CHEMISTRY FOR JEE MAIN \& ADVANCED

HINTS \& SOLUTIONS

EXERCISE-1
Single Choice
2. $\beta=\cos ^{-1}\left(\cos \left(\frac{\pi}{2}-\cos ^{-1} \mathrm{x}\right)\right) ; \beta=\cos ^{-1}\left\{\cos \left(\sin ^{-1} \mathrm{x}\right)\right\}$
also $\alpha=\sin ^{-1}\left[\cos \left(\sin ^{-1} \mathrm{x}\right)\right.$]
$\alpha+\beta=\pi / 2 \Rightarrow \tan \alpha=\cot \beta$
3. $\left(\sin ^{-1} x+\sin ^{-1} y\right)^{2}=\pi^{2}$
$\Rightarrow \sin ^{-1} \mathrm{x}+\sin ^{-1} \mathrm{y}= \pm \pi$
$\Rightarrow \sin ^{-1} x=\sin ^{-1} y=\frac{\pi}{2}$
or $\quad \sin ^{-1} x=\sin ^{-1} y=-\frac{\pi}{2}$
$\Rightarrow \quad x^{2}+y^{2}=2$.
4. $\mathrm{x}=\sin 2 \theta=2 \sin \theta \cos \theta=\frac{4}{5} ; \mathrm{y}=\sin \frac{\varphi}{2}$;
$y>0, \tan \phi=\frac{4}{3}$
$y^{2}=\sin ^{2} \frac{\varphi}{2}=\frac{1-\cos \varphi}{2}=\frac{1}{5}=1-\frac{4}{5}=1-x$
$\Rightarrow y^{2}=1-x$
7. $\tan \left[\sin ^{-1} \frac{3}{5}+\tan ^{-1} \frac{2}{3}\right]$
$\Rightarrow \tan \left[\tan ^{-1} \frac{\frac{3}{4}+\frac{2}{3}}{1-\frac{6}{12}}\right]=\tan \tan ^{-1} \frac{17}{6}=\frac{17}{6}$
8. $\sin ^{-1} x-\cos ^{-1} x=\cos ^{-1} \frac{\sqrt{3}}{2}$

$$
\begin{aligned}
& \frac{\pi}{2}-2 \cos ^{-1} x=\cos ^{-1} \frac{\sqrt{3}}{2}=\frac{\pi}{6} \\
& \Rightarrow \cos ^{-1} x=\frac{\pi}{6} \\
& x=\frac{\sqrt{3}}{2}
\end{aligned}
$$

9. $\frac{1}{\sqrt{2}}\left(\cos \frac{7 \pi}{5}-\sin \frac{2 \pi}{5}\right)$

$$
\begin{aligned}
& =\cos \frac{\pi}{4} \cos \frac{7 \pi}{5}-\sin \frac{\pi}{4} \sin \frac{2 \pi}{5} \\
& =\cos \frac{\pi}{4} \cos \frac{7 \pi}{5}+\sin \frac{\pi}{4} \sin \frac{7 \pi}{5}
\end{aligned}
$$

11. $\sin ^{-1}\left(-\sin \frac{50 \pi}{9}\right)=-\sin ^{-1} \sin \left(\frac{50 \pi}{9}\right)$

$$
\begin{gathered}
=-\sin ^{-1} \sin \left(\frac{14 \pi}{9}\right)=-\sin ^{-1} \sin \left(2 \pi-\frac{4 \pi}{9}\right) \\
=-\sin ^{-1} \sin \left(-\frac{4 \pi}{9}\right)=\frac{4 \pi}{9}
\end{gathered}
$$

$\cos ^{-1} \cos \left(-\frac{31 \pi}{9}\right)=\cos ^{-1} \cos \left(\frac{31 \pi}{9}\right)$

$$
=\cos ^{-1} \cos \left(4 \pi-\frac{5 \pi}{9}\right)=\cos ^{-1} \cos \frac{5 \pi}{9}=\frac{5 \pi}{9}
$$

Hence sec $\left(\frac{4 \pi}{9}+\frac{5 \pi}{9}\right)=\sec \pi=-1$
12. $\mathrm{x}=\frac{2 \pi}{3}+\frac{\pi}{4}+\frac{\pi}{3}=\frac{5 \pi}{4}$

$$
\begin{aligned}
y & =\cos \left(\frac{1}{2} \sin ^{-1}\left(\sin \frac{5 \pi}{8}\right)\right) \\
& =\cos \left(\frac{1}{2}\left(\pi-\frac{5 \pi}{8}\right)\right)=\cos \frac{3 \pi}{16}
\end{aligned}
$$

14. $\tan ^{-1} 2+\tan ^{-1} 3=\operatorname{cosec}^{-1} x$

$$
\begin{aligned}
& \Rightarrow \pi+\tan ^{-1}(-1)=\operatorname{cosec}^{-1} x \\
& \Rightarrow \pi-\frac{\pi}{4}=\operatorname{cosec}^{-1} x \Rightarrow \frac{3 \pi}{4}=\operatorname{cosec}^{-1} x \\
& \Rightarrow \text { no solution. }\left\{-\frac{\pi}{2} \leq \operatorname{cosec}^{-1} x \leq \frac{\pi}{2}\right\}
\end{aligned}
$$

15. $\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$ and
$\sin ^{-1} x-\cos ^{-1} x=\sin ^{-1}(3 x-2)$

-

\qquad
$2 \cos ^{-1} \mathrm{x}=\cos ^{-1}(3 \mathrm{x}-2)$
Also $\quad \mathrm{x} \in[-1,1]$

$$
\cos ^{-1}\left(2 x^{2}-1\right)=\cos ^{-1}(3 x-2)
$$

and $\quad(3 x-2) \in[-1,1]$ i.e. $-1 \leq 3 x-2 \leq 1$

$$
2 x^{2}-1=3 x-2
$$

hence $\quad x \in\left[\frac{1}{3}, 1\right]$

$$
\begin{aligned}
& 2 x^{2}-3 x+1=0 \Rightarrow \mathrm{x}=1 \text { or } 1 / 2 \Rightarrow \mathrm{~A} \\
& =\cos \left(\frac{7 \pi}{5}-\frac{\pi}{4}\right)=\cos \left(\frac{23 \pi}{20}\right)=\cos \left(\pi+\frac{3 \pi}{20}\right) \\
& =\cos \left(\pi-\frac{3 \pi}{20}\right)=\cos \frac{17 \pi}{20} \\
\therefore & \cos ^{-1}\left\{\frac{1}{\sqrt{2}}\left(\cos \frac{7 \pi}{5}-\sin \frac{2 \pi}{5}\right)\right\}=\cos ^{-1}\left(\cos \left(\frac{17 \pi}{20}\right)\right) \\
& =\frac{17 \pi}{20}\left(\text { since } \frac{17 \pi}{20} \text { lies between } 0 \text { and } \pi\right)
\end{aligned}
$$

16. $\sin ^{-1} \sqrt{1-x^{2}}+\cos ^{-1} x=\cot ^{-1} \frac{\sqrt{1-x^{2}}}{x}-\sin ^{-1} x$
or $\frac{\pi}{2}+\sin ^{-1} \sqrt{1-x^{2}}=\cot ^{-1} \frac{\sqrt{1-x^{2}}}{x}$
$\tan ^{-1} \frac{\sqrt{1-x^{2}}}{x}+\sin ^{-1} \sqrt{1-x^{2}}=0$
$\Rightarrow-1 \leq \mathrm{x}<0 \cup\{1\} \Rightarrow \mathrm{C}$
17. $\left(\tan ^{-1} \mathrm{x}\right)^{2}-3 \tan ^{-1} \mathrm{x}+2 \geq 0$
$\left(\tan ^{-1} \mathrm{x}-1\right)\left(\tan ^{-1} \mathrm{x}-2\right) \geq 0$
we know thattan ${ }^{-1} \mathrm{x} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
so $\tan ^{-1} x \geq 2$ (not possible) or $\tan ^{-1} x \leq 1$
$\Rightarrow \mathrm{x} \in(-\infty, \tan 1]$
18. $\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\frac{3 \pi}{2}$

$$
\begin{aligned}
& \Rightarrow \quad x=y=z=1 \\
& \Rightarrow \quad x^{100}+y^{100}+z^{100}-\frac{9}{x^{101}+y^{101}+z^{101}}=0
\end{aligned}
$$

20. $\cot ^{-1}\left\{\frac{\sqrt{1-\sin x}+\sqrt{1+\sin x}}{\sqrt{1-\sin x}-\sqrt{1+\sin x}}\right\} \quad \frac{\pi}{2}<x<\pi$

Rationalize the term in the bracket

$$
\begin{aligned}
& =\cot ^{-1}\left(\frac{2+2 \sqrt{1-\sin ^{2} x}}{-2 \sin x}\right)=\cot ^{-1}\left(\frac{1-\cos x}{-\sin x}\right) \\
& =\cot ^{-1}\left(-\tan \frac{x}{2}\right)=\frac{\pi}{2}-\tan ^{-1}\left(-\tan \frac{x}{2}\right) \\
& =\frac{\pi}{2}+\tan ^{-1} \tan \frac{x}{2} \quad \text { since } \quad \frac{x}{2} \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right)
\end{aligned}
$$

$$
=\frac{\pi}{2}+\frac{x}{2}
$$

21. $\sin ^{-1}\left(\frac{3 \sin 2 \theta}{5+4 \cos 2 \theta}\right)=\frac{\pi}{2}$

Taking \sin on both side $\frac{3 \sin 2 \theta}{5+4 \cos 2 \theta}=1$

$$
\begin{aligned}
& 3 \sin 2 \theta=5+4 \cos 2 \theta \\
& \frac{6 \tan \theta}{1+\tan ^{2} \theta}=5+4\left(\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right) \\
& \tan ^{2} \theta-6 \tan \theta+9=0 \\
& \tan \theta=3
\end{aligned}
$$

22. Consider $\tan 65^{\circ}-2 \tan 40^{\circ}$

$$
\begin{aligned}
& \tan \left(45^{\circ}+20^{\circ}\right)-2 \tan 40^{\circ} \\
& \frac{1+\tan 20^{\circ}}{1-\tan 20^{\circ}}-\frac{4 \tan 20^{\circ}}{1-\tan ^{2} 20^{\circ}} \\
& \frac{\left(1+\tan 20^{\circ}\right)^{2}-4 \tan 20^{\circ}}{\left(1-\tan 20^{\circ}\right)\left(1+\tan 20^{\circ}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\left(1-\tan 20^{\circ}\right)\left(1-\tan 20^{\circ}\right)}{\left(1-\tan 20^{\circ}\right)\left(1+\tan 20^{\circ}\right)}=\frac{\left(1-\tan 20^{\circ}\right)}{\left(1+\tan 20^{\circ}\right)} \\
& =\tan \left(45^{\circ}-20^{\circ}\right)=\tan 25^{\circ}
\end{aligned}
$$

$\therefore \tan ^{-1}\left(\tan 25^{\circ}\right)=25^{\circ}$
23. $\cos ^{-1}(2 x)+\cos ^{-1}(3 x)=\pi-\cos ^{-1}(x)=\cos ^{-1}(-x)$
$\cos ^{-1}\left[(2 x)(3 x)-\sqrt{1-4 x^{2}} \sqrt{1-9 x^{2}}\right]=\cos ^{-1}(-x)$

$$
\begin{aligned}
& 6 x^{2}-\sqrt{1-4 x^{2}} \cdot \sqrt{1-9 x^{2}}=-x \\
& \left(6 x^{2}+x\right)^{2}=\left(1-4 x^{2}\right)\left(1-9 x^{2}\right) \\
& \Rightarrow \quad x^{2}+12 x^{3}=1-13 x^{2} \\
& \Rightarrow \quad 12 x^{3}+14 x^{2}-1=0 \\
& \therefore \quad a=12 ; b=14 ; c=0 \\
& \Rightarrow \quad a+b+c=26
\end{aligned}
$$

24. $\mathrm{x}=\frac{1}{2} ; \quad \mathrm{y}=\frac{1}{3} \quad$ (from $2^{\text {nd }}$ relation)
$\cot ^{-1} \frac{1}{2}+\cot ^{-1} \frac{1}{3}=\tan ^{-1} 2+\tan ^{-1} 3=\frac{3 \pi}{4}$ Ans. $]$
25. $\tan \left(\frac{\pi}{4}+\alpha\right)$ when $\alpha=\tan ^{-1}\left(\frac{\frac{1}{4}+\frac{1}{5}}{1-\frac{1}{20}}\right)$;

$$
\begin{aligned}
& \alpha=\tan ^{-1}\left(\frac{9}{19}\right)=\frac{1+\frac{9}{19}}{1-\frac{9}{19}}=\frac{28}{10}=\frac{14}{5}=\frac{\mathrm{a}}{\mathrm{~b}} \\
& \Rightarrow 14+5=19
\end{aligned}
$$

26. Given equation is $|\cos \mathrm{x}|=\sin ^{-1}(\sin \mathrm{x})-\pi \leq \mathrm{x} \leq \pi$

27. Let $\tan ^{-1}(x)=\theta$
$\Rightarrow \mathrm{x}=\tan \theta$
$\cos \theta=\mathrm{x}$ (given)
$\frac{1}{\sqrt{1+\mathrm{x}^{2}}}=\mathrm{x}$

$x^{2}\left(1+x^{2}\right)=1$
$\Rightarrow \quad x^{2}=\frac{-1 \pm \sqrt{5}}{2} \quad\left(x^{2}\right.$ can not be $\left.-v e\right)$
$\Rightarrow \mathrm{x}^{2}=\frac{\sqrt{5}-1}{2} \Rightarrow \frac{\mathrm{x}^{2}}{2}=\frac{\sqrt{5}-1}{4}$
$\cos ^{-1}\left(\frac{\sqrt{5}-1}{4}\right)=\cos ^{-1}\left(\sin \frac{\pi}{10}\right)=\cos ^{-1}\left(\cos \frac{2 \pi}{5}\right)=\frac{2 \pi}{5}$
28. Let $x=\cos \theta, x \geq 0$

LHS $=2 \theta$
RHS $=\sin ^{-1}(|2 \cos \theta| \sin \theta)$
$\Rightarrow \sin ^{2}(\sin 2 \theta)$

$$
\sin ^{-1}(\sin 2 \theta) 0 \leq 2 \theta \leq \pi / 2
$$

$$
0 \leq \theta \leq \frac{\pi}{4} \quad \Rightarrow \quad \frac{1}{\sqrt{2}} \leq x \leq 1
$$

29. $x(x+1) \geq 0$ and $0 \leq x^{2}+x+1 \leq 1$

$$
\begin{array}{rlll}
\Rightarrow \mathrm{x} \geq 0 \text { or } \mathrm{x} \leq-1 & \text { and } & \mathrm{x}(\mathrm{x}+1) \leq 0 \\
\mathrm{x} \leq 0 & \text { or } & \mathrm{x} \geq-1
\end{array}
$$

Hence $\mathrm{x}=0$ or $\mathrm{x}=-1$

EXERCISE - 2

Part \# I : Multiple Choice

1. Let $\tan ^{-1} \mathrm{x}=\alpha$ and $\tan ^{-1} \mathrm{x}^{3}=\beta$
$\tan \alpha=\mathrm{x}$ and $\tan \beta=\mathrm{x}^{3}$
$\therefore 2 \tan (\alpha+\beta)=\frac{2(\tan \alpha+\tan \beta)}{1-\tan \alpha \tan \beta}$
$=2\left[\frac{\mathrm{x}+\mathrm{x}^{3}}{1-\mathrm{x}^{4}}\right]=\frac{2 \mathrm{x}}{1-\mathrm{x}^{2}} \quad \Rightarrow$
Also $\frac{2 \mathrm{x}}{1-\mathrm{x}^{2}}=\frac{2 \tan \alpha}{1-\tan ^{2} \alpha}=\tan 2 \alpha=\tan \left(2 \tan ^{-1} \mathrm{x}\right)$
\Rightarrow (B)

$$
\begin{aligned}
& =\tan \left(2\left(\frac{\pi}{2}-\cot ^{-1} x\right)\right)=\tan \left(\pi-\cot ^{-1} x-\cot ^{-1} x\right) \\
& =\tan \left(\cot ^{-1}(-x)-\cot ^{-1}(x)\right) \\
& \Rightarrow(C)
\end{aligned}
$$

2. Let $\tan ^{-1} \frac{\mathrm{a}}{\mathrm{x}}=\alpha \quad \Rightarrow \quad \tan \alpha=\frac{\mathrm{a}}{\mathrm{x}}$ etc.

$$
\alpha+\beta+\gamma+\delta=\frac{\pi}{2}
$$

$$
\tan (\alpha+\beta+\gamma+\delta)=\tan \frac{\pi}{2}
$$

$\frac{\mathrm{S}_{2}-\mathrm{S}_{3}}{1-\mathrm{S}_{2}+\mathrm{S}_{4}}=\infty$
$\Rightarrow 1-\mathrm{S}_{2}+\mathrm{S}_{4}=0$
$\Rightarrow S_{4}-S_{2}+1=0$
How, $\mathrm{S}_{4}=\tan \alpha \cdot \tan \beta \cdot \tan \gamma \cdot \tan \delta=\frac{\mathrm{abcd}}{\mathrm{x}^{4}}$
$\mathrm{S}_{2}=\sum \tan \alpha \cdot \tan \beta=\frac{\sum \mathrm{ab}}{\mathrm{x}^{2}}$
$\therefore \quad \frac{\mathrm{abcd}}{\mathrm{x}^{4}}-\frac{\sum \mathrm{ab}}{\mathrm{x}^{2}}+1=0$
$x^{4}-\sum a b x^{2}+a b c d=0<\begin{aligned} & x_{1} \\ & x_{3} \\ & x_{4}\end{aligned}$
$\therefore \quad \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}=0$

$$
\begin{equation*}
\sum \mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3}=0 \tag{ii}
\end{equation*}
$$

$\sum \mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3}=\underbrace{\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3} \mathrm{x}_{4}}_{\text {non zero }}\left[\frac{1}{\mathrm{x}_{1}}+\frac{1}{\mathrm{x}_{2}}+\frac{1}{\mathrm{x}_{3}}+\frac{1}{\mathrm{x}_{4}}\right]=0$
\Rightarrow (B)
$\mathrm{x}_{1} \mathrm{X}_{2} \mathrm{X}_{3} \mathrm{X}_{4}=\mathrm{abcd}$
\Rightarrow (C)
3. $\cos \left(-\frac{14 \pi}{5}\right)=\cos \frac{14 \pi}{5}=\cos \frac{4 \pi}{5}$

Hence $\cos \left(\frac{1}{2} \cos ^{-1}\left(\cos \frac{4 \pi}{5}\right)\right)$

$$
=\cos \frac{4 \pi}{10}=\cos \frac{2 \pi}{5}
$$

$\Rightarrow \mathrm{BCD}$
6. for (A) and (B)

$$
\begin{aligned}
& \cos \left(\cos ^{-1} 1\right)=1 \\
\Rightarrow & \cos \left(\cos \left(\cos ^{-1} 1\right)\right)=\cos 1 \\
& \sin ^{-1}(\sin (\pi-1))=\pi-(\pi-1)=1 \\
\Rightarrow & \sin \left(\sin ^{-1}(\sin (\pi-1))\right)=\sin 1 \\
& \cos ^{-1}(\cos (2 \pi-2))=\cos ^{-1}(\cos 2)=2 \\
\Rightarrow & \sin \left(\cos ^{-1}(\cos (2 \pi-2))\right)=\sin 2 \\
& \left(\tan \left(\cot ^{-1}(\cot 1)\right)=\tan 1\right.
\end{aligned}
$$

It is easy to compare
$\cos 1, \sin 1, \sin 2, \tan 1 \cos 1<\sin 1<\sin 2<\tan 1$
$\Rightarrow(\mathrm{A})$ is correct
for (C)
$\cos ^{-1} \cos x$ is periodic and even

$$
\cos ^{-1} \cos (2 t \pi-1)=\cos ^{-1}(\cos 1)=1(t \in I)
$$

$$
\sum_{t=1}^{5000} \cos ^{-1} \cos (2 t \pi-1)=5000
$$

now $\cot ^{-1} \cot (\mathrm{t} \pi+2)=2$
$\left[\cot ^{-1} \cot \mathrm{x}\right.$ is periodic with period π]
7. $2 \mathrm{x}=\tan \left(2 \tan ^{-1} \mathrm{a}\right)+2 \tan \left(\tan ^{-1} \mathrm{a}+\tan ^{-1} \mathrm{a}^{3}\right)$

$$
2 x=\frac{2 a}{1-a^{2}}+\frac{2\left(a+a^{3}\right)}{1-a^{4}}
$$

(Using $\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$)
$\therefore \quad \mathrm{a} \neq \pm 1$
\Rightarrow (D)

$$
\mathrm{x}=\frac{\mathrm{a}}{1-\mathrm{a}^{2}}+\frac{\mathrm{a}}{1-\mathrm{a}^{2}}=\frac{2 \mathrm{a}}{1-\mathrm{a}^{2}}
$$

$\Rightarrow \mathrm{x}\left(1-\mathrm{a}^{2}\right)=2 \mathrm{a}$
$\Rightarrow a^{2} x+2 a=x$
\Rightarrow (A)
Hence B \& C are invalid
10. $\sum_{n=1}^{\infty} \tan ^{-1} \frac{4 n}{n^{4}-2 n^{2}+2}$

$$
\begin{aligned}
& =\lim _{\mathrm{k}-\infty} \sum_{\mathrm{n}=1}^{\mathrm{k}}\left\{\tan ^{-1}(\mathrm{n}+1)^{2}-\tan ^{-1}(\mathrm{n}-1)^{2}\right\} \\
& =\lim _{\mathrm{k}-\infty}\left\{\tan ^{-1}(\mathrm{k}+1)^{2}+\tan ^{-1} \mathrm{k}^{2}-\tan ^{-1} 1-\tan ^{-1} 0\right\} \\
& =\frac{\pi}{2}+\frac{\pi}{2}-\frac{\pi}{4}-0=\frac{3 \pi}{4}
\end{aligned}
$$

Also $\tan ^{-1} 2+\tan ^{-1} 3=\pi+\tan ^{-1}\left(\frac{3+2}{1-3.2}\right)$
Since $x y=6>1$

$$
=\frac{3 \pi}{4} \text { and } \sec ^{-1}(-\sqrt{2})=\frac{3 \pi}{4}
$$

12. $\sum_{r=1}^{\infty} \mathrm{T}_{\mathrm{r}}=\cot ^{-1}\left(r^{2}+\frac{3}{4}\right)=\sum_{r=1}^{\infty} \tan ^{-1}\left(\frac{1}{1+r^{2}-\frac{1}{4}}\right)$

$$
=\sum_{r=1}^{\infty} \tan ^{-1}\left(\frac{\left(r+\frac{1}{2}\right)-\left(r-\frac{1}{2}\right)}{1+\left(r-\frac{1}{2}\right)\left(r+\frac{1}{2}\right)}\right)
$$

$$
=\sum_{r=1}^{\infty} \tan ^{-1}\left(r+\frac{1}{2}\right)-\sum_{r=1}^{\infty} \tan ^{-1}\left(r-\frac{1}{2}\right)
$$

Now it can be solved.
13. Let $\mathrm{y}=\frac{2\left(x^{2}+1\right)+1}{\left(x^{2}+1\right)}=2+\frac{1}{\left(x^{2}+1\right)}$
$\Rightarrow 2<y \leq 3$
Now $\quad \sin ^{-1} \sin y \leq \pi-\frac{5}{2}$
$\Rightarrow \pi-\mathrm{y} \leq \pi-\frac{5}{2} \quad \Rightarrow \mathrm{y} \geq \frac{5}{2}$
$\Rightarrow \quad \frac{2 x^{2}+3}{x^{2}+1} \geq \frac{5}{2}$
Now it can be solved

Part \# II : Assertion \& Reason

2. $x(x-2)(3 x-7)=2$

$$
\begin{aligned}
& \Rightarrow \quad 3 x^{3}-13 x^{2}+14 x-2=0 \\
& s_{1}=r+s+t=\frac{13}{3} \\
& s_{2}=\frac{14}{3}, s_{3}=\frac{2}{3}
\end{aligned}
$$

$$
\tan ^{-1} \mathrm{r}+\tan ^{-1} \mathrm{~s}+\tan ^{-1} \mathrm{t}=\pi+\tan ^{-1}\left[\frac{s_{1}-s_{3}}{1-s_{2}}\right]
$$

$$
=\pi+\tan ^{-1}[-1]=\frac{3 \pi}{4}
$$

Hence statement-I and statement-II both are true.
8. Using properties

$$
\begin{aligned}
& \therefore \quad \tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2} \\
& \Rightarrow \quad \frac{a}{x}=\frac{x}{b} \quad \Rightarrow \quad x=\sqrt{a b}
\end{aligned}
$$

Statement-1 is true

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{m}{n}\right)+\tan ^{-1}\left(\frac{1-\frac{m}{n}}{1+\frac{m}{n}}\right) \\
& =\tan ^{-1} \frac{m}{n}+\tan ^{-1} 1-\tan ^{-1} \frac{m}{n}=\frac{\pi}{4}
\end{aligned}
$$

EXERCISE-3

Part \# I : Matrix Match Type

4. (A)

Let $x=\sqrt{\frac{a(a+b+c)}{b c}}, y=\sqrt{\frac{b(a+b+c)}{a c}}$,

$$
\begin{aligned}
\mathrm{z} & =, \mathrm{x}, \mathrm{y}, \mathrm{z}>0 \\
\Rightarrow \quad \theta & =\tan ^{-1} \mathrm{x}+\tan ^{-1} \mathrm{y}+\tan ^{-1} \mathrm{z}
\end{aligned}
$$

Now $\quad \mathrm{x}+\mathrm{y}+\mathrm{z}=$
$\sqrt{\frac{a(a+b+c)}{b c}}+\sqrt{\frac{b(a+b+c)}{a c}}+\sqrt{\frac{c(a+b+c)}{a b}}$
$=\frac{(\mathrm{a}+\mathrm{b}+\mathrm{c})^{3 / 2}}{\sqrt{\mathrm{abc}}}$
and $\quad x y z=\frac{(a+b+c)^{3 / 2}}{\sqrt{\mathrm{abc}}}$
$\Rightarrow x+y+z=x y z \Rightarrow \tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\pi$
Hence $\theta=\pi$
(B) Let $\alpha=\tan ^{-1}(\cot \mathrm{~A})$

$$
\begin{gathered}
\beta=\tan ^{-1}\left(\cot ^{3} \mathrm{~A}\right) \\
\tan (\alpha+\beta)=\frac{\cot \mathrm{A}+\cot ^{3} \mathrm{~A}}{1-\cot ^{4} \mathrm{~A}}
\end{gathered}
$$

R.H.S. is negative $\Rightarrow \pi<\alpha+\beta<\frac{\pi}{2}$
$\tan (\alpha+\beta-\pi)=\frac{\cot \mathrm{A}}{1-\cot ^{2} \mathrm{~A}}=-\frac{\tan 2 \mathrm{~A}}{2}$
$\Rightarrow \alpha+\beta=\pi-\tan ^{-1}\left(\frac{\tan 2 \mathrm{~A}}{2}\right)$
G.E. $=\pi$ independent of A .
(C) $x=\tan \theta$
$\theta<-\frac{\pi}{4}$
or $\quad \theta>\frac{\pi}{4}$
$\sin ^{-1}\left(\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}\right)=\sin ^{-1}(\sin 2 \theta)-\pi<2 \theta<-\frac{\pi}{2}$
or $\frac{\pi}{2}<2 \theta$

$$
\begin{gathered}
=\left\{\begin{array}{lcc}
-\pi-2 \theta ; & \theta<-\frac{\pi}{4} \\
\pi-2 \theta ; & \theta>\frac{\pi}{4}
\end{array}\right. \\
=\left\{\begin{array}{lll}
-\pi-2 \tan ^{-1} x & ; & x<-1 \\
\pi-2 \tan ^{-1} x & ; & x>1
\end{array}\right. \\
\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)+2 \tan ^{-1} x=-\pi
\end{gathered}
$$

(D) $\sin ^{-1}\left(\frac{3}{5}\right)-\cos ^{-1}\left(\frac{12}{13}\right)+\cos ^{-1}\left(\frac{16}{65}\right)$

$$
\begin{aligned}
& =\sin ^{-1}\left(\frac{3}{5}\right)-\sin ^{-1}\left(\frac{5}{13}\right)+\cos ^{-1}\left(\frac{16}{65}\right) \\
& =\sin ^{-1}\left\{\frac{3}{5} \cdot \sqrt{1-\left(\frac{5}{13}\right)^{2}}-\frac{5}{13} \sqrt{1-\left(\frac{3}{5}\right)^{2}}\right\}+\cos ^{-1}\left(\frac{16}{65}\right) \\
& =\sin ^{-1}\left\{\frac{3}{5} \cdot \frac{12}{13}-\frac{5}{13} \cdot \frac{4}{5}\right\}+\cos ^{-1}\left(\frac{16}{65}\right) \\
& =\sin ^{-1}\left(\frac{16}{65}\right)+\cos ^{-1}\left(\frac{16}{65}\right)=\frac{\pi}{2}
\end{aligned}
$$

Part \# II : Comprehension

Comprehension-1

1. (i) $\sin \left(\frac{\cos ^{-1} \mathrm{x}}{\mathrm{y}}\right)=1$

$$
\begin{aligned}
& \Rightarrow \frac{\cos ^{-1} x}{y}=2 n \pi+\frac{\pi}{2} \quad \& \quad y \neq 0 \\
& \Rightarrow \cos ^{-1} x=(4 n+1) \frac{\pi}{2} y
\end{aligned}
$$

EXERCISE-4

when $\mathrm{n}=0 \quad \Rightarrow \quad \cos ^{-1} \mathrm{x}=\frac{\pi}{2} \mathrm{y}$
when $y=1, x=0 \quad\left\{0<\frac{\pi}{2} y \leq \pi y=2, x=-1 \Rightarrow 0<y \leq 2\right\}$
when
$\mathrm{n}=1$ or $>1 \quad \cos ^{-1} \mathrm{x}=\frac{5 \pi}{2} \mathrm{y}$ or more(reject)
$\mathrm{n}=-1$ or $<-1 \quad \cos ^{-1} \mathrm{x}=\frac{-3 \pi}{2} \mathrm{y}$ or more(reject)
(ii) $\cos \left(\frac{\sin ^{-1} \mathrm{x}}{\mathrm{y}}\right)=0$
$\Rightarrow \frac{\sin ^{-1} x}{y}=(2 n+1) \frac{\pi}{2} \quad \& \quad y \neq 0$
$\mathrm{n}=0 \quad \sin ^{-1} \mathrm{x}=\frac{\pi}{2} \mathrm{y}$
$\left\{\frac{-\pi}{2} \leq \frac{\pi}{2} \mathrm{y} \leq \frac{\pi}{2} \Rightarrow-1 \leq \mathrm{y} \leq 1\right\}$
When

$$
y=1, x=1 \quad \Rightarrow y=-1, x=-1
$$

$n=-1 \quad \sin ^{-1} x=-\frac{\pi}{2} y$
When

$$
\mathrm{y}=1, \mathrm{x}=-1
$$

$\Rightarrow y=-1, x=1$
Other values of $n \& y$ are out of range.

1. $(0,1) \&(-1,2)$
2. $(1,1),(1,-1),(-1,1),(-1,-1)$
3. one one onto

Subjective Type

1. (i) Let $\tan ^{-1} \mathrm{x}=\theta \Rightarrow \tan \theta=\mathrm{x} \cot \theta=\frac{1}{\mathrm{x}} \quad \forall \mathrm{x}>0$

$$
\theta=-\pi+\cot ^{-1} \frac{1}{\mathrm{x}} \quad \forall \mathrm{x}<0
$$

$$
\sin \theta=\frac{x}{\sqrt{1+x^{2}}} \Rightarrow \theta=\sin ^{-1} \frac{x}{\sqrt{1+x^{2}}}
$$

$$
\cos \theta=\frac{1}{\sqrt{1+\mathrm{x}^{2}}} \quad \mathrm{x}>0
$$

$$
\theta=\cos ^{-1} \frac{1}{\sqrt{1+x^{2}}}=\tan ^{-1} x x>0
$$

$$
\Rightarrow \tan ^{-1} x=-\pi+\cot ^{-1} \frac{1}{x}
$$

$$
=\sin ^{-1} \frac{x}{\sqrt{1+x^{2}}}=-\cos ^{-1} \frac{x}{\sqrt{1+x^{2}}}
$$

where $\quad \mathrm{x}<0$
(ii) Let

$$
\begin{aligned}
& \theta=\cos ^{-1} x \quad \text { given }-1<x<0 \\
& \Rightarrow \cos \theta=x \theta \in\left(\frac{\pi}{2}, \pi\right) \\
& \sec \theta=\frac{1}{x} \quad \theta=\sec ^{-1} \frac{1}{x} \\
& \sin \theta=\sqrt{1-x^{2}} \Rightarrow \theta=\pi-\sin ^{-1} \sqrt{1-x^{2}} \\
& \tan \theta=\frac{\sqrt{1-x^{2}}}{x} \Rightarrow \theta=\pi+\tan ^{-1} \frac{\sqrt{1-x^{2}}}{x} \\
& \cot \theta=\frac{x}{\sqrt{1-x^{2}}} \quad \Rightarrow \theta=\cot ^{-1} \frac{x}{\sqrt{1-x^{2}}}
\end{aligned}
$$

5. (B) $\sin \left(\sin ^{-1}\left(\log _{1 / 2} \mathrm{x}\right)\right)+2\left|\cos \left(\sin ^{-1}(\mathrm{x} / 2-1)\right)\right|=0$

$$
\begin{equation*}
-1 \leq \log _{1 / 2} \mathrm{x} \leq 1 \Rightarrow \frac{1}{2} \leq \mathrm{x} \leq 2 \tag{i}
\end{equation*}
$$

$$
\begin{align*}
& \text { and }-1 \leq \frac{x}{2}-1 \leq 1 \\
& \Rightarrow 0 \leq \frac{\mathrm{x}}{2} \leq 2 \Rightarrow 0 \leq \mathrm{x} \leq 4 \tag{ii}
\end{align*}
$$

From (i) \& (ii), $\frac{1}{2} \leq x \leq 2$

Also $\quad \log _{1 / 2} \mathrm{x}+2\left|\sqrt{x-\frac{x^{2}}{4}}\right|=0$

$$
\begin{equation*}
2 \sqrt{x-\frac{x^{2}}{4}}=\log _{2} x \tag{1}
\end{equation*}
$$

From graph it is clear that equation (1) does not have any solution in $\left[\frac{1}{2}, 2\right]$
8. $\left.\begin{array}{l}0 \leq\left(\tan ^{-1} \mathrm{x}\right)^{2} \leq \frac{\pi^{2}}{4} \\ 0 \leq\left(\cos ^{-1} \mathrm{y}\right)^{2} \leq \pi^{2}\end{array}\right] \Rightarrow\left(\tan ^{-1} \mathrm{x}\right)^{2}+\left(\cos ^{-1} \mathrm{x}\right)^{2} \leq \frac{5 \pi^{2}}{4}$

But $\quad\left(\tan ^{-1} \mathrm{x}\right)^{2}+\left(\cos ^{-1} \mathrm{x}\right)^{2}=\pi^{2} \mathrm{k}$
Hence $\mathrm{k} \pi^{2} \leq \frac{5 \pi^{2}}{4}, \quad \mathrm{k} \leq \frac{5}{4}$

Now put $\tan ^{-1} \mathrm{x}=\frac{\pi}{2}-\cos ^{-1} \mathrm{y}$

$$
\left(\frac{\pi}{2}-\cos ^{-1} \mathrm{y}\right)^{2}+\left(\cos ^{-1} y\right)^{2}=\pi^{2} \mathrm{k}
$$

(where $\cos ^{-1} y=t$)

$$
2 \mathrm{t}^{2}-\pi \mathrm{t}+\left(\frac{\pi^{2}}{4}-\mathrm{k} \pi^{2}\right)=0
$$

For real roots, $\mathrm{D} \geq 0$

$$
\begin{align*}
& \pi^{2}-8\left(\frac{\pi^{2}}{4}-\mathrm{k} \pi^{2}\right) \geq 0 \\
\Rightarrow & 1-2+8 \mathrm{k} \geq 0, \mathrm{k} \geq \frac{1}{8} \tag{ii}
\end{align*}
$$

From (i) and (ii), $\mathrm{k}=1$ With
$\mathrm{k}=1, \mathrm{t}=\frac{\pi \pm \sqrt{8 \pi^{2}-\pi^{2}}}{4}=\frac{\pi+\sqrt{7} \pi}{4}=(1 \pm \sqrt{7}) \frac{\pi}{4}$.
or $\quad \cos ^{-1} y=(\sqrt{7}+1) \frac{\pi}{4} \quad\left(\right.$ as $\left.0 \leq \cos ^{-1} y \leq \pi\right)$
$\therefore \quad y=\cos (\sqrt{7}+1) \frac{\pi}{4}$
$\therefore \quad \tan ^{-1} \mathrm{x}=\frac{\pi}{2}-(\sqrt{7}+1) \frac{\pi}{4}=\frac{\pi}{4}[(1-\sqrt{7})]$
$\Rightarrow \quad \mathrm{x}=\tan (1-\sqrt{7}) \frac{\pi}{4}$.

EXERCISE-5

Part \# I : AIEEE/JEE-MAIN

1. Now, $\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{2}{9}=\tan ^{-1}\left(\frac{\frac{1}{4}+\frac{2}{9}}{1-\frac{1}{4} \times \frac{2}{9}}\right)$

$$
=\tan ^{-1}\left(\frac{17}{34}\right)=\tan ^{-1}\left(\frac{1}{2}\right)
$$

2. Given that $\cot ^{-1}(\sqrt{\cos \alpha})-\tan ^{-1}(\sqrt{\cos \alpha})=x$

We know that, $\cot ^{-1}(\sqrt{\cos \alpha})+\tan ^{-1}(\sqrt{\cos \alpha})=\frac{\pi}{2}$

On adding equations (i) and (ii),
We get $2 \cot ^{-1}(\sqrt{\cos \alpha})=\frac{\pi}{2}+x$
$\Rightarrow \sqrt{\cos \alpha}=\cot \left(\frac{\pi}{4}+\frac{x}{2}\right) \Rightarrow \sqrt{\cos \alpha}$
$=\frac{\cot \frac{x}{2}-1}{1+\cot \frac{x}{2}} \Rightarrow \sqrt{\cos \alpha}=\frac{\cos \frac{x}{2}-\sin \frac{x}{2}}{\cos \frac{x}{2}+\sin \frac{x}{2}}$
$\Rightarrow \cos \alpha=\frac{1-\sin x}{1+\sin x}$
$\Rightarrow \frac{1-\tan ^{2} \frac{\alpha}{2}}{1+\tan ^{2} \frac{\alpha}{2}}=\frac{1-\sin x}{1+\sin x}$
Applying componendo and dividendo rule,
We get $\sin x=\tan ^{2}\left(\frac{\alpha}{2}\right)$
3. Given that, $\sin ^{-1} x=2 \sin ^{-1} \alpha$

$$
\begin{aligned}
& \text { Since, }-\frac{\pi}{2} \leq \sin ^{-1} x \leq \frac{\pi}{2} \\
& \Rightarrow-\frac{\pi}{2} \leq 2 \sin ^{-1} \alpha \leq \frac{\pi}{2} \\
& \Rightarrow-\frac{\pi}{4} \leq \sin ^{-1} \alpha \leq \frac{\pi}{4} \\
& \Rightarrow \sin \left(-\frac{\pi}{4}\right) \leq \alpha \leq \sin \left(\frac{\pi}{4}\right) \\
& \Rightarrow-\frac{1}{\sqrt{2}} \leq \alpha \leq \frac{1}{\sqrt{2}} \Rightarrow|\alpha| \leq \frac{1}{\sqrt{2}}
\end{aligned}
$$

4. Given that, $\cos ^{-1} x-\cos ^{-1} \frac{y}{2}=\alpha$

$$
\begin{aligned}
& \Rightarrow \cos ^{-1}\left(\frac{x y}{2}+\sqrt{1-x^{2}} \sqrt{1-\frac{y^{2}}{4}}\right)=\alpha \\
& \Rightarrow \frac{x y}{2}+\sqrt{1-x^{2}} \sqrt{1-\frac{y^{2}}{4}}=\cos \alpha
\end{aligned}
$$

$$
\Rightarrow 2 \sqrt{1-x^{2}} \sqrt{1-\frac{y^{2}}{4}}=2 \cos \alpha-x y
$$

On squaring both sides, we get
$\frac{4\left(1-x^{2}\right)\left(4-y^{2}\right)}{4}=4 \cos ^{2} \alpha+x^{2} y^{2}-4 x y \cos \alpha$
$\Rightarrow 4-4 x^{2}-y^{2}+x^{2} y^{2}=4 \cos ^{2} \alpha+x^{2} y^{2}-4 x y \cos \alpha$
$\Rightarrow 4 x^{2}-4 x y \cos \alpha+y^{2}=4 \sin ^{2} \alpha$
5. Since, $\sin ^{-1}\left(\frac{x}{5}\right)+\operatorname{cosec}^{-1}\left(\frac{5}{4}\right)=\frac{\pi}{2}$

$$
\begin{aligned}
& \Rightarrow \sin ^{-1}\left(\frac{x}{5}\right)+\sin ^{-1}\left(\frac{4}{5}\right)=\frac{\pi}{2} \\
& \Rightarrow \sin ^{-1}\left(\frac{x}{5}\right)=\frac{\pi}{2}-\sin ^{-1}\left(\frac{4}{5}\right) \\
& \Rightarrow \sin ^{-1}\left(\frac{x}{5}\right)=\cos ^{-1}\left(\frac{4}{5}\right) \Rightarrow \sin ^{-1}\left(\frac{x}{5}\right)=\sin ^{-1}\left(\frac{3}{5}\right) \\
& \Rightarrow x=3
\end{aligned}
$$

6. Since, $\operatorname{cosec}^{-1}\left(\frac{5}{3}\right)=\tan ^{-1}\left(\frac{3}{4}\right)$
$\cos \left(\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{2}{3}\right)=\cot \tan ^{-1}\left[\frac{\frac{3}{4}+\frac{2}{3}}{1-\frac{1}{2}}\right]$
$=\cot \tan ^{-1}\left[\frac{\left(\frac{17}{12}\right)}{\left(\frac{1}{2}\right)}\right]=\cos \left[\tan ^{-1}\left(\frac{17}{6}\right)\right]=\frac{6}{17}$
7. $2 y=x+z$
$2 \tan ^{-1} \mathrm{y}=\tan ^{-1} \mathrm{x}+\tan ^{-1}(\mathrm{z})$

$$
\begin{aligned}
& \Rightarrow \tan ^{-1}\left(\frac{2 y}{1-y^{2}}\right)=\tan ^{-1}\left(\frac{x+z}{1-x z}\right) \\
& \Rightarrow \frac{x+z}{1-y^{2}}=\frac{x+z}{1-x z} \\
& \Rightarrow y^{2}=x z \quad \text { or } \quad x+z=0 \\
& \Rightarrow x=y=z
\end{aligned}
$$

Part \# II : IIT-JEE ADVANCED

1. $\tan ^{-1} \sqrt{\mathrm{x}(\mathrm{x}+1)}$ is defined when $\mathrm{x}^{2}+\mathrm{x} \geq 0$
$\sin ^{-1} \sqrt{x^{2}+x+1}$ is defined when $0 \leq x^{2}+x+1 \leq 1$
Hence both will be defined when $x^{2}+x=0$
$\Rightarrow \mathrm{x}=0,-1$
2. $\sin ^{-1}\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{4} \ldots \ldots ..\right)+\cos ^{-1}\left(x^{2}-\frac{x^{4}}{2}+\frac{x^{6}}{4}+\ldots\right)=$
$\frac{\pi}{2} \Rightarrow \sin ^{-1}\left(\frac{\mathrm{x}}{1+(\mathrm{x} / 2)}\right)+\cos ^{-1}\left(\frac{\mathrm{x}^{2}}{1+\left(\mathrm{x}^{2} / 2\right)}\right)=\frac{\pi}{2}$

$$
\frac{2 x}{2+x}=\frac{2 x^{2}}{2+x^{2}}
$$

$2 x+x^{3}=2 x^{2}+x^{3}$
$x=0,1 \quad$ But $\therefore \quad|x|>0$
so $x=1$ is the only answer.
3. Case-I: $x \geq 0$

Let $\cot ^{-1} \mathrm{x}=\theta \quad \therefore \quad \theta \in\left(0, \frac{\pi}{2}\right]$
$\Rightarrow \mathrm{x}=\cot \theta$
$\therefore \quad \sin \theta=\frac{1}{\sqrt{1+\mathrm{x}^{2}}}$
$\Rightarrow \sin ^{-1} \sin \theta=\sin ^{-1} \frac{1}{\sqrt{1+x^{2}}}$
$\Rightarrow \theta=\sin ^{-1} \frac{1}{\sqrt{1+\mathrm{x}^{2}}}$

Case-III: $\quad \mathrm{x}<0$

$$
\text { Let } \cot ^{-1} \mathrm{x}=\theta \quad \therefore \quad \theta \in\left(\frac{\pi}{2}, \pi\right)
$$

$\Rightarrow \cot \theta=x$
$\therefore \quad \sin \theta=\frac{1}{\sqrt{1+\mathrm{x}^{2}}}$
$\Rightarrow \sin ^{-1} \sin \theta=\sin ^{-1} \frac{1}{\sqrt{1+x^{2}}}$
$\Rightarrow \pi-\theta=\sin ^{-1} \frac{1}{\sqrt{1+\mathrm{x}^{2}}} \Rightarrow \theta=\pi-\sin ^{-1} \frac{1}{\sqrt{1+\mathrm{x}^{2}}}$
Therefore,
LHS $=\left\{\begin{array}{cl}\cos \tan ^{-1} \sin \sin ^{-1} \frac{1}{\sqrt{1+x^{2}}} & , \text { if } x \geq 0 \\ \cos \tan ^{-1} \sin \left(\pi-\sin ^{-1} \frac{1}{\sqrt{1+x^{2}}}\right) & , \text { if } x<0\end{array}\right.$
$=\cos \tan ^{-1} \sin \sin ^{-1} \frac{1}{\sqrt{1+x^{2}}} ; x \in R=\cos \tan ^{-1} \frac{1}{\sqrt{1+x^{2}}}$

Let $\phi=\tan ^{-1} \frac{1}{\sqrt{1+\mathrm{x}^{2}}}$

$$
\begin{aligned}
& \text { As } \frac{1}{\sqrt{1+\mathrm{x}^{2}}} \in(0,1] \quad \therefore \quad \phi \in\left(0, \frac{\pi}{4}\right] \\
& \therefore \quad \tan \phi=\frac{1}{\sqrt{1+\mathrm{x}^{2}}} \quad \therefore \quad \cos \phi=\sqrt{\frac{1+\mathrm{x}^{2}}{2+\mathrm{x}^{2}}} \\
& \therefore \text { LHS }=\cos \cos ^{-1} \sqrt{\frac{1+\mathrm{x}^{2}}{2+\mathrm{x}^{2}}}=\sqrt{\frac{1+\mathrm{x}^{2}}{2+\mathrm{x}^{2}}}=\text { RHS }
\end{aligned}
$$

4. $\sin \cot ^{-1}(1+x)=\cos \left(\tan ^{-1} x\right)$

$$
\text { If } \alpha=\cot ^{-1}(1+x) \quad \text { and } \quad \beta=\tan ^{-1} x
$$

Then $\frac{1}{\sqrt{x^{2}+2 \mathrm{x}+2}}=\frac{1}{\sqrt{1+\mathrm{x}^{2}}}$
$\Rightarrow \quad \mathrm{x}=-1 / 2$
5. $\sin ^{-1}(a x)+\cos ^{-1} y+\cos ^{-1}(b x y)=\frac{\pi}{2}$
(A) $\quad \mathrm{a}=1, \quad \mathrm{~b}=0$

$$
\begin{aligned}
& \Rightarrow \quad \sin ^{-1}(x)+\cos ^{-1}(y)+\cos ^{-1}(0)=\frac{\pi}{2} \\
& \Rightarrow \quad \sin ^{-1} x+\cos ^{-1} y=0
\end{aligned}
$$

$\Rightarrow \cos ^{-1} \mathrm{y}=-\sin ^{-1} \mathrm{x}$
$\Rightarrow \cos ^{-1} y=\cos ^{-1} \sqrt{1-x^{2}}$
$\Rightarrow \quad x^{2}+y^{2}=1$
(B)

$$
\begin{aligned}
& \sin ^{-1}(x)+\cos ^{-1} y+\cos ^{-1}(x y)=\frac{\pi}{2} \\
\Rightarrow & \cos ^{-1}(y)+\cos ^{-1}(x y)=\cos ^{-1} x . \\
\Rightarrow & \cos ^{-1}\left(x y^{2}-\sqrt{\left(1-y^{2}\right)\left(1-x^{2} y^{2}\right)}\right)=\cos ^{-1} x . \\
\Rightarrow & x y^{2}-\sqrt{\left(1-y^{2}\right)\left(1-x^{2} y^{2}\right)}=x \\
\Rightarrow & 1-x^{2}-y^{2}+x^{2} y^{2}=0 \\
\Rightarrow & \left(1-x^{2}\right)\left(1-y^{2}\right)=0
\end{aligned}
$$

(C) $\sin ^{-1}(x)+\cos ^{-1} y+\cos ^{-1}(2 x y)=\frac{\pi}{2}$

$$
\begin{aligned}
& \Rightarrow \cos ^{-1}\left(2 x y^{2}-\sqrt{\left(1-y^{2}\right)\left(1-4 x^{2} y^{2}\right)}\right)=\cos ^{-1} x \\
& \Rightarrow 2 x y^{2}-\sqrt{\left(1-y^{2}\right)\left(1-4 x^{2} y^{2}\right)}=x \\
& \Rightarrow 2 x y^{2}-x=\sqrt{\left(1-y^{2}\right)\left(1-4 x^{2} y^{2}\right)} \\
& \Rightarrow 4 x^{2} y^{4}+x^{2}-4 x^{2} y^{2}=1-y^{2}-4 x^{2} y^{2}+4 x^{2} y^{4} \\
& \Rightarrow x^{2}+y^{2}=1
\end{aligned}
$$

(D) $\sin ^{-1}(2 x)+\cos ^{-1} y+\cos ^{-1}(2 x y)=\frac{\pi}{2}$

$$
\begin{aligned}
& \Rightarrow \cos ^{-1}\left(2 y^{2} x-\sqrt{\left(1-y^{2}\right)\left(1-4 x^{2} y^{2}\right)}\right)=\cos ^{-1}(2 x) \\
& \Rightarrow 2 y^{2} x-\sqrt{1-y^{2}-4 x^{2} y^{2}+4 x^{2} y^{4}}=2 x \\
& \Rightarrow 1-4 x^{2}-y^{2}+4 x^{2} y^{2}=0 \\
& \Rightarrow\left(1-4 x^{2}\right)\left(1-y^{2}\right)=0
\end{aligned}
$$

6. $\sqrt{1+\mathrm{x}^{2}}$
$\left[\left\{x \cos \cos ^{-1}\left(\frac{x}{\sqrt{1+x^{2}}}\right)+\sin \left(\sin ^{-1} \frac{1}{\sqrt{1+x^{2}}}\right)\right\}^{2}-1\right]^{1 / 2}$
$=\sqrt{1+x^{2}}\left[\left(\frac{x^{2}}{\sqrt{1+x^{2}}}+\frac{1}{\sqrt{1+x^{2}}}\right)^{2}-1\right]^{\frac{1}{2}}$
$=\sqrt{1+\mathrm{x}^{2}} . \mathrm{x}$ Hence (C) is correct.
7. $\tan ^{-1}\left(\frac{\sin \theta}{\sqrt{\cos 2 \theta}}\right)=\sin ^{-1}\left(\frac{\sin \theta}{\cos \theta}\right)$
$\therefore \mathrm{f}(\theta)=\tan \theta$
$\therefore \quad \frac{\mathrm{df}}{\mathrm{d} \tan \theta}=1$

MOCK TEST

1. (D) Since $\cos ^{-1}\left(\frac{4}{5}\right)=\tan ^{-1}\left(\frac{3}{4}\right)$
$\therefore \tan \left[\cos ^{-1}\left(\frac{4}{5}\right)+\tan ^{-1}\left(\frac{2}{3}\right)\right]$

$$
=\tan \left[\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{2}{3}\right]=\frac{\frac{3}{4}+\frac{2}{3}}{1-\frac{3}{4} \cdot \frac{2}{3}}=\frac{17}{6}
$$

2. $-1 \leq \frac{x^{2}}{4}+\frac{y^{2}}{9} \leq 1$ represents interior and the boundary of the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$

Also $\quad-1 \leq \frac{\mathrm{x}}{2 \sqrt{2}}+\frac{\mathrm{y}}{3 \sqrt{2}}-2 \leq 1$

i.e. $\frac{\mathrm{x}}{2 \sqrt{2}}+\frac{\mathrm{y}}{3 \sqrt{2}} \geq 1$ and $\frac{\mathrm{x}}{2 \sqrt{2}}+\frac{\mathrm{y}}{3 \sqrt{2}} \leq 3$
$\frac{x}{2 \sqrt{2}}+\frac{y}{3 \sqrt{2}} \geq 1$ represents the portion of $x y$ plane which contains only one point viz:

$$
\begin{aligned}
& \left(\sqrt{2}, \frac{3}{\sqrt{2}}\right) \text { of } \frac{x^{2}}{4}+\frac{y^{2}}{9} \leq 1 \\
& \therefore \sin ^{-1}\left(\frac{x^{2}}{4}+\frac{y^{2}}{9}\right)+\cos ^{-1}\left(\frac{x}{2 \sqrt{2}}+\frac{\mathrm{y}}{3 \sqrt{2}}-2\right) \\
& \quad=\sin ^{-1}\left(\frac{1}{2}+\frac{1}{2}\right)+\cos ^{-1}\left(\frac{1}{2}+\frac{1}{2}-2\right)
\end{aligned}
$$

3. (B)

$$
\begin{aligned}
& \cos ^{-1}\left(2 x^{2}-1\right)=2 \pi-2 \cos ^{-1} x \quad(\text { as } x<0) \\
& \cos ^{-1}\left(2 x^{2}-1\right)-2 \sin ^{-1} x=2 \pi-2 \cos ^{-1} x-2 \sin ^{-1} x \\
& =2 \pi-2\left(\cos ^{-1} x+\sin ^{-1} x\right) \\
& =2 \pi-2 \frac{\pi}{2}=\pi
\end{aligned}
$$

4. (C)

$$
\begin{aligned}
& \sin ^{-1}(\mathrm{x}-1) \Rightarrow-1 \leq \mathrm{x}-1 \leq 1 \Rightarrow 0 \leq \mathrm{x} \leq 2 \\
& \cos ^{-1}(\mathrm{x}-3) \Rightarrow-1 \leq \mathrm{x}-3 \leq 1 \Rightarrow 2 \leq \mathrm{x} \leq 4 \\
& \tan ^{-1}\left(\frac{\mathrm{x}}{2-\mathrm{x}^{2}}\right) \Rightarrow \mathrm{x} \in \mathrm{R}, \mathrm{x} \neq \sqrt{2},-\sqrt{2} \\
& \therefore \mathrm{x}=2 \\
& \sin ^{-1}(2-1)+\cos ^{-1}(2-3)+\tan ^{-1} \frac{2}{2-4}=\cos ^{-1} \mathrm{k}+\pi \\
& \Rightarrow \sin ^{-1} 1+\cos ^{-1}(-1)+\tan ^{-1}(-1)=\cos ^{-1} \mathrm{k}+\pi \\
& \quad \frac{\pi}{2}+\pi-\frac{\pi}{4}=\cos ^{-1} \mathrm{k}+\pi \\
& \Rightarrow \cos ^{-1} \mathrm{k}=\frac{\pi}{4} \Rightarrow \mathrm{k}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

5. (A)

Let $\sin ^{-1} \mathrm{a}=\mathrm{A}$,

$$
\begin{aligned}
& \sin ^{-1} b=B \\
& \sin ^{-1} c=C
\end{aligned}
$$

$\therefore \quad \sin A=a, \sin B=b, \sin C=c$
and $\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi$, then
$\sin 2 \mathrm{~A}+\sin 2 \mathrm{~B}+\sin 2 \mathrm{C}=4 \sin \mathrm{~A} \sin \mathrm{~B} \sin \mathrm{C}$
Now $\quad a \sqrt{\left(1-a^{2}\right)}+b \sqrt{\left(1-c^{2}\right)}+c \sqrt{\left(1-c^{2}\right)}$
$=\sin \mathrm{A} \cos \mathrm{A}+\sin \mathrm{B} \cos \mathrm{B}+\sin \mathrm{C} \cos \mathrm{C}$
$=\frac{1}{2}[\sin 2 \mathrm{~A}+\sin 2 \mathrm{~B}+\sin 2 \mathrm{C}]=2 \sin \mathrm{~A} \sin \mathrm{~B} \sin \mathrm{C}=2 \mathrm{abc}$
6. (C)

$$
\begin{aligned}
& 0 \leq\{\mathrm{x}\}<1 \quad \text { i.e. }-1<-\{\mathrm{x}\} \leq 0 \\
& \therefore \quad \frac{\pi}{2} \leq \cos ^{-1}(-\{\mathrm{x}\})<\pi \\
& \therefore \quad \text { the range is }\left[\frac{\pi}{2}, \pi\right)
\end{aligned}
$$

7. (B)

We have $2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x)$
$\Rightarrow \tan \left(2 \tan ^{-1} \cos x\right)=2 \operatorname{cosec} x$

$$
\begin{array}{ll}
\Rightarrow \frac{2 \cos x}{1-\cos ^{2} x}=2 \operatorname{cosec} x & \Rightarrow \frac{2 \cos x}{\sin ^{2} x}=2 \operatorname{cosec} x \\
\Rightarrow \sin x=\cos x & \Rightarrow x=\frac{\pi}{4}
\end{array}
$$

8. (C)
$\log _{1 / 2} \sin ^{-1} x>\log _{1 / 2} \cos ^{-1} x$
$\Leftrightarrow \cos ^{-1} x>\sin ^{-1} x, 0<x<1$
$\Leftrightarrow \cos ^{-1} x>\frac{\pi}{2}-\cos ^{-1} x, \quad 0<x<1$
$\Leftrightarrow \cos ^{-1} \mathrm{x}>\frac{\pi}{4}, 0<\mathrm{x}<1$
$\Leftrightarrow 0<\mathrm{x}<\frac{1}{\sqrt{2}}$
9. (A)
$\mathrm{S}_{1}: \sin ^{-1} \mathrm{x}-\frac{\pi}{2}+\sin ^{-1}(-\mathrm{x})=\frac{\pi}{2}$
$\Rightarrow \sin ^{-1}(x)+\sin ^{-1}(-x)=\pi$
$0=\pi$ which is not possible
\therefore no solution
$S_{2}: \sin ^{-1}\left(x^{2}+4 x+3\right)+\cos ^{-1}\left(x^{2}+6 x+8\right)=\frac{\pi}{2}$
$=\sin ^{-1}\left(x^{2}+4 x+3\right)+\cos ^{-1}\left(x^{2}+4 x+3\right)$
$\Rightarrow \mathrm{x}^{2}+6 \mathrm{x}+8=\mathrm{x}^{2}+4 \mathrm{x}+3$
$\Rightarrow 2 x=-5 \quad \Rightarrow \quad x=-\frac{5}{2}$
$\because \quad x^{2}+4 x+3=(x+2)^{2}-1 \in[-1,1]$ at $x=-\frac{5}{2}$
\& $\quad x^{2}+6 x+8=(x+3)^{2}-1 \in[-1,1]$ at $x=-\frac{5}{2}$
$\therefore \quad \mathrm{x}=-\frac{5}{2}$
$\mathrm{S}_{3}: \sin ^{-1}\left\{\cos \left(\sin ^{-1} \mathrm{x}\right)\right\}+\cos ^{-1}\left\{\sin \left(\cos ^{-1} \mathrm{x}\right)\right\}=\frac{\pi}{2}$
$\left\{\right.$ As $\left.\cos \left(\sin ^{-1} x\right)=\sin \left(\cos ^{-1} x\right)=\sqrt{1-x^{2}}\right\}$
$\mathrm{S}_{4}: 2\left[\tan ^{-1} \frac{1+2}{1-2}+\pi+\tan ^{-1} 3\right]$
$=2\left[\pi-\tan ^{-1} 3+\tan ^{-1} 3\right]=2 \pi$
10. (C)
$\sin ^{-1} \sin 5=\sin ^{-1} \sin (5-2 \pi)=5-2 \pi$
$\left(\right.$ As $\left.-\frac{\pi}{2} \leq 5-2 \pi \leq \frac{\pi}{2}\right)$
$\therefore \quad \sin ^{-1} \sin 5>x^{2}-4 x$
$\Rightarrow 5-2 \pi>x^{2}-4 x \quad \Rightarrow x^{2}-4 x+2 \pi-5<0$
sign sum of $\left(x^{2}-4 x+2 \pi-5\right)$

$2-\sqrt{9-2 \pi}<x<2+\sqrt{9-2 \pi}$
Integral values of x are 1, 2, 3
Number of integral value of $x=3$
11. Let $\tan ^{-1} \mathrm{x}=\theta$.

Then $-\frac{\pi}{2}<\theta<\frac{\pi}{2}, \theta \neq \pm \frac{\pi}{4}$ and $\mathrm{x}=\tan \theta$
$\tan ^{-1} x+\tan ^{-1} \frac{2 x}{1-x^{2}}=\theta+\tan ^{-1} \frac{2 \tan \theta}{1-\tan ^{2} \theta}$
$=\theta+\tan ^{-1}(\tan 2 \theta)$, where $-\pi<2 \theta<\pi, 2 \theta \neq \pm \frac{\pi}{2}$
$=\left\{\begin{array}{ccc}\theta+\pi+2 \theta & \text { when } & -\pi<2 \theta<-\frac{\pi}{2} \\ \theta+2 \theta & \text { when } & -\frac{\pi}{2}<2 \theta<\frac{\pi}{2} \\ \theta-\pi+2 \theta & \text { when } & \frac{\pi}{2}<2 \theta<\pi\end{array}\right.$
$=\left\{\begin{array}{ccc}\pi+3 \theta & \text { when } & -\frac{\pi}{2}<\theta<-\frac{\pi}{4} \\ 3 \theta & \text { when } & -\frac{\pi}{4}<\theta<\frac{\pi}{4} \\ -\pi+3 \theta & \text { when } & \frac{\pi}{4}<\theta<\frac{\pi}{2}\end{array}\right.$

$$
=\left\{\begin{array}{ccc}
\pi+3 \tan ^{-1} \mathrm{x} & \text { when } & \mathrm{x}<-1 \\
3 \tan ^{-1} \mathrm{x} & \text { when } & -1<\mathrm{x}<1 \\
-\pi+3 \tan ^{-1} \mathrm{x} & \text { when } & 1<\mathrm{x}
\end{array}\right.
$$

12. (A, C)

Domain of $f(x)=\ell \operatorname{los}^{-1} x$
is $x \in[-1,1)$
$\therefore \quad[\alpha]=-1$
or 0
13. If $-1 \leq x<0$, then $-\frac{\pi}{2} \leq \sin ^{-1} x<0$

Also $\quad 0<2 \cot ^{-1}\left(\mathrm{y}^{2}-2 \mathrm{y}\right)<2 \pi$
$\therefore \quad-\frac{\pi}{2}<\sin ^{-1} x+2 \cot ^{-1}\left(y^{2}-2 y\right)<2 \pi$
$\therefore \quad$ there is no solution in this case.
thus x can not be negative
Now if $x \geq 0$, then $0 \leq \sin ^{-1} x \leq \frac{\pi}{2}$
$\Rightarrow \frac{3 \pi}{4} \leq \cot ^{-1}\left(y^{2}-2 y\right)<\pi$
$\Rightarrow y^{2}-2 \mathrm{y} \leq-1 \quad \Rightarrow \mathrm{y}=1$
since for $y=1$, we have $2 \cot ^{-1}\left(y^{2}-2 y\right)=2 \cot ^{-1}(-1)=\frac{3 \pi}{2}$
$\therefore \quad \sin ^{-1} x=\frac{\pi}{2} \quad$ i.e. $x=1$
$\therefore \quad$ the solution is $\mathrm{x}=1, \mathrm{y}=1$
14. (A, B, C)
(A) $\sin \left(\tan ^{-1} 3+\tan ^{-1} \frac{1}{3}\right)=\sin \frac{\pi}{2}=1$
(B) $\cos \left(\frac{\pi}{2}-\sin ^{-1} \frac{3}{4}\right)=\cos \left(\cos ^{-1} \frac{3}{4}\right)=\frac{3}{4}$
(C) $\sin \left(\frac{1}{4} \sin ^{-1} \frac{\sqrt{63}}{8}\right)$

Let $\sin ^{-1} \frac{\sqrt{63}}{8}=\theta$
so $\sin \theta=\frac{\sqrt{63}}{8} \quad$ if $\quad \cos \theta=\frac{1}{8}$
we have $\cos \frac{\theta}{2}=\sqrt{\frac{1+\cos \theta}{2}}=\frac{3}{4}$
$\sin \frac{\theta}{4}=\sqrt{\frac{1-\cos \frac{\theta}{2}}{2}}=\frac{1}{2 \sqrt{2}}$
Now $\log _{2} \sin \left(\frac{1}{4} \sin ^{-1} \frac{\sqrt{63}}{8}\right)=\log _{2} \frac{1}{2 \sqrt{2}}=-\frac{3}{2}$
(D) $\cos ^{-1} \frac{\sqrt{5}}{3}=\theta$

$$
\cos \theta=\frac{\sqrt{5}}{3}
$$

$\therefore \quad \tan \frac{\theta}{2}=\frac{3-\sqrt{5}}{2}$ which is irrational
15. $\sin ^{-1} x+\sin ^{-1}(1-x)=\cos ^{-1} x$

$$
\begin{aligned}
& \Rightarrow \frac{\pi}{2}-\cos ^{-1} x+\frac{\pi}{2}-\cos ^{-1}(1-x) \\
& \quad=\cos ^{-1} x \\
& \Rightarrow 2 \cos ^{-1} x=\pi-\cos ^{-1}(1-x) \\
& \Rightarrow \cos ^{-1}\left(2 x^{2}-1\right)=\cos ^{-1}(x-1) \quad \Rightarrow 2 x^{2}-1=x-1 \\
& \Rightarrow x(2 x-1)=0 \quad \Rightarrow x=0, \frac{1}{2}
\end{aligned}
$$

17. Range of f is $\left\{\frac{\pi}{2}\right\}$ and domain of f is $\{0\}$.

Hence if domain of f is singleton then range has to be a singleton.
If S-2 and S-1 are reverse then the answer will be B.
18. (A)
(Moderate)

$$
\begin{aligned}
& \sin ^{-1} x=\tan ^{-1} \frac{x}{\sqrt{1-x^{2}}}>\tan ^{-1} x>\tan ^{-1} y \\
&\left\{\because x>y, \frac{x}{\sqrt{1-x^{2}}}>x\right\}
\end{aligned}
$$

Statement-III is true

$$
\begin{aligned}
& \mathrm{e}<\pi \\
& \frac{1}{\sqrt{\mathrm{e}}}>\frac{1}{\sqrt{\pi}}
\end{aligned}
$$

by Statement-III
$\sin ^{-1}\left(\frac{1}{\sqrt{\mathrm{e}}}\right)>\tan ^{-1}\left(\frac{1}{\sqrt{\mathrm{e}}}\right)>\tan ^{-1}\left(\frac{1}{\sqrt{\pi}}\right)$
Statement-I is true
19. (A)
$f(x)=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)=\pi-2 \tan ^{-1} x, x \geq 1$
$\mathrm{f}^{\prime}(\mathrm{x})=-\frac{2}{1+\mathrm{x}^{2}} \quad \Rightarrow \quad \mathrm{f}^{\prime}(2)=-\frac{2}{5}$
Statement-I is True, Statement-II is True; Statement-II is a correct explanation for statement-I.
20. (A)
$\operatorname{cosec}^{-1} \mathrm{x}>\sec ^{-1} \mathrm{x}$
$\operatorname{cosec}^{-1} \mathrm{x}>\frac{\pi}{2}-\operatorname{cosec}^{-1} \mathrm{x}$
$\operatorname{cosec}^{-1} x>\frac{\pi}{4}$
$1 \leq x<\sqrt{2} \quad$ and $\quad\left(\frac{1}{2}+\frac{1}{\sqrt{2}}\right) \in[1, \sqrt{2})$
Statement 2 is true and explains statement 1
21. (A) \rightarrow (r),
(B) \rightarrow (s),
$(\mathrm{C}) \rightarrow(\mathrm{p})$,
(D) \rightarrow (q)
(A) The difference $=2-(-2)=4$
(B) Let $f(x)=x^{2}-4 x+3$

$$
\mathrm{f}^{\prime}(\mathrm{x})=2 \mathrm{x}-4=0 \Rightarrow \mathrm{x}=2
$$

$f(1)=0, f(2)=-1, f(3)=0$
$\therefore \quad \mid$ greatest value - least value $\mid=1$
(C) $\tan ^{-1} \frac{1-x}{1+x}=\tan ^{-1} 1-\tan ^{-1} x$
$\therefore \quad$ greatest value $=\frac{\pi}{4}$
(D) \therefore greatest value $=\frac{\pi}{2}$, least value $=\frac{\pi}{3}$
$\therefore \quad$ difference $=\frac{\pi}{6}$
22. $(\mathrm{A}) \rightarrow(\mathrm{q}, \mathrm{s}),(\mathrm{B}) \rightarrow(\mathrm{r}, \mathrm{s}, \mathrm{t}),(\mathrm{C}) \rightarrow(\mathrm{r}, \mathrm{s}),(\mathrm{D}) \rightarrow(\mathrm{p}, \mathrm{q})$
(A) Given $\sin ^{-1} x-\cos ^{-1} x=\frac{\pi}{6}$

Also, $\quad \sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$
Solving $x=\frac{\sqrt{3}}{2}$
(B) $\sec ^{2}\left(\tan ^{-1} 2\right)+\operatorname{cosec}^{2}\left(\cot ^{-1} 3\right)$

$$
\begin{aligned}
& =1+\left(\tan \left(\tan ^{-1} 2\right)\right)^{2}+1+\left(\cot \left(\cot ^{-1} 3\right)\right)^{2} \\
& =15
\end{aligned}
$$

(C) Given eqn. is $\frac{\pi}{2}-2 \cos ^{-1} x=\sin ^{-1}(3 x-2)$

$$
\begin{aligned}
& \text { or } \begin{aligned}
& 3 x-2=\cos \left(2 \cos ^{-1} x\right)=2 \cos ^{2}\left(\cos ^{-1} x\right)-1 \\
&=2 x^{2}-1 \\
& \Rightarrow \quad 2 x^{2}-3 x+1=0 \quad \Rightarrow \quad x=1 \text { or } \frac{1}{2}
\end{aligned} .
\end{aligned}
$$

(D) $\sin 5=\sin (5-2 \pi)$

$$
\begin{aligned}
\Rightarrow & \sin ^{-1}(\sin 5)=\sin ^{-1}(\sin (5-2 \pi) \\
& =5-2 \pi
\end{aligned}
$$

24.
25. (B)

$$
\begin{aligned}
& \sin ^{-1}\left(\frac{4 x}{x^{2}+4}\right)+2 \tan ^{-1}\left(-\frac{x}{2}\right) \\
& =\sin ^{-1}\left(\frac{2 \cdot \frac{x}{2}}{\left(\frac{x}{2}\right)^{2}+1}\right)-2 \tan ^{-1} \frac{x}{2} \\
& =2 \tan ^{-1} \frac{x}{2}-2 \tan ^{-1} \frac{x}{2}=0
\end{aligned}
$$

Here $\left|\frac{\mathrm{x}}{2}\right| \leq 1$

$$
|x| \leq 2 \quad \Rightarrow \quad-2 \leq x \leq 2
$$

2. (A)

$$
\begin{aligned}
& \cos ^{-1} \frac{6 \mathrm{x}}{1+9 \mathrm{x}^{2}}=-\frac{\pi}{2}+2 \tan ^{-1} 3 \mathrm{x} \\
& \Rightarrow \frac{\pi}{2}-\sin ^{-1} \frac{6 \mathrm{x}}{1+9 \mathrm{x}^{2}}=-\frac{\pi}{2}+2 \tan ^{-1} 3 \mathrm{x} \\
& \Rightarrow \sin ^{-1} \frac{6 \mathrm{x}}{1+9 \mathrm{x}^{2}}=\pi-2 \tan ^{-1} 3 \mathrm{x} \\
& \Rightarrow \sin ^{-1} \frac{2 \cdot 3 \mathrm{x}}{1+(3 \mathrm{x})^{2}}=\pi-2 \tan ^{-1} 3 \mathrm{x}
\end{aligned}
$$

Above is true when $3 x>1$

$$
\begin{aligned}
& \Rightarrow \mathrm{x}>\frac{1}{3} \\
& \mathrm{x} \in\left(\frac{1}{3}, \infty\right)
\end{aligned}
$$

3. (C)

$$
\begin{aligned}
& (x-1)\left(x^{2}+1\right)>0 \\
& \Rightarrow \quad x>1 \\
& \therefore \quad \sin \left[\frac{1}{2} \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)-\tan ^{-1} \mathrm{x}\right] \\
& =\sin \left[\frac{1}{2}\left(-\pi+2 \tan ^{-1} \mathrm{x}\right)-\tan ^{-1} \mathrm{x}\right]=\sin \left(-\frac{\pi}{2}\right)=-1
\end{aligned}
$$

25.
26. (B)

$$
\begin{aligned}
& \mathrm{A}=\left(\tan ^{-1} \mathrm{x}\right)^{3}+\left(\cot ^{-1} \mathrm{x}\right)^{3} \\
& \mathrm{~A}=\left(\tan ^{-1} \mathrm{x}+\cot ^{-1} \mathrm{x}\right)^{3}-3 \tan ^{-1} \mathrm{x} \cot ^{-1} \mathrm{x}\left(\tan ^{-1} \mathrm{x}+\cot ^{-1} \mathrm{x}\right) \\
& \Rightarrow \mathrm{A}=\left(\frac{\pi}{2}\right)^{3}-3 \tan ^{-1} \mathrm{x} \cot ^{-1} \mathrm{x} \cdot \frac{\pi}{2} \\
& \Rightarrow \mathrm{~A}=\frac{\pi^{3}}{8}-\frac{3 \pi}{2} \tan ^{-1} \mathrm{x}\left(\frac{\pi}{2}-\tan ^{-1} \mathrm{x}\right) \\
& \Rightarrow \mathrm{A}=\frac{\pi^{3}}{32}+\frac{3 \pi}{2}\left(\tan ^{-1} \mathrm{x}-\frac{\pi}{4}\right)^{2} \\
& \text { as } \mathrm{x}>0 \\
& \quad \frac{\pi^{3}}{32} \leq \mathrm{A}<\frac{\pi^{3}}{8}
\end{aligned}
$$

2. (C)
$\mathrm{B}=\left(\sin ^{-1} \mathrm{t}\right)^{2}+\left(\cos ^{-1} \mathrm{t}\right)^{2}$
$B=\left(\operatorname{sizn}^{-1} t+\cos ^{-1} t\right)^{2}-2 \sin ^{-1} t \cos ^{-1} t$
$B=\frac{\pi^{2}}{4}-2 \sin ^{-1} t\left(\frac{\pi}{2}-\sin ^{-1} t\right)$
$B=\frac{\pi^{2}}{8}+2\left(\sin ^{-1} t-\frac{\pi}{4}\right)^{2}$
$\mathrm{B}_{\max }=\frac{\pi^{2}}{8}+2 \cdot \frac{\pi^{2}}{16}=\frac{\pi^{2}}{4}$
3. (A)

$$
\begin{aligned}
& \lambda=\frac{\pi^{3}}{32} \quad \mu=\frac{\pi^{2}}{4} \\
& \frac{\lambda}{\mu}=\frac{\pi}{8} \\
& \frac{\lambda-\mu \pi}{\mu}=\frac{\pi}{8}-\pi=\frac{-7 \pi}{8} \\
& \cot ^{-1} \cot \left(\frac{\lambda-\mu \pi}{\mu}\right)=\cot ^{-1} \cot \left(-\frac{7 \pi}{8}\right)=\frac{\pi}{8}
\end{aligned}
$$

26. (1)

$$
\begin{aligned}
& \left(\tan ^{-1} x\right)^{2}+\left(\cot ^{-1} x\right)^{2}=\left(\tan ^{-1} x+\cot ^{-1} x\right)^{2}-2 \tan ^{-1} x \\
& \left(\frac{\pi}{2}-\tan ^{-1} x\right)=\frac{\pi^{2}}{4}-\pi \tan ^{-1} x+2\left(\tan ^{-1} x\right)^{2}=\frac{5 \pi^{2}}{8} \\
& \therefore \quad \tan ^{-1} x=\frac{2 \pi}{3},-\frac{\pi}{4} \\
& \tan ^{-1} x=-\frac{\pi}{4} \quad\left\{\tan ^{-1} x \neq \frac{2 \pi}{3}\right\} \\
& \therefore \quad x=-1 \text { is the solution }
\end{aligned}
$$

27. (1)

$$
\begin{aligned}
& \tan ^{-1}\left[\frac{3 \sin 2 \alpha}{5+3 \cos 2 \alpha}\right]+\tan ^{-1}\left[\frac{\tan \alpha}{4}\right] \\
& =\tan ^{-1}\left(\frac{6 \tan \alpha}{8+2 \tan ^{2} \alpha}\right)+\tan ^{-1}\left(\frac{\tan \alpha}{4}\right) \\
& =\tan ^{-1}\left(\frac{\frac{3 \tan \alpha}{4+\tan ^{2} \alpha}+\frac{\tan \alpha}{4}}{1-\frac{3 \tan ^{2} \alpha}{16+4 \tan ^{2} \alpha}}\right) \\
& \left\{\because \frac{3 \tan ^{2} \alpha}{16+4 \tan ^{2} \alpha}<1\right\} \\
& =\tan ^{-1}(\tan \alpha)=\alpha
\end{aligned}
$$

28. $\tan \left(\frac{\pi}{4}+\alpha\right)$ when $\alpha=\tan ^{-1}\left(\frac{\frac{1}{4}+\frac{1}{5}}{1-\frac{1}{20}}\right)$;

$$
\begin{aligned}
& \alpha=\tan ^{-1}\left(\frac{9}{19}\right) \quad=\frac{1+\frac{9}{19}}{1-\frac{9}{19}}=\frac{28}{10}=\frac{14}{5}=\frac{\mathrm{a}}{\mathrm{~b}} \\
\Rightarrow \quad & 14-5=9
\end{aligned}
$$

$$
\begin{aligned}
& \text { 29. } \cos ^{-1}(2 x)+\cos ^{-1}(3 x)=\pi-\cos ^{-1}(x)=\cos ^{-1}(-x) \\
& \cos ^{-1}\left[(2 x)(3 x)-\sqrt{1-4 x^{2}} \sqrt{1-9 x^{2}}\right]=\cos ^{-1}(-x) \\
& 6 x^{2}-\sqrt{1-4 x^{2}} \cdot \sqrt{1-9 x^{2}}=-x \\
& \left(6 x^{2}+x\right)^{2}=\left(1-4 x^{2}\right)\left(1-9 x^{2}\right) \\
& \Rightarrow x^{2}+12 x^{3}=1-13 x^{2} \\
& \Rightarrow 12 x^{3}+14 x^{2}-1=0 \\
& \therefore a=12 ; b=14 ; c=0 \\
& \Rightarrow-a+b+c=2
\end{aligned}
$$

