DCAM classes

VECTOR AND 3-DIMENSIONAL

M(1 : 2)

....**(ii)**

 $C(\vec{c})$

21. Let the equation of plane be

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

as (α, β, γ) is centroid
$$B(0, 0, b)$$
$$A(a, 0, 0)$$
$$C(0, 0, c)$$

- 22. L. H. S = $(\lambda(\vec{a} + \vec{b}) \times \lambda^2 \vec{b}) . \lambda \vec{c}$ = $\lambda^4 ((\vec{a} + \vec{b}) \times \vec{b}) . \vec{c} = \lambda^4 [a b c]$ R.H.S. = $(\vec{a} \times (\vec{b} + \vec{c})) . \vec{b} = [\vec{a} \ \vec{c} \ \vec{b}]$
 - $\Rightarrow \lambda^{4}[a b c] = -[a b c]$ $\Rightarrow \lambda^{4} = -1 \text{ which is not possible.}$
- 23. These forces can be written in terms of vector as

Resultant =
$$k\hat{i} + (k + \sqrt{2}k)\hat{j}$$

magnitude = $\sqrt{k^2 + (k + \sqrt{2}k)^2} = k\sqrt{4 + 2\sqrt{2}}$

24. Equation of plane is $\vec{r} \cdot \hat{n} = \frac{q}{|\vec{n}|}$

for intercept on x-axis take dot product with $\,\hat{i}$

$$\Rightarrow \text{ intercept on } x-axis = \frac{q}{\hat{i}.\vec{n}}$$
25. $\vec{c}.\vec{a} = \vec{a}.(\vec{a} \times \vec{b}) \Rightarrow \vec{c}.\vec{a} = 0 = \vec{c}.\vec{b} = \vec{a}.\vec{b}$
Also $|\vec{a} \times \vec{b}| = |\vec{c}|$
 $|\vec{a}||\vec{b}|\sin 90^\circ = |\vec{c}|$

$$|\vec{a}|^2 = |\vec{a}| \implies |\vec{a}| = |\vec{b}| = |\vec{c}| = 1$$

 $|3\vec{a} + 4\vec{b} + 12\vec{c}| = \sqrt{9a^2 + 16b^2 + 144c^2} = 13$
 $\{\because |\vec{a}| = |\vec{b}| = |\vec{c}| = 1\}$

28. From P(f, g, h) the foot of perpendicular on plane yz = (0, g, h),similarly from P(f, g, h) perpendicular to zx = (f,0,h)Equation of plane is

$$\begin{vmatrix} x & y & z \\ f & 0 & h \\ 0 & g & h \end{vmatrix} = 0 \implies \frac{x}{f} + \frac{y}{g} - \frac{z}{h} = 0$$

30.
$$\overrightarrow{AD} = -2\hat{i} + 2\hat{j} - \hat{k}$$

 $\overrightarrow{AC} = \hat{i} + 2\hat{j} + 2\hat{k}$
 $\overrightarrow{AB} = 3\hat{i} + 4\hat{k}$

$$AB = 3\hat{j} + 4k$$

$$\vec{n}_1 = \vec{AD} \times \vec{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -2 & 2 & -1 \\ 1 & 2 & 2 \end{vmatrix} = 6\hat{i} + 3\hat{j} - 6\hat{k}$$

$$= 3\left(2\hat{i}+\hat{j}-2\hat{k}\right)$$

$$\vec{\mathbf{n}}_2 = \overrightarrow{\mathbf{AC}} \times \overrightarrow{\mathbf{AB}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 2 & 2 \\ 0 & 3 & 4 \end{vmatrix} = 2\hat{\mathbf{i}} - 4\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$$

$$\left| \vec{n}_1 \times \vec{n}_2 \right| = 3 \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & -2 \\ 2 & -4 & 3 \end{vmatrix} = 3(-5\hat{i} - 10\hat{j} - 10\hat{k})$$

$$\sin \theta = \frac{5}{\sqrt{29}} \qquad \left(\sin \theta = \frac{\left| \vec{n}_1 \times \vec{n}_2 \right|}{\left| \vec{n}_1 \right| \left| \vec{n}_2 \right|} \right)$$

VECTOR AND 3-DIMENSIONAL

33. Dr's of bisector

$$\frac{\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}}{\sqrt{3}}+\frac{\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}}{\sqrt{3}}=\lambda(\hat{\mathbf{i}}+\hat{\mathbf{j}})$$

Hence Dr's are λ , λ , 0 ($\lambda \in R$) Equation of bisector

$$\frac{x-1}{\lambda} = \frac{y-2}{\lambda} = \frac{z-3}{0}$$
$$\frac{x-1}{2} = \frac{y-2}{2}; z-3 = 0$$

34.
$$\alpha - 1 = 2\lambda \implies \alpha = 2\lambda + 1$$

 $\beta + 2 = 3\lambda \implies \beta = 3\lambda - 2$

$$\gamma - 3 = -6\lambda \implies \gamma = -6\lambda + 3$$

$$2\lambda + 1 - 3\lambda + 2 - 6\lambda + 3 = 5$$

$$7\lambda = 1 \implies \lambda = 1/7$$

$$\therefore \text{ Point on the plane is } \left(\frac{9}{7}, -\frac{11}{7}, \frac{15}{7}\right)$$

$$\text{Distance} = \sqrt{(\alpha - 1)^2 + (\beta + 2)^2 + (\gamma - 3)^2}$$

$$= \lambda \sqrt{4 + 9 + 36} = \frac{1}{7} \cdot 7 = 1$$

36. OP \perp AP $O_{\phi}(0, 0, 0)$ A (1, 2, 3) Р (α, β, γ) $\alpha(\alpha-1)+\beta(\beta-2)+\gamma(\gamma-3)=0$ \therefore Locus of P(α, β, γ) is $x^2 + y^2 + z^2 - x - 2y - 3z = 0$ **51.** a(x-2)+b(y-3)+6(z-1)=0....**(i)** 2a - 2b - 3c = 04a + 0.b + 6c = 0 $\frac{a}{-12-0} = \frac{b}{-12-12} = \frac{c}{0+8}$ $\frac{a}{3} = \frac{b}{6} = \frac{c}{-2} = \lambda \text{ (let)}$ Put these values of a, b, c in (i) 3(x-2)+6(y-3)-2(z-1)=03x+6y-2z-22=0 $d = \left| \frac{-15 - 24 - 16 - 22}{\sqrt{9 + 36 + 4}} \right| = \left| \frac{77}{7} \right| = 11$

54. Let the tetrahedron cut x-axis, y-axis and z-axis at a, b & c respectively.

volume =
$$\frac{1}{6} [a\hat{i} b\hat{j} c\hat{k}]$$
 (Given)
Then $\frac{1}{6} (abc) = 64 K^3$ (i)
Let centroid be (x_1, y_1, z_1)
 $\therefore x_1 = \frac{a}{4}, y_1 = \frac{b}{4}, z_1 = \frac{c}{4}$
put in (i) wet get
 $x_1y_1z_1 = 6K^3$
 \therefore Locus is $xyz = 6K^3$
The required locus is $xyz = 6K^3$

- 58. $\vec{r}.\vec{n} = d$ (i) $\vec{r} = \vec{r}_0 + t\vec{n}$ (ii) from (i) and (ii) $(\vec{r}_0 + t\vec{n}).\vec{n} = d \implies t = \frac{d - \vec{r}_0.\vec{n}}{\vec{n}^2}$ substitute the value of 't' in (ii) $r = \vec{r}_0 + \left(\frac{d - \vec{r}_0.\vec{n}}{\vec{n}^2}\right)\vec{n}$ 59. $\vec{a} \times \vec{b} = 2(\vec{a} \times \vec{b})$ $\vec{a} \times (\vec{b} - 2\vec{c}) = 0 \implies \vec{b} - 2\vec{c} = \alpha \vec{a}$ squaring $b^2 + 4c^2 - 4\vec{b} \cdot \vec{c} = \alpha^2 a^2$ $16 + 4 - 4.4.1.\frac{1}{4} = \alpha^2 \implies \alpha = \pm 4$ $\vec{b} = 2\vec{c} \pm 4\vec{a}$ $|\ell| + |\mu| = 6$
- **60.** $(a b)\vec{x} + (b c)\vec{y} + (c a)(\vec{x} \times \vec{y}) = 0$

As $\vec{x}, \vec{y} \& (\vec{x} \times \vec{y})$ are non zero, non coplanar vectors, then a - b = b - c = c - a = 0 $\Rightarrow a = b = c$ Hence $\triangle ABC$ is an equilateral triangle.

Hence, acute angled triangle.

63. \vec{c} is along the vector $\vec{a} \times (\vec{a} \times \vec{b})$

$$= (\vec{a} \cdot \vec{b})\vec{a} - (\vec{a} \cdot \vec{a})\vec{b}$$

= (-1) (i + j - k) - 3(i - j + k) = -4i + 2j - 2k
$$\vec{c} = \frac{-2i + j - k}{\sqrt{6}}$$
$$\vec{d} = \frac{(\vec{a} \times \vec{c})}{|\vec{a} \times \vec{c}|};$$
$$\vec{a} \times \vec{c} = \begin{vmatrix} i & j & k \\ 1 & 1 & -1 \\ -2 & 1 & -1 \end{vmatrix} = -j(-3) + k.3 = 3(j + k)$$
$$\vec{d} = \frac{j + k}{\sqrt{2}}$$

65. Equation of plane containing

$$\frac{x+1}{-3} = \frac{y-3}{2} = \frac{z+2}{1} \text{ and point } (0, 7, -7) \text{ is}$$

$$\begin{vmatrix} x+1 & y-3 & z+2 \\ -3 & 2 & 1 \\ -1 & -4 & 5 \end{vmatrix} = 0$$
By solving we get
$$x+y+z=0$$
68. $\frac{x}{2} = \frac{y}{3} = \frac{z}{5}$ (i)
$$\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$$
(ii)
$$\hat{a} + \hat{b} = \frac{2\hat{i}+3\hat{j}+5\hat{k}}{\sqrt{38}} + \frac{\hat{i}+2\hat{j}+3\hat{k}}{\sqrt{14}}$$

$$\Rightarrow (A) and (B) will be incorrect
Let the dr's of line \perp to (1) and (2) be a, b, c

$$\Rightarrow 2a+3b+5c=0 \qquad \dots \text{(iii)}$$
and $a+2b+3c=0 \qquad \dots \text{(iv)}$

$$\therefore \frac{a}{9-10} = \frac{b}{5-6} = \frac{c}{4-3}$$

$$\Rightarrow \frac{a}{-1} = \frac{b}{-1} = \frac{c}{1} \qquad \Rightarrow \frac{a}{1} = \frac{b}{1} = \frac{c}{-1}$$$$

∴ equation of line passing through (0, 0, 0) and is ⊥r to the lines (i) and (ii) is

$$\frac{x}{1} = \frac{y}{1} = \frac{z}{-1}$$
70. $[\vec{a} \ \vec{b} \ \vec{c}]^2 = \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c} \end{vmatrix}$

$$= \begin{vmatrix} 1 & \cos \theta & \cos \theta \\ \cos \theta & 1 & \cos \theta \\ \cos \theta & \cos \theta & 1 \end{vmatrix}$$

EXERCISE - 2 Part # I : Multiple Choice

5. \vec{a} , \vec{b} , \vec{c} are unit vector mutually perpendicular to each other then angle between $\vec{a} + \vec{b} + \vec{c}$ & \vec{a} is given by

$$\cos\theta = \frac{(\bar{a} + \bar{b} + \bar{c}).\bar{a}}{|\bar{a} + \bar{b} + \bar{c}||\bar{a}||} = \frac{(\bar{a} + \bar{b} + \bar{c}).\bar{a}}{\sqrt{\bar{a}^{2} + \bar{b}^{2} + \bar{c}^{2}}|\bar{a}|}$$

$$= \frac{|\bar{a}|}{\sqrt{\bar{a}^{2} + \bar{b}^{2} + \bar{c}^{2}}}$$

$$\Rightarrow \cos\theta = \frac{1}{\sqrt{3}} \text{ or } \theta = \cos^{-1}\left(\frac{1}{\sqrt{3}}\right) = \tan^{-1}\sqrt{2}$$
7. $\bar{r} = 2\hat{1} - \hat{j} + 3\hat{k} + \lambda(\hat{i} + \hat{j} + \sqrt{2}\hat{k})$

$$\cos\alpha = \frac{\sqrt{3}}{2} \Rightarrow \alpha = 30^{\circ}, \quad \cos\beta = \frac{\sqrt{3}}{2} \Rightarrow \beta = 30^{\circ},$$

$$\cos\gamma = \frac{\sqrt{2}}{2} \Rightarrow \gamma = 45^{\circ}$$
By putting the values check options
8. $\vec{r}_{1} = \bar{a} - \bar{b} + \bar{c}$ (i)
$$\vec{r}_{2} = \bar{b} + \bar{c} - \bar{a}$$
(ii)
$$\vec{r}_{3} = \bar{c} + \bar{a} + \bar{b}$$
(iii)
$$\vec{r} = 2\bar{a} - 3\bar{b} + 4\bar{c}$$
If $\vec{r} = \lambda_{1}\vec{r}_{1} + \lambda_{2}\vec{r}_{2} + \lambda_{3}\vec{r}_{3}$
then $2\bar{a} - 3\bar{b} + 4\bar{c}$

$$= (\lambda_{1} - \lambda_{2} + \lambda_{3})\vec{a} + (\lambda_{2} - \lambda_{1} + \lambda_{3})\vec{b} + (\lambda_{1} + \lambda_{2} + \lambda_{3})\vec{c}$$

$$\Rightarrow \lambda_{1} + \lambda_{3} - \lambda_{2} = 2$$
(iv)
$$\lambda_{2} + \lambda_{3} - \lambda_{1} = -3$$
(v)
$$\lambda_{1} + \lambda_{2} + \lambda_{3} = 4$$
(v)
$$Solving (iv) (v) \& (vi) we get$$

$$\lambda_{2} = 1; \lambda_{1} = 7/2; \quad \lambda_{3} = -1/2$$
Now check options
9. $\vec{a} \times \vec{b} = \vec{c} \times \vec{d} \& \vec{a} \times \vec{c} = \vec{b} \times \vec{d}$

$$\Rightarrow \vec{a} \times (\vec{b} - \vec{c}) = (\vec{c} - \vec{b}) \times \vec{d}$$

$$\Rightarrow (\vec{a} - \vec{d}) \times (\vec{b} - \vec{c}) = 0$$

- 11. $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c})$
 - $(\vec{a}.\vec{c})\vec{b} (\vec{b}.\vec{c})\vec{a} = (\vec{a}.\vec{c})\vec{b} (\vec{a}.\vec{b})\vec{c}$
 - But $\vec{b}.\vec{c} \neq 0$, $\vec{a}.\vec{b} \neq 0$
 - \Rightarrow $\vec{a} \& \vec{c}$ must be parallel.
- 14. Vectors \overrightarrow{AR} , \overrightarrow{AB} & \overrightarrow{C} are coplanar Equation of the required plane

$$\vec{C} = d_1 \hat{i} + d_2 \hat{j} + d_3 \hat{k}$$

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ d_1 & d_2 & d_3 \end{vmatrix} = 0$$
or
$$\begin{vmatrix} x - x_2 & y - y_2 & z - z_2 \\ x_1 - x_2 & y_1 - y_2 & z_1 - z_2 \\ d_1 & d_2 & d_3 \end{vmatrix} = 0$$

16. Let vector is
$$\vec{\upsilon} = \lambda_1 \hat{a} + \lambda_2 \hat{b} + \lambda_3 (\hat{a} \times \hat{b})$$
 also

$$\cos\theta = \frac{\vec{\upsilon} \cdot \hat{a}}{|\vec{\upsilon}||\hat{a}|} = \frac{\vec{\upsilon} \cdot \hat{b}}{|\vec{\upsilon}||\hat{b}|} = \frac{\vec{\upsilon} \cdot (\hat{a} \times \hat{b})}{|\vec{\upsilon}||\hat{a} \times \hat{b}|}$$

$$\Rightarrow \vec{\upsilon} \cdot \hat{a} = \vec{\upsilon} \cdot \hat{b} = \vec{\upsilon} \cdot (\hat{a} \times \hat{b})$$

$$\begin{bmatrix} |\hat{a} \times \hat{b}| = |\hat{a}| & |\hat{b}| & \sin 90^{\circ} = 1 \end{bmatrix}$$

$$\Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = \lambda \quad (\text{let})$$

$$\therefore \quad \vec{\upsilon} = \lambda \cdot (\hat{a} + \hat{b} + \hat{a} \times \hat{b})$$

$$7|\vec{\upsilon}| = |\lambda \sqrt{\hat{a}^2 + \hat{b}^2 + (\hat{a} \times \hat{b})^2 + 2\hat{a} \cdot \hat{b} + 2\hat{b} \cdot (\hat{a} \times \hat{b}) + 2(\hat{a} \times \hat{b}) \cdot \hat{a}|} = 1$$

$$\Rightarrow |\lambda \sqrt{1 + 1 + 1}| = 1 \qquad \Rightarrow \quad \lambda = \pm \frac{1}{\sqrt{3}}$$

$$\therefore \quad \vec{\upsilon} = \pm \frac{1}{\sqrt{3}} \cdot (\hat{a} + \hat{b} + \hat{a} \times \hat{b})$$

17. Let $\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$ it makes equal angle with $\frac{1}{2}(\hat{i}-2\hat{j}+2\hat{k}), \frac{1}{5}(-4\hat{i}-3\hat{k}), \hat{j}$ then $\frac{x - 2y + 2z}{3} = \frac{-4x - 3z}{5} = y$ 4x + 5y + 3z = 0 ...(i) x - 5y + 2z = 0 ...(ii) from (i) & (ii) x = -z & x = -5v $\vec{a} = x \left(\hat{i} - \frac{1}{5} \hat{j} - \hat{k} \right).$ 18. $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b} + \vec{c}}{\sqrt{2}}$ $\Rightarrow (\vec{a}.\vec{c})\vec{b} - (\vec{a}.\vec{b})\vec{c} = \frac{\vec{b}}{\sqrt{2}} + \frac{\vec{c}}{\sqrt{2}}$ $\Rightarrow \left(\vec{a} \cdot \vec{c} - \frac{1}{\sqrt{2}}\right)\vec{b} - \left(\vec{a} \cdot \vec{b} + \frac{1}{\sqrt{2}}\right)\vec{c} = 0$ \therefore $\vec{a} \cdot \vec{b} = \frac{-1}{\sqrt{2}} \& \vec{a} \cdot \vec{c} = \frac{1}{\sqrt{2}}$ angle between $\vec{a} \& \vec{b} = \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) = \frac{3\pi}{4}$ **19.** If $\lambda = -1$ then $\vec{a} \perp \vec{b}$, $\vec{c} \perp \vec{d}$ and angle between $\vec{a} \times \vec{b}$, $\vec{c} \times \vec{d}$ is π \angle between \vec{b} and $\vec{d} = 360^{\circ} - (90^{\circ} + 90^{\circ} + 30^{\circ}) = 150^{\circ}$ If $(\vec{a} \times \vec{b})$. $(\vec{c} \times \vec{d}) = 1$, then following figure is possible then \angle between \vec{b} and $\vec{d} = 30^{\circ}$

30. Let $\vec{r} = xi + yj + zk$

then
$$[\vec{r} \ \vec{b} \ \vec{c}] = 0 \implies \begin{vmatrix} x & y & z \\ 1 & 2 & -1 \\ 1 & 1 & -2 \end{vmatrix} = 0,$$

 $-3x + y - z = 0 \qquad \dots (1)$
 $\frac{\vec{r} \cdot \vec{a}}{|\vec{a}|} = \pm \frac{\sqrt{2}}{3} \implies \frac{2x - y + 3}{\sqrt{6}} = \pm \sqrt{\frac{2}{3}}$
 $2x - y + z = \pm 2 \qquad \dots (2)$
from (1) and (2) $x = \mp 2$; $y - z = \mp 6$
there fore $\vec{r} = \mp 2i + yj + (y \pm 6)k$
(A) & (C) are answer

31. The vector parallel to line of intersection of planes is

$$\lambda \begin{vmatrix} i & j & k \\ 6 & 4 & -5 \\ 1 & -5 & 2 \end{vmatrix} = -\lambda(17\hat{i} + 17\hat{j} + 34\hat{k})$$

 $= \lambda'(\hat{i} + \hat{j} + 2\hat{k}) \quad (\lambda' \text{ is scalar})$ Now angle between the lines

$$\cos \theta = \frac{\lambda'(\hat{i} + \hat{j} + 2\hat{k}) \cdot (2\hat{i} - \hat{j} + \hat{k})}{\lambda' \sqrt{6} \times \sqrt{6}} = \frac{1}{2}$$
$$\implies \theta = \frac{\pi}{3}$$

33. any such vector = $\lambda (\hat{a} + \hat{b})$

$$= \lambda \left(\frac{7\hat{i} - 4\hat{j} - 4\hat{k}}{9} + \frac{-2\hat{i} - \hat{j} + 2\hat{k}}{3} \right)$$

$$= \frac{\lambda}{9} \left[7\hat{i} - 4\hat{j} - 4\hat{k} + 3(-2\hat{i} - \hat{j} + 2\hat{k}) \right]$$

$$= \frac{\lambda}{9} \left[\hat{i} - 7\hat{j} + 2\hat{k} \right]$$

$$|\vec{c}| = 5\sqrt{6} \implies \left| \frac{\lambda}{9}\sqrt{1 + 49 + 4} \right| = 5\sqrt{6}$$

$$\Rightarrow \left| \frac{\lambda}{9}\sqrt{54} \right| = 5\sqrt{6}$$

$$\Rightarrow \lambda = \pm \frac{9 \times 5\sqrt{6}}{\sqrt{54}} = \pm 15$$

$$\Rightarrow \vec{c} = \pm \frac{15}{9} (\hat{i} - 7\hat{j} + 2\hat{k}) = \pm \frac{5}{3} (\hat{i} - 7\hat{j} + 2\hat{k})$$

35. (A) $\vec{a} \times [a \times (\vec{a} \times \vec{b})]$

$$= \vec{a} \times [(a \cdot b)\vec{a} - (\vec{a} \cdot \vec{a})\vec{b}] = 0 - (\vec{a})^2 (\vec{a} \times \vec{b}).$$
 False

(B) $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar

$$\vec{v}.\vec{a} = 0 \vec{v}.\vec{b} = 0 \vec{v}.\vec{c} = 0$$
 $\Rightarrow \vec{v}.(\vec{a} + \vec{b} + \vec{c}) = 0$

But $\vec{a} + \vec{b} + \vec{c} \neq 0 \Rightarrow \vec{v} = 0$. i.e. null vector which is true

(C) $\vec{a} \times \vec{b}$ & $\vec{c} \times \vec{d}$ are perpendicular

So
$$(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) \neq 0$$
. False

(D)
$$\mathbf{a'} = \frac{\vec{b} \times \vec{c}}{[a b c]}, \mathbf{b'} = \frac{\vec{c} \times \vec{a}}{[a b c]}, \mathbf{c'} = \frac{\vec{a} \times \vec{b}}{[a b c]}$$

is valid only if \vec{a} , \vec{b} , \vec{c} are non coplanar, hence false.

36. Volume of prism = Area of base ABC \times height

or
$$3 = \frac{\sqrt{6}}{2} \times h$$

 $\Rightarrow h = \sqrt{6}$
 A_1
 A_1
 A_2
 A_1
 C_1
 C_2
 C_3
 C_4
 C_5
 C_5
 C_6
 C_7
 C_7

Required point A₁ should be just above point A i.e. line AA₁ is normal to plane ABC and AA₁ = $\sqrt{6}$

Hence, edge length of the parallelopiped

$$|x_{2} - x_{1}| = 8$$

$$|y_{2} - y_{1}| = 6$$

$$|z_{2} - z_{1}| = 2$$

12.
$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & -1 \\ 1 & -1 & 2 \end{vmatrix} = \hat{i}(6-1) - \hat{j}(4+1) + \hat{k}(-2-3)$$

$$= 5\hat{i} - 5\hat{j} - 5\hat{k}$$

$$\cos(90 - \theta) = \left|\frac{10 + 10 - 5}{5\sqrt{3} \cdot 3}\right|$$

$$2\hat{i} - 2\hat{j} - \hat{k}$$

$$2\hat{i} + 3\hat{j} - \hat{k}$$

$$\hat{i} - \hat{j} + 2\hat{k}$$

$$\sin\theta = \frac{1}{\sqrt{3}} \implies \theta = \sin^{-1}\left(\frac{1}{\sqrt{3}}\right) = \cot^{-1}(\sqrt{2})$$

43. Equation of bisector of plane

$$\frac{2x - y + 2z + 3}{\sqrt{2^2 + 1^2 + 2^2}} = \pm \frac{3x - 2y + 6z + 8}{\sqrt{9 + 4} + 36}$$

$$\Rightarrow \frac{2x - y + 2z + 3}{3} = \pm \frac{(3x - 2y + 6z + 8)}{7}$$

$$\Rightarrow 14x - 7y + 14z + 21 = \pm (9x - 6y + 18z + 24)$$

$$\Rightarrow 5x - y - 4z = 3 \text{ and}$$

$$23x - 13y + 32z + 45 = 0$$

47. Let normal vector \mathbf{n}_1 perpendicular to plane determining $\hat{\mathbf{i}}, \hat{\mathbf{j}} + \hat{\mathbf{k}}$ is $\mathbf{n}_1 = \hat{\mathbf{i}} \times (\hat{\mathbf{i}} + \hat{\mathbf{j}}) = \hat{\mathbf{k}}$ similarly $\mathbf{n}_2 = (\hat{\mathbf{i}} - \hat{\mathbf{i}}) \times (\hat{\mathbf{i}} - \hat{\mathbf{k}}) = \hat{\mathbf{i}} + \hat{\mathbf{i}} + \hat{\mathbf{k}}$

similarly
$$\Pi_2 = (I - J) \times (I - K) - I + J + K$$

Now vector parallel to intersection of plane = $\vec{n}_2 \times \vec{n}_1$

$$= \vec{k} \times (\hat{i} + \hat{j} + \hat{k}) = -(\hat{j} - \hat{i}) \implies \frac{x - 0}{1 - 0} = \frac{y - 0}{1 - 0} = \frac{z - 0}{1 - 0}$$

Angle between $\lambda(-\hat{j}+\hat{i})$ and $(\hat{i}-2\hat{j}+2\hat{k})$

$$\cos\theta = \frac{\lambda(-\hat{j}+\hat{i}).(\hat{i}-2\hat{j}+2\hat{k})}{\lambda\sqrt{2}\times 3} = \frac{1}{\sqrt{2}}$$
$$\implies \theta = \frac{\pi}{4} \quad \text{or} \quad \theta = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$$

Part # II : Assertion & Reason

2. Statement-I Equation of plane is

$$(\vec{r} - \vec{a}).(\vec{b} \times \vec{c}) = 0$$
(1)
 $\vec{r} = \vec{a} + \lambda \vec{b} + \mu \vec{c}$ satisfies above equation

_ _ _

Hence True

Statement-II is also true & explain statement I

3. Statement - I

 $A(\vec{a}) \quad \& \quad B(\vec{b})$

 $\overrightarrow{PA} \cdot \overrightarrow{PB} \le 0$, then locus of P is sphere having diameter $|(\vec{a} - \vec{b})|$

$$\text{volume} = \frac{4}{3} \pi \left| \frac{\vec{a} - \vec{b}}{2} \right|^3 = \frac{\pi}{6} \left| \vec{a} - \vec{b} \right|^2 \cdot \left| \vec{a} - \vec{b} \right|$$
$$= \frac{\pi}{6} \left(\vec{a}^2 + \vec{b}^2 - 2\vec{a}.\vec{b} \right) \left| \vec{a} - \vec{b} \right|$$

Hence true.

Statement - II : Diameter of sphere subtend acute angle at point P then point P moves out side the sphere having radius r.

5.
$$[\vec{d} \ \vec{b} \ \vec{c}] \ \vec{a} + [\vec{d} \ \vec{c} \ \vec{a}] \ \vec{b} + [\vec{d} \ \vec{a} \ \vec{b}] \ \vec{c} - [\vec{a} \ \vec{b} \ \vec{c}] \ \vec{d}$$

$$= ([\vec{b} \ \vec{c} \ \vec{d}] \ \vec{a} - [\vec{b} \ \vec{c} \ \vec{a}] \ \vec{d}) + ([\vec{d} \ \vec{a} \ \vec{b}] \ \vec{c} - [\vec{d} \ \vec{a} \ \vec{c}] \ \vec{b})$$

$$= (\vec{b} \times \vec{c}) \times (\vec{a} \times \vec{d}) + (\vec{d} \times \vec{a}) \times (\vec{c} \times \vec{b})$$

$$= (\vec{d} \times \vec{a}) \times (\vec{b} \times \vec{c}) - (\vec{d} \times \vec{a}) \times (\vec{b} \times \vec{c}) = \vec{0}$$

8. Let the coordinates of A, B, C, D be A(1, 0, 0), B(1, 1, 0), C(0, 1, 0) and D(0, 0, 0) so that coordinates of A₁, B₁, C₁ are A₁(1,0,1), B₁(1,1,1), C₁(0, 1, 1) & D₁(0, 0, 1) The coordinates of midpoint of B₁A₁ is $P\left(1, \frac{1}{2}, 1\right)$ and that of B₁C₁ is $Q\left(\frac{1}{2}, 1, 1\right)$

VECTOR AND 3-DIMENSIONAL

Equation of the plane PBQ is 2x + 2y + z = 4

Its distance from D(0, 0, 0) is $\frac{4}{3}$

So Statement-1 is false and Statement-2 is clearly true.

$$I = \frac{a\vec{a} + bb + c\vec{a}}{a + b + c}$$

13. plane P₁ is
$$\perp$$
 to $\vec{a} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & -1 \\ 1 & 0 & -2 \end{vmatrix} = 2\hat{i} + \hat{j} + \hat{k}$

and plane P₂ is
$$\perp$$
 to $\vec{b} = \begin{vmatrix} i & j & k \\ 1 & 0 & -2 \\ 2 & -1 & -3 \end{vmatrix} = -2\hat{i} - \hat{j} - \hat{k}$

$$\Rightarrow \vec{a} \mid \mid \vec{b} \Rightarrow P_1 \& P_2 \text{ are parallel}$$

also L is parallel to
$$\vec{c} = \hat{i} - \hat{j} - \hat{j}$$

also $\vec{a} \cdot \vec{c} = 0$ & $\vec{b} \cdot \vec{c} = 0$

but it is not essential that if $P_1 \& P_2$ are parallel to L then $P_1 \& P_2$ must be parallel.

ĥ

So Statement-II is not a correct explanation of Statement-I.

14. Statement-I

$$\vec{a} = \hat{i}, \vec{b} = \hat{j} \& \vec{c} = \hat{i} + \hat{j}$$

 $\vec{c} = \vec{a} + \vec{b}$ linearly dependent

 $\vec{a} \& \vec{b}$ are linearly independent Hence true.

Statement - II :

 $\vec{a} & \vec{b}$ are linearly dependent $\vec{a} = t\vec{b}$ then $\vec{c} = \lambda \vec{a} + \mu \vec{b}$ which is linearly dependent.

EXERCISE - 3 Part # I : Matrix Match Type

 (A) If P is a point inside the triangle such that area(ΔPAB + ΔPBC + ΔPCA) = area (ΔABC) Then P is centroid.

(B)
$$\vec{V} = \vec{PA} + \vec{PB} + \vec{PC}$$

 $0 = \vec{a} - \vec{p} + \vec{b} - \vec{p} + \vec{c} - \vec{p}$
 $\vec{p} = \frac{\vec{a} + \vec{b} + \vec{c}}{3}$ which is centroid.

(C)
$$\vec{P} = (BC)\vec{PA} + (CA)\vec{PB} + (AB)\vec{PC} = 0$$

$$a(\vec{\alpha}-\vec{p})+b(\beta-\vec{p})+c(\vec{\gamma}-\vec{p})=0$$

$$\Rightarrow \vec{p} = \frac{a\vec{\alpha} + b\beta + c\vec{\gamma}}{a + b + c}$$

$$B(\vec{\beta})$$

$$e^{\mathbf{P}(\vec{p})}c$$

$$C(\vec{\gamma}) \qquad b \qquad A(\vec{\alpha})$$

which is incentre.

(D) From fig.

 $\overrightarrow{PA} \cdot \overrightarrow{CB} = 0$ $\overrightarrow{PB} \cdot \overrightarrow{AC} = 0$ $\Rightarrow P \text{ is orthocentre.}$

2. (A) Vector parallel to line of intersection of the plane is $(\hat{i} + \hat{j}) \times (\hat{j} + \hat{k}) = \hat{k} - \hat{j} + \hat{i}$ equation of line whose dr's, are (1, -1, 1) and passing through (0, 0, 0) is x = -y = z

(B) Similarly
$$(\hat{x}, \hat{x}) = \hat{k}$$
.
Hence dr's = $(0, 0, 1)$
and passing through the point $(2, 3, 0)$
 \therefore Equation of line $\frac{x-2}{0} = \frac{y-3}{0} = \frac{z}{1}$
(C) Similarly $\hat{x}, \hat{q}, \hat{k} + \hat{b} = \hat{k} - \hat{1}$
dr's = $(0, -1, 1)$
Equation of line $\frac{x-2}{0} = \frac{y-2007}{-1} = \frac{z+2004}{1}$
because $x = 2$ & $y + z = 3$
so $y = 2007, z = -2004$ satisfy above equation
(b) $x = 2, x + y + z = 3$
 $y + z = 1$
same as part C
we get $\frac{x-2}{0} = \frac{y}{-1} = \frac{z-1}{1}$
3. (A)
here $\tilde{a} = \tilde{b} + \tilde{c}$
 $\overline{AM} = \frac{1}{2} (\tilde{a} + \tilde{b})$
 $\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2}$
(c) Area = $|\tilde{a} \times \tilde{b}| = |(\tilde{p} + 2\tilde{q}) \times (2\tilde{p} + \tilde{q})|$
 $= |\tilde{p} \times \dot{q} + 4\dot{q} \times p| = |3p \times \dot{q}| = 3x \frac{1}{2} - \frac{3}{2}$
(d) $\tilde{u} + \tilde{v} + \tilde{w} = 0$
 $\Rightarrow |\tilde{u}|^2 + \tilde{v} + \tilde{u}|^2 + 2(\tilde{u}, \tilde{v}) + 2(\tilde{v}, \tilde{u}) + 2(\tilde{v}, \tilde{u}) = 0$
 $\Rightarrow 9 + 16 + 25 + 2$ $[\tilde{u}, \bar{v} + \tilde{v}, \bar{w} + \tilde{u}, l] = 0$
 $\Rightarrow 9 + 16 + 25 + 2$ $[\tilde{u}, \bar{v} + \tilde{v}, \bar{w} + \tilde{w}, l] = 0$
 $\Rightarrow \sqrt{|\tilde{u}, \tilde{v} + \tilde{v}, \bar{w} + \tilde{w}, l]} = 5$
Comprehension #2
1. Equation of the second plane is $-x + 2y - 3z + 5 = 0$
 $2(-1) + 3, 2 + (-4)(-3) > 0$
 $\therefore 0$ lies in obtuse angle.
2. $1 \times 2 + 2 \times 1 - 3 \times 3 = 0$
 $\therefore 0$ lies in acute angle.
2. $1 \times 2 + 2 \times 1 - 3 \times 3 = 0$
 $\therefore 0$ lies in acute angle.
3. $1 - 4 - 9 > 0$
 $\therefore 0$ lies in acute angle.
5. $1 - 4 - 9 > 0$
 $\therefore 0$ lies in acute angle.
5. $1 - 4 - 6 + 2(1 - 4 + 6 + 7) > 0$
 $\therefore The point P lies in acute angle.
6. $\frac{1}{2} |\hat{z}|_{1} + \hat{z}|_{1} + \hat{z}|_{1} + \hat{x}|_{1} = \hat{z} + \hat{z}|_{1} = \hat{b}|_{1}$
 $\hat{v} \times \hat{v} = \tilde{v} \cdot (\tilde{a} \times \tilde{b}), \quad where \quad \lambda = \frac{1}{|\tilde{a}|\tilde{b}|_{1}|_{1}}$
 $\hat{v} \times \hat{v} = \tilde{v} \cdot (\tilde{a} \times \tilde{b}) = \lambda (\tilde{c} \times \tilde{a})$
 $-\lambda ((\tilde{c}, \tilde{a}) = -\lambda (\tilde{c} \times \tilde{a})$
 $(C) Area = |\tilde{a} \times \tilde{b}| = |(\tilde{p} + 2\tilde{q}) \times (2\tilde{p} + \tilde{q})|_{1} = \frac{3}{2}$
(C) Area = |\tilde{a} \times \tilde{b}| = |(\tilde{p} + 2\tilde{q}) \times (2\tilde{p} + \tilde{q})|_{1} = \frac{3}{2}$
 $\frac{1}{\sqrt{(C, \tilde{b})}} = -(\tilde{c}, \tilde{a}, \tilde{b})$
 $\frac{1}{\sqrt{(C, \tilde{b})}} = -(\tilde{c}, \tilde{a}, \tilde{b})$

$$= \lambda [(\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} + (\vec{b} \cdot \vec{a}) \vec{c} - (\vec{b} \cdot \vec{c}) \vec{a} + (\vec{c} \cdot \vec{b}) \vec{a} - (\vec{c} \cdot \vec{a}) \vec{b}]$$

$$= \lambda [(\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} + (\vec{a} \cdot \vec{b}) \vec{c} - (\vec{b} \cdot \vec{c}) \vec{a} + (\vec{b} \cdot \vec{c}) \vec{a} - (\vec{a} \cdot \vec{c}) \vec{b}]$$

$$= \lambda \vec{0} = \vec{0}$$
2. $\vec{a}' \times \vec{b}' = \frac{(\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})}{(\vec{a}\vec{b}\vec{c}]^2} = \frac{\vec{c}}{(\vec{a}\vec{b}\vec{c}]}$

$$\therefore \vec{a}' \times \vec{b}' + \vec{b}' \times \vec{c}' + \vec{c}' \times \vec{a}' = \frac{\vec{a} + \vec{b} + \vec{c}}{(\vec{a}\vec{b}\vec{c}]}$$
so $\lambda = 1$
3. $(a' \times b') \times (b' \times c') = \frac{\vec{c} \times \vec{a}}{(\vec{a}\vec{b}\vec{c}]^2}$

$$\left[\frac{\vec{c} \times \vec{a}}{(\vec{a}\vec{b}\vec{c})^2} \frac{\vec{a} \times \vec{b}}{(\vec{a}\vec{b}\vec{c})^2} \frac{\vec{b} \times \vec{c}}{(\vec{a}\vec{b}\vec{c})^2}\right] = \frac{[\vec{a}\vec{b}\vec{c}]^2}{(\vec{a}\vec{b}\vec{c}]^6} = [\vec{a}\vec{b}\vec{c}]^{-4}$$

$$\therefore n = -4$$
Comprehension #6
$$A (2, 1, 0), B (1, 0, 1)$$

$$C (3, 0, 1) \text{ and } D(0, 0, 2)$$
1. Equation of plane ABC
$$\begin{vmatrix} x - 2 \quad y - 1 \quad z \\ 1 \quad 1 \quad -1 \\ 2 \quad 0 \quad 0 \end{vmatrix} = 0 \implies y + z = 1$$
2. Equation of L = $2\hat{k} + \lambda(\vec{A}\vec{B} \times \vec{A}\vec{C})$
so $L = 2\hat{k} + \lambda(\hat{i} + \hat{k})$

3. Equation of plane ABC

$$y + z - 1 = 0$$

distance from (0, 0, 2) is
$$=\frac{2-1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$

Comprehension #7

Vector $\vec{p} = \hat{i} + \hat{j} + \hat{k}$, $\vec{q} = 2\hat{i} + 4\hat{j} - \hat{k}$, $\vec{r} = \hat{i} + \hat{j} + 3\hat{k}$

1. (A)
$$\begin{vmatrix} 1 & 1 & 1 \\ 2 & 4 & -1 \\ 1 & 1 & 3 \end{vmatrix} = 13 - 7 - 2 = 4 \neq 0$$

Hence non coplanar; so linearly independent

(B) In triangle, let length of sides of triangle are a, b, c then triangle is formed if sum of two sides is greater than the third side. Check yourself.

- (C) $(\vec{q} \vec{r}).\vec{p}$ = (i + 3j - 4k).(i + j + k) = 1 + 3 - 4 = 0Hence true.
- 2. $((\vec{p} \times \vec{q}) \times \vec{r}) = u\vec{p} + v\vec{q} + w\vec{r}$ $(\vec{p} \cdot \vec{r})\vec{q} - (\vec{q} \cdot \vec{r})\vec{p} = u\vec{p} + v\vec{q} + w\vec{r}$ By solving $\vec{p} \cdot \vec{r} \& \vec{q} \cdot \vec{r}$, we get $5\vec{q} - 3\vec{p} + 0\vec{r} = u\vec{p} + v\vec{q} + w\vec{r}$ compare

u + v + w = 5 - 3 + 0 = 2.

3. \vec{s} is unit vector

 $(\vec{p}.\vec{s})$ $(\vec{q} \times \vec{r}) + (\vec{q}.\vec{s})$ $(\vec{r} \times \vec{p}) + \vec{r}.\vec{s}$ $(\vec{p} \times \vec{q})$

$$\vec{q} \times \vec{r} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 4 & -1 \\ 1 & 1 & 3 \end{vmatrix} = 13\hat{i} - 7\hat{j} - 2\hat{k}$$
$$\vec{r} \times \vec{p} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 3 \\ 1 & 1 & 1 \end{vmatrix} = -2\hat{i} + 2\hat{j}$$
$$\vec{p} \times \vec{q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 2 & 4 & -1 \end{vmatrix} = -5\hat{i} + 3\hat{j} + 2\hat{k}$$

Let $\vec{s} = \hat{i}$

Putting the value we get

$$13\hat{i} - 7\hat{j} - 2\hat{k} + 2(-2\hat{i} + 2\hat{j}) + (-5\hat{i} + 3\hat{j} + 2\hat{k})$$

 $= 13\hat{i} - 7\hat{j} - 2\hat{k} - 4\hat{i} + 4\hat{j} - 5\hat{i} + 3\hat{j} + 2\hat{k}$
 $= 4\hat{i} + 0\hat{j} + 0\hat{k} = 4\hat{i}$
Magnitude = 4.

...(1)

Comprehension #8

$$E = \frac{2\vec{c} + \vec{b}}{3}$$

equation of OP $\vec{r} = \lambda \left(\frac{\vec{a}}{|\vec{a}|} + \frac{\vec{c}}{|\vec{c}|} \right)$

Let P divide EA in μ : 1

P lies on (1)

$$\frac{\mu \vec{a} + \frac{2\vec{c} + \vec{b}}{3}}{\mu + 1} = \lambda \left(\frac{\vec{a}}{|\vec{a}|} + \frac{\vec{c}}{|\vec{c}|} \right)$$

$$\vec{a} + \vec{c} = \vec{b}$$

$$\frac{\mu \vec{a} + \frac{3\vec{c} + \vec{a}}{3}}{\mu + 1} = \lambda \left(\frac{\vec{a}}{|\vec{a}|} + \frac{\vec{c}}{|\vec{c}|} \right)$$

Comparing coefficient of \vec{a} and \vec{c}
$$\frac{\mu + \frac{1}{3}}{\mu = 1} = \frac{\lambda}{|\vec{a}|} \qquad ...(2)$$

and $\frac{1}{\mu + 1} = \frac{\lambda}{|\vec{c}|} \qquad ...(3)$
divided (2) by (3) $\mu + \frac{1}{3} = \frac{|\vec{c}|}{|\vec{a}|}$
 $\mu = \frac{|\vec{c}|}{|\vec{a}|} - \frac{1}{3}$

Put in (3) $\frac{1}{\frac{|c|}{|a|} + \frac{2}{3}} = \frac{\lambda}{|\vec{c}|}$

 $\lambda = \frac{3\left|\vec{a}\right|\left|\vec{c}\right|}{c\left|\vec{c}\right| + 2\left|\vec{a}\right|}$

So position vector of P

$$\vec{r} = \frac{3\left|\vec{a}\right|\left|\vec{c}\right|}{3\left|\vec{c}\right| + 2\left|\vec{a}\right|} \left(\frac{a}{\left|\vec{a}\right|} + \frac{c}{\left|\vec{c}\right|}\right)$$

Now for solution of 4

equation of AB,

$$\vec{r} = \vec{a} + \lambda(\vec{b} - \vec{a}) = \vec{a} + \lambda(\vec{c})$$
 ...(4)

equation of CP, $\vec{r} = \vec{c} + \mu$

$$\left(\frac{3|c|\vec{a}}{3|\vec{c}|+2|\vec{a}|} + \frac{3|a|\vec{c}}{3|c|+2|\vec{a}|} - \vec{c} \right)$$

$$\vec{r} = \vec{c} + \mu \left[\frac{3|c|\vec{a}+3|a|c-3|c|c-2|a|\vec{c}}{3|c|+2|a|} \right]$$

$$r = \vec{c} + \mu \left[\frac{3|c|\vec{a}+|a|\vec{c}-3|c|\vec{c}}{3|c|+2|a|} \right] ...(5)$$

Comparing (4) and (5)

$$\lambda = 1 + \frac{\mu |a| - 3\mu |c|}{3 |c| + 2 |a|}$$
$$\lambda = \frac{3 |\vec{c}| + 2 |\vec{a}| + \mu |a| - 3\mu |\vec{c}|}{3 |\vec{c}| + 2 |\vec{a}|} \qquad \dots (6)$$

$$\mu = \frac{3\left|\vec{c}\right| + 2\left|\vec{a}\right|}{3\left|\vec{c}\right|}$$

Put value of μ in equation (6)

$$\lambda = 1 + \frac{\mu \left(|\vec{a}| - 3 |\vec{c}| \right)}{3 |\vec{c}| + 2 |\vec{a}|}$$
$$\lambda = 1 + \frac{|\vec{a}| - 3 |\vec{c}|}{3 |\vec{c}|} = \frac{1}{3} \frac{|\vec{a}|}{|\vec{c}|}$$

So position vector of F is = $\vec{a} + \frac{1|\vec{a}|}{3|\vec{c}|}\vec{c}$

Solution -5

$$\vec{A} \vec{F} = p.v. \text{ of } F - p.v. \text{ of } A = \vec{a} + \frac{1}{3} \frac{|\vec{a}|}{|\vec{c}|} \vec{c} - \vec{a}$$
$$= \frac{1}{3} \frac{|\vec{a}|}{|\vec{c}|} \vec{c}$$

2. PVs of vertex P,Q,R,S are (Let) $\vec{0}$, \vec{a} , $\vec{b} + \vec{a}$, \vec{b} using section rule PVs of

$$X = \frac{4(\vec{b} + \vec{a}) + \vec{a}}{5}$$
 and $Y = \frac{(\vec{b} + \vec{a}) + 4\vec{b}}{5}$

again Let
$$\frac{PZ}{ZR} = \lambda$$
 and $\frac{XZ}{YZ} = \mu$

PVs of point Z may be given as

$$\frac{\lambda(\vec{b}+\vec{a})+\vec{0}}{\lambda+1} \& \text{ also as } \frac{\mu\left(\vec{b}+\vec{a}-1\right)+1\left(\vec{a}+\frac{4\vec{b}}{5}\right)}{\mu+1}$$

Equating both answers and coefficient of $\vec{a} \& \vec{b}$ (they are representing non collinear vectors $\overrightarrow{PQ} \& \overrightarrow{PS}$)

$$\frac{\lambda}{\lambda+1} = \frac{\mu + \left(\frac{1}{5}\right)}{\mu+1} \quad \text{and} \quad \frac{\lambda}{\lambda+1} = \frac{\left(\frac{4\mu}{5}\right) + 1}{\mu+1}$$

Solving these equations gives $\lambda = \frac{21}{4}$

After rotation equation of plane is new position will be ℓx + my + a' z = 0(1) Let angle between (1) and ℓx + my = 0 is θ, then

$$\cos \theta = \frac{\ell^2 + m^2}{\sqrt{\ell^2 + m^2} \sqrt{\ell^2 + m^2 + a'^2}}$$

Solving we get

$$a^{\prime 2} = (\ell^2 + m^2) \tan^2 \theta$$
$$\Rightarrow a' = \pm \sqrt{(\ell^2 + m^2)} \tan \theta$$

Equation is
$$\ell x + my \pm z\sqrt{(\ell^2 + m^2)} \tan \theta = 0$$

4. $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4} = r$ (Let) ... (1) \Rightarrow (2r+1, 3r+2, 4r+3) represents any point on (1)

$$\frac{x-4}{5} = \frac{y-1}{2} = \frac{z-0}{1} \qquad \dots (2)$$

To find point of intersection of (1) and (2)

$$\frac{2r+1-4}{5} = \frac{3r+2-1}{2} = \frac{4r+3}{1}$$

$$\Rightarrow \frac{2r-3}{5} = \frac{3r+1}{2} = \frac{4r+3}{1}$$

$$\Rightarrow 4r-6=15r+5$$

$$\Rightarrow 11r=-11 \Rightarrow r=-1$$

$$\therefore \text{ point of intersection of (1) and (2) is (-1,-1,-1))$$

$$\vec{r} = (\hat{i} + \hat{j} - \hat{k}) + \lambda(3\hat{i} - \hat{j}) \qquad \dots (1)$$

$$\vec{r} = (4\hat{i} - \hat{k}) + \mu(2\hat{i} + 3\hat{k}) \qquad \dots (2)$$
For their point of intersection
$$3\lambda + 1 = 4 + 2\mu \qquad \Rightarrow 3\lambda - 2\mu - 3 = 0 \qquad \dots (3)$$

$$1 - \lambda = 0 \qquad \Rightarrow \lambda = 1 \qquad \dots (4)$$
and
$$-1 = -1 + 3\mu \qquad \mu = 0$$

$$\therefore \text{ point of intersection is (4, 0, -1)}$$

$$\therefore \text{ required distance}$$

$$= \sqrt{(4+1)^2 + 1 + 0} = \sqrt{25 + 1} = \sqrt{26}$$
5.
$$\left|(\vec{a}.\vec{d})\vec{b} \times \vec{c}) - (\vec{c}.\vec{d})(\vec{b} \times \vec{a}) + (\vec{c}.\vec{d})(\vec{a} \times \vec{b})\right|$$

$$\left|(\vec{a}.\vec{d})\vec{b} \times \vec{c}) - (\vec{c}.\vec{d})(\vec{b} \times \vec{a}) + (\vec{b}.\vec{d})(\vec{c} \times \vec{a})\right|$$

$$\left|\vec{b} \times [(\vec{a}.\vec{d})\vec{c} - (\vec{c}.\vec{d})\vec{a}] + (\vec{b}.\vec{d})(\vec{c} \times \vec{a})\right|$$

$$\left|\vec{b} \times [(\vec{a}.\vec{d})\vec{c} - (\vec{b}.\vec{d})\vec{c} \times \vec{a})\right|$$

$$= \left|(\vec{b}.\vec{a} \cdot \vec{c}) - (\vec{b}.\vec{a} \times \vec{c})\vec{d} - (\vec{b}.\vec{d})\vec{a} \times \vec{c})\right|$$

$$= \left|(\vec{b}.\vec{a} \cdot \vec{c})\vec{d} - (\vec{b}.\vec{d})\vec{c} \times \vec{a})\right|$$

$$= \left|(\vec{b}.\vec{a} \cdot \vec{c})\vec{d} - (\vec{b}.\vec{d})\vec{a} \times \vec{c})\right|$$

$$= \left|(\vec{b}.\vec{a} \cdot \vec{c})\vec{d} - (\vec{b}.\vec{d})\vec{c} \times \vec{a})\right|$$

$$= \left|(\vec{b}.\vec{a} \cdot \vec{c})\vec{d} - (\vec{b}.\vec{d})\vec{a} \times \vec{c})\right|$$

$$= \left|(\vec{b}.\vec{a} \cdot \vec{c})\vec{d} - (\vec{b}.\vec{d})\vec{c} \times \vec{a})\right|$$

$$= \left|(\vec{b}.\vec{a} \cdot \vec{c})\vec{d} - (\vec{b}.\vec{d})\vec{c} \times \vec{a}\right|$$

(ii)
$$\vec{r} \cdot \vec{a} - p + \lambda(\vec{r} \cdot \vec{b} - q) = 0$$

 $\vec{r} = \vec{0}$
 $\therefore -p - \lambda q = 0$ $\lambda = -\frac{p}{q}$
 $\vec{r} \cdot \vec{a} - p - \frac{p}{q}(\vec{r} \cdot \vec{b} - q) = 0$
 $\vec{r} \cdot (\vec{a}q - p\vec{b}) = 0$
7.
Area of $\Delta ABC \Rightarrow \frac{1}{2} ab = x$...(i)
Area of $\Delta ABC \Rightarrow \frac{1}{2} bc = y$...(ii)
Area of $\Delta ABC \Rightarrow \frac{1}{2} bc = y$...(ii)
Area of $\Delta ACD \Rightarrow \frac{1}{2} ac = z$ (iii)
Area of $\Delta BCD = \frac{1}{2}\sqrt{a^2b^2 + b^2c^2 + c^2a^2}$
 $= \frac{1}{2} \times 2\sqrt{x^2 + y^2 + z^2}$
 $= \sqrt{x^2 + y^2 + z^2}$
8. (a) $(3\hat{i} - 3\hat{j} + \hat{k} + \vec{d}) = 2\hat{i} - 2\hat{j} + 2\hat{k}$
 $\Rightarrow \vec{d} = -\hat{i} + \hat{j} + \hat{k}$
(b) $\overrightarrow{AB} = 6\hat{i} - \hat{j} + \hat{k}$
 $\overrightarrow{AC} = 8\hat{i} + 2\hat{j} + 2\hat{k}$
 $\Rightarrow |\overrightarrow{AC}| = \sqrt{64 + 4 + 4} = \sqrt{72}$
 $D(\vec{d})$
 $C(5\hat{i} + 2\hat{k})$

ř

 $\vec{r} \cdot \hat{n} = p$

Required vector is
$$\frac{\sqrt{72}}{\sqrt{38}} (6\hat{i} - \hat{j} + \hat{k})$$

$$= \frac{6}{\sqrt{19}} (6\hat{i} - \hat{j} + \hat{k})$$
(c) $\overrightarrow{BD} = -4\hat{i} + 4\hat{j}$
 $\cos \theta = \frac{\overrightarrow{AC} \cdot \overrightarrow{BD}}{|\overrightarrow{AC}||\overrightarrow{BD}|} = \frac{-32 + 8}{\sqrt{72}\sqrt{32}} = \frac{-24}{6\sqrt{2} \cdot 4\sqrt{2}}$
 $= -\frac{1}{2}$
 $\Rightarrow \theta = \frac{2\pi}{3}$

9. Let origin be C

 $(\lambda+1 \lambda+1 \lambda+1)$

Which lies on the sphere

$$\therefore \left(\frac{27\lambda + 12}{\lambda + 1}\right)^2 + \left(\frac{-9\lambda - 4}{\lambda + 1}\right)^2 + \left(\frac{18\lambda + 8}{\lambda + 1}\right)^2 = 504$$

$$B \xrightarrow{(0, 0, 0) \ \lambda} \xrightarrow{(12, -4, 8) \ 1} \xrightarrow{(27, -9, 18)}$$

Solving above we get $9\lambda^2 = 4$ $\lambda = \pm \frac{2}{3}$

11. Let point on line $\frac{x-3}{2} = \frac{y-3}{1} = \frac{z}{1}$ (1)

are $(3+2\lambda,3+\lambda,\lambda)$

Equation of line which pass through origin is

$$\frac{x-0}{3+2\lambda} = \frac{y-0}{3+\lambda} = \frac{z-0}{\lambda} \qquad \dots (2)$$

Angle between (1) & (2)

$$\cos\frac{\pi}{3} = \frac{(3+2\lambda)2 + (3+\lambda)1 + \lambda \times 1}{\sqrt{(3+2\lambda)^2 + (3+\lambda)^2 + \lambda^2}\sqrt{2^2 + 1^2 + 1}}$$

Solving we get

$$\lambda^2 + 3\lambda + 2 = 0$$

$$\Rightarrow \lambda = -1, -2$$

Putting the value of λ in equation (2)

$$\frac{x}{1} = \frac{y}{2} = \frac{z}{-1}$$
 or $\frac{x}{-1} = \frac{y}{1} = \frac{z}{-2}$

12. M is mid point of CB, also $OM = R \cos A$

$$\Rightarrow$$
 PV's of circumcentre O is $\equiv \left(\frac{a}{2}\hat{i} + R\cos A\hat{j}\right)$

again CL = bcosC and HL = 2RcosB cosC

 \Rightarrow PV's of orthocentre H is

 $= (b\cos C \hat{i} + 2R\cos B\cos C \hat{j})$

Distance between points O & H

$$\equiv \left| \left(\frac{a}{2} - b \cos C \right) \hat{i} + \left(R \cos A - 2R \cos B \cos C \right) \hat{j} \right|$$

 $= \sqrt{(R \sin A - 2R \sin B \cos C)^2 + (R \cos A - 2R \cos B \cos C)^2}$ $= \sqrt{\frac{\sin^2 A + 4 \sin^2 B \cos^2 C - 4 \sin A \sin B \cos C + \cos^2 A}{+4 \cos^2 B \cos^2 C - 4 \cos A \cos B \cos C}}$

 $= R \sqrt{1 + 4\cos^2 C - 4\cos C(\sin A \sin B + \cos A \cos B)}$

 $= R \sqrt{1 + 4\cos^2 C - 4\cos C\cos(A - B)}$ $=R\sqrt{1+4\cos^{2}C+4\cos(A+B)\cos(A-B)}$ $= R \sqrt{1 + 4 \cos^2 C + 4 \cos^2 A - 4 \sin^2 B}$ $= R \sqrt{1 - 8 \cos A \cos B \cos C}$ 13. $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} \text{ is written as } \begin{vmatrix} \vec{a} . \hat{i} & \vec{a} . \hat{j} & \vec{a} . \hat{k} \\ \vec{b} . \hat{i} & \vec{b} . \hat{j} & \vec{b} . \hat{k} \\ \vec{c} . \hat{i} & \vec{c} . \hat{j} & \vec{c} . \hat{k} \end{vmatrix}$ $\{(n\vec{a}+\vec{b})\times(n\vec{b}+\vec{c})\}.(n\vec{c}+\vec{a})$ Now $= \{n^2(\vec{a} \times \vec{b}) + n(\vec{a} \times \vec{c}) + \vec{b} \times \vec{c}\} \cdot (n\vec{c} + \vec{a})$ $= n^{3} [\vec{a} \ \vec{b} \ \vec{c}] + [\vec{b} \ \vec{c} \ \vec{a}]$ $= (n^3 + 1) [\vec{a} \, \vec{b} \, \vec{c}]$ $14. \ \vec{w} + (\vec{w} \times \vec{u}) = \vec{v}$... (1) Dot (1) with \vec{v} $\vec{w} \cdot \vec{v} + [v w u] = 1$... (2) Dot (1) with \vec{u} $\vec{w} \cdot \vec{u} + 0 = \vec{v} \cdot \vec{u}$... (3) cross (1) with \vec{u} $\vec{u} \times \vec{w} + (\vec{u} \cdot \vec{u})\vec{w} - (\vec{u} \cdot \vec{w})\vec{u} = \vec{u} \times \vec{v}$ Using (3) we get $\vec{u} \times \vec{w} + \vec{w} - (\vec{v}.\vec{u})\vec{u} = \vec{u} \times \vec{v}$ $[vuw] + (\vec{v}.\vec{w}) - (\vec{v}.\vec{u})^2 = 0$ Using (2) we get $[vuw]+1-[vwu]-(\vec{u}.\vec{v})^2=0$ $2[u v w] = 1 - (\vec{u} \cdot \vec{v})^2$ $\left[u v w \right]_{max} = \frac{1}{2}$ when $\vec{u} \cdot \vec{v} = \vec{0} \implies \vec{u} \perp \vec{v}$

15. Angular point OABC are (0, 0, 0), (0, 0, 2), (0, 4, 0) & (6, 0, 0)
Let centre of sphere be (r, r, r)
Equation of plane passing ABC is

$$\frac{x}{6} + \frac{y}{4} + \frac{z}{2} = 1$$

$$r = \left| \frac{\frac{r}{6} + \frac{r}{4} + \frac{r}{2} - 1}{\sqrt{\frac{1}{6^2} + \frac{1}{4^2} + \frac{1}{2^2}}} \right|$$

$$7r = \pm (11r - 12)$$

$$r = \frac{2}{3}, r = 3 \text{ (not satisfied)}$$

16. (a) Let \perp distance of \vec{c} from line joining \vec{a} and \vec{b} is p.

(b) Equation of line AM is

$$\vec{r} = \lambda \left(\vec{b} + \frac{\vec{d}}{2} \right)$$

Equation of line BD is

$$\vec{r} = \vec{b} + \mu(\vec{d} - \vec{b})$$

to obtain point of intersection

VECTOR AND 3-DIMENSIONAL

$$\Rightarrow \lambda = 1 - \frac{\lambda}{2} \quad \text{or} \quad \lambda = \frac{2}{3}$$

hence point O is $\frac{2}{3} \left(\vec{b} + \frac{\vec{d}}{2} \right)$
Area OMCD = Area OMC + Area OCD
$$= \frac{1}{2} \left| \frac{1}{3} \left(\vec{b} + \frac{\vec{d}}{2} \right) \times \left(\frac{\vec{b}}{3} + \frac{2\vec{d}}{3} \right) \right| + \frac{1}{2} \left| \left(\frac{\vec{b}}{3} + \frac{2\vec{d}}{3} \right) \times \left(\frac{-2}{3} \vec{b} + \frac{2}{3} \vec{d} \right) \right|$$

$$= \frac{1}{2} \left| \frac{1}{9} \left(\vec{b} \times 2\vec{d} + \frac{\vec{d}}{2} \times \vec{b} \right) \right| + \frac{1}{2} \left| \frac{1}{9} (\vec{b} \times 2\vec{d} - 4\vec{d} \times \vec{b}) \right|$$

$$= \frac{1}{18} \left| \frac{3}{2} \vec{b} \times \vec{d} \right| + \frac{1}{18} \left| 6\vec{b} \times \vec{d} \right| = \frac{1}{18} \times \frac{15}{2} \left| \vec{b} \times \vec{d} \right|$$

$$= \frac{15}{18 \times 2} \times 12 = 5 \text{ sq. units}$$

$$= \frac{15}{18 \times 2} \times 12 = 5 \text{ sq. units}$$

17. Let $|\vec{u}| = \lambda$
 $\vec{u} = \frac{\lambda}{2} \quad (\hat{i} + \sqrt{3} \quad \hat{j})$

$$\begin{aligned} \mathbf{u} &= \frac{1}{2} \quad (\mathbf{i} + \sqrt{3} \mathbf{j}) \\ \text{Given} \quad \left| \frac{\lambda}{2} (\hat{\mathbf{i}} + \sqrt{3} \mathbf{j}) - \hat{\mathbf{i}} \right|^2 = \lambda \left| \frac{\lambda}{2} (\hat{\mathbf{i}} + \sqrt{3} \mathbf{j}) - 2 \mathbf{\hat{i}} \right| \\ & \left(\left(\frac{\lambda}{2} - 1 \right)^2 + \frac{3\lambda^2}{4} \right)^2 = \lambda^2 \\ & \left(\left(\frac{\lambda - 4}{2} \right)^2 + \frac{3\lambda^2}{4} \right) \\ (4\lambda^2 - 4\lambda + 4)^2 = 16\lambda^2 (\lambda^2 - 2\lambda + 4) \\ (\lambda^2 - \lambda + 1)^2 = \lambda^2 (\lambda^2 - 2\lambda + 4) \\ (\lambda^2 - \lambda + 1)^2 = \lambda^2 (\lambda^2 - 2\lambda + 4) \\ \text{solving we get } \lambda = \frac{-2 \pm \sqrt{4 + 4}}{2} = -1 \pm \sqrt{2} \\ \text{But} \quad \lambda > 0 \\ \implies \lambda = \sqrt{2} - 1 \\ \therefore \quad \mathbf{a} = 2, \quad \mathbf{b} = 1 \end{aligned}$$

18. For linearly dependent vectors

$$\ell(i-2j+3k) + m(-2i+3j-4k) + n(i-j+xk) = 0$$

$$\ell-2m+n=0, -2\ell+3m-n=0$$

$$3\ell-4m+nx=0$$
20. (i) $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}$

$$\Rightarrow 10\vec{b} - 3\vec{c} = p\vec{a} + q\vec{b} + r\vec{c}$$

$$p=0, q=+10, r=-3$$

$$[\vec{a}, \vec{b}, \vec{c} \text{ are non coplanar}]$$
(ii) $(\vec{a} \times \vec{b}) \times (\vec{a} \times \vec{c}) \cdot \vec{d}$

$$= \{((\vec{a} \times \vec{b}) \cdot \vec{c}) \vec{a} - ((\vec{a} \times \vec{b}) \cdot \vec{a}) \vec{c} \} \cdot \vec{d}$$

$$= [\vec{a} \ \vec{b} \ \vec{c}] \vec{a} \cdot \vec{d} - 0 = 20 \times (-5) = -100$$
21. $\pm \hat{i}$

.

22. vectors \vec{a} , $\vec{b} \otimes \vec{c}$ are non coplanar so are the vectors $\vec{a} \times \vec{b}$, $\vec{b} \times \vec{c}$ Let position vector of circumcentre $\vec{r} \equiv x(\vec{a} \times \vec{b}) + y(\vec{b} \times c) + z(\vec{c} \times \vec{a})$ also OE = AE = EB = EC $\Rightarrow |\vec{r}| = |\vec{r} - \vec{a}| = |\vec{r} - \vec{b}| = |\vec{r} - \vec{c}|$ (\vec{a}) A \vec{b} \vec{b} \vec{c} (\vec{c}) or $\vec{r}^2 = \vec{r}^2 + \vec{a}^2 - 2\vec{r}.\vec{a}$ $= \vec{r}^2 + \vec{b}^2 - 2\vec{r}.\vec{b} = \vec{r}^2 + \vec{c}^2 - 2\vec{r}.\vec{c}^2$ $\Rightarrow 2\vec{r}.\vec{a} = \vec{a}^2$, $2\vec{r}.\vec{b} = \vec{b}^2$, $2\vec{r}.\vec{c} = \vec{c}^2$ or $2y[\vec{a} \ \vec{b} \ \vec{c}] = \vec{a}^2 \Rightarrow y = \frac{\vec{a}^2}{2[\vec{a} \ \vec{b} \ \vec{c}]}$ **23.** $\vec{\alpha} = \hat{i} + a\hat{i} + a^2\hat{k}$ $\vec{B} = \hat{i} + b\hat{i} + b^2\hat{k}$ $\vec{\gamma} = \hat{i} + c\hat{i} + c^2\hat{k}$ $\vec{\alpha}, \vec{\beta}, \vec{\gamma}$ are non coplanar $\therefore \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} \neq 0$ \Rightarrow $(a-b)(b-c)(c-a) \neq 0 \Rightarrow a \neq b \neq c$ If α_1 , β_1 & γ_1 are coplanar Then $\begin{vmatrix} 1 & a_1 & a_1^2 \\ 1 & b_1 & b_1^2 \\ 1 & c_1 & c_1^2 \end{vmatrix} = 0$ \Rightarrow $a_1 = b_1 = c_1$ Given $\begin{vmatrix} (a_1 - a)^2 & (a_1 - b)^2 & (a_1 - c)^2 \\ (b_1 - a)^2 & (b_1 - b)^2 & (b_1 - c)^2 \\ (c_1 - a)^2 & (c_1 - b)^2 & (c_1 - c)^2 \end{vmatrix} = 0$ \Rightarrow R₁ \rightarrow R₁ - R₂ & R₂ \rightarrow R₂ - R₃, we get $(a_1-b_1)(b_1-c_1)\begin{vmatrix} a_1+b_1-2a & a_1+b_1-2b & a_1+b_1-2c \\ b_1+c_1-2a & b_1+c_1-2b & b_1+c_1-2c \\ (c_1-a)^2 & (c_1-b)^2 & (c_1-c)^2 \end{vmatrix} = 0$ $R_1 \rightarrow R_1 - R_2$ $\Rightarrow (a_1 - b_1) (b_1 - c_1) \begin{vmatrix} a_1 - c_1 & a_1 - c_1 & a_1 - c_1 \\ b_1 + c_1 - 2a & b_1 + c_1 - 2b & b_1 + c_1 - 2c \\ (c_1 - a)^2 & (c_1 - b)^2 & (c_1 - c^2) \end{vmatrix} = 0$ \Rightarrow $(a_1-b_1)(b_1-c_1)(c_1-a_1)$ $\begin{vmatrix} 1 & 1 & 1 \\ b_1 + c_1 - 2a & b_1 + c_1 - 2b & b_1 + c_1 - 2c \\ (c_1 - a)^2 & (c_1 - b)^2 & (c_1 - c)^2 \end{vmatrix} = 0$ $C_1 \rightarrow C_1 - C_2$ & $C_2 \rightarrow C_2 - C_3$ \Rightarrow $(a_1 - b_1) (b_1 - c_1) (c_1 - a_1)$

0 1 $\begin{bmatrix} 2(b-a) & 2(c-b) & b_1 + c_1 - 2c \\ a^2 - b^2 - 2c_1(a-b) & b^2 - c^2 - 2c_1(b-c) & (c_1 - c)^2 \end{bmatrix} = 0$ $(a_1-b_1)(b_1-c_1)(c_1-a_1)\Delta = 0$ $\Rightarrow (a_1 - b_1) (b_1 - c_1) (c_1 - c_1) = 0 \ [\Delta \neq 0]$ \Rightarrow a₁ = b₁ = c₁ $\Rightarrow \vec{\alpha}_1, \vec{\beta}_1, \vec{\gamma}_1$ are coplanar **24.** $\ell + m + n = 0$(1) $\ell^2 + m^2 = n^2$(2) Put $n = -(\ell + m) in (2)$ $\ell^2 + m^2 = \ell^2 + m^2 + 2\ell m$ $\Rightarrow \ell m = 0$ (i) if $\ell = 0$; $m \neq 0$ then from (1) m = -n $\therefore \quad \frac{\ell}{0} = \frac{m}{1} = \frac{n}{-1}$ \therefore direction cosine are : $0, \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}$ (ii) if $\ell \neq 0$; m = 0, then from (1), $\ell = -n$ $\therefore \quad \frac{\ell}{1} = \frac{m}{0} = \frac{n}{-1}$ \therefore direction cosine are : $\frac{1}{\sqrt{2}}$, 0, $\frac{-1}{\sqrt{2}}$ Let θ be the angle between the lines $\therefore \cos\theta = 0 + 0 + \frac{1}{2}$ $\cos\theta = \frac{1}{2} \implies \theta = \frac{\pi}{2}$ 25. $|\vec{r} + b\vec{s}|$ is minimum Let $f(b) = \sqrt{\vec{r}^2 + \vec{b}^2 \vec{s}^2 + 2\vec{r} \cdot b\vec{s}}$ for maxima & minima $f(b) = \frac{2b\vec{s}^2 + 2\vec{r}.\vec{s}}{\sqrt{\vec{r}^2 + b^2\vec{s}^2 + 2b\vec{r}.\vec{s}}} = 0$

 $b = -\frac{\vec{r}.\vec{s}}{\vec{r}.\vec{s}}$

$$\left| \vec{bs} \right|^2 + \left| \vec{r} + \vec{bs} \right|^2 = b^2 \vec{s}^2 + \vec{r}^2 + b^2 \vec{s}^2 + 2b \vec{r} \cdot \vec{s}$$
$$= 2b^2 \vec{s}^2 + \vec{r}^2 - 2b^2 \vec{s}^2 = |\vec{r}|^2$$

26. Angle between two vectors

$$=\frac{1\times1+(-1)(1)+(1)(-1)}{\sqrt{3}\sqrt{3}}=-\frac{1}{3}$$

Hence obtuse angle between them. Vector along acute angle bisector

$$= \lambda \left[\frac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}} - \frac{\hat{i} + \hat{j} - \hat{k}}{\sqrt{3}} \right]$$

$$\frac{2\lambda}{\sqrt{3}} \left[-\hat{j} + \hat{k} \right] = t(\hat{j} - \hat{k})$$

hence equation of acute angle bisector

$$= (\hat{i}+2\hat{j}+3\hat{k})+t(\hat{j}-\hat{k})$$

27. Line : $\frac{x-1}{2} = \frac{y+2}{-3} = \frac{z}{5}$

Plane : x - y + z + 2 = 0

The vector perpendicular to required plane is

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -3 & 5 \\ 1 & -1 & 2 \end{vmatrix} = 2\hat{i} + 3\hat{j} + \hat{k}$$

Now equation of plane passing through (1, -2, 0)

and perpendicular to $2\hat{i} + 3\hat{j} + \hat{k}$

$$(x-1)2+(y+2)3+(z-0)1=0$$

 $\Rightarrow 2x+3y+z+4=0$

28.
$$L_1: \frac{x}{0} = \frac{y}{b} = \frac{z-c}{-c} = r$$

 $L_2: \frac{x}{a} = \frac{y}{0} = \frac{z+c}{c} = \ell$
Dr's of AB are $-a\ell$, br, $-cr - c\ell + 2c$
AB is perpendicular to both the lines

$$\therefore \quad 0(-a\ell) + b. br + (-c) (-cr - c\ell + 2c) = 0$$

(b² + c²) r + c² ℓ = 2c²(1)
and a(-a\ell) + 0(br) + c (-cr - c\ell + 2c) = 0
-(a² + c²) ℓ - c²r + 2c² = 0

 $-c\ell + 2c$

$$(0,0,c) = A(0,br,-cr+c)$$

$$(a^{2} + c^{2})\ell + c^{2}r = 2c^{2} \qquad \dots (2)$$
from (1) & (2)
$$\ell = \frac{2b^{2}c^{2}}{a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2}}, r = \frac{2a^{2}c^{2}}{a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2}}$$

$$A \left(0, \frac{2a^{2}bc^{2}}{a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2}}, c\left(\frac{a^{2}b^{2} + b^{2}c^{2} - c^{2}a^{2}}{a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2}}, c\left(\frac{a^{2}b^{2} + b^{2}c^{2} - c^{2}a^{2}}{a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2}}, 0, c\left(\frac{b^{2}c^{2} - a^{2}b^{2} - c^{2}a^{2}}{a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2}}\right)\right)$$

$$B\left(\frac{2ab^{2}c^{2}}{a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2}}, 0, c\left(\frac{b^{2}c^{2} - a^{2}b^{2} - c^{2}a^{2}}{a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2}}\right)\right)$$

$$4d^{2} = \frac{4a^{2}b^{4}c^{4}}{(a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2})^{2}} + \frac{4a^{4}b^{2}c^{4}}{(a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2})^{2}} + \frac{4c^{2}(a^{4}b^{4})}{(a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2})^{2}}$$

$$\frac{1}{d^{2}} = \frac{(a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2})^{2}}{a^{2}b^{4}c^{4} + a^{4}b^{2}c^{4}} = \frac{a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2}}{a^{2}b^{2}c^{2}} + \frac{1}{a^{2}b^{2}c^{2}} + \frac{1}{c^{2}}$$
29. Given $\overrightarrow{OP}_{n-1} + \overrightarrow{OP}_{n+1} = \frac{3}{2} \overrightarrow{OP}_{n} \quad n = 2,3$
(a) Let $P_{1} \& P_{2} be\left(t_{1}, \frac{1}{t_{1}}\right) \&\left(t_{2}, \frac{1}{t_{2}}\right)$
for $n = 2$

$$\overrightarrow{OP}_{1} + \overrightarrow{OP}_{3} = \frac{3}{2} \overrightarrow{OP}_{2}$$

$$\Rightarrow \overrightarrow{OP}_{3} = \frac{3}{2} (t_{2}\hat{1} + \frac{1}{t_{2}}\hat{1}) - t_{1}\hat{1} - \frac{1}{t_{1}}\hat{1}$$
or $\overrightarrow{OP}_{3} = \left(\frac{3}{2}t_{2} - t_{1}\right)\hat{1} + \left(\frac{3}{2t_{2}} - \frac{1}{t_{1}}\right)\hat{1}$
Point $P_{3} = \left(\frac{3t_{2} - 2t_{1}}{2}, \frac{3t_{1} - 2t_{2}}{2t_{1}t_{2}}\right)$
which does not lie on $xy = 1$

285

(b) Let $P_1 \& P_3$ on circle $x^2 + y^2 = 1$ are $(\cos\alpha, \sin\alpha)$, $(\cos\beta, \sin\beta)$ For n = 2, $\overrightarrow{OP_1} + \overrightarrow{OP_3} = \frac{3}{2} \overrightarrow{OP_2}$ $\overrightarrow{OP_2} = \frac{2}{3} \left\{ (\cos \alpha \hat{i} + \sin \alpha \hat{j}) + (\cos \beta \hat{i} + \sin \beta \hat{j}) \right\}$ $\overline{OP_2} = \frac{2}{3} \left\{ (\cos \alpha + \cos \beta) \hat{i} + (\sin \alpha + \sin \beta) \hat{j} \right\}$ As P₂ lies on the circle then $\left|\overline{OP_2}\right| = 1$ $\frac{4}{9}\left\{\left(\cos\alpha + \cos\beta\right)^2 + \left(\sin\alpha + \sin\beta\right)^2\right\} = 1$ $2+2\cos(\alpha-\beta)=\frac{9}{4}$ $\Rightarrow \cos(\alpha - \beta) = \frac{1}{8}$ $\overrightarrow{OP_4} = \frac{3}{2}\overrightarrow{OP_3} - \frac{2}{2}\left(\overrightarrow{OP_1} + \overrightarrow{OP_3}\right)$ $=\frac{5}{6}\overline{OP_3}-\frac{2}{2}\overline{OP_1}$ $= \left(\frac{5}{6}\cos\alpha - \frac{2}{3}\cos\beta\right)\hat{i} + \left(\frac{5}{6}\sin\alpha - \frac{2}{3}\sin\beta\right)\hat{j}$ $\left|\overline{OP_4}\right|^2 = \frac{25}{36} + \frac{4}{9} - 2 \cdot \frac{5}{6} \cdot \frac{2}{3} \cos(\alpha - \beta) = 1$ \Rightarrow P₄ lies on x² + y² = 1 **30.** $3\hat{i} + 3\hat{k}$ **31.** a (i) $\overrightarrow{AB} = 3\hat{i} - \hat{j} - \hat{k}$ $\overrightarrow{AC} = 4\hat{i} + 2\hat{j} + 4\hat{k}$ $\overrightarrow{AD} = 2\hat{i} + 2\hat{i}$ $V = \frac{1}{6} \begin{vmatrix} 3 & -1 & -1 \\ 4 & 2 & 4 \\ 2 & 2 & 0 \end{vmatrix} = 6 \text{ cubic unit}$ a (ii) Equation of line AB is $\vec{r} = \hat{j} + 2\hat{k} + \lambda \quad (3\hat{i} - j - \hat{k})$ Equation of Line CD is $\vec{r} = 4\hat{i} + 3\hat{j} + 6\hat{k} + \mu(-2\hat{i} - 4\hat{k})$ Shortest distance = $\frac{(a_2 - a_1).(b_1 \times b_2)}{|b_1 \times b_2|}$

$$= \frac{[(4\hat{i}+3\hat{j}+6\hat{k})-(\hat{j}+2\hat{k})]\cdot[(3\hat{i}-\hat{j}-\hat{k})\times(-2\hat{i}-4\hat{k})]}{|(3\hat{i}-\hat{j}-\hat{k})\times(2\hat{i}-4\hat{k})|}$$

$$= \frac{[4\hat{i}+2\hat{j}+4\hat{k}]\cdot[4\hat{i}+14\hat{j}-2\hat{k}]}{|4\hat{i}+14\hat{j}-2\hat{k}|}$$

$$= \frac{16+28-8}{\sqrt{16+196+4}} = \frac{36}{\sqrt{216}} = \frac{26}{2\sqrt{54}} = \frac{18}{3\sqrt{6}} = \sqrt{6}$$
(b) $\overline{AD} = -2\hat{i}+2\hat{j}-\hat{k}$, $\overline{AC} = \hat{i}+2\hat{j}+2\hat{k}$
 \therefore vector perpendicular to the face ADC is

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -2 & 2 & -1 \\ 1 & 2 & 2 \end{vmatrix} = 6\hat{i}+3\hat{j}-6\hat{k}$$
 $\overline{AB} = 3\hat{j}+4\hat{k}$
 \therefore A vector perpendicular to the face ABC is

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 2 \end{vmatrix} = -2\hat{i}+4\hat{j}-3\hat{k}$$
 \therefore acute angle between the two faces is given by
 $\cos\theta = \left| \frac{-12+12+18}{\sqrt{36+9+36}\sqrt{4+16+9} \right| = \frac{2}{\sqrt{29}}$
 $\therefore \tan\theta = \frac{5}{2}$ $\therefore \theta = \tan^{-1}\frac{5}{2}$
32. $\overline{OP} = \hat{i}+2\hat{j}+2\hat{k}$
after rotation of \overline{OP} , let new vector is \overline{OP} '
Now \overline{OP} , \hat{i} , \overline{OP} will be coplanar
So $\overline{OP}' = \left|\overline{OP}\right| \left| \frac{(\overline{OP} \times \hat{i}) \times \overline{OP}}{|(\overline{OP} \times \hat{i}) \times \overline{OP}|} \right| \left[\because |\overline{OP}| = |\overline{OP}'| \right]$
But $(\overline{OP} \times \hat{i}) \times \overline{OP} = 8\hat{i} - 2\hat{j} - 2\hat{k}$

$$\Rightarrow \overline{OP'} = \frac{3(8i-2j-2k)}{2 \times 3\sqrt{2}}$$

or $\overline{OP'} = \frac{4}{\sqrt{2}}\hat{i} - \frac{1}{\sqrt{2}}\hat{j} - \frac{1}{\sqrt{2}}\hat{k}$

33.
$$\vec{a} \times \vec{b} - \vec{c} \times \vec{b} + \vec{c} \times \vec{a} - \vec{c} \times \vec{c}$$

 $(\vec{a} - \vec{c}) \times \vec{b} + \vec{c} \times (\vec{a} - \vec{c}) = 0$
 $(\vec{a} - \vec{c}) \times (\vec{b} - \vec{c}) = 0$
 $\vec{cA} \times \vec{CB} = 0$ \therefore $\vec{BC} is || to \vec{AC}$
 $\vec{BC} = \pm 14 \left(\frac{2\hat{i} - 3\hat{j} + 6\hat{k}}{7} \right) = \pm (4\hat{i} - 6\hat{j} + 12\hat{k})$
34. $O(0,0), A(1,0) \& B(-1,0)$
Let $P(x,y)$
 $\vec{PA} = (1 - x)\hat{i} - y\hat{j}$
 $\vec{PB} = -(1 + x)\hat{i} - y\hat{j}$
 $\vec{PA} \cdot \vec{PB} + 3 \vec{OA} \cdot \vec{OB} = 0$
 $\Rightarrow (x^2 - 1) + y^2 - 3 = 0$
 $x^2 + y^2 = 4$...(1)
 $\left| \vec{PA} \right| \left| \vec{PB} \right| = \sqrt{(x - 1)^2 + y^2} \sqrt{(x + 1)^2 + y^2}$
 $= \sqrt{5 - 2x} \cdot \sqrt{5 + 2x}$
 $= \sqrt{25 - 4x^2}, x \in (-2,2)$ (from (1))
so $M = 5, m = 3$
 $\Rightarrow M^2 + m^2 = 25 + 9 = 34$

35. Let the plane is

 $(2x + 3y - z) + 1 + \lambda (x + y - 2z + 3) = 0 \qquad \dots (1)$ $(2 + \lambda) x + (3 + \lambda) y - (1 + 2\lambda) z + 1 + 3\lambda = 0$ $3(2 + \lambda) - (3 + \lambda) + 2(1 + 2\lambda) = 0$ $6\lambda + 5 = 0 \implies \lambda = -5/6$ Putting value of λ in (1) 7x + 13y + 4z - 9 = 0Now image of (1, 1, 1) in plane π is $\frac{x - 1}{7} = \frac{y - 1}{13} = \frac{z - 1}{4} = -2\left(\frac{7 + 13 + 4 - 9}{49 + 169 + 16}\right)$

$$\Rightarrow \frac{x-1}{7} = \frac{y-1}{13} = \frac{z-1}{4} = -\frac{15}{117}$$
$$x = \frac{12}{117}, y = \frac{-78}{117}, z = \frac{57}{117}$$

36. $\lambda = -2 \pm \sqrt{29}$ **37.** Equation of plane passing through (1, 1, 1) is a(x-1)+b(y-1)+c(z-1)=0 ... (1) : it passes through (1, -1, 1) and (-7, -3, -5) \therefore a.0-2.b+0.c=0 \Rightarrow b=0 and -8a-4b-6c=04a + 2b + 3c = 0 : b = 0 \therefore 4a+3c = 0 \Rightarrow c = $-\frac{4a}{3}$ \therefore dr's of normal to the plane are 1, 0 - $\frac{4}{3}$ and dr's of the normal to the x-z plane are 0, 1, 0 $\therefore \quad \cos\theta = \left| \frac{0 + 0 + 0}{\sqrt{\sum a^2} \sqrt{\sum a^2}} \right| = 0$ $\therefore \quad \theta = \frac{\pi}{2}$ **38.** $\vec{x} \times \vec{a} + (\vec{x}.\vec{b})\vec{a} = \vec{c}$**(i)** taking cross product with \vec{b} : $(\vec{x} \times \vec{a}) \times \vec{b} + (\vec{x} \cdot \vec{b})(\vec{a} \times \vec{b}) = \vec{c} \times \vec{b}$ $(\vec{x}.\vec{b})\vec{a} - (\vec{a}.\vec{b})\vec{x} + (\vec{x}.\vec{b})(\vec{a}\times\vec{b}) = \vec{c}\times\vec{b}$(ii) Now taking dot product with \vec{a} in (i) $(\vec{x}.\vec{b})a^2 = \vec{a}.\vec{c}$ $\vec{x}.\vec{b} = \frac{\vec{a}.\vec{c}}{a^2}$ $\frac{(\vec{a}.\vec{c})}{a^2}\vec{a} - (\vec{a}.\vec{b})\vec{x} + \frac{\vec{a}.\vec{c}}{a^2}(\vec{a}\times\vec{b}) = \vec{c}\times\vec{b}$ $\frac{1}{(\vec{a}\cdot\vec{b})}\left[\frac{(\vec{a}\cdot\vec{c})}{a^2}\vec{a} + \frac{\vec{a}\cdot\vec{c}}{a^2}(\vec{a}\times\vec{b}) - \vec{c}\times\vec{b}\right] = \vec{x}$ $\vec{\mathbf{x}} = \frac{1}{(\vec{a} \ \vec{b})} \left[\frac{\vec{a} \cdot \vec{c}}{a^2} \left(\vec{a} - \vec{b} \times \vec{a} \right) + \vec{b} \times \vec{c} \right]$ **39.** SD = $\frac{(\hat{i} - \hat{j} + 2\hat{k} - 4\hat{i} + \hat{j}) \cdot [(\hat{i} + 2\hat{j} - 3\hat{k}) \times (2\hat{i} + 4\hat{j} - 5\hat{k})]}{|(\hat{i} + 2\hat{j} - 3\hat{k}) \times (2\hat{i} + 4\hat{j} - 5\hat{k})|}$ $= \left| \frac{(-3\hat{i} + 2\hat{k}) \cdot (2\hat{i} - j)}{|2\hat{i} - \hat{i}|} \right| = \frac{6}{\sqrt{5}}$

40.
$$x = \frac{\vec{a} \times \vec{b}}{\gamma} - \vec{a} \times \frac{\vec{a} \times \vec{b}}{\gamma};$$

 $y = \frac{\vec{a} \times \vec{b}}{\gamma};$ $z = \frac{\vec{a} \times \vec{b}}{\gamma} + \vec{b} \times \frac{\vec{a} \times \vec{b}}{\gamma};$
 $(\frac{\vec{a} \times \vec{b}}{\gamma})^2$

- **41.** Let the required point be $P(\alpha, \beta, \gamma)$
 - OP = PA = PB = PC $\therefore OP^{2} = PA^{2} = PB^{2} = PC^{2}$ $\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha - a)^{2} + \beta^{2} + \gamma^{2} = \alpha^{2} + (\beta - b)^{2} + \beta^{2} + \gamma^{2} = \alpha^{2} + (\beta - b)^{2} + \beta^{2} + \gamma^{2} = \alpha^{2} + (\beta - b)^{2} + \beta^{2} + (\gamma - c)^{2}$ $y^{2} = \alpha^{2} + \beta^{2} + (\gamma - c)^{2}$ $(0, 0, 0) \xrightarrow{A} (a, 0, 0) \times (a, 0) \times (a,$

In cyclic quadrilateral tanA + tan C = 0

$$\Rightarrow \frac{\left|\overrightarrow{AB} \times \overrightarrow{AD}\right|}{\overrightarrow{AB}.\overrightarrow{AD}} + \frac{\left|\overrightarrow{CB} \times \overrightarrow{CD}\right|}{\overrightarrow{CB}.\overrightarrow{CD}} = 0$$

$$\Rightarrow \frac{\left|(\vec{b} - \vec{a}) \times (\vec{d} - \vec{a})\right|}{(\vec{b} - \vec{a}).(\vec{d} - \vec{a})} + \frac{\left|(\vec{b} - \vec{c}) \times (\vec{d} - \vec{c})\right|}{(\vec{b} - \vec{c}).(\vec{d} - \vec{c})} = 0$$

$$\Rightarrow \frac{\left|\vec{a} \times \vec{b} + \vec{b} \times \vec{d} + \vec{d} \times \vec{a}\right|}{(\vec{b} - \vec{a}).(\vec{d} - \vec{a})} + \frac{\left|\vec{b} \times \vec{c} + \vec{c} \times \vec{d} + \vec{d} \times \vec{b}\right|}{(\vec{b} - \vec{c}).(\vec{d} - \vec{c})} = 0$$

- **43.** : $3.1 2.4 + 5 \times 1 = 0$, line is parallel to the plane
 - ... reflection of line will also have same direction ratios i.e. 3, 4, 5

Also mirror image of (1, 2, 3) will be on required line.

$$\frac{x-1}{1} = \frac{y-2}{-2} = \frac{z-3}{1} = -2 \left(\frac{1-4+3-6}{1^2+1^2+(-2)^2} \right)$$

(x, y, z) = (3, -2, 5)

a equation of straight line $\frac{x-3}{3} = \frac{y+2}{4} = \frac{z-5}{5}$

44. Planes are x - 2y + z = 1(i)
x + 2y - 2z = 5(ii)
2x + 2y + z = -6(iii)
Add (i) + (ii) + (iii)
4x + 2y = 0 \Rightarrow y = -2x(iv)
From equations (iii) - (i)
x + 4y = -7(v)
from (iv) and (v) we get
x = 1, y = -2
Put in (i) we get z = -4
So point of intersection is (1, -2, -4)

45.
$$2r+1-(3r+2)+2(4r+3)+2=0$$

7r+7=0 ⇒ r=-1
∴ A(-1,-1,-1)

required line will be projection of given line in the plane foot of \perp of P will be on D

$$\frac{x-1}{2} = \frac{y-2}{-1} = \frac{z-3}{2} = -\left(\frac{2.1-2+2.3+2}{2^2+(-1)^2+2^2}\right)$$

$$\frac{x-1}{2} = \frac{y-2}{-1} = \frac{z-3}{2} = \frac{-8}{9}$$

$$(2r+1,3r+2,4r+3)_{A}$$

$$(2r+1,3r+2,4$$

VECTOR AND 3-DIMENSIONAL

 $46. \quad \vec{x} + \vec{c} \times \vec{y} = \vec{a}$(i) $\vec{y} + \vec{c} \times \vec{x} = \vec{b}$**(ii)** \Rightarrow $\vec{y} = \vec{b} - \vec{c} \times \vec{x}$ put in (i) $\vec{x} + \vec{c} \times \vec{b} - \vec{c} \times (\vec{c} \times \vec{x}) = \vec{a}$ $\vec{x} - (\vec{c}.\vec{x})\vec{c} + (\vec{c}.\vec{c})\vec{x} = \vec{a} - \vec{c} \times \vec{b}$ $(1 + c^2) \vec{x} = \vec{a} - \vec{c} \times \vec{b} + (\vec{c}.\vec{x}) \vec{c}$(iii)

Taking both side dot product with \vec{c} in equation (i)

We get
$$\vec{x}.\vec{c} = \vec{a}.\vec{c}$$
, (put in (iii))
 $\vec{x} = \frac{a + (\vec{a}.\vec{c})\vec{c} + \vec{b} \times \vec{c}}{1 + \vec{c}^2}$

Putting in (ii), we get
$$\vec{y} = \frac{\vec{b} + (\vec{c}.\vec{b})\vec{c} + \vec{a} \times \vec{c}}{1 + (\vec{c})^2}$$

47.
$$\frac{x-4}{1} = \frac{y-3}{-4} = \frac{z-2}{5}$$
 (1)

$$\frac{x-3}{1} = \frac{y+2}{1/\lambda} = \frac{z-0}{1/\mu} \qquad \dots (2)$$

Equation of the plane is

(x, y, z)

$$\begin{vmatrix} x-3 & y+2 & z \\ 1 & 5 & 2 \\ 1 & -4 & 5 \end{vmatrix} = 0$$

(x-3) (25+8) - (y+2) (5-2) + z(-4-5) = 0
33x-99-3y-6-9z=0
33x-3y-9z-105=0
11x-y-3z=35
48. $\vec{a} = \sqrt{3} i - \hat{j}, \vec{b} = \frac{1}{2}\hat{i} + \frac{\sqrt{3}}{2}\hat{j}$
 $\Rightarrow \vec{a}.\vec{b} = 0$
 $\vec{x}.\vec{y} = 0$ (given)

 $(\vec{a} + (q^2 - 3)\vec{b}) \cdot (-p\vec{a} + q\vec{b}) = 0$

$$\Rightarrow$$
 p = $\frac{q(q^2 - 3)}{4} = f(q)$

for monotonocity $p' = 3q^2 - 3$ if p' < 0 then f(q) is decreasing \Rightarrow (q-1)(q+1) < 0 $\Rightarrow -1 < q < 1$

Decreasing for $q \in (-1, 1), q \neq 0$

49.
$$\vec{r}.(\hat{i} + \hat{j} + \hat{k}) = 3\sqrt{3}$$

$$x + y + z - 3\sqrt{3} = 0$$
$$p = \left|\frac{-3\sqrt{3}}{\sqrt{3}}\right| = 3$$
$$\Rightarrow r = 4$$

⇒

50. (a) Since tetrahedron is regular AB = BC = AC = DCand angle between two adjcant side = $\pi/3$ consider planes ABD and DBC

vector, normal to plane ABD is = $\vec{a} \times \vec{b}$

vector, normal to plane DBC is = $\vec{b} \times \vec{c}$ angle between these planes is angle between D(0)

$$\begin{array}{c} C(\vec{c}) \\ B(\vec{b}) \\ \text{vectors} (\vec{a} \times \vec{b}) \& (\vec{b} \times \vec{c}) \end{array}$$

$$\Rightarrow \cos\theta = \frac{(\vec{a} \times \vec{b}).(\vec{b} \times \vec{c})}{\left|\vec{a} \times \vec{b}\right| \left|\vec{b} \times \vec{c}\right|} = \frac{-\frac{1}{4} \left|\vec{b}\right|^2 \left|\vec{a}\right| \left|\vec{c}\right|}{\frac{3}{4} \left|\vec{a}\right| \left|\vec{b}\right|^2 \left|\vec{c}\right|} = -\frac{1}{3}$$

Since acute angle is required $\theta = \cos^{-1}\left(\frac{1}{3}\right)$

Circumradius

(b) circum-radius \equiv distance of circum centre from any of the vertex

 \equiv distance of $\frac{\vec{a} + \vec{b} + \vec{c}}{4}$ from vertex D ($\vec{0}$) [tetrahedron

is regular]

6.

$$= \frac{1}{4} |\vec{a} + \vec{b} + \vec{c}| = \frac{1}{4} \sqrt{\vec{a}^2 + \vec{b}^2 + \vec{c}^2 + 2(\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a})}$$
$$= \frac{1}{4} \sqrt{k^2 + k^2 + k^2 + 2\left(\frac{k^2}{2} + \frac{k^2}{2} + \frac{k^2}{2}\right)}$$
$$= \frac{1}{4} \sqrt{6k^2} = \sqrt{\frac{3}{8}} k$$
$$\frac{r}{R} = \frac{1}{3} \qquad \Rightarrow \quad r = \frac{R}{3} = \frac{k}{\sqrt{24}}$$

EXERCISE - 5 Part # I : AIEEE/JEE-MAIN We have, $\vec{u} \cdot \hat{n} = 0$ and $\vec{v} \cdot \hat{n} = 0$ $\Rightarrow \hat{n} \perp \vec{u} \text{ and } \hat{n} \perp \vec{v}$ $\Rightarrow \hat{n} = \pm \frac{\vec{u} \times \vec{v}}{|\vec{u} \times \vec{v}|}$ Now, $\vec{u} \times \vec{v} = (\hat{i} + \hat{j}) \times (\hat{i} - \hat{j}) = -2\hat{k}$ $\hat{n} = \pm \hat{k}$ Hence, $|\vec{w}.\hat{n}| = |(\hat{i}+2\hat{j}+3\hat{k}).(\pm\hat{k})| = 3$ 7. We have, \vec{F} = Total force = $7\hat{i}+2\hat{j}-4\hat{k}$ \vec{d} = Displacement vector = $4\hat{i} + 2\hat{j} - 2\hat{k}$ \Rightarrow Work done = $\vec{F} \cdot \vec{d} = (28 + 4 + 8)$ units = 40 units 8. Let D be the mid-point of BC. Then, $\overrightarrow{AD} = \frac{\overrightarrow{AB} + \overrightarrow{AC}}{2}$ \Rightarrow $|\overrightarrow{AD}| = 4\hat{i} + \hat{i} + 4\hat{k}$ \Rightarrow $|\overrightarrow{AD}| = \sqrt{16 + 1 + 16} = \sqrt{33}$ Hence, required length = $\sqrt{33}$ units. 9. We have, $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ $\Rightarrow |\vec{a} + \vec{b} + \vec{c}| = \vec{0} \Rightarrow |\vec{a} + \vec{b} + \vec{c}|^2 = 0$ $\Rightarrow |\vec{a}|^{2} + |\vec{b}|^{2} + |\vec{c}|^{2} + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0$ \Rightarrow 1+4+9+2(\vec{a} . \vec{b} + \vec{b} . \vec{c} + \vec{c} . \vec{a}) = 0 $\Rightarrow \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = -7$ 11. We have, $(\vec{u} + \vec{v} - \vec{w}).(\vec{u} - \vec{v}) \times (\vec{v} - \vec{w})$ $= (\vec{u} + \vec{v} - \vec{w}) \cdot (\vec{u} \times \vec{v} - \vec{u} \times \vec{w} - \vec{v} \times \vec{v} + \vec{v} \times \vec{w})$ $= (\vec{u} + \vec{v} - \vec{w}). (\vec{u} \times \vec{v} - \vec{u} \times \vec{w} + \vec{v} \times \vec{w})$ $= \vec{u} \cdot (\vec{u} \times \vec{v}) - \vec{u} \cdot (\vec{u} \times \vec{w}) \times \vec{u} + (\vec{v} \times \vec{w})$ $+\vec{v}.(\vec{u}\times\vec{v})-\vec{v}.(\vec{u}\times\vec{w})+\vec{v}.(\vec{v}\times\vec{w})$ $-\vec{w}.(\vec{u}\times\vec{v})+\vec{w}.(\vec{u}\times\vec{w})-\vec{w}.(\vec{v}\times\vec{w})$

- $= \vec{u} \cdot (\vec{v} \times \vec{w}) \vec{v} \cdot (\vec{u} \times \vec{w}) \vec{w} \cdot (\vec{u} \times \vec{v})$ $= [\vec{u} \vec{v} \vec{w}] [\vec{v} \vec{u} \vec{w}] [\vec{w} \vec{u} \vec{v}]$ $= [\vec{u} \vec{v} \vec{w}] + [\vec{u} \vec{v} \vec{w}] [\vec{u} \vec{v} \vec{w}]$ $= [\vec{u} \vec{v} \vec{w}] = \vec{u} \cdot (\vec{v} \times \vec{w})$
- **12.** It is given that
 - $\vec{a} + 2\vec{b}$ is collinear with \vec{c} and $\vec{b} + 3\vec{c}$ is collinear with \vec{a}
 - $\Rightarrow \vec{a} + 2\vec{b} = \lambda \vec{c} \text{ and } \vec{b} + 3\vec{c} = \mu \vec{a} \text{ for some}$ scalar λ and μ .
 - $\Rightarrow \vec{b} + 3\vec{c} = \mu(\lambda\vec{c} 2\vec{b})$ $\Rightarrow (2\mu + 1)\vec{b} + (3 \mu\lambda)\vec{c} = \vec{0}$
 - $\Rightarrow (2\mu + 1)\vec{b} + (5^{\circ} \mu \vec{b})\vec{c} = \vec{0}$ $\Rightarrow 2\mu + 1 = 0 \text{ and } 3 - \mu\lambda = 0$ $\Rightarrow \mu = -\frac{1}{2} \lambda = -6 \qquad \begin{bmatrix} \cdot \cdot \vec{b} \text{ and } \vec{c} \\ \text{are non - collinear} \end{bmatrix}$ $\therefore \vec{a} + 2\vec{b} = \lambda \vec{c}$ $\Rightarrow \vec{a} + 2\vec{b} = -6\vec{c} \Rightarrow \vec{a} + 2\vec{b} + 6\vec{c} = \vec{0}$

14. Let
$$\vec{\alpha} = \vec{a} + 2\vec{b} + 3\vec{c}$$
, $\beta = \lambda\vec{b} + 4\vec{c}$ and $\vec{\gamma} = (2\lambda - 1)\vec{c}$.

Then,
$$[\vec{\alpha} \ \vec{\beta} \ \vec{\gamma}] = \begin{vmatrix} 1 & 2 & 3 \\ 0 & \lambda & 4 \\ 0 & 0 & (2\lambda - 1) \end{vmatrix} [\vec{a} \ \vec{b} \ \vec{c}]$$

$$\Rightarrow [\vec{\alpha} \ \vec{\beta} \ \vec{\gamma}] = \lambda(2\lambda - 1) [\vec{a} \ \vec{b} \ \vec{c}]$$

$$\Rightarrow \ [\alpha \vec{\beta} \vec{\gamma}] = 0, \text{ if } \lambda = 0, \frac{1}{2} \qquad [\because [\vec{a} \vec{b} \vec{c}] \neq 0]$$

Hence, $\vec{\alpha},\vec{\beta},\vec{\gamma}$ are non-coplanar for all values of λ except

two values 0 and $\frac{1}{2}$. 16. $(a \times b) \times c = 1/3|b| |c| a$ $\Rightarrow (a.c)b - (b.c)a = 1/3|b||c| a$ $\Rightarrow (a.c)b = \left\{ (b.c) + \frac{1}{3}|b||c| \right\} a$ $\Rightarrow (a.c)b = |b| |c| \left\{ \cos \theta + \frac{1}{3} \right\} a$ As a and b are not parallel, a.c=0 and $\cos \theta + \frac{1}{3} = 0$ $\Rightarrow \cos \theta = -\frac{1}{3}$. Hence $\sin \theta = \frac{2\sqrt{2}}{3}$

17.
$$\overrightarrow{PA} + \overrightarrow{PB} = (\overrightarrow{PA} + \overrightarrow{AC}) + (\overrightarrow{PB} + \overrightarrow{BC}) - (\overrightarrow{AC} + \overrightarrow{BC})$$

$$= \overrightarrow{PC} + \overrightarrow{PC} - (\overrightarrow{AC} - \overrightarrow{CB})$$

$$= 2\overrightarrow{PC} - 0$$
($: \overrightarrow{AC} = \overrightarrow{CB}$)
 $: \overrightarrow{PA} + \overrightarrow{PB} = 2\overrightarrow{PC}$
21. $[abc] = \begin{vmatrix} 1 & 0 & -1 \\ x & 1 & 1 - x \\ y & x & 1 + x - y \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ x & 1 & 1 \\ y & x & 1 + x \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ x & 1 & 1 \\ y & x & 1 + x \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ x & 1 & 1 \\ y & x & 1 + x \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ x & 1 & 1 \\ x & 1 + x \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ x & 1 + x \end{vmatrix} = 1$
22. $(\overrightarrow{a} \times \overrightarrow{b}) \times \overrightarrow{c} = \overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c})$
 $\Rightarrow (\overrightarrow{a} . \overrightarrow{c}) \overrightarrow{b} - (\overrightarrow{b} . \overrightarrow{c}) \overrightarrow{a} = (\overrightarrow{a} . \overrightarrow{c}) \overrightarrow{b} - (\overrightarrow{a} . \overrightarrow{b}) \overrightarrow{c}$
So that \overrightarrow{a} is parallel to \overrightarrow{c}
24. AC \perp BC
 $: dr's of AC and BC will be (2-a,2,0) and (1-a,0,-6)$
So that $(2-a)(1-a) + 2 \times 0 + 0 \times (-6) = 0$
 $\Rightarrow a^2 - 3a + 2 = 0$
 $: a = 1, 2$

$$A(2, -1, 1)$$

$$A(2, -1, 2)$$

$$A(2, -1, 1)$$

$$A(2, -1, 2)$$

30.
$$(\vec{a} \times \vec{b}) + \vec{c} = 0$$

 $(\vec{a} \times \vec{b}) = -\vec{c}$
 $\Rightarrow \vec{a} \times (\vec{a} \times \vec{b}) = -\vec{a} \times \vec{c}$
 $\Rightarrow (\vec{a}.\vec{b})\vec{a} - |\vec{a}|^2 \vec{b} = -\vec{a} \times \vec{c}$
 $\Rightarrow 3(\vec{j} - \vec{k}) - 2\vec{b} = -(-2i - j - k)$
 $(\vec{a} \times \vec{c} = -2i - j - k)$
 $\Rightarrow 2\vec{b} = (-2i + 2j - 4k)$
 $\Rightarrow \vec{b} = -i + j - 2k$

- 31. Give $\vec{a} \perp \vec{b}$, $\vec{a} \perp \vec{c} \& \vec{b} \perp \vec{c}$ so $\vec{a}.\vec{c} = 0 \& \vec{b}.\vec{c} = 0$ $\Rightarrow \lambda - 1 + 2\mu = 0 \& 2\lambda + 4 + \mu = 0$ $\Rightarrow \lambda = -3 \& \mu = 2$
- 32. $a.b. \neq 0$ a.d = 0 $b \times c = b \times d$ $a \times (b \times c) = a \times (b \times d)$ $(a.c)b - (a.b)c - (a.c)b - (a.b)d \quad \{a.d=0\}$ $\Rightarrow (a.b)d = (a.b)c \quad (a.c)b \quad (divide by a.b)$

 $d = c - \frac{(a.c)}{(a.b)}b$

33. $\vec{a}.\vec{b} = 0$ and |a| = |b| = 1

$$(\vec{a} \times \vec{b}) \times (\vec{a} + 2\vec{b}) = (\vec{a} \times \vec{b}) \times \vec{a} + (\vec{a} \times \vec{b}) \times 2\vec{b}$$

$$= -\left[(\vec{a} \times \vec{b}) + 2\vec{b} \times (\vec{a} \times \vec{b})\right]$$

$$= -\left[(\vec{a} \cdot \vec{b})\vec{a} - (\vec{a} \cdot \vec{a})\vec{b} + 2(\vec{b} \cdot \vec{b})\vec{a} - 2(\vec{b} \cdot \vec{a})\vec{b}\right]$$

$$= -\left[(\vec{a} \cdot \vec{b})\vec{a} - (\vec{a} \cdot \vec{a})\vec{b} + 2(\vec{b} \cdot \vec{b})\vec{a} - 2(\vec{b} \cdot \vec{a})\vec{b}\right]$$

$$= -\left[(\vec{a} \cdot \vec{b})\vec{a} - (\vec{a} \cdot \vec{a})\vec{b} + 2(\vec{b} \cdot \vec{b})\vec{a} - 2(\vec{b} \cdot \vec{a})\vec{b}\right]$$

$$= -\left[(\vec{a} - \vec{b}) \cdot (\vec{a} \times \vec{b}) \times (\vec{a} + 2\vec{b})\right]$$

$$= (2\vec{a} - \vec{b}) \cdot (\vec{b} - 2\vec{a})$$

$$= -4a^2 - b^2 + 4\vec{a} \cdot \vec{b} = -5$$

34.
$$\begin{vmatrix} p & 1 & 1 \\ 1 & q & 1 \\ 1 & 1 & r \end{vmatrix} = 0$$

$$p(qr - 1) - (r - 1) + (1 - q) = 0$$

$$pqr - p - r + 1 + 1 - q = 0$$

$$pqr - (p + r + q) + 2 = 0$$

$$pqr - (p + r + q) = -2$$

35. Let

$$a + 3b = \lambda \vec{c}$$

$$add 6\vec{c} \text{ both side}$$

$$\begin{vmatrix} Let \\ \vec{b} + 2\vec{c} = \mu \vec{a} \\ 3b + 6\vec{c} = 3\mu \vec{a} \end{vmatrix}$$

But given \vec{a} and \vec{c} are non coliner Hence $\lambda + 6 = 3\mu + 1 = 0$ $\vec{a} + 3\vec{b} + 6\vec{c} = \vec{0}$ so **36.** $\vec{c}.\vec{d} = 0$ \Rightarrow $(\hat{a}+2\hat{b})((5\hat{a}-4\hat{b}))=0$ \Rightarrow 5-8+6 \hat{a} . \hat{b} = 0 \Rightarrow \hat{a} $\hat{b} = 1/2$ $\Rightarrow \cos\theta = 1/2$ $\Rightarrow \theta = \frac{\pi}{3}$ 37. M P $\overline{q}+\overline{r}=\overline{AM}$ \Rightarrow $\overline{r} = -\overline{q} + \overline{AM}$ $\Rightarrow \quad \overline{\mathbf{r}} = -\overline{\mathbf{q}} + \frac{\overline{\mathbf{p}}.\overline{\mathbf{q}}}{\left|\overline{\mathbf{p}}\right|^2}\vec{\mathbf{p}}$ \Rightarrow $\overline{\mathbf{r}} = -\overline{\mathbf{q}} + \left(\frac{\overline{\mathbf{p}}.\overline{\mathbf{q}}}{\overline{\mathbf{p}}.\overline{\mathbf{p}}}\right)\overline{\mathbf{p}}$ 38. B D $\overrightarrow{AD} = \frac{\overrightarrow{AB} + \overrightarrow{AC}}{2} = 4\hat{j} - \hat{j} + 4\hat{k}$ $|\overrightarrow{AD}| = \sqrt{33}$

Hence $(\lambda + 6)\vec{c} = (3\mu + 1)\vec{a}$

 $\vec{a} + 3\vec{b} + 6\vec{c} = (\lambda + 6)\vec{c}$

add ā both side

 $\vec{a} + 3\vec{b} + 6\vec{c} = (3\mu + 1)\vec{a}$

43.
$$\begin{vmatrix} x_{2} - x_{1} & y_{2} - y_{1} & z_{2} - z_{1} \\ \ell_{1} & m_{1} & n_{1} \\ \ell_{2} & m_{2} & n_{2} \end{vmatrix} = 0$$
$$\begin{vmatrix} 1 & -1 & -1 \\ 1 & 1 & -k \\ k & 2 & 1 \end{vmatrix} = 0 \implies \begin{vmatrix} 0 & 0 & -1 \\ 2 & 1 + k & -k \\ k + 2 & 1 & 1 \end{vmatrix}$$
$$k^{2} + 3k = 0 \implies k(k+3) = 0 \implies k = 0 \text{ or } -3$$

45. Let \vec{n}_1 and \vec{n}_2 be the vectors normal to the faces OAB and ABC. Then,

= 0

$$\vec{n}_1 = \vec{OA} \times \vec{OB} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 1 \\ 2 & 1 & 3 \end{vmatrix} = 5\hat{i} - \hat{j} - 3\hat{k}$$

and,
$$\vec{n}_2 = \vec{AB} \times \vec{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 2 \\ -2 & -1 & 1 \end{vmatrix} = \hat{i} - 5\hat{j} - 3\hat{k}$$

If $\boldsymbol{\theta}$ is the angle between the faces OAB and ABC, then

$$\cos\theta = \frac{\vec{n}_1 \cdot \vec{n}_2}{|\vec{n}_1| |\vec{n}_2|}$$

$$\Rightarrow \cos\theta = \frac{5+5+9}{\sqrt{25+1+9}\sqrt{1+25+9}} = \frac{19}{35}$$

$$\Rightarrow \theta = \cos^{-1}\left(\frac{19}{35}\right)$$

46. $\ell_1 - am_1 = 0$ and $cm_1 - n_1 = 0 \Rightarrow \frac{\ell_1}{a} = \frac{m_1}{1} = \frac{n_1}{c}$ Also $\ell_2 - a'm_2 = 0$ and $c'm_2 - n_2 = 0$ $\Rightarrow \frac{\ell_2}{a'} = \frac{m_2}{1} = \frac{n_2}{c'}$ $\therefore \ell_1 \ell_2 + m_1 m_2 + n_1 n_2 = aa' + cc' + 1 = 0$ 47. Here, $\ell = \cos\theta$, $m = \cos\beta$, $n = \cos\theta$, ($\because \ell = n$)

Now, $\ell^2 + m^2 + n^2 = 1 \Rightarrow 2\cos^2\theta + \cos^2\beta = 1$ $\Rightarrow \text{ Given, } \sin^2\beta = 3\sin^2\theta \Rightarrow 2\cos^2\theta = 3\sin^2\theta$ $5\cos^2\theta = 3, \therefore \cos^2\theta = \frac{3}{5}$ **48.** Given plane are 2x + y + 2z - 8 = 0

or
$$4x + 2y + 4z - 16 = 0$$
 (i)

and
$$4x + 2y + 4z + 5 = 0$$
 (ii)

Distance between two parallel planes

$$= \left| \frac{-16-5}{\sqrt{4^2+2^2+4^2}} \right| = \frac{21}{6} = \frac{7}{2}$$

49. Let the two lines be AB and CD having equation

$$\frac{x}{1} = \frac{y+a}{1} = \frac{z}{1} = \lambda \text{ and } \frac{x+a}{2} = \frac{y}{1} = \frac{z}{1} = \mu$$

then $P \equiv (\lambda, \lambda - a, \lambda)$ and $Q = (2\mu - a, \mu, \mu)$
So according to question,
$$\frac{\lambda - 2\mu + a}{2} = \frac{\lambda - a - \mu}{1} = \frac{\lambda - \mu}{2}$$

$$\frac{1}{2} = \frac{1}{1} = \frac{1}{2}$$

$$\Rightarrow \mu = a \text{ and } \lambda = 3a$$

$$\therefore P = (3a, 2a, 3a)$$

$$\therefore P = (a, a, 0)$$

50. We have,
$$\frac{x-1}{1} = \frac{y+3}{-\lambda} = \frac{z-1}{\lambda} = s$$

and $\frac{x-0}{1/2} = \frac{y-1}{1} = \frac{z-2}{-1} = t$
Since lines are container then

Since, lines are coplanar then

$$\begin{vmatrix} x_{2} - x_{1} & y_{2} - y_{1} & z_{2} - z_{1} \\ \ell_{1} & m_{1} & n_{1} \\ \ell_{2} & m_{2} & n_{2} \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} -1 & 4 & 1 \\ 1 & -\lambda & \lambda \\ 1 / 2 & 1 & -1 \end{vmatrix} = 0$$
On solving, $\lambda = -2$

52. Angle between line and normal to plane is

 $\cos\left(\frac{\pi}{2} - \theta\right) = \frac{1 \times 2 - 2 \times 1 + 2\sqrt{\lambda}}{3 \times \sqrt{5 + \lambda}}, \text{ where } \theta \text{ is the angle between line and plane}$

$$\Rightarrow \sin\theta = \frac{1 \times 2 + 2 \times (-1) + 2\sqrt{\lambda}}{3 \times \sqrt{5 + \lambda}} \Rightarrow \frac{1}{3} = \frac{2\sqrt{\lambda}}{3\sqrt{5 + \lambda}}$$
$$\Rightarrow \frac{1}{3} = \frac{2\sqrt{\lambda}}{3\sqrt{5 + \lambda}} \Rightarrow \lambda = \frac{5}{3}$$

53. The lines are
$$\frac{x}{3} = \frac{y}{2} = \frac{z}{-6}$$
 and $\frac{x}{2} = \frac{y}{-12} = \frac{z}{-3}$
Since, $a_1a_2 + b_1b_2 + c_1c_2 = 6 - 24 + 18 = 0$
 $\Rightarrow \theta = 90^\circ$

58. Equation of line PQ is

$$\frac{x+1}{1} = \frac{y-3}{-2} = \frac{z-4}{0} = \lambda$$

For some suitable value of λ , co-ordinates of point $Q(\lambda-1, 3-2\lambda, 4)$

R is the mid point of P and Q.

$$\therefore R \equiv \left(\frac{\lambda - 2}{2}, \frac{6 - 2\lambda}{2}, 4\right)$$

$$R \equiv \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R \equiv \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1, 3 - \lambda, 4\right)$$

$$R = \left(\frac{\lambda}{2} - 1,$$

59. If direction cosines of L be ℓ , m, n then

 $2\ell + 3m + n = 0$ $\ell + 3m + 2n = 0$ Solving, we get, $\frac{\ell}{3} = \frac{m}{-3} = \frac{n}{3}$

$$\therefore \ \ \ell: m: n = \frac{1}{\sqrt{3}} : -\frac{1}{\sqrt{3}} : \frac{1}{\sqrt{3}} \Rightarrow \cos\alpha = \frac{1}{\sqrt{3}}$$

60. $\ell = \cos \frac{\pi}{4}$, $m = \cos \frac{\pi}{4}$ we know that $\ell^2 + m^2 + n^2 = 1$

$$\frac{1}{2} + \frac{1}{2} + n^2 = 1 \Longrightarrow n = 0$$

Hence angle with positive direction of z-axis is $\frac{\pi}{2}$

64. Line
$$\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$$
 (1)
Plane x + 3y - $\alpha z + \beta = 0$ (2)
Point (2, 1, -2) put in (2)
2 + 3 + 2 $\alpha + \beta = 0$

$$\Rightarrow 2\alpha + \beta = -5$$

Now $a_1a_2 + b_1b_2 + c_1c_2 = 0$
 $3 - 15 - 2\alpha = 0$
 $-12 - 2\alpha = 0$
 $\alpha = -6$
 $-12 + \beta = -5$
 $\beta = 7$
 $\alpha = -6, \beta = 7$

65. Proj. of a vector (\vec{r}) on x-axis = $|\vec{r}| \ell$

on y-axis =
$$|\vec{r}|$$
 m
on z-axis = $|\vec{r}|$ n

$$6 = 7\ell, \implies \ell = \frac{6}{7} \text{ similarly } m = -\frac{3}{7}, n = \frac{2}{7}$$

$$66. \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 \qquad \dots (i)$$

$$\alpha = 45^\circ, \beta = 120^\circ$$

Put in equation (i)

$$\implies \frac{1}{2} + \frac{1}{4} + \cos^2 \gamma = 1$$

$$\implies \cos^2 \gamma = \frac{1}{4}$$

$$\implies \gamma = 60^\circ$$

67. Mirror image of B(1, 3, 4) in plane x-y+z = 5

$$\frac{x-1}{1} = \frac{y-3}{-1} = \frac{z-4}{1} = -2\frac{(1-3+4-5)}{1+1+1} = 2$$

$$\Rightarrow x = 3, y = 1, z = 6$$

$$\therefore \text{ mirror image of B (1, 3, 4) is A (3, 1, 6)}$$

statement-1 is correct
statement-2 is true but it is not the correct explanation.

68.
$$\frac{x}{1} = \frac{y-1}{2} = \frac{z-3}{\lambda}$$
 equation of line

equation of plane x + 2y + 3z = 4

$$\sin\theta = \frac{1+4+3\lambda}{\sqrt{14}\sqrt{1+4}+\lambda^2}$$
$$\implies \lambda = \frac{2}{3}$$

VECTOR AND 3-DIMENSIONAL

69.
$$1(1-1) + 2(0-6) + 3(7-3)$$

 $= 0 - 12 + 12 = 0$
mid point AB (1, 3, 5)
lies on $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$
P (3, -1, 11)
70. $M < 2, 3, 4 >$
M(2r, 3r + 2, 4r + 3)
Dr's of PM < 2r - 3, 3r + 3, 4r - 8 >
2(2r - 3) + 3(3r + 3) + 4(4r - 8) = 0
29r - 29 = 0
r = 1

M(2, 5, 7)

Distance PM = $\sqrt{1 + 36 + 16} = \sqrt{53}$

eqⁿ. of a line || to x = y = z and passing through (1, -5, 9) is $\frac{x-1}{1} = \frac{y+5}{1} = \frac{z-9}{1} = r$

Let is meets plane at M(r+1, r-5, r+9) Put in equation of plane x - y + z = 5 r + 1 - r + 5 + r + 9 = 5 r = -10Hence M (-9, -15, -1) Distance PM = $\sqrt{100 + 100 + 100} = 10\sqrt{3}$

72. Equation of plane parallel to

$$x - 2y + 2z - 5 = 0$$
 is $x - 2y + 2z = k$

or
$$\frac{x}{3} - \frac{2}{3}y + \frac{2}{3}z = \frac{K}{3}$$

 $\left|\frac{\mathrm{K}}{\mathrm{3}}\right| = 1$ \Rightarrow K = \pm 3 : Equation of required plane is $x - 2y + 2z \pm 3 = 0$ $|3 - 1 \quad K + 1 \quad 0 - 1|$ $\begin{vmatrix} 2 & 3 & 4 \end{vmatrix} = 0$ 73. 1 2 1 $\Rightarrow \begin{vmatrix} 2 & K+1 & -1 \\ 2 & 3 & 4 \\ 1 & 2 & 1 \end{vmatrix} = 0$ $\Rightarrow 2K - 9 = 0$ \Rightarrow K = $\frac{9}{2}$ **74.** 4x + 2y + 4z + 5 = 04x + 2y + 4z - 16 = 0 \Rightarrow d = $\left|\frac{21}{\sqrt{36}}\right| = \frac{7}{2}$ 75. \Rightarrow $(\vec{a} - \vec{b}) \cdot (\vec{c} \times \vec{d}) = 0$ $\Rightarrow \begin{vmatrix} 1 & -1 & -1 \\ 1 & 1 & -k \\ k & 2 & 1 \end{vmatrix} = 0$ \Rightarrow (1+2k)+(1+k²)-(2-k)=0 \Rightarrow k² + 3k = 0 $< \frac{0}{-3}$ **82.** 1(3) + m(-2) - (-4) = 931 - 2m = 5....**(i)** 31 - 2m - 3 = 021 - m = 3....**(ii)** 41 - 2m = 6....**(iii)** (iii) – (i) 1 = 1m = -1 $l^2 + m^2 = 2$

- 5. Given data is insufficient to uniquely determine the three vectors as there are only 6 equations involving 9 variables.
 - :. We can obtain infinitely many set of three
 - vectors, $\vec{v}_1, \vec{v}_2, \vec{v}_3$, satisfying these conditions.

From the given data, we get

→ →

$$\vec{v}_1 \cdot \vec{v}_1 = 4 \implies |\vec{v}_1| = 2$$

$$\vec{v}_2 \cdot \vec{v}_2 = 2 \implies |\vec{v}_2| = \sqrt{2}$$

$$\vec{v}_3 \cdot \vec{v}_3 = 29 \implies |\vec{v}_3| = \sqrt{29}$$

Also $\vec{v}_1 \cdot \vec{v}_2 = -2$

 \Rightarrow $|\vec{v}_1| |\vec{v}_2| \cos\theta = -2$

[where θ is the angle between \vec{v}_1 and \vec{v}_2]

$$\Rightarrow \cos \theta = \frac{-1}{\sqrt{2}} \Rightarrow \theta = 135^{\circ}$$

Now since any two vectors are always

coplanar, let us suppose that $\,\vec{\nu}_1\,$ and $\,\vec{\nu}_2\,$ are

in x–y plane. Let \vec{v}_1 is along the positive direction of

x-axis then $\vec{v}_1 = 2\hat{i}$. [: $|\vec{v}_1| = 2$]

As $\vec{\nu}_2$ makes an angle 135° with $\vec{\nu}_1\,$ and $\,$ ies in x–y $\,$ plane, also keeping in mind

$$\begin{aligned} |\vec{v}_2| &= \sqrt{2} \text{ we obtain} \\ \vec{v}_2 &= -\hat{i} \pm \hat{j} \\ \text{Again let, } \vec{v}_3 &= \alpha \hat{i} + \beta \hat{i} + \gamma \hat{k} \\ \because \quad \vec{v}_3.\vec{v}_1 &= 6 \implies 2\alpha = 6 \implies \alpha = 3 \\ \text{and } \vec{v}_3.\vec{v}_2 &= -5 \implies -\alpha \pm \beta = -5 \implies \beta = \pm 2 \\ \text{Also } |\vec{v}_3| &= \sqrt{29} \implies \alpha^2 + \beta^2 + \gamma^2 = 29 \\ \implies \gamma = \pm 4 \\ \text{Hence} \quad \vec{v}_3 &= 3\hat{i} \pm 2\hat{j} \pm 4\hat{k} \\ \text{Thus, } \quad \vec{v}_1 &= 2\hat{i}; \vec{v}_2 &= -\hat{i} \pm \hat{j}; \vec{v}_3 &= 3\hat{i} \pm 2\hat{j} \pm 4\hat{k} \\ \text{are some possible answers.} \end{aligned}$$

 \vec{A} (t) is parallel to \vec{B} (t) for some $t \in [0,1]$ if and only if 6.

$$\frac{f_1(t)}{g_1(t)} = \frac{f_2(t)}{g_2(t)} \text{ for some } t \in [0,1]$$

or $f_1(t).g_2(t) = f_2(t).g_1(t) \text{ for some } t \in [0,1]$
Let $h(t) = f_1(t).g_2(t) - f_2(t).g_1(t)$
 $h(0) = f_1(0).g_2(0) - f_2(0).g_1(0)$
 $= 2 \times 2 - 3 \times 3 = -5 < 0$
 $h(1) = f_1(1).g_2(1) - f_2(1).g_1(1)$
 $= 6 \times 6 - 2 \times 2 = 32 > 0$
Since h is a continuous function, and

h(0).h(1) < 0

 \Rightarrow there is some $t \in [0,1]$ for which h(t) = 0

i.e., $\vec{A}(t)$ and $\vec{B}(t)$ are parallel vectors for this t.

8. Given that,
$$\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$$

 $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$
 $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$

where $a_r, b_r, c_r, r = 1,2,3$ are all non negative real numbers.

Also
$$\sum_{r=1}^{3} (a_r + b_r + c_r) = 3L$$

To prove $V \le L^3$ Where V is vol. of parallelopiped formed by the vectors \vec{a}, \vec{b} and \vec{c}

$$\therefore \text{ We have } \mathbf{V} = \begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = \begin{vmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \\ \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \\ \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_3 \end{vmatrix}$$

Now we know that $AM \ge GM$

$$\therefore \frac{(a_1 + b_1 + c_1) + (a_2 + b_2 + c_2) + (a_3 + b_3 + c_3)}{3}$$

$$\geq [(a_1 + b_1 + c_1) (a_2 + b_2 + c_2) (a_3 + b_3 + c_3)]^{1/3}$$

$$\Rightarrow \frac{3L}{3} \geq [(a_1 + b_1 + c_1) (a_2 + b_2 + c_2) (a_3 + b_3 + c_3)]^{1/3}$$

$$\Rightarrow L^3 \geq (a_1 + b_1 + c_1) (a_2 + b_2 + c_2) (a_3 + b_3 + c_3)$$

$$= a_1 b_2 c_3 + a_2 b_3 c_1 + a_3 b_1 c_2 + 24 \text{ more such terms}$$

$$\geq a_1b_2c_3 + a_2b_3c_1 + a_3b_1c_2$$
[:: $a_r, b_r, c_r \geq 0 \text{ or } r = 1,2,3$]

$$\geq (a_1b_2c_3 + a_2b_3c_1 + a_3b_1c_2)$$
- $(a_1b_3c_2+a_2b_1c_3 + a_3b_2c_1)$ [same reason]
= V from (1)
Thus, L³ \geq V Hence Proved

 Given that u, v, ω are three non coplanar unit vectors. Angle between u and v is α, between v and ω is β and between ω and u it is γ. In fig. OA and OB represent u and v. Let P be a pt. on angle bisector of ∠ AOB such that OAPB is a parallelogram.

 \angle POA = \angle BOP = $\alpha/2$ Also \therefore \angle APO = \angle BOP = $\alpha/2$ (Alternate angles) \therefore In \triangle OAP, OA = AP \therefore $\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP} = \vec{u} + \vec{v}$ $\therefore \quad \Theta P = \frac{\vec{u} + \vec{v}}{|\vec{u} + \vec{v}|} \quad \text{i.e.} \quad \vec{x} = \frac{\vec{u} + \vec{v}}{|\vec{u} + \vec{v}|}$ But $|\vec{u} + \vec{v}|^2 = (\vec{u} + \vec{v}).(\vec{u} + \vec{v})$ $= 1 + 1 + 2 \vec{u}.\vec{v}$ $\begin{bmatrix} \because |\vec{\mathbf{u}}| \neq \vec{\mathbf{v}}| = 1 \end{bmatrix}$ $= 2 + 2 \cos \alpha = 4 \cos^2 \alpha/2.$ \therefore | $\vec{u} + \vec{v}$ | = 2 cos $\alpha/2$ \Rightarrow $\vec{x} = \frac{1}{2} \sec(\alpha/2) (\vec{u} + \vec{v})$ Similarly, $\vec{y} = \frac{1}{2} \sec(\beta/2) (\vec{v} + \vec{\omega})$ $\vec{z} = \frac{1}{2} \sec(\gamma / 2)(\vec{\omega} + \vec{u})$ Now consider $[\vec{x} \times \vec{y} \ \vec{y} \times \vec{z} \ \vec{z} \times \vec{x}]$ $= (\vec{x} \times \vec{y}) [(\vec{y} \times \vec{z}) \times (\vec{z} \times \vec{x})]$

 $= (\vec{\mathbf{x}} \times \vec{\mathbf{y}}) [\{ (\vec{\mathbf{y}} \times \vec{\mathbf{z}}), \vec{\mathbf{x}} \} \vec{\mathbf{z}} - \{ (\vec{\mathbf{y}} \times \vec{\mathbf{z}}), \vec{\mathbf{z}} \} \vec{\mathbf{x}}]$ [Using def^h of vector triple product,] $= (\vec{x} \times \vec{y}) \cdot [[\vec{x} \, \vec{y} \, \vec{z}]\vec{z} - 0]$ $= [\vec{x} \, \vec{y} \, \vec{z}] [\vec{x} \, \vec{y} \, \vec{z}] \quad [\because [\vec{y} \, \vec{z} \, \vec{z}] = 0]$ $= [\vec{x} \, \vec{y} \, \vec{z}]^2$...**(i)** $[\vec{x} \, \vec{y} \, \vec{z}] = \left| \frac{1}{2} \sec \frac{\alpha}{2} (\vec{u} + \vec{v}) \right| \frac{1}{2} \sec \frac{\beta}{2} \right|$ Also $(\vec{v} + \vec{\omega}) \frac{1}{2} \sec(\gamma/2)(\vec{w} + \vec{u}))$ $=\frac{1}{8}\sec(\alpha/2)\sec(\beta/2)\sec(\gamma/2)\left[\vec{u}+\vec{v}\ \vec{v}+\vec{\omega}\ \vec{\omega}+\vec{u}\right]$ $=\frac{1}{9}\sec(\alpha/2)\sec(\beta/2)\sec(\gamma/2)$ $[(\vec{u} + \vec{v}).(\vec{v} + \vec{\omega}) \times (\vec{\omega} + \vec{u})]$ $= \frac{1}{2} \sec(\alpha/2) \sec(\beta/2) \sec(\gamma/2)$ $[(\vec{u} + \vec{v}).(\vec{v} \times \vec{\omega} + \vec{v} \times \vec{u} + \vec{\omega} \times \vec{u})]$ $= \frac{1}{\alpha} \sec(\alpha/2) \sec(\beta/2) \sec(\gamma/2) [\vec{u} \cdot \vec{v} \times \vec{\omega} + \vec{v} \cdot \vec{\omega} \times \vec{u}]$ (: $[\vec{a} \ \vec{b} \ \vec{c}] = 0$ when ever any two vectors are same) $= \frac{1}{8} \sec(\alpha/2) \sec(\beta/2) \sec(\gamma/2) 2 \left[\vec{u} \, \vec{v} \, \vec{\omega}\right]$ $= \frac{1}{4} \sec(\alpha/2) \sec(\beta/2) \sec(\gamma/2) 2 \left[\vec{u} \, \vec{v} \, \vec{\omega}\right]$ $\therefore [\vec{x} \, \vec{y} \, \vec{z}]^2 = \frac{1}{16} [\vec{u} \, \vec{v} \, \vec{\omega}]^2 \sec^2 \alpha/2 \sec^2 \beta/2 \sec^2 \gamma/2$**(ii)** From (i) and (ii), $\begin{bmatrix} \vec{x} \times \vec{y} & \vec{y} \times \vec{z} & \vec{z} \times \vec{x} \end{bmatrix}$ $=\frac{1}{16} \left[\vec{u} \, \vec{v} \, \vec{\omega}\right]^2 \qquad \sec^2 \alpha/2 \, \sec^2 \beta/2 \, \sec^2 \gamma/2.$ **12.** Given that $\vec{a} \neq \vec{b} \neq \vec{c} \neq \vec{d}$ Such that $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$...**(i)** $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$...**(ii**) To prove that $(\vec{a} - \vec{d}) \cdot (\vec{b} - \vec{c}) \neq 0$

Subtracting equation (ii) from (i) we get

$$\vec{a} \times (\vec{c} - \vec{b}) = (\vec{b} - \vec{c}) \times \vec{d}$$

- \Rightarrow $\vec{a} \times (\vec{c} \vec{b}) = \vec{d} \times (\vec{c} \vec{b})$
- $\Rightarrow \vec{a} \times (\vec{c} \vec{b}) \vec{d} \times (\vec{c} \vec{b}) = 0$
- $\Rightarrow (\vec{a} \vec{d}) \times (\vec{c} \vec{b}) = 0 \quad \Rightarrow \quad \vec{a} \vec{d} \| \vec{c} \vec{b}$

$$\vec{a} - \vec{d} \neq 0, \ \vec{c} - \vec{b} \neq 0$$
 as all distinct]

- ⇒ Angle between $\vec{a} \vec{d}$ and $\vec{c} \vec{b}$ is either 0 or 180°.
- $\Rightarrow (\vec{a} \vec{d}) \cdot (\vec{c} \vec{b}) = |\vec{a} \vec{d}| |\vec{c} \vec{b}|$

 $[\cos 0^{\circ} \text{ or } \cos 180^{\circ}] \neq 0 \text{ as } \vec{a}, \vec{d}, \vec{c}, \vec{b} \text{ all are different.}$

14. Given that incident ray is along \hat{v} , reflected ray is along \hat{w} and normal is along \hat{a} , outwards. The given figure can be redrawn as shown.

We know that incident ray, reflected ray and normal lie in a plane, and angle of incidence = angle of reflection. Therefore \hat{a} will be along the angle bisector of \hat{w} and $-\hat{v}$, i.e.,

$$\hat{a} = \frac{\hat{w} + (-\hat{v})}{|\hat{w} - \hat{v}|}$$
 ...(i)

[: angle bisector will along a vector dividing in same ratio as the ratio of the sides forming that angle.]

But â is a unit vector

where
$$|\hat{\mathbf{w}} - \hat{\mathbf{v}}| = OC = 2OP$$

= 2 $|\hat{\mathbf{w}}| \cos \theta = 2 \cos \theta$
Substituting this value in equation (i) we get

$$\hat{\mathbf{a}} = \frac{\hat{\mathbf{w}} - \hat{\mathbf{v}}}{2\cos\theta}$$

$$\therefore \quad \hat{\mathbf{w}} = \hat{\mathbf{v}} + (2\cos\theta)\hat{\mathbf{a}}$$
$$= \hat{\mathbf{v}} - 2(\hat{\mathbf{a}} \cdot \hat{\mathbf{v}})\hat{\mathbf{a}} \quad [\because \hat{\mathbf{a}} \cdot \hat{\mathbf{v}} = -\cos\theta].$$

15. (b) Normal to plane P_1 is

$$\vec{n}_1 = (2\hat{j} + 3\hat{k}) \times (4\hat{j} - 3\hat{k}) = -18\hat{i}$$

Normal to plane P_2 is
 $\vec{n}_2 = (\hat{j} - \hat{k}) \times (3\hat{i} + 3\hat{j}) = 3\hat{i} - 3\hat{j} - 3\hat{k}$

 $\therefore \vec{A} \text{ is parallel to } \pm (\vec{n}_1 \times \vec{n}_2) = \pm (-54\hat{j} + 54\hat{k})$ Now, angle between \vec{A} and $2\hat{i} + \hat{j} - 2\hat{k}$ is given by $\cos \theta = \pm \frac{(-54\hat{j} + 54\hat{k})(2\hat{i} + \hat{j} - 2\hat{k})}{54\sqrt{2.3}} = \pm \frac{1}{\sqrt{2}}$ $\theta = \frac{\pi}{4} \text{ or } \frac{3\pi}{4}$. **19.** Let $\vec{c} = x\hat{i} + y\hat{j} + z\hat{k}$ $\vec{r}_a = \hat{i}$ then $\vec{b} = \frac{1}{2}\hat{i} + \frac{\sqrt{3}}{2}\hat{j}$ so $x = \frac{1}{2}$ $\& \frac{x}{2} + \frac{y\sqrt{3}}{2} = \frac{1}{2}$ $\Rightarrow y\sqrt{3} = \frac{1}{2} \qquad \therefore y = \frac{1}{2}\sqrt{3}$ also $x^2 + y^2 + z^2 = 1$ $\Rightarrow z^2 = 2/3 \Rightarrow z = \pm \sqrt{2}/3$ so volume $= \begin{vmatrix} 1 & 0 & 0 \\ 1/2 & \sqrt{3}/2 & 0 \end{vmatrix} = \frac{1}{2}/5$

volume =
$$\begin{vmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{1}{2} & \frac{1}{2\sqrt{3}} & \pm \sqrt{\frac{2}{3}} \end{vmatrix}$$
 = $\frac{1}{\sqrt{2}}$

Alternative

volume = $\begin{vmatrix} r \\ a \\ \cdot \begin{pmatrix} r \\ b \\ \times c \end{vmatrix}$

$$\sqrt{\begin{vmatrix} \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{a} \cdot \mathbf{a} & \mathbf{a} \cdot \mathbf{b} & \mathbf{a} \cdot \mathbf{c} \\ \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{b} \cdot \mathbf{a} & \mathbf{b} \cdot \mathbf{b} & \mathbf{b} \cdot \mathbf{c} \\ \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{c} \cdot \mathbf{a} & \mathbf{c} \cdot \mathbf{b} & \mathbf{c} \cdot \mathbf{c} \end{vmatrix}} = \sqrt{\begin{vmatrix} 1 & 1/2 & 1/2 \\ 1/2 & 1/2 \\ 1/2 & 1/2 \\ 1/2 & 1/2 \\ 1/2 & 1/2 \\ 1/2 & 1/2 \end{vmatrix}} = \frac{1}{\sqrt{2}}$$

20.
$$\left| \overrightarrow{OP} \right| = \left| \hat{a} \cos t + \hat{b} \sin t \right|$$

$$= (\cos^{2}t + \sin^{2}t + 2\sin \cosh \hat{a} \cdot \hat{b})^{1/2}$$

$$= (1 + \sin^{2}t \hat{a} \cdot \hat{b})^{1/2}$$

$$\therefore \quad \left| \overrightarrow{OP} \right|_{\max} = (1 + \hat{a} \cdot \hat{b})^{1/2}, \quad \text{when } t = \frac{\pi}{4}$$

$$\text{Now } \hat{u} = \frac{\hat{a} + \hat{b}}{\sqrt{2!} \frac{|\hat{a} + \hat{b}|}{\sqrt{2!}}} = \frac{\hat{a} + \hat{b}}{|\hat{a} + \hat{b}|}$$

(b)
$$\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$$
 $\vec{b} = \hat{i} + 2\hat{j} + \hat{k}$
 $\vec{c} = \hat{i} + \hat{j} + \hat{k}$
 $\vec{v} = \lambda([\vec{a} \times \vec{b}) \times \vec{c}] = \lambda((\vec{a}.\vec{c})\vec{b} - (\vec{b}.\vec{c})\vec{a}$
 $\vec{v} = \lambda[4(\hat{i} + 2\hat{j} + \hat{k}) - 4(\hat{i} + \hat{j} + 2\hat{k})]$
 $\vec{v} = 4\lambda(\hat{j} - \hat{k})$
(c) $\vec{a} = -\hat{i} - \hat{k}$
 $\vec{b} = -\hat{i} + \hat{j}$
 $\vec{c} = \hat{i} + 2\hat{j} + 3\hat{k}$
 $\vec{r} \times \vec{b} = \vec{c} \times \vec{b}$
Taking cross product by \vec{a}
 $(\vec{r} \times \vec{b}) \times \vec{a} = (\vec{c} \times \vec{b}) \times \vec{a}$
 $\Rightarrow (\vec{r}.\vec{a})\vec{b} - (\vec{b}.\vec{a})\vec{r} = (\vec{c}.\vec{a})\vec{b}) - (\vec{b}.\vec{a})\vec{c}$
 $\Rightarrow 0 - \vec{r} = (-1 - 3)(-\hat{i} + \hat{j}) - (1)(\hat{i} + 2\hat{j} + 3\hat{k}))$
 $\vec{r} = -3\hat{i} + 6\hat{j} + 3\hat{k}$
 $\vec{r}.\vec{b} = 3 + 6 = 9$
27. (a) $|\vec{a} - \vec{b}|^2 + |\vec{b} - \vec{c}|^2 + |\vec{c} - \vec{a}|^2 = 9$
 $\Rightarrow 6 - 2\Sigma\vec{a}.\vec{b} = 9$
 $\Rightarrow 6 - 2\Sigma\vec{a}.\vec{b} = 9$
 $\Rightarrow \Sigma\vec{a}.\vec{b} = -\frac{3}{2} ...(1)$
 $|\vec{a} + \vec{b} + \vec{c}|^2 \ge 0$
 $\Sigma\vec{a}^2 + 2\Sigma\vec{a}.\vec{b} \ge 0$
 $\Sigma\vec{a}^2 + 2\Sigma\vec{a}.\vec{b} \ge 0$
 $\Sigma\vec{a} \cdot \vec{b} \ge -\frac{3}{2}$
for equality $|\vec{a} + \vec{b} + \vec{c}| = 0$
 $\Rightarrow \vec{a} + \vec{b} + \vec{c} = 0$
 $5\vec{b} + 5\vec{c} = -5\vec{a}$
 $2\vec{a} + 5\vec{b} + 5\vec{c} = -3\vec{a}$
 $|2\vec{a} + 5\vec{b} + 5\vec{c}| = 3|\vec{a}| = 3$
(b) $(\vec{a} + \vec{b}) \times (2\hat{i} + 3\hat{j} + 4\hat{k}) = 0$
 $\Rightarrow \vec{a} + \vec{b} = \lambda(2\hat{i} + 3\hat{j} + 4\hat{k}) = 0$

$$|\vec{a} + \vec{b}| = \sqrt{29} \implies |\lambda| = 1$$

$$\vec{a} + \vec{b} = (2\hat{1} + 3\hat{j} + 4\hat{k})$$

$$(\vec{a} + \vec{b})(-7\hat{1} + 2\hat{j} + 3\hat{k})$$

$$= -14 + 6 + 12 = 4$$

28. $\vec{a} + \vec{b} = \vec{PR}$ & $\vec{a} - \vec{b} = \vec{QS}$

$$\vec{a} = \frac{\vec{PR} + \vec{QS}}{2} & \vec{b} = \frac{\vec{PR} - \vec{QS}}{2}$$

$$\vec{a} = 2\hat{1} - \hat{j} - 3\hat{k} & \vec{b} = \hat{1} + 2\hat{j} + \hat{k}$$

Volume $= \begin{vmatrix} 2 & -1 & -3 \\ 1 & 2 & 1 \\ 1 & 2 & 3 \end{vmatrix}$
2(4) + (3 - 1) - 3(2 - 2)
8 + 2 = 10

29.

$$\vec{PR} = \vec{PR} = \vec{PR}$$

(it will generate $4 \times 6 = 24$ set of coplanar vectors) rest of the combination of 3 vectors will form three edges of a tetrahedron so they will be not coplanar. So number of non-coplanar vectors ${}^{8}C_{3} - 4.6 = 32$

30. (P) Given
$$[\vec{a} \ \vec{b} \ \vec{c}] = 2$$

 $[2(\vec{a} \times \vec{b}) \ 3(\vec{b} \times \vec{c}) \ (\vec{c} \times \vec{a})]$
 $= 6[\vec{a} \times \vec{b} \ \vec{b} \times \vec{c} \ \vec{c} \times \vec{a}] = 6[\vec{a} \ \vec{b} \ \vec{c}]^2 = 24$
(Q) Given $[\vec{a} \ \vec{b} \ \vec{c}] = 5$
 $[3(\vec{a} + \vec{b}) \ (\vec{b} + \vec{c}) \ 2(\vec{c} + \vec{a})]$
 $= 12[\vec{a} \ \vec{b} \ \vec{c}] = 60$
(R) Given $\frac{1}{2}|||\vec{a} \times \vec{b}|| = 20 \implies |||\vec{a} \times \vec{b}|| = 40$
 $\left|\frac{1}{2}(2\vec{a} + 3\vec{b}) \times (\vec{a} - \vec{b})\right| = \frac{1}{2} |0 + 3\vec{b} \times \vec{a} - 2\vec{a} \times \vec{b}||$
 $= \frac{1}{2}|||-5\vec{a} \times \vec{b}|| = \frac{5}{2}|||\vec{a} \times \vec{b}|| = \frac{5}{2}.40 = 100$
(S) Given $|||\vec{a} \times \vec{b}|| = 30$
 $|||(\vec{a} + \vec{b}) \times \vec{a}|| = |||0 + \vec{b} \times \vec{a}|| = 30$

33. Let the equation of the plane ABCD be ax + by + cz + d = 0, the point A" be (α, β, γ) and the height of the parallelopiped ABCDA'B'C'D' be h.

$$\Rightarrow \frac{|a\alpha + b\beta + c\gamma + d|}{\sqrt{a^2 + b^2 + c^2}} = 90\%.h$$

$$\Rightarrow a\alpha + b\beta + c\gamma + d = \pm 0.9h\sqrt{a^2 + b^2 + c^2}$$

$$\therefore \text{ locus is ax, + by + cz + d = \pm 0.9h\sqrt{a^2 + b^2 + c^2}}$$

- : locus of A" is a plane parallel to the plane ABCD.
- 36. As $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ cuts the coordinate axes at

A(a, 0, 0), B(0, b, 0), C(0, 0, c)and its distance from origin = 1

or
$$\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = 1$$
(1)

where P is centroid of Δ

$$P(x, y, z) = \left(\frac{a+0+0}{3}, \frac{0+b+0}{3}, \frac{0+0+c}{3}\right)$$

$$\Rightarrow x = \frac{a}{3}, y = \frac{b}{3}, z = \frac{c}{3} \dots (2)$$
Thus, from (1) and (2)
$$\frac{1}{9x^2} + \frac{1}{9y^2} + \frac{1}{9z^2} = 1$$

or
$$\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = 9 = K$$

∴ K=9

37. Equation of plane containing the line,

2x - y + z - 3 = 0 and 3x + y + z = 5 is $(2x-y+z-3)+\lambda(3x+y+z-5)=0$ $\Rightarrow (2+3\lambda)x + (\lambda-1)y + (\lambda+1)z - 3 - 5\lambda = 0$ Since distance of plane from (2, 1, -1) to above plane is $1/\sqrt{6}$

$$\therefore \quad \left| \frac{6\lambda + 4 + \lambda - 1 - \lambda - 1 - 3 - 5\lambda}{\sqrt{(3\lambda + 2)^2 + (\lambda - 1)^2 + (\lambda + 1)^2}} \right| = \frac{1}{\sqrt{6}}$$

$$\Rightarrow 6(\lambda - 1)^2 = 11\lambda^2 + 12\lambda + 6$$
$$\Rightarrow \lambda = 0, -\frac{24}{5}$$

$$\Rightarrow \lambda = 0, -\frac{2}{3}$$

 \Rightarrow $\vec{a}.\vec{k} = \gamma$

$$\therefore \quad \text{Equation of planes are,} \\ 2x-y+z-3=0 \text{ and } 62x+29y+19z-105=0$$

39. (A) Solving the two equations, say i.e.,

$$x + y = |a| \text{ and } ax - y = 1, \text{ we get}$$

$$x = \frac{|a| + 1}{a + 1} > 0 \text{ and } y = \frac{|a| - 1}{a + 1} > 0$$
when $a + 1 > 0$; we get $a > 1$

$$\therefore \quad a_0 = 1$$
(B) We have, $\vec{a} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$

Now, $\hat{\mathbf{k}} \times (\hat{\mathbf{k}} \times \vec{a}) = (\hat{\mathbf{k}}.\vec{a})\hat{\mathbf{k}} - (\hat{\mathbf{k}}.\hat{\mathbf{k}})\hat{\mathbf{a}}$ $=\gamma \hat{k} - (\alpha \hat{i} + \beta \hat{j} + \gamma \hat{k})$

$$\Rightarrow \alpha \hat{i} + \beta \hat{j} = 0$$

$$\Rightarrow \alpha = \beta = 0$$

Also $\alpha + \beta + \gamma = 2$

$$\Rightarrow \gamma = 2.$$

(C) $\left| \int_{0}^{1} (1 - y^{2}) dy \right| + \left| \int_{0}^{1} (y^{2} - 1) dy \right|$

$$= 2 \int_{0}^{1} (1 - y^{2}) dy = \frac{4}{3}$$

Also $\left| \int_{0}^{1} \sqrt{1 - x} dx \right| + \left| \int_{-1}^{0} \sqrt{1 + x} dx \right|$

$$= 2 \int_{0}^{1} \sqrt{1 - x} dx = \frac{4}{3}$$

(D) $\sin A \sin B \sin C + \cos A \cos B$ $\leq \sin A \sin B + \cos A \cos B = \cos(A - B)$ $\Rightarrow \cos (A - B) \geq 1$

$$\Rightarrow \cos(A-B) \ge 1$$
$$\Rightarrow \cos(A-B) = 1$$

$$\Rightarrow \cos(A - D)$$

$$\Rightarrow \sin C - 1.$$

40. (A)
$$\sum_{i=1}^{\infty} \tan^{-1} \left(\frac{1}{2i^2} \right) = t.$$

$$\Rightarrow \sum_{i=1}^{\infty} \tan^{-1} \left(\frac{2}{4i^2 - 1 + 1} \right)$$

$$= \sum_{i=1}^{\infty} \tan^{-1} \left\{ \frac{(2i+1) - (2i-1)}{1 + (2i-1)(2i+1)} \right\}$$

$$= (\tan^{-1}3 - \tan^{-1}1) + (\tan^{-1}5 - \tan^{-1}3) + \dots + \{(\tan^{-1}(2n+1) - \tan^{-1}(2n-1))\}$$

$$\therefore t = \lim_{n \to \infty} (\tan^{-1}(2n+1) - \tan^{-1}1)$$

$$=\lim_{n\to\infty}\tan^{-1}\left(\frac{2n}{1+2n+1}\right)=\frac{\pi}{4}$$

$$\therefore$$
 tan t = 1

(B) We have,
$$\cos \theta_1 = \frac{1 - \tan^2 \frac{\theta_1}{2}}{1 + \tan^2 \frac{\theta_1}{2}} = \frac{a}{b+c}$$

$$\Rightarrow \quad \tan^2 \left(\frac{\theta_1}{2}\right) = \frac{b+c-a}{b+c+a}$$
Also, $\cos \theta_3 = \frac{1 - \tan^2 \frac{\theta_3}{2}}{1 + \tan^2 \frac{\theta_3}{2}} = \frac{c}{a+b}$

$$\Rightarrow \tan^2 \frac{\theta_3}{2} = \frac{a+b-c}{a+b+c}$$

$$\Rightarrow \tan^2 \frac{\theta_1}{2} + \tan^2 \frac{\theta_3}{2}$$

$$= \frac{2b}{a+b+c} = \frac{2b}{3b} = \frac{2}{3}$$
{as, a, b, c are in AP

$$\Rightarrow 2b = a+c$$
}

(C) Line through (0, 1, 0) and perpendicular to plane x + 2y + 2z = 0 is given by

$$\frac{x-0}{1} = \frac{y-1}{2} = \frac{z-0}{2} = r$$

 \therefore P(r, 2r + 1, 2r) be the foot of perpendicular on the straight line then

$$r \cdot 1 + (2r+1) \cdot 2 + (2r) \cdot 2 = 0$$

⇒
$$r = -\frac{2}{9}$$

∴
$$P\left(-\frac{2}{9}, \frac{5}{9}, -\frac{4}{9}\right)$$

.: Required perpendicular distance

$$=\sqrt{\frac{4+25+16}{81}}=\frac{\sqrt{5}}{3}$$
 unit.

41. Let
$$\Delta = \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$$

$$= \frac{-1}{2} (a+b+c) [(a-b)^2 + (b-c)^2 + (c-a)^2]$$
(A) If $a+b+c \neq 0$ and $a^2+b^2+c^2 = ab+bc+ca$
 $\Rightarrow (a-b)^2 + (b-c)^2 + (c-a)^2 = 0$
 $\Rightarrow \Delta = 0$ and $a = b = c \neq 0$
 \Rightarrow the equation represent identical planes.
(B) $a+b+c=0$ and $a^2+b^2+c^2 \neq ab+bc+ca$

 $\Rightarrow \Delta = 0$

Since all the three planes pass through (1,1,1) So equation of the line of intersection of these

plane will be
$$\frac{x-0}{1-0} = \frac{y-0}{1-0} = \frac{z-0}{1-0}$$

MATHS FOR JEE MAIN & ADVANCED

(C) $a + b + c \neq 0$ and $a^2 + b^2 + c^2 \neq ab + bc + ca$

- $\Rightarrow \Delta \neq 0$
- \Rightarrow the equations represent planes meeting at only one point i.e. (0,0,0)
- (D) a+b+c=0 and $a^2+b^2+c^2=ab+bc+ca$
- \Rightarrow a = b = c = 0
- ⇒ the equations represent whole of the three dimensional space.

$$L_1 = 0, -4, -4$$

 $L_2 = 0, -2, -2$

$$L_3 = 0, 2, 2$$

So all the three lines are parallel Hence St.-I is false

Now
$$\Delta = \begin{vmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ 1 & -3 & 3 \end{vmatrix} = 0$$

so there will be no solution.

Hence St.-II is true.

Paragraph for Question 44 to 46

44.
$$L_1: \frac{x+1}{3} = \frac{y+2}{1} = \frac{z+1}{2}$$

 $L_2: \frac{x-2}{1} = \frac{y+2}{2} = \frac{z-3}{3}$

a vector perpendicular to $L_1 \& L_2$ will be

$$= \begin{vmatrix} i & j & k \\ 3 & 1 & 2 \\ 1 & 2 & 3 \end{vmatrix} = -i - 7j + 5k$$

Hence unit vector = $\frac{-i - 7j + 5k}{5\sqrt{3}}$

45. Shortest distance

$$= (3i-4k). \frac{(-i-7j+5k)}{5\sqrt{3}} = \frac{17}{5\sqrt{3}}$$

46. Eq. of plane -(x + 1) - 7(y + 2) + 5(z + 1) = 0x + 7y - 5z + 10 = 0

distance from (1, 1, 1) = $\frac{1+7-5+10}{5\sqrt{3}} = \frac{13}{5\sqrt{3}}$

47. Let DC's be $(\cos\alpha, \cos\alpha, \cos\alpha)$ $3\cos^2\alpha = 1$

$$\cos\alpha = \frac{1}{\sqrt{3}}$$

Line PQ is
$$\frac{x-2}{1/\sqrt{3}} = \frac{y+1}{1/\sqrt{3}} = \frac{z-2}{1/\sqrt{3}} = \lambda$$

Q $\left(\frac{\lambda}{\sqrt{3}} + 2, \frac{\lambda}{\sqrt{3}} - 1, \frac{\lambda}{\sqrt{3}} + 2\right)$

Putting in plane

$$\frac{2\lambda}{\sqrt{3}} + 4 + \frac{\lambda}{\sqrt{3}} - 1 + \frac{\lambda}{\sqrt{3}} + 2 = 9$$

$$\frac{4\lambda}{\sqrt{3}} = 4$$

 $\lambda = \sqrt{3}$
 $Q = (3, 0, 3)$
 $(PQ)^2 = 1 + 1 + 1$
 $PQ = \sqrt{3}$
48. Let Q be $(1 - 3\mu, \mu - 1, 5\mu + 2)$
 $\Rightarrow \overline{PQ} = (-3\mu - 2)\hat{1} + (\mu - 3)\hat{j} + (5\mu - 4)\hat{k}$
 $\Rightarrow \overline{PQ} \cdot \hat{n} = 0$ (where \hat{n} is \perp^{er} to plane)
 $\Rightarrow (-3\mu - 2)1 + (\mu - 3) \cdot (-4) + (5\mu - 4)3 = 0$
 $\Rightarrow \mu = \frac{1}{4}$.
49. (A) $f(x) = xe^{\sin x} - \cos x$
 $f(0) = -1$
 $f(\pi/2) = \frac{\pi}{2}e$
 $f'(x) = xe^{\sin x} \cos x + e^{\sin x} > 0$
(B) $\begin{vmatrix} k & 4 & 1 \\ 4 & k & 2 \\ 2 & 2 & 1 \end{vmatrix} = 0$
 $\Rightarrow k(k - 4) - 4c + 8 - 2k = 0$
 $\Rightarrow k^2 - 4k + 8 - 2k = 0$
 $\Rightarrow k^2 - 6k + 8 = 0$

$$\Rightarrow$$
 k=2,4

(C) |x-1|+|x-2|+|x+1|+|x+2|=4k

modulus denotes the distance of x from

-2, -1, 1, 2

 $-3 - 2 - 1 \quad 0 \quad 1 \quad 2 \quad 3$ 4k = 8, 12, 16, 20

:. k = 2, 3, 4, 5.(D) $\frac{dy}{y+1} = dx$ $ln(y+1) = ke^{x}$ $y+1 = ke^{x}$

y+1=2=k $y+1=2e^{x}$ $y=(2e^{x}-1)$ $y(\ln 2)=3$.

50. Normal vector to the plane containing the

lines
$$\frac{x}{3} = \frac{y}{4} = \frac{z}{2}$$
 and $\frac{x}{4} = \frac{y}{2} = \frac{z}{3}$ is
 $\hat{n} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 4 & 2 \\ 4 & 2 & 3 \end{vmatrix} = 8\hat{i} - \hat{j} - 10\hat{k}$

Let direction ratios of required plane be a, b, c. Now 8a - b - 10c = 0and 2a + 3b + 4c = 0

(: plane contains the line $\frac{x}{2} = \frac{y}{3} = \frac{z}{4}$)

$$\Rightarrow \quad \frac{a}{1} = \frac{b}{-2} = \frac{c}{1}$$

- \Rightarrow equation of plane is x 2y + z = d
- : plane contains the line, which passes through origin, hence origin lies on a plane.
- \Rightarrow equation of required plane is x 2y + z = 0.

51. ::
$$\left|\frac{1-4-2-\alpha}{3}\right| = 5$$

 $\Rightarrow \alpha = 10,-20$
 $\Rightarrow \alpha = 10 :: \alpha > 0$
Now, let $Q(\alpha,\beta,\gamma)$ be the

foot of perpendicular from P to the plane x + 2y - 2z = 10Equation of line PQ is

$$\frac{x-1}{1} = \frac{y+2}{2} = \frac{z-1}{-2} = r \quad \text{(Let)}$$

$$\Rightarrow \alpha = r + 1, \ \beta = 2r - 2 \text{ and } \gamma = -2r + 1$$

$$\therefore \quad Q \text{ lies in the plane}$$

$$\therefore \quad (r+1) + 2(2r-2) - 2(-2r+1) = 10$$

$$\Rightarrow r = \frac{5}{3}$$

foot of the perpendicular is $\left(\frac{3}{3}, \frac{7}{3}, -\frac{7}{3}\right)$

52. Plane containing the line Direction ratio's of normal to the plane :

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{vmatrix} = -\hat{i} + 2\hat{j} - \hat{k}$$

Hence equation of plane 1(x-1) - 2(y-2) + 1(z-3) = 0i.e. x - 2y + z = 0As given plane must be parallel $\Rightarrow A = 1$ & distance between the planes $\left| \frac{d-0}{\sqrt{1^2 + 2^2 + 1^2}} \right| = \sqrt{6}$

|d| = 6

 \Rightarrow

Ξ

=

53. (A)
$$P(\lambda + 2, -2\lambda + 1, \lambda - 1)$$

$$Q\left(2k + \frac{8}{3}, -k - 3, k + 1\right)$$

$$3\lambda + 6 = a(6k + 8) \qquad \dots \dots (i)$$

$$-2\lambda + 1 = a(-k - 3) \qquad \dots \dots (ii)$$

$$2\lambda - 2 = 2a(k + 1) \qquad \dots \dots (iii)$$

$$(ii) + (iii) \implies -1 = ak - a$$

$$k = \frac{a-1}{a} \qquad \dots \dots (iv)$$

Put the value of k in equation (iii)

$$\Rightarrow \lambda = 2a \qquad \dots (v)$$

Put the values of $\lambda \& k$ in equation (i)

$$6a + 6 = a\left(\frac{6a - 6}{a} + 8\right) \implies 6 = 6a - 6 + 8a$$
$$a = \frac{3}{2}$$

Put the value of a in equation (iv) & (v)

$$k = \frac{3}{\frac{2}{2}} - \frac{1}{3} \qquad \& \quad \lambda = 3$$

$$P(5, -5, 2) \& Q\left(\frac{10}{3}, \frac{-10}{3}, \frac{4}{3}\right)$$

$$d = \sqrt{\left(5 - \frac{10}{3}\right)^2 + \left(5 - \frac{10}{3}\right)^2 + \left(\frac{2}{3}\right)^2}$$

$$= \sqrt{\frac{25}{9} + \frac{25}{9} + \frac{4}{9}}$$

$$\Rightarrow d = \sqrt{6} \qquad \Rightarrow \qquad d^2 = 6$$
(B) $\tan^{-1}(x + 3) - \tan^{-1}(x - 3) = \tan^{-1}\left(\frac{3}{4}\right)$

$$\tan^{-1}\left(\frac{(x + 3) - (x - 3)}{1 + (x^2 - 9)}\right) = \tan^{-1}\left(\frac{3}{4}\right)$$

$$\Rightarrow 1 + x^2 - 9 = 8 \implies x^2 = 16$$

$$\Rightarrow x = \pm 4$$
(C) $\mu b^2 + 4 \vec{b}.\vec{c} = 0$

$$b^2 - \vec{a}.\vec{c} + \vec{b}.\vec{c} = 0$$

$$b^2 - (\mu \vec{b} + 4 \vec{c}).\vec{c} + \vec{b}.\vec{c}$$

$$= b^2 + \vec{b}.\vec{c}(1 - \mu) - 4c^2 = 0$$

$$b^2 - \frac{\mu}{4}b^2(1 - \mu) = 4c^2$$

$$b^2(4 - \mu + \mu^2) = 16c^2 \qquad(i)$$

$$4b^2 + 8\vec{b}.\vec{c} + 4c^2 = b^2 + a^2$$

$$3b^2 - 2\mu b^2 + 4c^2 = (\mu \vec{b} + 4 \vec{c})^2$$

$$3b^2 - 2\mu b^2 + 4c^2 = (\mu \vec{b} + 4 \vec{c})^2$$

$$b^2(3 - 2\mu - \mu^2) = 12c^2 - 2\mu^2 \times b^2$$

$$b^2(3 - 2\mu + \mu^2) = 12c^2 \qquad(ii)$$

$$\frac{4 - \mu + \mu^2}{3 - 2\mu + \mu^2} = \frac{4}{3}$$

$$12 - 3\mu + 3\mu^2 = 12 - 8\mu + 4\mu^2$$

$$\mu^2 - 5\mu = 0$$

$$\mu = 0,5$$

(D)
$$I = \frac{2}{\pi} \int_{-\pi}^{\pi} \frac{\sin \frac{9x}{2}}{\sin \frac{x}{2}} dx$$

 $I = \frac{4}{\pi} \int_{0}^{\pi} \frac{\sin \frac{9x}{2}}{\sin \frac{x}{2}} dx$ (i)
 $I = \frac{4}{\pi} \int_{0}^{\pi} \frac{\cos \frac{9x}{2}}{\cos \frac{x}{2}} dx$ (ii)
(i) + (ii)
 $I = \frac{2}{\pi} \int_{0}^{\pi} \frac{\sin 5x}{\sin \frac{x}{2}} \cos \frac{\pi}{2} dx = \frac{4}{\pi} \int_{0}^{\pi} \frac{\sin 5x}{\sin x} dx$
 $f(x) = f(\pi - x)$
 $I = \frac{8}{\pi} \int_{0}^{\pi/2} \frac{\cos 5x}{\cos x} dx$ (i)
 $I = \frac{8}{\pi} \int_{0}^{\pi/2} \frac{\sin 6x}{\cos x} dx$ (ii)
(i) + (ii)
 $I = \frac{4}{\pi} \int_{0}^{\pi/2} \frac{\sin 6x}{\sin 2x} dx = \frac{8}{\pi} \int_{0}^{\pi/2} (3 - 4 \sin^{2} 2x) dx$
 $= \frac{8}{\pi} \int_{0}^{\pi/2} 3 - 2(1 - \cos 2x) dx$
 $= \frac{8}{\pi} \int_{0}^{\pi/2} (1 + 2 \cos 2x) dx = \frac{8}{\pi} \times \frac{\pi}{2} = 4$
(a) Line QR : $\frac{x - 2}{1} = \frac{y - 3}{4} = \frac{z - 5}{1} = \lambda$
Any point on line QR :
 $(\lambda + 2, 4\lambda + 3, \lambda + 5)$
 \therefore Point of intersection with plane :
 $5\lambda + 10 - 16\lambda - 12 - \lambda - 5 = 1$

54.

$$\Rightarrow \lambda = -\frac{2}{3}$$

$$\therefore P\left(\frac{4}{3}, \frac{1}{3}, \frac{13}{3}\right)$$

Also

$$T(2, 1, 4)$$

$$Q = TR = \sqrt{5}$$

$$\Rightarrow S \text{ is the mid-point of OR}$$

$$\Rightarrow$$
 S $\left(\frac{3}{2}, 1, \frac{9}{2}\right)$ \Rightarrow PS = $\frac{1}{\sqrt{2}}$ units

- (b) Let required plane be $(x+2y+3z-2)+\lambda(x-y+z-3)=0$
- : plane is at a distance $\frac{2}{\sqrt{3}}$ from the point (3,1,-1).

$$\Rightarrow \left| \frac{(3+2-3-2)+\lambda(3-1-1-3)}{\sqrt{(1+\lambda)^2+(2-\lambda)^2+(3+\lambda)^2}} \right| = \frac{2}{\sqrt{3}}$$

 $\Rightarrow \lambda^{2} = \frac{(1+\lambda)^{2} + (2-\lambda)^{2} + (3+\lambda)^{2}}{3}$ $\Rightarrow 3\lambda^{2} = 3\lambda^{2} + 2\lambda - 4\lambda + 6\lambda + 14$ $\Rightarrow \lambda = -\frac{7}{2}$

 \therefore required plane is (x + 2y + 3z - 2)

$$+\left(-\frac{7}{2}\right)\left(x-y+z-3\right)=0$$

$$\Rightarrow$$
 5x-11y+z=17

(c) (1,-1,0); (-1,-1,0) For coplanarity of lines

$$\begin{vmatrix} 2 & 0 & 0 \\ 2 & k & 2 \\ 5 & 2 & k \end{vmatrix} = 0 \implies 2(k^2 - 4) = 0$$

$$\Rightarrow k = \pm 2$$

for k = 2
Normal vector $\vec{n} = \hat{j} - \hat{k}$

$$\therefore \text{ Required plane : } y - z = \lambda$$

$$\because \text{ Passes through } (1, -1, 0)$$

$$\Rightarrow \lambda = -1$$

$$\therefore y + z = -1$$

$$\therefore y + z = -1$$

55.
$$\frac{\alpha - 2t + 2}{1} = \frac{\beta + t + 1}{1} = \frac{\gamma - 3t}{1} = k$$

$$\frac{(2t - 2, -t - 1, 3t)}{(\alpha, \beta, \gamma)} x + y + z = 3$$

$$\alpha = k + 2t - 2$$

$$\beta = k - t - 1$$

$$\gamma = k + 3t$$

$$\alpha + \beta + \gamma = 3$$

$$k = \frac{6 - 4t}{3}$$

$$\alpha = \frac{6 - 4t}{3} + 2t - 2 = \frac{2t}{3}$$

$$\beta = \frac{6 - 4t}{3} - t - 1 = \frac{3 - 7t}{3}$$

$$\gamma = \frac{6 - 4t}{3} + 3t = \frac{5t + 6}{3}$$

$$\Rightarrow \frac{3\alpha}{2} = \frac{3\beta - 3}{-7} = \frac{3\gamma - 6}{5}$$

$$\Rightarrow \frac{x}{2} = \frac{y - 3}{-7} = \frac{z - 2}{5}$$

56. ℓ_1 : $\vec{\mathbf{r}} = (3, -1, 4) + (1, 2, 2)t$ ℓ_2 : $\vec{\mathbf{r}} = (3, 3, 2) + (2, 2, 1)s$ vector perpendicular to ℓ_1 and ℓ_2 :

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 2 \\ 2 & 2 & 1 \end{vmatrix} = -2\hat{i} + 3\hat{j} - 2\hat{k}$$

- :. Equation of line ℓ : $\vec{r} = 0 + (-2, 3, -2)\lambda$ Point of intersection of ℓ_1 and ℓ :
 - $\begin{aligned} 3 &+ t &= -2\lambda \\ -1 &+ 2t &= 3\lambda. \\ 4 &+ 2t &= -2\lambda. \end{aligned}$

On solving we get $\lambda = -1$, t = -1 \therefore Point of intersection of $\ell_1 \& \ell$: P(2, -3, 2) A point on ℓ_2 at distance of $\sqrt{17}$ from P : $\Rightarrow (1 + 2s)^2 + (6 + 2s)^2 + s^2 = 17$ $\Rightarrow s = -\frac{10}{9}; s = -2$

for above s, point will be (B), (D)

57.
$$L_1: \frac{x-5}{0} = \frac{y}{3-\alpha} = \frac{z}{-2}$$

 $L_2: \frac{x-\alpha}{0} = \frac{y}{-1} = \frac{z}{2-\alpha}$

for lines to be coplanar

$$\begin{vmatrix} 5 - \alpha & 0 & 0 \\ 0 & 3 - \alpha & -2 \\ 0 & -1 & 2 - \alpha \end{vmatrix} = 0$$

$$\Rightarrow (5 - \alpha) ((3 - \alpha) (2 - \alpha) - 2) = 0$$

$$\Rightarrow (5 - \alpha)(\alpha^2 - 5\alpha + 4) = 0$$

$$\Rightarrow \alpha = 1, 4, 5$$

58. For point of intersection of L_1 and L_2

$$\begin{cases} 2\lambda + 1 = \mu + 4 \\ -\lambda = \mu - 3 \\ \lambda - 3 = 2\mu - 3 \end{cases} \implies \mu = 1$$

⇒ point of intersction is (5, -2, -1)Now, vector normal to the plane is

$$\vec{n}_1 \times \vec{n}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 7 & 1 & 2 \\ 3 & 5 & -6 \end{vmatrix} = -16(\hat{i} - 3\hat{j} - 2\hat{k})$$

Let equation of required plane be

- $x 3y 2z = \alpha$ it passes through (5, -2, -1)
- $\therefore \alpha = 13$
- \Rightarrow equation of plane is x 3y 2z = 13

69. Direction of OQ \equiv (3, 3, 0)

Direction of OS
$$\equiv \left(\frac{3}{2}, \frac{3}{2}, 3\right)$$

$$\cos \theta = \frac{3 \times \frac{3}{2} + 3 \times \frac{3}{2}}{\sqrt{3^2 + 3^2} \sqrt{\left(\frac{3}{2}\right)^2 + \left(\frac{3}{2}\right)^2 + 3^2}}$$
$$= \frac{1}{\sqrt{3}}$$

:. Hence (A) wrong. For option B

Normal of plane
$$\overrightarrow{OQ} \times \overrightarrow{OS} = \pm \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 3 & 0 \\ \frac{3}{2} & \frac{3}{2} & 3 \end{vmatrix}$$
$$= \pm (9\hat{i} - 9\hat{j})$$

Equation of plane passing origin is $r.\eta = 0$

$$\therefore \quad \left(x\hat{i} + y\hat{j} + z\hat{k}\right) \cdot \left(9\hat{i} - 9\hat{j}\right) = 0$$

 $\Rightarrow x-y=0$ For (C) Perpendicular from P(3, 0, 0) to x-y=0

$$= \left| \frac{3-0}{\sqrt{1^2 + 1^2}} \right| = \frac{3}{\sqrt{2}}$$

Equation of RS is $\frac{x-0}{\frac{3}{2}-0} = \frac{y-3}{\frac{3}{2}-3} = \frac{z-0}{3-0}$

$$\frac{x}{\frac{3}{2}} = \frac{y-3}{-\frac{3}{2}} = \frac{z}{3}$$

Angle between line RS and OR

VECTOR AND 3-DIMENSIONAL

$$\cos \theta = \frac{0 + 3\left(-\frac{3}{2}\right) + 0}{\sqrt{\left(\frac{3}{2}\right)^2 + \left(\frac{3}{2}\right)^2 + 3^2 \sqrt{3^2}}} = \frac{1}{\sqrt{6}}$$

Distance = OT = OR sin θ

$$= 3\sqrt{1-\frac{1}{6}} = 3\sqrt{\frac{5}{6}} = \sqrt{\frac{15}{2}}$$

70. Let image (x, y, z)

$$\frac{x-3}{1} = \frac{y-1}{-1} = \frac{z-7}{1} = -2\left(\frac{3-1+7-3}{1^2+1^2+1^2}\right)$$
P(x, y, z)=(-1, 5, 3)
Plane passing through P(-1, 5, 3) is
a(x+1)+b(y-5)+c(z-3)=0(i)
Given (0, 0, 0) satisfy

$$\Rightarrow a-5b-3c=0 \qquad \dots (ii)$$

and $a \times 1 + b \times 2 + c \times 1 = 0$

$$a + 2b + c = 0$$
(iii)
from (ii) and (iii) $\frac{a}{b} = \frac{b}{c} = \frac{c}{c}$

put in (i)
$$(x + 1) - 4(y - 5) + 7(z - 3) = 0$$

 $x - 4y + 7z = 0$

71.

Given condition $\,\hat{\boldsymbol{\omega}}$ is perpendicular to $\,\hat{\boldsymbol{u}} \times \hat{\boldsymbol{v}}$

As $|\hat{\mathbf{u}} \times \hat{\mathbf{v}}| = 1$ and angle between u and v can change

 \Rightarrow infinitely many choice for such v.

w is ⊥**ū**

$$\Rightarrow u_1 + u_2 + u_3 = 0$$

If \vec{u} in xy plane

$$\Rightarrow$$
 u₃=0.

$$\Rightarrow$$
 $|\mathbf{u}_1| = |\mathbf{u}_2|$

MOCK TEST (VECTOR)

1.
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}^2 = [\vec{a} \ \vec{b} \ \vec{c}]^2$$

= $((\vec{a} \times \vec{b}) \cdot \vec{c})^2 = (ab\sin\theta \ \vec{c} \cdot \vec{c})^2 = \frac{a^2b^2}{4} = \frac{1}{4}$
 $(a_1^2 + a_2^2 + a_3^2) \ (b_1^2 + b_2^2 + b_3^2)$

2. (D)

Volume of the parallelopiped formed by \vec{a}' , \vec{b}' , \vec{c}' is 4

:. Volume of the parallelopiped formed by \vec{a} , \vec{b} , \vec{c} is $\frac{1}{4}$

$$\vec{\mathbf{b}} \times \vec{\mathbf{c}} = \frac{(\vec{\mathbf{c}}' \times \vec{\mathbf{a}}') \times \vec{\mathbf{c}}}{4} = \frac{1}{4} \vec{\mathbf{a}}'$$
$$\therefore \quad |\vec{\mathbf{b}} \times \vec{\mathbf{c}}| = \frac{\sqrt{2}}{4} = \frac{1}{2\sqrt{2}}$$

$$\therefore$$
 length of altitude = $\frac{1}{4} \times 2\sqrt{2} = \frac{1}{\sqrt{2}}$

3. A vector along the angle bisector

$$= \hat{a} + \hat{b} = \frac{(-4\hat{i} + 3\hat{k})}{5} + \frac{(14\hat{i} + 2\hat{j} - 5\hat{k})}{15}$$
$$= \frac{-12\hat{i} + 9\hat{k} + 14\hat{i} + 2\hat{j} - 5\hat{k}}{15} = \frac{2(\hat{i} + \hat{j} + 2\hat{k})}{15}$$
$$\therefore \quad \vec{d} = \hat{i} + \hat{j} + 2\hat{k}$$

4. (C) $\vec{r} \cdot \vec{a} = 0$, $|\vec{r} \times \vec{b}| = |\vec{r}| |\vec{b}|$ and $|\vec{r} \times \vec{c}| = |\vec{r}| |\vec{c}|$ $\Rightarrow \vec{r} \perp \vec{a}, \vec{b}, \vec{c}$ $\therefore \vec{a}, \vec{b}, \vec{c}$ are coplaner. $\therefore [\vec{a} \ \vec{b} \ \vec{c}] = 0$

5.
$$|\vec{AC}|^2 = |2\vec{AB}|^2$$

 $\Rightarrow |4\hat{i} + (4x - 2)\hat{j} + 2\hat{k}|^2 = 4 |(\hat{i} + x\hat{j} + 3\hat{k})|^2$
 $\Rightarrow 16 + (4x - 2)^2 + 4 = 4 (1 + x^2 + 9)$
 $\Rightarrow 20 + 16x^2 + 4 - 16x = 4 + 4x^2 + 36$
 $\Rightarrow 12x^2 - 16x - 16 = 0$
 $\Rightarrow 3x^2 - 4x - 4 = 0$

$$(2\hat{k}) A$$

$$\overline{OE} = 3\sqrt{2}\hat{i} + \sqrt{6}\hat{j}$$

$$\cos \theta = \frac{12}{\sqrt{12}\sqrt{24}}$$

$$\cos \theta = \frac{1}{\sqrt{2}}$$

Let
$$\vec{r} = \ell(\vec{b} \times \vec{c}) + m(\vec{c} \times \vec{a}) + n(\vec{a} \times \vec{b})$$

 $\vec{r} \cdot \vec{a} = \ell [\vec{a} \ \vec{b} \ \vec{c}]$
 $\Rightarrow \ell = 1$
similarly $m = 2, n = 3$
 $\therefore \vec{r} = (\vec{b} \times \vec{c}) + 2(\vec{c} \times \vec{a}) + 3(\vec{a} \times \vec{b})$
9. $\sum_{i=1}^{n-1} \overrightarrow{OA}_i \times \overrightarrow{OA}_2 + \overrightarrow{OA}_2 \times \overrightarrow{OA}_3 \dots + \overrightarrow{OA}_{n-1} \times \overrightarrow{OA}_n$
 $= (n-1) (\overrightarrow{OA}_1 \times \overrightarrow{OA}_2)$
 $= (1-n) (\overrightarrow{OA}_2 \times \overrightarrow{OA}_1)$
10. (B)
 $S_1: \vec{a}$ and $\lambda \vec{a}$ are parallel vectors.
 $S_2: \vec{a} \cdot \vec{b}$ may take negative values also.
 $S_3: |(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})| = |-(\vec{a} \times \vec{b}) + (\vec{b} \times \vec{a})| = 2 |\vec{b} \times \vec{a}|$
 $S_4: (\vec{a} \times \vec{b})^2 = (\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{b}) = \vec{a} \cdot (\vec{b} \times (\vec{a} \times \vec{b}))$
 $= \vec{a} \cdot ((\vec{b} \cdot \vec{b}) - (\vec{a} \cdot \vec{b}) (\vec{b} \cdot \vec{a})$
11. $3\vec{a} - 2\vec{b} + \vec{c} - 2\vec{d} = 0$
sum of coefficient = 0 $\Rightarrow \vec{a}, \vec{b}, \vec{c}, \vec{d}$ are coplanar
 $A \xrightarrow{1} 1 \xrightarrow{1} 3 \xrightarrow{1} C$
Also $2\vec{b} + 2\vec{d} = 3\vec{a} + \vec{c}$
 $\Rightarrow \frac{\vec{b} + \vec{d}}{2} = \frac{3\vec{a} + \vec{c}}{4}$
12. (A, B, D)
 $(\lambda - 1) (\vec{a}_1 - \vec{a}_2) + \mu (\vec{a}_2 + \vec{a}_3) + \gamma (\vec{a}_3 + \vec{a}_4 - 2\vec{a}_2) + \vec{a}_3 + \delta\vec{a}_4 = \vec{0}$
i.e. $(\lambda - 1) \vec{a}_1 + (1 - \lambda + \mu - 2\gamma) \vec{a}_2 + (\mu + \gamma + 1) \vec{a}_3 + (\gamma + \delta) \vec{a}_4 = \vec{0}$
Since $\vec{a}_1, \vec{a}_2, \vec{a}_3, \vec{a}_4$ are linearly independent

8. **(B)**

$$\therefore \quad \lambda - 1 = 0, \ 1 - \lambda + \mu - 2\gamma = 0, \ \mu + \gamma + 1 = 0 \text{ and } \gamma + \delta = 0$$

i.e.
$$\lambda = 1, \ \mu = 2\gamma, \ \mu + \gamma + 1 = 0, \ \gamma + \delta = 0$$

i.e.
$$\lambda = 1, \ \mu = -\frac{2}{3}, \ \gamma = -\frac{1}{3}, \ \delta = \frac{1}{3}$$

13. $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c} = (xy + yz + zx)$ $\{(y-z)\hat{i} + (z-x)\hat{j} + (x-y)\hat{k}\}$ \therefore all the option are correct 14. (A, C, D) (A) $\vec{a} \times [\vec{a} \times (\vec{a} \times \vec{b})] = \vec{a} \times [(\vec{a} \cdot \vec{b})\vec{a} - (\vec{a} \cdot \vec{a})\vec{b}]$ $= -(\vec{a} \cdot \vec{a}) (\vec{a} \times \vec{b})$ \therefore (A) is not correct (B) $\vec{v} \cdot \vec{a} = \vec{0} \implies \vec{v} = \vec{0} \text{ or } \vec{v} \perp \vec{a}$ $\vec{v} \cdot \vec{b} = \vec{0} \implies \vec{v} = \vec{0} \text{ or } \vec{v} \perp \vec{b}$ $\vec{v} \cdot \vec{c} = \vec{0} \implies \vec{v} = \vec{0} \text{ or } \vec{v} \perp \vec{c}$

- $\vec{v} = \vec{0} \quad \text{or} \quad \vec{v} \perp \vec{a}, \vec{b}, \vec{c}$
- $\vec{v} = \vec{0}$
- (C) $(\vec{a} \times \vec{b}) . (\vec{c} \times \vec{d}) = \vec{0}$ \therefore statement is incorrect
- (D) $\vec{a} \times \vec{b}' + \vec{b}.\vec{c}' + \vec{c}.\vec{a}' = 0.$ (Property of reciprocal system)
- **(D)** is incorrect
- 15. Since \vec{a} makes obtuse angle with z-axis

$$\therefore \quad \frac{\sin 2\alpha}{\sqrt{1+9+\sin^2 2\alpha}} < 0 \qquad \text{i.e. } \sin 2\alpha < 0$$

$$\therefore \quad \text{either } \frac{\pi}{2} < \alpha < \pi \text{ or } \frac{3\pi}{2} < \alpha < 2\pi \qquad \dots (i)$$

since b and \vec{c} are orthogonal

 $\therefore \tan^{2}\alpha - \tan \alpha - 6 = 0$ i.e. $\tan \alpha = 3, -2$ (ii) from (i) and (ii), we get $\tan \alpha = -2$ $\therefore \alpha = \pi - \tan^{-1} 2 \quad \text{or } \alpha = 2\pi - \tan^{-1} 2$

16. (B)

Both the statements are correct but statement-2 is not correct explanation of statement-1 because vectors

 \vec{b} , \vec{c} , \vec{d} in statement–1 are coplanar.

17. **(D)**

Statement-1 is false and Statement-2 is true.

Since $\vec{a} \cdot (\vec{b} \times \vec{c}) = 0$

 $\vec{a}, \vec{b}, \vec{c}$ are coplanar

18. (B)

Statement-I is correct and Statement – II is correct but Statement – II is not correct explanation of Statement – I

19. (A)

$$3\vec{a} - 2\vec{b} + 5\vec{c} - 6\vec{d} = (2\vec{a} - 2\vec{b}) + (-5\vec{a} + 5\vec{c}) + (6\vec{a} - 6\vec{d})$$
$$= -2\vec{A}\vec{B} + 5\vec{A}\vec{C} - 6\vec{A}\vec{D} = \vec{0}$$

 \therefore \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{AD} are linearly dependent, Hence by statement-2, the statement-1 is true.

20. (D)

21.

(A)

Statement - 1
$$\vec{b}_1 = \left(\frac{(2\hat{i}+\hat{j}-3\hat{k}).(3\hat{i}-\hat{j})}{|3\hat{i}-\hat{j}|}\right) \frac{3\hat{i}-\hat{j}}{|3\hat{i}-\hat{j}|}$$

$$= \frac{3\hat{i}}{2} - \frac{\hat{j}}{2}$$

$$\therefore \quad \vec{b}_2 = 2\hat{i}+\hat{j}-3\hat{k}-\frac{3\hat{i}}{2}+\frac{\hat{j}}{2} = \frac{\hat{i}}{2}+\frac{3\hat{j}}{2}-3\hat{k}$$

$$\therefore \quad \text{statement is false}$$
Statement - 2 is true
(A) \rightarrow (t), (B) \rightarrow (p), (C) \rightarrow (q), (D) \rightarrow (s)
 $\vec{a}+\vec{b}=\hat{j}$ and $2\vec{a}-\vec{b}=3\hat{i}+\frac{\hat{j}}{2}$

$$\therefore \quad \vec{a}=\hat{i}+\frac{\hat{j}}{2}, \ \vec{b}=-\hat{i}+\frac{\hat{j}}{2}$$

$$\therefore \quad \cos \theta = -\frac{3}{5}$$
(B) $|\vec{a} + \vec{b} + \vec{c}| = \sqrt{6}$

$$\Rightarrow \quad \vec{a}^2 + \vec{b}^2 + \vec{c}^2 + 2\vec{a} \cdot \vec{b} + 2\vec{b} \cdot \vec{c} + 2\vec{c} \cdot \vec{a} = 6$$

$$\therefore \quad |\vec{a}| = 1$$

(C)
$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 1 & -2 \\ 1 & -3 & 4 \end{vmatrix} = -2\hat{i} - 14\hat{j} - 10\hat{k}$$

 \therefore Area = $5\sqrt{3}$

MATHS FOR JEE MAIN & ADVANCED

(**D**)
$$\vec{a}$$
 is perpendicular $\vec{b} + \vec{c} \Rightarrow \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = 0$ (i)

 \vec{b} is perpendicular $\vec{a} + \vec{c}$

 $\Rightarrow \vec{b} \cdot \vec{c} + \vec{b} \cdot \vec{c} = 0 \qquad \dots (ii)$

 \vec{c} is perpendicular $\vec{a} + \vec{b}$

 $\Rightarrow \vec{c} \cdot \vec{a} + \vec{c} \cdot \vec{b} = 0 \qquad \dots (iii)$

from (i), (ii) and (iii) we get $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$

- $\vec{a} + \vec{b} + \vec{c} = 7$
- 22. (A) \rightarrow (s), (B) \rightarrow (p), (C) \rightarrow (r), (D) \rightarrow (t)
- (A) $\overrightarrow{OA} = \hat{i} + 2\hat{j} + 3\hat{k}$, $\overrightarrow{OB} = -2\hat{i} + \hat{j} 4\hat{k}$, $\overrightarrow{OC} = 3\hat{i} + 4\hat{j} - 2\hat{k}$

Area =
$$\frac{1}{2} | \overrightarrow{AB} \times \overrightarrow{AC} | = \frac{\sqrt{1218}}{2}$$

(B) $((\vec{a} \times \vec{b}) \times \vec{c}) \cdot \vec{d} + ((\vec{b} \times \vec{c}) \times \vec{a}) \cdot \vec{d} + ((\vec{c} \times \vec{a}) \times \vec{b}) \cdot \vec{d} = 0$

taking P as origin position vector of Q, R and S are Pî, Pî + Pĵ, Pĵ equations of PQ' and RS are $\vec{r} = t (\hat{i} + \hat{j} + \sqrt{2}\hat{k})$, $\vec{r} = P\hat{i} + P\hat{j} + \lambda\hat{i}$ \therefore shortest distance $= \frac{2P}{\sqrt{6}}$ \therefore k=2 (D) $(\vec{a} \cdot \vec{c}) (\vec{b} \cdot \vec{d}) - (\vec{b} \cdot \vec{c}) (\vec{a} \cdot \vec{d}) = 21$ 23. 1. (B)

$$\vec{a}_{1} = \left[(2\hat{i} + 3\hat{j} - 6\hat{k}) \cdot \frac{(2\hat{i} - 3\hat{j} + 6\hat{k})}{7} \right] \frac{2\hat{i} - 3\hat{j} + 6\hat{k}}{7}$$
$$= \frac{-41}{49} (2\hat{i} - 3\hat{j} + 6\hat{k})$$

$$\vec{a}_{2} = \frac{-41}{49} \left((2\hat{i} - 3\hat{j} + 6\hat{k}) \cdot \frac{(-2\hat{i} + 3\hat{j} + 6\hat{k})}{7} \right)$$
$$\frac{(-2\hat{i} + 3\hat{j} + 6\hat{k})}{7}$$
$$= \frac{-41}{(49)^{2}} (-4 - 9 + 36) (-2\hat{i} + 3\hat{j} + 6\hat{k})$$
$$= \frac{943}{49^{2}} (2\hat{i} - 3\hat{j} - 6\hat{k})$$

2. (A)

$$\vec{a}_1 \cdot \vec{b} = \frac{-41}{49} (2\hat{i} - 3\hat{j} + 6\hat{k}) \cdot (2\hat{i} - 3\hat{j} + 6\hat{k}) = -41$$

3. (C)

 \vec{a} , \vec{a}_1 , \vec{b} are coplanar, because \vec{a}_1 , \vec{b} are collinear.

24.
$$\overrightarrow{BL} = \frac{1}{3} \overrightarrow{b}$$

 $\therefore \overrightarrow{AL} = \overrightarrow{a} + \frac{1}{3} \overrightarrow{b}$

Let $\overrightarrow{AP} = \lambda \overrightarrow{AL}$ and P divides DB in the ratio $\mu : 1 - \mu$ $D = \frac{1 : 2}{\sqrt{M}} C$

Then $\overrightarrow{AP} = \lambda \ \overrightarrow{a} + \frac{\lambda}{3} \ \overrightarrow{b}$ (i)

Also
$$\overrightarrow{AP} = \mu \vec{a} + (1-\mu) \vec{b}$$
(ii)
from (i) and (ii) $\lambda \vec{a} + \frac{\lambda}{3} \vec{b} = \mu \vec{a} + (1-\mu) \vec{b}$

$$\therefore \quad \lambda = \mu \quad \text{and} \quad \frac{\lambda}{3} = 1 - \mu$$

 $\therefore \lambda = \frac{3}{4}$

... P divides AL in the ratio 3 : 1 and P divides DB in the ratio 3 : 1

similarly Q divides DB in the ratio
$$1:3$$

thus
$$DQ = \frac{1}{4}DB$$
 and $PB = \frac{1}{4}DB$
 $\therefore PQ = \frac{1}{2}DB$ i.e. $PQ:DB=1:2$

25 1. (A) The diagonals are $\vec{d}_1 = 3\hat{a} - 2\hat{b} + 2\hat{c} + (-\hat{a} - 2\hat{c}) = 2\hat{a} - 2\hat{b}$ $\vec{d}_{2} = 3\hat{a} - 2\hat{b} + 2\hat{c} - (-\hat{a} - 2\hat{c}) = 4\hat{a} - 2\hat{b} + 4\hat{c}$ Angle between them = $\cos^{-1} \frac{\mathbf{d}_1 \cdot \mathbf{d}_2}{|\vec{\mathbf{d}}_1| \cdot |\vec{\mathbf{d}}_2|}$ $=\cos^{-1}\left(\frac{8+4}{2\sqrt{2}}\right)=\cos^{-1}\frac{1}{\sqrt{2}}=\frac{\pi}{4}$ 2. (D) $\vec{x} + \vec{y} = 2\hat{b} - 3\hat{c}$ and $\vec{y} + \vec{z} = -2\hat{a} + 3\hat{b} - 3\hat{c}$ $\therefore \quad (\vec{x} + \vec{y}) \times (\vec{y} + \vec{z}) = \begin{vmatrix} \hat{a} & \hat{b} & \hat{c} \\ 0 & 2 & -3 \\ -2 & 3 & -3 \end{vmatrix} = 3\hat{a} + 6\hat{b} + 4\hat{c}$ $\therefore \text{ requied unit vector} = \frac{3\hat{a} + 6\hat{b} + 4\hat{c}}{\sqrt{61}}$ 3. (A) $\begin{vmatrix} 2 & -3 & 4 \\ 1 & 2 & -1 \\ x & -1 & 2 \end{vmatrix} = 0$ ⇒ 2(4-1)+3(2+x)+4(-1-2x)=0 ⇒ $x = \frac{8}{5}$ 4. (C) $\vec{r} \times \vec{x} = \vec{y} \times \vec{x} \implies (\vec{r} - \vec{y}) \times \vec{x} = \vec{0}$ \Rightarrow $\vec{r} = \vec{y} + \lambda \vec{x}$ $\vec{r} \times \vec{y} = \vec{x} \times \vec{y} \implies (\vec{r} - \vec{x}) \times \vec{y} = \vec{0} \implies \vec{r} = \vec{x} + \mu \vec{y}$ $\vec{y} + \lambda \vec{x} = \vec{x} + \mu \vec{y}$ $(2\vec{a} - \vec{b}) + \lambda(\vec{a} + \vec{b}) = (\vec{a} + \vec{b}) + \mu(2\vec{a} - \vec{b})$ \Rightarrow 2+ λ = 1 + 2 μ , -1 + λ = 1 - μ $\Rightarrow \mu = 1, \lambda = 1$ The point of intersection is $3\vec{a}$ 5. (B) $\hat{\mathbf{a}} \times \hat{\mathbf{b}} = \hat{\mathbf{c}} \implies \hat{\mathbf{c}} \hat{\mathbf{a}} \times \hat{\mathbf{b}} = \hat{\mathbf{c}} \hat{\mathbf{c}} = 1$

 $\Rightarrow \hat{a} . (\hat{b} \times \hat{c}) + \hat{b} . (\hat{c} \times \hat{a}) + \hat{c} . (\hat{a} \times \hat{b}) = 3$

26. (50)

$$V_{1} = [\bar{a} \ \bar{b} \ \bar{c}] \qquad V_{2} = \frac{1}{2} [\bar{a} \ \bar{b} \ \bar{c}]$$

$$V_{3} = \frac{1}{6} [\bar{a} \ \bar{b} \ \bar{c}]$$

$$V_{1} : V_{2} : V_{3} = 1 : \frac{1}{2} : \frac{1}{6}$$

$$= 6 : 3 : 1$$

$$V_{1} = \begin{vmatrix} 1 & -1 & -6 \\ 1 & -1 & 4 \\ 2 & -5 & 3 \end{vmatrix} = 1(-3 + 20) + 1 (3 - 8) - 6(-5 + 2)$$

$$= 17 - 5 + 18 = 30$$

$$\therefore V_{1} + V_{2} + V_{3} = 30 + 15 + 5 = 50$$
27. $V = \frac{1}{6} [\bar{a} \ \bar{b} \ \bar{c}]$
The centroid are $\frac{\bar{a} + \bar{b}}{3}, \frac{\bar{b} + \bar{c}}{3}, \frac{\bar{c} + \bar{a}}{3}, \frac{\bar{a} + \bar{b} + \bar{c}}{3}$

$$\therefore V' = \frac{1}{6} [\frac{\bar{c} - \bar{a}}{3}, \frac{\bar{c} - \bar{b}}{3}, \frac{\bar{c}}{3}] = \frac{1}{6 \times 27} [\bar{a} \ \bar{b} \ \bar{c}]$$

$$= \frac{1}{27} V$$

$$\therefore k = 27$$
28. (2)

$$\Sigma [\bar{p} \times \{(\bar{x} - \bar{q}) \times \bar{p}\}] = \bar{0}$$

$$\Rightarrow \Sigma [\bar{p} \times (\bar{x} \times \bar{p})] - \Sigma [\bar{p} \times (\bar{q} \times \bar{p})] = \bar{0}$$

$$\Rightarrow \Sigma [\bar{p} \times (\bar{x} \times \bar{p})] - \Sigma [\bar{p} \times (\bar{q} + \bar{p})] = \bar{0}$$

$$\Rightarrow 2\bar{p}^{2} \ \bar{x} - \bar{p}^{2} \ \bar{x} - \bar{p}^{2} \ (\bar{p} + \bar{q} + \bar{r}) = \bar{0}$$

$$\Rightarrow 2\bar{p}^{2} \ \bar{x} = \bar{p}^{2} (\bar{p} + \bar{q} + \bar{r})$$
29. Equation of line L₁ is $7\hat{i} + 6\hat{j} + 2\hat{k} + l (-3\hat{i} + 2\hat{j} + 4\hat{k})$
Equation of line L₂ is $\hat{s}\hat{i} + 3\hat{j} + 4\hat{k} + \mu (2\hat{i} + \hat{j} + 3\hat{k})$

$$\overline{CD} = 2\hat{i} + 3\hat{j} - 2\hat{k} + \lambda (-3\hat{i} + 2\hat{j} + 4\hat{k}) - \mu (2\hat{i} + \hat{j} + 3\hat{k})$$

 $\therefore \quad \frac{2-3\lambda-2\mu}{2} = \frac{3+2\lambda-\mu}{-2} = \frac{-2+4\lambda-3\mu}{-1}$

since it is parallel to $2\hat{i} - 2\hat{j} - \hat{k}$

$$\therefore \quad \lambda = 2 , \ \mu = 1 \therefore \quad \overrightarrow{CD} = -6\hat{i} + 6\hat{j} + 3\hat{k} \therefore \quad |\overrightarrow{CD}| = 9$$

30. (13)

Let OABC be the tetrahedron. Let G be the centroid of

the face OAB, then $GA = \frac{1}{\sqrt{3}} AC$.

Then $\cos \theta = \frac{GA}{CA} = \frac{1}{\sqrt{3}}$

 \therefore a = 1 and b = 3 \therefore 10a + b = 13

MOCK TEST (3-D)

```
1. Any pt. on line is (3\lambda + 2, 2\lambda - 1, 1 - \lambda)
but it lies on the curve xy = c^2 \& z = 0
```

 $\Rightarrow (3\lambda+2)(2\lambda-1) = c^2 \& 1 - \lambda = 0$

 $\Rightarrow (3\lambda+2)(2\lambda-1) = c^2 \& \lambda = 1$

$$\Rightarrow$$
 c²=5 \Rightarrow c= $\pm \sqrt{5}$

2. (A)

Foot of perpendicular from point $A(\vec{a})$ on the plane

$$\vec{r} \cdot \vec{n} = d$$
 is $\vec{a} + \frac{(d - \vec{a} \cdot \vec{n})}{|\vec{n}|^2} \vec{n}$

:. Equation of line parallel to $\vec{r} = \vec{a} + \lambda \vec{b}$ in the plane

$$\vec{r} \cdot \vec{n} = d$$
 is given by

$$\vec{r} = \vec{a} + \frac{(d - \vec{a} \cdot \vec{n})}{|\vec{n}|^2} \vec{n} + \lambda \vec{b}$$

Position of pt. after t hours is (2t, -4t, 4t)
Position of pt. after 10 hours is (20, -40, 40)
Distance from origin

$$=\sqrt{\left(20\right)^{2}+\left(-40\right)^{2}+\left(40\right)^{2}}=60\,\mathrm{km}$$

4. **(D)**

 $P_1 = P_2 = 0$, $P_2 = P_3 = 0$ and $P_3 = P_1 = 0$ are lines of intersection of the three planes P_1 , P_2 and P_3 .

As \vec{n}_1 , \vec{n}_2 and \vec{n}_3 are non-coplanar, planes P_1 , P_2 and P_3 will intersect at unique point. So the given lines will pass through a fixed point.

$$\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \sum \ell_1 \hat{i} + \sum m_1 \hat{j} + \sum n_1 \hat{k}$$

$$|OP| = (\Sigma \ell_1)^2 + (\Sigma m_1)^2 + (\Sigma m_1)^2$$

= 3 + 2 \Sigma (\ell_1 \ell_2 + m_1 m_2 + n_1 n_2) = 3

$$\therefore \quad \left| \overrightarrow{OP} \right| = \sqrt{3}$$

$$\therefore \quad \overrightarrow{OP} = \frac{\ell_1 + \ell_2 + \ell_3}{\sqrt{3}} \quad \hat{i} + \frac{m_1 + m_2 + m_3}{\sqrt{3}} \quad \hat{j} \quad + \frac{n_1 + n_2 + n_3}{\sqrt{3}} \quad \hat{k}$$

6. (A)

Let θ be the required angle then θ will be the angle between \vec{a} and $\vec{b} + \vec{c}$ ($\vec{b} + \vec{c}$ lies along the angular bisector of \vec{a} and \vec{b})

$$\cos\theta = \frac{\vec{a} \cdot (\vec{b} + \vec{c})}{|\vec{a}||\vec{b} + \vec{c}|}$$
$$= \frac{2\cos\alpha}{\sqrt{2 + 2\cos\alpha}} = \frac{\cos\alpha}{\cos\frac{\alpha}{2}}$$
$$\theta = \cos^{-1}\left(\frac{\cos\alpha}{\cos\alpha/2}\right)$$

Circle passing through A (1, 0, 0); B(0, 1, 0) and C(0, 0, 1) will be greatest circle of sphere

 $\Rightarrow \text{ circumcentre of } \Delta ABC \text{ will be centre of circle as well} \\ \text{as of sphere, but since } \Delta ABC \text{ is equailatral} \\$

- \therefore centre of the sphere is centroid of the $\triangle ABC$
- :. centre of the sphere is $D\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$

Also radius AD = BD = CD = $\sqrt{\frac{6}{9}}$

Equation. of sphere

$$\left(x - \frac{1}{3}\right)^2 + \left(y - \frac{1}{3}\right)^2 + \left(z - \frac{1}{3}\right)^2 = \frac{6}{9}$$

$$\Rightarrow 9(x^2 + y^2 + z^2) - 6(x + y + z) + 3 = 6$$

$$\Rightarrow 3(x^2 + y^2 + z^2) - 2(x + y + z) - 1 = 6$$

$$\Rightarrow 3\Sigma x^2 - 2\Sigma x - 1 = 0$$

8. (A)

A(1, 1, 1), B(2, 3, 5), C(-1, 0, 2) directions ratios of AB are <1, 2, 4>

direction ratios of AC are < 2, -1, 1 >

 \therefore direction ratios of normal to plane ABC are <2, -3, 1>

:. Equation of the plane ABC is 2x - 3y + z = 0Let the equation of the required plane be 2x - 3y + z = k,

then
$$\left| \frac{k}{\sqrt{4+9+1}} \right| = 2$$

 $k = \pm 2\sqrt{14}$

:. Equation of the required plane is $2x - 3y + z + 2\sqrt{14} = 0$

9. Consider
$$\overrightarrow{AP} \times (\hat{\ell i} + \hat{m j} + \hat{n k}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ p - a & q - b & r - c \\ \ell & m & n \end{vmatrix}$$

$$= \sum \left(n \left(q - b \right) - m \left(r - c \right) \right) \hat{i}$$

$$MP^{2} = \left| \overrightarrow{AP} \times (\ell \hat{i} + m \hat{j} + n \hat{k}) \right|^{2}$$
$$= \sum \{n (q-b) - m (r-c)\}^{2}$$

10. (A)

- S_1 : true by definition
- S_2 : false (because by the given condition, at least one point may lie on the plane)
- S_3 : true (Standard result)

$$\mathbf{S}_4$$
: True shortest distance = $\left| \frac{-11-3}{\sqrt{9+36+4}} \right| = 2$

11. (A, B, C)

$$\mathbf{x} + \mathbf{y} + \mathbf{z} - 1 = \mathbf{0}$$

$$4x + y - 2z + 2 = 0$$

 \therefore direction ratios of the line are <-3, 6, -3 >

- Let z = k, then x = k 1, y = 2 2k
- i.e. (k-1, 2-2k, k) is any point on the line

$$\therefore$$
 (-1,2,0), (0,0,1) and $\left(-\frac{1}{2},1,\frac{1}{2}\right)$ are points on the line

 \therefore (A), (B) and (C) are correct options

13. (A,B)

$$3x - 6y + 2z + 5 = 0$$
.....(i)
- 4x + 12y - 3z + 3 = 0(ii)
$$\frac{3x - 6y + 2z + 5}{\sqrt{9 + 36 + 4}} = \frac{-4x + 12y - 3z + 3}{\sqrt{16 + 144 + 9}}$$

bisects the angle between the planes that contains the origin.

13(3x-6y+2z+5) = 7(-4x+12y-3z+3) 39x-78y+26z+65 = -28x+84y-21z+21 67x-162y+47z+44 = 0......(iii) Further 3 × (-4) + (-6) (12) + 2 × (-3) < 0 ∴ origin lies in acute angle

14. **(B)**

S₁: Since
$$\begin{vmatrix} 1-1 & 7+2 & -4-3 \\ 2 & 5 & 7 \\ 1 & 2 & 3 \end{vmatrix} = \begin{vmatrix} 0 & 9 & -7 \\ 2 & 5 & 7 \\ 1 & 2 & 3 \end{vmatrix} = 16 \neq 0$$

 S_2 : by the given condition

$$\frac{4+2}{3} = \frac{13-3}{5} = \frac{1-5}{2}$$
 i.e. $2 = 2 = -2$

Which is not true

- S₃: Let $S \equiv x^2 + y^2 + z^2 2x 4y 2z + 2 = 0$ Then S₁ = 4 + 1 + 1 - 4 - 4 - 2 + 2 = -2 < 0
- : Statement is false
- S₄: Let < a, b, c > be direction ratios of the line, then a+b+c=0 4a+b-2c=0i.e. $\frac{a}{-2-1} = \frac{b}{4+2} = \frac{c}{1-4}$
- i.e. $\frac{a}{-3} = \frac{b}{6} = \frac{c}{-3}$ i.e. $\frac{a}{1} = \frac{b}{-2} = \frac{c}{1}$
- :. Statement is true

15. (A, B)

Equation of required plane is $\ell x + mv + \lambda z = 0$ (i)

$$x + my + \lambda z = 0$$
(1)

angle between (i) & $\ell x + my = 0$ is α .

$$\Rightarrow \cos\alpha = \frac{\ell^2 + m^2}{\sqrt{\ell^2 + m^2}\sqrt{\ell^2 + m^2 + \lambda^2}}$$
$$\Rightarrow \cos^2\alpha = \frac{\ell^2 + m^2}{\ell^2 + m^2 + \lambda^2}$$
$$\Rightarrow \lambda = \pm \sqrt{\ell^2 + m^2} \tan\alpha$$
Hence equation of plane is
$$\ell x + my \pm z \sqrt{\ell^2 + m^2} \tan\alpha = 0$$

16. (A)

S₁: (1, 2, −1) is a point on the line and 11 + 3 - 14 = 0∴ The point lies on the plane $11 \times -3z - 14 = 0$ Further $3 \times 11 + 11 (-3) = 0$ ∴ The line lies in the plane S₁: obviously true

17. (A)

Statement - $\vec{I} \vec{PA} \cdot \vec{PB} = 9 > 0$ \therefore P is exterior to the sphere Statement - II is true (standard result) 18. (D)

Statement - II:
$$\vec{r} \times (\hat{i} + 2\hat{j} - 3\hat{k}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ 1 & 2 & -3 \end{vmatrix}$$

$$= \hat{i}(-3y-2z) - \hat{j}(-3x-z) + \hat{k}(2x-y)$$

$$\therefore -3y-2z=2, 3x+z=-1, 2x-y=0$$
i.e. $-6x-2z=2, 3x+z=-1$
 \therefore straight line $2x-y=0, 3x+z=-1$
Statement -I: $\vec{r} \times (2\hat{i} - \hat{j} + 3\hat{k}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ 2 & -1 & 3 \end{vmatrix}$

$$= \hat{i}(3y+z) - \hat{j}(3x-2z) + \hat{k}(-x-2y)$$

$$\therefore 3y+z=3, 3x-2z=0, -x-2y=1$$
 $3x-2(3-3y)=0$
 $\Rightarrow 3x+6y=6$
 $\Rightarrow x+2y=2$
Now $x+2y=-1, x+2y=2$ are parallel planes
 $\therefore \vec{r} \times (2\hat{i} - \hat{j} + 3\hat{k}) = 3\hat{i} + \hat{k}$ is not a straight line
(A)

19.

$$\sin\theta = \left| \frac{2 - 3 + 2}{\sqrt{4 + 9 + 4}\sqrt{3}} \right| = \frac{1}{\sqrt{51}}$$

: Statement-1 is true, Statement-2 is true by definition

20. (B)

Statement - 1

$$3y-4z=5-2k$$

-2y+4z=7-3k
∴ x=k, y=12-5k, z= $\frac{31-13k}{4}$ is a point on the line

for all real values of k.

Statement is true

Statement - 2

direction ratios of the straight line are

$$<$$
 bc' $-$ kbc, kac $-$ ac', $0 >$

direction ratios of normal to be plane < 0, 0, 1 >

Now $0 \times (bc' - kbc) + 0 \times (kac - ac') + 1 \times 0 = 0$

- : the straight line is parallel to the plane
- : statement is true but does not explain statement 1

- 21. (A) \rightarrow (s,t), (B) \rightarrow (p,t), (C) \rightarrow (q), (D) \rightarrow (r) (A) Both the lines pass through the point (7, 11, 15) **(B)** < 2, 3, 4 > are direction ratios of both the lines. Also
- the point (1, 2, 3) is common to both :. The lines are conicident.
- (C) < 5, 4-2 > are direction ratios of both the lines ... The lines are parallel.

Also
$$x = 2 + 5\lambda, y = -3 + 4\lambda, z = 5 - 2\lambda$$

$$\therefore \quad \frac{2+5\lambda-7}{5} = \frac{-3+4\lambda-1}{4} = \frac{5-2\lambda-2}{-2}$$

i.e. $\lambda - 1 = \lambda - 1 = \frac{3-2\lambda}{-2}$

 \therefore no value of λ

Thus the lines are parallel and different.

- (D) < 2, 3, 5 > and < 3, 2, 5 > are direction ratios of first and 2nd line respectively.
 - ... The lines are not parallel.
 - $x=3+2\lambda$, $y=-2+3\lambda$, $z=4+5\lambda$ $x = 3 + 3\mu$, $y = -2 + 2\mu$, $z = 7 + 5\mu$ are parametric equations of the lines. Solving $3 + 2\lambda = 3 + 3\mu$ and $-2 + 3\lambda = 2 + 2\mu$ we get $\lambda = \frac{12}{5}$, $\mu = \frac{8}{5}$ Now substituting these values in $4 + 5\lambda = 7 + 5\mu$ we get 4 + 12 = 7 + 8 i.e. 16 = 15 which is not true. :. The lines do not intersect

Hence the lines are skew.

22. (A) \rightarrow (s) (B) \rightarrow (p) (C) \rightarrow (t) (D) \rightarrow (q)

(A) Let the foot of perpendicular be $Q(2+2\lambda, 1+3\lambda, 2+4\lambda)$: $2(2\lambda + 1) + 3(3\lambda - 1) + 4(4\lambda - 1) = 0$

$$29\lambda = 5 \implies \lambda = \frac{5}{29}$$

$$\therefore \text{ Foot} = \left(\frac{68}{29}, \frac{44}{29}, \frac{78}{29}\right) \qquad \therefore \quad (A) \to (s)$$

(B) Let the image be the point (a, b, c), then from previous solution

$$\frac{1+a}{2} = \frac{68}{29}, \ \frac{2+b}{2} = \frac{44}{29} \text{ and } \frac{3+c}{2} = \frac{78}{29}$$

i.e. $a = \frac{107}{29}, b = \frac{30}{29} \text{ and } c = \frac{68}{29}$ \therefore (B) \rightarrow (p)

(C)
$$\frac{x-2}{2} = \frac{y-3}{3} = \frac{z-5}{-4} = -\frac{4+9-20+17}{4+9+16} = \frac{-10}{29}$$

 $\therefore a = \frac{38}{29}, b = \frac{57}{29} \text{ and } c = \frac{185}{29} \therefore (C) \rightarrow (t)$
(D) $\frac{x-2}{3} = \frac{y-5}{-2} = \frac{z-1}{4} = -2\left(\frac{6-10+4-5}{29}\right) = \frac{10}{29}$

x = 2 +
$$\frac{30}{29} = \frac{88}{29}$$
, y = 5 - $\frac{20}{29} = \frac{125}{29}$, z = 1 + $\frac{40}{29} = \frac{69}{29}$
∴ (D) → (q)

23.

1. (D)

shortest distance between both lines

$$= \frac{\begin{vmatrix} 3-2 & 1-1 & 0+1 \\ 1 & 0 & 2 \\ 1 & 1 & -1 \end{vmatrix}}{\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 0 & 2 \\ 1 & 1 & -1 \end{vmatrix}} = \begin{vmatrix} \frac{1(0-2) - 0(-1-2) + 1(1-0)}{-2\hat{i} + 3\hat{j} + \hat{k}} \end{vmatrix}$$

$$=\frac{1}{\sqrt{4+9+1}}=\frac{1}{\sqrt{14}}$$

2. (B)

Equation of plane P

$$\begin{vmatrix} x-2 & y-1 & z+1 \\ 1 & 0 & 2 \\ 1 & 1 & -1 \end{vmatrix} = 0$$

$$-2(x-2)+(y-1)(3)+(z+1)=0$$

$$-2x+3y+z+2=0$$

$$2x-3y-z-2=0$$

Now image of point 0(0, 0, 0) in plane P
$$\frac{x-0}{2} = \frac{y-0}{-3} = \frac{z-0}{-1} = \frac{-2(-2)}{4+9+1}$$

$$\frac{x}{2} = \frac{y}{-3} = \frac{z}{-1} = \frac{4}{14}$$

Image point $\left(\frac{4}{7}, \frac{-6}{7}, \frac{-2}{7}\right)$

$$0(0, 0, 0), A(1, 0, 0), B\left(0, \frac{-2}{3}, 0\right), C(0, 0, -2)$$

volume of tetrahetron OABC = $\frac{1}{6} \left| \left[\overrightarrow{OA} \quad \overrightarrow{OB} \quad \overrightarrow{OC} \right] \right|$

$$=\frac{1}{6} \begin{vmatrix} 1 & 0 & 0 \\ 0 & -2/3 & 0 \\ 0 & 0 & -2 \end{vmatrix} = \frac{4}{18} = \frac{2}{9} \text{ cu unit}$$

24.

1.
$$\Delta = \frac{1}{2} \left| \overrightarrow{AB} \times \overrightarrow{AC} \right| = \frac{1}{2} \left| \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -2 & 1 & 0 \\ -2 & 0 & 2 \end{vmatrix} \right| = \left| \hat{i} + 2\hat{j} + \hat{k} \right| = \sqrt{6}$$

2.
$$H(\alpha, \beta, \gamma) \Rightarrow AH \perp BC, BH \perp CA$$

 $\Rightarrow \frac{\alpha}{1} = \frac{\beta}{2} = \frac{\gamma}{1}$
H lies on the plane $\frac{x}{2} + y + \frac{z}{2} = 1$
 $\Rightarrow \gamma = \frac{1}{3}$
3. $H\left(\frac{1}{3}, \frac{2}{3}, \frac{1}{3}\right), G\left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right) \Rightarrow S\left(\frac{5}{6}, \frac{1}{6}, \frac{5}{6}\right)$

$$\Rightarrow$$
 y-coordinates is $\frac{1}{6}$

4.
$$P(x, y, z)$$

 $\Rightarrow x^2 + y^2 + z^2 = (x - 2)^2 + y^2 + z^2$
 $= x^2 + (y - 1)^2 + z^2 = x^2 + y^2 + (z - 2)^2$
 $\Rightarrow x = 1, y = \frac{1}{2}, z = 1$
 $P\left(1, \frac{1}{2}, 1\right), A(2, 0, 0) \Rightarrow AP = \frac{3}{2}$
25. $u\ell + vm + wn = 0$
 $a\ell^2 + bm^2 + cn^2 = 0$
 $a\ell^2 + bm^2 + c\left\{-\frac{(4\ell + vm)}{w}\right\}^2 = 0$

 $\Rightarrow (aw^2 + cu^2)\ell^2 + (bw^2 + cv^2)m^2 + 2 cuv \ell m = 0$

3

$$\Rightarrow (aw^2 + cu^2) \left(\frac{\ell}{m}\right)^2 + (bw^2 + cv^2) + 2 cuv \left(\frac{\ell}{m}\right) = 0$$
.....(i)

put u = v = w = 1 in equation, then

$$(a+c)\left(\frac{\ell}{m}\right)^2 + 2c\left(\frac{\ell}{m}\right) + (b+c) = 0$$

$$(m)^2 \qquad (m)$$

similarly
$$(a+b)\left(\frac{m}{n}\right)^2 + 2a\left(\frac{m}{n}\right) + (c+a) = 0$$

and
$$(b+c)\left(\frac{n}{\ell}\right)^2 + 2b\left(\frac{n}{\ell}\right) + (a+b) = 0$$
(ii)

From equation (ii) $\frac{n_1}{\ell_1} \cdot \frac{n_2}{\ell_2} = \frac{a+b}{b+c}$

similarly
$$\frac{\ell_1 \ell_2}{b+c} = \frac{m_1 m_2}{c+a} = \frac{n_1 n_2}{a+b}$$
(iii)

 $\therefore \quad \frac{\mathbf{m}_1\mathbf{m}_2}{\ell_1\ell_2} = \frac{\mathbf{c} + \mathbf{a}}{\mathbf{b} + \mathbf{c}}$

From equation (iii)

$$\frac{\ell_1\ell_2}{b+c} = \frac{m_1m_2}{c+a} = \frac{n_1n_2}{a+b} = \frac{\ell_1\ell_2 + m_1m_2 + n_1n_2}{(b+c) + (b+c) + (a+b)}$$

$$\therefore \text{ lines are perpendicular}$$

 $\therefore \quad \ell_1 \ell_2 + m_1 m_2 + n_1 n_2 = 0$ then (b + c) + (c + a) + (a + b) must be zero $2a + 2b + 2c = 0 \implies a + b + c = 0$

26. Let p.v. of P be (\vec{p}) & that of A, B, C be \vec{a} , \vec{b} , \vec{c} with respect to origin 'O'.

$$PA^{2} + PB^{2} + PC^{2} + PO^{2} = 4p^{2} + 3 - 2 \vec{p} \cdot (\vec{a} + \vec{b} + \vec{c})$$

$$\{ \because |\vec{a}| = |\vec{b}| = |\vec{c}| = 1 \}$$

For above to be minimum $\vec{p}\,.\,(\vec{a}+\vec{b}+\vec{c})$ should be maximum

Which is =
$$|\vec{p}| |\vec{a} + \vec{b} + \vec{c}$$

Further
$$|\vec{a} + \vec{b} + \vec{c}| = \sqrt{a^2 + b^2 + c^2 + 2(\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a})} = 3$$

Hence
$$PA^2 + PB^2 + PC^2 + PO^2 = 4p^2 + 3 - 2p$$
.
 $= \left(2p - \frac{3}{2}\right)^2 + \frac{3}{4}$
Whose least value is $\frac{3}{4}$, when $\left|\vec{p}\right| = \frac{3}{4}$
& $\vec{p} \mid \mid \vec{a} + \vec{b} + \vec{c}$

27. (0)

Let equation of a plane containing the line be

$$\ell(x-1) + m(y+2) + nz = 0$$

then $2\ell - 3m + 5n = 0$ and $\ell - m + n = 0$
 $\therefore \quad \frac{\ell}{2} = \frac{m}{3} = \frac{n}{1}$
 \therefore the plane is $2(x-1) + 3(y+2) + z = 0$
i.e. $2x + 3y + z + 4 = 0$
 $\therefore \quad a = 2, b = -3, c = 1$

28.
$$\cos\theta = \frac{\ell m + mn + n\ell}{\ell^2 + m^2 + n^2}$$
(i)
 $x^3 + x^2 - 4x - 4 = 0$
 $\ell + m + n = -1$
 $\ell m + mn + n\ell = -4$
 $(\ell + m + n)^2 = \ell^2 + m^2 + n^2 + 2(-4)$
⇒ $\ell^2 + m^2 + n^2 = 1 + 8 = 9$
 $\therefore \cos\theta = -\frac{4}{9}$

$$\therefore$$
 acute angle between the lines is $\cos^{-1}\frac{1}{\alpha}$

$$\vec{r} = 3\vec{i} + 8\vec{j} + 3\vec{k} + \lambda(3\vec{i} - \vec{j} + \vec{k}) \qquad(i)$$

$$\vec{r} = -3\vec{i} - 7\vec{j} + 6\vec{k} + \mu(-3\vec{i} + 2\vec{j} + 4\vec{k}) \qquad(ii)$$

Let L and M be points on the line (i) and (ii) respectively

So that LM is perpendicular to both the lines. Let position vector of L be

$$3\vec{i} + 8\vec{j} + 3\vec{k} + \lambda_0 (3\vec{i} - \vec{j} + \vec{k})$$

and the position vector of M be
$$-3\vec{i} - 7\vec{j} + 6\vec{k} + \mu_0 (-3\vec{i} + 2\vec{j} + 4\vec{k})$$

then $\overrightarrow{LM} = -6\vec{i} - 15\vec{j} + 3\vec{k} - \lambda_0 (3\vec{i} - \vec{j} + \vec{k})$
$$+\mu_0 (-3\vec{i} + 2\vec{j} + 4\vec{k})$$

since \overrightarrow{LM} is perpendicular to both the lines (i) and (ii) \therefore $\overrightarrow{LM} \cdot (3\overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}) = 0$ and $\overrightarrow{LM} \cdot (-3\overrightarrow{i} + 2\overrightarrow{j} + 4\overrightarrow{k}) = 0$ Thus $-18 + 15 + 3 - \lambda_0 (9 + 1 + 1) + \mu_0 (-9 - 2 + 4) = 0$ i.e. $-11 \lambda_0 - 7 \mu_0 = 0$**(iii)** and $18 - 30 + 12 - \lambda_0 (-9 - 2 + 4) + \mu_0 (9 + 4 + 16) = 0$ i.e. $7\lambda_0 + 29 \mu_0 = 0$(iv) from (iii) and (iv) we get $\lambda_0^{}=\mu_0^{}=0$ \therefore $\overrightarrow{LM} = -6\overrightarrow{i} - 15\overrightarrow{j} + 3\overrightarrow{k}$ \therefore | \overrightarrow{LM} | = $\sqrt{36 + 225 + 9}$ = $\sqrt{270}$ = $3\sqrt{30}$ position vector of L is $3\vec{i} + 8\vec{j} + 3\vec{k}$: equation of the line of shortest distance (LM) is $\vec{r} = 3\vec{i} + 8\vec{j} + 3\vec{k} + \lambda(-6\vec{i} - 15\vec{j} + 3\vec{k})$ **30.** Let A be the point $(2\lambda + 1, 4\lambda + 3, 3\lambda + 2)$ so that AP is parallel to the given plane. Then $3(2\lambda + 1 - 3) + 2(4\lambda + 3 - 8) - 2(3\lambda + 2 - 2) = 0$ ⇒ 8λ=16 $\lambda = 2$ Therefore, A is (5, 11, 8) $PA = \sqrt{(5-3)^2 + (11-8)^2 + (8-2)^2}$ $=\sqrt{4+9+36} = 7$