HINTS \& SOLUTIONS

EXERCISE - 1

Single Choice

6. $\overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}$
$=2 \hat{i}-2 \hat{j}+4 \hat{k}$
$\overrightarrow{\mathrm{BD}}=-\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}$

$$
=-4 \hat{i}+2 \hat{j}
$$

Let Angle between $\overrightarrow{\mathrm{AC}} \& \overrightarrow{\mathrm{BD}}$ is θ
$\therefore \frac{\overrightarrow{\mathrm{AC}} \cdot \overrightarrow{\mathrm{BD}}}{|\overrightarrow{\mathrm{AC}}||\overrightarrow{\mathrm{BD}}|}=\cos \theta$
$\Rightarrow \cos \theta=\frac{-12}{4 \sqrt{6} \sqrt{5}}=-\sqrt{\frac{3}{10}}$.
\Rightarrow Acute angle between diagonals $=\cos ^{-1} \sqrt{\frac{3}{10}}$
13.

$G \equiv(\hat{i}+\sqrt{3} \hat{j})$
Let Position vector of P is \vec{p}
$\because \quad \overrightarrow{\mathrm{GP}}|\mid \hat{k}$
then $\quad \overrightarrow{\mathrm{p}}-(\hat{\mathrm{i}}+\sqrt{3} \hat{\mathrm{j}})=\lambda \hat{\mathrm{k}}$
$\Rightarrow \vec{p}=\hat{i}+\sqrt{3} \hat{j}+\lambda \hat{k}$
also $|\overrightarrow{\mathrm{OP}}|=3$
$\Rightarrow \sqrt{1+3+\lambda^{2}}=3$
$\Rightarrow \lambda^{2}=5$
$\Rightarrow \lambda= \pm \sqrt{5} \quad \Rightarrow \quad \overrightarrow{\mathrm{p}}=\hat{\mathrm{i}}+\sqrt{3} \hat{\mathrm{j}} \pm \sqrt{5} \hat{\mathrm{k}}$
For positive Z -axis $\overrightarrow{\mathrm{p}}=\hat{\mathrm{i}}+\sqrt{3} \hat{\mathrm{j}}+\sqrt{5} \hat{\mathrm{k}}$
So $\overrightarrow{\mathrm{AP}}=\overrightarrow{\mathrm{p}}-2 \hat{\mathrm{i}}=-\hat{\mathrm{i}}+\sqrt{3} \hat{\mathrm{j}}+\sqrt{5} \hat{\mathrm{k}}$
17. Position vector of $\mathrm{M} \equiv \frac{\overrightarrow{\mathrm{c}}}{3}$

Position vector of $N \equiv(-\vec{c}+2 \vec{b})$
$\therefore \quad$ equation of line BC is $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{b}}+\lambda(\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{c}})$
$\therefore \quad$ equation of line AB is is $\overrightarrow{\mathrm{r}}=\overrightarrow{0}+\mu \overrightarrow{\mathrm{b}}$

$\therefore \quad$ equation of line MN is $\overrightarrow{\mathrm{r}}=\frac{\overrightarrow{\mathrm{c}}}{3}+\mathrm{t}\left(\frac{4 \overrightarrow{\mathrm{c}}}{3}-2\right)$
$\Rightarrow \mu=-2 \mathrm{t}, \quad 0=\frac{1}{3}+\frac{4}{3} \mathrm{t}$
which gives $\mu=\frac{1}{2} \Rightarrow$ Position vector of X is $\frac{\overrightarrow{\mathrm{b}}}{2}$.
18. $\vec{a}=\hat{i}+\hat{j} \& \vec{b}=2 \hat{i}-\hat{k}$
$\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{a}} \Rightarrow(\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{b}}) \times \overrightarrow{\mathrm{a}}=0$
$\Rightarrow \overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{b}}+\lambda \overrightarrow{\mathrm{a}}$
similarly $\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}$
$\Rightarrow \overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\mu \overrightarrow{\mathrm{b}}$
Putting the vector $\vec{a} \& \vec{b}$ in (i) \& (ii) and equating
we get $2 \hat{i}-\hat{\mathrm{k}}+\lambda(\hat{i}+\hat{\mathrm{j}})=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\mu(2 \hat{\mathrm{i}}-\hat{\mathrm{k}})$
$\Rightarrow 2+\lambda=1+2 \mu, \lambda=1, \mu=1$
$\therefore \quad$ Point of intersection is $3 \hat{i}+\hat{j}-\hat{k}$.
20. Equation of plane containing L_{1} and parallel to
L_{2} is $\left|\begin{array}{ccc}\mathrm{x}-2 & \mathrm{y}-1 & \mathrm{z}+1 \\ 1 & 0 & 2 \\ 1 & 1 & -1\end{array}\right|=0$
$\Rightarrow 2 \mathrm{x}-3 \mathrm{y}-\mathrm{z}=2$
distance from origin $=\frac{2}{\sqrt{14}}=\sqrt{\frac{2}{7}}$
21. Let the equation of plane be
$\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
as (α, β, γ) is centroid

22. L.H. $S=\left(\lambda(\vec{a}+\vec{b}) \times \lambda^{2} \vec{b}\right) \cdot \lambda \vec{c}$

$$
=\lambda^{4}((\vec{a}+\vec{b}) \times \vec{b}) \cdot \vec{c}=\lambda^{4}[a b c]
$$

R.H.S. $=(\vec{a} \times(\vec{b}+\vec{c})) \cdot \vec{b}=[\vec{a} \vec{c} \vec{b}]$
$\Rightarrow \lambda^{4}[a b c]=-[a b c]$
$\Rightarrow \lambda^{4}=-1$ which is not possible.
23. These forces can be written in terms of vector as

$$
k \hat{i}, \frac{k}{\sqrt{2}} \hat{\mathrm{i}}+\frac{\mathrm{k}}{\sqrt{2}} \hat{\mathrm{j}}, \mathrm{k} \hat{\mathrm{j}} \quad \text { and }-\frac{\mathrm{k}}{\sqrt{2}} \hat{\mathrm{i}}+\frac{\mathrm{k}}{\sqrt{2}} \hat{\mathrm{j}}
$$

Resultant $=k \hat{i}+(k+\sqrt{2} k) \hat{j}$
magnitude $=\sqrt{\mathrm{k}^{2}+(\mathrm{k}+\sqrt{2} \mathrm{k})^{2}}=\mathrm{k} \sqrt{4+2 \sqrt{2}}$
24. Equation of plane is $\overrightarrow{\mathrm{r}} \cdot \hat{\mathrm{n}}=\frac{\mathrm{q}}{|\overrightarrow{\mathrm{n}}|}$ for intercept on x -axis take dot product with $\hat{\mathrm{i}}$
\Rightarrow intercept on x -axis $=\frac{\mathrm{q}}{\hat{\mathrm{i} . \overrightarrow{\mathrm{n}}}}$
25. $\vec{c} \cdot \vec{a}=\vec{a} \cdot(\vec{a} \times \vec{b}) \quad \Rightarrow \quad \vec{c} \cdot \vec{a}=0=\vec{c} \cdot \vec{b} \quad=\vec{a} \cdot \vec{b}$

Also $\quad|\vec{a} \times \vec{b}|=|\vec{c}|$
$|\vec{a}||\vec{b}| \sin 90^{\circ}=|\vec{c}|$

$$
|\vec{a}|^{2}=|\vec{a}| \Rightarrow|\vec{a}|=|\vec{b}|=|\vec{c}|=1
$$

$|3 \vec{a}+4 \vec{b}+12 \vec{c}|=\sqrt{9 a^{2}+16 b^{2}+144 c^{2}}=13$
$\{\because|\overrightarrow{\mathrm{a}}|=|\overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathrm{c}}|=1\}$
28. From $\mathrm{P}(\mathrm{f}, \mathrm{g}, \mathrm{h})$ the foot of perpendicular on plane $y z=(0, g, h)$,
similarly from $\mathrm{P}(\mathrm{f}, \mathrm{g}, \mathrm{h})$ perpendicular to $\mathrm{zx}=(\mathrm{f}, 0, \mathrm{~h})$
Equation of plane is
$\left|\begin{array}{lll}x & y & z \\ f & 0 & h \\ 0 & g & h\end{array}\right|=0 \quad \Rightarrow \frac{x}{f}+\frac{y}{g}-\frac{z}{h}=0$
30. $\overrightarrow{\mathrm{AD}}=-2 \hat{i}+2 \hat{j}-\hat{k}$
$\overrightarrow{A C}=\hat{i}+2 \hat{j}+2 \hat{k}$
$\overrightarrow{\mathrm{AB}}=3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$

$\overrightarrow{\mathrm{n}}_{1}=\overrightarrow{\mathrm{AD}} \times \overrightarrow{\mathrm{AC}}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ -2 & 2 & -1 \\ 1 & 2 & 2\end{array}\right|=6 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-6 \hat{\mathrm{k}}$

$$
=3(2 \hat{i}+\hat{j}-2 \hat{k})
$$

$\overrightarrow{\mathrm{n}}_{2}=\overrightarrow{\mathrm{AC}} \times \overrightarrow{\mathrm{AB}}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 1 & 2 & 2 \\ 0 & 3 & 4\end{array}\right|=2 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$
$\left|\overrightarrow{\mathrm{n}}_{1} \times \overrightarrow{\mathrm{n}}_{2}\right|=3\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 2 & 1 & -2 \\ 2 & -4 & 3\end{array}\right|=3(-5 \hat{\mathrm{i}}-10 \hat{\mathrm{j}}-10 \hat{\mathrm{k}})$
$\sin \theta=\frac{5}{\sqrt{29}} \quad\left(\sin \theta=\frac{\left|\overrightarrow{\mathrm{n}}_{1} \times \overrightarrow{\mathrm{n}}_{2}\right|}{\left|\overrightarrow{\mathrm{n}}_{1}\right|\left|\overrightarrow{\mathrm{n}}_{2}\right|}\right)$
33. Dr's of bisector
$\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}+\frac{\hat{i}+\hat{j}-\hat{k}}{\sqrt{3}}=\lambda(\hat{i}+\hat{j})$
Hence Dr's are $\lambda, \lambda, 0(\lambda \in R)$
Equation of bisector

$\frac{x-1}{\lambda}=\frac{y-2}{\lambda}=\frac{z-3}{0}$
$\frac{\mathrm{x}-1}{2}=\frac{\mathrm{y}-2}{2} ; \mathrm{z}-3=0$
34. $\alpha-1=2 \lambda \quad \Rightarrow \quad \alpha=2 \lambda+1$
$\beta+2=3 \lambda \quad \Rightarrow \quad \beta=3 \lambda-2$

$\gamma-3=-6 \lambda \quad \Rightarrow \quad \gamma=-6 \lambda+3$
$2 \lambda+1-3 \lambda+2-6 \lambda+3=5$
$7 \lambda=1 \quad \Rightarrow \lambda=1 / 7$
$\therefore \quad$ Point on the plane is $\left(\frac{9}{7},-\frac{11}{7}, \frac{15}{7}\right)$

Distance $=\sqrt{(\alpha-1)^{2}+(\beta+2)^{2}+(\gamma-3)^{2}}$
$=\lambda \sqrt{4+9+36}=\frac{1}{7} \cdot 7=1$
36. $\mathrm{OP} \perp \mathrm{AP}$

$\alpha(\alpha-1)+\beta(\beta-2)+\gamma(\gamma-3)=0$
\therefore Locus of $\mathrm{P}(\alpha, \beta, \gamma)$ is
$x^{2}+y^{2}+z^{2}-x-2 y-3 z=0$
51. $\mathrm{a}(\mathrm{x}-2)+\mathrm{b}(\mathrm{y}-3)+6(\mathrm{z}-1)=0$
$2 \mathrm{a}-2 \mathrm{~b}-3 \mathrm{c}=0$
$4 a+0 . b+6 c=0$
$\frac{a}{-12-0}=\frac{b}{-12-12}=\frac{c}{0+8}$
$\frac{\mathrm{a}}{3}=\frac{\mathrm{b}}{6}=\frac{\mathrm{c}}{-2}=\lambda($ let $)$
Put these values of a, b, c in (i)
$3(x-2)+6(y-3)-2(z-1)=0$
$3 x+6 y-2 z-22=0$
$d=\left|\frac{-15-24-16-22}{\sqrt{9+36+4}}\right|=\left|\frac{77}{7}\right|=11$
54. Let the tetrahedron cut x-axis, y-axis and z-axis at $\mathrm{a}, \mathrm{b} \& \mathrm{c}$ respectively.
volume $=\frac{1}{6}[a \hat{i} b \hat{j} c \hat{k}] \quad($ Given $)$

Then $\frac{1}{6}(\mathrm{abc})=64 \mathrm{~K}^{3}$
Let centroid be $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$
$\therefore \mathrm{x}_{1}=\frac{\mathrm{a}}{4}, \mathrm{y}_{1}=\frac{\mathrm{b}}{4}, \mathrm{z}_{1}=\frac{\mathrm{c}}{4}$
put in (i) wet get
$x_{1} y_{1} z_{1}=6 K^{3}$
\therefore Locus is $\mathrm{xyz}=6 \mathrm{~K}^{3}$
The required locus is $x y z=6 \mathrm{~K}^{3}$
58. $\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{n}}=\mathrm{d}$
$\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{r}}_{0}+\mathrm{t} \overrightarrow{\mathrm{n}}$
from (i) and (ii)
$\left(\mathrm{r}_{0}+\mathrm{t} \overrightarrow{\mathrm{n}}\right) \cdot \overrightarrow{\mathrm{n}}=\mathrm{d} \Rightarrow \mathrm{t}=\frac{\mathrm{d}-\overrightarrow{\mathrm{r}}_{0} \cdot \overrightarrow{\mathrm{n}}}{\overrightarrow{\mathrm{n}}^{2}}$
substitute the value of ' t ' in (iii)
$\mathrm{r}=\overrightarrow{\mathrm{r}}_{0}+\left(\frac{\mathrm{d}-\overrightarrow{\mathrm{r}}_{0} \cdot \overrightarrow{\mathrm{n}}}{\overrightarrow{\mathrm{n}}^{2}}\right) \overrightarrow{\mathrm{n}}$
59. $\vec{a} \times \vec{b}=2(\vec{a} \times \vec{b})$
$\vec{a} \times(\vec{b}-2 \vec{c})=0 \quad \Rightarrow \quad \vec{b}-2 \vec{c}=\alpha \vec{a}$
squaring $\mathrm{b}^{2}+4 \mathrm{c}^{2}-4 \overrightarrow{\mathrm{~b}} \cdot \overrightarrow{\mathrm{c}}=\alpha^{2} \mathrm{a}^{2}$
$16+4-4.4 .1 \cdot \frac{1}{4}=\alpha^{2} \Rightarrow \alpha= \pm 4$
$\vec{b}=2 \overrightarrow{\mathrm{c}} \pm 4 \overrightarrow{\mathrm{a}}$
$|\ell|+|\mu|=6$
60. $(\mathrm{a}-\mathrm{b}) \overrightarrow{\mathrm{x}}+(\mathrm{b}-\mathrm{c}) \overrightarrow{\mathrm{y}}+(\mathrm{c}-\mathrm{a})(\overrightarrow{\mathrm{x}} \times \overrightarrow{\mathrm{y}})=0$

As $\overrightarrow{\mathrm{x}}, \overrightarrow{\mathrm{y}} \&(\overrightarrow{\mathrm{x}} \times \overrightarrow{\mathrm{y}})$ are non zero, non coplanar vectors, then
$\mathrm{a}-\mathrm{b}=\mathrm{b}-\mathrm{c}=\mathrm{c}-\mathrm{a}=0$
$\Rightarrow \mathrm{a}=\mathrm{b}=\mathrm{c}$
Hence $\triangle \mathrm{ABC}$ is an equilateral triangle.
Hence, acute angled triangle.
63. \vec{c} is along the vector $\vec{a} \times(\vec{a} \times \vec{b})$

$$
\begin{aligned}
&=(\vec{a} \cdot \vec{b}) \vec{a}-(\vec{a} \cdot \vec{a}) \vec{b} \\
&=(-1)(i+j-k)-3(i-j+k)=-4 i+2 j-2 k \\
& \vec{c}=\frac{-2 i+j-k}{\sqrt{6}} \\
& \vec{d}=\frac{(\vec{a} \times \overrightarrow{\mathrm{c}})}{|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{c}}|} \\
& \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{c}}=\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
1 & 1 & -1 \\
-2 & 1 & -1
\end{array}\right|=-j(-3)+\mathrm{k} \cdot 3=3(\mathrm{j}+\mathrm{k}) \\
& \overrightarrow{\mathrm{d}}=\frac{\mathrm{j}+\mathrm{k}}{\sqrt{2}}
\end{aligned}
$$

65. Equation of plane containing
$\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$ and point $(0,7,-7)$ is
$\left|\begin{array}{ccc}x+1 & y-3 & z+2 \\ -3 & 2 & 1 \\ -1 & -4 & 5\end{array}\right|=0$

By solving we get
$x+y+z=0$
68. $\frac{x}{2}=\frac{y}{3}=\frac{z}{5}$
$\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$
$\hat{\mathrm{a}}+\hat{\mathrm{b}}=\frac{2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}}{\sqrt{38}}+\frac{\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}}{\sqrt{14}}$

$\Rightarrow \quad(\mathrm{A})$ and (B) will be incorrect
Let the dr's of line \perp to (1) and (2) be $\mathrm{a}, \mathrm{b}, \mathrm{c}$
$\Rightarrow 2 a+3 b+5 c=0$
and $a+2 b+3 c=0$
$\therefore \quad \frac{a}{9-10}=\frac{b}{5-6}=\frac{c}{4-3}$
$\Rightarrow \frac{\mathrm{a}}{-1}=\frac{\mathrm{b}}{-1}=\frac{\mathrm{c}}{1} \quad \Rightarrow \frac{\mathrm{a}}{1}=\frac{\mathrm{b}}{1}=\frac{\mathrm{c}}{-1}$
$\therefore \quad$ equation of line passing through $(0,0,0)$ and is $\perp \mathrm{r}$ to the lines (i) and (ii) is

$$
\frac{\mathrm{x}}{1}=\frac{\mathrm{y}}{1}=\frac{\mathrm{z}}{-1}
$$

70. $[\vec{a} \vec{b} \vec{c}]^{2}=\left|\begin{array}{lll}\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c}\end{array}\right|$

$$
=\left|\begin{array}{ccc}
1 & \cos \theta & \cos \theta \\
\cos \theta & 1 & \cos \theta \\
\cos \theta & \cos \theta & 1
\end{array}\right|
$$

EXERCISE - 2

Part \# I : Multiple Choice

5. $\vec{a}, \vec{b}, \vec{c}$ are unit vector mutually perpendicular to each other then angle between $\vec{a}+\vec{b}+\vec{c} \& \vec{a}$ is given by
$\cos \theta=\frac{(\vec{a}+\vec{b}+\vec{c}) \cdot \vec{a}}{|\vec{a}+\vec{b}+\vec{c}||\vec{a}|}=\frac{(\vec{a}+\vec{b}+\vec{c}) \cdot \vec{a}}{\sqrt{\vec{a}^{2}+\vec{b}^{2}+\vec{c}^{2}}|\vec{a}|}$

$$
=\frac{|\overrightarrow{\mathrm{a}}|}{\sqrt{\overrightarrow{\mathrm{a}}^{2}+\overrightarrow{\mathrm{b}}^{2}+\overrightarrow{\mathrm{c}}^{2}}}
$$

$\Rightarrow \cos \theta=\frac{1}{\sqrt{3}} \quad$ or $\quad \theta=\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)=\tan ^{-1} \sqrt{2}$
7. $\overrightarrow{\mathrm{r}}=2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+3 \hat{\mathrm{k}}+\lambda(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\sqrt{2} \hat{\mathrm{k}})$
$\cos \alpha=\frac{\sqrt{3}}{2} \Rightarrow \alpha=30^{\circ}, \quad \cos \beta=\frac{\sqrt{3}}{2} \Rightarrow \beta=30^{\circ}$,
$\cos \gamma=\frac{\sqrt{2}}{2} \Rightarrow \gamma=45^{\circ}$
By putting the values check options
8. $\overrightarrow{\mathrm{r}}_{1}=\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}$
$\overrightarrow{\mathrm{r}}_{2}=\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{a}}$
$\overrightarrow{\mathrm{r}}_{3}=\overrightarrow{\mathrm{c}}+\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}$
$\overrightarrow{\mathrm{r}}=2 \overrightarrow{\mathrm{a}}-3 \overrightarrow{\mathrm{~b}}+4 \overrightarrow{\mathrm{c}}$
If $\overrightarrow{\mathrm{r}}=\lambda_{1} \overrightarrow{\mathrm{r}}_{1}+\lambda_{2} \overrightarrow{\mathrm{r}}_{2}+\lambda_{3} \overrightarrow{\mathrm{r}}_{3}$
then $2 \vec{a}-3 \vec{b}+4 \vec{c}$

$$
\begin{array}{ll}
& =\left(\lambda_{1}-\lambda_{2}+\lambda_{3}\right) \overrightarrow{\mathrm{a}}+\left(\lambda_{2}-\lambda_{1}+\lambda_{3}\right) \overrightarrow{\mathrm{b}}+\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) \overrightarrow{\mathrm{c}} \\
\Rightarrow & \lambda_{1}+\lambda_{3}-\lambda_{2}=2 \\
\lambda_{2}+\lambda_{3}-\lambda_{1}=-3 & \ldots . .(\mathrm{iv}) \\
\lambda_{1}+\lambda_{2}+\lambda_{3}=4 & \ldots .(\mathrm{v}) \tag{vi}\\
\ldots . .(\mathrm{vi})
\end{array}
$$

Solving (iv) (v) \& (vi) we get
$\lambda_{2}=1 ; \lambda_{1}=7 / 2 ; \quad \lambda_{3}=-1 / 2$
Now check options
9. $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ \& $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$
$\Rightarrow \vec{a} \times \vec{b}-\vec{a} \times \vec{c}=\vec{c} \times \vec{d}-\vec{b} \times \vec{d}$
$\Rightarrow \quad \vec{a} \times(\vec{b}-\vec{c})=(\vec{c}-\vec{b}) \times \vec{d}$
$\Rightarrow \quad(\vec{a}-\vec{d}) \times(\vec{b}-\vec{c})=0$
11. $(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})$
$(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{b} \cdot \vec{c}) \vec{a}=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$
But $\vec{b} \cdot \vec{c} \neq 0, ~ \vec{a} \cdot \vec{b} \neq 0$
$\Rightarrow \vec{a} \& \vec{c}$ must be parallel.
14. Vectors $\overrightarrow{\mathrm{AR}}, \overrightarrow{\mathrm{AB}} \& \overrightarrow{\mathrm{C}}$ are coplanar Equation of the required plane

$$
\left|\begin{array}{ccc}
\mathrm{x}-\mathrm{x}_{1} & \mathrm{y}-\mathrm{y}_{1} & \mathrm{z}-\mathrm{z}_{1} \\
\mathrm{x}_{2}-\mathrm{x}_{1} & \mathrm{y}_{2}-\mathrm{y}_{1} & \mathrm{z}_{2}-\mathrm{z}_{1} \\
\mathrm{~d}_{1} & \mathrm{~d}_{2} & \mathrm{~d}_{3}
\end{array}\right|=0
$$

$$
\text { or }\left|\begin{array}{ccc}
x-x_{2} & y-y_{2} & z-z_{2} \\
x_{1}-x_{2} & y_{1}-y_{2} & z_{1}-z_{2} \\
d_{1} & d_{2} & d_{3}
\end{array}\right|=0
$$

16. Let vector is $\vec{v}=\lambda_{1} \hat{a}+\lambda_{2} \hat{b}+\lambda_{3}(\hat{a} \times \hat{b})$ also

$$
\begin{aligned}
& \cos \theta=\frac{\vec{v} \cdot \hat{a}}{|\vec{v}||\hat{a}|}=\frac{\vec{v} \cdot \hat{b}}{|\vec{v}||\hat{b}|}=\frac{\vec{v}(\hat{a} \times \hat{b})}{|\vec{v}||\hat{a} \times \hat{b}|} \\
& \Rightarrow \quad \vec{v} \cdot \hat{a}=\vec{v} \cdot \hat{b}=\vec{v} \cdot(\hat{a} \times \hat{b}) \\
& \Rightarrow \quad\left[|\hat{a} \times \hat{b}|=|\hat{a}||\hat{b}| \sin 90^{\circ}=1\right] \\
& \Rightarrow \quad \lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda(l e t) \\
& \therefore \quad \vec{v}=\lambda(\hat{a}+\hat{b}+\hat{a} \times \hat{b})
\end{aligned}
$$

$$
\begin{aligned}
7|\vec{v}| & =\left|\lambda \sqrt{\hat{a}^{2}+\hat{b}^{2}+(\hat{a} \times \hat{b})^{2}+2 \hat{a} \cdot \hat{b}+2 \hat{b} \cdot(\hat{a} \times \hat{b})+2(\hat{a} \times \hat{b}) \cdot \hat{a}}\right|=1 \\
& \Rightarrow|\lambda \sqrt{1+1+1}|=1 \quad \Rightarrow \lambda= \pm \frac{1}{\sqrt{3}} \\
& \therefore \quad \vec{v}= \pm \frac{1}{\sqrt{3}}(\hat{a}+\hat{b}+\hat{a} \times \hat{b})
\end{aligned}
$$

17. Let $\vec{a}=x \hat{i}+y \hat{j}+z \hat{k}$
it makes equal angle with
$\frac{1}{3}(\hat{i}-2 \hat{j}+2 \hat{k}), \frac{1}{5}(-4 \hat{i}-3 \hat{k}), \hat{j}$ then
$\frac{x-2 y+2 z}{3}=\frac{-4 x-3 z}{5}=y$
$4 x+5 y+3 z=0$
$x-5 y+2 z=0$
from (i) \& (ii)
$\mathrm{x}=-\mathrm{z} \& \mathrm{x}=-5 \mathrm{y}$
$\vec{a}=x\left(\hat{i}-\frac{1}{5} \hat{j}-\hat{k}\right)$.
18. $\overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})=\frac{\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}}{\sqrt{2}}$
$\Rightarrow \quad(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}=\frac{\vec{b}}{\sqrt{2}}+\frac{\vec{c}}{\sqrt{2}}$
$\Rightarrow\left(\vec{a} \cdot \vec{c}-\frac{1}{\sqrt{2}}\right) \vec{b}-\left(\vec{a} \cdot \vec{b}+\frac{1}{\sqrt{2}}\right) \vec{c}=0$
$\therefore \quad \vec{a} \cdot \vec{b}=\frac{-1}{\sqrt{2}} \& \vec{a} \cdot \vec{c}=\frac{1}{\sqrt{2}}$
angle between $\vec{a} \& \vec{b}=\cos ^{-1}\left(-\frac{1}{\sqrt{2}}\right)=\frac{3 \pi}{4}$
19. If $\lambda=-1$ then $\vec{a} \perp \vec{b}, \vec{c} \perp \vec{d}$ and angle between
$\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{d}}$ is π
\angle between $\overrightarrow{\mathrm{b}}$ and $\overrightarrow{\mathrm{d}}=360^{\circ}-\left(90^{\circ}+90^{\circ}+30^{\circ}\right)=150^{\circ}$

If $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=1$, then following figure is possible then \angle between \vec{b} and $\vec{d}=30^{\circ}$

23. $\frac{3 \overrightarrow{\mathrm{a}}+4 \overrightarrow{\mathrm{~b}}}{7}=\frac{6 \overrightarrow{\mathrm{c}}+\overrightarrow{\mathrm{d}}}{7}=\frac{4 \overrightarrow{\mathrm{e}}+3 \vec{f}}{7}=\frac{\overrightarrow{\mathrm{x}}}{7}$

27. d.r's of line are $3,8,-5$

d.r's of PQ are $3 \lambda+10,8 \lambda+22,-5 \lambda+2$
\therefore both are perpendidcular
$\therefore \quad(3 \lambda+10) 3+(8 \lambda+22) 8+(-5 \lambda+2)(-5)=0$
i.e. $\lambda=-2$
\therefore foot is $(9,13,15), \quad \mathrm{PQ}=14$
Since $(5,7,3),(9,13,15)$ lies on the plane
$9 x-4 y-z-14=0$ and $3 \times 9+8(-4)+(-5)(-1)=0$
$\therefore \quad$ equation of the required plane is $9 x-4 y-z-14=0$

29. Let any point on line $\frac{x-1}{2}=\frac{y+1}{-3}=z=\lambda$ be $(1+2 \lambda,-1-3 \lambda, \lambda)$

$$
\begin{aligned}
& 4 \sqrt{14}=\sqrt{(1+2 \lambda-1)^{2}+(-1-3 \lambda+1)^{2}+\lambda^{2}} \\
& 4 \sqrt{14}=\sqrt{4 \lambda^{2}+9 \lambda^{2}+\lambda^{2}} \\
\Rightarrow & |\lambda|=4 \Rightarrow \lambda= \pm 4 \\
\therefore \quad & \text { Points }(9,-13,4) \text { and }(-7,11,-4)
\end{aligned}
$$

30. Let $\vec{r}=x i+y j+z k$
then $[\overrightarrow{\mathrm{r}} \overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{c}}]=0 \quad \Rightarrow\left|\begin{array}{ccc}\mathrm{x} & \mathrm{y} & \mathrm{z} \\ 1 & 2 & -1 \\ 1 & 1 & -2\end{array}\right|=0$,
$-3 x+y-z=0$
$\frac{\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{a}}}{|\overrightarrow{\mathrm{a}}|}= \pm \frac{\sqrt{2}}{3} \quad \Rightarrow \frac{2 \mathrm{x}-\mathrm{y}+3}{\sqrt{6}}= \pm \sqrt{\frac{2}{3}}$
$2 x-y+z= \pm 2$
from (1) and (2) $x=\mp 2 \quad ; \quad y-z=\mp 6$
there fore $\quad \vec{r}=\mp 2 i+y j+(y \pm 6) k$
(A) \& (C) are answer
31. The vector parallel to line of intersection of planes is

$$
\begin{aligned}
& \lambda\left|\begin{array}{ccc}
i & j & k \\
6 & 4 & -5 \\
1 & -5 & 2
\end{array}\right|=-\lambda(17 \hat{i}+17 \hat{j}+34 \hat{k}) \\
& =\lambda^{\prime}(\hat{i}+\hat{j}+2 \hat{k}) \quad\left(\lambda^{\prime} \text { is scalar }\right)
\end{aligned}
$$

Now angle between the lines

$$
\begin{aligned}
& \cos \theta=\frac{\lambda^{\prime}(\hat{\mathrm{i}}+\hat{\mathrm{j}}+2 \hat{\mathrm{k}}) \cdot(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})}{\lambda^{\prime} \sqrt{6} \times \sqrt{6}}=\frac{1}{2} \\
& \Rightarrow \theta=\frac{\pi}{3}
\end{aligned}
$$

33. any such vector $=\lambda(\hat{a}+\hat{b})$

$$
\begin{aligned}
& =\lambda\left(\frac{7 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}}{9}+\frac{-2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}}{3}\right) \\
& =\frac{\lambda}{9}[7 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}+3(-2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}})] \\
& =\frac{\lambda}{9}[\hat{\mathrm{i}}-7 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}] \\
& |\overrightarrow{\mathrm{c}}|=5 \sqrt{6} \Rightarrow\left|\frac{\lambda}{9} \sqrt{1+49+4}\right|=5 \sqrt{6} \\
& \Rightarrow\left|\frac{\lambda}{9} \sqrt{54}\right|=5 \sqrt{6} \\
& \Rightarrow \lambda= \pm \frac{9 \times 5 \sqrt{6}}{\sqrt{54}}= \pm 15 \\
& \Rightarrow \overrightarrow{\mathrm{c}}= \pm \frac{15}{9}(\hat{\mathrm{i}}-7 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})= \pm \frac{5}{3}(\hat{\mathrm{i}}-7 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})
\end{aligned}
$$

35. (A) $\vec{a} \times[a \times(\vec{a} \times \vec{b})]$

$$
=\vec{a} \times[(a \cdot b) \vec{a}-(\vec{a} \cdot \vec{a}) \vec{b}]=0-(\vec{a})^{2}(\vec{a} \times \vec{b}) . \text { False }
$$

(B) $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar

$$
\left.\begin{array}{l}
\vec{v} \cdot \vec{a}=0 \\
\vec{v} \cdot \vec{b}=0 \\
\vec{v} \cdot \vec{c}=0
\end{array}\right\} \Rightarrow \vec{v} \cdot(\vec{a}+\vec{b}+\vec{c})=0
$$

But $\vec{a}+\vec{b}+\vec{c} \neq 0 \Rightarrow \vec{v}=0$. i.e. null vector which is true
(C) $\vec{a} \times \vec{b} \& \vec{c} \times \vec{d}$ are perpendicular

SO $(\vec{a} \times \vec{b}) \times(\mathrm{c} \times \overrightarrow{\mathrm{d}}) \neq 0$. False
(D) $\mathrm{a}^{\prime}=\frac{\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}}{[\mathrm{abc}]}, \mathrm{b}^{\prime}=\frac{\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}}}{[\mathrm{abc}]}, \mathrm{c}^{\prime}=\frac{\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}}{[\mathrm{abc}]}$
is valid only if $\vec{a}, \vec{b}, \vec{c}$ are non coplanar, hence false.
36. Volume of prism $=$ Area of base $\mathrm{ABC} \times$ height
or $3=\frac{\sqrt{6}}{2} \times \mathrm{h}$
$\Rightarrow \quad h=\sqrt{6}$

Required point A_{1} should be just above point A i.e. line AA_{1} is normal to plane ABC and $\mathrm{AA}_{1}=\sqrt{6}$
41.

Hence, edge length of the parallelopiped
$\left|x_{2}-x_{1}\right|=8$
$\left|y_{2}-y_{1}\right|=6$
$\left|z_{2}-z_{1}\right|=2$
42. $\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & -1 \\ 1 & -1 & 2\end{array}\right|=\hat{i}(6-1)-\hat{j}(4+1)+\hat{k}(-2-3)$
$=5 \hat{i}-5 \hat{j}-5 \hat{k}$
$\cos (90-\theta)=\left|\frac{10+10-5}{5 \sqrt{3} .3}\right|$

$\sin \theta=\frac{1}{\sqrt{3}} \Rightarrow \theta=\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)=\cot ^{-1}(\sqrt{2})$
43. Equation of bisector of plane

$$
\begin{aligned}
& \frac{2 x-y+2 z+3}{\sqrt{2^{2}+1^{2}+2^{2}}}= \pm \frac{3 x-2 y+6 z+8}{\sqrt{9+4+36}} \\
& \Rightarrow \frac{2 x-y+2 z+3}{3}= \pm \frac{(3 x-2 y+6 z+8)}{7} \\
& \Rightarrow 14 x-7 y+14 z+21= \pm(9 x-6 y+18 z+24) \\
& \Rightarrow 5 x-y-4 z=3 \text { and } \\
& 23 x-13 y+32 z+45=0
\end{aligned}
$$

47. Let normal vector n_{1} perpendicular to plane determining
$\hat{i}, \hat{j}+\hat{k}$ is
$\mathrm{n}_{1}=\hat{\mathrm{i}} \times(\hat{\mathrm{i}}+\hat{\mathrm{j}})=\hat{\mathrm{k}}$
similarly $\mathrm{n}_{2}=(\hat{\mathrm{i}}-\hat{\mathrm{j}}) \times(\hat{\mathrm{i}}-\hat{\mathrm{k}})=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$
Now vector parallel to intersection of plane $=\overrightarrow{\mathrm{n}}_{2} \times \overrightarrow{\mathrm{n}}_{1}$
$=\overrightarrow{\mathrm{k}} \times(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})=-(\hat{\mathrm{j}}-\hat{\mathrm{i}}) \Rightarrow \frac{\mathrm{x}-0}{1-0}=\frac{\mathrm{y}-0}{1-0}=\frac{\mathrm{z}-0}{1-0}$

Angle between $\lambda(-\hat{j}+\hat{i})$ and $(\hat{i}-2 \hat{j}+2 \hat{k})$

$$
\begin{aligned}
& \cos \theta=\frac{\lambda(-\hat{\mathrm{j}}+\hat{\mathrm{i}}) \cdot(\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})}{\lambda \sqrt{2} \times 3}=\frac{1}{\sqrt{2}} \\
& \Rightarrow \theta=\frac{\pi}{4} \quad \text { or } \quad \theta=\pi-\frac{\pi}{4}=\frac{3 \pi}{4}
\end{aligned}
$$

Part \# II : Assertion \& Reason

2. Statement-I Equation of plane is
$(\vec{r}-\vec{a}) \cdot(\vec{b} \times \vec{c})=0$
$\bar{r}=\vec{a}+\lambda \vec{b}+\mu \vec{c}$ satisfies above equation
Hence True
Statement-II is also true \& explain statement I
3. Statement-I
$A(\vec{a}) \quad \& \quad B(\vec{b})$
$\overrightarrow{\mathrm{PA}} \cdot \overrightarrow{\mathrm{PB}} \leq 0$, then locus of P is sphere having diameter $|(\vec{a}-\vec{b})|$
volume $=\frac{4}{3} \pi\left|\frac{\vec{a}-\vec{b}}{2}\right|^{3}=\frac{\pi}{6}|\vec{a}-\vec{b}|^{2} \cdot|\vec{a}-\vec{b}|$

$$
=\frac{\pi}{6}\left(\vec{a}^{2}+\overrightarrow{\mathrm{b}}^{2}-2 \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}}\right)|\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}|
$$

Hence true.
Statement - II : Diameter of sphere subtend acute angle at point P then point P moves out side the sphere having radius r .
5. $[\vec{d} \vec{b} \vec{c}] \vec{a}+\left[\begin{array}{l}\mathrm{d} \\ \mathrm{c} \\ \mathrm{a}\end{array}\right] \vec{b}+[\vec{d} \vec{a} \vec{b}] \vec{c}-[\vec{a} \vec{b} \vec{c}] \vec{d}$
$=([\vec{b} \vec{c} \vec{d}] \vec{a}-[\vec{b} \vec{c} \vec{a}] \vec{d})+([\vec{d} \vec{a} \vec{b}] \vec{c}-[\vec{d} \vec{a} \vec{c}] \vec{b})$
$=(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}) \times(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{d}})+(\overrightarrow{\mathrm{d}} \times \overrightarrow{\mathrm{a}}) \times(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{b}})$
$=(\vec{d} \times \vec{a}) \times(\vec{b} \times \vec{c})-(\vec{d} \times \vec{a}) \times(\vec{b} \times \vec{c})=\overrightarrow{0}$
8. Let the coordinates of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ be $\mathrm{A}(1,0,0)$, $\mathrm{B}(1,1,0), \mathrm{C}(0,1,0)$ and $\mathrm{D}(0,0,0)$
so that coordinates of A_{1}, B_{1}, C_{1} are
$\mathrm{A}_{1}(1,0,1), \mathrm{B}_{1}(1,1,1), \mathrm{C}_{1}(0,1,1) \& \mathrm{D}_{1}(0,0,1)$
The coordinates of midpoint of $\mathrm{B}_{1} \mathrm{~A}_{1}$ is
$\mathrm{P}\left(1, \frac{1}{2}, 1\right)$ and that of $\mathrm{B}_{1} \mathrm{C}_{1}$ is $\mathrm{Q}\left(\frac{1}{2}, 1,1\right)$

Equation of the plane PBQ is $2 \mathrm{x}+2 \mathrm{y}+\mathrm{z}=4$
Its distance from $D(0,0,0)$ is $\frac{4}{3}$
So Statement-1 is false and Statement-2 is clearly true.
10.

$I \equiv \frac{a \vec{a}+b \vec{b}+c \vec{c}}{a+b+c}$
13. plane P_{1} is \perp to $\vec{a}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & -1 \\ 1 & 0 & -2\end{array}\right|=2 \hat{i}+\hat{j}+\hat{k}$
and plane P_{2} is \perp to $\overrightarrow{\mathrm{b}}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{j} & \hat{\mathrm{k}} \\ 1 & 0 & -2 \\ 2 & -1 & -3\end{array}\right|=-2 \hat{i}-\hat{\mathrm{j}}-\hat{\mathrm{k}}$
$\Rightarrow \vec{a} \| \vec{b} \Rightarrow P_{1} \& P_{2}$ are parallel
also L is parallel to $\vec{c}=\hat{i}-\hat{j}-\hat{k}$
also $\overrightarrow{\mathrm{a}} . \overrightarrow{\mathrm{c}}=0 \quad \& \overrightarrow{\mathrm{~b}} . \overrightarrow{\mathrm{c}}=0$
but it is not essential that if $\mathrm{P}_{1} \& \mathrm{P}_{2}$ are parallel to L then $\mathrm{P}_{1} \& \mathrm{P}_{2}$ must be parallel.
So Statement-II is not a correct explanation of Statement-I.
14. Statement-I
$\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}, \overrightarrow{\mathrm{b}}=\hat{\mathrm{j}} \& \overrightarrow{\mathrm{c}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}$
$\overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}$ linearly dependent
$\vec{a} \& \vec{b}$ are linearly independent
Hence true.
Statement-II :
$\vec{a} \& \vec{b}$ are linearly dependent
$\vec{a}=t \vec{b}$
then $\vec{c}=\lambda \vec{a}+\mu \vec{b}$ which is linearly dependent.

EXERCISE - 3

Part \# I : Matrix Match Type

1. (A) If P is a point inside the triangle such that
$\operatorname{area}(\triangle \mathrm{PAB}+\Delta \mathrm{PBC}+\triangle \mathrm{PCA})$
$=\operatorname{area}(\triangle \mathrm{ABC})$
Then P is centroid.
(B) $\overrightarrow{\mathrm{V}}=\overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{PB}}+\overrightarrow{\mathrm{PC}}$
$0=\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{p}}+\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{p}}+\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{p}}$
$\overrightarrow{\mathrm{p}}=\frac{\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}}{3}$ which is centroid.
(C) $\overrightarrow{\mathrm{P}}=(\mathrm{BC}) \overrightarrow{\mathrm{PA}}+(\mathrm{CA}) \overrightarrow{\mathrm{PB}}+(\mathrm{AB}) \overrightarrow{\mathrm{PC}}=0$
$\mathrm{a}(\vec{\alpha}-\overrightarrow{\mathrm{p}})+\mathrm{b}(\vec{\beta}-\overrightarrow{\mathrm{p}})+\mathrm{c}(\vec{\gamma}-\overrightarrow{\mathrm{p}})=0$
$\Rightarrow \overrightarrow{\mathrm{p}}=\frac{\mathrm{a} \vec{\alpha}+\mathrm{b} \vec{\beta}+\mathrm{c} \vec{\gamma}}{\mathrm{a}+\mathrm{b}+\mathrm{c}}$

which is incentre.
(D) From fig.

$\overrightarrow{\mathrm{PA}} \cdot \overrightarrow{\mathrm{CB}}=0$
$\overrightarrow{\mathrm{PB}} \cdot \overrightarrow{\mathrm{AC}}=0$
$\Rightarrow \mathrm{P}$ is orthocentre.
2. (A) Vector parallel to line of intersection of the plane is $(\hat{i}+\hat{j}) \times(\hat{j}+\hat{k})=\hat{k}-\hat{j}+\hat{i}$
equation of line whose dr's, are $(1,-1,1)$ and passing through $(0,0,0)$ is
$x=-y=z$
(B) Similarly $(\hat{i} \times \hat{\mathrm{j}})=\hat{\mathrm{k}}$.

Hence dr's $=(0,0,1)$
and passing through the point $(2,3,0)$
$\therefore \quad$ Equation of line $\frac{\mathrm{x}-2}{0}=\frac{\mathrm{y}-3}{0}=\frac{\mathrm{z}}{1}$
(C) Similarly $\hat{i} x(\hat{j}+\hat{k})=\hat{k}-\hat{j}$
dr's $=(0,-1,1)$
Equation of line $\frac{x-2}{0}=\frac{y-2007}{-1}=\frac{z+2004}{1}$
because $\mathrm{x}=2$ \& $\mathrm{y}+\mathrm{z}=3$
so $y=2007, z=-2004$ satisfy above equation
(D) $x=2, x+y+z=3$
$y+z=1$
same as part C
we get $\frac{x-2}{0}=\frac{y}{-1}=\frac{z-1}{1}$
3. (A).
here $\vec{a}=\vec{b}+\vec{c}$
$\overrightarrow{\mathrm{AM}}=\frac{1}{2}(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}})$

$$
=\frac{1}{2}[2 \hat{i}+4 \hat{j}+2 \hat{k}]=\hat{i}+2 \hat{j}+\hat{k}
$$

$\Rightarrow \lambda=\sqrt{6}$
(B)

(C) Area $=|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=|(\overrightarrow{\mathrm{p}}+2 \overrightarrow{\mathrm{q}}) \times(2 \overrightarrow{\mathrm{p}}+\overrightarrow{\mathrm{q}})|$

$$
=|\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}+4 \overrightarrow{\mathrm{q}} \times \overrightarrow{\mathrm{p}}|=|3 \overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}|=3 \times \frac{1}{2}=\frac{3}{2}
$$

(D) $\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{v}}+\overrightarrow{\mathrm{w}}=0$
$\Rightarrow|\vec{u}|^{2}+|\vec{v}|^{2}+|\vec{w}|^{2}+2(\vec{u} \cdot \vec{v})+2(\vec{v} \cdot \vec{w})+2(\vec{w} \cdot \vec{u})=0$
$\Rightarrow \quad 9+16+25+2 \quad[\vec{u} \cdot \vec{v}+\vec{v} \cdot \vec{w}+\vec{w} \cdot \vec{u}]=0$
$\Rightarrow \sqrt{|\vec{u} \cdot \vec{v}+\vec{v} \cdot \overrightarrow{\mathrm{w}}+\overrightarrow{\mathrm{w}} \cdot \overrightarrow{\mathrm{u}}|}=5$

Part \# II : Comprehension

Comprehension \# 2

1. Equation of the second plane is $-x+2 y-3 z+5=0$
$2(-1)+3.2+(-4)(-3)>0$
\therefore O lies in obtuse angle.

$$
\begin{aligned}
& (2 \times 1+3(-2)-4 \times 3+7)(-1+2(-2)-3 \times 3+5) \\
& =(2-6-12+7)(-1-4-9+5)>0
\end{aligned}
$$

$\therefore \quad \mathrm{P}$ lies in obtuse angle.
2. $1 \times 2+2 \times 1-3 \times 3<0$
$\therefore \quad \mathrm{O}$ lies in acute angle.
Also
$(2+2(-1)-3(2)+5)(2 \times 2-1+3 \times 2+1)=(-1)(10)<0$
$\therefore \quad \mathrm{P}$ lies in obtuse angle.
3. $1-4-9<0$
$\therefore \mathrm{O}$ lies in acute angle.
Further

$$
(1+4-6+2)(1-4+6+7)>0
$$

\therefore The point P lies in acute angle.
Comprehension \# 5

1. We have : $\vec{a}^{\prime}=\lambda(\vec{b} \times \overrightarrow{\mathrm{c}}), \overrightarrow{\mathrm{b}}^{\prime}=\lambda(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}})$ and
$\overrightarrow{\mathrm{c}}^{\prime}=\lambda(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}), \quad$ where $\quad \lambda=\frac{1}{[\vec{a} \vec{b} \vec{c}]}$
$\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{b}}^{\prime}=\overrightarrow{\mathrm{b}} \times \lambda(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}})=\lambda\{\overrightarrow{\mathrm{b}} \times(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}})\}$

$$
=\lambda\{(\vec{b} \cdot \vec{a}) \vec{c}-(\vec{b} \cdot \vec{c}) \vec{a}\}
$$

and

$$
\begin{array}{r}
\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{c}}^{\prime}=\overrightarrow{\mathrm{c}} \times \lambda(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})=\lambda\{\overrightarrow{\mathrm{c}} \times(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})\} \\
=\lambda\{(\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{~b}}) \overrightarrow{\mathrm{a}}-(\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{a}}) \overrightarrow{\mathrm{b}}\}
\end{array}
$$

$\therefore \quad \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{a}}^{\prime}+\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{b}}^{\prime}+\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{c}}^{\prime}$

$$
=\lambda\{(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}\}+\lambda\{(\vec{b} \cdot \vec{a}) \vec{c}-(\vec{b} \cdot \vec{c}) \vec{a}\}
$$

$$
+\lambda\{(\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{~b}}) \overrightarrow{\mathrm{a}}-(\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{a}}) \overrightarrow{\mathrm{b}}\}
$$

$$
\begin{aligned}
&= \lambda[(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}) \overrightarrow{\mathrm{b}}-(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}}) \overrightarrow{\mathrm{c}}+(\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{a}}) \overrightarrow{\mathrm{c}}-(\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}) \overrightarrow{\mathrm{a}} \\
&+(\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{~b}}) \overrightarrow{\mathrm{a}}-(\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{a}}) \overrightarrow{\mathrm{b}}] \\
&=\lambda[(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}) \overrightarrow{\mathrm{b}}-(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}}) \overrightarrow{\mathrm{c}}+(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}}) \overrightarrow{\mathrm{c}}-(\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}) \overrightarrow{\mathrm{a}} \\
&+(\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}) \overrightarrow{\mathrm{a}}-(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}) \overrightarrow{\mathrm{b}}] \\
&=\lambda \overrightarrow{0}=\overrightarrow{0}
\end{aligned}
$$

2. $\vec{a}^{\prime} \times \vec{b}^{\prime}=\frac{(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}) \times(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}})}{[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{c}}]^{2}}=\frac{\overrightarrow{\mathrm{c}}}{[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{b}}]}$
$\therefore \quad \overrightarrow{\mathrm{a}}^{\prime} \times \overrightarrow{\mathrm{b}}^{\prime}+\overrightarrow{\mathrm{b}}^{\prime} \times \overrightarrow{\mathrm{c}}^{\prime}+\overrightarrow{\mathrm{c}}^{\prime} \times \overrightarrow{\mathrm{a}}^{\prime}=\frac{\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}}{[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{b}}]}$
so $\lambda=1$
3. $\left(a^{\prime} \times b^{\prime}\right) \times\left(b^{\prime} \times c^{\prime}\right)=\frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{b} \vec{c}]^{2}}$
$\left[\frac{\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}}}{[\overrightarrow{\mathrm{a} b} \overrightarrow{\mathrm{c}}]^{2}} \frac{\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}}{[\overrightarrow{\mathrm{a} b} \overrightarrow{\mathrm{c}}]^{2}} \frac{\overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{c}}}{[\overrightarrow{\mathrm{a} b} \overrightarrow{\mathrm{c}}]^{2}}\right]=\frac{[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{c}}]^{2}}{[\overrightarrow{\mathrm{a} \mathrm{b} \vec{c}}]^{6}}=[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{c}}]^{-4}$
$\therefore \mathrm{n}=-4$
Comprehension \# 6
A ($2,1,0$), B ($1,0,1$)
$\mathrm{C}(3,0,1)$ and $\mathrm{D}(0,0,2)$
4. Equation of plane ABC

$$
\left|\begin{array}{ccc}
x-2 & y-1 & z \\
1 & 1 & -1 \\
2 & 0 & 0
\end{array}\right|=0 \quad \Rightarrow \quad y+z=1
$$

2. Equation of $\mathrm{L}=2 \hat{\mathrm{k}}+\lambda(\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}})$
so $L=2 \hat{k}+\lambda(\hat{j}+\hat{k})$
3. Equation of plane ABC
$y+z-1=0$
distance from $(0,0,2)$ is $=\frac{2-1}{\sqrt{2}}=\frac{1}{\sqrt{2}}$
Comprehension \#7
Vector $\vec{p}=\hat{i}+\hat{j}+\hat{k}, \vec{q}=2 \hat{i}+4 \hat{j}-\hat{k}$,
$\overrightarrow{\mathrm{r}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+3 \hat{\mathrm{k}}$
4. (A)

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
2 & 4 & -1 \\
1 & 1 & 3
\end{array}\right|=13-7-2=4 \neq 0
$$

Hence non coplanar; so linearly independent
(B) In triangle, let length of sides of triangle are a, b, c then triangle is formed if sum of two sides is greater than the third side. Check yourself.
(C) $(\vec{q}-\vec{r}) \cdot \vec{p}$
$=(\mathrm{i}+3 \mathrm{j}-4 \mathrm{k}) \cdot(\mathrm{i}+\mathrm{j}+\mathrm{k})=1+3-4=0$
Hence true.
2. $((\vec{p} \times \vec{q}) \times \overrightarrow{\mathrm{r}})=u \vec{p}+v \vec{q}+w \vec{r}$
$(\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{r}}) \overrightarrow{\mathrm{q}}-(\overrightarrow{\mathrm{q}} \cdot \overrightarrow{\mathrm{r}}) \overrightarrow{\mathrm{p}}=\mathrm{u} \overrightarrow{\mathrm{p}}+\mathrm{v} \overrightarrow{\mathrm{q}}+\mathrm{w} \overrightarrow{\mathrm{r}}$
By solving $\overrightarrow{\mathrm{p}} . \overrightarrow{\mathrm{r}} \& \overrightarrow{\mathrm{q}} \cdot \overrightarrow{\mathrm{r}}$, we get
$5 \vec{q}-3 \vec{p}+0 \vec{r}=u \vec{p}+v \vec{q}+w \vec{r}$
compare
$\mathrm{u}+\mathrm{v}+\mathrm{w}=5-3+0=2$.
3. $\overrightarrow{\mathrm{s}}$ is unit vector
$(\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{s}})(\overrightarrow{\mathrm{q}} \times \overrightarrow{\mathrm{r}})+(\overrightarrow{\mathrm{q}} \cdot \overrightarrow{\mathrm{s}})(\mathrm{r} \times \overrightarrow{\mathrm{p}})+\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{s}}(\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}})$
$\overrightarrow{\mathrm{q}} \times \overrightarrow{\mathrm{r}}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 2 & 4 & -1 \\ 1 & 1 & 3\end{array}\right|=13 \hat{\mathrm{i}}-7 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{p}}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 1 & 1 & 3 \\ 1 & 1 & 1\end{array}\right|=-2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}$
$\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 1 & 1 & 1 \\ 2 & 4 & -1\end{array}\right|=-5 \hat{i}+3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$
Let $\overrightarrow{\mathbf{s}}=\hat{\mathrm{i}}$

Putting the value we get

$$
\begin{aligned}
& 13 \hat{\mathrm{i}}-7 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}+2(-2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}})+(-5 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}) \\
& =13 \hat{\mathrm{i}}-7 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}-4 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}-5 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}} \\
& =4 \hat{\mathrm{i}}+0 \hat{\mathrm{j}}+0 \hat{\mathrm{k}}=4 \hat{\mathrm{i}} \\
& \text { Magnitude }=4
\end{aligned}
$$

Comprehension \#8
$\mathrm{E}=\frac{2 \overrightarrow{\mathrm{c}}+\overrightarrow{\mathrm{b}}}{3}$
equation of OP $\vec{r}=\lambda\left(\frac{\vec{a}}{|\overrightarrow{\mathrm{a}}|}+\frac{\overrightarrow{\mathrm{c}}}{|\overrightarrow{\mathrm{c}}|}\right)$
Let P divide EA in $\mu: 1$

$$
\mathrm{P}\left[\frac{\mu \overrightarrow{\mathrm{a}}+\frac{2 \overrightarrow{\mathrm{c}}+\overrightarrow{\mathrm{b}}}{3}}{\mu+1}\right]
$$

P lies on (1)

$$
\begin{aligned}
& \frac{\mu \vec{a}+\frac{2 \overrightarrow{\mathrm{c}}+\overrightarrow{\mathrm{b}}}{3}}{\mu+1}=\lambda\left(\frac{\vec{a}}{|\overrightarrow{\mathrm{a}}|}+\frac{\overrightarrow{\mathrm{c}}}{|\overrightarrow{\mathrm{c}}|}\right) \\
& \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{b}}
\end{aligned}
$$

$\frac{\mu \vec{a}+\frac{3 \overrightarrow{\mathrm{c}}+\overrightarrow{\mathrm{a}}}{3}}{\mu+1}=\lambda\left(\frac{\overrightarrow{\mathrm{a}}}{|\overrightarrow{\mathrm{a}}|}+\frac{\overrightarrow{\mathrm{c}}}{|\overrightarrow{\mathrm{c}}|}\right)$
Comparing coefficient of \vec{a} and \vec{c}

$$
\begin{equation*}
\frac{\mu+\frac{1}{3}}{\mu=1}=\frac{\lambda}{|\overrightarrow{\mathrm{a}}|} \tag{2}
\end{equation*}
$$

and $\frac{1}{\mu+1}=\frac{\lambda}{|\overrightarrow{\mathrm{c}}|}$
divided (2) by (3) $\quad \mu+\frac{1}{3}=\frac{|\overrightarrow{\mathrm{c}}|}{|\overrightarrow{\mathrm{a}}|}$

$$
\mu=\frac{|\overrightarrow{\mathrm{c}}|}{|\overrightarrow{\mathrm{a}}|}-\frac{1}{3}
$$

Put in (3) $\quad \frac{1}{\frac{|\mathrm{c}|}{|\mathrm{a}|}+\frac{2}{3}}=\frac{\lambda}{|\overrightarrow{\mathrm{c}}|}$
$\lambda=\frac{3|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{c}}|}{\mathrm{c}|\overrightarrow{\mathrm{c}}|+2|\overrightarrow{\mathrm{a}}|}$
So position vector of P
$\vec{r}=\frac{3|\vec{a}||\vec{c}|}{3|\vec{c}|+2|\vec{a}|}\left(\frac{a}{|\vec{a}|}+\frac{c}{|\overrightarrow{\mathrm{c}}|}\right)$
Now for solution of 4
equation of AB ,

$$
\begin{equation*}
\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda(\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}})=\overrightarrow{\mathrm{a}}+\lambda(\overrightarrow{\mathrm{c}}) \tag{4}
\end{equation*}
$$

equation of $C P, \quad \vec{r}=\vec{c}+\mu$
$\left(\frac{3|\mathrm{c}| \overrightarrow{\mathrm{a}}}{3|\overrightarrow{\mathrm{c}}|+2|\overrightarrow{\mathrm{a}}|}+\frac{3|\mathrm{a}| \overrightarrow{\mathrm{c}}}{3|\mathrm{c}|+2|\overrightarrow{\mathrm{a}}|}-\overrightarrow{\mathrm{c}}\right)$
$\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{c}}+\mu\left[\frac{3|\mathrm{c}| \overrightarrow{\mathrm{a}}+3|\mathrm{a}| \mathrm{c}-3|\mathrm{c}| \mathrm{c}-2|\mathrm{a}| \overrightarrow{\mathrm{c}}}{3|\mathrm{c}|+2|\mathrm{a}|}\right]$
$\mathrm{r}=\overrightarrow{\mathrm{c}}+\mu\left[\frac{3|\mathrm{c}| \overrightarrow{\mathrm{a}}+|\mathrm{a}| \overrightarrow{\mathrm{c}}-3|\mathrm{c}| \overrightarrow{\mathrm{c}}}{3|\mathrm{c}|+2|\mathrm{a}|}\right]$
Comparing (4) and (5)
$\lambda=1+\frac{\mu|\mathrm{a}|-3 \mu|\mathrm{c}|}{3|\mathrm{c}|+2|\mathrm{a}|}$
$\lambda=\frac{3|\overrightarrow{\mathrm{c}}|+2|\overrightarrow{\mathrm{a}}|+\mu|\mathrm{a}|-3 \mu|\overrightarrow{\mathrm{c}}|}{3|\overrightarrow{\mathrm{c}}|+2|\overrightarrow{\mathrm{a}}|}$
$\mu=\frac{3|\overrightarrow{\mathrm{c}}|+2|\overrightarrow{\mathrm{a}}|}{3|\overrightarrow{\mathrm{c}}|}$
Put value of μ in equation (6)
$\lambda=1+\frac{\mu(|\overrightarrow{\mathrm{a}}|-3|\overrightarrow{\mathrm{c}}|)}{3|\overrightarrow{\mathrm{c}}|+2|\overrightarrow{\mathrm{a}}|}$
$\lambda=1+\frac{|\mathrm{a}|-3|\overrightarrow{\mathrm{c}}|}{3|\mathrm{c}|}=\frac{1}{3} \frac{|\mathrm{a}|}{|\mathrm{c}|}$
So position vector of F is $=\vec{a}+\frac{1}{3} \frac{|\mathrm{a}|}{|\mathrm{c}|} \overrightarrow{\mathrm{c}}$
Solution - 5

$$
\begin{aligned}
\overrightarrow{\mathrm{A}} \overrightarrow{\mathrm{~F}} & =\text { p.v. of } \mathrm{F}-\text { p.v. of } \mathrm{A}=\overrightarrow{\mathrm{a}}+\frac{1}{3} \frac{|\mathrm{a}|}{|\mathrm{c}|} \overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{a}} \\
& =\frac{1}{3} \frac{|\mathrm{a}|}{|\mathrm{c}|} \overrightarrow{\mathrm{c}}
\end{aligned}
$$

EXERCISE - 4

Subjective Type

1. $\overrightarrow{\mathrm{QX}}=4 \overrightarrow{\mathrm{XR}}$
$\overline{\mathrm{RY}}=4 \overline{\mathrm{YS}}$
Let $\overrightarrow{\mathrm{P}}$ be origin
$\& R(\vec{q}+\vec{s})$

from figure
P.V. of $X=\frac{4(\overrightarrow{\mathrm{q}}+\overrightarrow{\mathrm{s}})+\overrightarrow{\mathrm{q}}}{5}=\frac{5 \overrightarrow{\mathrm{q}}+4 \overrightarrow{\mathrm{~s}}}{5}$
P.V. of $Y=\frac{4 \overrightarrow{\mathrm{~s}}+\overrightarrow{\mathrm{q}}+\overrightarrow{\mathrm{s}}}{5}=\frac{5 \overrightarrow{\mathrm{~s}}+\overrightarrow{\mathrm{q}}}{5}$

Now Let Z divides PR in ratio $\lambda: 1$
Now \quad Let Z divides XY in ratio $\mu: 1$
P.V. of $Z=\frac{\lambda(\overrightarrow{\mathrm{q}}+\overrightarrow{\mathrm{s}})}{\lambda+1} \quad$ (from PR)
P.V. of $Z=\frac{\frac{\mu(5 \vec{s}+\vec{q})}{5}+\frac{5 \vec{q}+4 \vec{s}}{5}}{\mu+1}$
(from XY)
equating both Z then we get
$\frac{\lambda}{\lambda+1}=\frac{\mu+5}{5(\mu+1)}$
$\frac{\lambda}{\lambda+1}=\frac{5 \mu+4}{5(\mu+1)}$
from (i) \& (ii), $\mu=\frac{1}{4} \& \lambda=\frac{21}{4}$
So P.V. of $Z=\frac{\frac{21}{4}}{\frac{21}{4}+1}(\vec{q}+\vec{s})$

$$
=\frac{21}{25}(\overrightarrow{\mathrm{q}}+\overrightarrow{\mathrm{s}})=\frac{21}{25} \overrightarrow{\mathrm{PR}}
$$

2. PVs of vertex P, Q, R, S are (Let) $\overrightarrow{0}, \vec{a}, \vec{b}+\vec{a}, \vec{b}$ using section rule PVs of
$X \equiv \frac{4(\vec{b}+\vec{a})+\vec{a}}{5}$ and $Y \equiv \frac{(\vec{b}+\vec{a})+4 \vec{b}}{5}$
again Let $\frac{\mathrm{PZ}}{\mathrm{ZR}}=\lambda$ and $\frac{\mathrm{XZ}}{\mathrm{YZ}}=\mu$
PVs of point Z may be given as
$\frac{\lambda(\vec{b}+\vec{a})+\overrightarrow{0}}{\lambda+1} \&$ also as $\frac{\mu\left(\vec{b}+\frac{\vec{a}}{5}\right)+1\left(\vec{a}+\frac{4 \vec{b}}{5}\right)}{\mu+1}$

Equating both answers and coefficient of $\vec{a} \& \vec{b}$ (they are representing non collinear vectors $\overrightarrow{\mathrm{PQ}} \& \overrightarrow{\mathrm{PS}}$)
$\frac{\lambda}{\lambda+1}=\frac{\mu+\left(\frac{1}{5}\right)}{\mu+1} \quad$ and $\quad \frac{\lambda}{\lambda+1}=\frac{\left(\frac{4 \mu}{5}\right)+1}{\mu+1}$

Solving these equations gives $\lambda=\frac{21}{4}$
3. After rotation equation of plane is new position will be
$\ell x+m y+a^{\prime} z=0$
Let angle between (1) and $\ell x+m y=0$
is θ, then
$\cos \theta=\frac{\ell^{2}+\mathrm{m}^{2}}{\sqrt{\ell^{2}+\mathrm{m}^{2}} \sqrt{\ell^{2}+\mathrm{m}^{2}+\mathrm{a}^{\prime 2}}}$
Solving we get

$$
\begin{aligned}
\mathrm{a}^{\prime 2} & =\left(\ell^{2}+\mathrm{m}^{2}\right) \tan ^{2} \theta \\
\Rightarrow \quad \mathrm{a}^{\prime} & = \pm \sqrt{\left(\ell^{2}+\mathrm{m}^{2}\right)} \tan \theta
\end{aligned}
$$

Equation is $\ell \mathrm{x}+\mathrm{my} \pm \mathrm{z} \sqrt{\left(\ell^{2}+\mathrm{m}^{2}\right)} \tan \theta=0$
4. $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=r$ (Let)
$\Rightarrow(2 r+1,3 r+2,4 r+3)$ represents any point on (1)
$\frac{x-4}{5}=\frac{y-1}{2}=\frac{z-0}{1}$
To find point of intersection of (1) and (2)
$\frac{2 r+1-4}{5}=\frac{3 r+2-1}{2}=\frac{4 r+3}{1}$
$\Rightarrow \frac{2 \mathrm{r}-3}{5}=\frac{3 \mathrm{r}+1}{2}=\frac{4 \mathrm{r}+3}{1}$
$\Rightarrow 4 \mathrm{r}-6=15 \mathrm{r}+5$
$\Rightarrow 11 \mathrm{r}=-11 \Rightarrow \mathrm{r}=-1$
\therefore point of intersection of (1) and (2) is $(-1,-1,-1)$
$\vec{r}=(\hat{i}+\hat{j}-\hat{k})+\lambda(3 \hat{i}-\hat{j})$
$\overrightarrow{\mathrm{r}}=(4 \hat{\mathrm{i}}-\hat{\mathrm{k}})+\mu(2 \hat{\mathrm{i}}+3 \hat{\mathrm{k}})$
For their point of intersection
$3 \lambda+1=4+2 \mu \quad \Rightarrow 3 \lambda-2 \mu-3=0$
$1-\lambda=0 \quad \Rightarrow \lambda=1$
and $-1=-1+3 \mu \quad \mu=0$
\therefore point of intersection is $(4,0,-1)$
\therefore required distance

$$
=\sqrt{(4+1)^{2}+1+0}=\sqrt{25+1}=\sqrt{26}
$$

5. $|(\vec{a} \cdot \vec{d})(\vec{b} \times \vec{c})+(\vec{b} \cdot \vec{d})(\vec{c} \times \vec{a})+(\vec{c} \cdot \vec{d})(\vec{a} \times \vec{b})|$
$|(\vec{a} \cdot \vec{d})(\vec{b} \times \vec{c})-(\vec{c} \cdot \vec{d})(\vec{b} \times \vec{a})+(\vec{b} \cdot \vec{d})(\vec{c} \times \vec{a})|$
$|\vec{b} \times[(\vec{a} \cdot \vec{d}) \vec{c}-(\vec{c} \cdot \vec{d}) \vec{a}]+(\vec{b} \cdot \vec{d})(\vec{c} \times \vec{a})|$
$|\vec{b} \times\{(\vec{a} \times \vec{c}) \times \vec{d}]+(\vec{b} \cdot \vec{d})(\vec{c} \times \vec{a})|$
$=\mid \vec{b} \cdot \vec{d})(\vec{a} \times c \vec{c}-\{\vec{b} \cdot(\vec{a} \times \vec{c})\} \vec{d}-(\vec{b} \cdot \vec{d})(\vec{a} \times \vec{c}) \mid$
$=|[\overrightarrow{\mathrm{b}} \mathrm{a} \overrightarrow{\mathrm{c}}] \overrightarrow{\mathrm{d}}|=[\overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{c}}]|\overrightarrow{\mathrm{d}}| \quad \because|\overrightarrow{\mathrm{d}}|=1$
$=\left[\begin{array}{lll}\overrightarrow{\mathrm{b}} & \overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{c}}\end{array}\right] \quad$ Proved.
6. (i) Projection of OP on \hat{n}

(ii) $\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{a}}-\mathrm{p}+\lambda(\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{b}}-\mathrm{q})=0$
$\overrightarrow{\mathrm{r}}=\overrightarrow{0}$
$\therefore \quad-\mathrm{p}-\lambda \mathrm{q}=0 \quad \lambda=-\frac{\mathrm{p}}{\mathrm{q}}$
$\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{a}}-\mathrm{p}-\frac{\mathrm{p}}{\mathrm{q}}(\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{b}}-\mathrm{q})=0$
$\vec{r} \cdot(\vec{a} q-p \vec{b})=0$
7.

$$
\begin{align*}
& \text { Area of } \triangle \mathrm{ABC} \Rightarrow \frac{1}{2} \mathrm{ab}=\mathrm{x} \tag{i}\\
& \text { Area of } \triangle \mathrm{ABC} \Rightarrow \frac{1}{2} \mathrm{bc}=\mathrm{y} \tag{ii}\\
& \text { Area of } \triangle \mathrm{ACD} \Rightarrow \frac{1}{2} \mathrm{ac}=\mathrm{z} \tag{iii}
\end{align*}
$$

Area of $\triangle \mathrm{BCD}=\frac{1}{2} \sqrt{\mathrm{a}^{2} \mathrm{~b}^{2}+\mathrm{b}^{2} \mathrm{c}^{2}+\mathrm{c}^{2} \mathrm{a}^{2}}$
$=\frac{1}{2} \times 2 \sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}$

$$
=\sqrt{x^{2}+y^{2}+z^{2}}
$$

8. (a) $(3 \hat{i}-3 \hat{j}+\hat{k}+\vec{d}) \equiv 2 \hat{i}-2 \hat{j}+2 \hat{k}$
$\Rightarrow \overrightarrow{\mathrm{d}}=-\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$
(b) $\overrightarrow{\mathrm{AB}}=6 \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}$
$\overrightarrow{\mathrm{AC}}=8 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$
$\Rightarrow|\overrightarrow{\mathrm{AC}}|=\sqrt{64+4+4}=\sqrt{72}$

Required vector is $\frac{\sqrt{72}}{\sqrt{38}}(6 \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})$

$$
=\frac{6}{\sqrt{19}}(6 \hat{i}-\hat{j}+\hat{k})
$$

(c) $\overrightarrow{\mathrm{BD}}=-4 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}$

$$
\begin{aligned}
\cos \theta & =\frac{\overrightarrow{\mathrm{AC}} \cdot \overrightarrow{\mathrm{BD}}}{|\overrightarrow{\mathrm{AC}}||\overrightarrow{\mathrm{BD}}|}=\frac{-32+8}{\sqrt{72} \sqrt{32}}=\frac{-24}{6 \sqrt{2} \cdot 4 \sqrt{2}} \\
& =-\frac{1}{2} \\
\Rightarrow \theta & =\frac{2 \pi}{3}
\end{aligned}
$$

9. Let origin be C

Given $\left|\vec{a}-\frac{\vec{b}}{2}\right|=\left|\vec{b}-\frac{\vec{a}}{2}\right|$ (medians are equal)
$\Rightarrow \overrightarrow{\mathrm{a}}^{2}+\frac{\overrightarrow{\mathrm{b}}^{2}}{4}-\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{b}}^{2}+\frac{\overrightarrow{\mathrm{a}}^{2}}{4}-\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}$

$$
\left.\frac{3 \overrightarrow{\mathrm{a}}^{2}}{4}=\frac{3}{4} \overrightarrow{\mathrm{~b}}^{2} \Rightarrow|\overrightarrow{\mathrm{a}}|=\overrightarrow{\mathrm{b}} \right\rvert\,
$$

10. $\mathrm{A}\left(\frac{27 \lambda+12}{\lambda+1}, \frac{-9 \lambda-4}{\lambda+1}, \frac{18 \lambda+8}{\lambda+1}\right)$

Which lies on the sphere
$\therefore\left(\frac{27 \lambda+12}{\lambda+1}\right)^{2}+\left(\frac{-9 \lambda-4}{\lambda+1}\right)^{2}+\left(\frac{18 \lambda+8}{\lambda+1}\right)^{2}=504$

Solving above we get $9 \lambda^{2}=4 \quad \lambda= \pm \frac{2}{3}$
11. Let point on line $\frac{x-3}{2}=\frac{y-3}{1}=\frac{z}{1}$
are $(3+2 \lambda, 3+\lambda, \lambda)$
Equation of line which pass through origin is
$\frac{x-0}{3+2 \lambda}=\frac{y-0}{3+\lambda}=\frac{z-0}{\lambda}$
Angle between (1) \& (2)
$\cos \frac{\pi}{3}=\frac{(3+2 \lambda) 2+(3+\lambda) 1+\lambda \times 1}{\sqrt{(3+2 \lambda)^{2}+(3+\lambda)^{2}+\lambda^{2}} \sqrt{2^{2}+1^{2}+1}}$
Solving we get

$$
\begin{aligned}
& \lambda^{2}+3 \lambda+2=0 \\
\Rightarrow & \lambda=-1,-2
\end{aligned}
$$

Putting the value of λ in equation (2)
$\frac{\mathrm{x}}{1}=\frac{\mathrm{y}}{2}=\frac{\mathrm{z}}{-1}$ or $\frac{\mathrm{x}}{-1}=\frac{\mathrm{y}}{1}=\frac{\mathrm{z}}{-2}$
12. M is mid point of $C B$, also $O M=R \cos A$
\Rightarrow PV's of circumcentre O is $\equiv\left(\frac{\mathrm{a}}{2} \hat{\mathrm{i}}+\mathrm{R} \cos \mathrm{A} \hat{\mathrm{j}}\right)$
again $\mathrm{CL}=\mathrm{b} \cos \mathrm{C}$ and $\mathrm{HL}=2 \mathrm{R} \cos \mathrm{B} \cos \mathrm{C}$

\Rightarrow PV's of orthocentre H is

$$
\equiv(b \cos C \hat{i}+2 R \cos B \cos C \hat{j})
$$

Distance between points $\mathrm{O} \& \mathrm{H}$

$$
\left.\equiv \left\lvert\,\left(\frac{a}{2}-b \cos C\right) \hat{i}+(R \cos A-2 R \cos B \cos C) \hat{j}\right.\right) \mid
$$

$$
=\sqrt{(R \sin A-2 R \sin B \cos C)^{2}+(R \cos A-2 R \cos B \cos C)^{2}}
$$

$$
=\sqrt{\begin{array}{r}
\sin ^{2} A+4 \sin ^{2} B \cos ^{2} C-4 \sin A \sin B \cos C+\cos ^{2} A \\
+4 \cos ^{2} B \cos ^{2} C-4 \cos A \cos B \cos C
\end{array}}
$$

$$
=\mathrm{R} \sqrt{1+4 \cos ^{2} \mathrm{C}-4 \cos \mathrm{C}(\sin \mathrm{~A} \sin \mathrm{~B}+\cos \mathrm{A} \cos \mathrm{~B})}
$$

$=R \sqrt{1+4 \cos ^{2} C-4 \cos C \cos (A-B)}$
$=R \sqrt{1+4 \cos ^{2} \mathrm{C}+4 \cos (\mathrm{~A}+\mathrm{B}) \cos (\mathrm{A}-\mathrm{B})}$
$=R \sqrt{1+4 \cos ^{2} C+4 \cos ^{2} A-4 \sin ^{2} B}$
$=R \sqrt{1-8 \cos A \cos B \cos C}$
13. $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$
$\overrightarrow{\mathrm{b}}=\mathrm{b}_{1} \hat{\mathrm{i}}+\mathrm{b}_{2} \hat{\mathrm{j}}+\mathrm{b}_{3} \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{c}}=\mathrm{c}_{1} \hat{\mathrm{i}}+\mathrm{c}_{2} \hat{\mathrm{j}}+\mathrm{c}_{3} \hat{\mathrm{k}}$
ä. $\hat{i} \quad$ à. $\hat{j} \quad$ a. \hat{k}
[$\vec{a} \vec{b} \vec{c}$] is written as
$\vec{b} . \hat{i} \quad \vec{b} . \hat{j} \quad \vec{b} . \hat{k}$
$\begin{array}{llll}\vec{c} . \hat{i} & \vec{c} . \hat{j} & \vec{c} . \hat{k}\end{array}$

Now $\quad\{(n \vec{a}+\vec{b}) \times(n \vec{b}+\vec{c})\} .(n \vec{c}+\vec{a})$
$=\left\{n^{2}(\vec{a} \times \vec{b})+n(\vec{a} \times \vec{c})+\vec{b} \times \vec{c}\right\} \cdot(n \vec{c}+\vec{a})$
$=n^{3}[\vec{a} \vec{b} \vec{c}]+[\vec{b} \vec{c} \vec{a}]$
$=\left(n^{3}+1\right)[\vec{a} \vec{b} \vec{c}]$
14. $\vec{w}+(\vec{w} \times \vec{u})=\vec{v}$

Dot (1) with $\overrightarrow{\mathrm{V}}$
$\overrightarrow{\mathrm{w}} \cdot \overrightarrow{\mathrm{v}}+[\mathrm{vwu}]=1$
Dot (1) with $\overrightarrow{\mathrm{u}}$
$\overrightarrow{\mathrm{w}} \cdot \overrightarrow{\mathrm{u}}+0=\overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{u}}$
cross (1) with $\overrightarrow{\mathrm{u}}$
$\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{w}}+(\overrightarrow{\mathrm{u}} . \overrightarrow{\mathrm{u}}) \overrightarrow{\mathrm{w}}-(\overrightarrow{\mathrm{u}} . \overrightarrow{\mathrm{w}}) \overrightarrow{\mathrm{u}}=\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}}$
Using (3) we get
$\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{w}}+\overrightarrow{\mathrm{w}}-(\overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{u}}) \overrightarrow{\mathrm{u}}=\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}}$
$[\mathrm{vu} \mathrm{w}]+(\overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{w}})-(\overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{u}})^{2}=0$
Using (2) we get
$[\mathrm{vuw}]+1-[\mathrm{vw} \mathrm{u}]-(\overrightarrow{\mathrm{u}} . \overrightarrow{\mathrm{v}})^{2}=0$
$2[\mathrm{u} \mathrm{v} \mathrm{w}]=1-(\overrightarrow{\mathrm{u}} . \overrightarrow{\mathrm{v}})^{2}$
$[\mathrm{u} \mathrm{v} \mathrm{w}]_{\text {max }}=\frac{1}{2}$
when $\overrightarrow{\mathrm{u}} . \overrightarrow{\mathrm{v}}=\overrightarrow{0} \quad \Rightarrow \quad \overrightarrow{\mathrm{u}} \perp \overrightarrow{\mathrm{v}}$
15. Angular point OABC are $(0,0,0),(0,0,2)$, $(0,4,0) \&(6,0,0)$
Let centre of sphere be (r, r, r)
Equation of plane passing ABC is
$\frac{x}{6}+\frac{y}{4}+\frac{z}{2}=1$
$r=\left|\frac{\frac{r}{6}+\frac{r}{4}+\frac{r}{2}-1}{\sqrt{\frac{1}{6^{2}}+\frac{1}{4^{2}}+\frac{1}{2^{2}}}}\right|$
$7 \mathrm{r}= \pm(11 \mathrm{r}-12)$
$\mathrm{r}=\frac{2}{3}, \mathrm{r}=3$ (not satisfied)
16. (a) Let \perp distance of \vec{c} from line joining \vec{a} and \vec{b} is p.

Now $\quad \Delta=\frac{1}{2}|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|=\frac{1}{2}|\overrightarrow{\mathrm{AB}}| \times \mathrm{p}$
$\Rightarrow \mathrm{p}=\frac{|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|}{|\overrightarrow{\mathrm{AB}}|}$

$$
=\frac{|(\vec{b}-\vec{a}) \times(\vec{c}-\vec{a})|}{|\vec{b}-\vec{a}|}=\frac{|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|}{|\vec{b}-\vec{a}|}
$$

(b) Equation of line AM is

$$
\overrightarrow{\mathrm{r}}=\lambda\left(\overrightarrow{\mathrm{b}}+\frac{\overrightarrow{\mathrm{d}}}{2}\right)
$$

Equation of line BD is
$\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{b}}+\mu(\overrightarrow{\mathrm{d}}-\overrightarrow{\mathrm{b}})$
to obtain point of intersection

$\lambda\left(\overrightarrow{\mathrm{b}}+\frac{\overrightarrow{\mathrm{d}}}{2}\right)=\overrightarrow{\mathrm{b}}+\mu(\overrightarrow{\mathrm{d}}-\overrightarrow{\mathrm{b}})$
$\Rightarrow \lambda=1-\mu \& \frac{\lambda}{2}=\mu$
$\Rightarrow \lambda=1-\frac{\lambda}{2} \quad$ or $\quad \lambda=\frac{2}{3}$
hence point O is $\frac{2}{3}\left(\overrightarrow{\mathrm{~b}}+\frac{\overrightarrow{\mathrm{d}}}{2}\right)$
Area $\mathrm{OMCD}=$ Area $\mathrm{OMC}+$ Area OCD
$=\frac{1}{2}\left|\frac{1}{3}\left(\overrightarrow{\mathrm{~b}}+\frac{\overrightarrow{\mathrm{d}}}{2}\right) \times\left(\frac{\overrightarrow{\mathrm{b}}}{3}+\frac{2 \overrightarrow{\mathrm{~d}}}{3}\right)\right|+\frac{1}{2}\left|\left(\frac{\overrightarrow{\mathrm{~b}}}{3}+\frac{2 \overrightarrow{\mathrm{~d}}}{3}\right) \times\left(\frac{-2}{3} \overrightarrow{\mathrm{~b}}+\frac{2}{3} \overrightarrow{\mathrm{~d}}\right)\right|$
$\left.=\frac{1}{2} \left\lvert\, \frac{1}{9}\left(\overrightarrow{\mathrm{~b}} \times 2 \overrightarrow{\mathrm{~d}}+\frac{\overrightarrow{\mathrm{d}}}{2} \times \overrightarrow{\mathrm{b}}\right)\right.\right) \left.\left|+\frac{1}{2}\right| \frac{1}{9}(\overrightarrow{\mathrm{~b}} \times 2 \overrightarrow{\mathrm{~d}}-4 \overrightarrow{\mathrm{~d}} \times \overrightarrow{\mathrm{b}}) \right\rvert\,$
$=\frac{1}{18}\left|\frac{3}{2} \overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{d}}\right|+\frac{1}{18}|6 \overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{d}}|=\frac{1}{18} \times \frac{15}{2}|\overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{d}}|$
$=\frac{15}{18 \times 2} \times 12=5$ sq. units
$=\frac{1}{18}\left|\frac{3}{2} \overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{d}}\right|+\frac{1}{18}|6 \overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{d}}|=\frac{1}{18} \times \frac{15}{2}|\overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{d}}|$
$=\frac{15}{18 \times 2} \times 12=5$ sq. units
17. Let $|\overrightarrow{\mathrm{u}}|=\lambda$
$\overrightarrow{\mathrm{u}}=\frac{\lambda}{2}(\hat{\mathrm{i}}+\sqrt{3} \hat{\mathrm{j}})$
Given $\left|\frac{\lambda}{2}(\hat{\mathrm{i}}+\sqrt{3} \hat{\mathrm{j}})-\hat{\mathrm{i}}\right|^{2}=\lambda\left|\frac{\lambda}{2}(\hat{\mathrm{i}}+\sqrt{3} \hat{\mathrm{j}})-2 \hat{\mathrm{i}}\right|$

$$
\left(\left(\frac{\lambda}{2}-1\right)^{2}+\frac{3 \lambda^{2}}{4}\right)^{2}=\lambda^{2}
$$

$$
\left(\left(\frac{\lambda-4}{2}\right)^{2}+\frac{3 \lambda^{2}}{4}\right)
$$

$\left(4 \lambda^{2}-4 \lambda+4\right)^{2}=16 \lambda^{2}\left(\lambda^{2}-2 \lambda+4\right)$
$\left(\lambda^{2}-\lambda+1\right)^{2}=\lambda^{2}\left(\lambda^{2}-2 \lambda+4\right)$
solving we get $\lambda=\frac{-2 \pm \sqrt{4+4}}{2}=-1 \pm \sqrt{2}$
But $\lambda>0$
$\Rightarrow \lambda=\sqrt{2}-1$
$\therefore \quad \mathrm{a}=2, \mathrm{~b}=1$
18. For linearly dependent vectors

$$
\begin{aligned}
& \ell(\mathrm{i}-2 \mathrm{j}+3 \mathrm{k})+\mathrm{m}(-2 \mathrm{i}+3 \mathrm{j}-4 \mathrm{k})+\mathrm{n}(\mathrm{i}-\mathrm{j}+\mathrm{xk})=0 \\
& \ell-2 \mathrm{~m}+\mathrm{n}=0,-2 \ell+3 \mathrm{~m}-\mathrm{n}=0 \\
& 3 \ell-4 \mathrm{~m}+\mathrm{nx}=0 \\
& \therefore\left|\begin{array}{ccc}
1 & -2 & 1 \\
-2 & 3 & -1 \\
3 & -4 & \mathrm{x}
\end{array}\right|=0 \text { is } \mathrm{x}=1
\end{aligned}
$$

20. (i) $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$
$\Rightarrow 10 \vec{b}-3 \vec{c}=p \vec{a}+q \vec{b}+r \vec{c}$
$\mathrm{p}=0, \mathrm{q}=+10, \mathrm{r}=-3$
[$\vec{a}, \vec{b}, \vec{c}$ are non coplanar]
(ii) $(\vec{a} \times \vec{b}) \times(\vec{a} \times \vec{c}) \cdot \vec{d}$
$=\{((\vec{a} \times \vec{b}) \cdot \vec{c}) \vec{a}-((\vec{a} \times \vec{b}) \cdot \vec{a}) \vec{c}\} \cdot \vec{d}$
$=\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right] \vec{a} \cdot \vec{d}-0=20 \times(-5)=-100$
21. $\pm \hat{\mathrm{i}}$
22. vectors $\vec{a}, \vec{b} \& \vec{c}$ are non coplanar so are the vectors $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}$

Let position vector of circumcentre
$\vec{r} \equiv x(\vec{a} \times \vec{b})+y(\vec{b} \times c)+z(\vec{c} \times \vec{a})$
also $\mathrm{OE}=\mathrm{AE}=\mathrm{EB}=\mathrm{EC}$
$\Rightarrow \quad|\overrightarrow{\mathrm{r}}|=|\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{a}}|=|\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{c}}|$

or $\quad \overrightarrow{\mathrm{r}}^{2}=\overrightarrow{\mathrm{r}}^{2}+\overrightarrow{\mathrm{a}}^{2}-2 \overrightarrow{\mathrm{r}} . \overrightarrow{\mathrm{a}}$
$=\overrightarrow{\mathrm{r}}^{2}+\overrightarrow{\mathrm{b}}^{2}-2 \overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{r}}^{2}+\overrightarrow{\mathrm{c}}^{2}-2 \overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{c}}^{2}$
$\Rightarrow \quad 2 \overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{a}}^{2}, \quad 2 \overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{b}}^{2}, \quad 2 \overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{c}}^{2}$
or $2 y[\vec{a} \vec{b} \vec{c}]=\vec{a}^{2} \quad \Rightarrow y=\frac{\vec{a}^{2}}{2[\vec{a} \vec{b} \vec{c}]}$
23. $\vec{\alpha}=\hat{i}+a \hat{j}+a^{2} \hat{k}$

$$
\begin{aligned}
& \vec{\beta}=\hat{i}+b \hat{j}+b^{2} \hat{k} \\
& \vec{\gamma}=\hat{i}+c \hat{j}+c^{2} \hat{k}
\end{aligned}
$$

$\vec{\alpha}, \vec{\beta}, \vec{\gamma}$ are non coplanar

$$
\begin{aligned}
& \therefore\left|\begin{array}{lll}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right| \neq 0 \\
& \Rightarrow(a-b)(b-c)(c-a) \neq 0 \Rightarrow a \neq b \neq c
\end{aligned}
$$

If $\alpha_{1}, \beta_{1} \& \gamma_{1}$ are coplanar
Then $\left|\begin{array}{lll}1 & \mathrm{a}_{1} & \mathrm{a}_{1}^{2} \\ 1 & \mathrm{~b}_{1} & \mathrm{~b}_{1}^{2} \\ 1 & \mathrm{c}_{1} & \mathrm{c}_{1}^{2}\end{array}\right|=0$
$\Rightarrow \quad \mathrm{a}_{1}=\mathrm{b}_{1}=\mathrm{c}_{1}$

Given $\left|\begin{array}{lll}\left(a_{1}-a\right)^{2} & \left(a_{1}-b\right)^{2} & \left(a_{1}-c\right)^{2} \\ \left(b_{1}-a\right)^{2} & \left(b_{1}-b\right)^{2} & \left(b_{1}-c\right)^{2} \\ \left(c_{1}-a\right)^{2} & \left(c_{1}-b\right)^{2} & \left(c_{1}-c\right)^{2}\end{array}\right|=0$
$\Rightarrow \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2} \& \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{3}$, we get

$$
\left(a_{1}-b_{1}\right)\left(b_{1}-c_{1}\right)\left|\begin{array}{ccc}
a_{1}+b_{1}-2 a & a_{1}+b_{1}-2 b & a_{1}+b_{1}-2 c \\
b_{1}+c_{1}-2 a & b_{1}+c_{1}-2 b & b_{1}+c_{1}-2 c \\
\left(c_{1}-a\right)^{2} & \left(c_{1}-b\right)^{2} & \left(c_{1}-c\right)^{2}
\end{array}\right|=0
$$

$$
\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2}
$$

$$
\Rightarrow\left(a_{1}-b_{1}\right)\left(b_{1}-c_{1}\right)\left|\begin{array}{ccc}
a_{1}-c_{1} & a_{1}-c_{1} & a_{1}-c_{1} \\
b_{1}+c_{1}-2 a & b_{1}+c_{1}-2 b & b_{1}+c_{1}-2 c \\
\left(c_{1}-a\right)^{2} & \left(c_{1}-b\right)^{2} & \left(c_{1}-c^{2}\right)
\end{array}\right|=0
$$

$$
\Rightarrow\left(a_{1}-b_{1}\right)\left(b_{1}-c_{1}\right)\left(c_{1}-a_{1}\right)
$$

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
b_{1}+c_{1}-2 a & b_{1}+c_{1}-2 b & b_{1}+c_{1}-2 c \\
\left(c_{1}-a\right)^{2} & \left(c_{1}-b\right)^{2} & \left(c_{1}-c\right)^{2}
\end{array}\right|=0
$$

$$
\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-\mathrm{C}_{2} \quad \& \quad \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{3}
$$

$\Rightarrow\left(a_{1}-b_{1}\right)\left(b_{1}-c_{1}\right)\left(c_{1}-a_{1}\right)$

$\left(a_{1}-b_{1}\right)\left(b_{1}-c_{1}\right)\left(c_{1}-a_{1}\right) \Delta=0$
$\Rightarrow\left(\mathrm{a}_{1}-\mathrm{b}_{1}\right)\left(\mathrm{b}_{1}-\mathrm{c}_{1}\right)\left(\mathrm{c}_{1}-\mathrm{c}_{1}\right)=0 \quad[\Delta \neq 0]$
$\Rightarrow \mathrm{a}_{1}=\mathrm{b}_{1}=\mathrm{c}_{1}$
$\Rightarrow \vec{\alpha}_{1}, \vec{\beta}_{1}, \vec{\gamma}_{1}$ are coplanar
24. $\ell+\mathrm{m}+\mathrm{n}=0$
$\ell^{2}+\mathrm{m}^{2}=\mathrm{n}^{2}$
Put $\mathrm{n}=-(\ell+\mathrm{m})$ in (2)
$\ell^{2}+\mathrm{m}^{2}=\ell^{2}+\mathrm{m}^{2}+2 \ell \mathrm{~m}$
$\Rightarrow \ell \mathrm{m}=0$
(i) if $\ell=0 ; \mathrm{m} \neq 0$ then from (1) $\mathrm{m}=-\mathrm{n}$
$\therefore \quad \frac{\ell}{0}=\frac{\mathrm{m}}{1}=\frac{\mathrm{n}}{-1}$
\therefore direction cosine are : $0, \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}$
(ii) if $\ell \neq 0 ; \mathrm{m}=0$, then from (1), $\ell=-\mathrm{n}$
$\therefore \quad \frac{\ell}{1}=\frac{m}{0}=\frac{n}{-1}$
$\therefore \quad$ direction cosine are : $\frac{1}{\sqrt{2}}, 0, \frac{-1}{\sqrt{2}}$
Let θ be the angle between the lines
$\therefore \quad \cos \theta=0+0+\frac{1}{2}$

$$
\cos \theta=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{3}
$$

25. $|\overrightarrow{\mathrm{r}}+\mathrm{b} \overrightarrow{\mathrm{s}}|$ is minimum

Let $f(b)=\sqrt{\overrightarrow{\mathrm{r}}^{2}+\overrightarrow{\mathrm{b}}^{2} \overrightarrow{\mathrm{~s}}^{2}+2 \overrightarrow{\mathrm{r}} . \mathrm{b} \overrightarrow{\mathrm{s}}}$
for maxima \& minima

$$
\begin{aligned}
f(b) & =\frac{2 b \overrightarrow{\mathrm{~s}}^{2}+2 \overrightarrow{\mathrm{r}} . \overrightarrow{\mathrm{s}}}{\sqrt{\overrightarrow{\mathrm{r}}^{2}+\mathrm{b}^{2} \overrightarrow{\mathrm{~s}}^{2}+2 \mathrm{~b} \overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{~s}}}}=0 \\
\mathrm{~b} & =-\frac{\overrightarrow{\mathrm{r}} . \overrightarrow{\mathrm{s}}}{\overrightarrow{\mathrm{~s}}^{2}}
\end{aligned}
$$

$|\mathrm{bs}|^{2}+|\overrightarrow{\mathrm{r}}+\mathrm{bs}|^{2}=\mathrm{b}^{2} \overrightarrow{\mathrm{~s}}^{2}+\overrightarrow{\mathrm{r}}^{2}+\mathrm{b}^{2} \overrightarrow{\mathrm{~s}}^{2}+2 \mathrm{~b} \overrightarrow{\mathrm{r}} . \overrightarrow{\mathrm{s}}$

$$
=2 b^{2} \overrightarrow{\mathrm{~s}}^{2}+\overrightarrow{\mathrm{r}}^{2}-2 \mathrm{~b}^{2} \overrightarrow{\mathrm{~s}}^{2}=|\overrightarrow{\mathrm{r}}|^{2}
$$

26. Angle between two vectors

$$
=\frac{1 \times 1+(-1)(1)+(1)(-1)}{\sqrt{3} \sqrt{3}}=-\frac{1}{3}
$$

Hence obtuse angle between them.
Vector along acute angle bisector

$$
\begin{gathered}
=\lambda\left[\frac{\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{3}}-\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}}{\sqrt{3}}\right] \\
\frac{2 \lambda}{\sqrt{3}}[-\hat{\mathrm{j}}+\hat{\mathrm{k}}]=\mathrm{t}(\hat{\mathrm{j}}-\hat{\mathrm{k}})
\end{gathered}
$$

hence equation of acute angle bisector

$$
=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\mathrm{t}(\hat{\mathrm{j}}-\hat{\mathrm{k}})
$$

27. Line: $\frac{x-1}{2}=\frac{y+2}{-3}=\frac{z}{5}$

Plane : $\mathrm{x}-\mathrm{y}+\mathrm{z}+2=0$
The vector perpendicular to required plane is
$\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & -3 & 5 \\ 1 & -1 & 2\end{array}\right|=2 \hat{i}+3 \hat{j}+\hat{k}$
Now equation of plane passing through $(1,-2,0)$ and perpendicular to $2 \hat{i}+3 \hat{j}+\hat{k}$

$$
\begin{aligned}
& (x-1) 2+(y+2) 3+(z-0) 1=0 \\
\Rightarrow & 2 x+3 y+z+4=0
\end{aligned}
$$

28. $L_{1}: \frac{x}{0}=\frac{y}{b}=\frac{z-c}{-c}=r$
$\mathrm{L}_{2}: \frac{\mathrm{x}}{\mathrm{a}}=\frac{\mathrm{y}}{0}=\frac{\mathrm{z}+\mathrm{c}}{\mathrm{c}}=\ell$
Dr's of AB are $-\mathrm{a} \ell, \mathrm{br},-\mathrm{cr}-\mathrm{c} \ell+2 \mathrm{c}$
AB is perpendicular to both the lines
$\therefore \quad 0(-\mathrm{a} \ell)+\mathrm{b} . \mathrm{br}+(-\mathrm{c})(-\mathrm{cr}-\mathrm{c} \ell+2 \mathrm{c})=0$

$$
\begin{equation*}
\left(b^{2}+c^{2}\right) r+c^{2} \ell=2 c^{2} \tag{1}
\end{equation*}
$$

and $\mathrm{a}(-\mathrm{a} \ell)+0(\mathrm{br})+\mathrm{c}(-\mathrm{cr}-\mathrm{c} \ell+2 \mathrm{c})=0$

$$
-\left(\mathrm{a}^{2}+\mathrm{c}^{2}\right) \ell-\mathrm{c}^{2} \mathrm{r}+2 \mathrm{c}^{2}=0
$$

$\left(\mathrm{a}^{2}+\mathrm{c}^{2}\right) \ell+\mathrm{c}^{2} \mathrm{r}=2 \mathrm{c}^{2}$
from (1) \& (2)
$\ell=\frac{2 b^{2} c^{2}}{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}}, r=\frac{2 a^{2} c^{2}}{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}}$
$A\left(0, \frac{2 a^{2} b c^{2}}{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}}, c\left(\frac{a^{2} b^{2}+b^{2} c^{2}-c^{2} a^{2}}{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}}\right)\right)$
$B\left(\frac{2 a b^{2} c^{2}}{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}}, 0, c\left(\frac{b^{2} c^{2}-a^{2} b^{2}-c^{2} a^{2}}{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}}\right)\right)$
$4 d^{2}=\frac{4 a^{2} b^{4} c^{4}}{\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)^{2}}+\frac{4 a^{4} b^{2} c^{4}}{\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)^{2}}+$
$\frac{4 c^{2}\left(a^{4} b^{4}\right)}{\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)^{2}}$
$\frac{1}{d^{2}}=\frac{\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)^{2}}{a^{2} b^{4} c^{4}+a^{4} b^{2} c^{4}+a^{4} b^{4} c^{2}}=\frac{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}}{a^{2} b^{2} c^{2}}$
$\frac{1}{\mathrm{~d}^{2}}=\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}+\frac{1}{\mathrm{c}^{2}}$
29. Given $\overrightarrow{\mathrm{OP}_{\mathrm{n}-1}}+\overrightarrow{\mathrm{OP}_{\mathrm{n}+1}}=\frac{3}{2} \overrightarrow{\mathrm{OP}_{\mathrm{n}}} \mathrm{n}=2,3$
(a) Let $P_{1} \& P_{2}$ be $\left(t_{1}, \frac{1}{t_{1}}\right) \&\left(t_{2}, \frac{1}{t_{2}}\right)$
for $\mathrm{n}=2$
$\overrightarrow{\mathrm{OP}_{1}}+\overrightarrow{\mathrm{OP}_{3}}=\frac{3}{2} \overrightarrow{\mathrm{OP}_{2}}$
$\Rightarrow \overrightarrow{\mathrm{OP}_{3}}=\frac{3}{2}\left(\mathrm{t}_{2} \hat{\mathrm{i}}+\frac{1}{\mathrm{t}_{2}} \hat{\mathrm{j}}\right)-\mathrm{t}_{1} \mathrm{i}-\frac{1}{\mathrm{t}_{1}} \hat{\mathrm{j}}$
or $\quad \overrightarrow{\mathrm{OP}_{3}}=\left(\frac{3}{2} \mathrm{t}_{2}-\mathrm{t}_{1}\right) \hat{\mathrm{i}}+\left(\frac{3}{2 \mathrm{t}_{2}}-\frac{1}{\mathrm{t}_{1}}\right) \hat{\mathrm{j}}$
Point $\quad P_{3}=\left(\frac{3 t_{2}-2 t_{1}}{2}, \frac{3 t_{1}-2 t_{2}}{2 t_{1} t_{2}}\right)$
which does not lie on $\mathrm{xy}=1$
(b) Let $\mathrm{P}_{1} \& \mathrm{P}_{3}$ on circle $\mathrm{x}^{2}+\mathrm{y}^{2}=1$
are $(\cos \alpha, \sin \alpha),(\cos \beta, \sin \beta)$
For $\mathrm{n}=2, \overrightarrow{\mathrm{OP}_{1}}+\overrightarrow{\mathrm{OP}_{3}}=\frac{3}{2} \overrightarrow{\mathrm{OP}_{2}}$
$\overrightarrow{\mathrm{OP}_{2}}=\frac{2}{3}\{(\cos \alpha \hat{\mathrm{i}}+\sin \alpha \hat{\mathrm{j}})+(\cos \beta \hat{\mathrm{i}}+\sin \beta \hat{\mathrm{j}})\}$
$\overrightarrow{\mathrm{OP}_{2}}=\frac{2}{3}\{(\cos \alpha+\cos \beta) \hat{\mathrm{i}}+(\sin \alpha+\sin \beta) \hat{\mathrm{j}}\}$
As P_{2} lies on the circle then
$\left|\overrightarrow{\mathrm{OP}_{2}}\right|=1$
$\frac{4}{9}\left\{(\cos \alpha+\cos \beta)^{2}+(\sin \alpha+\sin \beta)^{2}\right\}=1$
$2+2 \cos (\alpha-\beta)=\frac{9}{4}$
$\Rightarrow \cos (\alpha-\beta)=\frac{1}{8}$
$\overrightarrow{\mathrm{OP}_{4}}=\frac{3}{2} \overrightarrow{\mathrm{OP}_{3}}-\frac{2}{3}\left(\overrightarrow{\mathrm{OP}_{1}}+\overrightarrow{\mathrm{OP}_{3}}\right)$
$=\frac{5}{6} \overrightarrow{\mathrm{OP}_{3}}-\frac{2}{3} \overrightarrow{\mathrm{OP}_{1}}$
$=\left(\frac{5}{6} \cos \alpha-\frac{2}{3} \cos \beta\right) \hat{\mathrm{i}}+\left(\frac{5}{6} \sin \alpha-\frac{2}{3} \sin \beta\right) \hat{\mathrm{j}}$
$\left|\overrightarrow{\mathrm{OP}_{4}}\right|^{2}=\frac{25}{36}+\frac{4}{9}-2 \cdot \frac{5}{6} \cdot \frac{2}{3} \cos (\alpha-\beta)=1$
$\Rightarrow P_{4}$ lies on $x^{2}+y^{2}=1$
30. $3 \hat{i}+3 \hat{k}$
31. a

$$
\overrightarrow{\mathrm{AB}}=3 \hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{k} \quad \overrightarrow{\mathrm{AC}}=4 \hat{i}+2 \hat{j}+4 \hat{k}
$$

$$
\overrightarrow{\mathrm{AD}}=2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}
$$

$\mathrm{V}=\frac{1}{6}\left|\begin{array}{ccc}3 & -1 & -1 \\ 4 & 2 & 4 \\ 2 & 2 & 0\end{array}\right|=6$ cubic unit
a (ii) Equation of line AB is

$$
\overrightarrow{\mathrm{r}}=\hat{\mathrm{j}}+2 \hat{\mathrm{k}}+\lambda(3 \hat{\mathrm{i}}-\mathrm{j}-\hat{\mathrm{k}})
$$

Equation of Line CD is

$$
\overrightarrow{\mathrm{r}}=4 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}+\mu(-2 \hat{\mathrm{i}}-4 \hat{\mathrm{k}})
$$

Shortest distance $=\frac{\left(a_{2}-a_{1}\right) \cdot\left(b_{1} \times b_{2}\right)}{\left|b_{1} \times b_{2}\right|}$
$=\frac{[(4 \hat{i}+3 \hat{j}+6 \hat{k})-(\hat{j}+2 \hat{k})] \cdot[(3 \hat{i}-\hat{j}-\hat{k}) \times(-2 \hat{i}-4 \hat{k})]}{|(3 \hat{i}-\hat{j}-\hat{k}) \times(2 \hat{i}-4 \hat{k})|}$
$=\frac{[4 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}] \cdot[4 \hat{\mathrm{i}}+14 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}]}{|4 \hat{\mathrm{i}}+14 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}|}$
$=\frac{16+28-8}{\sqrt{16+196+4}}=\frac{36}{\sqrt{216}}=\frac{26}{2 \sqrt{54}}=\frac{18}{3 \sqrt{6}}=\sqrt{6}$
(b) $\overrightarrow{\mathrm{AD}}=-2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}}, \overrightarrow{\mathrm{AC}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$
$\therefore \quad$ vector perpendicular to the face ADC is

$$
=\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\
-2 & 2 & -1 \\
1 & 2 & 2
\end{array}\right|=6 \hat{i}+3 \hat{\mathrm{j}}-6 \hat{\mathrm{k}}
$$

$$
\overrightarrow{\mathrm{AB}}=3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}
$$

$\therefore \quad$ A vector perpendicular to the face ABC is

$$
=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
0 & 3 & 4 \\
1 & 2 & 2
\end{array}\right|=-2 \hat{i}+4 \hat{j}-3 \hat{k}
$$

$\therefore \quad$ acute angle between the two faces is given by

$$
\begin{aligned}
\cos \theta & =\left|\frac{-12+12+18}{\sqrt{36+9+36} \sqrt{4+16+9}}\right|=\frac{2}{\sqrt{29}} \\
\therefore \quad \tan \theta & =\frac{5}{2} \quad \therefore \quad \theta=\tan ^{-1} \frac{5}{2}
\end{aligned}
$$

32. $\overrightarrow{\mathrm{OP}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$
after rotation of $\overrightarrow{\mathrm{OP}}$, let new vector is $\overrightarrow{\mathrm{OP}}{ }^{\prime}$
Now $\overrightarrow{\mathrm{OP}}, \hat{\mathrm{i}}, \overrightarrow{\mathrm{OP}}^{\prime}$ will be coplanar
So $\quad \overrightarrow{\mathrm{OP}}{ }^{\prime}=|\overrightarrow{\mathrm{OP}}| \frac{(\overrightarrow{\mathrm{OP}} \times \hat{\mathrm{i}}) \times \overrightarrow{\mathrm{OP}}}{|(\overrightarrow{\mathrm{OP}} \times \hat{\mathrm{i}}) \times \overrightarrow{\mathrm{OP}}|}[\because|\overrightarrow{\mathrm{OP}}|=|\overrightarrow{\mathrm{OP}}|]$
But $(\overrightarrow{\mathrm{OP}} \times \hat{\mathrm{i}}) \times \overrightarrow{\mathrm{OP}}=8 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}$
$\Rightarrow \overrightarrow{\mathrm{OP}}{ }^{\prime}=\frac{3(8 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})}{2 \times 3 \sqrt{2}}$
or $\quad \overrightarrow{\mathrm{OP}^{\prime}}=\frac{4}{\sqrt{2}} \hat{\mathrm{i}}-\frac{1}{\sqrt{2}} \hat{\mathrm{j}}-\frac{1}{\sqrt{2}} \hat{\mathrm{k}}$
33. $\vec{a} \times \vec{b}-\vec{c} \times \vec{b}+\vec{c} \times \vec{a}-\vec{c} \times \vec{c}$
$(\vec{a}-\vec{c}) \times \vec{b}+\vec{c} \times(\vec{a}-\vec{c})=0$
$(\vec{a}-\vec{c}) \times(\vec{b}-\vec{c})=0$
$\overrightarrow{\mathrm{CA}} \times \overrightarrow{\mathrm{CB}}=0 \quad \therefore \quad \overrightarrow{\mathrm{BC}}$ is $\|$ to $\overrightarrow{\mathrm{AC}}$
$\overrightarrow{\mathrm{BC}}= \pm 14\left(\frac{2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}}{7}\right)= \pm(4 \hat{\mathrm{i}}-6 \hat{\mathrm{j}}+12 \hat{\mathrm{k}})$
34. $\mathrm{O}(0,0), \mathrm{A}(1,0) \& \mathrm{~B}(-1,0)$

Let $\quad \mathrm{P}(\mathrm{x}, \mathrm{y})$
$\overrightarrow{\mathrm{PA}}=(1-x) \hat{i}-y \hat{j}$
$\overrightarrow{\mathrm{PB}}=-(1+x) \hat{\mathrm{i}}-y \hat{j}$
$\overrightarrow{\mathrm{PA}} \cdot \overrightarrow{\mathrm{PB}}+3 \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=0$
$\Rightarrow\left(x^{2}-1\right)+y^{2}-3=0$

$$
\begin{equation*}
x^{2}+y^{2}=4 \tag{1}
\end{equation*}
$$

$|\overrightarrow{\mathrm{PA}}||\overrightarrow{\mathrm{PB}}|=\sqrt{(\mathrm{x}-1)^{2}+\mathrm{y}^{2}} \sqrt{(\mathrm{x}+1)^{2}+\mathrm{y}^{2}}$

$$
\begin{aligned}
& =\sqrt{5-2 x} \cdot \sqrt{5+2 x} \\
& =\sqrt{25-4 x^{2}}, \quad x \in(-2,2) \quad(\text { from }(1))
\end{aligned}
$$

so $M=5, m=3$
$\Rightarrow \mathrm{M}^{2}+\mathrm{m}^{2}=25+9=34$
35. Let the plane is
$(2 x+3 y-z)+1+\lambda(x+y-2 z+3)=0$
$(2+\lambda) x+(3+\lambda) y-(1+2 \lambda) z+1+3 \lambda=0$
$3(2+\lambda)-(3+\lambda)+2(1+2 \lambda)=0$
$6 \lambda+5=0 \quad \Rightarrow \quad \lambda=-5 / 6$
Putting value of λ in (1)
$7 x+13 y+4 z-9=0$
Now image of $(1,1,1)$ in plane π is

$$
\begin{aligned}
& \frac{x-1}{7}=\frac{y-1}{13}=\frac{z-1}{4}=-2\left(\frac{7+13+4-9}{49+169+16}\right) \\
& \Rightarrow \frac{x-1}{7}=\frac{y-1}{13}=\frac{z-1}{4}=-\frac{15}{117} \\
& x=\frac{12}{117}, y=\frac{-78}{117}, z=\frac{57}{117}
\end{aligned}
$$

36. $\lambda=-2 \pm \sqrt{29}$
37. Equation of plane passing through $(1,1,1)$ is
$a(x-1)+b(y-1)+c(z-1)=0$
\because it passes through $(1,-1,1)$ and $(-7,-3,-5)$
$\therefore \quad \mathrm{a} .0-2 . \mathrm{b}+0 . \mathrm{c}=0 \Rightarrow \mathrm{~b}=0$
and $-8 a-4 b-6 c=0$
$4 a+2 b+3 c=0 \quad \because \quad b=0$
$\therefore 4 a+3 c=0 \quad \Rightarrow \quad c=-\frac{4 a}{3}$
$\therefore \quad \mathrm{dr}$'s of normal to the plane are $1,0-\frac{4}{3}$
and dr's of the normal to the x -z plane are $0,1,0$
$\therefore \cos \theta=\left|\frac{0+0+0}{\sqrt{\Sigma \mathrm{a}^{2}} \sqrt{\Sigma \mathrm{a}_{1}^{2}}}\right|=0 \quad \therefore \quad \theta=\frac{\pi}{2}$
38. $\overrightarrow{\mathrm{x}} \times \overrightarrow{\mathrm{a}}+(\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{b}}) \overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{c}}$
taking cross product with \vec{b} :
$(\vec{x} \times \vec{a}) \times \vec{b}+(\vec{x} \cdot \vec{b})(\vec{a} \times \vec{b})=\vec{c} \times \vec{b}$
$(\vec{x} \cdot \vec{b}) \vec{a}-(\vec{a} \cdot \vec{b}) \vec{x}+(\vec{x} \cdot \vec{b})(\vec{a} \times \vec{b})=\vec{c} \times \vec{b}$
Now taking dot product with \vec{a} in (i)
$(\overrightarrow{\mathrm{x}} . \overrightarrow{\mathrm{b}}) \mathrm{a}^{2}=\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}$
$\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{b}}=\frac{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}}{\mathrm{a}^{2}}$
$\frac{(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}})}{\mathrm{a}^{2}} \overrightarrow{\mathrm{a}}-(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}) \overrightarrow{\mathrm{x}}+\frac{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}}{\mathrm{a}^{2}}(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})=\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{b}}$
$\frac{1}{(\vec{a} \cdot \vec{b})}\left[\frac{(\vec{a} \cdot \vec{c})}{a^{2}} \vec{a}+\frac{\vec{a} \cdot \vec{c}}{a^{2}}(\vec{a} \times \vec{b})-\vec{c} \times \vec{b}\right]=\vec{x}$
$\vec{x}=\frac{1}{(\vec{a} \cdot \vec{b})}\left[\frac{\vec{a} \cdot \vec{c}}{a^{2}}(\vec{a}-\vec{b} \times \vec{a})+\vec{b} \times \vec{c}\right]$
39. $S D=\frac{(\hat{i}-\hat{j}+2 \hat{k}-4 \hat{i}+\hat{j}) \cdot[(\hat{i}+2 \hat{j}-3 \hat{k}) \times(2 \hat{i}+4 \hat{j}-5 \hat{k})]}{|(\hat{i}+2 \hat{j}-3 \hat{k}) \times(2 \hat{i}+4 \hat{j}-5 \hat{k})|}$
$=\left|\frac{(-3 \hat{i}+2 \hat{k}) \cdot(2 \hat{i}-j)}{|2 \hat{i}-\hat{j}|}\right|=\frac{6}{\sqrt{5}}$
40. $x=\frac{\frac{\vec{a} \times \vec{b}}{\gamma}-\vec{a} \times \frac{\vec{a} \times \vec{b}}{\gamma}}{\left(\frac{\vec{a} \times \vec{b}}{\gamma}\right)^{2}}$;
$y=\frac{\vec{a} \times \vec{b}}{\gamma} ; \quad z=\frac{\frac{\vec{a} \times \vec{b}}{\gamma}+\vec{b} \times \frac{\vec{a} \times \vec{b}}{\gamma}}{\left(\frac{\vec{a} \times \vec{b}}{\gamma}\right)^{2}}$
41. Let the required point be $\mathrm{P}(\alpha, \beta, \gamma)$
$\mathrm{OP}=\mathrm{PA}=\mathrm{PB}=\mathrm{PC}$
$\therefore \quad \mathrm{OP}^{2}=\mathrm{PA}^{2}=\mathrm{PB}^{2}=\mathrm{PC}^{2}$
$\alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha-a)^{2}+\beta^{2}+\gamma^{2}=\alpha^{2}+(\beta-b)^{2}+$
$y^{2}=\alpha^{2}+\beta^{2}+(\gamma-c)^{2}$

$\therefore \alpha=\frac{\mathrm{a}}{2} ; \beta=\frac{\mathrm{b}}{2} ; \gamma=\frac{\mathrm{c}}{2}$
$\therefore \quad$ required point is $\left(\frac{\mathrm{a}}{2}, \frac{\mathrm{~b}}{2}, \frac{\mathrm{c}}{2}\right)$
42.

In cyclic quadrilateral

$$
\begin{aligned}
& \tan A+\tan \mathrm{C}=0 \\
& \Rightarrow \frac{|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AD}}|}{\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AD}}}+\frac{|\overrightarrow{\mathrm{CB}} \times \overrightarrow{\mathrm{CD}}|}{\overrightarrow{\mathrm{CB}} \cdot \overrightarrow{\mathrm{CD}}}=0 \\
& \Rightarrow \frac{|(\overrightarrow{\mathrm{~b}}-\overrightarrow{\mathrm{a}}) \times(\overrightarrow{\mathrm{d}}-\overrightarrow{\mathrm{a}})|}{(\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}}) \cdot(\overrightarrow{\mathrm{d}}-\overrightarrow{\mathrm{a}})}+\frac{|(\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{c}}) \times(\overrightarrow{\mathrm{d}}-\overrightarrow{\mathrm{c}})|}{(\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{c}}) \cdot(\overrightarrow{\mathrm{d}}-\overrightarrow{\mathrm{c}})}=0 \\
& \Rightarrow \frac{|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{d}}+\overrightarrow{\mathrm{d}} \times \overrightarrow{\mathrm{a}}|}{(\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}}) \cdot(\overrightarrow{\mathrm{d}}-\overrightarrow{\mathrm{a}})}+\frac{|\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}+\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{d}}+\overrightarrow{\mathrm{d}} \times \overrightarrow{\mathrm{b}}|}{(\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{c}}) \cdot(\overrightarrow{\mathrm{d}}-\overrightarrow{\mathrm{c}})}=0
\end{aligned}
$$

43. $\therefore 3.1-2.4+5 \times 1=0$, line is parallel to the plane
\therefore reflection of line will also have same direction ratios i.e. $3,4,5$

Also mirror image of $(1,2,3)$ will be on required line.
$\frac{x-1}{1}=\frac{y-2}{-2}=\frac{z-3}{1}=-2\left(\frac{1-4+3-6}{1^{2}+1^{2}+(-2)^{2}}\right)$
$(x, y, z)=(3,-2,5)$
$\therefore \quad$ equation of straight line $\frac{x-3}{3}=\frac{y+2}{4}=\frac{z-5}{5}$
44. Planes are $\mathrm{x}-2 \mathrm{y}+\mathrm{z}=1$
$x+2 y-2 z=5$
$2 x+2 y+z=-6$
Add (i) + (iii) + (iiii)
$4 x+2 y=0 \Rightarrow y=-2 x$
From equations (iiii) - (i)
$x+4 y=-7$
from (iv) and (v) we get
$\mathrm{x}=1, \mathrm{y}=-2$
Put in (i) we get $z=-4$
So point of intersection is $(1,-2,-4)$
45. $2 r+1-(3 r+2)+2(4 r+3)+2=0$
$7 \mathrm{r}+7=0 \quad \Rightarrow \mathrm{r}=-1$
$\therefore \mathrm{A}(-1,-1,-1)$
required line will be projection of given line in the plane foot of \perp of P will be on D
$\frac{x-1}{2}=\frac{y-2}{-1}=\frac{z-3}{2}=-\left(\frac{2.1-2+2.3+2}{2^{2}+(-1)^{2}+2^{2}}\right)$
$\frac{x-1}{2}=\frac{y-2}{-1}=\frac{z-3}{2}=\frac{-8}{9}$

$x=\frac{-7}{9} ; y=\frac{26}{9} ; z=\frac{11}{9}$
$\frac{x+1}{2 / 9}=\frac{y+1}{35 / 9}=\frac{z+1}{20 / 9}$
$\frac{x+1}{2}=\frac{y+1}{35}=\frac{z+1}{20}$
46. $\overrightarrow{\mathrm{x}}+\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{y}}=\overrightarrow{\mathrm{a}}$
$\Rightarrow \overrightarrow{\mathrm{y}}=\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{x}}$ put in (i)
$\overrightarrow{\mathrm{x}}+\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{c}} \times(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{x}})=\overrightarrow{\mathrm{a}}$
$\overrightarrow{\mathrm{x}}-(\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{x}}) \overrightarrow{\mathrm{c}}+(\mathrm{c} \cdot \overrightarrow{\mathrm{c}}) \overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{b}}$
$\left(1+\mathrm{c}^{2}\right) \overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{b}}+(\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{x}}) \overrightarrow{\mathrm{c}}$
Taking both side dot product with $\overrightarrow{\mathrm{c}}$ in equation (i)
We get $\overrightarrow{\mathrm{x}} . \overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{a}} . \overrightarrow{\mathrm{c}}, \quad$ (put in (iiii))
$\overrightarrow{\mathrm{x}}=\frac{\mathrm{a}+(\overrightarrow{\mathrm{a}} . \overrightarrow{\mathrm{c}}) \overrightarrow{\mathrm{c}}+\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}}{1+\overrightarrow{\mathrm{c}}^{2}}$
Putting in (iii), we get $\overrightarrow{\mathrm{y}}=\frac{\overrightarrow{\mathrm{b}}+(\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{b}}) \overrightarrow{\mathrm{c}}+\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{c}}}{1+(\overrightarrow{\mathrm{c}})^{2}}$
47. $\frac{x-4}{1}=\frac{y-3}{-4}=\frac{z-2}{5}$

$\frac{x-3}{1}=\frac{y+2}{1 / \lambda}=\frac{z-0}{1 / \mu}$
Equation of the plane is

$$
\left|\begin{array}{ccc}
x-3 & y+2 & z \\
1 & 5 & 2 \\
1 & -4 & 5
\end{array}\right|=0
$$

$(\mathrm{x}-3)(25+8)-(\mathrm{y}+2)(5-2)+\mathrm{z}(-4-5)=0$
$33 \mathrm{x}-99-3 \mathrm{y}-6-9 \mathrm{z}=0$
$33 x-3 y-9 z-105=0$
$11 \mathrm{x}-\mathrm{y}-3 \mathrm{z}=35$
48. $\overrightarrow{\mathrm{a}}=\sqrt{3} \mathrm{i}-\hat{\mathrm{j}}, \overrightarrow{\mathrm{b}}=\frac{1}{2} \hat{\mathrm{i}}+\frac{\sqrt{3}}{2} \hat{\mathrm{j}}$

$$
\Rightarrow \quad \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}}=0
$$

$$
\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{y}}=0 \text { (given) }
$$

$$
\left(\vec{a}+\left(q^{2}-3\right) \vec{b}\right) \cdot(-p \vec{a}+q \vec{b})=0
$$

$\Rightarrow \mathrm{p}=\frac{\mathrm{q}\left(\mathrm{q}^{2}-3\right)}{4}=\mathrm{f}(\mathrm{q})$
for monotonocity

$$
\mathrm{p}^{\prime}=3 \mathrm{q}^{2}-3
$$

if $\mathrm{p}^{\prime}<0$ then $\mathrm{f}(\mathrm{q})$ is decreasing

$$
\begin{aligned}
& \Rightarrow \quad(\mathrm{q}-1)(\mathrm{q}+1)<0 \\
& \Rightarrow \quad-1<\mathrm{q}<1
\end{aligned}
$$

Decreasing for $\mathrm{q} \in(-1,1), \mathrm{q} \neq 0$
49.

$$
\begin{aligned}
& x+y+z-3 \sqrt{3}=0 \\
& p=\left|\frac{-3 \sqrt{3}}{\sqrt{3}}\right|=3 \\
& \Rightarrow r=4
\end{aligned}
$$

50. (a) Since tetrahedron is regular $\mathrm{AB}=\mathrm{BC}=\mathrm{AC}=\mathrm{DC}$ and angle between two adjcant side $=\pi / 3$ consider planes ABD and DBC vector, normal to plane ABD is $=\vec{a} \times \vec{b}$ vector, normal to plane DBC is $=\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}$ angle between these planes is angle between

vectors $(\vec{a} \times \vec{b}) \&(\vec{b} \times \vec{c})$
$\Rightarrow \cos \theta=\frac{(\vec{a} \times \vec{b}) \cdot(\vec{b} \times \overrightarrow{\mathrm{c}})}{|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}||\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}|}=\frac{-\frac{1}{4}|\overrightarrow{\mathrm{~b}}|^{2}|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{c}}|}{\frac{3}{4}|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}|^{2}|\overrightarrow{\mathrm{c}}|}=-\frac{1}{3}$
Since acute angle is required $\theta=\cos ^{-1}\left(\frac{1}{3}\right)$
(b) circum-radius \equiv distance of circum centre from any of the vertex
\equiv distance of $\frac{\vec{a}+\vec{b}+\vec{c}}{4}$ from vertex $D(\overrightarrow{0})$ [tetrahedron is regular]

Circumradius

$$
\begin{aligned}
& =\frac{1}{4}|\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}|=\frac{1}{4} \sqrt{\overrightarrow{\mathrm{a}}^{2}+\overrightarrow{\mathrm{b}}^{2}+\overrightarrow{\mathrm{c}}^{2}+2(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}}+\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}+\overrightarrow{\mathrm{c}} \cdot \vec{a})} \\
& =\frac{1}{4} \sqrt{\mathrm{k}^{2}+\mathrm{k}^{2}+\mathrm{k}^{2}+2\left(\frac{\mathrm{k}^{2}}{2}+\frac{\mathrm{k}^{2}}{2}+\frac{\mathrm{k}^{2}}{2}\right)} \\
& =\frac{1}{4} \sqrt{6 \mathrm{k}^{2}}=\sqrt{\frac{3}{8} \mathrm{k}} \\
\frac{\mathrm{r}}{\mathrm{R}}= & \frac{1}{3} \quad \Rightarrow \mathrm{r}=\frac{\mathrm{R}}{3} \quad=\frac{\mathrm{k}}{\sqrt{24}}
\end{aligned}
$$

EXERCISE-5

Part \# I : AIEEE/JEE-MAIN

6. We have,
$\overrightarrow{\mathrm{u}} . \hat{\mathrm{n}}=0$ and $\overrightarrow{\mathrm{v}} \cdot \hat{\mathrm{n}}=0$
$\Rightarrow \hat{\mathrm{n}} \perp \overrightarrow{\mathrm{u}}$ and $\hat{\mathrm{n}} \perp \overrightarrow{\mathrm{v}}$
$\Rightarrow \hat{\mathrm{n}}= \pm \frac{\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}}}{|\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}}|}$
Now, $\quad \overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}}=(\hat{\mathrm{i}}+\hat{\mathrm{j}}) \times(\hat{\mathrm{i}}-\hat{\mathrm{j}})=-2 \hat{\mathrm{k}}$
$\therefore \quad \hat{\mathrm{n}}= \pm \hat{\mathrm{k}}$
Hence, $|\overrightarrow{\mathbf{w}} \cdot \hat{\mathbf{n}}|=|(\hat{i}+2 \hat{\mathbf{j}}+3 \hat{\mathrm{k}}) \cdot(\pm \hat{\mathrm{k}})|=3$
7. We have,

$$
\begin{aligned}
& \overrightarrow{\mathrm{F}}=\text { Total force }=7 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-4 \hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{~d}}=\text { Displacement vector }=4 \hat{i}+2 \hat{j}-2 \hat{\mathrm{k}}
\end{aligned}
$$

\Rightarrow Work done $=\overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{d}}=(28+4+8)$ units

$$
=40 \text { units }
$$

8. Let D be the mid-point of BC . Then,

$$
\begin{aligned}
& \overrightarrow{\mathrm{AD}}=\frac{\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AC}}}{2} \\
\Rightarrow & |\overrightarrow{\mathrm{AD}}|=4 \hat{\mathrm{i}}+\hat{\mathrm{j}}+4 \hat{\mathrm{k}} \\
\Rightarrow & |\overrightarrow{\mathrm{AD}}|=\sqrt{16+1+16}=\sqrt{33}
\end{aligned}
$$

Hence, required length $=\sqrt{33}$ units.
9. We have,

$$
\begin{aligned}
& \vec{a}+\vec{b}+\vec{c}=\overrightarrow{0} \\
\Rightarrow & |\vec{a}+\vec{b}+\vec{c}|=\overrightarrow{0} \quad \Rightarrow|\vec{a}+\vec{b}+\vec{c}|^{2}=0 \\
\Rightarrow & |\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=0 \\
\Rightarrow & 1+4+9+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=0 \\
\Rightarrow & \vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=-7
\end{aligned}
$$

11. We have,

$$
\begin{aligned}
& (\vec{u}+\vec{v}-\vec{w}) \cdot(\vec{u}-\vec{v}) \times(\vec{v}-\vec{w}) \\
& =(\vec{u}+\vec{v}-\vec{w}) \cdot(\vec{u} \times \vec{v}-\vec{u} \times \vec{w}-\vec{v} \times \vec{v}+\vec{v} \times \vec{w}) \\
& =(\vec{u}+\vec{v}-\vec{w}) \cdot(\vec{u} \times \vec{v}-\vec{u} \times \vec{w}+\vec{v} \times \vec{w}) \\
& =\vec{u} \cdot(\vec{u} \times \vec{v})-\vec{u} \cdot(\vec{u} \times \vec{w}) \times \vec{u}+(\vec{v} \times \vec{w}) \\
& \quad+\vec{v} \cdot(\vec{u} \times \vec{v})-\vec{v} \cdot(\vec{u} \times \vec{w})+\vec{v} \cdot(\vec{v} \times \vec{w}) \\
& \quad-\vec{w} \cdot(\vec{u} \times \vec{v})+\vec{w} \cdot(\vec{u} \times \vec{w})-\vec{w} \cdot(\vec{v} \times \vec{w})
\end{aligned}
$$

$$
\begin{aligned}
& =\vec{u} \cdot(\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{w}})-\overrightarrow{\mathrm{v}} \cdot(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{w}})-\overrightarrow{\mathrm{w}} \cdot(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}}) \\
& =[\overrightarrow{\mathrm{u}} \overrightarrow{\mathrm{v}} \overrightarrow{\mathrm{w}}]-[\overrightarrow{\mathrm{v}} \overrightarrow{\mathrm{u}} \overrightarrow{\mathrm{w}}]-[\overrightarrow{\mathrm{w}} \overrightarrow{\mathrm{u}} \overrightarrow{\mathrm{v}}] \\
& =[\overrightarrow{\mathrm{u}} \overrightarrow{\mathrm{v}} \overrightarrow{\mathrm{w}}]+[\overrightarrow{\mathrm{u}} \overrightarrow{\mathrm{v}} \overrightarrow{\mathrm{w}}]-[\overrightarrow{\mathrm{u}} \overrightarrow{\mathrm{v}} \overrightarrow{\mathrm{w}}] \\
& =[\overrightarrow{\mathrm{u}} \overrightarrow{\mathrm{v}} \overrightarrow{\mathrm{w}}]=\overrightarrow{\mathrm{u}} \cdot(\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{w}})
\end{aligned}
$$

12. It is given that
$\vec{a}+2 \vec{b}$ is collinear with \vec{c} and $\vec{b}+3 \vec{c}$ is collinear with \vec{a}
$\Rightarrow \vec{a}+2 \vec{b}=\lambda \vec{c}$ and $\vec{b}+3 \vec{c}=\mu \vec{a}$ for some
scalar λ and μ.
$\Rightarrow \vec{b}+3 \vec{c}=\mu(\lambda \vec{c}-2 \vec{b})$
$\Rightarrow(2 \mu+1) \vec{b}+(3-\mu \lambda) \vec{c}=\overrightarrow{0}$
$\Rightarrow 2 \mu+1=0$ and $3-\mu \lambda=0$
$\Rightarrow \mu=-\frac{1}{2}^{\prime} \lambda=-6\left[\begin{array}{c}\because \overrightarrow{\mathrm{b}} \text { and } \overrightarrow{\mathrm{c}} \\ \text { are non }- \text { collinear }\end{array}\right]$
$\therefore \quad \vec{a}+2 \vec{b}=\lambda \vec{c}$
$\Rightarrow \vec{a}+2 \vec{b}=-6 \vec{c} \Rightarrow \vec{a}+2 \vec{b}+6 \vec{c}=\overrightarrow{0}$
13. Let $\vec{\alpha}=\vec{a}+2 \vec{b}+3 \vec{c}, \beta=\lambda \vec{b}+4 \vec{c}$ and $\vec{\gamma}=(2 \lambda-1) \vec{c}$.

Then, $\quad[\vec{\alpha} \vec{\beta} \vec{\gamma}]=\left|\begin{array}{ccc}1 & 2 & 3 \\ 0 & \lambda & 4 \\ 0 & 0 & (2 \lambda-1)\end{array}\right|[\vec{a} \vec{b} \vec{c}]$
$\Rightarrow \quad[\vec{\alpha} \vec{\beta} \vec{\gamma}]=\lambda(2 \lambda-1)[\vec{a} \vec{b} \vec{c}]$
$\Rightarrow \quad[\alpha \vec{\beta} \vec{\gamma}]=0$, if $\lambda=0, \frac{1}{2} \quad[\because[a \vec{b} \vec{c}] \neq 0]$
Hence, $\vec{\alpha}, \vec{\beta}, \vec{\gamma}$ are non-coplanar for all values of λ except two values 0 and $\frac{1}{2}$.
16. $(\mathrm{a} \times \mathrm{b}) \times \mathrm{c}=1 / 3|\mathrm{~b}||\mathrm{c}| \mathrm{a}$
$\Rightarrow \quad(\mathrm{a} . \mathrm{c}) \mathrm{b}-(\mathrm{b} . \mathrm{c}) \mathrm{a}=1 / 3|\mathrm{~b} \| \mathrm{c}| \mathrm{a}$
$\Rightarrow \quad(\mathrm{a} . \mathrm{c}) \mathrm{b}=\left\{(\mathrm{b} . \mathrm{c})+\frac{1}{3}|\mathrm{~b}||\mathrm{c}|\right\} \mathrm{a}$
$\Rightarrow \quad(\mathrm{a} . \mathrm{c}) \mathrm{b}=|\mathrm{b}||\mathrm{c}|\left\{\cos \theta+\frac{1}{3}\right\} \mathrm{a}$
As a and b are not parallel, $a . c=0$ and $\cos \theta+\frac{1}{3}=0$
$\Rightarrow \cos \theta=-\frac{1}{3}$. Hence $\sin \theta=\frac{2 \sqrt{2}}{3}$
17. $\overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{PB}}=(\overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{AC}})+(\overrightarrow{\mathrm{PB}}+\overrightarrow{\mathrm{BC}})-(\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{BC}})$
$=\overrightarrow{\mathrm{PC}}+\overrightarrow{\mathrm{PC}}-(\overrightarrow{\mathrm{AC}}-\overrightarrow{\mathrm{CB}})$
$=2 \overrightarrow{\mathrm{PC}}-0$
$(\because \overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{CB}})$

$\therefore \overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{PB}}=2 \overrightarrow{\mathrm{PC}}$
21. $[a b c]=\left|\begin{array}{ccc}1 & 0 & -1 \\ x & 1 & 1-x \\ y & x & 1+x-y\end{array}\right|=\left|\begin{array}{ccc}1 & 0 & 0 \\ x & 1 & 1 \\ y & x & 1+x\end{array}\right|=\left|\begin{array}{cc}1 & 1 \\ x & 1+x\end{array}\right|=1$
22. $(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})$
$\Rightarrow(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{b} \cdot \vec{c}) \vec{a}=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$
$\Rightarrow(\vec{b} \cdot \vec{c}) \overrightarrow{\mathrm{a}}=(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}) \overrightarrow{\mathrm{c}}$
So that \vec{a} is parallel to \vec{c}
24. $\mathrm{AC} \perp \mathrm{BC}$
\therefore dr's of AC and $B C$ will be $(2-a, 2,0)$ and ($1-\mathrm{a}, 0,-6$)
So that $(2-a)(1-a)+2 \times 0+0 \times(-6)=0$
$\Rightarrow a^{2}-3 a+2=0$
$\therefore \quad \mathrm{a}=1,2$

29. $[3 \vec{u} \quad \mathrm{p} \overrightarrow{\mathrm{v}} \mathrm{p} \overrightarrow{\mathrm{w}}]-\left[\begin{array}{lll}\mathrm{p} \vec{v} & \overrightarrow{\mathrm{w}} & q \vec{u}\end{array}\right]-\left[\begin{array}{lll}2 \vec{w} & q \vec{v} & q u\end{array}\right]=0$
$3 \mathrm{p}^{2}\left[\begin{array}{lll}\overrightarrow{\mathrm{u}} & \overrightarrow{\mathrm{v}} & \overrightarrow{\mathrm{w}}\end{array}\right]-\mathrm{pq}\left[\begin{array}{lll}\overrightarrow{\mathrm{v}} & \overrightarrow{\mathrm{w}} & \overrightarrow{\mathrm{u}}\end{array}\right]-2 \mathrm{q}^{2}\left[\begin{array}{lll}\overrightarrow{\mathrm{w}} & \overrightarrow{\mathrm{v}} & \overrightarrow{\mathrm{u}}\end{array}\right]=0$
$\left(3 p^{2}-p q+2 q^{2}\right) \cdot\left[\begin{array}{lll}\vec{u} & \vec{v} & \vec{w}\end{array}\right]=0$
$3 p^{2}-p q+2 q^{2}=0$
has exactly one solution
$\mathrm{p}=\mathrm{q}=0$
30. $(\vec{a} \times \vec{b})+\vec{c}=0$
$(\vec{a} \times \vec{b})=-\vec{c}$
$\Rightarrow \vec{a} \times(\vec{a} \times \vec{b})=-\vec{a} \times \vec{c}$
$\Rightarrow(\vec{a} \cdot \vec{b}) \vec{a}-|\vec{a}|^{2} \vec{b}=-\vec{a} \times \vec{c}$
$\Rightarrow 3(\vec{j}-\vec{k})-2 \vec{b}=-(-2 i-j-k)$
$(\vec{a} \times \vec{c}=-2 i-j-k)$
$\Rightarrow 2 \overrightarrow{\mathrm{~b}}=(-2 \mathrm{i}+2 \mathrm{j}-4 \mathrm{k})$
$\Rightarrow \overrightarrow{\mathrm{b}}=-\mathrm{i}+\mathrm{j}-2 \mathrm{k}$
31. Give $\vec{a} \perp \vec{b}, \vec{a} \perp \vec{c} \& \vec{b} \perp \vec{c}$
so $\vec{a} \cdot \vec{c}=0 \& \vec{b} \cdot \vec{c}=0$
$\Rightarrow \lambda-1+2 \mu=0 \quad \& \quad 2 \lambda+4+\mu=0$
$\Rightarrow \lambda=-3 \quad \& \quad \mu=2$
32. a.b. $\neq 0$
a. $d=0$
$b \times c=b \times d$
$\mathrm{a} \times(\mathrm{b} \times \mathrm{c})=\mathrm{a} \times(\mathrm{b} \times \mathrm{d})$
(a.c)b $-(\mathrm{a} . \mathrm{b}) \mathrm{c}-(\mathrm{a} . \mathrm{c}) \mathrm{b}-(\mathrm{a} . \mathrm{b}) \mathrm{d} \quad\{\mathrm{a} . \mathrm{d}=0\}$
$\Rightarrow \quad(\mathrm{a} . \mathrm{b}) \mathrm{d}=(\mathrm{a} . \mathrm{b}) \mathrm{c} \quad(\mathrm{a} . \mathrm{c}) \mathrm{b}$ (divide by a.b)
$\mathrm{d}=\mathrm{c}-\frac{(\mathrm{a} . \mathrm{c})}{(\mathrm{a} . \mathrm{b})} \mathrm{b}$
33. $\vec{a} \cdot \vec{b}=0$ and $|a|=|b|=1$
$(\vec{a} \times \vec{b}) \times(\vec{a}+2 \vec{b})=(\vec{a} \times \vec{b}) \times \vec{a}+(\vec{a} \times \vec{b}) \times 2 \vec{b}$
$=-[\vec{a} \times(\vec{a} \times \vec{b})+2 \vec{b} \times(\vec{a} \times \vec{b})]$
$=-[(\vec{a} \cdot \vec{b}) \vec{a}-(\vec{a} \cdot \vec{a}) \vec{b}+2(\vec{b} \cdot \vec{b}) \vec{a}-2(\vec{b} \cdot \vec{a}) \vec{b}]$
$=-[0-\vec{b}+2 \vec{a}+0]=[\vec{b}-2 \vec{a}]$
$\therefore(2 \vec{a}-\vec{b}) \cdot[(\vec{a} \times \vec{b}) \times(\vec{a}+2 \vec{b})]$
$=(2 \vec{a}-\vec{b}) \cdot(\vec{b}-2 \vec{a})$
$=-4 a^{2}-b^{2}+4 \vec{a} \cdot \vec{b}=-5$
34. $\left|\begin{array}{lll}\mathrm{p} & 1 & 1 \\ 1 & \mathrm{q} & 1 \\ 1 & 1 & \mathrm{r}\end{array}\right|=0$
$\mathrm{p}(\mathrm{qr}-1)-(\mathrm{r}-1)+(1-q)=0$
$\mathrm{pqr}-\mathrm{p}-\mathrm{r}+1+1-\mathrm{q}=0$
$\mathrm{pqr}-(\mathrm{p}+\mathrm{r}+\mathrm{q})+2=0$
$\mathrm{pqr}-(\mathrm{p}+\mathrm{r}+\mathrm{q})=-2$
35. Let
$a+3 b=\lambda \vec{c}$
add $6 \overrightarrow{\mathrm{c}}$ both side
$\vec{a}+3 \vec{b}+6 \vec{c}=(\lambda+6) \vec{c}$

Let
$\vec{b}+2 \vec{c}=\mu \vec{a}$
$3 b+6 \vec{c}=3 \mu \vec{a}$ add \vec{a} both side $\vec{a}+3 \vec{b}+6 \vec{c}=(3 \mu+1) \vec{a}$

Hence $(\lambda+6) \overrightarrow{\mathrm{c}}=(3 \mu+1) \overrightarrow{\mathrm{a}}$
But given $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{c}}$ are non coliner
Hence $\lambda+6=3 \mu+1=0$
so $\quad \vec{a}+3 \vec{b}+6 \vec{c}=\overrightarrow{0}$
36. $\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{d}}=0$

$$
\begin{aligned}
& \Rightarrow \quad(\hat{a}+2 \hat{b}) \cdot(5 \hat{a}-4 \hat{b})=0 \\
& \Rightarrow \quad 5-8+6 \hat{a} \cdot \hat{b}=0 \\
& \Rightarrow \quad \hat{a} \cdot \hat{b}=1 / 2 \\
& \Rightarrow \cos \theta=1 / 2 \\
& \Rightarrow \quad \theta=\frac{\pi}{3}
\end{aligned}
$$

37.

$$
\begin{aligned}
& \overline{\mathrm{q}}+\overline{\mathrm{r}}=\overline{\mathrm{AM}} \\
\Rightarrow & \overline{\mathrm{r}}=-\overline{\mathrm{q}}+\overline{\mathrm{AM}} \\
\Rightarrow & \overline{\mathrm{r}}=-\overline{\mathrm{q}}+\frac{\overline{\mathrm{p}} \cdot \overline{\mathrm{q}}}{|\overline{\mathrm{p}}|^{2}} \overrightarrow{\mathrm{p}} \\
\Rightarrow & \overline{\mathrm{r}}=-\overline{\mathrm{q}}+\left(\frac{\overline{\mathrm{p}} \cdot \overline{\mathrm{q}}}{\overline{\mathrm{p}} \cdot \overline{\mathrm{p}}}\right) \overline{\mathrm{p}}
\end{aligned}
$$

38.

$\overrightarrow{\mathrm{AD}}=\frac{\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AC}}}{2}=4 \hat{\mathrm{j}}-\hat{\mathrm{j}}+4 \hat{\mathrm{k}}$

$$
|\overrightarrow{\mathrm{AD}}|=\sqrt{33}
$$

43. $\left|\begin{array}{ccc}\mathrm{x}_{2}-\mathrm{x}_{1} & \mathrm{y}_{2}-\mathrm{y}_{1} & \mathrm{z}_{2}-\mathrm{z}_{1} \\ \ell_{1} & \mathrm{~m}_{1} & \mathrm{n}_{1} \\ \ell_{2} & \mathrm{~m}_{2} & \mathrm{n}_{2}\end{array}\right|=0$

$$
\begin{aligned}
& \left|\begin{array}{ccc}
1 & -1 & -1 \\
1 & 1 & -k \\
k & 2 & 1
\end{array}\right|=0 \Rightarrow\left|\begin{array}{ccc}
0 & 0 & -1 \\
2 & 1+\mathrm{k} & -\mathrm{k} \\
\mathrm{k}+2 & 1 & 1
\end{array}\right|=0 \\
& \mathrm{k}^{2}+3 \mathrm{k}=0 \Rightarrow \mathrm{k}(\mathrm{k}+3)=0 \Rightarrow \mathrm{k}=0 \text { or }-3
\end{aligned}
$$

45. Let $\overrightarrow{\mathrm{n}}_{1}$ and $\overrightarrow{\mathrm{n}}_{2}$ be the vectors normal to the faces OAB and ABC . Then,
$\overrightarrow{\mathrm{n}}_{1}=\overrightarrow{\mathrm{OA}} \times \overrightarrow{\mathrm{OB}}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 1 & 2 & 1 \\ 2 & 1 & 3\end{array}\right|=5 \hat{\mathrm{i}}-\hat{\mathrm{j}}-3 \hat{\mathrm{k}}$
and, $\overrightarrow{\mathrm{n}}_{2}=\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 1 & -1 & 2 \\ -2 & -1 & 1\end{array}\right|=\hat{\mathrm{i}}-5 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}$
If θ is the angle between the faces $O A B$ and $A B C$, then

$$
\begin{aligned}
& \cos \theta=\frac{\overrightarrow{\mathrm{n}}_{1} \cdot \overrightarrow{\mathrm{n}}_{2}}{\left|\overrightarrow{\mathrm{n}}_{1}\right|\left|\overrightarrow{\mathrm{n}}_{2}\right|} \\
\Rightarrow & \cos \theta=\frac{5+5+9}{\sqrt{25+1+9} \sqrt{1+25+9}}=\frac{19}{35} \\
\Rightarrow & \theta=\cos ^{-1}\left(\frac{19}{35}\right)
\end{aligned}
$$

46. $\ell_{1}-\mathrm{am}_{1}=0$ and $\mathrm{cm}_{1}-\mathrm{n}_{1}=0 \Rightarrow \frac{\ell_{1}}{\mathrm{a}}=\frac{\mathrm{m}_{1}}{1}=\frac{\mathrm{n}_{1}}{\mathrm{c}}$

Also $\ell_{2}-\mathrm{a}^{\prime} \mathrm{m}_{2}=0$ and $\mathrm{c}^{\prime} \mathrm{m}_{2}-\mathrm{n}_{2}=0$
$\Rightarrow \frac{\ell_{2}}{\mathrm{a}^{\prime}}=\frac{\mathrm{m}_{2}}{1}=\frac{\mathrm{n}_{2}}{\mathrm{c}^{\prime}}$
$\therefore \quad \ell_{1} \ell_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}+\mathrm{n}_{1} \mathrm{n}_{2}=\mathrm{aa}{ }^{\prime}+\mathrm{cc}^{\prime}+1=0$
47. Here, $\ell=\cos \theta, \mathrm{m}=\cos \beta, \mathrm{n}=\cos \theta,(\because \ell=\mathrm{n})$

Now, $\ell^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=1 \Rightarrow 2 \cos ^{2} \theta+\cos ^{2} \beta=1$
\Rightarrow Given, $\sin ^{2} \beta=3 \sin ^{2} \theta \Rightarrow 2 \cos ^{2} \theta=3 \sin ^{2} \theta$
$5 \cos ^{2} \theta=3, \quad \therefore \cos ^{2} \theta=\frac{3}{5}$
48. Given plane are $2 x+y+2 z-8=0$
or $4 x+2 y+4 z-16=0$
and $4 x+2 y+4 z+5=0$
Distance between two parallel planes
$=\left|\frac{-16-5}{\sqrt{4^{2}+2^{2}+4^{2}}}\right|=\frac{21}{6}=\frac{7}{2}$
49. Let the two lines be AB and CD having equation
$\frac{\mathrm{x}}{1}=\frac{\mathrm{y}+\mathrm{a}}{1}=\frac{\mathrm{z}}{1}=\lambda$ and $\frac{\mathrm{x}+\mathrm{a}}{2}=\frac{\mathrm{y}}{1}=\frac{\mathrm{z}}{1}=\mu$
then $\mathrm{P} \equiv(\lambda, \lambda-\mathrm{a}, \lambda)$ and $\mathrm{Q}=(2 \mu-\mathrm{a}, \mu, \mu)$
So according to question,
$\frac{\lambda-2 \mu+\mathrm{a}}{2}=\frac{\lambda-\mathrm{a}-\mu}{1}=\frac{\lambda-\mu}{2}$
$\Rightarrow \mu=\mathrm{a}$ and $\lambda=3 \mathrm{a}$
$\therefore \quad \mathrm{P} \equiv(3 \mathrm{a}, 2 \mathrm{a}, 3 \mathrm{a})$

and $\mathrm{Q} \equiv(\mathrm{a}, \mathrm{a}, 0)$
50. We have, $\frac{x-1}{1}=\frac{y+3}{-\lambda}=\frac{z-1}{\lambda}=s$
and $\quad \frac{\mathrm{x}-0}{1 / 2}=\frac{\mathrm{y}-1}{1}=\frac{\mathrm{z}-2}{-1}=\mathrm{t}$
Since, lines are coplanar then

$$
\begin{aligned}
& \quad\left|\begin{array}{ccc}
\mathrm{x}_{2}-\mathrm{x}_{1} & \mathrm{y}_{2}-\mathrm{y}_{1} & \mathrm{z}_{2}-\mathrm{z}_{1} \\
\ell_{1} & \mathrm{~m}_{1} & \mathrm{n}_{1} \\
\ell_{2} & \mathrm{~m}_{2} & \mathrm{n}_{2}
\end{array}\right|=0 \\
& \Rightarrow\left|\begin{array}{ccc}
-1 & 4 & 1 \\
1 & -\lambda & \lambda \\
1 / 2 & 1 & -1
\end{array}\right|=0
\end{aligned}
$$

On solving, $\lambda=-2$
52. Angle between line and normal to plane is
$\cos \left(\frac{\pi}{2}-\theta\right)=\frac{1 \times 2-2 \times 1+2 \sqrt{\lambda}}{3 \times \sqrt{5+\lambda}}$, where θ is the angle between line and plane

$$
\begin{aligned}
& \Rightarrow \quad \sin \theta=\frac{1 \times 2+2 \times(-1)+2 \sqrt{\lambda}}{3 \times \sqrt{5+\lambda}} \Rightarrow \frac{1}{3}=\frac{2 \sqrt{\lambda}}{3 \sqrt{5+\lambda}} \\
& \Rightarrow \quad \frac{1}{3}=\frac{2 \sqrt{\lambda}}{3 \sqrt{5+\lambda}} \Rightarrow \lambda=\frac{5}{3}
\end{aligned}
$$

53. The lines are $\frac{x}{3}=\frac{y}{2}=\frac{z}{-6}$ and $\frac{x}{2}=\frac{y}{-12}=\frac{z}{-3}$

Since, $\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}=6-24+18=0$
$\Rightarrow \theta=90^{\circ}$
58. Equation of line $P Q$ is
$\frac{x+1}{1}=\frac{y-3}{-2}=\frac{z-4}{0}=\lambda$
For some suitable value of λ, co-ordinates of point $\mathrm{Q}(\lambda-1,3-2 \lambda, 4)$

R is the mid point of P and Q .

$$
\begin{aligned}
\therefore \quad & \mathrm{R} \equiv\left(\frac{\lambda-2}{2}, \frac{6-2 \lambda}{2}, 4\right) \\
& \mathrm{R} \equiv\left(\frac{\lambda}{2}-1,3-\lambda, 4\right)
\end{aligned}
$$

It satisfies $x-2 y=0$
$\Rightarrow \lambda=\frac{14}{5}$
$\therefore \mathrm{Q}=\left(\frac{2}{5}, \frac{1}{5}, 4\right)$
59. If direction cosines of L be ℓ, m, n then
$2 \ell+3 \mathrm{~m}+\mathrm{n}=0$
$\ell+3 m+2 n=0$
Solving, we get, $\frac{\ell}{3}=\frac{m}{-3}=\frac{n}{3}$
$\therefore \ell: \mathrm{m}: \mathrm{n}=\frac{1}{\sqrt{3}}:-\frac{1}{\sqrt{3}}: \frac{1}{\sqrt{3}} \Rightarrow \cos \alpha=\frac{1}{\sqrt{3}}$
60. $\ell=\cos \frac{\pi}{4}, \mathrm{~m}=\cos \frac{\pi}{4}$
we know that $\ell^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=1$
$\frac{1}{2}+\frac{1}{2}+\mathrm{n}^{2}=1 \Rightarrow \mathrm{n}=0$
Hence angle with positive direction of z -axis is $\frac{\pi}{2}$
64. Line $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$

Plane $x+3 y-\alpha z+\beta=0$
Point $(2,1,-2)$ put in (2)

$$
2+3+2 \alpha+\beta=0
$$

$\Rightarrow 2 \alpha+\beta=-5$
Now $\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}=0$
$3-15-2 \alpha=0$
$-12-2 \alpha=0$
$\alpha=-6$
$-12+\beta=-5$
$\beta=7$
$\alpha=-6, \beta=7$
65. Proj. of a vector ($\overrightarrow{\mathrm{r}}$) on x -axis $=|\overrightarrow{\mathrm{r}}| \ell$

$$
\text { on } y \text {-axis }=|\overrightarrow{\mathrm{r}}| \mathrm{m}
$$

$$
\text { on } \mathrm{z}-\mathrm{axis}=|\overrightarrow{\mathrm{r}}| \mathrm{n}
$$

$6=7 \ell, \Rightarrow \ell=\frac{6}{7}$ similarly $\mathrm{m}=-\frac{3}{7}, \mathrm{n}=\frac{2}{7}$
66. $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$
$\alpha=45^{\circ}, \beta=120^{\circ}$
Put in equation (i)
$\Rightarrow \frac{1}{2}+\frac{1}{4}+\cos ^{2} \gamma=1$
$\Rightarrow \cos ^{2} \gamma=\frac{1}{4}$
$\Rightarrow \gamma=60^{\circ}$
67. Mirror image of $B(1,3,4)$ in plane $x-y+z=5$

$$
\frac{x-1}{1}=\frac{y-3}{-1}=\frac{z-4}{1}=-2 \frac{(1-3+4-5)}{1+1+1}=2
$$

$\Rightarrow \quad \mathrm{x}=3, \mathrm{y}=1, \mathrm{z}=6$
$\therefore \quad$ mirror image of $\mathrm{B}(1,3,4)$ is $\mathrm{A}(3,1,6)$
statement- 1 is correct
statement-2 is true but it is not the correct explanation.
68. $\frac{x}{1}=\frac{y-1}{2}=\frac{z-3}{\lambda}$ equation of line
equation of plane $x+2 y+3 z=4$
$\sin \theta=\frac{1+4+3 \lambda}{\sqrt{14} \sqrt{1+4}+\lambda^{2}}$
$\Rightarrow \lambda=\frac{2}{3}$
69. $1(1-1)+2(0-6)+3(7-3)$

$$
=0-12+12=0
$$

mid point $\mathrm{AB}(1,3,5)$
lies on $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$
70.

$M(2 r, 3 r+2,4 r+3)$
Dr's of $\mathrm{PM}<2 \mathrm{r}-3,3 \mathrm{r}+3,4 \mathrm{r}-8>$
$2(2 r-3)+3(3 r+3)+4(4 r-8)=0$
$29 \mathrm{r}-29=0$
$r=1$
$\mathrm{M}(2,5,7)$
Distance $P M=\sqrt{1+36+16}=\sqrt{53}$
71.

eq ${ }^{n}$. of a line $\|$ to $x=y=z$ and
passing through $(1,-5,9)$ is
$\frac{\mathrm{x}-1}{1}=\frac{\mathrm{y}+5}{1}=\frac{\mathrm{z}-9}{1}=\mathrm{r}$
Let is meets plane at $\mathrm{M}(\mathrm{r}+1, \mathrm{r}-5, \mathrm{r}+9)$
Put in equation of plane

$$
\begin{aligned}
& x-y+z=5 \\
& r+1-r+5+r+9=5 \\
& r=-10
\end{aligned}
$$

Hence $\mathrm{M}(-9,-15,-1)$
Distance $P M=\sqrt{100+100+100}=10 \sqrt{3}$
72. Equation of plane parallel to
$x-2 y+2 z-5=0$ is $x-2 y+2 z=k$
or $\frac{x}{3}-\frac{2}{3} y+\frac{2}{3} z=\frac{K}{3}$
$\left|\frac{\mathrm{K}}{3}\right|=1$
$\Rightarrow \mathrm{K}= \pm 3$
\therefore Equation of required plane is

$$
x-2 y+2 z \pm 3=0
$$

73. $\left|\begin{array}{ccc}3-1 & \mathrm{~K}+1 & 0-1 \\ 2 & 3 & 4 \\ 1 & 2 & 1\end{array}\right|=0$

$$
\begin{aligned}
& \Rightarrow\left|\begin{array}{ccc}
2 & \mathrm{~K}+1 & -1 \\
2 & 3 & 4 \\
1 & 2 & 1
\end{array}\right|=0 \\
& \Rightarrow 2 \mathrm{~K}-9=0
\end{aligned}
$$

$$
\Rightarrow \mathrm{K}=\frac{9}{2}
$$

74. $4 x+2 y+4 z+5=0$
$4 x+2 y+4 z-16=0$
$\Rightarrow \quad \mathrm{d}=\left|\frac{21}{\sqrt{36}}\right|=\frac{7}{2}$
75. $\Rightarrow \quad(\vec{a}-\vec{b}) \cdot(\vec{c} \times \vec{d})=0$

$$
\begin{aligned}
& \Rightarrow\left|\begin{array}{ccc}
1 & -1 & -1 \\
1 & 1 & -\mathrm{k} \\
\mathrm{k} & 2 & 1
\end{array}\right|=0 \\
& \Rightarrow(1+2 \mathrm{k})+\left(1+\mathrm{k}^{2}\right)-(2-\mathrm{k})=0 \\
& \Rightarrow \mathrm{k}^{2}+3 \mathrm{k}=0<\begin{array}{c}
0 \\
-3
\end{array}
\end{aligned}
$$

82. $1(3)+m(-2)-(-4)=9$
$31-2 m=5$
$31-2 m-3=0$
$21-m=3$
$41-2 m=6$
(iii) - (i)
$1=1$
$\mathrm{m}=-1$
$1^{2}+m^{2}=2$
83. $\stackrel{r}{a} \times(\stackrel{r}{b} \times \underset{c}{\mathrm{c}})=\frac{\sqrt{3}}{2}(\stackrel{r}{b}+\stackrel{r}{c})$
$\Rightarrow(\stackrel{\mathrm{r}}{\mathrm{a}} \cdot \stackrel{\mathrm{r}}{\mathrm{c}}) \stackrel{\mathrm{r}}{\mathrm{b}}-(\stackrel{\mathrm{r}}{\mathrm{a}} \cdot \mathrm{r} \cdot \mathrm{b}) \stackrel{\mathrm{r}}{\mathrm{c}}=\frac{\sqrt{3}}{2} \stackrel{\mathrm{r}}{\mathrm{b}}+\frac{\sqrt{3}}{2} \stackrel{\mathrm{r}}{\mathrm{c}}$
$\Rightarrow \stackrel{\mathrm{r}}{\mathrm{a}} \cdot \stackrel{\mathrm{r}}{\mathrm{c}}=\frac{\sqrt{3}}{2}$ and $\stackrel{\mathrm{r}}{\mathrm{a}} \cdot \stackrel{\mathrm{r}}{\mathrm{b}}=-\frac{\sqrt{3}}{2}$
\Rightarrow Angle between $\stackrel{1}{\mathrm{a}} \& \stackrel{1}{\mathrm{c}}=30^{\circ}$
$\stackrel{1}{\mathrm{a}} \& \stackrel{1}{\mathrm{c}}=150^{\circ}=\frac{5 \pi}{6}$
84. Equation of line : $\frac{x-1}{1}=\frac{y+5}{1}=\frac{z-9}{1}=\lambda$

Any point is $(\lambda+1, \lambda-5, \lambda+9)$
It lies on plane
$\Rightarrow(\lambda+1)-(\lambda-5)+(\lambda+9)=5$
$\Rightarrow \lambda+1-\lambda+5+\lambda+9=5$
$\Rightarrow \lambda=-10$
\therefore Point is $(-9,-15,-1)$, another is $(1,-5,9)$
Distance $=\sqrt{100+100+100}=10 \sqrt{3}$

Part \# II : IIT-JEE ADVANCED

1. (b) Given that $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are vectors such that $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=0$
P_{1} is the plane determined by vectors \vec{a} and \vec{b}
\therefore Normal vectors $\overrightarrow{\mathrm{n}}_{1}$ to P_{1} will be given by $\overrightarrow{\mathrm{n}}_{1}=\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}$
Similarly P_{2} is the plane determined by vectors $\overrightarrow{\mathrm{c}}$ and $\overrightarrow{\mathrm{d}}$
\therefore Normal vector $\overrightarrow{\mathrm{n}}_{2}$ to P_{2} will be given by $\overrightarrow{\mathrm{n}}_{2}=\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{d}}$

Substituting the values of $\overrightarrow{\mathrm{n}}_{1}$ and $\overrightarrow{\mathrm{n}}_{2}$ in equation (1) we get $\overrightarrow{\mathrm{n}}_{1} \times \overrightarrow{\mathrm{n}}_{2}=0$
$\Rightarrow \quad \overrightarrow{\mathrm{n}}_{1} \| \overrightarrow{\mathrm{n}}_{2}$
and hence the planes will also be parallel to each other.
Thus angle between the planes $=0$.
3. (a) $\hat{\mathrm{a}}, \hat{\mathrm{b}}, \hat{\mathrm{c}}$ are unit vectors.
$\therefore \hat{a} \cdot \hat{a}=\hat{b} \cdot \hat{b}=\hat{c} \cdot \hat{c}=1$
Now, $x=|\hat{a}-\hat{b}|^{2}+|\hat{b}-\hat{c}|^{2}+|\hat{c}-\hat{a}|^{2}$
$=\hat{a} \cdot \hat{a}+\hat{b} \cdot \hat{b}-2 \hat{a} \cdot \hat{b}+\hat{b} \cdot \hat{b}+\hat{c} \cdot \hat{c}-$
$2 \hat{b} \cdot \hat{c}+\hat{c} \cdot \hat{c}+\hat{a} \cdot \hat{a}-2 \hat{c} \cdot \hat{a}$
$=6-2(\hat{a} \cdot \hat{b}+\hat{b} \cdot \hat{c}+\hat{c} \cdot \hat{a}) \ldots \ldots .(1)$

Also $\quad|\hat{a}+\hat{b}+\hat{c}| \geq 0$
$\Rightarrow \hat{a} \cdot \hat{a}+\hat{b} \cdot \hat{b}+\hat{c} \cdot \hat{c}+2(\hat{a} \cdot \hat{b}+\hat{b} \cdot \hat{c}+\hat{c} \cdot \hat{a}) \geq 0$
$\Rightarrow 3+2(\hat{a} \cdot \hat{b}+\hat{b} \cdot \hat{c}+\hat{c} \cdot \hat{a}) \geq 0$
$\Rightarrow-2(\hat{a} \cdot \hat{b}+\hat{b} . \hat{c}+\hat{c} . \hat{a}) \leq 3$
$\Rightarrow 6-2(\hat{a} . \hat{b}+\hat{b} . \hat{c}+\hat{c} . \hat{a}) \leq 9$
From (1) and (2), $x \leq 9$
$\therefore \mathrm{x}$ does not exceed 9
5. Given data is insufficient to uniquely determine the three vectors as there are only 6 equations involving 9 variables.
\therefore We can obtain infinitely many set of three
vectors, $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$, satisfying these conditions.
From the given data, we get
$\vec{v}_{1} \cdot \vec{v}_{1}=4 \quad \Rightarrow \quad\left|\vec{v}_{1}\right|=2$
$\vec{v}_{2} \cdot \vec{v}_{2}=2 \Rightarrow\left|\vec{v}_{2}\right|=\sqrt{2}$
$\vec{v}_{3} \cdot \vec{v}_{3}=29 \Rightarrow\left|\vec{v}_{3}\right|=\sqrt{29}$
Also $\quad \vec{v}_{1} \cdot \vec{v}_{2}=-2$
$\Rightarrow\left|\vec{v}_{1}\right|\left|\vec{v}_{2}\right| \cos \theta=-2$
[where θ is the angle between \vec{v}_{1} and \vec{v}_{2}]
$\Rightarrow \cos \theta=\frac{-1}{\sqrt{2}} \Rightarrow \theta=135^{\circ}$
Now since any two vectors are always coplanar, let us suppose that \vec{v}_{1} and \vec{v}_{2} are
in $x-y$ plane. Let \vec{v}_{1} is along the positive direction of x-axis then $\vec{v}_{1}=2 \hat{i} . \quad\left[\because\left|\vec{v}_{1}\right|=2\right]$

As \vec{v}_{2} makes an angle 135° with \vec{v}_{1} and ies in $x-y$ plane, also keeping in mind
$\left|\vec{v}_{2}\right|=\sqrt{2}$ we obtain
$\vec{v}_{2}=-\hat{i} \pm \hat{j}$
Again let, $\overrightarrow{\mathrm{v}}_{3}=\alpha \hat{\mathrm{i}}+\beta \hat{\mathrm{i}}+\gamma \hat{\mathrm{k}}$
$\because \quad \vec{v}_{3} \cdot \vec{v}_{1}=6 \Rightarrow 2 \alpha=6 \Rightarrow \alpha=3$
and $\vec{v}_{3} \cdot \vec{v}_{2}=-5 \Rightarrow-\alpha \pm \beta=-5 \Rightarrow \beta= \pm 2$
Also $\left|\vec{v}_{3}\right|=\sqrt{29} \Rightarrow \alpha^{2}+\beta^{2}+\gamma^{2}=29$
$\Rightarrow \gamma= \pm 4$
Hence $\quad \vec{v}_{3}=3 \hat{\mathrm{i}} \pm 2 \hat{\mathrm{j}} \pm 4 \hat{\mathrm{k}}$
Thus, $\quad \vec{v}_{1}=2 \hat{\mathrm{i}} ; \overrightarrow{\mathrm{v}}_{2}=-\hat{\mathrm{i}} \pm \hat{\mathrm{j}} ; \vec{v}_{3}=3 \hat{\mathrm{i}} \pm 2 \hat{\mathrm{j}} \pm 4 \hat{\mathrm{k}}$ are some possible answers.
6. $\vec{A}(t)$ is parallel to $\vec{B}(t)$ for some $t \in[0,1]$ if and only if $\frac{f_{1}(t)}{g_{1}(t)}=\frac{f_{2}(t)}{g_{2}(t)}$ for some $t \in[0,1]$
or $\quad f_{1}(t) \cdot g_{2}(t)=f_{2}(t) \cdot g_{1}(t)$ for some $t \in[0,1]$
Let $h(t)=f_{1}(t) \cdot g_{2}(t)-f_{2}(t) \cdot g_{1}(t)$
$h(0)=f_{1}(0) \cdot g_{2}(0)-f_{2}(0) \cdot g_{1}(0)$
$=2 \times 2-3 \times 3=-5<0$
$h(1)=f_{1}(1) \cdot g_{2}(1)-f_{2}(1) \cdot g_{1}(1)$

$$
=6 \times 6-2 \times 2=32>0
$$

Since h is a continuous function, and
$h(0) . h(1)<0$
\Rightarrow there is some $t \in[0,1]$ for which $h(t)=0$
i.e., $\overrightarrow{\mathrm{A}}(\mathrm{t})$ and $\overrightarrow{\mathrm{B}}(\mathrm{t})$ are parallel vectors for this t .
8. Given that, $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$

$$
\begin{aligned}
& \overrightarrow{\mathrm{b}}=\mathrm{b}_{1} \hat{\mathrm{i}}+\mathrm{b}_{2} \hat{\mathrm{j}}+\mathrm{b}_{3} \hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{c}}=\mathrm{c}_{1} \hat{\mathrm{i}}+\mathrm{c}_{2} \hat{\mathrm{j}}+\mathrm{c}_{3} \hat{\mathrm{k}}
\end{aligned}
$$

where $\mathrm{a}_{\mathrm{r}}, \mathrm{b}_{\mathrm{r}}, \mathrm{c}_{\mathrm{r}}, \mathrm{r}=1,2,3$ are all non negative real numbers.
Also $\sum_{r=1}^{3}\left(a_{r}+b_{r}+c_{r}\right)=3 L$
To prove $\mathrm{V} \leq \mathrm{L}^{3}$ Where V is vol. of parallelopiped formed by the vectors \vec{a}, \vec{b} and \vec{c}
\therefore We have $V=[\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$

$$
\begin{gather*}
\Rightarrow V=\left(a_{1} b_{2} c_{3}+a_{2} b_{3} c_{1}+a_{3} b_{1} c_{2}\right)-\left(a_{1} b_{3} c_{2}+a_{2} b_{1} c_{3}\right. \\
\left.+a_{3} b_{2} c_{1}\right) \tag{1}
\end{gather*}
$$

Now we know that $A M \geq$ GM

$$
\begin{aligned}
\therefore & \frac{\left(a_{1}+b_{1}+c_{1}\right)+\left(a_{2}+b_{2}+c_{2}\right)+\left(a_{3}+b_{3}+c_{3}\right)}{3} \\
& \geq\left[\left(a_{1}+b_{1}+c_{1}\right)\left(a_{2}+b_{2}+c_{2}\right)\left(a_{3}+b_{3}+c_{3}\right)\right]^{1 / 3} \\
\Rightarrow & \frac{3 L}{3} \geq\left[\left(a_{1}+b_{1}+c_{1}\right)\left(a_{2}+b_{2}+c_{2}\right)\left(a_{3}+b_{3}+c_{3}\right)\right]^{1 / 3} \\
\Rightarrow & L^{3} \geq\left(a_{1}+b_{1}+c_{1}\right)\left(a_{2}+b_{2}+c_{2}\right)\left(a_{3}+b_{3}+c_{3}\right) \\
& =a_{1} b_{2} c_{3}+a_{2} b_{3} c_{1}+a_{3} b_{1} c_{2}+24 \text { more such terms }
\end{aligned}
$$

$$
\begin{aligned}
& \quad \geq a_{1} b_{2} c_{3}+a_{2} b_{3} c_{1}+a_{3} b_{1} c_{2} \\
& \quad\left[\because a_{r}, b_{r}, c_{r} \geq 0 \text { or } r=1,2,3\right] \\
& \geq\left(a_{1} b_{2} c_{3}+a_{2} b_{3} c_{1}+a_{3} b_{1} c_{2}\right) \\
& - \\
& -\left(a_{1} b_{3} c_{2}+a_{2} b_{1} c_{3}+a_{3} b_{2} c_{1}\right) \quad \text { [same reason] } \\
& = \\
& \text { Vfrom }(1)
\end{aligned}
$$

Thus, $L^{3} \geq$ V Hence Proved
10. Given that u, v, ω are three non coplanar unit vectors. Angle between $\overrightarrow{\mathrm{u}}$ and $\overrightarrow{\mathrm{v}}$ is α, between $\overrightarrow{\mathrm{v}}$ and $\vec{\omega}$ is β and between $\vec{\omega}$ and $\overrightarrow{\mathrm{u}}$ it is γ. In fig. $\overrightarrow{\mathrm{OA}}$ and $\overrightarrow{\mathrm{OB}}$ represent $\overrightarrow{\mathrm{u}}$ and $\overrightarrow{\mathrm{v}}$. Let P be a pt. on angle bisector of $\angle \mathrm{AOB}$ such that OAPB is a parallelogram.

$$
\text { Also } \quad \angle \mathrm{POA}=\angle \mathrm{BOP}=\alpha / 2
$$

$\therefore \quad \angle \mathrm{APO}=\angle \mathrm{BOP}=\alpha / 2$ (Alternate angles)
$\therefore \quad$ In $\triangle \mathrm{OAP}, \mathrm{OA}=\mathrm{AP}$
$\therefore \quad \overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{AP}}=\overrightarrow{\mathrm{u}}+\vec{v}$
$\therefore \quad$ ӨP $=\frac{\vec{u}+\vec{v}}{|\vec{u}+\vec{v}|}$ i.e. $\vec{x}=\frac{\vec{u}+\vec{v}}{|\vec{u}+\vec{v}|}$
But $|\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{v}}|^{2}=(\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{v}}) \cdot(\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{v}})$

$$
=1+1+2 \vec{u} \cdot \vec{v}
$$

$$
[\because|\overrightarrow{\mathrm{u}}| \neq \overrightarrow{\mathrm{v}} \mid=1]
$$

$=2+2 \cos \alpha=4 \cos ^{2} \alpha / 2$.
$\therefore \quad|\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{v}}|=2 \cos \alpha / 2$
$\Rightarrow \quad \vec{x}=\frac{1}{2} \sec (\alpha / 2)(\vec{u}+\vec{v})$

Similarly, $\overrightarrow{\mathrm{y}}=\frac{1}{2} \sec (\beta / 2)(\overrightarrow{\mathrm{v}}+\vec{\omega})$

$$
\overrightarrow{\mathrm{z}}=\frac{1}{2} \sec (\gamma / 2)(\vec{\omega}+\overrightarrow{\mathrm{u}})
$$

Now consider $[\overrightarrow{\mathrm{x}} \times \overrightarrow{\mathrm{y}} \overrightarrow{\mathrm{y}} \times \overrightarrow{\mathrm{z}} \overrightarrow{\mathrm{z}} \times \overrightarrow{\mathrm{x}}$]

$$
=(\overrightarrow{\mathrm{x}} \times \overrightarrow{\mathrm{y}}) \cdot[(\overrightarrow{\mathrm{y}} \times \overrightarrow{\mathrm{z}}) \times(\overrightarrow{\mathrm{z}} \times \overrightarrow{\mathrm{x}})]
$$

$$
=(\overrightarrow{\mathrm{x}} \times \overrightarrow{\mathrm{y}}) \cdot[\{(\overrightarrow{\mathrm{y}} \times \overrightarrow{\mathrm{z}}) \cdot \overrightarrow{\mathrm{x}}\} \overrightarrow{\mathrm{z}}-\{(\overrightarrow{\mathrm{y}} \times \overrightarrow{\mathrm{z}}) \cdot \overrightarrow{\mathrm{z}}\} \overrightarrow{\mathrm{x}}]
$$

[Using $\operatorname{def}^{\mathrm{n}}$ of vector triple product,]
$=(\overrightarrow{\mathrm{x}} \times \overrightarrow{\mathrm{y}}) \cdot[[\mathrm{x} \overrightarrow{\mathrm{y}} \overrightarrow{\mathrm{z}} \overline{\mathrm{z}}-0]$
$=[\vec{x} \vec{y} \vec{z}][\vec{x} \vec{y} \vec{z}] \quad[\because[\vec{y} \vec{z} \vec{z}]=0]$
$=[\vec{x} \vec{y} \vec{z}]^{2}$
Also $\quad[\overrightarrow{\mathrm{x}} \overrightarrow{\mathrm{y}} \overrightarrow{\mathrm{z}}]=\left[\frac{1}{2} \sec \frac{\alpha}{2}(\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{v}}) \frac{1}{2} \sec \frac{\beta}{2}\right]$

$$
\left.\left.(\overrightarrow{\mathrm{v}}+\vec{\omega}) \frac{1}{2} \sec (\gamma / 2)(\overrightarrow{\mathrm{w}}+\overrightarrow{\mathrm{u}})\right)\right]
$$

$=\frac{1}{8} \sec (\alpha / 2) \sec (\beta / 2) \sec (\gamma / 2)[\vec{u}+\vec{v} \vec{v}+\vec{\omega} \vec{\omega}+\vec{u}]$
$=\frac{1}{8} \sec (\alpha / 2) \sec (\beta / 2) \sec (\gamma / 2)$

$$
[(\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{v}}) \cdot(\overrightarrow{\mathrm{v}}+\vec{\omega}) \times(\vec{\omega}+\overrightarrow{\mathrm{u}})]
$$

$=\frac{1}{8} \sec (\alpha / 2) \sec (\beta / 2) \sec (\gamma / 2)$

$$
[(\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{v}}) \cdot(\overrightarrow{\mathrm{v}} \times \vec{\omega}+\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{u}}+\vec{\omega} \times \overrightarrow{\mathrm{u}})]
$$

$=\frac{1}{8} \sec (\alpha / 2) \sec (\beta / 2) \sec (\gamma / 2)[\vec{u} \cdot \vec{v} \times \vec{\omega}+\vec{v} \cdot \vec{\omega} \times \vec{u}]$
$(\because[\vec{a} \vec{b} \vec{c}]=0$ when ever any two vectors are same)
$=\frac{1}{8} \sec (\alpha / 2) \sec (\beta / 2) \sec (\gamma / 2) 2[\overrightarrow{\mathrm{u}} \overrightarrow{\mathrm{v}} \vec{\omega}]$
$=\frac{1}{4} \sec (\alpha / 2) \sec (\beta / 2) \sec (\gamma / 2) 2[\vec{u} \vec{v} \vec{\omega}]$
$\therefore[\overrightarrow{\mathrm{x}} \overrightarrow{\mathrm{y}} \overrightarrow{\mathrm{z}}]^{2}=\frac{1}{16}[\overrightarrow{\mathrm{u}} \overrightarrow{\mathrm{v}} \vec{\omega}]^{2} \sec ^{2} \alpha / 2 \sec ^{2} \beta / 2 \sec ^{2} \gamma / 2$

From (i) and (ii),
$\left[\begin{array}{lll}\overrightarrow{\mathrm{x}} \times \overrightarrow{\mathrm{y}} & \overrightarrow{\mathrm{y}} \times \overrightarrow{\mathrm{z}} & \overrightarrow{\mathrm{z}} \times \overrightarrow{\mathrm{x}}\end{array}\right]$
$=\frac{1}{16}[\overrightarrow{\mathrm{u}} \overrightarrow{\mathrm{v}} \vec{\omega}]^{2} \quad \sec ^{2} \alpha / 2 \sec ^{2} \beta / 2 \sec ^{2} \gamma / 2$.
12. Given that $\overrightarrow{\mathrm{a}} \neq \overrightarrow{\mathrm{b}} \neq \overrightarrow{\mathrm{c}} \neq \overrightarrow{\mathrm{d}}$

Such that $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$

$$
\begin{equation*}
\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{d}} \tag{i}
\end{equation*}
$$

To prove that $(\vec{a}-\vec{d}) \cdot(\vec{b}-\vec{c}) \neq 0$

Subtracting equation (ii) from (i) we get

$$
\begin{aligned}
& \vec{a} \times(\vec{c}-\vec{b})=(\vec{b}-\vec{c}) \times \vec{d} \\
\Rightarrow & \vec{a} \times(\vec{c}-\vec{b})=\vec{d} \times(\vec{c}-\vec{b}) \\
\Rightarrow & \vec{a} \times(\vec{c}-\vec{b})-\vec{d} \times(\vec{c}-\vec{b})=0 \\
\Rightarrow & (\vec{a}-\vec{d}) \times(\vec{c}-\vec{b})=0 \Rightarrow \vec{a}-\vec{d} \| \vec{c}-\vec{b} \\
& {[\because \vec{a}-\vec{d} \neq 0, \vec{c}-\vec{b} \neq 0 \text { as all distinct }] } \\
\Rightarrow & \text { Angle between } \vec{a}-\vec{d} \text { and } \vec{c}-\vec{b} \text { is either } \\
& 0 \text { or } 180^{\circ} . \\
\Rightarrow & (\vec{a}-\vec{d}) \cdot(\vec{c}-\vec{b})=|\vec{a}-\vec{d}||\vec{c}-\vec{b}|
\end{aligned}
$$

$\left[\cos 0^{\circ}\right.$ or $\left.\cos 180^{\circ}\right] \neq 0$ as $\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{d}}, \overrightarrow{\mathrm{c}}, \overrightarrow{\mathrm{b}}$ all are different.
14. Given that incident ray is along $\hat{\mathrm{v}}$, reflected ray is along $\hat{\mathrm{w}}$ and normal is along $\hat{\mathrm{a}}$, outwards. The given figure can be redrawn as shown.

We know that incident ray, reflected ray and normal lie in a plane, and angle of incidence $=$ angle of reflection. Therefore \hat{a} will be along the angle bisector of \hat{w} and - $\hat{\mathrm{v}}$, i.e.,

$$
\begin{equation*}
\hat{\mathrm{a}}=\frac{\hat{\mathrm{w}}+(-\hat{\mathrm{v}})}{|\hat{\mathrm{w}}-\hat{\mathrm{v}}|} \tag{i}
\end{equation*}
$$

$[\because$ angle bisector will along a vector dividing in same ratio as the ratio of the sides forming that angle.]
But â is a unit vector
where $|\hat{\mathrm{w}}-\hat{\mathrm{v}}|=\mathrm{OC}=2 \mathrm{OP}$

$$
=2|\hat{\mathrm{w}}| \cos \theta=2 \cos \theta
$$

Substituting this value in equation (i) we get

$$
\begin{aligned}
& \hat{a}= \\
&=\frac{\hat{w}-\hat{v}}{2 \cos \theta} \\
& \therefore \quad \hat{w} \quad=\hat{v}+(2 \cos \theta) \hat{a} \\
&= \hat{v}-2(\hat{a} \cdot \hat{v}) \hat{a} \quad[\because \hat{a} \cdot \hat{v}=-\cos \theta] .
\end{aligned}
$$

15. (b) Normal to plane P_{1} is
$\overrightarrow{\mathrm{n}}_{1}=(2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}) \times(4 \hat{\mathrm{j}}-3 \hat{\mathrm{k}})=-18 \hat{\mathrm{i}}$
Normal to plane P_{2} is
$\vec{n}_{2}=(\hat{\mathrm{j}}-\hat{\mathrm{k}}) \times(3 \hat{\mathrm{i}}+3 \hat{\mathrm{j}})=3 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}$
$\therefore \overrightarrow{\mathrm{A}}$ is parallel to $\pm\left(\overrightarrow{\mathrm{n}}_{1} \times \overrightarrow{\mathrm{n}}_{2}\right)= \pm(-54 \hat{\mathrm{j}}+54 \hat{\mathrm{k}})$
Now, angle between \vec{A} and $2 \hat{i}+\hat{j}-2 \hat{k}$ is given by
$\cos \theta= \pm \frac{(-54 \hat{j}+54 \hat{k}) \cdot(2 \hat{i}+\hat{j}-2 \hat{k})}{54 \sqrt{2} \cdot 3}= \pm \frac{1}{\sqrt{2}}$
$\theta=\frac{\pi}{4}$ or $\frac{3 \pi}{4}$.
16. Let $\stackrel{r}{c}=x \hat{i}+y \hat{j}+z \hat{k}$
$\stackrel{\mathrm{r}}{\mathrm{a}}=\hat{\mathrm{i}}$ then $\stackrel{\mathrm{r}}{\mathrm{b}}=\frac{1}{2} \hat{\mathrm{i}}+\frac{\sqrt{3}}{2} \hat{\mathrm{j}}$
so $\mathrm{x}=\frac{1}{2}$
$\& \frac{x}{2}+\frac{y \sqrt{3}}{2}=\frac{1}{2}$
$\Rightarrow \mathrm{y} \sqrt{3}=\frac{1}{2} \quad \therefore \mathrm{y}=1 / 2 \sqrt{3}$
also $x^{2}+y^{2}+z^{2}=1$
$\Rightarrow \mathrm{z}^{2}=2 / 3 \Rightarrow \mathrm{z}= \pm \sqrt{2 / 3}$
so volume $=\left|\begin{array}{ccc}1 & 0 & 0 \\ 1 / 2 & \sqrt{3} / 2 & 0 \\ 1 / 2 & 1 / 2 \sqrt{3} & \pm \sqrt{2 / 3}\end{array}\right|=1 / \sqrt{2}$
Alternative
volume $=\left|\begin{array}{ll}\mathrm{r} \\ \mathrm{a}\end{array} \cdot\left(\begin{array}{ll}\mathrm{r} & \mathrm{r} \\ \mathrm{b}\end{array} \mathrm{c}\right)\right|$
17. $|\overrightarrow{\mathrm{OP}}|=|\hat{\mathrm{a}} \cos \mathrm{t}+\hat{\mathrm{b}} \sin \mathrm{t}|$
$=\left(\cos ^{2} \mathrm{t}+\sin ^{2} \mathrm{t}+2 \sin \mathrm{cos} \mathrm{t} \hat{\mathrm{a}} \cdot \hat{\mathrm{b}}\right)^{1 / 2}$
$=(1+\sin 2 t \hat{a} \cdot \hat{b})^{1 / 2}$
$\therefore|\overrightarrow{\mathrm{OP}}|_{\max }=(1+\hat{\mathrm{a}} \cdot \hat{\mathrm{b}})^{1 / 2}, \quad$ when $\mathrm{t}=\frac{\pi}{4}$

18. $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=1$

Let $\overrightarrow{\mathrm{a}} \wedge \overrightarrow{\mathrm{b}}=\alpha$
$\vec{a}^{\wedge} \vec{b}=\beta$
angle between plane of $(\vec{a}, \vec{b}) \&(\vec{c}, \vec{d})$ be θ
equation (1) becomes
$\sin \alpha \cdot \sin \beta \cos \theta=1$
$\Rightarrow \alpha=\frac{\pi}{2}, \beta=\frac{\pi}{2}, \theta=0$
$\Rightarrow \quad \overrightarrow{\mathrm{b}} \& \overrightarrow{\mathrm{~d}}$ are non-parallel.
22. (A) $2 \sin ^{2} \theta+\sin ^{2} 2 \theta=2$
$\sin ^{2} \theta+2 \sin ^{2} \theta \cos ^{2} \theta=1$
$\mathrm{t}+2 \mathrm{t}(1-\mathrm{t})=1$
$\mathrm{t}+2 \mathrm{t}-2 \mathrm{t}^{2}=1$
$2 \mathrm{t}^{2}-3 \mathrm{t}+1=0$
$(2 t-1)(t-1)=0$
$\mathrm{t}=1,1 / 2$
$\sin ^{2} \theta=1,1 / 2$
(B) $\frac{6 \mathrm{x}}{\pi}=\mathrm{I}_{1} \& \frac{3 \mathrm{x}}{\pi}=\mathrm{I}_{2}$
$\Rightarrow \mathrm{x}=\frac{\mathrm{I}_{1} \pi}{6}=\frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{2}, \pi$.
(C) $[\vec{a} \vec{b} \vec{c}]$
(D) $\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}+\sqrt{3} \overrightarrow{\mathrm{c}}=0$
$\Rightarrow a^{2}+b^{2}+2 \vec{a} \cdot \vec{b}=3 c^{2} \Rightarrow 2+2 \cos \theta=3$
$\Rightarrow \cos \theta=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{3}$.
23. Ans. (A)
$\overrightarrow{\mathrm{PQ}}=6 \hat{\mathrm{i}}+\hat{\mathrm{j}}$
$\overrightarrow{S R}=6 \hat{i}+\hat{j}$
$\therefore \quad \overrightarrow{\mathrm{PQ}}=\overrightarrow{\mathrm{SR}}$

$\overrightarrow{\mathrm{PS}}=-\hat{\mathrm{i}}+3 \hat{\mathrm{j}}$
$\overrightarrow{Q R}=-\hat{i}+3 \hat{j}$
$\therefore \quad \overrightarrow{\mathrm{PS}}=\overrightarrow{\mathrm{QR}}$
But $\overrightarrow{\mathrm{PQ}} \cdot \overrightarrow{\mathrm{PS}}=-6+3=-3 \neq 0 \&|\overrightarrow{\mathrm{PQ}}| \neq|\overrightarrow{\mathrm{PS}}|$
$\Rightarrow \mathrm{PQRS}$ is a parallelogram but neither a rhombus nor a rectangle.
24. $(2 \vec{a}+\vec{b}) \cdot[(\vec{a} \times \vec{b}) \times \vec{a}-2(\vec{a} \times \vec{b}) \times \vec{b}]$
$=(2 \vec{a}+\vec{b}) \cdot\left[a^{2} \vec{b}-(\vec{a} \cdot \vec{b}) \vec{a}-2\left\{(\vec{a} \cdot \vec{b}) \vec{b}-b^{2} \vec{a}\right\}\right]$
$=(2 \vec{a}+\vec{b}) \cdot\left[a^{2} \vec{b}+2 b^{2} \vec{a}\right] ;$ as $\vec{a} \cdot \vec{b}=0$
$=(2 \vec{a}+\vec{b}) \cdot[2 \vec{a}+\vec{b}]$ as $\left[a^{2}=b^{2}=1\right]$
$\Rightarrow 4 \mathrm{a}^{2}+\mathrm{b}^{2}=5$
25. Let θ be the angle between $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AD}}$
$\Rightarrow \theta+\alpha=90^{\circ}$
$\Rightarrow \alpha=90^{\circ}-\theta$

$\Rightarrow \cos \alpha=\sin \theta$

Now, $\cos \theta=\frac{\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AD}}}{|\overrightarrow{\mathrm{AB}}||\overrightarrow{\mathrm{AD}}|}=\frac{8}{9}$
$\Rightarrow \quad \cos \theta=\frac{\sqrt{17}}{9}$ from (i).
26. (a) $\vec{v}=x \vec{a}+y \vec{b}$

$$
\begin{equation*}
=\hat{\mathrm{i}}(\mathrm{x}+\mathrm{y})+\hat{\mathrm{j}}(\mathrm{x}-\mathrm{y})+\hat{\mathrm{k}}(\mathrm{x}+\mathrm{y}) \tag{i}
\end{equation*}
$$

Given, $\overrightarrow{\mathrm{v}} . \hat{\mathrm{c}}=\frac{1}{\sqrt{3}}$
$\Rightarrow \frac{x+y-x+y-x-y}{\sqrt{3}}=\frac{1}{\sqrt{3}}$
$y-x=1$
$\Rightarrow \quad x-y=-1$
using (ii) in (i) we get $\vec{v}=(x+y) \hat{i}-\hat{j}+(x+y) \hat{k}$

$$
\text { (b) } \begin{aligned}
\vec{a} & =\hat{i}+\hat{j}+2 \hat{k} \quad \vec{b}=\hat{i}+2 \hat{j}+\hat{k} \\
\vec{c} & =\hat{i}+\hat{j}+\hat{k} \\
\vec{v} & =\lambda((\vec{a} \times \vec{b}) \times \vec{c})=\lambda((\vec{a} \cdot \vec{c}) \vec{b}-(\vec{b} \cdot \vec{c}) \vec{a} \\
\vec{v} & =\lambda[4(\hat{i}+2 \hat{j}+\hat{k})-4(\hat{i}+\hat{j}+2 \hat{k})] \\
\vec{v} & =4 \lambda(\hat{j}-\hat{k}) \\
\text { (c) } \quad \vec{a} & =-\hat{i}-\hat{k} \\
\vec{b} & =-\hat{i}+\hat{j} \\
\vec{c} & =\hat{i}+2 \hat{j}+3 \hat{k} \\
\vec{r} & \times \vec{b}=\vec{c} \times \vec{b}
\end{aligned}
$$

Taking cross product by \vec{a}
$(\vec{r} \times \vec{b}) \times \vec{a}=(\vec{c} \times \vec{b}) \times \vec{a}$
$\Rightarrow \quad(\vec{r} \cdot \vec{a}) \vec{b}-(\vec{b} \cdot \vec{a}) \vec{r}=(\vec{c} \cdot \vec{a}) \vec{b})-(\vec{b} \cdot \vec{a}) \overrightarrow{\mathrm{c}}$
$\Rightarrow 0-\overrightarrow{\mathrm{r}}=(-1-3)(-\hat{\mathrm{i}}+\hat{\mathrm{j}})-(1)(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})$
$\overrightarrow{\mathrm{r}}=-3 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{b}}=3+6=9$
27. (a) $|\vec{a}-\vec{b}|^{2}+|\vec{b}-\vec{c}|^{2}+|\vec{c}-\vec{a}|^{2}=9$
$\Rightarrow \quad 6-2 \sum \vec{a} \cdot \vec{b}=9$
$\Rightarrow \quad \sum \vec{a} \cdot \vec{b}=-\frac{3}{2}$
$|\vec{a}+\vec{b}+\vec{c}|^{2} \geq 0$
$\Sigma \vec{a}^{2}+2 \Sigma \vec{a} \cdot \vec{b} \geq 0$
$\Sigma \vec{a} \cdot \vec{b} \geq-\frac{3}{2}$
for equality $|\vec{a}+\vec{b}+\vec{c}|=0$
$\Rightarrow \quad \vec{a}+\vec{b}+\vec{c}=0$
$5 \vec{b}+5 \vec{c}=-5 \vec{a}$
$2 \vec{a}+5 \vec{b}+5 \vec{c}=-3 \vec{a}$
$|2 \vec{a}+5 \vec{b}+5 \vec{c}|=3|\vec{a}|=3$
(b) $(\vec{a}+\vec{b}) \times(2 \hat{i}+3 \hat{j}+4 \hat{k})=0$
$\Rightarrow \quad \vec{a}+\vec{b}=\lambda(2 \hat{i}+3 \hat{j}+4 \hat{k})$

$$
\begin{aligned}
& |\vec{a}+\vec{b}|=\sqrt{29} \Rightarrow|\lambda|=1 \\
& \vec{a}+\vec{b}=(2 \hat{i}+3 \hat{j}+4 \hat{k}) \\
& (\vec{a}+\vec{b}) \cdot(-7 \hat{\mathrm{i}}+2 \hat{j}+3 \hat{k}) \\
& =-14+6+12=4
\end{aligned}
$$

28. $\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{PR}} \quad \& \overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{QS}}$
$\overrightarrow{\mathrm{a}}=\frac{\overrightarrow{\mathrm{PR}}+\overrightarrow{\mathrm{QS}}}{2} \& \overrightarrow{\mathrm{~b}}=\frac{\overrightarrow{\mathrm{PR}}-\overrightarrow{\mathrm{QS}}}{2}$

$\vec{a}=2 \hat{i}-\hat{j}-3 \hat{k} \quad \& \vec{b}=\hat{i}+2 \hat{j}+\hat{k}$
Volume $=\left|\begin{array}{ccc}2 & -1 & -3 \\ 1 & 2 & 1 \\ 1 & 2 & 3\end{array}\right|$
$2(4)+(3-1)-3(2-2)$
$8+2=10$
29.

O is at the centre of cube
ABCDPQRS
The 8 vectors will represent

$$
\overrightarrow{\mathrm{OA}}, \overrightarrow{\mathrm{OB}} \ldots \ldots . \overrightarrow{\mathrm{OD}}, \overrightarrow{\mathrm{OP}}, \ldots \ldots . \overrightarrow{\mathrm{OS}}
$$

any three out of these 8 will be coplanar
when two of them are collinear. There are 4 pairs of collinear vectors
$\overrightarrow{\mathrm{OA}} \& \overrightarrow{\mathrm{OR}}, \overrightarrow{\mathrm{OB}} \& \overrightarrow{\mathrm{OS}}, \overrightarrow{\mathrm{OC}} \& \overrightarrow{\mathrm{OP}}, \overrightarrow{\mathrm{OD}} \& \overrightarrow{\mathrm{OQ}}$ (it will generate $4 \times 6=24$ set of coplanar vectors) rest of the combination of 3 vectors will form three edges of a tetrahedron so they will be not coplanar.
So number of non-coplanar vectors
${ }^{8} \mathrm{C}_{3}-4.6=32$
30. (P) Given $[\mathrm{a} \overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{c}}]=2$
$[2(\vec{a} \times \vec{b}) 3(\vec{b} \times \vec{c})(\vec{c} \times \vec{a})]$
$=6[\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}]=6[a \vec{b} \vec{c}]^{2}=24$
(Q) Given $[\mathrm{a} \overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{c}}]=5$
$[3(\vec{a}+\vec{b})(\vec{b}+\vec{c}) 2(\vec{c}+\vec{a})]$
$=12\left[\begin{array}{ll}\mathrm{a} & \overrightarrow{\mathrm{b}}\end{array} \overrightarrow{\mathrm{c}}\right]=60$
(R) Given $\frac{1}{2}|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=20 \Rightarrow|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=40$
$\left|\frac{1}{2}(2 \vec{a}+3 \vec{b}) \times(\vec{a}-\vec{b})\right|=\frac{1}{2}|0+3 \vec{b} \times \vec{a}-2 \vec{a} \times \vec{b}|$
$=\frac{1}{2}|-5 \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\frac{5}{2}|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\frac{5}{2} .40=100$
(S) Given $|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=30$

$$
|(\vec{a}+\vec{b}) \times \vec{a}|=|0+\vec{b} \times \vec{a}|=30
$$

33. Let the equation of the plane ABCD be $a x+b y+c z+d=0$, the point $A^{\prime \prime}$ be (α, β, γ) and the height of the parallelopiped $A B C D A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ be h.
$\Rightarrow \frac{|\mathrm{a} \alpha+\mathrm{b} \beta+\mathrm{c} \gamma+\mathrm{d}|}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}}=90 \% . \mathrm{h}$
$\Rightarrow \mathrm{a} \alpha+\mathrm{b} \beta+\mathrm{c} \gamma+\mathrm{d}= \pm 0.9 \mathrm{~h} \sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}$
\therefore locus is ax, + by $+c z+d= \pm 0.9 h \sqrt{a^{2}+b^{2}+c^{2}}$
$\therefore \quad$ locus of $\mathrm{A}^{\prime \prime}$ is a plane parallel to the plane ABCD .
34. As $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ cuts the coordinate axes at $\mathrm{A}(\mathrm{a}, 0,0), \mathrm{B}(0, \mathrm{~b}, 0), \mathrm{C}(0,0, \mathrm{c})$ and its distance from origin $=1$

$$
\Rightarrow \frac{1}{\sqrt{\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}+\frac{1}{\mathrm{c}^{2}}}}=1
$$

or $\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}+\frac{1}{\mathrm{c}^{2}}=1$
where P is centroid of Δ
$\therefore \quad \mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\frac{\mathrm{a}+0+0}{3}, \frac{0+\mathrm{b}+0}{3}, \frac{0+0+\mathrm{c}}{3}\right)$
$\Rightarrow \quad \mathrm{x}=\frac{\mathrm{a}}{3}, \mathrm{y}=\frac{\mathrm{b}}{3}, \mathrm{z}=\frac{\mathrm{c}}{3}$
Thus, from (1) and (2)

$$
\begin{aligned}
& \quad \frac{1}{9 x^{2}}+\frac{1}{9 y^{2}}+\frac{1}{9 z^{2}}=1 \\
& \text { or } \quad \frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=9=K \\
& \therefore \quad \\
& \therefore=9
\end{aligned}
$$

37. Equation of plane containing the line,

$$
\begin{aligned}
& 2 x-y+z-3=0 \text { and } 3 x+y+z=5 \text { is } \\
& (2 x-y+z-3)+\lambda(3 x+y+z-5)=0 \\
\Rightarrow & (2+3 \lambda) x+(\lambda-1) y+(\lambda+1) z-3-5 \lambda=0
\end{aligned}
$$

Since distance of plane from $(2,1,-1)$ to above plane is $1 / \sqrt{6}$
$\therefore\left|\frac{6 \lambda+4+\lambda-1-\lambda-1-3-5 \lambda}{\sqrt{(3 \lambda+2)^{2}+(\lambda-1)^{2}+(\lambda+1)^{2}}}\right|=\frac{1}{\sqrt{6}}$
$\Rightarrow 6(\lambda-1)^{2}=11 \lambda^{2}+12 \lambda+6$
$\Rightarrow \lambda=0,-\frac{24}{5}$
\therefore Equation of planes are,
$2 x-y+z-3=0$ and $62 x+29 y+19 z-105=0$
39. (A) Solving the two equations, say i.e.,
$x+y=|a|$ and $a x-y=1$, we get
$x=\frac{|a|+1}{a+1}>0$ and $y=\frac{|a|-1}{a+1}>0$
when $\mathrm{a}+1>0$; we get $\mathrm{a}>1$
$\therefore \quad a_{0}=1$
(B) We have, $\overrightarrow{\mathrm{a}}=\alpha \hat{\mathrm{i}}+\beta \hat{\mathrm{j}}+\gamma \hat{\mathrm{k}}$
$\Rightarrow \quad \vec{a} \cdot \hat{k}=\gamma$

Now, $\hat{\mathrm{k}} \times(\hat{\mathrm{k}} \times \overrightarrow{\mathrm{a}})=(\hat{\mathrm{k}} \cdot \overrightarrow{\mathrm{a}}) \hat{\mathrm{k}}-(\hat{\mathbf{k}} \cdot \hat{\mathrm{k}}) \overrightarrow{\mathrm{a}}$

$$
=\gamma \hat{\mathrm{k}}-(\alpha \hat{\mathrm{i}}+\beta \hat{\mathrm{j}}+\gamma \hat{\mathrm{k}})
$$

$$
\begin{aligned}
& \Rightarrow \quad \alpha \hat{\mathrm{i}}+\beta \hat{\mathrm{j}}=0 \\
& \Rightarrow \alpha=\beta=0
\end{aligned}
$$

Also $\alpha+\beta+\gamma=2$
$\Rightarrow \gamma=2$.
(C) $\left|\int_{0}^{1}\left(1-y^{2}\right) d y\right|+\left|\int_{0}^{1}\left(y^{2}-1\right) d y\right|$
$=2 \int_{0}^{1}\left(1-y^{2}\right) d y=\frac{4}{3}$

Also

$$
\left|\int_{0}^{1} \sqrt{1-x} d x\right|+\left|\int_{-1}^{0} \sqrt{1+x} d x\right|
$$

$$
=2 \int_{0}^{1} \sqrt{1-\mathrm{x}} \mathrm{dx}=\frac{4}{3}
$$

(D) $\sin \mathrm{A} \sin \mathrm{B} \sin \mathrm{C}+\cos \mathrm{A} \cos \mathrm{B}$
$\leq \sin \mathrm{A} \sin \mathrm{B}+\cos \mathrm{A} \cos \mathrm{B}=\cos (\mathrm{A}-\mathrm{B})$
$\Rightarrow \quad \cos (\mathrm{A}-\mathrm{B}) \geq 1$
$\Rightarrow \quad \cos (\mathrm{A}-\mathrm{B})=1$
$\Rightarrow \sin C=1$.
40. (A) $\sum_{\mathrm{i}=1}^{\infty} \tan ^{-1}\left(\frac{1}{2 \mathrm{i}^{2}}\right)=\mathrm{t}$.
$\Rightarrow \sum_{i=1}^{\infty} \tan ^{-1}\left(\frac{2}{4 \mathrm{i}^{2}-1+1}\right)$
$=\sum_{i=1}^{\infty} \tan ^{-1}\left\{\frac{(2 i+1)-(2 i-1)}{1+(2 i-1)(2 i+1)}\right\}$
$=\left(\tan ^{-1} 3-\tan ^{-1} 1\right)+\left(\tan ^{-1} 5-\tan ^{-1} 3\right)+\ldots$.
$+\left\{\left(\tan ^{-1}(2 n+1)-\tan ^{-1}(2 n-1)\right)\right.$
$\therefore t=\lim _{n \rightarrow \infty}\left(\tan ^{-1}(2 n+1)-\tan ^{-1} 1\right)$

$$
=\lim _{n \rightarrow \infty} \tan ^{-1}\left(\frac{2 n}{1+2 n+1}\right)=\frac{\pi}{4}
$$

$\therefore \quad \tan t=1$.
(B) We have, $\cos \theta_{1}=\frac{1-\tan ^{2} \frac{\theta_{1}}{2}}{1+\tan ^{2} \frac{\theta_{1}}{2}}=\frac{a}{b+c}$
$\Rightarrow \tan ^{2}\left(\frac{\theta_{1}}{2}\right)=\frac{\mathrm{b}+\mathrm{c}-\mathrm{a}}{\mathrm{b}+\mathrm{c}+\mathrm{a}}$
Also, $\cos \theta_{3}=\frac{1-\tan ^{2} \frac{\theta_{3}}{2}}{1+\tan ^{2} \frac{\theta_{3}}{2}}=\frac{c}{a+b}$
$\Rightarrow \tan ^{2} \frac{\theta_{3}}{2}=\frac{a+b-c}{a+b+c}$
$\Rightarrow \tan ^{2} \frac{\theta_{1}}{2}+\tan ^{2} \frac{\theta_{3}}{2}$

$$
=\frac{2 b}{a+b+c}=\frac{2 b}{3 b}=\frac{2}{3}
$$

\{as, $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in AP
$\Rightarrow 2 b=a+c\}$
(C) Line through $(0,1,0)$ and perpendicular to plane $x+2 y+2 z=0$ is given by

$$
\frac{x-0}{1}=\frac{y-1}{2}=\frac{z-0}{2}=r
$$

$\therefore \mathrm{P}(\mathrm{r}, 2 \mathrm{r}+1,2 \mathrm{r})$ be the foot of perpendicular on the straight line then
$\mathrm{r} .1+(2 \mathrm{r}+1) .2+(2 \mathrm{r}) .2=0$
$\Rightarrow \mathrm{r}=-\frac{2}{9}$
$\therefore \quad \mathrm{P}\left(-\frac{2}{9}, \frac{5}{9},-\frac{4}{9}\right)$
\therefore Required perpendicular distance

$$
=\sqrt{\frac{4+25+16}{81}}=\frac{\sqrt{5}}{3} \text { unit. }
$$

41. Let $\Delta=\left|\begin{array}{lll}\mathrm{a} & \mathrm{b} & \mathrm{c} \\ \mathrm{b} & \mathrm{c} & \mathrm{a} \\ \mathrm{c} & \mathrm{a} & \mathrm{b}\end{array}\right|$ $=\frac{-1}{2}(a+b+c)\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]$
(A) If $a+b+c \neq 0$ and $a^{2}+b^{2}+c^{2}=a b+b c+c a$
$\Rightarrow(\mathrm{a}-\mathrm{b})^{2}+(\mathrm{b}-\mathrm{c})^{2}+(\mathrm{c}-\mathrm{a})^{2}=0$
$\Rightarrow \Delta=0$ and $\mathrm{a}=\mathrm{b}=\mathrm{c} \neq 0$
\Rightarrow the equation represent identical planes.
(B) $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$ and $\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2} \neq \mathrm{ab}+\mathrm{bc}+\mathrm{ca}$
$\Rightarrow \Delta=0$
Since all the three planes pass through $(1,1,1)$
So equation of the line of intersection of these plane will be $\frac{\mathrm{x}-0}{1-0}=\frac{\mathrm{y}-0}{1-0}=\frac{\mathrm{z}-0}{1-0}$
(C) $\mathrm{a}+\mathrm{b}+\mathrm{c} \neq 0$ and $\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2} \neq \mathrm{ab}+\mathrm{bc}+\mathrm{ca}$
$\Rightarrow \Delta \neq 0$
\Rightarrow the equations represent planes meeting at only one point i.e. $(0,0,0)$
(D) $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$ and $\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}=\mathrm{ab}+\mathrm{bc}+\mathrm{ca}$
$\Rightarrow \mathrm{a}=\mathrm{b}=\mathrm{c}=0$
\Rightarrow the equations represent whole of the three dimensional space.
42. Dr's of
$\mathrm{L}_{1}=0,-4,-4$
$L_{2}=0,-2,-2$
$L_{3}=0,2,2$
So all the three lines are parallel
Hence St.-I is false
Now $\Delta=\left|\begin{array}{ccc}1 & -1 & 1 \\ 1 & 1 & -1 \\ 1 & -3 & 3\end{array}\right|=0$
so there will be no solution.
Hence St.-II is true.

Paragraph for Question 44 to 46
44. $\mathrm{L}_{1}: \frac{\mathrm{x}+1}{3}=\frac{\mathrm{y}+2}{1}=\frac{\mathrm{z}+1}{2}$
$L_{2}: \frac{\mathrm{x}-2}{1}=\frac{\mathrm{y}+2}{2}=\frac{\mathrm{z}-3}{3}$
a vector perpendicular to $L_{1} \& L_{2}$ will be
$=\left|\begin{array}{ccc}i & j & k \\ 3 & 1 & 2 \\ 1 & 2 & 3\end{array}\right|=-i-7 j+5 k$
Hence unit vector $=\frac{-i-7 j+5 k}{5 \sqrt{3}}$
45. Shortest distance

$$
=(3 i-4 k) \cdot \frac{(-i-7 j+5 k)}{5 \sqrt{3}}=\frac{17}{5 \sqrt{3}}
$$

46. Eq. of plane $-(x+1)-7(y+2)+5(z+1)=0$

$$
x+7 y-5 z+10=0
$$

distance from $(1,1,1)=\frac{1+7-5+10}{5 \sqrt{3}}=\frac{13}{5 \sqrt{3}}$
47. Let DC's be $(\cos \alpha, \cos \alpha, \cos \alpha)$
$3 \cos ^{2} \alpha=1$
$\cos \alpha=\frac{1}{\sqrt{3}}$
Line $P Q$ is $\frac{x-2}{1 / \sqrt{3}}=\frac{y+1}{1 / \sqrt{3}}=\frac{z-2}{1 / \sqrt{3}}=\lambda$
$\mathrm{Q}\left(\frac{\lambda}{\sqrt{3}}+2, \frac{\lambda}{\sqrt{3}}-1, \frac{\lambda}{\sqrt{3}}+2\right)$
Putting in plane
$\frac{2 \lambda}{\sqrt{3}}+4+\frac{\lambda}{\sqrt{3}}-1+\frac{\lambda}{\sqrt{3}}+2=9$
$\frac{4 \lambda}{\sqrt{3}}=4$
$\lambda=\sqrt{3}$
$\mathrm{Q}=(3,0,3)$
$(\mathrm{PQ})^{2}=1+1+1$
$\mathrm{PQ}=\sqrt{3}$
48. Let Q be $(1-3 \mu, \mu-1,5 \mu+2)$
$\Rightarrow \overrightarrow{\mathrm{PQ}}=(-3 \mu-2) \hat{\mathrm{i}}+(\mu-3) \hat{\mathrm{j}}+(5 \mu-4) \hat{\mathrm{k}}$
$\Rightarrow \overrightarrow{\mathrm{PQ}} \cdot \hat{\mathrm{n}}=0$ (where $\hat{\mathrm{n}}$ is $\perp^{\text {er }}$ to plane)
$\Rightarrow(-3 \mu-2) 1+(\mu-3) \cdot(-4)+(5 \mu-4) 3=0$
$\Rightarrow \mu=\frac{1}{4}$.
49. (A) $f(\mathrm{x})=\mathrm{xe}^{\sin \mathrm{x}}-\cos \mathrm{x}$
$f(0)=-1$
$f(\pi / 2)=\frac{\pi}{2} \mathrm{e}$
$f^{\prime}(\mathrm{x})=\mathrm{xe}^{\sin x} \cos \mathrm{x}+\mathrm{e}^{\sin x}>0$
(B) $\left|\begin{array}{lll}\mathrm{k} & 4 & 1 \\ 4 & \mathrm{k} & 2 \\ 2 & 2 & 1\end{array}\right|=0$
$\Rightarrow \mathrm{k}(\mathrm{k}-4)-4 \mathrm{c}+8-2 \mathrm{k}=0$
$\Rightarrow \mathrm{k}^{2}-4 \mathrm{k}+8-2 \mathrm{k}=0$
$\Rightarrow \mathrm{k}^{2}-6 \mathrm{k}+8=0$
$\Rightarrow \mathrm{k}=2,4$
(C) $|\mathrm{x}-1|+|\mathrm{x}-2|+|\mathrm{x}+1|+|\mathrm{x}+2|=4 \mathrm{k}$

$$
\begin{aligned}
& 4 \mathrm{k}=8,12,16,20 \\
& \therefore \mathrm{k}=2,3,4,5 .
\end{aligned}
$$

(D) $\frac{d y}{y+1}=d x$

$$
\begin{aligned}
& \ln (y+1)=k e^{x} \\
& y+1=k e^{x} \\
& y+1=2=k \\
& y+1=2 e^{x} \\
& y=\left(2 e^{x}-1\right) \\
& y(\ln 2)=3
\end{aligned}
$$

50. Normal vector to the plane containing the lines $\frac{x}{3}=\frac{y}{4}=\frac{z}{2}$ and $\frac{x}{4}=\frac{y}{2}=\frac{z}{3}$ is
$\hat{n}=\left|\begin{array}{lll}\hat{i} & \hat{j} & \hat{k} \\ 3 & 4 & 2 \\ 4 & 2 & 3\end{array}\right|=8 \hat{i}-\hat{j}-10 \hat{k}$
Let direction ratios of required plane be a, b, c.
Now $8 \mathrm{a}-\mathrm{b}-10 \mathrm{c}=0$
and $2 a+3 b+4 c=0$
(\because plane contains the line $\frac{\mathrm{x}}{2}=\frac{\mathrm{y}}{3}=\frac{\mathrm{z}}{4}$)
$\Rightarrow \frac{\mathrm{a}}{1}=\frac{\mathrm{b}}{-2}=\frac{\mathrm{c}}{1}$
\Rightarrow equation of plane is $x-2 y+z=d$
\because plane contains the line, which passes through origin, hence origin lies on a plane.
\Rightarrow equation of required plane is $x-2 y+z=0$.
51. $\because\left|\frac{1-4-2-\alpha}{3}\right|=5$
$\Rightarrow \alpha=10,-20$
$\Rightarrow \alpha=10 \because \alpha>0$
Now, let $\mathrm{Q}(\alpha, \beta, \gamma)$ be the

foot of perpendicular from P
to the plane $x+2 y-2 z=10$
Equation of line PQ is

$$
\begin{aligned}
& \frac{x-1}{1}=\frac{y+2}{2}=\frac{z-1}{-2}=r \\
\Rightarrow & \alpha=r+1, \beta=2 r-2 \text { and } \gamma=-2 r+1 \\
\because & Q \text { lies in the plane } \\
\therefore & (r+1)+2(2 r-2)-2(-2 r+1)=10 \\
\Rightarrow & r=\frac{5}{3}
\end{aligned}
$$

foot of the perpendicular is $\left(\frac{8}{3}, \frac{4}{3},-\frac{7}{3}\right)$
52. Plane containing the line

Direction ratio's of normal to the plane :
$\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 3 & 4 & 5\end{array}\right|=-\hat{i}+2 \hat{j}-\hat{k}$
Hence equation of plane $1(x-1)-2(y-2)+1(z-3)=0$
i.e. $x-2 y+z=0$

As given plane must be parallel $\quad \Rightarrow A=1$
\& distance between the planes $\left|\frac{d-0}{\sqrt{1^{2}+2^{2}+1^{2}}}\right|=\sqrt{6}$ $|d|=6$
53. (A) $\mathrm{P}(\lambda+2,-2 \lambda+1, \lambda-1)$

$$
\begin{align*}
& \mathrm{Q}\left(2 \mathrm{k}+\frac{8}{3},-\mathrm{k}-3, \mathrm{k}+1\right) \\
& 3 \lambda+6=\mathrm{a}(6 \mathrm{k}+8) \tag{i}\\
& -2 \lambda+1=\mathrm{a}(-\mathrm{k}-3) \tag{ii}\\
& 2 \lambda-2=2 \mathrm{a}(\mathrm{k}+1) \tag{iiii}\\
& \text { (ii) }+(\text { iii }) \Rightarrow-1=\mathrm{ak}-\mathrm{a} \\
& \mathrm{k}=\frac{\mathrm{a}-1}{\mathrm{a}} \tag{iv}
\end{align*}
$$

Put the value of k in equation (iii)
$\Rightarrow \lambda=2 \mathrm{a}$
Put the values of $\lambda \& k$ in equation (i)

$$
\begin{aligned}
& 6 a+6=a\left(\frac{6 a-6}{a}+8\right) \Rightarrow 6=6 a-6+8 a \\
\Rightarrow & a=\frac{3}{2}
\end{aligned}
$$

Put the value of a in equation (iv) \& (v)

$$
\begin{aligned}
& \mathrm{k}=\frac{\frac{3}{2}-1}{\frac{3}{2}}=\frac{1}{3} \quad \& \quad \lambda=3 \\
& \mathrm{P}(5,-5,2) \& \mathrm{Q}\left(\frac{10}{3}, \frac{-10}{3}, \frac{4}{3}\right) \\
& d=\sqrt{\left(5-\frac{10}{3}\right)^{2}+\left(5-\frac{10}{3}\right)^{2}+\left(\frac{2}{3}\right)^{2}} \\
& =\sqrt{\frac{25}{9}+\frac{25}{9}+\frac{4}{9}} \\
& \Rightarrow d=\sqrt{6} \quad \Rightarrow \quad d^{2}=6 \\
& \text { (B) } \tan ^{-1}(x+3)-\tan ^{-1}(x-3)=\tan ^{-1}\left(\frac{3}{4}\right) \\
& \tan ^{-1}\left(\frac{(x+3)-(x-3)}{1+\left(x^{2}-9\right)}\right)=\tan ^{-1}\left(\frac{3}{4}\right) \\
& \Rightarrow 1+x^{2}-9=8 \Rightarrow x^{2}=16 \\
& \Rightarrow \mathrm{x}= \pm 4
\end{aligned}
$$

(C) $\mu \mathrm{b}^{2}+4 \overrightarrow{\mathrm{~b}} \cdot \overrightarrow{\mathrm{c}}=0$
$\mathrm{b}^{2}-\overrightarrow{\mathrm{a}} . \overrightarrow{\mathrm{c}}+\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}=0$
$\mathrm{b}^{2}-(\mu \overrightarrow{\mathrm{b}}+4 \overrightarrow{\mathrm{c}}) \cdot \overrightarrow{\mathrm{c}}+\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}$
$=b^{2}+\vec{b} \cdot \vec{c}(1-\mu)-4 c^{2}=0$
$b^{2}-\frac{\mu}{4} b^{2}(1-\mu)=4 c^{2}$
$b^{2}\left(4-\mu+\mu^{2}\right)=16 c^{2}$
$4 b^{2}+8 \vec{b} \cdot \vec{c}+4 c^{2}=b^{2}+a^{2}$
$3 b^{2}-2 \mu b^{2}+4 c^{2}=(\mu \vec{b}+4 \vec{c})^{2}$
$3 \mathrm{~b}^{2}-2 \mu \mathrm{~b}^{2}+4 \mathrm{c}^{2}=\mu^{2} \mathrm{~b}^{2}+8 \mu \overrightarrow{\mathrm{~b}} \cdot \overrightarrow{\mathrm{c}}+16 \mathrm{c}^{2}$
$\mathrm{b}^{2}\left(3-2 \mu-\mu^{2}\right)=12 \mathrm{c}^{2}-2 \mu^{2} \times \mathrm{b}^{2}$
$b^{2}\left(3-2 \mu+\mu^{2}\right)=12 c^{2}$
$\frac{4-\mu+\mu^{2}}{3-2 \mu+\mu^{2}}=\frac{4}{3}$
$12-3 \mu+3 \mu^{2}=12-8 \mu+4 \mu^{2}$
$\mu^{2}-5 \mu=0$
$\mu=0,5$
(D) $I=\frac{2}{\pi} \int_{-\pi}^{\pi} \frac{\sin \frac{9 x}{2}}{\sin \frac{x}{2}} d x$

$$
\begin{equation*}
I=\frac{4}{\pi} \int_{0}^{\pi} \frac{\sin \frac{9 x}{2}}{\sin \frac{x}{2}} d x \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
I=\frac{4}{\pi} \int_{0}^{\pi} \frac{\cos \frac{9 x}{2}}{\cos \frac{x}{2}} d x \tag{ii}
\end{equation*}
$$

(i) + (ii)
$\mathrm{I}=\frac{2}{\pi} \int_{0}^{\pi} \frac{\sin 5 \mathrm{x}}{\sin \frac{x}{2} \cos \frac{\pi}{2}} d x=\frac{4}{\pi} \int_{0}^{\pi} \frac{\sin 5 \mathrm{x}}{\sin \mathrm{x}} \mathrm{dx}$
$f(x)=f(\pi-x)$
$I=\frac{8}{\pi} \int_{0}^{\pi / 2} \frac{\sin 5 x}{\sin x} d x$
$\mathrm{I}=\frac{8}{\pi} \int_{0}^{\pi / 2} \frac{\cos 5 \mathrm{x}}{\cos \mathrm{x}} \mathrm{dx}$
(i) + (ii)
$I=\frac{4}{\pi} \int_{0}^{\pi / 2} \frac{\sin 6 x}{\sin x \cos x} d x$
$I=\frac{8}{\pi} \int_{0}^{\pi / 2} \frac{\sin 6 x}{\sin 2 x} d x=\frac{8}{\pi} \int_{0}^{\pi / 2}\left(3-4 \sin ^{2} 2 x\right) d x$
$=\frac{8}{\pi} \int_{0}^{\pi / 2} 3-2(1-\cos 2 x) d x$
$=\frac{8}{\pi} \int_{0}^{\pi / 2}(1+2 \cos 2 x) \mathrm{dx}=\frac{8}{\pi} \times \frac{\pi}{2}=4$
54. (a) Line $\mathrm{QR}: \frac{\mathrm{x}-2}{1}=\frac{\mathrm{y}-3}{4}=\frac{\mathrm{z}-5}{1}=\lambda$

Any point on line QR :
$(\lambda+2,4 \lambda+3, \lambda+5)$
\therefore Point of intersection with plane :
$5 \lambda+10-16 \lambda-12-\lambda-5=1$
$\Rightarrow \lambda=-\frac{2}{3}$
$\therefore \quad \mathrm{P}\left(\frac{4}{3}, \frac{1}{3}, \frac{13}{3}\right)$
Also

$\because \quad \mathrm{TQ}=\mathrm{TR}=\sqrt{5}$
$\Rightarrow S$ is the mid-point of $Q R$
$\Rightarrow \mathrm{S}\left(\frac{3}{2}, 1, \frac{9}{2}\right) \Rightarrow \mathrm{PS}=\frac{1}{\sqrt{2}}$ units
(b) Let required plane be

$$
(x+2 y+3 z-2)+\lambda(x-y+z-3)=0
$$

\because plane is at a distance $\frac{2}{\sqrt{3}}$ from the point $(3,1,-1)$.
$\Rightarrow\left|\frac{(3+2-3-2)+\lambda(3-1-1-3)}{\sqrt{(1+\lambda)^{2}+(2-\lambda)^{2}+(3+\lambda)^{2}}}\right|=\frac{2}{\sqrt{3}}$
$\Rightarrow \quad \lambda^{2}=\frac{(1+\lambda)^{2}+(2-\lambda)^{2}+(3+\lambda)^{2}}{3}$
$\Rightarrow 3 \lambda^{2}=3 \lambda^{2}+2 \lambda-4 \lambda+6 \lambda+14$
$\Rightarrow \lambda=-\frac{7}{2}$
$\therefore \quad$ required plane is $(x+2 y+3 z-2)$

$$
+\left(-\frac{7}{2}\right)(x-y+z-3)=0
$$

$\Rightarrow 5 x-11 y+z=17$
(c) $(1,-1,0) ;(-1,-1,0)$

For coplanarity of lines

$$
\left|\begin{array}{ccc}
2 & 0 & 0 \\
2 & \mathrm{k} & 2 \\
5 & 2 & \mathrm{k}
\end{array}\right|=0 \quad \Rightarrow \quad 2\left(\mathrm{k}^{2}-4\right)=0
$$

$$
\begin{aligned}
\Rightarrow & \mathrm{k}= \pm 2 \\
& \text { for } \mathrm{k}=2
\end{aligned}
$$

Normal vector $\overrightarrow{\mathrm{n}}=\hat{\mathrm{j}}-\hat{\mathrm{k}}$
\therefore Required plane : $\mathrm{y}-\mathrm{z}=\lambda$
\because Passes through $(1,-1,0)$

$$
\Rightarrow \lambda=-1
$$

$$
\therefore \quad y-z=-1
$$

for $k=-2$

$$
\overrightarrow{\mathrm{n}}=\hat{\mathrm{j}}+\hat{\mathrm{k}}
$$

\therefore Required plane : $\mathrm{y}+\mathrm{z}=\lambda$
\because Passes through $(1,-1,0)$

$$
\begin{aligned}
& \Rightarrow \quad \lambda=-1 \\
& \therefore \quad y+z=-1
\end{aligned}
$$

55. $\frac{\alpha-2 \mathrm{t}+2}{1}=\frac{\beta+\mathrm{t}+1}{1}=\frac{\gamma-3 \mathrm{t}}{1}=\mathrm{k}$

$$
\begin{aligned}
& \begin{array}{l}
\alpha=\mathrm{k}+2 \mathrm{t}-2 \\
\beta=\mathrm{k}-\mathrm{t}-1 \\
\gamma=\mathrm{k}+3 \mathrm{t} \\
\\
\alpha+\beta+\gamma=3
\end{array} \\
& \mathrm{k}=\frac{6-4 \mathrm{t}}{3} \\
& \alpha=\frac{6-4 \mathrm{t}}{3}+2 \mathrm{t}-2=\frac{2 \mathrm{t}}{3} \\
& \beta=\frac{6-4 \mathrm{t}}{3}-\mathrm{t}-1=\frac{3-7 \mathrm{t}}{3} \\
& \gamma=\frac{6-4 \mathrm{t}}{3}+3 \mathrm{t}=\frac{5 \mathrm{t}+6}{3} \\
& \Rightarrow \frac{3 \alpha}{2}=\frac{3 \beta-3}{-7}=\frac{3 \gamma-6}{5} \\
& \Rightarrow \frac{x}{2}=\frac{y-3}{-7}=\frac{z-2}{5}
\end{aligned}
$$

56. $\ell_{1}: \overrightarrow{\mathrm{r}}=(3,-1,4)+(1,2,2) \mathrm{t}$
$\ell_{2}: \overrightarrow{\mathrm{r}}=(3,3,2)+(2,2,1) \mathrm{s}$
vector perpendicular to ℓ_{1} and ℓ_{2} :
$\left|\begin{array}{lll}\hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 2 \\ 2 & 2 & 1\end{array}\right|=-2 \hat{i}+3 \hat{j}-2 \hat{k}$
$\therefore \quad$ Equation of line $\ell: \overrightarrow{\mathrm{r}}=0+(-2,3,-2) \lambda$
Point of intersection of ℓ_{1} and ℓ :

$$
\begin{gathered}
3+\mathrm{t}=-2 \lambda \\
-1+2 \mathrm{t}=3 \lambda \\
4+2 \mathrm{t}=-2 \lambda
\end{gathered}
$$

On solving we get $\lambda=-1, \mathrm{t}=-1$
\therefore Point of intersection of $\ell_{1} \& \ell: \mathrm{P}(2,-3,2)$
A point on ℓ_{2} at distance of $\sqrt{17}$ from P :
$\Rightarrow(1+2 \mathrm{~s})^{2}+(6+2 \mathrm{~s})^{2}+\mathrm{s}^{2}=17$
$\Rightarrow \mathrm{s}=-\frac{10}{9} ; \mathrm{s}=-2$
for above s, point will be (B), (D)
57. $\mathrm{L}_{1}: \frac{\mathrm{x}-5}{0}=\frac{\mathrm{y}}{3-\alpha}=\frac{\mathrm{z}}{-2}$
$L_{2}: \frac{\mathrm{x}-\alpha}{0}=\frac{\mathrm{y}}{-1}=\frac{\mathrm{z}}{2-\alpha}$
for lines to be coplanar

$$
\begin{aligned}
& \left|\begin{array}{ccc}
5-\alpha & 0 & 0 \\
0 & 3-\alpha & -2 \\
0 & -1 & 2-\alpha
\end{array}\right|=0 \\
& \Rightarrow(5-\alpha)((3-\alpha)(2-\alpha)-2)=0 \\
& \Rightarrow(5-\alpha)\left(\alpha^{2}-5 \alpha+4\right)=0 \\
& \Rightarrow \alpha=1,4,5
\end{aligned}
$$

58. For point of intersection of L_{1} and L_{2}

$$
\left\{\begin{array}{l}
2 \lambda+1=\mu+4 \\
-\lambda=\mu-3 \\
\lambda-3=2 \mu-3
\end{array} \Rightarrow \mu=1\right.
$$

\Rightarrow point of intersction is $(5,-2,-1)$
Now, vector normal to the plane is

$$
\overrightarrow{\mathrm{n}}_{1} \times \overrightarrow{\mathrm{n}}_{2}=\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\
7 & 1 & 2 \\
3 & 5 & -6
\end{array}\right|=-16(\hat{\mathrm{i}}-3 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})
$$

Let equation of required plane be

$$
x-3 y-2 z=\alpha
$$

$\because \quad$ it passes through $(5,-2,-1)$
$\therefore \quad \alpha=13$
\Rightarrow equation of plane is $x-3 y-2 z=13$
69. Direction of $O Q \equiv(3,3,0)$

Direction of OS $\equiv\left(\frac{3}{2}, \frac{3}{2}, 3\right)$
$\cos \theta=\frac{3 \times \frac{3}{2}+3 \times \frac{3}{2}}{\sqrt{3^{2}+3^{2}} \sqrt{\left(\frac{3}{2}\right)^{2}+\left(\frac{3}{2}\right)^{2}+3^{2}}}$
$=\frac{1}{\sqrt{3}}$
$\therefore \quad$ Hence (A) wrong.
For option B
Normal of plane $\begin{aligned} & \mathrm{Ouvir}\end{aligned} \times \mathrm{OuF}= \pm\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 3 & 3 & 0 \\ \frac{3}{2} & \frac{3}{2} & 3\end{array}\right|$
$= \pm(9 \hat{\mathrm{i}}-9 \hat{\mathrm{j}})$
Equation of plane passing origin is $\stackrel{1}{\mathrm{r}} .{ }^{1}=0$

$$
\begin{aligned}
& \therefore \quad(x \hat{i}+y \hat{j}+z \hat{k}) \cdot(9 \hat{i}-9 \hat{j})=0 \\
& \Rightarrow x-y=0
\end{aligned}
$$

For (C) Perpendicular from $P(3,0,0)$ to $x-y=0$

$$
=\left|\frac{3-0}{\sqrt{1^{2}+1^{2}}}\right|=\frac{3}{\sqrt{2}}
$$

Equation of RS is $\frac{x-0}{\frac{3}{2}-0}=\frac{y-3}{\frac{3}{2}-3}=\frac{z-0}{3-0}$

$$
\frac{x}{\frac{3}{2}}=\frac{y-3}{-\frac{3}{2}}=\frac{z}{3}
$$

Angle between line RS and OR

MOCK TEST (VECTOR)

$\cos \theta=\frac{0+3\left(-\frac{3}{2}\right)+0}{\sqrt{\left(\frac{3}{2}\right)^{2}+\left(\frac{3}{2}\right)^{2}+3^{2} \sqrt{3^{2}}}}=\frac{1}{\sqrt{6}}$
Distance $=$ OT $=$ OR $\sin \theta$

$$
=3 \sqrt{1-\frac{1}{6}}=3 \sqrt{\frac{5}{6}}=\sqrt{\frac{15}{2}}
$$

70. Let image ($\mathrm{x}, \mathrm{y}, \mathrm{z}$)
$\frac{x-3}{1}=\frac{y-1}{-1}=\frac{z-7}{1}=-2\left(\frac{3-1+7-3}{1^{2}+1^{2}+1^{2}}\right)$
$\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(-1,5,3)$
Plane passing through $\mathrm{P}(-1,5,3)$ is
$a(x+1)+b(y-5)+c(z-3)=0$
Given $(0,0,0)$ satisfy
$\Rightarrow \mathrm{a}-5 \mathrm{~b}-3 \mathrm{c}=0$
and $a \times 1+b \times 2+c \times 1=0$
$a+2 b+c=0$
from (ii) and (iii) $\frac{\mathrm{a}}{1}=\frac{\mathrm{b}}{-4}=\frac{\mathrm{c}}{7}$
put in (i) $(x+1)-4(y-5)+7(z-3)=0$

$$
x-4 y+7 z=0
$$

71.

Given condition $\hat{\omega}$ is perpendicular to $\hat{\mathrm{u}} \times \hat{\mathrm{v}}$
As $|\hat{\mathrm{u}} \times \hat{\mathrm{v}}|=1$ and angle between u and v can change \Rightarrow infinitely many choice for such v .
$\overrightarrow{\mathrm{w}}$ is $\perp \overrightarrow{\mathrm{u}}$
$\Rightarrow u_{1}+u_{2}+u_{3}=0$
If $\overrightarrow{\mathrm{u}}$ in xy plane
$\Rightarrow u_{3}=0$.
$\Rightarrow\left|u_{1}\right|=\left|u_{2}\right|$

1. $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|^{2}=\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]^{2}$
$=((\vec{a} \times \vec{b}) \cdot \vec{c})^{2}=(a b \sin \theta \overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{c}})^{2}=\frac{\mathrm{a}^{2} \mathrm{~b}^{2}}{4}=\frac{1}{4}$
$\left(\mathrm{a}_{1}^{2}+\mathrm{a}_{2}^{2}+\mathrm{a}_{3}^{2}\right)\left(\mathrm{b}_{1}^{2}+\mathrm{b}_{2}^{2}+\mathrm{b}_{3}^{2}\right)$
2. (D)

Volume of the parallelopiped formed by $\overrightarrow{\mathrm{a}}^{\prime}, \overrightarrow{\mathrm{b}}^{\prime}, \overrightarrow{\mathrm{c}}^{\prime}$ is 4
$\therefore \quad$ Volume of the parallelopiped formed by $\vec{a}, \vec{b}, \vec{c}$ is $\frac{1}{4}$
$\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}=\frac{\left(\overrightarrow{\mathrm{c}}^{\prime} \times \overrightarrow{\mathrm{a}}^{\prime}\right) \times \overrightarrow{\mathrm{c}}}{4}=\frac{1}{4} \overrightarrow{\mathrm{a}}^{\prime}$
$\therefore|\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}|=\frac{\sqrt{2}}{4}=\frac{1}{2 \sqrt{2}}$
$\therefore \quad$ length of altitude $=\frac{1}{4} \times 2 \sqrt{2}=\frac{1}{\sqrt{2}}$.
3. A vector along the angle bisector

$$
\begin{aligned}
& =\hat{a}+\hat{b}=\frac{(-4 \hat{i}+3 \hat{k})}{5}+\frac{(14 \hat{i}+2 \hat{j}-5 \hat{k})}{15} \\
& =\frac{-12 \hat{i}+9 \hat{k}+14 \hat{i}+2 \hat{j}-5 \hat{k}}{15}=\frac{2(\hat{i}+\hat{j}+2 \hat{k})}{15}
\end{aligned}
$$

$$
\therefore \quad \overrightarrow{\mathrm{d}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+2 \hat{\mathrm{k}}
$$

4. (C)
$\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{a}}=0,|\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathrm{r}}||\overrightarrow{\mathrm{b}}|$ and $|\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{c}}|=|\overrightarrow{\mathrm{r}}||\overrightarrow{\mathrm{c}}|$
$\Rightarrow \quad \vec{r} \perp \vec{a}, \vec{b}, \vec{c}$
$\therefore \quad \vec{a}, \vec{b}, \vec{c}$ are coplaner.
$\therefore \quad[\vec{a} \quad \vec{b} \vec{c}]=0$
5. $|\overrightarrow{\mathrm{AC}}|^{2}=|2 \overrightarrow{\mathrm{AB}}|^{2}$

$$
\begin{aligned}
& \Rightarrow|4 \hat{i}+(4 x-2) \hat{j}+2 \hat{k}|^{2}=4|(\hat{i}+x \hat{j}+3 \hat{k})|^{2} \\
& \Rightarrow 16+(4 x-2)^{2}+4=4\left(1+x^{2}+9\right) \\
& \Rightarrow 20+16 x^{2}+4-16 x=4+4 x^{2}+36 \\
& \Rightarrow 12 x^{2}-16 x-16=0 \\
& \Rightarrow 3 x^{2}-4 x-4=0
\end{aligned}
$$

$\Rightarrow \mathrm{x}=2,-\frac{2}{3}$
angle between $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ is

$$
\cos \theta=\frac{\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}}{|\overrightarrow{\mathrm{AB}}||\overrightarrow{\mathrm{AC}}|}=\frac{\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}}{2|\overrightarrow{\mathrm{AB}}|^{2}}
$$

$\Rightarrow \frac{11}{14}=\frac{(\hat{\mathrm{i}}+x \hat{\mathrm{j}}+3 \hat{\mathrm{k}}) \cdot(4 \hat{\mathrm{i}}+(4 \mathrm{x}-2) \hat{\mathrm{j}}+2 \hat{\mathrm{k}})}{2\left(1+\mathrm{x}^{2}+9\right)}$
$=\frac{4+x(4 x-2)+6}{2 x^{2}+20}$
$\Rightarrow 11 x^{2}+110=70+28 x^{2}-14 x$
$\Rightarrow 17 \mathrm{x}^{2}-14 \mathrm{x}-40=0$
$\therefore \quad \mathrm{x}=2,-\frac{20}{17}$
from (i) and (ii)

$$
x=2
$$

6. (D)

$$
\vec{a}^{\prime}=\frac{\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}}{[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{~b}}]}=\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}}{2}
$$

7. $\overrightarrow{\mathrm{AD}}=2 \sqrt{2} \hat{\mathrm{i}}-2 \hat{\mathrm{k}}$

$\cos \theta=\frac{12}{\sqrt{12} \sqrt{24}}$
$\cos \theta=\frac{1}{\sqrt{2}}$
8. (B)

Let $\overrightarrow{\mathrm{r}}=\ell(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})+\mathrm{m}(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}})+\mathrm{n}(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})$
$\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{a}}=\ell[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{c}}]$
$\Rightarrow \ell=1$
similarly $\mathrm{m}=2, \mathrm{n}=3$
$\therefore \vec{r}=(\vec{b} \times \vec{c})+2(\vec{c} \times \vec{a})+3(\vec{a} \times \vec{b})$

$$
\begin{aligned}
& =\overrightarrow{\mathrm{OA}}_{1} \times \overrightarrow{\mathrm{OA}}_{2}+\overrightarrow{\mathrm{OA}}_{2} \times \overrightarrow{\mathrm{OA}}_{3} \ldots \ldots \ldots+\overrightarrow{\mathrm{OA}}_{\mathrm{n}-1} \times \overrightarrow{\mathrm{OA}}_{\mathrm{n}} \\
& =(\mathrm{n}-1)\left(\overrightarrow{\mathrm{OA}}_{1} \times \overrightarrow{\mathrm{OA}}_{2}\right) \\
& =(1-\mathrm{n})\left(\overrightarrow{\mathrm{OA}}_{2} \times \overrightarrow{\mathrm{OA}}_{1}\right)
\end{aligned}
$$

10. (B)
S_{1} : \vec{a} and $\lambda \vec{a}$ are parallel vectors.
$S_{2}: \vec{a} \cdot \vec{b}$ may take negative values also.
$S_{3}:|(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})|=|-(\vec{a} \times \vec{b})+(\vec{b} \times \vec{a})|=2|\vec{b} \times \vec{a}|$
$S_{4}:(\vec{a} \times \vec{b})^{2}=(\vec{a} \times \vec{b}) .(\vec{a} \times \vec{b})=\vec{a} .(\vec{b} \times(\vec{a} \times \vec{b}))$
$=\vec{a} \cdot((\vec{b} \cdot \vec{b}) \vec{a}-(\vec{a} \cdot \vec{b}) \vec{b})$
$=(\vec{a} \cdot \vec{a})(\vec{b} \cdot \vec{b})-(\vec{a} \cdot \vec{b})(\vec{b} \cdot \vec{a})$
11. $3 \vec{a}-2 \vec{b}+\vec{c}-2 \vec{d}=0$
sum of coefficient $=0 \Rightarrow \vec{a}, \vec{b}, \vec{c}, \vec{d}$ are coplanar

Also $\quad 2 \vec{b}+2 \vec{d}=3 \vec{a}+\vec{c}$
$\Rightarrow \quad \frac{\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{d}}}{2}=\frac{3 \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{c}}}{4}$
12. (A, B, D)

$$
\begin{array}{r}
(\lambda-1)\left(\vec{a}_{1}-\vec{a}_{2}\right)+\mu\left(\vec{a}_{2}+\vec{a}_{3}\right)+\gamma\left(\vec{a}_{3}+\vec{a}_{4}-2 \vec{a}_{2}\right)+ \\
\vec{a}_{3}+\delta \vec{a}_{4}=\overrightarrow{0}
\end{array}
$$

i.e. $(\lambda-1) \vec{a}_{1}+(1-\lambda+\mu-2 \gamma) \vec{a}_{2}+(\mu+\gamma+1) \vec{a}_{3}$

$$
+(\gamma+\delta) \overrightarrow{\mathrm{a}}_{4}=\overrightarrow{0}
$$

Since $\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}, \vec{a}_{4}$ are linearly independent
$\therefore \lambda-1=0,1-\lambda+\mu-2 \gamma=0, \mu+\gamma+1=0$ and $\gamma+\delta=0$
i.e. $\lambda=1, \mu=2 \gamma, \mu+\gamma+1=0, \gamma+\delta=0$
i.e. $\lambda=1, \mu=-\frac{2}{3}, \gamma=-\frac{1}{3}, \delta=\frac{1}{3}$
13. $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}=(x y+y z+z x)$
$\{(y-z) \hat{i}+(z-x) \hat{j}+(x-y) \hat{k}\}$
$\therefore \quad$ all the option are correct
14. (A, C, D)
(A) $\vec{a} \times[\vec{a} \times(\vec{a} \times \vec{b})]=\vec{a} \times[(\vec{a} \cdot \vec{b}) \vec{a}-(\vec{a} \cdot \vec{a}) \vec{b}]$

$$
=-(\vec{a} \cdot \vec{a})(\vec{a} \times \vec{b})
$$

$\therefore \quad(\mathrm{A})$ is not correct
(B) $\vec{v} \cdot \vec{a}=\overrightarrow{0} \quad \Rightarrow \quad \vec{v}=\overrightarrow{0}$ or $\vec{v} \perp \vec{a}$
$\vec{v} \cdot \vec{b}=\overrightarrow{0} \quad \Rightarrow \quad \vec{v}=\overrightarrow{0}$ or $\vec{v} \perp \vec{b}$
$\vec{v} \cdot \overrightarrow{\mathrm{c}}=\overrightarrow{0} \quad \Rightarrow \quad \overrightarrow{\mathrm{v}}=\overrightarrow{0}$ or $\overrightarrow{\mathrm{v}} \perp \overrightarrow{\mathrm{c}}$
$\therefore \quad \overrightarrow{\mathrm{v}}=\overrightarrow{0} \quad$ or $\quad \overrightarrow{\mathrm{v}} \perp \overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{c}}$
$\therefore \quad \overrightarrow{\mathrm{v}}=\overrightarrow{0}$
(C) $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=\overrightarrow{0}$
\therefore statement is incorrect
(D) $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}^{\prime}+\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}^{\prime}+\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{a}}^{\prime}=0$.
(Property of reciprocal system)
(D) is incorrect
15. Since \vec{a} makes obtuse angle with z-axis
$\therefore \frac{\sin 2 \alpha}{\sqrt{1+9+\sin ^{2} 2 \alpha}}<0 \quad$ i.e. $\sin 2 \alpha<0$
$\therefore \quad$ either $\frac{\pi}{2}<\alpha<\pi$ or $\frac{3 \pi}{2}<\alpha<2 \pi$
since \vec{b} and \vec{c} are orthogonal
$\therefore \quad \tan ^{2} \alpha-\tan \alpha-6=0$
i.e. $\tan \alpha=3,-2$
from (i) and (ii), we get
$\tan \alpha=-2$
$\therefore \alpha=\pi-\tan ^{-1} 2 \quad$ or $\alpha=2 \pi-\tan ^{-1} 2$
16. (B)

Both the statements are correct but statement-2 is not correct explanation of statement-1 because vectors $\overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{c}}, \overrightarrow{\mathrm{d}}$ in statement -1 are coplanar.
17. (D)

Statement-1 is false and Statement-2 is true.
Since $\vec{a} \cdot(\vec{b} \times \vec{c})=0$
$\therefore \quad \vec{a}, \vec{b}, \vec{c}$ are coplanar
18. (B)

Statement-I is correct and Statement - II is correct but Statement - II is not correct explanation of Statement - I
19. (A)
$3 \vec{a}-2 \vec{b}+5 \vec{c}-6 \vec{d}=(2 \vec{a}-2 \vec{b})+(-5 \vec{a}+5 \vec{c})+(6 \vec{a}-6 \vec{d})$
$=-2 \overrightarrow{\mathrm{AB}}+5 \overrightarrow{\mathrm{AC}}-6 \overrightarrow{\mathrm{AD}}=\overrightarrow{0}$
$\therefore \quad \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ and $\overrightarrow{\mathrm{AD}}$ are linearly dependent,
Hence by statement-2, the statement-1 is true.
20. (D)

Statement - $1 \vec{b}_{1}=\left(\frac{(2 \hat{i}+\hat{j}-3 \hat{k}) \cdot(3 \hat{i}-\hat{j})}{|3 \hat{i}-\hat{j}|}\right) \frac{3 \hat{i}-\hat{j}}{|3 \hat{i}-\hat{j}|}$

$$
=\frac{3 \hat{\mathrm{i}}}{2}-\frac{\hat{\mathrm{j}}}{2}
$$

$\therefore \quad \overrightarrow{\mathrm{b}}_{2}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-3 \hat{\mathrm{k}}-\frac{3 \hat{\mathrm{i}}}{2}+\frac{\hat{\mathrm{j}}}{2}=\frac{\hat{\mathrm{i}}}{2}+\frac{3 \hat{\mathrm{j}}}{2}-3 \hat{\mathrm{k}}$
\therefore statement is false
Statement - 2 is true
21. (A) $\rightarrow(\mathrm{t}), \quad(\mathrm{B}) \rightarrow(\mathrm{p}), \quad(\mathrm{C}) \rightarrow(\mathrm{q}), \quad(\mathrm{D}) \rightarrow(\mathrm{s})$
(A) $\vec{a}+\vec{b}=\hat{j}$ and $2 \vec{a}-\vec{b}=3 \hat{i}+\frac{\hat{j}}{2}$
$\therefore \quad \vec{a}=\hat{i}+\frac{\hat{j}}{2}, \vec{b}=-\hat{i}+\frac{\hat{j}}{2}$
$\therefore \quad \cos \theta=-\frac{3}{5}$
(B) $|\vec{a}+\vec{b}+\vec{c}|=\sqrt{6}$
$\Rightarrow \vec{a}^{2}+\vec{b}^{2}+\vec{c}^{2}+2 \vec{a} \cdot \vec{b}+2 \vec{b} \cdot \vec{c}+2 \vec{c} \cdot \vec{a}=6$
$\therefore|\vec{a}|=1$
(C) $\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 3 & 1 & -2 \\ 1 & -3 & 4\end{array}\right|=-2 \hat{i}-14 \hat{j}-10 \hat{k}$
\therefore Area $=5 \sqrt{3}$
(D) $\overrightarrow{\mathrm{a}}$ is perpendicular $\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}} \Rightarrow \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}=0$
\vec{b} is perpendicular $\vec{a}+\vec{c}$
$\Rightarrow \overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}+\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}=0$
\vec{c} is perpendicular $\vec{a}+\vec{b}$
$\Rightarrow \overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{b}}=0$
from (i), (ii) and (iii) we get

$$
\begin{aligned}
& \vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=0 \\
\therefore \quad & |\vec{a}+\vec{b}+\vec{c}|=7
\end{aligned}
$$

22. $(\mathrm{A}) \rightarrow(\mathrm{s}),(\mathrm{B}) \rightarrow(\mathrm{p}),(\mathrm{C}) \rightarrow(\mathrm{r}),(\mathrm{D}) \rightarrow(\mathrm{t})$
(A) $\overrightarrow{\mathrm{OA}}=\hat{\mathrm{i}}+2 \hat{j}+3 \hat{\mathrm{k}}, \overrightarrow{\mathrm{OB}}=-2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-4 \hat{\mathrm{k}}$,

$$
\overrightarrow{\mathrm{OC}}=3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}
$$

Area $=\frac{1}{2}|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|=\frac{\sqrt{1218}}{2}$
(B) $((\vec{a} \times \vec{b}) \times \overrightarrow{\mathrm{c}}) \cdot \overrightarrow{\mathrm{d}}+((\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}) \times \overrightarrow{\mathrm{a}}) \cdot \overrightarrow{\mathrm{d}}+((\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}}) \times \overrightarrow{\mathrm{b}}) \cdot \overrightarrow{\mathrm{d}}=0$
(C)

taking P as origin position vector of Q, R and S are $P \hat{i}, P \hat{i}+P \hat{j}, P \hat{j}$
equations of PQ^{\prime} and RS are $\overrightarrow{\mathrm{r}}=\mathrm{t}(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\sqrt{2} \hat{\mathrm{k}})$, $\overrightarrow{\mathrm{r}}=P \hat{\mathrm{i}}+P \hat{\mathrm{j}}+\lambda \hat{\mathrm{i}}$
$\therefore \quad$ shortest distance $=\frac{2 \mathrm{P}}{\sqrt{6}}$
$\therefore \quad \mathrm{k}=2$
(D) $(\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{d})-(\vec{b} \cdot \vec{c})(\vec{a} \cdot \vec{d})=21$
23.

1. (B)

$$
\begin{aligned}
\overrightarrow{\mathrm{a}}_{1}=[& \left.(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-6 \hat{\mathrm{k}}) \cdot \frac{(2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})}{7}\right] \frac{2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}}{7} \\
& =\frac{-41}{49}(2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})
\end{aligned}
$$

$$
\begin{aligned}
\vec{a}_{2}= & \frac{-41}{49}\left((2 \hat{i}-3 \hat{j}+6 \hat{k}) \cdot \frac{(-2 \hat{i}+3 \hat{j}+6 \hat{k})}{7}\right) \\
& \frac{(-2 \hat{i}+3 \hat{j}+6 \hat{k})}{7} \\
= & \frac{-41}{(49)^{2}}(-4-9+36)(-2 \hat{i}+3 \hat{j}+6 \hat{k}) \\
= & \frac{943}{49^{2}}(2 \hat{i}-3 \hat{j}-6 \hat{k})
\end{aligned}
$$

2. (A)

$$
\vec{a}_{1} \cdot \overrightarrow{\mathrm{~b}}=\frac{-41}{49}(2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}) \cdot(2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})=-41
$$

3. (C)
$\vec{a}, \vec{a}_{1}, \vec{b}$ are coplanar, because \vec{a}_{1}, \vec{b} are collinear.
4. $\overrightarrow{\mathrm{BL}}=\frac{1}{3} \overrightarrow{\mathrm{~b}}$
$\therefore \quad \overrightarrow{\mathrm{AL}}=\overrightarrow{\mathrm{a}}+\frac{1}{3} \overrightarrow{\mathrm{~b}}$
Let $\overrightarrow{\mathrm{AP}}=\lambda \overrightarrow{\mathrm{AL}}$ and P divides DB in the ratio $\mu: 1-\mu$

Then $\quad \overrightarrow{\mathrm{AP}}=\lambda \overrightarrow{\mathrm{a}}+\frac{\lambda}{3} \overrightarrow{\mathrm{~b}}$
Also $\quad \overrightarrow{\mathrm{AP}}=\mu \overrightarrow{\mathrm{a}}+(1-\mu) \overrightarrow{\mathrm{b}}$
from (i) and (ii) $\lambda \vec{a}+\frac{\lambda}{3} \vec{b}=\mu \vec{a}+(1-\mu) \vec{b}$
$\therefore \lambda=\mu$ and $\frac{\lambda}{3}=1-\mu$
$\therefore \quad \lambda=\frac{3}{4}$
$\therefore \quad \mathrm{P}$ divides AL in the ratio $3: 1$ and P divides DB in the ratio 3:1
similarly Q divides DB in the ratio $1: 3$
thus $\quad \mathrm{DQ}=\frac{1}{4} \mathrm{DB}$ and $\mathrm{PB}=\frac{1}{4} \mathrm{DB}$
$\therefore \quad \mathrm{PQ}=\frac{1}{2} \mathrm{DB}$ i.e. $\mathrm{PQ}: \mathrm{DB}=1: 2$

25

1. (A)

The diagonals are

$$
\begin{aligned}
& \overrightarrow{\mathrm{d}}_{1}=3 \hat{a}-2 \hat{b}+2 \hat{c}+(-\hat{a}-2 \hat{c})=2 \hat{a}-2 \hat{b} \\
& \overrightarrow{\mathrm{~d}}_{2}=3 \hat{a}-2 \hat{b}+2 \hat{c}-(-\hat{a}-2 \hat{c})=4 \hat{a}-2 \hat{b}+4 \hat{c}
\end{aligned}
$$

Angle between them $=\cos ^{-1} \frac{\overrightarrow{\mathrm{~d}}_{1} \cdot \overrightarrow{\mathrm{~d}}_{2}}{\left|\overrightarrow{\mathrm{~d}}_{1}\right| \cdot\left|\overrightarrow{\mathrm{d}}_{2}\right|}$

$$
=\cos ^{-1}\left(\frac{8+4}{2 \sqrt{2}(6)}\right)=\cos ^{-1} \frac{1}{\sqrt{2}}=\frac{\pi}{4}
$$

2. (D)

$$
\overrightarrow{\mathrm{x}}+\overrightarrow{\mathrm{y}}=2 \hat{\mathrm{~b}}-3 \hat{\mathrm{c}} \text { and } \overrightarrow{\mathrm{y}}+\overrightarrow{\mathrm{z}}=-2 \hat{\mathrm{a}}+3 \hat{\mathrm{~b}}-3 \hat{\mathrm{c}}
$$

$\therefore \quad(\vec{x}+\vec{y}) \times(\vec{y}+\vec{z})=\left|\begin{array}{ccc}\hat{\vec{a}} & \hat{\vec{b}} & \hat{\vec{c}} \\ 0 & 2 & -3 \\ -2 & 3 & -3\end{array}\right|=3 \hat{a}+6 \hat{b}+4 \hat{c}$
\therefore requied unit vector $=\frac{3 \hat{a}+6 \hat{b}+4 \hat{c}}{\sqrt{61}}$
3. (A)

$$
\begin{aligned}
& \left|\begin{array}{ccc}
2 & -3 & 4 \\
1 & 2 & -1 \\
x & -1 & 2
\end{array}\right|=0 \\
& \Rightarrow 2(4-1)+3(2+x)+4(-1-2 x)=0 \Rightarrow x=\frac{8}{5}
\end{aligned}
$$

4. (C)

$$
\begin{aligned}
& \overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{y}} \times \overrightarrow{\mathrm{x}} \quad \Rightarrow \quad(\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{y}}) \times \overline{\mathrm{x}}=\overrightarrow{0} \\
& \Rightarrow \overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{y}}+\lambda \overrightarrow{\mathrm{x}} \\
& \overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{y}}=\overrightarrow{\mathrm{x}} \times \overrightarrow{\mathrm{y}} \Rightarrow(\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{x}}) \times \overrightarrow{\mathrm{y}}=\overrightarrow{0} \quad \Rightarrow \quad \overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{x}}+\mu \overrightarrow{\mathrm{y}} \\
& \overrightarrow{\mathrm{y}}+\lambda \overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{x}}+\mu \overrightarrow{\mathrm{y}} \\
& (2 \overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}})+\lambda(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}})=(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}})+\mu(2 \overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}) \\
& \Rightarrow \quad 2+\lambda=1+2 \mu,-1+\lambda=1-\mu \\
& \Rightarrow \mu=1, \lambda=1
\end{aligned}
$$

The point of intersection is $3 \vec{a}$
5. (B)

$$
\begin{aligned}
& \hat{a} \times \hat{b}=\hat{c} \Rightarrow \hat{c} \cdot \hat{a} \times \hat{b}=\hat{c} \cdot \hat{c}=1 \\
& \Rightarrow \hat{a} \cdot(\hat{b} \times \hat{c})+\hat{b} \cdot(\hat{c} \times \hat{\vec{a}})+\hat{c} \cdot(\hat{\vec{a}} \times \hat{b})=3
\end{aligned}
$$

26. (50)

$$
\begin{aligned}
& \mathrm{V}_{1}=\left[\left.\begin{array}{ll}
\overrightarrow{\mathrm{a}} \quad \overrightarrow{\mathrm{~b}} & \overrightarrow{\mathrm{c}}] \\
\mathrm{V}_{3}=\frac{1}{6}\left[\begin{array}{l}
\overrightarrow{\mathrm{a}}
\end{array} \overrightarrow{\mathrm{~b}} \overrightarrow{\mathrm{c}}\right] \\
\mathrm{V}_{1}: \mathrm{V}_{2}: \mathrm{V}_{3}=1: \frac{1}{2}: \frac{1}{6} \\
=6: 3: 1 \\
\mathrm{~V}_{1}=\frac{1}{2}\left[\begin{array}{ll}
\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{~b}} & \overrightarrow{\mathrm{c}}] \\
1 & -1
\end{array}\right. \\
2 & -5
\end{array} \right\rvert\,=1(-3+20)+1(3-8)-6(-5+2)\right. \\
& \quad=17-5+18=30 \\
& \therefore \mathrm{~V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}=30+15+5=50
\end{aligned}
$$

27. $V=\frac{1}{6}[\vec{a} \vec{b} \vec{c}]$

The centroid are $\frac{\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}}{3}, \frac{\overrightarrow{\mathrm{~b}}+\overrightarrow{\mathrm{c}}}{3}, \frac{\overrightarrow{\mathrm{c}}+\overrightarrow{\mathrm{a}}}{3}, \frac{\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}}{3}$
$\therefore \quad V^{\prime}=\frac{1}{6}\left[\begin{array}{lll}\frac{\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{a}}}{3} & \frac{\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{b}}}{3} & \frac{\overrightarrow{\mathrm{c}}}{3}\end{array}\right]=\frac{1}{6 \times 27}\left[\begin{array}{ll}\overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{b}} \\ \mathrm{c}\end{array}\right]$

$$
=\frac{1}{27} \mathrm{~V}
$$

$$
\therefore \quad \mathrm{k}=27
$$

28. (2)

$$
\begin{aligned}
& \sum[\overrightarrow{\mathrm{p}} \times\{(\overrightarrow{\mathrm{x}}-\overrightarrow{\mathrm{q}}) \times \overrightarrow{\mathrm{p}}\}]=\overrightarrow{0} \\
& \Rightarrow \quad \sum[\overrightarrow{\mathrm{p}} \times(\overrightarrow{\mathrm{x}} \times \overrightarrow{\mathrm{p}})]-\sum[\overrightarrow{\mathrm{p}} \times(\overrightarrow{\mathrm{q}} \times \overrightarrow{\mathrm{p}})]=\overrightarrow{0} \\
& \Rightarrow \quad \sum \overrightarrow{\mathrm{p}}^{2} \overrightarrow{\mathrm{x}}-\sum(\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{x}}) \overrightarrow{\mathrm{p}}-\sum \overrightarrow{\mathrm{p}}^{2} \overrightarrow{\mathrm{q}}+\sum(\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{q}}) \overrightarrow{\mathrm{p}}=\overrightarrow{0} \\
& \Rightarrow 3 \overrightarrow{\mathrm{p}}^{2} \overrightarrow{\mathrm{x}}-\overrightarrow{\mathrm{p}}^{2} \overrightarrow{\mathrm{x}}-\overrightarrow{\mathrm{p}}^{2}(\overrightarrow{\mathrm{p}}+\overrightarrow{\mathrm{q}}+\overrightarrow{\mathrm{r}})=\overrightarrow{0} \\
& \Rightarrow 2 \overrightarrow{\mathrm{p}}^{2} \overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{p}}^{2}(\overrightarrow{\mathrm{p}}+\overrightarrow{\mathrm{q}}+\overrightarrow{\mathrm{r}}) \\
& \Rightarrow \quad \overrightarrow{\mathrm{x}}=\frac{1}{2}(\overrightarrow{\mathrm{p}}+\overrightarrow{\mathrm{q}}+\overrightarrow{\mathrm{r}})
\end{aligned}
$$

29. Equation of line L_{1} is $7 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}+l(-3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+4 \hat{\mathrm{k}})$

Equation of line L_{2} is $5 \hat{i}+3 \hat{j}+4 \hat{k}+\mu(2 \hat{i}+\hat{j}+3 \hat{k})$ $\overrightarrow{\mathrm{CD}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}+\lambda(-3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+4 \hat{\mathrm{k}})-\mu(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+3 \hat{\mathrm{k}})$ since it is parallel to $2 \hat{i}-2 \hat{j}-\hat{k}$
$\therefore \quad \frac{2-3 \lambda-2 \mu}{2}=\frac{3+2 \lambda-\mu}{-2}=\frac{-2+4 \lambda-3 \mu}{-1}$
$\therefore \lambda=2, \mu=1$
$\therefore \quad \overrightarrow{C D}=-6 \hat{i}+6 \hat{j}+3 \hat{k}$
$\therefore|\overrightarrow{\mathrm{CD}}|=9$
30. (13)

Let OABC be the tetrahedron. Let G be the centroid of the face OAB , then $\mathrm{GA}=\frac{1}{\sqrt{3}} \mathrm{AC}$.

Then $\cos \theta=\frac{\mathrm{GA}}{\mathrm{CA}}=\frac{1}{\sqrt{3}}$
$\therefore \quad \cos ^{2} \theta=\frac{1}{3}$

$\therefore \quad \mathrm{a}=1$ and $\mathrm{b}=3$
$\therefore \quad 10 a+b=13$

MOCK TEST (3-D)

1. Any pt. on line is $(3 \lambda+2,2 \lambda-1,1-\lambda)$
but it lies on the curve $x y=c^{2} \& z=0$
$\Rightarrow(3 \lambda+2)(2 \lambda-1)=c^{2} \& 1-\lambda=0$
$\Rightarrow(3 \lambda+2)(2 \lambda-1)=c^{2} \& \lambda=1$
$\Rightarrow \mathrm{c}^{2}=5 \quad \Rightarrow \quad \mathrm{c}= \pm \sqrt{5}$
2. (A)

Foot of perpendicular from point $A(\vec{a})$ on the plane
$\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{n}}=\mathrm{d}$ is $\overrightarrow{\mathrm{a}}+\frac{(\mathrm{d}-\overrightarrow{\mathrm{a}} . \overrightarrow{\mathrm{n}})}{|\overrightarrow{\mathrm{n}}|^{2}} \overrightarrow{\mathrm{n}}$
$\therefore \quad$ Equation of line parallel to $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}}$ in the plane
$\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{n}}=\mathrm{d}$ is given by

$$
\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\frac{(\mathrm{d}-\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{n}})}{|\overrightarrow{\mathrm{n}}|^{2}} \overrightarrow{\mathrm{n}}+\lambda \overrightarrow{\mathrm{b}}
$$

3. Position of pt. after t hours is $(2 t,-4 t, 4 t)$

Position of pt. after 10 hours is $(20,-40,40)$
Distance from origin
$=\sqrt{(20)^{2}+(-40)^{2}+(40)^{2}}=60 \mathrm{~km}$
4. (D)
$P_{1}=P_{2}=0, P_{2}=P_{3}=0$ and $P_{3}=P_{1}=0$ are lines of intersection of the three planes $\mathrm{P}_{1}, \mathrm{P}_{2}$ and P_{3}.
As $\vec{n}_{1}, \overrightarrow{\mathrm{n}}_{2}$ and $\overrightarrow{\mathrm{n}}_{3}$ are non-coplanar, planes $\mathrm{P}_{1}, \mathrm{P}_{2}$ and P_{3} will intersect at unique point. So the given lines will pass through a fixed point.
5. Let $\overrightarrow{\mathrm{OA}}=\ell_{1} \hat{\mathrm{i}}+\mathrm{m}_{1} \hat{\mathrm{j}}+\mathrm{n}_{1} \hat{\mathrm{k}}, \overrightarrow{\mathrm{OB}}=\ell_{2} \hat{\mathrm{i}}+\mathrm{m}_{2} \hat{\mathrm{j}}+\mathrm{n}_{2} \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{OC}}=\ell_{3} \hat{\mathrm{i}}+\mathrm{m}_{3} \hat{\mathrm{j}}+\mathrm{n}_{3} \hat{\mathrm{k}}$ be mutually perpendicular vectors.

Let $\overrightarrow{\mathrm{OP}}=\ell \hat{\mathrm{i}}+m \hat{\mathrm{j}}+\mathrm{n} \hat{\mathrm{k}}$ be equally inclined to $\overrightarrow{\mathrm{OA}}, \overrightarrow{\mathrm{OB}}$ and $\overrightarrow{\mathrm{OC}}$.
Then
$\overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{OC}}=\sum \ell_{1} \hat{\mathrm{i}}+\sum \mathrm{m}_{1} \hat{\mathrm{j}}+\sum \mathrm{n}_{1} \hat{\mathrm{k}}$
$|\overrightarrow{\mathrm{OP}}|^{2}=\left(\sum \ell_{1}\right)^{2}+\left(\sum \mathrm{m}_{1}\right)^{2}+\left(\sum \mathrm{n}_{1}\right)^{2}$
$=3+2 \sum\left(\ell_{1} \ell_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}+\mathrm{n}_{1} \mathrm{n}_{2}\right)=3$
$\therefore|\overrightarrow{\mathrm{OP}}|=\sqrt{3}$
$\therefore \hat{\mathrm{OP}}=\frac{\ell_{1}+\ell_{2}+\ell_{3}}{\sqrt{3}} \hat{\mathrm{i}}+\frac{\mathrm{m}_{1}+\mathrm{m}_{2}+\mathrm{m}_{3}}{\sqrt{3}} \hat{\mathrm{j}}$

$$
+\frac{\mathrm{n}_{1}+\mathrm{n}_{2}+\mathrm{n}_{3}}{\sqrt{3}} \hat{\mathrm{k}}
$$

6. (A)

Let θ be the required angle then θ will be the angle between \vec{a} and $\vec{b}+\vec{c}(\vec{b}+\vec{c}$ lies along the angular bisector of \vec{a} and \vec{b})

$$
\begin{aligned}
\cos \theta & =\frac{\vec{a} \cdot(\vec{b}+\overrightarrow{\mathrm{c}})}{|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}|} \\
& =\frac{2 \cos \alpha}{\sqrt{2+2 \cos \alpha}}=\frac{\cos \alpha}{\cos \frac{\alpha}{2}} \\
\theta & =\cos ^{-1}\left(\frac{\cos \alpha}{\cos \alpha / 2}\right)
\end{aligned}
$$

7. Circle passing through $\mathrm{A}(1,0,0) ; \mathrm{B}(0,1,0)$ and $\mathrm{C}(0,0,1)$ will be greatest circle of sphere
\Rightarrow circumcentre of $\triangle \mathrm{ABC}$ will be centre of circle as well as of sphere, but since $\triangle \mathrm{ABC}$ is equailatral
$\therefore \quad$ centre of the sphere is centroid of the $\triangle \mathrm{ABC}$
$\therefore \quad$ centre of the sphere is $\mathrm{D}\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$
Also radius $\mathrm{AD}=\mathrm{BD}=\mathrm{CD}=\sqrt{\frac{6}{9}}$
Equation. of sphere

$$
\begin{aligned}
& \left(\mathrm{x}-\frac{1}{3}\right)^{2}+\left(\mathrm{y}-\frac{1}{3}\right)^{2}+\left(\mathrm{z}-\frac{1}{3}\right)^{2}=\frac{6}{9} \\
\Rightarrow & 9\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)-6(\mathrm{x}+\mathrm{y}+\mathrm{z})+3=6 \\
\Rightarrow & 3\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)-2(\mathrm{x}+\mathrm{y}+\mathrm{z})-1=0 \\
\Rightarrow & 3 \sum \mathrm{x}^{2}-2 \sum \mathrm{x}-1=0
\end{aligned}
$$

8. (A)
$\mathrm{A}(1,1,1), \mathrm{B}(2,3,5), \mathrm{C}(-1,0,2)$ directions ratios of AB are $<1,2,4>$
direction ratios of AC are $<-2,-1,1>$
\therefore direction ratios of normal to plane ABC are $<2,-3,1>$
$\therefore \quad$ Equation of the plane ABC is $2 \mathrm{x}-3 \mathrm{y}+\mathrm{z}=0$
Let the equation of the required plane be $2 x-3 y+z=k$,
then $\left|\frac{\mathrm{k}}{\sqrt{4+9+1}}\right|=2$
$\mathrm{k}= \pm 2 \sqrt{14}$
$\therefore \quad$ Equation of the required plane is $2 x-3 y+z+2 \sqrt{14}=0$
9. Consider $\overrightarrow{\mathrm{AP}} \times(\ell \hat{\mathrm{i}}+\mathrm{m} \hat{j}+n \hat{k})=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ p-a & q-b & r-c \\ \ell & m & n\end{array}\right|$ $=\sum(\mathrm{n}(\mathrm{q}-\mathrm{b})-\mathrm{m}(\mathrm{r}-\mathrm{c})) \hat{\mathrm{i}}$

$\therefore \quad \mathrm{MP}^{2}=|\overrightarrow{\mathrm{AP}} \times(\ell \hat{\mathrm{i}}+\mathrm{m} \hat{\mathrm{j}}+\mathrm{nk})|^{2}$ $=\sum\{\mathrm{n}(\mathrm{q}-\mathrm{b})-\mathrm{m}(\mathrm{r}-\mathrm{c})\}^{2}$
10. (A)
S_{1} : true by definition
S_{2} : false (because by the given condition, at least one point may lie on the plane)
S_{3} : true (Standard result)
$\mathrm{S}_{4}:$ True shortest distance $=\left|\frac{-11-3}{\sqrt{9+36+4}}\right|=2$
11. (A, B, C)
$x+y+z-1=0$
$4 x+y-2 z+2=0$
\therefore direction ratios of the line are $<-3,6,-3>$
i.e. $\langle 1,-2,1\rangle$

Let $\mathrm{z}=\mathrm{k}$, then $\mathrm{x}=\mathrm{k}-1, \mathrm{y}=2-2 \mathrm{k}$
i.e. $(k-1,2-2 k, k)$ is any point on the line
$\therefore \quad(-1,2,0),(0,0,1)$ and $\left(-\frac{1}{2}, 1, \frac{1}{2}\right)$ are points on the line
$\therefore \quad(\mathrm{A}),(\mathrm{B})$ and (C) are correct options
12. $\overrightarrow{\mathrm{CD}}=\frac{a \vec{a}+b \vec{b}}{a+b}$

$$
\overrightarrow{\mathrm{CM}}=\frac{\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}}{2}
$$

$\therefore \quad \operatorname{area}(\Delta \mathrm{CDM})=\frac{1}{2}|\overrightarrow{\mathrm{CD}} \times \overrightarrow{\mathrm{CM}}|$
$=\frac{1}{4} \times \frac{1}{(a+b)}|(a \vec{a}+b \vec{b}) \times(\vec{a}+\vec{b})|$
$=\frac{1}{4(a+b)}|(a-b)(\vec{a} \times \vec{b})|$
$=\frac{1}{2} \cdot \frac{\mathrm{a}-\mathrm{b}}{\mathrm{a}+\mathrm{b}} \cdot \frac{1}{2}|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\frac{1}{2} \frac{\mathrm{a}-\mathrm{b}}{\mathrm{a}+\mathrm{b}} \operatorname{ar}(\triangle \mathrm{ABC})$
$\therefore \frac{\operatorname{ar}(\triangle \mathrm{CDM})}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{1}{2} \frac{\mathrm{a}-\mathrm{b}}{\mathrm{a}+\mathrm{b}}=\frac{1}{2} \tan \frac{\mathrm{~A}-\mathrm{B}}{2} \cot \frac{\mathrm{~A}+\mathrm{B}}{2}$
13. (A, B)
$3 x-6 y+2 z+5=0$
$-4 x+12 y-3 z+3=0$
$\frac{3 x-6 y+2 z+5}{\sqrt{9+36+4}}=\frac{-4 x+12 y-3 z+3}{\sqrt{16+144+9}}$
bisects the angle between the planes that contains the origin.
$13(3 x-6 y+2 z+5)=7(-4 x+12 y-3 z+3)$
$39 x-78 y+26 z+65=-28 x+84 y-21 z+21$
$67 x-162 y+47 z+44=0$
Further $3 \times(-4)+(-6)(12)+2 \times(-3)<0$
$\therefore \quad$ origin lies in acute angle
14. (B)
$S_{1}:$ Since $\left|\begin{array}{ccc}1-1 & 7+2 & -4-3 \\ 2 & 5 & 7 \\ 1 & 2 & 3\end{array}\right|=\left|\begin{array}{ccc}0 & 9 & -7 \\ 2 & 5 & 7 \\ 1 & 2 & 3\end{array}\right|=16 \neq 0$
S_{2} : by the given condition

$$
\frac{4+2}{3}=\frac{13-3}{5}=\frac{1-5}{2} \quad \text { i.e. } 2=2=-2
$$

Which is not true
$\mathrm{S}_{3}:$ Let $\mathrm{S} \equiv \mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}-2 \mathrm{x}-4 \mathrm{y}-2 \mathrm{z}+2=0$
Then $\quad S_{1}=4+1+1-4-4-2+2=-2<0$
\therefore Statement is false
$\mathrm{S}_{4}:$ Let $<\mathrm{a}, \mathrm{b}, \mathrm{c}>$ be direction ratios of the line, then $a+b+c=0$
$4 a+b-2 c=0$
i.e. $\frac{a}{-2-1}=\frac{b}{4+2}=\frac{c}{1-4}$
i.e. $\frac{\mathrm{a}}{-3}=\frac{\mathrm{b}}{6}=\frac{\mathrm{c}}{-3} \quad$ i.e. $\frac{\mathrm{a}}{1}=\frac{\mathrm{b}}{-2}=\frac{\mathrm{c}}{1}$
\therefore Statement is true
15. (A, B)

Equation of required plane is
$\ell x+m y+\lambda z=0$
angle between (i) \& $\ell x+m y=0$ is α.

$$
\begin{aligned}
& \Rightarrow \cos \alpha=\frac{\ell^{2}+\mathrm{m}^{2}}{\sqrt{\ell^{2}+\mathrm{m}^{2}} \sqrt{\ell^{2}+\mathrm{m}^{2}+\lambda^{2}}} \\
& \Rightarrow \cos ^{2} \alpha=\frac{\ell^{2}+\mathrm{m}^{2}}{\ell^{2}+\mathrm{m}^{2}+\lambda^{2}} \\
& \Rightarrow \lambda= \pm \sqrt{\ell^{2}+\mathrm{m}^{2}} \tan \alpha
\end{aligned}
$$

Hence equation of plane is
$\ell \mathrm{x}+\mathrm{my} \pm \mathrm{z} \sqrt{\ell^{2}+\mathrm{m}^{2}} \tan \alpha=0$
16. (A)
$\mathrm{S}_{1}:(1,2,-1)$ is a point on the line and $11+3-14=0$
\therefore The point lies on the plane $11 \mathrm{x}-3 \mathrm{z}-14=0$
Further $3 \times 11+11(-3)=0$
$\therefore \quad$ The line lies in the plane
S_{2} : obviously true
17. (A)

Statement -I $\overrightarrow{\mathrm{PA}} \cdot \overrightarrow{\mathrm{PB}}=9>0$
$\therefore \quad \mathrm{P}$ is exterior to the sphere
Statement -III is true (standard result)
18. (D)

$$
\begin{aligned}
& \text { Statement - III: } \overrightarrow{\mathrm{r}} \times(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}})=\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{j} & \hat{\mathrm{k}} \\
\mathrm{x} & \mathrm{y} & \mathrm{z} \\
1 & 2 & -3
\end{array}\right| \\
& \quad=\hat{\mathrm{i}}(-3 y-2 \mathrm{z})-\hat{\mathrm{j}}(-3 \mathrm{x}-\mathrm{z})+\hat{\mathrm{k}}(2 \mathrm{x}-\mathrm{y}) \\
& \therefore \quad-3 y-2 \mathrm{z}=2,3 \mathrm{x}+\mathrm{z}=-1,2 \mathrm{x}-\mathrm{y}=0 \\
& \text { i.e. }-6 \mathrm{x}-2 \mathrm{z}=2,3 \mathrm{x}+\mathrm{z}=-1 \\
& \therefore \quad \text { straight line } 2 \mathrm{x}-\mathrm{y}=0,3 \mathrm{x}+\mathrm{z}=-1
\end{aligned}
$$

Statement-I : $\overrightarrow{\mathrm{r}} \times(2 \hat{i}-\hat{j}+3 \hat{k})=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ 2 & -1 & 3\end{array}\right|$
$=\hat{\mathrm{i}}(3 y+z)-\hat{\mathrm{j}}(3 \mathrm{x}-2 \mathrm{z})+\hat{\mathrm{k}}(-\mathrm{x}-2 \mathrm{y})$
$\therefore 3 y+z=3,3 x-2 z=0,-x-2 y=1$

$$
3 x-2(3-3 y)=0
$$

$\Rightarrow 3 x+6 y=6$
$\Rightarrow x+2 y=2$
Now $\quad x+2 y=-1, x+2 y=2$ are parallel planes
$\therefore \quad \overrightarrow{\mathrm{r}} \times(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+3 \hat{\mathrm{k}})=3 \hat{\mathrm{i}}+\hat{\mathrm{k}}$ is not a straight line
19. (A)
$\sin \theta=\left|\frac{2-3+2}{\sqrt{4+9+4} \sqrt{3}}\right|=\frac{1}{\sqrt{51}}$
\therefore Statement- 1 is true, Statement- 2 is true by definition
20. (B)

Statement - 1

$$
\begin{aligned}
& 3 y-4 z=5-2 k \\
& -2 y+4 z=7-3 k
\end{aligned}
$$

$\therefore \quad \mathrm{x}=\mathrm{k}, \mathrm{y}=12-5 \mathrm{k}, \mathrm{z}=\frac{31-13 \mathrm{k}}{4}$ is a point on the line for all real values of k.
Statement is true
Statement - 2
direction ratios of the straight line are
$<\mathrm{bc}^{\prime}-\mathrm{kbc}, \mathrm{kac}-\mathrm{ac}^{\prime}, 0>$
direction ratios of normal to be plane $<0,0,1>$
Now $0 \times\left(\mathrm{bc}^{\prime}-\mathrm{kbc}\right)+0 \times\left(\mathrm{kac}-\mathrm{ac}^{\prime}\right)+1 \times 0=0$
\therefore the straight line is parallel to the plane
$\therefore \quad$ statement is true but does not explain statement - 1
21. (A) $\rightarrow(\mathrm{s}, \mathrm{t}),(\mathrm{B}) \rightarrow(\mathrm{p}, \mathrm{t}),(\mathrm{C}) \rightarrow(\mathrm{q}),(\mathrm{D}) \rightarrow(\mathrm{r})$
(A) Both the lines pass through the point $(7,11,15)$
(B) $<2,3,4>$ are direction ratios of both the lines. Also the point $(1,2,3)$ is common to both
\therefore The lines are conicident.
(C) $<5,4-2>$ are direction ratios of both the lines
$\therefore \quad$ The lines are parallel.
Also $\quad x=2+5 \lambda, y=-3+4 \lambda, z=5-2 \lambda$
$\therefore \frac{2+5 \lambda-7}{5}=\frac{-3+4 \lambda-1}{4}=\frac{5-2 \lambda-2}{-2}$
i.e. $\lambda-1=\lambda-1=\frac{3-2 \lambda}{-2}$
$\therefore \quad$ no value of λ
Thus the lines are parallel and different.
(D) $\langle 2,3,5\rangle$ and $<3,2,5>$ are direction ratios of first and $2^{\text {nd }}$ line respectively.
$\therefore \quad$ The lines are not parallel.

$$
\begin{array}{ll}
\mathrm{x}=3+2 \lambda, & \mathrm{y}=-2+3 \lambda, \mathrm{z}=4+5 \lambda \\
\mathrm{x}=3+3 \mu, & \mathrm{y}=-2+2 \mu, \mathrm{z}=7+5 \mu
\end{array}
$$

are parametric equations of the lines.
Solving $3+2 \lambda=3+3 \mu$ and $-2+3 \lambda=2+2 \mu$
we get $\lambda=\frac{12}{5}, \mu=\frac{8}{5}$
Now substituting these values in $4+5 \lambda=7+5 \mu$
we get $4+12=7+8$ i.e. $16=15$ which is not true.
\therefore The lines do not intersect
Hence the lines are skew.
22. (A) \rightarrow (s)
(B) \rightarrow (p)
$(\mathrm{C}) \rightarrow(\mathrm{t})$
(D) \rightarrow (q)
(A) Let the foot of perpendicular be $\mathrm{Q}(2+2 \lambda, 1+3 \lambda, 2+4 \lambda)$
$\therefore 2(2 \lambda+1)+3(3 \lambda-1)+4(4 \lambda-1)=0$
$29 \lambda=5 \quad \Rightarrow \quad \lambda=\frac{5}{29}$
$\therefore \quad$ Foot $=\left(\frac{68}{29}, \frac{44}{29}, \frac{78}{29}\right)$
$\therefore \quad(\mathrm{A}) \rightarrow(\mathrm{s})$
(B) Let the image be the point ($\mathrm{a}, \mathrm{b}, \mathrm{c}$), then from previous solution
$\frac{1+\mathrm{a}}{2}=\frac{68}{29}, \frac{2+\mathrm{b}}{2}=\frac{44}{29}$ and $\frac{3+\mathrm{c}}{2}=\frac{78}{29}$
i.e. $\mathrm{a}=\frac{107}{29}, \mathrm{~b}=\frac{30}{29}$ and $\mathrm{c}=\frac{68}{29} \quad \therefore \quad(B) \rightarrow(\mathrm{p})$
(C) $\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-5}{-4}=-\frac{4+9-20+17}{4+9+16}=\frac{-10}{29}$
$\therefore \quad \mathrm{a}=\frac{38}{29}, \mathrm{~b}=\frac{57}{29} \quad$ and $\quad \mathrm{c}=\frac{185}{29} \quad \therefore \quad(\mathrm{C}) \rightarrow(\mathrm{t})$
(D) $\frac{\mathrm{x}-2}{3}=\frac{\mathrm{y}-5}{-2}=\frac{\mathrm{z}-1}{4}=-2\left(\frac{6-10+4-5}{29}\right)=\frac{10}{29}$ $\mathrm{x}=2+\frac{30}{29}=\frac{88}{29}, \mathrm{y}=5-\frac{20}{29}=\frac{125}{29}, \mathrm{z}=1+\frac{40}{29}=\frac{69}{29}$
$\therefore \quad(\mathrm{D}) \rightarrow(\mathrm{q})$
23.

1. (D)
shortest distance between both lines
$=\left|\frac{\left|\begin{array}{ccc}3-2 & 1-1 & 0+1 \\ 1 & 0 & 2 \\ 1 & 1 & -1\end{array}\right|}{\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{j} & \hat{\mathrm{k}} \\ 1 & 0 & 2 \\ 1 & 1 & -1\end{array}\right|}\right|=\left|\frac{1(0-2)-0(-1-2)+1(1-0)}{-2 \hat{i}+3 \hat{\mathrm{j}}+\hat{\mathrm{k}}}\right|$
$=\frac{1}{\sqrt{4+9+1}}=\frac{1}{\sqrt{14}}$
2. (B)

Equation of plane P
$\left|\begin{array}{ccc}x-2 & y-1 & z+1 \\ 1 & 0 & 2 \\ 1 & 1 & -1\end{array}\right|=0$
$-2(x-2)+(y-1)(3)+(z+1)=0$
$-2 x+3 y+z+2=0$
$2 x-3 y-z-2=0$
Now image of point $0(0,0,0)$ in plane P
$\frac{\mathrm{x}-0}{2}=\frac{\mathrm{y}-0}{-3}=\frac{\mathrm{z}-0}{-1}=\frac{-2(-2)}{4+9+1}$
$\frac{x}{2}=\frac{y}{-3}=\frac{z}{-1}=\frac{4}{14}$
Image point $\left(\frac{4}{7}, \frac{-6}{7}, \frac{-2}{7}\right)$
3. (C)

$$
0(0,0,0), \mathrm{A}(1,0,0), \mathrm{B}\left(0, \frac{-2}{3}, 0\right), \mathrm{C}(0,0,-2)
$$

volume of tetrahetron $\mathrm{OABC}=\frac{1}{6} \left\lvert\,\left[\begin{array}{ll}\mathrm{OA} & \overrightarrow{\mathrm{OB}} \overrightarrow{\mathrm{OC}}] \mid\end{array}\right.\right.$

$$
=\frac{1}{6}\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & -2 / 3 & 0 \\
0 & 0 & -2
\end{array}\right|=\frac{4}{18}=\frac{2}{9} \text { cu unit }
$$

24.
25. $\Delta=\frac{1}{2}|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|=\frac{1}{2}| | \begin{array}{ccc}\hat{\mathrm{i}} & \hat{j} & \hat{k} \\ -2 & 1 & 0 \\ -2 & 0 & 2\end{array}| |=|\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}}|=\sqrt{6}$
26. $\mathrm{H}(\alpha, \beta, \gamma) \Rightarrow \mathrm{AH} \perp \mathrm{BC}, \mathrm{BH} \perp \mathrm{CA}$
$\Rightarrow \frac{\alpha}{1}=\frac{\beta}{2}=\frac{\gamma}{1}$
H lies on the plane $\frac{x}{2}+y+\frac{z}{2}=1$
$\Rightarrow \gamma=\frac{1}{3}$
27. $\mathrm{H}\left(\frac{1}{3}, \frac{2}{3}, \frac{1}{3}\right), \mathrm{G}\left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right) \Rightarrow \mathrm{S}\left(\frac{5}{6}, \frac{1}{6}, \frac{5}{6}\right)$
$\Rightarrow y$-coordinates is $\frac{1}{6}$
28. $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$

$$
\begin{aligned}
& \Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=(\mathrm{x}-2)^{2}+\mathrm{y}^{2}+\mathrm{z}^{2} \\
&=\mathrm{x}^{2}+(\mathrm{y}-1)^{2}+\mathrm{z}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+(\mathrm{z}-2)^{2} \\
& \Rightarrow \mathrm{x}=1, \mathrm{y}=\frac{1}{2}, \mathrm{z}=1 \\
& \mathrm{P}\left(1, \frac{1}{2}, 1\right), \mathrm{A}(2,0,0) \Rightarrow \mathrm{AP}=\frac{3}{2}
\end{aligned}
$$

25. $u \ell+v m+w n=0$

$$
\mathrm{a} \ell^{2}+\mathrm{bm}^{2}+\mathrm{cn}^{2}=0
$$

$$
\mathrm{a} \ell^{2}+\mathrm{bm}^{2}+\mathrm{c}\left\{-\frac{(4 \ell+\mathrm{vm})}{\mathrm{w}}\right\}^{2}=0
$$

$$
\Rightarrow \quad\left(a w^{2}+\mathrm{cu}^{2}\right) \ell^{2}+\left(\mathrm{bw}^{2}+\mathrm{cv}^{2}\right) \mathrm{m}^{2}+2 \text { cuv } \ell \mathrm{m}=0
$$

$\Rightarrow \quad\left(\mathrm{aw}^{2}+\mathrm{cu}^{2}\right)\left(\frac{\ell}{\mathrm{m}}\right)^{2}+\left(\mathrm{bw}^{2}+\mathrm{cv}^{2}\right)+2 \operatorname{cuv}\left(\frac{\ell}{\mathrm{~m}}\right)=0$
put $\mathrm{u}=\mathrm{v}=\mathrm{w}=1$ in equation, then
$(a+c)\left(\frac{\ell}{m}\right)^{2}+2 c\left(\frac{\ell}{m}\right)+(b+c)=0$
similarly $(a+b)\left(\frac{m}{n}\right)^{2}+2 a\left(\frac{m}{n}\right)+(c+a)=0$
and $(\mathrm{b}+\mathrm{c})\left(\frac{\mathrm{n}}{\ell}\right)^{2}+2 \mathrm{~b}\left(\frac{\mathrm{n}}{\ell}\right)+(\mathrm{a}+\mathrm{b})=0$
From equation (ii) $\frac{\mathrm{n}_{1}}{\ell_{1}} \cdot \frac{\mathrm{n}_{2}}{\ell_{2}}=\frac{\mathrm{a}+\mathrm{b}}{\mathrm{b}+\mathrm{c}}$
similarly $\frac{\ell_{1} \ell_{2}}{\mathrm{~b}+\mathrm{c}}=\frac{\mathrm{m}_{1} \mathrm{~m}_{2}}{\mathrm{c}+\mathrm{a}}=\frac{\mathrm{n}_{1} \mathrm{n}_{2}}{\mathrm{a}+\mathrm{b}}$
$\therefore \quad \frac{\mathrm{m}_{1} \mathrm{~m}_{2}}{\ell_{1} \ell_{2}}=\frac{\mathrm{c}+\mathrm{a}}{\mathrm{b}+\mathrm{c}}$
From equation (iiii)
$\frac{\ell_{1} \ell_{2}}{b+c}=\frac{m_{1} m_{2}}{c+a}=\frac{n_{1} n_{2}}{a+b}=\frac{\ell_{1} \ell_{2}+m_{1} m_{2}+n_{1} n_{2}}{(b+c)+(b+c)+(a+b)}$
\because lines are perpendicular
$\therefore \quad \ell_{1} \ell_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}+\mathrm{n}_{1} \mathrm{n}_{2}=0$
then $(b+c)+(c+a)+(a+b)$ must be zero
$2 \mathrm{a}+2 \mathrm{~b}+2 \mathrm{c}=0 \Rightarrow \mathrm{a}+\mathrm{b}+\mathrm{c}=0$
26. Let p.v. of P be (\vec{p}) \& that of A, B, C be $\vec{a}, \vec{b}, \vec{c}$ with respect to origin ' O '.
$\mathrm{PA}^{2}+\mathrm{PB}^{2}+\mathrm{PC}^{2}+\mathrm{PO}^{2}=4 \mathrm{p}^{2}+3-2 \overrightarrow{\mathrm{p}} \cdot(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}})$
$\{\because|\overrightarrow{\mathrm{a}}|=|\overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathrm{c}}|=1\}$
For above to be minimum $\overrightarrow{\mathrm{p}} \cdot(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}})$ should be maximum
Which is $=|\overrightarrow{\mathrm{p}}||\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}|$
Further $|\vec{a}+\vec{b}+\vec{c}|=\sqrt{a^{2}+b^{2}+c^{2}+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})}=3$

Hence $\mathrm{PA}^{2}+\mathrm{PB}^{2}+\mathrm{PC}^{2}+\mathrm{PO}^{2}=4 \mathrm{p}^{2}+3-2 \mathrm{p} .3$

$$
=\left(2 p-\frac{3}{2}\right)^{2}+\frac{3}{4}
$$

Whose least value is $\frac{3}{4}$, when $|\overrightarrow{\mathrm{p}}|=\frac{3}{4}$
$\& \overrightarrow{\mathrm{p}} \| \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}$
27. (0)

Let equation of a plane containing the line be
$\ell(\mathrm{x}-1)+\mathrm{m}(\mathrm{y}+2)+\mathrm{nz}=0$
then $2 \ell-3 m+5 n=0$ and $\ell-m+n=0$
$\therefore \quad \frac{\ell}{2}=\frac{\mathrm{m}}{3}=\frac{\mathrm{n}}{1}$
$\therefore \quad$ the plane is $2(\mathrm{x}-1)+3(\mathrm{y}+2)+\mathrm{z}=0$
i.e. $2 x+3 y+z+4=0$
$\therefore a=2, b=-3, c=1$
28. $\operatorname{Cos} \theta=\frac{\ell \mathrm{m}+\mathrm{mn}+\mathrm{n} \ell}{\ell^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}}$
$\mathrm{x}^{3}+\mathrm{x}^{2}-4 \mathrm{x}-4=0$
$\ell+\mathrm{m}+\mathrm{n}=-1$
$\ell \mathrm{m}+\mathrm{mn}+\mathrm{n} \ell=-4$
$(\ell+\mathrm{m}+\mathrm{n})^{2}=\ell^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}+2(-4)$
$\Rightarrow \ell^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=1+8=9$
$\therefore \quad \cos \theta=-\frac{4}{9}$
$\therefore \quad$ acute angle between the lines is $\cos ^{-1} \frac{4}{9}$
29. (3)
$\overrightarrow{\mathrm{r}}=3 \overrightarrow{\mathrm{i}}+8 \overrightarrow{\mathrm{j}}+3 \overrightarrow{\mathrm{k}}+\lambda(3 \overrightarrow{\mathrm{i}}-\overrightarrow{\mathrm{j}}+\overrightarrow{\mathrm{k}})$
$\overrightarrow{\mathrm{r}}=-3 \overrightarrow{\mathrm{i}}-7 \overrightarrow{\mathrm{j}}+6 \overrightarrow{\mathrm{k}}+\mu(-3 \overrightarrow{\mathrm{i}}+2 \overrightarrow{\mathrm{j}}+4 \overrightarrow{\mathrm{k}})$
Let L and M be points on the line (i) and (ii) respectively
So that LM is perpendicular to both the lines.
Let position vector of L be
$3 \overrightarrow{\mathrm{i}}+8 \overrightarrow{\mathrm{j}}+3 \overrightarrow{\mathrm{k}}+\lambda_{0}(3 \overrightarrow{\mathrm{i}}-\overrightarrow{\mathrm{j}}+\overrightarrow{\mathrm{k}})$
and the position vector of M be
$-3 \overrightarrow{\mathrm{i}}-7 \overrightarrow{\mathrm{j}}+6 \overrightarrow{\mathrm{k}}+\mu_{0}(-3 \overrightarrow{\mathrm{i}}+2 \overrightarrow{\mathrm{j}}+4 \overrightarrow{\mathrm{k}})$
then $\overrightarrow{\mathrm{LM}}=-6 \overrightarrow{\mathrm{i}}-15 \overrightarrow{\mathrm{j}}+3 \overrightarrow{\mathrm{k}}-\lambda_{0}(3 \overrightarrow{\mathrm{i}}-\overrightarrow{\mathrm{j}}+\overrightarrow{\mathrm{k}})$

$$
+\mu_{0}(-3 \vec{i}+2 \vec{j}+4 \vec{k})
$$

since $\overrightarrow{\mathrm{LM}}$ is perpendicular to both the lines (i) and (iii)
$\therefore \quad \overrightarrow{\mathrm{LM}} \cdot(3 \overrightarrow{\mathrm{i}}-\overrightarrow{\mathrm{j}}+\overrightarrow{\mathrm{k}})=0$ and $\overrightarrow{\mathrm{LM}} \cdot(-3 \overrightarrow{\mathrm{i}}+2 \overrightarrow{\mathrm{j}}+4 \overrightarrow{\mathrm{k}})=0$
Thus $-18+15+3-\lambda_{0}(9+1+1)+\mu_{0}(-9-2+4)=0$
i.e. $-11 \lambda_{0}-7 \mu_{0}=0$
and $18-30+12-\lambda_{0}(-9-2+4)+\mu_{0}(9+4+16)=0$
i.e. $7 \lambda_{0}+29 \mu_{0}=0$
from (iii) and (iv) we get
$\lambda_{0}=\mu_{0}=0$
$\therefore \quad \overrightarrow{\mathrm{LM}}=-6 \overrightarrow{\mathrm{i}}-15 \overrightarrow{\mathrm{j}}+3 \overrightarrow{\mathrm{k}}$
$\therefore|\overrightarrow{\mathrm{LM}}|=\sqrt{36+225+9}=\sqrt{270}=3 \sqrt{30}$
position vector of L is $3 \vec{i}+8 \vec{j}+3 \vec{k}$
$\therefore \quad$ equation of the line of shortest distance (LM) is

$$
\overrightarrow{\mathrm{r}}=3 \overrightarrow{\mathrm{i}}+8 \overrightarrow{\mathrm{j}}+3 \overrightarrow{\mathrm{k}}+\lambda(-6 \overrightarrow{\mathrm{i}}-15 \overrightarrow{\mathrm{j}}+3 \overrightarrow{\mathrm{k}})
$$

30. Let A be the point $(2 \lambda+1,4 \lambda+3,3 \lambda+2)$
so that AP is parallel to the given plane.
Then $3(2 \lambda+1-3)+2(4 \lambda+3-8)-2(3 \lambda+2-2)=0$
$\Rightarrow 8 \lambda=16$
$\therefore \quad \lambda=2$
Therefore, A is $(5,11,8)$

$$
\begin{aligned}
\mathrm{PA}= & \sqrt{(5-3)^{2}+(11-8)^{2}+(8-2)^{2}} \\
& =\sqrt{4+9+36}=7
\end{aligned}
$$

