & 13
\end{array}\right]=\left[\begin{array}{cc}
10 a+3 b & 0 \\
0 & 10 a+3 b
\end{array}\right] \\
& \Rightarrow 15 a-2 b=0 \\
& \Rightarrow a=\frac{13-3 b}{10} \\
& \Rightarrow \frac{2 b}{15}=\frac{13-3 b}{10} \Rightarrow 4 b=39-9 b \\
& \Rightarrow 13 b=39 \\
& \Rightarrow a \frac{2}{15} \times 3=\frac{6}{15}=\frac{2}{5} \Rightarrow 5 a=2 \\
& \Rightarrow 5 a+b=2+3=5
\end{aligned}
$$

Part \# II : IIT-JEE ADVANCED

3. $|\mathrm{M}-\mathrm{I}|=\left|\mathrm{M}-\mathrm{M} \mathrm{M}^{\mathrm{T}}\right|$
$|\mathrm{M}-\mathrm{I}|=|\mathrm{M}||\mathrm{I}-\mathrm{M}|$
$\Rightarrow|M-I|=|I-M|$
$\Rightarrow|\mathrm{M}-\mathrm{I}|=(-1)^{3}|\mathrm{M}-\mathrm{I}|$
$\Rightarrow|M-I|=0$
4. $A X=U$
$\Rightarrow\left[\begin{array}{lll}\mathrm{a} & 1 & 0 \\ 1 & \mathrm{~b} & \mathrm{~d} \\ 1 & \mathrm{~b} & \mathrm{c}\end{array}\right]\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\ \mathrm{z}\end{array}\right]=\left[\begin{array}{l}\mathrm{f} \\ \mathrm{g} \\ \mathrm{h}\end{array}\right]$
has infinitely many solutions.
$\Rightarrow|A|=0$
$\Rightarrow(\mathrm{c}-\mathrm{d})(\mathrm{ab}-1)=0$
$\& \quad(\operatorname{adj} \mathrm{~A}) \mathrm{U}=0$

$$
\begin{align*}
& {\left[\begin{array}{ccc}
\mathrm{bc}-\mathrm{bd} & -\mathrm{c} & \mathrm{~d} \\
\mathrm{~d}-\mathrm{c} & \mathrm{ac} & -\mathrm{ad} \\
0 & 1-\mathrm{ab} & \mathrm{ab}-1
\end{array}\right]\left[\begin{array}{l}
\mathrm{f} \\
\mathrm{~g} \\
\mathrm{~h}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{c}
\mathrm{fbc}-\mathrm{fbd}-\mathrm{gc}+\mathrm{dh} \\
\mathrm{fd}-\mathrm{fc}+\mathrm{agc}-\mathrm{adh} \\
\mathrm{~g}-\mathrm{abg}+\mathrm{adh}-\mathrm{h}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
\Rightarrow & \mathrm{fd}-\mathrm{fc}+\mathrm{agc}-\mathrm{agh}=0 \tag{i}\\
& \mathrm{BX}=\mathrm{V}
\end{align*}
$$

$\Rightarrow\left[\begin{array}{lll}\mathrm{a} & 1 & 1 \\ 0 & d & c \\ f & g & h\end{array}\right]\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\ \mathrm{z}\end{array}\right]=\left[\begin{array}{c}\mathrm{a}^{2} \\ 0 \\ 0\end{array}\right]$
$|\mathrm{B}|=\mathrm{a}(\mathrm{dh}-\mathrm{gc})+\mathrm{fc}-\mathrm{fd}=0$ (from (i))
$\therefore \quad$ system can't have unique solution
Now $\quad X=(\operatorname{adj} B) V$

$$
=\left[\begin{array}{ccc}
\mathrm{dh}-\mathrm{gc} & \mathrm{~g}-\mathrm{h} & \mathrm{c}-\mathrm{d} \\
\mathrm{fc} & \mathrm{ah}-\mathrm{f} & -\mathrm{ac} \\
-\mathrm{fd} & -\mathrm{g}+\mathrm{af} & \mathrm{ad}
\end{array}\right]\left[\begin{array}{c}
\mathrm{a}^{2} \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]
$$

if \quad afd $\neq 0 \Rightarrow($ adj $B) V \neq 0$
$\therefore \quad$ adfd $\neq 0$ then $\mathrm{BX}=\mathrm{V}$ is inconsistent
5. $\mathrm{A}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4\end{array}\right] \Rightarrow|\mathrm{A}|=6$

$$
\mathrm{A}^{-1} \Rightarrow \frac{\operatorname{adj} \mathrm{~A}}{|\mathrm{~A}|}=\frac{1}{6}\left[\begin{array}{ccc}
6 & 0 & 0 \\
0 & 4 & -1 \\
0 & 2 & 1
\end{array}\right]
$$

$$
\mathrm{A}^{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 5 \\
0 & -10 & 14
\end{array}\right]
$$

$$
\mathrm{A}^{-1}=\frac{1}{6}\left[\mathrm{~A}^{2}+\mathrm{cA}+\mathrm{dI}\right]
$$

$$
\frac{1}{6}\left[\begin{array}{ccc}
6 & 0 & 0 \\
0 & 4 & -1 \\
0 & 2 & 1
\end{array}\right]
$$

$$
=\frac{1}{6}\left\{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 5 \\
0 & -10 & 14
\end{array}\right]+\left[\begin{array}{ccc}
\mathrm{c} & 0 & 0 \\
0 & \mathrm{c} & \mathrm{c} \\
0 & -2 \mathrm{c} & 4 \mathrm{c}
\end{array}\right]+\left[\begin{array}{ccc}
\mathrm{d} & 0 & 0 \\
0 & \mathrm{~d} & 0 \\
0 & 0 & \mathrm{~d}
\end{array}\right]\right\}
$$

on comparing we get
$-1=5+c \Rightarrow c=-6$
$1=14+4 \mathrm{c}+\mathrm{d} \Rightarrow 1=14-24+\mathrm{d}$
$\mathrm{d}=11$
6. $\quad P^{T}=I$

$$
\begin{aligned}
\mathrm{A}= & {\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] } \\
\Rightarrow & \mathrm{A}^{2}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right] \& \text { so on } \\
& \mathrm{Q}=\mathrm{PAP}^{\mathrm{T}} \\
& \mathrm{Q}^{2}=\left(\mathrm{PAP}^{\mathrm{T}}\right)\left(\mathrm{PAP}^{\mathrm{T}}\right)=\mathrm{PA}^{2} \mathrm{P}^{\mathrm{T}} \\
& \mathrm{Q}^{2005}=\mathrm{PA}^{2005} \mathrm{P}^{\mathrm{T}} \\
& \mathrm{x}=\mathrm{P}^{\mathrm{T}}\left(\mathrm{PA}^{2005} \mathrm{P}^{\mathrm{T}}\right) \mathrm{P} \\
\Rightarrow & \mathrm{x}=\mathrm{A}^{2005}=\left[\begin{array}{ll}
1 & 2005 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

10. (C) (i) If A is symmetric, $A^{T}=A$

$$
\begin{aligned}
& \Rightarrow\left[\begin{array}{ll}
a & b \\
c & a
\end{array}\right]=\left[\begin{array}{ll}
a & c \\
b & a
\end{array}\right] \\
& \Rightarrow b=c
\end{aligned}
$$

If A is skew symmetric, $A^{T}=-A$
$\Rightarrow\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{a}\end{array}\right]=\left[\begin{array}{ll}-\mathrm{a} & -\mathrm{c} \\ -\mathrm{b} & -\mathrm{a}\end{array}\right]$
$\Rightarrow \mathrm{a}=0, \mathrm{~b}+\mathrm{c}=0$
$\because \quad b, c \geq 0$
$\Rightarrow \mathrm{a}=0, \mathrm{~b}=0, \mathrm{c}=0$
Now, $\quad \operatorname{det}(A)=a^{2}-b c$

$$
=\mathrm{a}^{2}-\mathrm{b}^{2}
$$

$(\because \mathrm{b}=\mathrm{c} \quad$ for A being symmetric or skew symmetric or both)

$$
=(a-b)(a+b) \text { is divisible by } p .
$$

Let $(\mathrm{a}-\mathrm{b})(\mathrm{a}+\mathrm{b})=\lambda \mathrm{p}, \lambda \in \mathrm{I}$
Range of $(a+b)$ is 0 to $2 p-2$ which includes only one multiple of p i.e. p
$\therefore \quad \mathrm{a}+\mathrm{b}=\mathrm{p} \quad \& \quad \mathrm{a}-\mathrm{b} \in \mathrm{I}$
\Rightarrow possible number of pairs of $\mathrm{a} \& \mathrm{~b}$ will be $\mathrm{p}-1$.
Also, range of $(\mathrm{a}-\mathrm{b})$ is $1-\mathrm{p}$ to $\mathrm{p}-1$ which includes only one multiple of p i.e. 0
$\therefore \quad \mathrm{a}-\mathrm{b}=0 \quad \& \mathrm{a}+\mathrm{b} \in \mathrm{I}$
\Rightarrow Possible number of pairs of $\mathrm{a} \& \mathrm{~b}$ will be p .
Hence total number of A in T_{p} will be

$$
\mathrm{p}+\mathrm{p}-1=2 \mathrm{p}-1
$$

(iii) Total number of A in $T_{p}=p^{3}$
when $\mathrm{a} \neq 0 \& \operatorname{det}(\mathrm{~A})$ is divisible by p , then number of A will be $(\mathrm{p}-1)^{2}$
When $\mathrm{a}=0 \& \operatorname{det}(\mathrm{~A})$ is divisible by p , then number of A will be $2 \mathrm{p}-1$.
So, total number of A for which $\operatorname{det}(A)$ is divisible by p

$$
\begin{aligned}
& =(p-1)^{2}+2 p-1 \\
& =p^{2}
\end{aligned}
$$

So number of A for which $\operatorname{det}(A)$ is not divisible by p

$$
=\mathrm{p}^{3}-\mathrm{p}^{2}
$$

11. (Comment : Although 3×3 skew symmetric matrices can never be non-singular. Therefore the information given in question is wrong. Now if we consider only non singular skew symmetric matrices M \& N , then the solution is-)

Given $\quad M^{T}=-M$

$$
\begin{aligned}
& \mathrm{N}^{\mathrm{T}}=-\mathrm{N} \\
& \mathrm{MN}=\mathrm{NM}
\end{aligned}
$$

according to question $\quad \mathrm{M}^{2} \mathrm{~N}^{2}\left(\mathrm{M}^{\mathrm{T}} \mathrm{N}\right)^{-1}\left(\mathrm{MN}^{-1}\right)^{\mathrm{T}}$

$$
\begin{aligned}
& =M^{2} N^{2} N^{-1}\left(M^{T}\right)^{-1}\left(N^{-1}\right)^{T} M^{T} \\
& =M^{2} N^{2} N^{-1}(-M)^{-1}\left(N^{T}\right)^{-1}(-M)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{MN}=\mathrm{NM} \\
& (\mathrm{MN})^{-1}=(\mathrm{NM})^{-1} \\
& \mathrm{~N}^{-1} \mathrm{M}^{-1}=\mathrm{M}^{-1} \mathrm{~N}^{-1} \\
& \quad=-\mathrm{M}^{2} \mathrm{~N} \mathrm{M}^{-1} \mathrm{~N}^{-1} \mathrm{M} \\
& \quad=-\mathrm{M}^{2} \mathrm{~N} \mathrm{~N}^{-1} \mathrm{M}^{-1} \mathrm{M}=-\mathrm{M}^{2}
\end{aligned}
$$

12. $\left|\begin{array}{ccc}1 & \mathrm{a} & \mathrm{b} \\ \omega & 1 & \mathrm{c} \\ \omega^{2} & \omega & 1\end{array}\right|$
$=1-\mathrm{c} \omega-\mathrm{a}\left(\omega-\omega^{2} \mathrm{c}\right)=(1-\mathrm{c} \omega)-\mathrm{a} \omega(1-\mathrm{c} \omega)$
$=(1-\mathrm{c} \omega)(1-\mathrm{a} \omega)$
for non singular matrix

$$
\begin{aligned}
& c \neq \frac{1}{\omega} \quad \& \quad a \neq \frac{1}{\omega} \\
\Rightarrow \quad & c \neq \omega^{2}, \quad a \neq \omega^{2}
\end{aligned}
$$

$\Rightarrow \mathrm{a} \& \mathrm{c}$ must be $\omega \& \mathrm{~b}$ can be ω or ω^{2}
\therefore total matrices $=2$
14. $|\mathrm{Q}|=\left|\begin{array}{lll}2^{2} a_{11} & 2^{3} a_{12} & 2^{4} a_{13} \\ 2^{3} a_{21} & 2^{4} a_{22} & 2^{5} a_{23} \\ 2^{4} a_{31} & 2^{5} a_{32} & 2^{6} a_{33}\end{array}\right|$

$$
\begin{aligned}
\Rightarrow & |\mathrm{Q}|=2^{2} \cdot 2^{3} \cdot 2^{4} \cdot\left|\begin{array}{lll}
a_{11} & 2 a_{12} & 2^{2} a_{13} \\
a_{21} & 2 a_{22} & 2^{2} a_{23} \\
a_{31} & 2 a_{32} & 2^{2} a_{33}
\end{array}\right| \\
& =2^{2} \cdot 2^{3} \cdot 2^{4}|\mathrm{P}| \cdot 2^{3} \\
& =2^{2} \cdot 2^{3} \cdot 2^{4} \cdot 2 \cdot 2^{3}=2^{13}
\end{aligned}
$$

15. $\mathrm{P}^{\mathrm{T}}=2 \mathrm{P}+\mathrm{I}$
$\Rightarrow \mathrm{P}=2 \mathrm{P}^{\mathrm{T}}+\mathrm{I}$
$\Rightarrow \mathrm{P}=2(2 \mathrm{P}+\mathrm{I})+\mathrm{I}$
$\Rightarrow \mathrm{P}=4 \mathrm{P}+3 \mathrm{I}$
$\Rightarrow \mathrm{P}=-\mathrm{I}$
$\Rightarrow P X=-X$
16. $|\operatorname{adjP}|=\left|\begin{array}{lll}1 & 4 & 4 \\ 2 & 1 & 7 \\ 1 & 1 & 3\end{array}\right|$
$\Rightarrow|\mathrm{P}|^{2}=4$
$\Rightarrow|\mathrm{P}|= \pm 2$
17. $\left(\frac{\mathrm{P}}{\mathrm{K}}\right) \cdot \mathrm{Q}=1$
$\therefore \quad \mathrm{Q}=\left(\frac{\mathrm{P}}{\mathrm{K}}\right)^{-1}$
Comparing q_{23}, we get

$$
\begin{gathered}
\frac{-K}{8}=\frac{-K(3 a+4)}{(12 a+20)} \\
\alpha=-1
\end{gathered}
$$

Also, $\quad|\mathrm{P}| .|\mathrm{Q}|=\mathrm{K}^{3}$
$\therefore \quad(12 \mathrm{a}+20) \frac{\mathrm{K}^{2}}{2}=\mathrm{K}^{3}$
$K=6 a+10=4$
Hence (B), (C) are correct.
20. $\mathrm{P}^{2}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 8 & 1 & 0 \\ 48 & 8 & 1\end{array}\right]$
$\mathrm{P}^{3}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 8 & 1 & 0 \\ 48 & 8 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 12 & 1 & 0 \\ 96 & 12 & 1\end{array}\right]$
$\therefore \quad P^{n}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 4 n & 1 & 0 \\ 8\left(n^{2}+n\right) & 4 n & 1\end{array}\right]$
$\therefore \quad \mathrm{P}^{50}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 200 & 1 & 0 \\ 8 \times 50(51) & 200 & 1\end{array}\right]$
$\mathrm{P}^{50}-\mathrm{Q}=\mathrm{I}$
\therefore Equate we get

$$
\begin{aligned}
& 200-\mathrm{q}_{21}=0 \Rightarrow \mathrm{q}_{21}=200 \\
& 400 \times 51-\mathrm{q}_{31}=0 \\
& \mathrm{q}_{31}=400 \times 51 \\
& 200-\mathrm{q}_{32}=0 \Rightarrow \mathrm{q}_{32}=200
\end{aligned}
$$

$\frac{\mathrm{q}_{31}-\mathrm{q}_{32}}{\mathrm{q}_{21}}=\frac{400 \times 51+200}{200}=2(51)+1=103$

MOCK TEST

1. (D)

$$
\begin{aligned}
& A B=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
a+2 c & b+2 d \\
3 a+4 c & 3 b+4 d
\end{array}\right] \\
& B A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{cc}
a+3 b & 2 a+4 b \\
c+3 d & 2 c+4 d
\end{array}\right]
\end{aligned}
$$

if $\mathrm{AB}=\mathrm{BA}, \quad$ then $\mathrm{a}+2 \mathrm{c}=\mathrm{a}+3 \mathrm{~b}$
$\Rightarrow 2 \mathrm{c}=3 \mathrm{~b} \quad \Rightarrow \quad \mathrm{~b} \neq 0$
$\mathrm{b}+2 \mathrm{~d}=2 \mathrm{a}+4 \mathrm{~b}$
$\Rightarrow 2 \mathrm{a}-2 \mathrm{~d}=-3 \mathrm{~b}$
$\frac{a-d}{3 b-c}=\frac{-\frac{3}{2} b}{3 b-\frac{3}{2} b}=-1$
2. $\mathrm{AA}^{\prime}=\left[\begin{array}{ccc}3 & 1 & -1 \\ 0 & 1 & 2\end{array}\right]\left[\begin{array}{cc}3 & 0 \\ 1 & 1 \\ -1 & 2\end{array}\right]$
$\mathrm{AA}^{\prime}=\left[\begin{array}{cc}11 & -1 \\ -1 & 5\end{array}\right]$ symmetrix
3. (A)
$\left(B^{T} A B\right)^{T}=B^{T} A^{T}\left(B^{T}\right)^{T}=B^{T} A^{T} B$ $=\mathrm{B}^{\mathrm{T}} \mathrm{AB}$ iff A is symmetric
$\therefore \quad \mathrm{B}^{\mathrm{T}} \mathrm{AB}$ is symmetric iff A is symmetric
Also $\left(B^{T} A B\right)^{T}=B^{T} A^{T} B=(-B) A^{T} B$
$\therefore \quad \mathrm{B}^{\mathrm{T}} \mathrm{AB}$ is not skew symmetric if B is skew symmetric
4. (C)

$$
\begin{aligned}
& \mathrm{AB}=\mathrm{A}, \mathrm{BA}=\mathrm{B} \Rightarrow \mathrm{~A}^{2}=\mathrm{A} \text { and } \mathrm{B}^{2}=\mathrm{B} \\
& \begin{aligned}
&(\mathrm{A}+\mathrm{B})^{2}=A^{2}+\mathrm{B}^{2}+\mathrm{AB}+\mathrm{BA} \\
&=A+B+A+B=2(A+B) \\
&(A+B)^{3}=(A+B)^{2}(A+B) \\
&=2(A+B)^{2}=2^{2}(A+B) \\
& \therefore \quad(A+B)^{7}=2^{6}(A+B)=64(A+B)
\end{aligned}
\end{aligned}
$$

5. (B)
$\mathrm{A}^{3}=0$
$\left(\mathrm{I}+\mathrm{A}+\mathrm{A}^{2}\right)(\mathrm{I}-\mathrm{A})=\mathrm{I}-\mathrm{A}^{3}=\mathrm{I}$
$\therefore \quad \mathrm{I}+\mathrm{A}+\mathrm{A}^{2}=(\mathrm{I}-\mathrm{A})^{-1}$
6. $\mathrm{A}=\left[\begin{array}{ccc}\mathrm{x}+\lambda & \mathrm{x} & \mathrm{x} \\ \mathrm{x} & \mathrm{x}+\lambda & \mathrm{x} \\ \mathrm{x} & \mathrm{x} & \mathrm{x}+\lambda\end{array}\right]$
$|A|=(3 \mathrm{x}+\lambda)\left|\begin{array}{ccc}1 & \mathrm{x} & \mathrm{x} \\ 1 & \mathrm{x}+\lambda & \mathrm{x} \\ 1 & \mathrm{x} & \mathrm{x}+\lambda\end{array}\right|$
by $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}=(3 x+\lambda)\left|\begin{array}{ccc}1 & x & x \\ 1 & \lambda & -\lambda \\ 0 & 0 & \lambda\end{array}\right|$ $=(3 \mathrm{x}+\lambda)\left(\lambda^{2}\right)$
$|\mathrm{A}| \neq 0$ for non-singular matrix
$\therefore 3 x+\lambda \neq 0, \lambda \neq 0$
7. Let $\mathrm{X}=\left[\begin{array}{ll}0 & \mathrm{a} \\ 0 & 0\end{array}\right] \quad \mathrm{x}^{\mathrm{n}}=0 \quad \forall \mathrm{n} \geq 2$

$$
\begin{aligned}
& \Rightarrow A=X+I \\
& \quad A^{n}=(X+I)^{n}={ }^{n} C_{0} x^{n}+{ }^{n} C_{1} x^{n-1} I \ldots \ldots \ldots \ldots+{ }^{n} C_{n-2} x^{2}+ \\
& { }^{n} C_{n-1}+{ }^{n} C_{n} I=n x+I=\left[\begin{array}{cc}
1 & n a \\
0 & 1
\end{array}\right] \\
& \lim _{n \rightarrow \infty} \frac{1}{n}\left[\begin{array}{cc}
1 & n a \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & a \\
0 & 0
\end{array}\right]
\end{aligned}
$$

8. (A)

$$
\begin{aligned}
& {\left[\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right] \mathrm{A}\left[\begin{array}{cc}
-3 & 2 \\
5 & -3
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]} \\
& A=\left[\begin{array}{cc}
2 & -1 \\
-3 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
-3 & -2 \\
-5 & -3
\end{array}\right](-1) \\
& =\frac{1}{2}\left[\begin{array}{ll}
3 & 2 \\
5 & 3
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

10. (C)
$\mathrm{S}_{1}: \mathrm{A}^{\mathrm{T}}=\mathrm{A}$
$\left(\left(A^{-1}\right)^{-1}\right)^{-1}=A^{-1}$
$\left(\mathrm{A}^{-1}\right)^{\mathrm{T}}=\left(\mathrm{A}^{\mathrm{T}}\right)^{-1}=\mathrm{A}^{-1}$
So $\left(\left(\mathrm{A}^{-1}\right)^{-1}\right)^{-1}$ is also symmetric
S_{2} : Obvious
S_{3} : Obvious
$\mathrm{S}_{4}:|\mathrm{A}| \neq 0,|\mathrm{~B}| \neq 0 \quad \Rightarrow|\mathrm{AB}| \neq 0$
So AB is invertible
11. $(\mathrm{A}, \mathrm{B}, \mathrm{D})$
$\mathrm{A}^{2}-4 \mathrm{~A}-5 \mathrm{I}_{3}=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$
$-4\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]-5\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$=\left[\begin{array}{lll}9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9\end{array}\right]+\left[\begin{array}{ccc}-4 & -8 & -8 \\ -8 & -4 & -8 \\ -8 & -8 & -4\end{array}\right]+\left[\begin{array}{ccc}-5 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & -5\end{array}\right]$
$=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]=0$
$\therefore \quad A^{2}-4 A-5 I_{3}=0$
or $\quad A^{-1} A^{2}-4 A^{-1} A-5 A^{-1} I_{3}=0$
or $\left(\mathrm{A}^{-1} \mathrm{~A}\right) \mathrm{A}-4 \mathrm{I}_{3}-5 \mathrm{~A}^{-1}=0$
or $\quad \mathrm{IA}-4 \mathrm{I}_{3}-5 \mathrm{~A}^{-1}=0$
$\therefore \quad \mathrm{A}^{-1}=\frac{1}{5}\left(\mathrm{~A}-4 \mathrm{I}_{3}\right)$
Also, $\quad\left|\mathrm{A}^{2}\right|=\left[\begin{array}{lll}9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9\end{array}\right]=9(81-64)-8(72-64)$

$$
+8(64-72)
$$

$$
=9 \times 17-8 \times 8+8 \times(-8)=133-128=5 \neq 0
$$

$\therefore \quad \mathrm{A}^{2}$ is invertible
and $\mathrm{A}^{3}=\mathrm{A} \cdot \mathrm{A}^{2}=\mathrm{A} \cdot\left(4 \mathrm{~A}-5 \mathrm{I}_{3}\right)=4 \mathrm{~A}^{2}-5 \mathrm{~A}$
$=\left[\begin{array}{lll}36 & 32 & 32 \\ 32 & 36 & 32 \\ 32 & 32 & 36\end{array}\right]+\left[\begin{array}{ccc}-5 & -10 & -10 \\ -10 & -5 & -10 \\ -10 & -10 & -5\end{array}\right]$
$=\left[\begin{array}{lll}31 & 22 & 22 \\ 22 & 31 & 22 \\ 22 & 22 & 31\end{array}\right]$
$\therefore\left|A^{3}\right| \neq 0$
$\therefore \quad \mathrm{A}^{3}$ is invertible.
13. Taking $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\left(\mathrm{C}_{1} \alpha-\mathrm{C}_{2}\right)$
we get $|\mathrm{A}|=\left|\begin{array}{ccc}\mathrm{a} & \mathrm{b} & 0 \\ \mathrm{~b} & \mathrm{c} & 0 \\ 2 & 1 & -2 \alpha+1\end{array}\right|=(1-2 \alpha)\left(\mathrm{ac}-\mathrm{b}^{2}\right)$
\therefore non-invertible if $\alpha=\frac{1}{2}$ and if $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G.P.
14. (A, B, C)
$\because \quad|\mathrm{A}|=\left|\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right|=3(-3+4)-2(-3+4)+0=1$
$\because \quad \operatorname{adj}(\operatorname{adj} \mathrm{A})=|\mathrm{A}|^{3-2} \mathrm{~A}=\mathrm{A}$ and $|\operatorname{adj}(\operatorname{adj} \mathrm{A})|=|\mathrm{A}|=1$
Also, $\quad|\operatorname{adj} \mathrm{A}|=|\mathrm{A}|^{3-1}=|\mathrm{A}|^{2}=1^{2}=1$
15. (A, D)
$\mathrm{A}^{2}=\left[\begin{array}{lll}3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3\end{array}\right]=3 \mathrm{~A}$
$\mathrm{A}^{3}=\mathrm{A}^{2} \mathrm{~A}=3 \mathrm{~A} . \mathrm{A}=3 \mathrm{~A}^{2}=3 .(3 \mathrm{~A})=9 \mathrm{~A}$ and $|\mathrm{A}|=0$
$\therefore \quad \mathrm{A}^{-1}$ does not exist
16. (D)

Statement-1 is false
$\because A=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{n} \times \mathrm{n}}$ where $\mathrm{a}_{\mathrm{ij}}=0, \mathrm{i} \geq \mathrm{j}$
$\therefore|A|=0$ hence A is singular inverse of A is not defined Statement-2 $|\mathrm{A}|=0$
$\therefore \quad$ inverse of A is not defined.
17. $\operatorname{adj}(\operatorname{adj} \mathrm{A})=|\mathrm{A}|^{\mathrm{n}-2} \mathrm{~A}$

Here, $\quad \mathrm{n}=3$
$\therefore \quad(\operatorname{adj})(\operatorname{adj} \mathrm{A})=|\mathrm{A}| \mathrm{A}$

$$
\text { Now, } \begin{align*}
& |A|=\left|\begin{array}{lll}
3 & -3 & 4 \\
2 & -3 & 4 \\
0 & -1 & 1
\end{array}\right| \tag{i}\\
& =3(-3+4)+3(2)+4(-2)=1
\end{align*}
$$

Fromeq. (i),

$$
\operatorname{adj}(\operatorname{adj}) \mathrm{A}=\mathrm{A}
$$

18. (A)
$A(\alpha)=\left[\begin{array}{lll}f_{1}(\alpha) & f_{2}(\alpha) & f_{3}(\alpha) \\ f_{4}(\alpha) & f_{5}(\alpha) & f_{6}(\alpha) \\ f_{7}(\alpha) & f_{8}(\alpha) & f_{9}(\alpha)\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
$x-\alpha$ is a factor of $f_{1}(x), f_{2}(x)$ \qquad $f_{9}(x)$
$\mathrm{f}(\mathrm{x})=(\mathrm{x}-\alpha) \phi(\mathrm{x})$
$f(\alpha)=0 \Rightarrow x-\alpha$ is a factor of $f(x)$
19. In a unit matrix of order $\mathrm{n} \times \mathrm{n}$

Number of non-zero rows $=\mathrm{n}$
$\therefore \quad$ Rank is n. The rank of a non singular matrix of order $\mathrm{n} \times \mathrm{n}$ is n
\therefore For non singular $|\mathrm{A}| \neq 0$.
20. $A=\left(\begin{array}{ccc}0 & -c & b \\ c & 0 & a \\ -b & -a & 0\end{array}\right)$
$\because \quad \mathrm{A}=-\mathrm{A}^{\prime} \quad(\because \mathrm{A}$ is skew symmetric $)$
$\therefore \quad \operatorname{det}(\mathrm{A})=\operatorname{det}\left(-\mathrm{A}^{\prime}\right)$
$=-\operatorname{det}\left(\mathrm{A}^{\prime}\right)$
$=-\operatorname{det} \mathrm{A}$
$\therefore \quad \operatorname{det} \mathrm{A}=0$
$\because \quad \operatorname{det} \mathrm{A}^{\prime}=\operatorname{det}\left(-\mathrm{A}^{\prime}\right)$ is not true
$\therefore \quad \operatorname{det}\left(-\mathrm{A}^{\prime}\right)=(-1)^{3} \operatorname{det}\left(\mathrm{~A}^{\prime}\right)=-\operatorname{det} \mathrm{A}^{\prime}$
21. (A) $\rightarrow(\mathrm{q}),(\mathrm{B}) \rightarrow(\mathrm{s}, \mathrm{t}),(\mathrm{C}) \rightarrow(\mathrm{r}),(\mathrm{D}) \rightarrow(\mathrm{p})$
(A) $\mathrm{A}^{2}=-\mathrm{I} \quad \therefore \quad \mathrm{A}$ is of even order
(B) $(\mathrm{I}+\mathrm{A})^{\mathrm{n}}=\mathrm{C}_{0} \mathrm{I}^{\mathrm{n}}+\mathrm{C}_{1} \mathrm{IA}+\mathrm{C}_{2} \mathrm{IA}^{2}+\ldots \ldots \ldots+\mathrm{C}_{\mathrm{n}} \mathrm{IA}^{\mathrm{n}}$
$=\mathrm{C}_{\mathrm{o}} \mathrm{I}+\mathrm{C}_{1} \mathrm{~A}+\mathrm{C}_{2} \mathrm{~A}+\ldots \ldots \ldots+\mathrm{C}_{\mathrm{n}} \mathrm{A}$
$=\mathrm{I}+\left(2^{\mathrm{n}}-1\right) \mathrm{A}$
$\therefore \lambda=2^{n}-1$
(C) $\mathrm{A}^{2}=\mathrm{A}$ and $\mathrm{B}=\mathrm{I}-\mathrm{A}$
$\mathrm{AB}+\mathrm{BA}+\mathrm{I}-\left(\mathrm{I}+\mathrm{A}^{2}-2 \mathrm{~A}\right)$
$=\mathrm{AB}+\mathrm{BA}-\mathrm{A}+2 \mathrm{~A}=\mathrm{AB}+\mathrm{BA}+\mathrm{A}$
$=\mathrm{A}(\mathrm{I}-\mathrm{A})+(\mathrm{I}-\mathrm{A}) \mathrm{A}+\mathrm{A}$
$=\mathrm{A}-\mathrm{A}+\mathrm{A}-\mathrm{A}+\mathrm{A}=\mathrm{A}$
(D) $\mathrm{A}^{*}=\mathrm{A}, \mathrm{B}^{*}=\mathrm{B}$

$$
(\mathrm{AB}-\mathrm{BA})^{*}=\mathrm{B}^{*} \mathrm{~A}^{*}-\mathrm{A}^{*} \mathrm{~B}^{*}=\mathrm{BA}-\mathrm{AB}
$$

22. (A) $\mathrm{A} * \mathrm{~B}=\frac{1}{2}(\mathrm{AB}+\mathrm{BA})=\frac{1}{2}(\mathrm{BA}+\mathrm{AB})=\mathrm{B} * \mathrm{~A}$
$A * A=\frac{1}{2}(A \cdot A+A \cdot A)=A^{2}$
$\mathrm{A} * \mathrm{I}=\frac{1}{2}(\mathrm{AI}+\mathrm{IA})=\frac{1}{2}(\mathrm{~A}+\mathrm{A})=\mathrm{A}$
Now, $\quad A *(B+C)=\frac{1}{2}\{A(B+C)+(B+C) A\}$
(B) $\mathrm{A}^{*} \mathrm{~B}=\frac{1}{2}\left(\mathrm{AB}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}\right)=\frac{1}{2}\left(\mathrm{~A}^{\prime} \mathrm{B}+\mathrm{AB}^{\prime}\right)$

$$
=\frac{1}{2}\left(\mathrm{BA}^{\prime}+\mathrm{B}^{\prime} \mathrm{A}\right)=\mathrm{B} * \mathrm{~A}(\mathrm{P})
$$

$$
\begin{aligned}
& \mathrm{A} * \mathrm{~A}=\frac{1}{2}\left(\mathrm{AA}^{\prime}+\mathrm{A}^{\prime} \mathrm{A}\right) \neq \mathrm{A}^{2} \\
& \begin{aligned}
\mathrm{A} * & (\mathrm{~B}+\mathrm{C})=\frac{1}{2}\left(\mathrm{~A}(\mathrm{~B}+\mathrm{C})^{\prime}+\mathrm{A}^{\prime}(\mathrm{B}+\mathrm{C})\right) \\
& =\frac{1}{2}\left(\mathrm{~A}\left(\mathrm{~B}^{\prime}+\mathrm{C}^{\prime}\right)+\mathrm{A}^{\prime}(\mathrm{B}+\mathrm{C})\right) \\
& =\frac{1}{2}\left(\mathrm{AB}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}\right)+\frac{1}{2}\left(\mathrm{AC}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}\right) \\
& =\mathrm{A}^{*} \mathrm{~B}+\mathrm{A}^{*} \mathrm{C}(\mathrm{Q})
\end{aligned} \\
& \mathrm{A}^{*} \mathrm{I}
\end{aligned}=\frac{1}{2}\left(\mathrm{AI}^{\prime}+\mathrm{A}^{\prime} \mathrm{I}\right)=\frac{1}{2}\left(\mathrm{~A}+\mathrm{A}^{\prime}\right) \neq \mathrm{A} \text { or } \mathrm{O} \text {. }
$$

(C) $\mathrm{A} * \mathrm{~B}=\frac{1}{2}(\mathrm{AB}-\mathrm{BA})-\frac{1}{2}(\mathrm{BA}-\mathrm{AB})=-(\mathrm{B} * \mathrm{~A})$

$$
\begin{aligned}
& \begin{aligned}
\mathrm{A} *(\mathrm{~B}+\mathrm{C}) & =\frac{1}{2}\{\mathrm{~A}(\mathrm{~B}+\mathrm{C})-(\mathrm{B}+\mathrm{C}) \mathrm{A}\} \\
& =\frac{1}{2}(\mathrm{AB}-\mathrm{BA})+\frac{1}{2}(\mathrm{AC}-\mathrm{CA}) \\
& =\mathrm{A} * \mathrm{~B}+\mathrm{A} * \mathrm{C}(\mathrm{Q})
\end{aligned} \\
& \begin{aligned}
\mathrm{A} * \mathrm{~A}=\frac{1}{2}\left(\mathrm{~A}^{2}-\mathrm{A}^{2}\right)=\mathrm{O} \neq \mathrm{A}^{2}
\end{aligned} \\
& \mathrm{~A} * \mathrm{I}
\end{aligned} \mathrm{=}=\frac{1}{2}(\mathrm{AI}-\mathrm{IA})=\frac{1}{2}(\mathrm{~A}-\mathrm{A})=\mathrm{O}(\mathrm{~T}) \mathrm{C}
$$

23.
24. A is singular

$$
\begin{aligned}
& \therefore|\mathrm{A}|=0 \Rightarrow\left|\begin{array}{ccc}
1 & 3 & \lambda+2 \\
2 & 4 & 8 \\
3 & 5 & 10
\end{array}\right|=0 \\
& \Rightarrow \quad 1(40-40)-3(20-24)+(\lambda+2)(10-12)=0 \\
& \Rightarrow \quad 12-2 \lambda-4=0 \\
& \Rightarrow \quad \lambda=4
\end{aligned}
$$

$$
\therefore \quad A+B=\left(\begin{array}{lll}
4 & 5 & 10 \\
5 & 6 & 13 \\
5 & 6 & 14
\end{array}\right)
$$

$$
\Rightarrow \operatorname{tr}(\mathrm{A}+\mathrm{B})=4+6+14=24
$$

2. $2 \mathrm{~A}+3 \mathrm{~B}=\left(\begin{array}{ccc}11 & 12 & 2 \lambda+16 \\ 13 & 14 & 31 \\ 12 & 13 & 32\end{array}\right)$

$$
|2 \mathrm{~A}+3 \mathrm{~B}|=0
$$

$$
\text { we get } \lambda=\frac{17}{2}
$$

$$
\Rightarrow \quad 2 \lambda=17
$$

3. For $\lambda=3$

$$
\mathrm{A}=\left(\begin{array}{ccc}
1 & 3 & 5 \\
2 & 4 & 8 \\
3 & 5 & 10
\end{array}\right) \text { and } \mathrm{B}=\left(\begin{array}{lll}
3 & 2 & 4 \\
3 & 2 & 5 \\
2 & 1 & 4
\end{array}\right)
$$

$$
\begin{aligned}
& \because \quad \operatorname{tr}(\mathrm{AB})+\operatorname{tr}(\mathrm{BA})=2 \operatorname{tr}(\mathrm{AB}) \\
& \because \quad \operatorname{tr}(\mathrm{AB})=\mathrm{C}_{11}+\mathrm{C}_{22}+\mathrm{C}_{33}=119 \\
& \therefore \quad \frac{1}{7}(\operatorname{tr}(\mathrm{AB})+\operatorname{tr}(\mathrm{BA}))=\frac{1}{7}(238)=34
\end{aligned}
$$

24.
25. $\operatorname{adj}(\operatorname{adj} \mathrm{A})=|\mathrm{A}|^{\mathrm{n}-2} \mathrm{~A}=|\mathrm{A}| \mathrm{A}=2 \mathrm{~A}$
26. $|\operatorname{adj}(\operatorname{adj}) \mathrm{A}|=|\mathrm{A}|^{(\mathrm{n}-1)^{2}}=|\mathrm{A}|^{4}=2^{4}=16$
27. $|\operatorname{adj} \mathrm{B}|=|\mathrm{B}|^{\mathrm{n}-1}=|\mathrm{B}|^{2}=24^{2}=576$
28.
29. (A)

Possible combinations are $(1,2,6),(1,3,5),(1,8,9)$,
$(2,3,4),(2,7,9),(3,6,9),(3,7,8),(4,5,9),(4,6,8)$, $(5,6,7)$
Hence total 10 combinations are possible.
2. (B)

In a matrix $\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right] a_{22}$ must be a multiple of 3
(3, 6 or 9) because from the above possible combinations only $3,6 \& 9$ are repeated four times in arow or column or diagonal.
3. (A)

Clearly maximum value of sum of the diagonal elements is 18 which is called the trace or the matrix A .
26. (4)

$$
\begin{aligned}
& \mathrm{A}^{\prime} \mathrm{A}=\mathrm{I} \\
& \therefore \quad\left|\mathrm{~A}^{\prime} \mathrm{A}\right|=|\mathrm{I}| \Rightarrow|\mathrm{A}|= \pm 1
\end{aligned}
$$

$\left|\begin{array}{lll}\mathrm{a} & \mathrm{b} & \mathrm{c} \\ \mathrm{b} & \mathrm{c} & \mathrm{a} \\ \mathrm{c} & \mathrm{a} & \mathrm{b}\end{array}\right|= \pm 1$
$\Rightarrow \quad 3 a b c-a^{3}-b^{3}-c^{3}= \pm 1$
$\Rightarrow \mathrm{a}^{3}+\mathrm{b}^{3}+\mathrm{c}^{3}=2$ or 4
27. (1)
$\mathrm{I}+\mathrm{A}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)+\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right)=\left(\begin{array}{ll}2 & 2 \\ 1 & 2\end{array}\right)$
and $\quad \mathrm{I}-\mathrm{A}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)-\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right)=\left(\begin{array}{cc}0 & -2 \\ -1 & 0\end{array}\right)$
Now, $\quad|\mathrm{I}-\mathrm{A}|=\left|\begin{array}{cc}0 & -2 \\ -1 & 0\end{array}\right|=0-2=-2$
$\operatorname{adj}(\mathrm{I}-\mathrm{A})=\left(\begin{array}{ll}0 & 2 \\ 1 & 0\end{array}\right)$
$(\mathrm{I}-\mathrm{A})^{-1}=\left(\begin{array}{cc}0 & -1 \\ -\frac{1}{2} & 0\end{array}\right)$
$\therefore \quad \phi(\mathrm{A})=(\mathrm{I}+\mathrm{A})(\mathrm{I}-\mathrm{A})^{-1}=\left(\begin{array}{ll}2 & 2 \\ 1 & 2\end{array}\right)\left(\begin{array}{cc}0 & -1 \\ -\frac{1}{2} & 0\end{array}\right)$
$=\left(\begin{array}{ll}-1 & -2 \\ -1 & -1\end{array}\right)=-\mathrm{A}$
28. (1)
$\frac{|\operatorname{adj} \mathrm{B}|}{|\mathrm{C}|}=\frac{|\operatorname{adj}(\operatorname{adj} \mathrm{A})|}{|5 \mathrm{~A}|}=\frac{|\mathrm{A}|^{(3-1)^{2}}}{5^{3}|\mathrm{~A}|}=\frac{|\mathrm{A}|^{3}}{125}$
Now $\quad|\mathrm{A}|=5$
$\therefore \quad \frac{|\operatorname{adjB}|}{|\mathrm{C}|}=1$
29. $\mathrm{P}^{2}=\left[\begin{array}{cc}\cos \frac{\pi}{9} & \sin \frac{\pi}{9} \\ -\sin \frac{\pi}{9} & \cos \frac{\pi}{9}\end{array}\right]=\left[\begin{array}{cc}\cos \frac{\pi}{9} & \sin \frac{\pi}{9} \\ -\sin \frac{\pi}{9} & \cos \frac{\pi}{9}\end{array}\right]$
$=\left[\begin{array}{cc}\cos ^{2} \frac{\pi}{9}-\sin ^{2} \frac{\pi}{9} & \cos \frac{\pi}{9} \sin \frac{\pi}{9}+\sin \frac{\pi}{9} \cos \frac{\pi}{9} \\ -\sin \frac{\pi}{9} \cos \frac{\pi}{9}-\cos \frac{\pi}{9} \sin \frac{\pi}{9} & -\sin ^{2} \frac{\pi}{9}+\cos ^{2} \frac{\pi}{9}\end{array}\right]$
$=\left[\begin{array}{cc}\cos \frac{2 \pi}{9} & \sin \frac{2 \pi}{9} \\ -\sin \frac{2 \pi}{9} & \cos \frac{2 \pi}{9}\end{array}\right]$
$\mathrm{P}^{3}=\left[\begin{array}{cc}\cos \frac{2 \pi}{9} & \sin \frac{2 \pi}{9} \\ -\sin \frac{2 \pi}{9} & \cos \frac{2 \pi}{9}\end{array}\right]\left[\begin{array}{cc}\cos \frac{\pi}{9} & \sin \frac{\pi}{9} \\ -\sin \frac{\pi}{9} & \cos \frac{\pi}{9}\end{array}\right]$
$\mathrm{P}^{3}=\left[\begin{array}{cc}\cos \frac{3 \pi}{9} & \sin \frac{3 \pi}{9} \\ -\sin \frac{3 \pi}{9} & \cos \frac{3 \pi}{9}\end{array}\right]=\left[\begin{array}{cc}\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right]$
$\mathrm{P}^{6}=\mathrm{P}^{3} \cdot \mathrm{P}^{3}=\left[\begin{array}{cc}\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right]\left[\begin{array}{cc}\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right]=\left[\begin{array}{cc}-\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right]$
$\alpha \mathrm{P}^{6}+\beta \mathrm{P}^{3}+\alpha \mathrm{I}=0$
i.e. $\left[\begin{array}{cc}-\frac{\alpha}{2}+\frac{\beta}{2}+\gamma & \frac{\sqrt{3}}{2} \alpha+\frac{\sqrt{3}}{2} \beta \\ -\frac{\sqrt{3}}{2} \alpha-\frac{\sqrt{3}}{2} \beta & -\frac{\alpha}{2}+\frac{\beta}{2}+\gamma\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
$\alpha=-\beta \beta=-\gamma \quad \Rightarrow \quad \alpha=\gamma$
$\Rightarrow \alpha+\beta=0 ; \beta+\gamma=0 ; \alpha-\gamma=0$
$\Rightarrow\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)^{\mathrm{o}}=1$
30. Given $\sum_{\mathrm{k}=1}^{4} \mathrm{a}_{\mathrm{ik}}=1 \quad \forall \mathrm{i} \in\{1,2,3,4\}$

Let's consider $\quad B=A^{2} \quad B=[b i j]_{4 \times 4}$

$$
\mathrm{bij}=\sum_{\mathrm{k}=1}^{4} \mathrm{a}_{\mathrm{ik}} \cdot \mathrm{a}_{\mathrm{kj}}
$$

Sum of elements of $\mathrm{i}^{\text {th }}$ row in A^{2} is

$$
\begin{aligned}
& \sum_{\mathrm{J}=1}^{4} \mathrm{~b}_{\mathrm{ij}}=\sum_{\mathrm{j}=1}^{4} \sum_{\mathrm{k}=1}^{4} \mathrm{a}_{\mathrm{ik}} \cdot \mathrm{a}_{\mathrm{kj}}=\sum_{\mathrm{K}=1}^{4} \sum_{\mathrm{J}=1}^{4} \mathrm{a}_{\mathrm{ik}} \cdot \mathrm{a}_{\mathrm{kj}}=\sum_{\mathrm{K}=1}^{4} \mathrm{a}_{\mathrm{ik}} \sum_{\mathrm{j}=1}^{4} \mathrm{a}_{\mathrm{kj}} \\
& \because \quad \sum_{\mathrm{j}=1}^{4} \mathrm{a}_{\mathrm{kj}}=1=\sum_{\mathrm{K}=1}^{4} \mathrm{a}_{\mathrm{ik}}=1
\end{aligned}
$$

\Rightarrow Sum of elements in a row of A^{2} is 1.
\Rightarrow Similarly sum of elements in a row of A^{10} is 1
\Rightarrow Sum of all elements $=4$

