SOLUTION AND COLLIGATIVE PROPERTIES

HINTS \& SOLUTIONS

EXERCISE-1

Single Choice

1. Initial moles of $\mathrm{KCl}=\frac{100}{1000} \times 0.1=0.01$

Let x moles of KCl are added, so

$$
0.2=\frac{0.01+x}{100 / 1000} \quad \text { or } \quad x=0.01
$$

2. $10 \mu \mathrm{~g}$ per decilitre
$\Rightarrow 10 \times 10^{-6} \mathrm{~g}$ in 100 mL
$\therefore 10^{9}$ parts $(1$ billion $)$ has $=\frac{10 \times 10^{-6}}{100} \times 10^{9} \mathrm{~g}=100 \mathrm{~g}$
3. Certain compounds combine with the moisture of atmosphere and are converted into hydroxides or hydrates. Such substances are called hygroscopic. e.g., anhydrous CuSO_{4}, quick lime (CaO), anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ etc.
4. (A) V.P. depends on temperature.
5. For two immiscible liquid;
$\mathrm{P}_{\mathrm{A}}^{\mathrm{o}}=\mathrm{P}_{\text {total }}-\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}^{\mathrm{O}}=748-648 \Rightarrow 100$
$\frac{\mathrm{W}_{\mathrm{A}}}{\mathrm{W}_{\mathrm{B}}}=\frac{\mathrm{P}_{\mathrm{A}}^{\circ} \mathrm{M}_{\mathrm{A}}}{\mathrm{P}_{\mathrm{B}}^{\circ} \mathrm{M}_{\mathrm{B}}} ; \mathrm{M}_{\mathrm{A}}=\frac{1.25}{1} \times \frac{648 \times 18}{100} \Rightarrow 145.8$
6. Let n_{B} mole of B present in 1 mole of mixture that has been vaporized. Thus, $y_{B}=\frac{n_{B}}{1}$
Mole fraction of B in the remaining liquid phase will be

$$
\begin{align*}
\mathrm{x}_{\mathrm{B}}= & \frac{1-\mathrm{n}_{\mathrm{B}}}{1} \\
\mathrm{x}_{\mathrm{B}}= & \frac{\mathrm{P}-\mathrm{P}_{\mathrm{T}}^{\circ}}{\mathrm{P}_{\mathrm{B}}^{o}-\mathrm{P}_{\mathrm{T}}^{o}} \tag{1}\\
& {\left[\because \mathrm{P}=\mathrm{P}_{\mathrm{T}}^{\mathrm{o}}+\left(\mathrm{P}_{\mathrm{B}}^{\mathrm{o}}-\mathrm{P}_{\mathrm{T}}^{\mathrm{o}}\right) \mathrm{x}_{\mathrm{B}}\right] } \\
\text { and } \mathrm{y}_{\mathrm{B}}= & \frac{\mathrm{P}_{\mathrm{B}}}{\mathrm{P}} \Rightarrow \frac{\mathrm{P}_{\mathrm{B}}^{\circ} \mathrm{x}_{\mathrm{B}}}{\mathrm{P}} \tag{2}
\end{align*}
$$

After substitution of values of x_{B} and y_{B} in (1) and (2)

$$
\begin{aligned}
& \text { we get } 1-n_{B}=\frac{\mathrm{P}-\mathrm{P}_{T}^{\circ}}{\mathrm{P}_{\mathrm{B}}^{\circ}-\mathrm{P}_{T}^{\circ}} \\
& \text { and } \mathrm{n}_{\mathrm{B}}=\frac{\left(1-\mathrm{n}_{\mathrm{B}}\right) \mathrm{P}_{\mathrm{B}}^{\circ}}{\mathrm{P}} \\
& \text { or } \mathrm{n}_{\mathrm{B}}=\frac{\mathrm{P}_{B}^{\circ}}{\mathrm{P}+\mathrm{P}_{\mathrm{B}}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { so } \quad 1-\frac{\mathrm{P}_{\mathrm{B}}^{\circ}}{\mathrm{P}+\mathrm{P}_{\mathrm{B}}}=\frac{\mathrm{P}-\mathrm{P}_{\mathrm{T}}^{\circ}}{\mathrm{P}_{\mathrm{B}}^{\circ}-\mathrm{P}_{\mathrm{T}}^{\circ}} \\
& \Rightarrow \mathrm{P}=\sqrt{\mathrm{P}_{\mathrm{B}}^{\circ} \cdot \mathrm{P}_{\mathrm{T}}^{\circ}}=\sqrt{100 \times 900} \\
& \Rightarrow 300 \text { torr }
\end{aligned}
$$

15. $760=300 \mathrm{X}_{\mathrm{A}}+800\left(1-\mathrm{X}_{\mathrm{A}}\right)$
$\Rightarrow 760=800-500 \mathrm{X}_{\mathrm{A}}$
$\Rightarrow 500 \mathrm{X}_{\mathrm{A}}=40$
$\therefore \quad \mathrm{X}_{\mathrm{A}}=\frac{40}{500}=0.08$.
16. $\mathrm{x}_{\mathrm{A}}=\frac{1}{1+3} \Rightarrow \frac{1}{4} ; \mathrm{x}_{\mathrm{B}}=\frac{3}{4}$;

$$
\begin{aligned}
& \frac{y_{A}}{y_{B}}=\frac{P_{A}^{\circ}}{P_{B}^{\circ}} \times \frac{x_{A}}{x_{B}} \\
& \frac{y_{A}}{\left(1-y_{A}\right)}=\frac{1}{3} \times \frac{1}{3} \\
\Rightarrow & \frac{1}{9} \text { or } y_{A}=\frac{1}{10}
\end{aligned}
$$

18. (A) An azeotropic mixture boil at particular temperature without changing its composition.
19. It shows negative deviation from Raoult's law

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{s}}(\text { actual })=580 \text { torr } \\
& \mathrm{p}_{\mathrm{s}}(\text { Raoult })=0.4 \times 300+0.6 \times 800=600 \text { torr }
\end{aligned}
$$

23. Solubility \propto pressure

$$
\begin{aligned}
& \frac{S_{2}}{S_{1}}=\frac{P_{2}}{P_{1}} \\
& S_{2}=5.3 \times 10^{-4} \times \frac{760}{593}=6.8 \times 10^{-4} \mathrm{M}
\end{aligned}
$$

26. $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{CO}_{3} \longrightarrow 2 \mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2-}$
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{NH}_{4} \mathrm{OH} \longrightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
$\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
But CH_{4} and H_{2} are insoluble gases in water.
27. $i=\frac{C(1-\alpha)+\frac{C \alpha}{n}}{C} \Rightarrow i=1-\alpha+\frac{\alpha}{n}$

29.	$\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \rightleftharpoons$	$\rightleftharpoons \mathrm{K}^{+}+$	$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
Att $=0$	1	0	0
After	$(1-\alpha)$	3α	$\alpha ;$

ionization

$$
i=1+3 \alpha
$$

Since, $i=\frac{M_{\text {normal }}}{M_{\text {abnormal }}}$
$\therefore \quad \frac{1+3 \alpha}{1}=\frac{\mathrm{M}_{\text {normal }}}{\mathrm{M}_{\text {abnormal }}}$
30. According to question $\mathrm{P}_{\mathrm{s}}=0.95 \mathrm{P}_{0}$
according raoult's law $\quad P_{s}=P_{0} X_{A}$
given $\mathrm{M}_{\mathrm{A}}=0.3 \mathrm{M}_{\mathrm{B}}$
$0.95 \mathrm{P}_{0}=\mathrm{P}_{0}\left(\frac{\frac{\mathrm{~W}_{A}}{M_{A}}}{\frac{W_{A}}{M_{A}}+\frac{W_{B}}{M_{B}}}\right) M_{A}=$ molecularwt. of solvent
$M_{B}=$ molecular wt. of solute
$0.95=\frac{\frac{W_{A}}{0.3 \mathrm{M}_{B}}}{\frac{\mathrm{~W}_{A}}{0.3 \mathrm{M}_{B}}+\frac{\mathrm{W}_{B}}{\mathrm{M}_{B}}} \quad \mathrm{~W}_{\mathrm{A}}=$ gram wt. of solvent
$\mathrm{W}_{\mathrm{B}}=$ gram wt. of solute
on solving $\quad \frac{\mathrm{W}_{\mathrm{A}}}{\mathrm{W}_{\mathrm{B}}}=5.7$.
32. $\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{ik}_{\mathrm{b}} \mathrm{m}$
so $i=\frac{2.08}{0.52 \times 1}=4$
so the complex is $\mathrm{K}_{3}\left[\mathrm{Fe}\left(\mathrm{CN}_{6}\right)\right]$

$$
\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \rightleftharpoons 3 \mathrm{~K}^{+}+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}
$$

33. (i) $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{m} \times \mathrm{K}_{\mathrm{f}}$
$0.2=\frac{\mathrm{X} \times 1000}{100} \times 1.86 \quad \mathrm{X}=\frac{0.2}{10 \times 1.86}$
after freezing
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{m} \times \mathrm{K}_{\mathrm{f}}$
$\Delta \mathrm{T}_{\mathrm{f}}=\frac{\mathrm{X} \times 1000}{(100-\mathrm{y})} \times 1.86 \quad \Delta \zeta \mathrm{~T}_{\mathrm{f}}=0.25$
On solving, Amount of ice $\mathrm{y}=20 \mathrm{~g}$ ice
34. $\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}}$.m. i

In 100 gm of solution
moles of $\mathrm{NaCl}=0.1$

$$
(\alpha=0.8)
$$

moles of $\mathrm{MgCl}_{2}=0.1$

$$
(\alpha=0.5)
$$

$\mathrm{NaCl} \longrightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}$
$\mathrm{i}_{\mathrm{NaCl}}=1+(2-1) 0.8=1.8$
Effective no. of moles of $\mathrm{NaCl}=0.1 \times 1.8=0.18$
$\mathrm{i}_{\mathrm{MgCl}_{2}}=1+(3-1) 0.5=2$
Effective no. of moles of $\mathrm{MgCl}_{2}=0.1 \times 2=0.2$
Total no.of mole $=0.18+0.2=0.38$
$\Delta \mathrm{T}_{\mathrm{b}}=\frac{0.38}{100} \times 100 \times 0.51=3.8 \times 0.51=1.938$
So, $\mathrm{T}_{\mathrm{b}}=100+1.938=101.938$
36. Boiling point of solution $=$ boiling point $+\Delta T_{b}=100+\Delta T_{b}$ Freezing point of solution $=$ freezing point $-\Delta \mathrm{T}_{\mathrm{f}}=0-\Delta \mathrm{T}_{\mathrm{f}}$ Difference in temperature (given) $=100+\Delta \mathrm{T}_{\mathrm{b}}-\left(-\Delta \mathrm{T}_{\mathrm{f}}\right)$ $104=100+\Delta \mathrm{T}_{\mathrm{b}}+\Delta \mathrm{T}_{\mathrm{f}}=100+$ molality $\times \mathrm{K}_{\mathrm{b}}+$ molality $\times \mathrm{K}_{\mathrm{f}}$ $=100+$ molality $(0.52+1.86)$
$\therefore \quad$ Molality $=\frac{104-100}{2.38}=\frac{4}{2.38}=1.68 \mathrm{~m}$
and molality $=\frac{\text { moles } \times 1000}{\mathrm{~W}_{\mathrm{gm}(\text { solvent })}} ; 1.68=\frac{\text { moles } \times 1000}{500}$
\therefore Moles of solute $=\frac{1.68 \times 500}{1000}=0.84$ moles.
38. $\pi_{\mathrm{I}}=2 \mathrm{R} \times 300 \times\left(1+\left(\frac{1}{2}-1\right) 1\right)=300 \mathrm{R}$ $\pi_{\text {II }}=0.5 \mathrm{R} \times 300 \times 2=300 \mathrm{R}$
42. Pressure of air $=750-100=650 \mathrm{~mm}$ of Hg
on compressing $\mathrm{P}_{\mathrm{f}}=\mathrm{Hg} 650 \times 3 \mathrm{mmofHg}=1950 \mathrm{mmofHg}$ so $P_{T}=(1950+100)=2050 \mathrm{mmofHg}$
45. Molarity $=\frac{0.967 / 159.5}{20 / 1000} \quad\left\{\begin{array}{c}\text { Mol.wt.of } \mathrm{CuSO}_{4} \\ 159.5\end{array}\right\}$

$$
=0.303 \mathrm{M}
$$

47. $\frac{\mathrm{W}_{\mathrm{A}}}{\mathrm{W}_{\mathrm{B}}}=\frac{\mathrm{P}_{\mathrm{A}}^{\circ}}{\mathrm{P}_{\mathrm{B}}^{\circ}} \times \frac{\mathrm{M}_{\mathrm{A}}}{\mathrm{M}_{\mathrm{B}}} \Rightarrow \frac{0.7}{7} \times \frac{112.5}{18} \Rightarrow 0.625$

$$
\% \frac{\mathrm{~W}_{\mathrm{A}}}{\mathrm{~W}_{\mathrm{A}}+\mathrm{W}_{\mathrm{B}}} \times 100=\frac{0.625}{1.625} \times 100 \Rightarrow 38.46
$$

49. Possible vapor pressures are
$\frac{75+22}{2}, \frac{75+10}{2}, \frac{22+10}{2}$ and $\frac{75+22+10}{3}=48 \frac{1}{2}$,
$42 \frac{1}{2}, 16,35 \frac{2}{3}$.
50. According to Raoult's law
$\mathrm{P}_{\mathrm{T}}=(0.08 \times 300+0.92 \times 800)$ torr $=(24+736)$ torr $=760$
torr $=1 \mathrm{~atm}$
$P_{\text {exp. }}=0.95 \mathrm{~atm}<1 \mathrm{~atm}$
Hence solution shows -ve deviation
so $\Delta \mathrm{H}_{\text {mix }}<0, \quad$ and $\Delta \mathrm{V}_{\text {mix }}<0$.
51. $\mathrm{P}^{\prime}{ }_{\mathrm{A}}=\mathrm{P}_{\mathrm{A}}{ }^{\circ} \mathrm{X}_{\mathrm{A}}$ and $\mathrm{P}_{\mathrm{B}}{ }^{\prime}=\mathrm{P}_{\mathrm{B}}^{\mathrm{o}} \mathrm{X}_{\mathrm{B}}$
$\mathrm{P}^{\prime}{ }_{A}=\mathrm{P}_{\mathrm{M}} \cdot \mathrm{Y}_{\mathrm{A}}$ and $\mathrm{P}_{\mathrm{B}}{ }_{\mathrm{B}}=\mathrm{P}_{\mathrm{M}} \cdot \mathrm{Y}_{\mathrm{B}}$
$\therefore \frac{\mathrm{P}_{\mathrm{A}}^{\prime}}{\mathrm{Y}_{\mathrm{A}}}=\frac{\mathrm{P}_{\mathrm{B}}^{\prime}}{\mathrm{Y}_{\mathrm{B}}}$
or $\quad \frac{\mathrm{P}_{\mathrm{A}}^{\circ} \mathrm{X}_{\mathrm{A}}}{\mathrm{Y}_{\mathrm{A}}}=\frac{\mathrm{P}_{\mathrm{B}}^{\circ} \mathrm{X}_{\mathrm{B}}}{\mathrm{Y}_{\mathrm{B}}}=\frac{\mathrm{P}_{\mathrm{B}}^{\circ}\left(1-\mathrm{X}_{\mathrm{A}}\right)}{\left(1-\mathrm{Y}_{\mathrm{A}}\right)}$
or $\frac{P_{A}^{\circ} X_{A}}{Y_{A}}\left(1-Y_{A}\right)=P_{B}^{\circ}-P_{B}^{\circ} X_{A}$
or $\frac{\mathrm{P}_{\mathrm{B}}^{\circ}}{\mathrm{X}_{\mathrm{A}}}=\frac{\mathrm{P}_{\mathrm{A}}^{\circ}}{\mathrm{Y}_{\mathrm{A}}}+\left(\mathrm{P}_{\mathrm{B}}^{\mathrm{o}}-\mathrm{P}_{\mathrm{A}}^{\mathrm{o}}\right)$
or $\frac{1}{\mathrm{X}_{\mathrm{A}}}=\frac{1}{\mathrm{Y}_{\mathrm{A}}} \cdot \frac{\mathrm{P}_{A}^{\circ}}{\mathrm{P}_{\mathrm{B}}^{\circ}}+\frac{\left(\mathrm{P}_{\mathrm{B}}^{\circ}-\mathrm{P}_{A}^{\circ}\right)}{\mathrm{P}_{\mathrm{B}}^{\circ}}$
or $\mathrm{y}=\mathrm{mx}+\mathrm{C}$
$\therefore \quad$ Slope $=m=\frac{\mathrm{P}_{A}^{\circ}}{\mathrm{P}_{\mathrm{B}}^{\circ}}$ and intercept $\mathrm{C}=\frac{\left(\mathrm{P}_{\mathrm{B}}^{\circ}-\mathrm{P}_{\mathrm{A}}^{\circ}\right)}{\mathrm{P}_{\mathrm{B}}^{\circ}}$.
52. $3 \mathrm{~S} \rightleftharpoons \mathrm{~S}_{3}$

10
$1-\alpha \quad \frac{\alpha}{3} \quad \Rightarrow \quad i=1-\frac{2 \alpha}{3}$

Now

$$
0.1\left(1-\frac{2 \alpha}{3}\right)=0.08
$$

$\Rightarrow \quad \alpha=0.3$. Hence 30% trimerization.
63. $\frac{\Delta \mathrm{P}}{\mathrm{P}}=\frac{\mathrm{ni}}{\mathrm{ni}+\mathrm{N}}$
$0.5=\frac{2 \mathrm{i}}{2 \mathrm{i}+3}$
$\mathrm{i}+1.5=2 \mathrm{i}$
$\mathrm{i}=1.5$
$\mathrm{i}=1+(\mathrm{y}-1) \alpha$
$1.5=1+(2-1) \alpha$
$\alpha=0.5$
mole of $\mathrm{Cl}^{-}=1.0$
mole of AgCl ppt. $=1.0$
Ans. (A)
66. $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} . \mathrm{m} . \mathrm{K}_{\mathrm{f}}$
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i}_{1} \mathrm{~m}_{1} \mathrm{~K}_{\mathrm{f}}+\mathrm{i}_{2} \mathrm{~m}_{2} \mathrm{~K}_{\mathrm{f}}+\mathrm{i}_{3} \mathrm{~m}_{3} \mathrm{~K}_{\mathrm{f}}=\left(\mathrm{m}_{1}+2 \mathrm{~m}_{2}+\mathrm{m}_{3}\right) \mathrm{K}_{\mathrm{f}}$
$\Delta \mathrm{T}_{\mathrm{f}}=\frac{\frac{3}{60}+\frac{7.45 \times 2}{74.5}+\frac{9}{180}}{100} \times 1000 \times 1.86$
$\Delta \mathrm{T}_{\mathrm{f}}=3 \times 1.86=5.58$
T_{f} of solution $=273-5.58=267.42 \mathrm{~K}$ Ans .
68. Mole of solute in first beaker $=\frac{0.05 \times 20}{1000}=0.001$
mole of solute $\left(\mathrm{Na}^{+} \& \mathrm{Cl}^{-}\right)$in other beaker $=\frac{2 \times 0.03 \times 20}{1000}$

$$
=0.0012
$$

conc. of IInd beaker is higher then Ist beaker so water flows from Ist beaker to IInd beaker till both beaker achieved equal conc. let v volume of water flows from Ist to IInd beaker
so $\frac{0.001}{20-v}=\frac{0.0012}{20+v}$
$\mathrm{v}=1.8 \mathrm{ml}$
volume of Ist beaker $=20-1.8=18.2 \mathrm{ml}$
volume of IInd beaker $=20+1.8=21.8 \mathrm{ml}$.
73. Solubility increases with decrease in temperature. But solubility increases with increase in pressure according to Henry's Law.
74. I. Melting of snow by salt : Depression in freezing point
III. Desalination of sea water : Reverse osmosis
III. Osmosis is used to determine the molar mass.
75. When non volatile solute added to solvent. Due to elevation in boiling point, boiling point \uparrow and due to dispersion in freezing point, freezing temperature \downarrow
76. Given, In $150 \times 10^{3} \mathrm{gm}$ of sample -450 mg is present

$$
\begin{aligned}
& \text { so in } 10^{6} \mathrm{gm}-\frac{450 \times 10^{-3}}{150 \times 10^{3}} \times 10^{6} \\
& =3 \mathrm{ppm}
\end{aligned}
$$

77. Let volumes taken by ' x ' \& ' y ' litres,
so $\frac{0.1 x+0.4 y}{x+y}=0.34 \& \quad V_{g}=(x+y)$ (to be maximised)
so $\mathrm{y}=4 \mathrm{x}$ so for maximum volume
$y=2 L \quad \& x=\frac{1}{2} L$
78. Mole of $\mathrm{H}_{2} \mathrm{O}=\frac{36}{18}=2$

Mole of glycerine $=\frac{46}{92}=0.5$
total mole $=2+0.5=2.5$
Mole fractions of glycerine $=\frac{\mathrm{n}_{1}}{\mathrm{n}_{1}+\mathrm{n}_{2}}=\frac{0.5}{2.5}$
$\Rightarrow \mathrm{X}_{0}=0.2$ Ans.
79. $\mathrm{i}=$ van't Hoff factor $=1+(\mathrm{y}-1) \mathrm{x}$
($y=$ number of ions, $x=$ degree of ionisation)

$$
\begin{array}{lll}
& & \mathrm{y} \\
\mathrm{i}=1+(\mathrm{y}-1) \mathrm{x} \\
\text { (A) } \mathrm{K}_{2} \mathrm{PtCl}_{4} & 2 \mathrm{~K}^{+}+\mathrm{PtCl}_{4}^{2-} & 3 \\
1+2=3 \\
\text { (B) } \mathrm{K}_{2} \mathrm{PtCl}_{6} & 2 \mathrm{~K}^{+}+\mathrm{PtCl}_{6}^{2-} & 3 \\
\text { In (A), oxidation number of } \mathrm{Pt}=2 \\
\text { In (B) oxidation number of } \mathrm{Pt}=4
\end{array}
$$

80. i remains unchanged when number of ions before and after complex ion remains constant.

Solute	y	Complex	y
(A) PtCl_{4}	5	$\mathrm{~K}_{2}\left[\mathrm{PtCl}_{6}\right]$	3
(B) ZnCl_{2}	3	$\mathrm{Zn}\left[\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}_{2}$	3

81. $\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$
$\mathrm{i}=[1+(\mathrm{y}-1) \mathrm{x}]=1+\mathrm{x}$
$\mathrm{pK}_{\mathrm{a}}=4=-\log \mathrm{K}_{\mathrm{a}}$
$\therefore \quad \mathrm{K}_{\mathrm{a}}=10^{-4}=\mathrm{Cx}^{2}$
$1 \times 10^{-4}=0.01 \times \mathrm{x}^{2} \Rightarrow \mathrm{x}=0.1 \quad \therefore \quad \mathrm{i}=1+\mathrm{x}=1.1$
82.

1 atm

Normal boiling point of the solution is that temperature at which vapour pressure of solution equals to 1 atm .
83. All are facts.

We should remember that, Entropy of solution is more than entropy of pure solvent. So the difference in entropy change will be less in case of solution.
84. $\Delta \mathrm{T}=\frac{1000 \mathrm{~K}_{\mathrm{b}} \mathrm{W}_{1}}{\mathrm{~m}_{1} \mathrm{w}_{2}}$

$$
\begin{aligned}
& \frac{\Delta \mathrm{T}}{\mathrm{~K}_{\mathrm{b}}}\left(\mathrm{AB}_{2}\right)=\frac{1000 \times 6}{\mathrm{~m}_{1} \times 100}=1 \\
\therefore \quad & \mathrm{~m}_{1}\left(\mathrm{AB}_{2}\right)=60=\mathrm{A}+2 \mathrm{~B} \\
& \frac{\Delta \mathrm{~T}}{\mathrm{~K}_{\mathrm{b}}}\left(\mathrm{~A}_{2} \mathrm{~B}\right)=\frac{1000 \times 9}{\mathrm{~m}_{1} \times 100}=1 \\
\therefore \quad & \mathrm{~m}_{1}\left(\mathrm{~A}_{2} \mathrm{~B}\right)=90=2 \mathrm{~A}+\mathrm{B} \\
\therefore \quad & \mathrm{~A}=40, \mathrm{~B}=10
\end{aligned}
$$

85. As $\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \mathrm{K}_{\mathrm{b}} \mathrm{m}$
so $i \mathrm{~K}_{\mathrm{b}} \mathrm{m}$ can be expressed in degree (Unit of temperature)
and $K_{b} m$ can be expressed in degree (Unit of temperature)
and $\frac{\Delta T_{b}}{i}$ can be expressed in degree (Unit of temperature)
But unit of K_{b} is $\mathrm{mol}^{-1} \mathrm{~kg} \mathrm{~K}$
86. As $\Delta \mathrm{T}_{\mathrm{b}}=$ molality $\times \mathrm{K}_{\mathrm{b}}$
$0.52=\mathrm{m} \times 0.52$
molality $=1 \mathrm{~mol} \mathrm{~kg}^{-1}$
$\therefore \quad$ urea $=1 \mathrm{~mol}$
moles of water $=\frac{1000}{18}=55.55$
mole fraction of urea $=\frac{1}{56.55}=\mathbf{0 . 0 1 8}$
87. $\pi=$ CRT
$\pi=\frac{\mathrm{c}}{\mathrm{M}} \mathrm{RT} \quad \mathrm{C}=$ moles $/$ liter, $\mathrm{c}=\mathrm{kg} / \mathrm{m}^{3}$
$\frac{\pi}{c}=\frac{\mathrm{RT}}{\mathrm{M}}$
$\mathrm{M}=\frac{\mathrm{RT}}{\pi / \mathrm{c}} \quad\left[\pi / \mathrm{c}=8.314 \times 10^{-3}\right]$
[$\mathrm{T}=293 \mathrm{k}$]
$\mathrm{M}=\frac{8.314 \times 293}{8.314 \times 10^{-3}}=293 \times 10^{3}$
88. Given $\Delta \mathrm{T}_{\mathrm{b}}=1.08^{\circ} \mathrm{C}, \quad \mathrm{i}=2$ at boiling pt. of solution. and $\Delta \mathrm{T}_{\mathrm{f}}=1.80^{\circ} \mathrm{C}$, and $\frac{\mathrm{k}_{\mathrm{b}}}{\mathrm{k}_{\mathrm{f}}}=0.3$
so $\frac{\Delta \mathrm{T}_{\mathrm{b}}}{\Delta \mathrm{T}_{\mathrm{f}}}=\frac{\mathrm{i}_{\mathrm{b}} \mathrm{k}_{\mathrm{b}} \mathrm{m}}{\mathrm{i}_{\mathrm{f}} \mathrm{k}_{\mathrm{f}} \mathrm{m}}$
so $i_{f}=1$
i.e., AB behaves as non-electrolyte at the f.p of the solution.
89. $1 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\left(\right.$ molar mass $\left.=180 \mathrm{~g} \mathrm{~mol}^{-1}\right)$

1000 mL solution has $=180 \mathrm{~g}$ solute
1180 g solution has $=180 \mathrm{~g}$ solute
1000 g solvent has $=180 \mathrm{~g}$ solute
Thus, molality $=1$ molal
$\therefore \quad \Delta \mathrm{T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}}$ molality $=1.86 \times 1=1.86^{\circ}$
$\therefore \quad$ F.P. $=-1.86^{\circ} \mathrm{C}$
90. Firstly we have to convert mole fraction into molality .

Molality $=\frac{\mathrm{X}_{\text {solute }}}{\mathrm{x}_{\text {solvent }} \mathrm{M}_{\text {solvent }} / 1000}=\frac{0.07 \times 1000}{0.93 \times 18}=4.18$
Now, $\quad \Delta \mathrm{T}_{\mathrm{f}}=\mathrm{k}_{\mathrm{f}} \mathrm{m}$

$$
=1.86 \times 4.18=7.78^{0} .
$$

91. $\mathrm{P}=\mathrm{P}_{\mathrm{A}}{ }^{\circ} \mathrm{X}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}{ }^{\circ} \mathrm{X}_{\mathrm{B}}$

$$
\frac{100}{4}+\frac{60 \times 3}{4}
$$

$$
=70 \mathrm{~mm}<75 \mathrm{~mm} \text { (experimental) }
$$

Thus, there is positive deviation (A) is true, mixture is more volatile due to decrease in b.p. Thus, (B) is true also force of attraction is decreased thus (C) is true.
92. $\mathrm{PV}=\mathrm{nRT}$
$\mathrm{P}_{\text {mix }}=7.82 \times 10^{4} \mathrm{~Pa}$
$\mathrm{P}_{2}+\mathrm{P}_{1}=7.82 \times 10^{4} \mathrm{~Pa}$
$\mathrm{P}_{1}=7.03 \times 10^{4} \mathrm{~Pa}$
$\mathrm{P}_{2}=0.79 \times 10^{4} \mathrm{~Pa}$
$\mathrm{P} \propto \mathrm{n}$
$\frac{\mathrm{w}_{2} \mathrm{~m}_{1}}{\mathrm{w}_{1} \mathrm{~m}_{2}}=\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}$
$\mathrm{w}_{2}=\mathrm{w}_{1} \frac{\mathrm{p}_{2} \mathrm{~m}_{2}}{\mathrm{p}_{1} \mathrm{~m}_{1}}=\frac{0.79 \times 10^{4} \times 112.5}{7.03 \times 10^{4} \times 18}=0.70$
93. $R L V P=i \frac{n}{n+V}$
so $\quad 0.167=\frac{2 \times n}{n+\frac{180}{18}}$
so $n=1$
94. From given graph, we can say T_{1} is that temp at which solid state and liquid (solution) are in equilibrium.
95. (A) Entropy of solution $>$ Entropy of pure solvent

$$
(\Delta \mathrm{S})_{\text {solution-solid }}>(\Delta \mathrm{S})_{\text {solvent-solid }}
$$

In solution, number of particle is greater so solution have greater entropy.
(B) Only solvent involved in solid-liquid equilibrium.
(C) $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{T}_{\text {solvent }}-\mathrm{T}_{\text {solution }}$

96. All $\Delta \mathrm{S}_{1}, \Delta \mathrm{~S}_{2}, \Delta \mathrm{~S}_{3}$ and $\Delta \mathrm{S}_{4}$ are correct entropy changes.
97. On mixing non-volatile solute, elevation in boiling point takes place.
98. Colligative property of a solution depends on no. of particles of solute in solution.
99. Value of van't Hoff factor is least for urea solution, so there will be least depression in freezing point i.e., maximum freezing point.
100. $\mathrm{P}_{\mathrm{T}}=\mathrm{X}_{\mathrm{A}} \mathrm{p}_{\mathrm{A}}^{\circ}+\mathrm{X}_{\mathrm{B}} \mathrm{p}_{\mathrm{B}}^{\circ}$

$$
=\left(\frac{2}{4}\right) \times 80+\left(\frac{2}{4}\right) \times 120=100 \text { Torr }
$$

Now mole fraction in vapour phase $=\frac{\mathrm{X}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}}^{0}}{\mathrm{P}_{\mathrm{T}}}=\frac{40}{100}=0.4$.
101. $\frac{268-167}{268}=\mathrm{x} \Rightarrow$ So $\mathrm{x}=0.377$.
102. Boiling point get lowered when vapour pr. increases and it happens when there is a positive deviation from Raoult's law.
103. As van't Hoff factor increases RLVP increases
i.e., V.P. decreases $y>x>z$

Elevation in b.p. increases
i.e., b.p. increases $\quad y<x<z$

Depression in f.p increases
i.e., f.p decreases $\quad y>x>z$

Osmotic pressure increases so $\mathrm{y}<\mathrm{x}<\mathrm{z}$.
104. In HF hydrogen bonding is present so there is association of molecules due to this van't hoff factor is less, so depression in f.p decreases therefore f.p. value is larger than HCl . Similarly value of $\mathrm{i}=2$ for NaCl and i $=1$ for Glucose.

$$
\begin{aligned}
105 . p_{A} & =X_{A} p_{A}^{\circ} \\
32 & =X_{A} 40 \\
\therefore \quad X_{A} & =\frac{32}{40}=0.8
\end{aligned}
$$

106. For urea, $\Delta T_{f}=k_{f} \times m \quad$ or $\mathrm{k}_{\mathrm{f}}=\frac{\Delta \mathrm{T}_{\mathrm{f}}}{\mathrm{m}}=\frac{1.86}{1}=1.86$
Now for $\mathrm{CH}_{3} \mathrm{COOH}$

$$
\begin{aligned}
& \Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \mathrm{k}_{\mathrm{f}} \mathrm{~m} \\
& \text { so } \mathrm{i}=\frac{0.02046}{1.86 \times 0.01}=1.1 \\
& \text { Now } \quad \mathrm{i}=1+\alpha \\
& \text { so } \alpha=1.1-1=0.1 \\
& \text { Now } \mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+} \\
& \mathrm{C} \\
& \mathrm{C}-\mathrm{C} \alpha \\
& 0
\end{aligned}
$$

$\left[\mathrm{H}^{+}\right]=\mathrm{C} \alpha=0.01 \times 0.1=0.001$
so $\mathrm{pH}=3$.
107. $\mathrm{RLVP}=\frac{\mathrm{in}_{\mathrm{NaCl}}}{\mathrm{in}_{\mathrm{NaCl}}+\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}}$

$$
0.4=\frac{i}{i+3}
$$

so $i=2$
$\because \quad i=1+\alpha$ so $\alpha=1$ or 100%
108. Mixtures of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ shows positive deviation from Raoult's law, so vapour pr. increases and b.p decreases.
109. Wt. of $\mathrm{CCl}_{4}=1.538 \times 100=153.8 \mathrm{gm}$
so moles of $\mathrm{CCl}_{4}=\frac{153.8}{154} \approx 1$
moles of solute $=\frac{0.5}{65}=0.00769$
Now $\quad \frac{P_{0}-P_{S}}{P_{S}}=\frac{n}{N}$
or $\frac{143-\mathrm{P}_{\mathrm{S}}}{\mathrm{P}_{\mathrm{S}}}=\frac{0.00769}{1}$
so $\mathrm{P}_{\mathrm{S}}=141.9 \mathrm{mmHg}$.
110. $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{k}_{\mathrm{f}} \mathrm{m}$.
$\Delta \mathrm{T}_{\mathrm{f}}=1.86 \times 0.5=0.93$.
so $\mathrm{T}_{\mathrm{f}}=-0.93^{\circ} \mathrm{C}$.
111. More the value of van't hoff factor, more will be the depression in freezing point.
112. L indicates elevation in boiling pt. i.e., $\mathrm{k}_{\mathrm{b}} \mathrm{m}$.
113. Osmotic pressure $=$ CRT

$$
=0.30 \times 0.082 \times 298=7.34 \mathrm{~atm}
$$

114. Due to high entropy of solution than pure solvent, f.p decreases.
115. $\pi=$ MRT $\mathrm{i}: \mathrm{y} \uparrow, \mathrm{i} \uparrow, \pi \uparrow$
116. (B.P.) $)_{\text {mix }}$ is less than pure component, so intermolecular force is less so vapour pressure \uparrow and solution have positive deviation from Raoult's law.
117. Acetone and chloroform forms hydrogen bonding so volume decreases.
118. Mole fraction of more volatile substance is greater in vapour phase.
119. $\mathrm{M}_{\text {observed }}=\frac{58.5}{\mathrm{i}} \quad ; \quad \mathrm{i}>1$.
120. Due to weak force of attraction more vapour will be formed so vapour pressure will be high.
121. Freezing point and boiling point are used in temperature scale.
122. Volatile nature \uparrow, vapour pressure increases, fraction in vapour phase increases.
123. This is due to cage like structure ice.
124. There is very weak attraction between benzene and methanol as compare to attraction between molecules of methanol.
125. $\mathrm{p}=\mathrm{CRT}$ order of conc is urea $>$ glucose $>$ sucrose
126. $9.3=\frac{50}{62 \times(200-\mathrm{w})} \times 1000 \times 1.86 \times 1$
$\mathrm{w}=38.71 \mathrm{~g}$.
127. In liquid \rightleftharpoons vapour equilibrium, molecule have same kinetic energy.
128. The order of force attraction and boiling point is $\mathrm{CH}_{3} \mathrm{OH}>\mathrm{CH}_{4}>\mathrm{H}_{2}$.
129. At freezing point liquid solvent and solid solvent are in equilibrium.

EXERCISE - 2

Part \# I : Multiple Choice
1.

	$\mathrm{A}_{\mathrm{x}} \mathrm{B}_{\mathrm{y}} \rightleftharpoons \mathrm{xA}^{\mathrm{y}+}+\mathrm{yB}^{\mathrm{x+}}$		
Initial moles	n	o	o
At eq b.	$\mathrm{n}(1-\alpha)$	$\mathrm{nx} \alpha$	$\mathrm{ny} \alpha$

$$
\mathrm{i}=\frac{\text { Totalmolat equilirium }}{\operatorname{lnitialmol}}=\frac{\mathrm{n}[(1-\alpha)+\mathrm{x} \alpha+\mathrm{y} \alpha]}{\mathrm{n}}
$$

$\mathrm{i}=(1-\alpha)+\mathrm{x} \alpha+\mathrm{y} \alpha$
It can also seen that all other expressions imply the same thing.
(A) $\alpha=\frac{i-1}{x+y-1}$
(B) $i=(1-\alpha)+x \alpha+y \alpha$.
(C) $\frac{1-i}{1-x-y}$
2. $\mathrm{P}=\mathrm{MST}$
$\mathrm{P}=\frac{\mathrm{n}}{\mathrm{V}} \times \mathrm{ST}$
$P=\frac{W}{V \times M} \times S T$
$\frac{\mathrm{P}}{\mathrm{d}}=\frac{\mathrm{ST}}{\mathrm{M}}$
4. For - ve deviation $\quad \mathrm{A}--\mathrm{B}>\mathrm{A}--\mathrm{A}$

$$
\mathrm{A}--\mathrm{B}>\mathrm{B}--\mathrm{B}
$$

- ve deviation solution are non ideal solution.

6. Molality , Molarity , Percent by mass and Normality all can be related to mole fraction (by using density).
7. As concentration values are same for all solutions, so osmotic pr. will depend on van't hoff factor (i).
I II III IV
glucose (aq.) NaCl (aq.) $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}(\mathrm{aq})$ Benzoic acid in benzene
$\begin{array}{lllll}\text { Value } & 1 & 2 & 4 & 0.5\end{array}$
of i
more the value of i, more is the osmotic pressure.
8. If intermolecular forces are weak then less amount of $\Delta \mathrm{H}_{\text {vap }}$ is reqd. therefore high vapour pressure is obtained.
9. For ideal solutions:
$\begin{array}{ll}\Delta \mathrm{V}_{\text {mix }}=0 & \text { and } \quad \Delta \mathrm{H}_{\text {mix }}=0 \\ \Delta \mathrm{~S}_{\text {mix }}=-\mathrm{ve} & \end{array}$
10. Since intermolecular forces between solvent molecules are involved, so $\Delta \mathrm{H}$ of solution and solvent is almost identical.
11. $\quad \mathrm{X}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}}^{0}+\mathrm{X}_{\mathrm{B}} \mathrm{P}_{\mathrm{B}}{ }^{0}=0.25 \times 512+0.75 \times 344=386 \mathrm{~mm}$ Now $\quad P_{A}+P_{B}=600 \mathrm{mmHg}$ (Given) so $\quad P_{A}+P_{B}>X_{A} P_{A}{ }^{0}+X_{B} P_{B}{ }^{0}$
therefore, there is positive deviation from Raoult's law $\Delta \mathrm{H}>0 \quad$ i.e., heat is absorbed.
12. When mixture is more volatile, total pressure increases so there is a positive deviation from Raoult's law, and vice - versa.
13. $P=119 x+135$
$x=1$ for pure methanol.
so $\mathrm{P}_{\text {methanol }}^{0}=119+135=254$ Torr
But for pure ethanol $\mathrm{x}=0$
so $\mathrm{P}_{\text {ethanol }}^{0}=135$ Torr
14. When solute added to the solvent, the vapour pressure of solution decreases.
15. $\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{mK}_{\mathrm{b}} \mathrm{i} ; \quad \mathrm{K}_{\mathrm{b}}=\frac{\mathrm{RT}^{2}}{1000 \Delta \mathrm{H}_{\text {vapour }}}$
16. Ideal gas equation, $\mathrm{PV}=\mathrm{nRT}$

Solute particle is similar as gas molecule.
17. $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{mK}_{\mathrm{f}} \mathrm{i}$
18. Temperature \uparrow, vapour pressure \uparrow.
19. In solution, lesser number of solvent molecules have tendency to form vapour. Only solvent molecule under go phase transition.
20. $\mathrm{i}=1+(\mathrm{x}+\mathrm{y}-1) \alpha$

Part \# II : Assertion \& Reason

1. The benzoic acids forms a dimer due to H -bonding as

2. Extent of dissociation increases steadily with increasing dilution.
3. As degree of dissociation of HF increases on dilution.

EXERCISE - 3
Part \# I : Matrix Match Type
2. (A) Acetone $+\mathrm{CHCl}_{3}$-ve deviation from Raoult's law $\Delta \mathrm{S}>0$
$\Delta \mathrm{H}<0 \quad \Delta \mathrm{~V}<0$
Maximum Boiling Azeotropes.
(B) Ethanol + Water +ve Deviation from Raoult's law $\Delta \mathrm{S}>0$
$\Delta \mathrm{H}>0 \quad \Delta \mathrm{~V}>0 \quad$ Minimum Boiling Azeotropes
(C) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I} \quad$ Ideal solution No Azeotropes
$\Delta \mathrm{H}=0 \quad \Delta \mathrm{~V}=0$
(D) Acetone + Benzene +ve Deviation from Raoults law
$\Delta \mathrm{H}>0 \quad \Delta \mathrm{~V}>0$
$\Delta \mathrm{S}>0$ Minimum Boiling
Azeotropes

Part \# II : Comprehension

Comprehension \# 1 :
2. (1) $0.74=\frac{0.0821}{250 \times 10^{-3}} \times 300\left(\frac{\mathrm{x}}{60}+\frac{1-\mathrm{x}}{180}\right)$

$$
x=0.176
$$

$\%$ urea $=\frac{0.176}{1} \times 100=17.6$
(2) $\frac{\mathrm{dP}}{\mathrm{P}}=\mathrm{X}_{\text {solute }}=\frac{\frac{0.176}{60}+\frac{0.824}{180}}{\frac{0.176}{60}+\frac{0.824}{180}+\frac{250}{18}}=5.4 \times 10^{-4}$
(3) $\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{mK}_{\mathrm{b}}=\left(\frac{0.176}{60}+\frac{0.824}{180}\right) \times \frac{1000}{250} \times 0.5=0.015$
$\Delta \mathrm{T}_{\mathrm{b}}=100.015$.
Comprehension \#2:

1. B , C and D are the conditions and facts for positive deviation from Raoult's law.
(A) is incorrect.

Because $A-B$ attractive force should be weaker than A -A and $\mathrm{B}-\mathrm{B}$ attractive forces.
2. $\mathrm{X}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}}{ }^{0}+\mathrm{X}_{\mathrm{B}} \mathrm{P}_{\mathrm{B}}{ }^{0}=\frac{1}{4} \times 100+\frac{3}{4} \times 60=70 \mathrm{~mm}$ of Hg
$\operatorname{Now} P_{A}+P_{B}>X_{A} P_{A}{ }^{0}+X_{B} P_{B}{ }^{0}$
i.e., positive deviation from Raoult's law.
for positive deviation,
B.P. $<$ expected value
$\mathrm{F}_{\mathrm{A} \ldots \mathrm{B}}<\mathrm{F}_{\mathrm{A} \ldots \mathrm{A}}$
$\mathrm{F}_{\mathrm{A} \ldots \mathrm{B}}<\mathrm{F}_{\mathrm{B} \ldots \mathrm{B}}$
EXERCISE - 4

Subjective Type

2. $\frac{\mathrm{P}^{0}-21.85}{21.85}=\frac{30 \times 18}{90 \times \mathrm{m}}$ for I case......

Now Weight of solvent $=90+18=108 \mathrm{~g}$

$$
\frac{\mathrm{P}^{0}-22.15}{22.15}=\frac{30 \times 18}{108 \times \mathrm{m}} \quad \text { for II case.......II }
$$

$\therefore \quad$ Byeq. (i) $\quad \mathrm{P}^{\circ} \mathrm{m}-21.85 \mathrm{~m}=21.85 \times 6=131.1$
By eq. (ii) $\quad \mathrm{P}^{\circ} \mathrm{m}-22.15 \mathrm{~m}=22.15 \times 5=110.75$

$$
\begin{aligned}
& 0.30 \mathrm{~m}=20.35 \\
& \mathrm{~m}=\frac{20.35}{0.30}=67.83
\end{aligned}
$$

On substituting in Eq. (i), $\frac{\mathrm{P}^{0}-21.85}{21.85}=\frac{30 \times 18}{90 \times 67.83}$
$\mathrm{P}^{0}=\mathbf{2 3 . 7 8} \mathbf{~ m m}$
3. $\Delta \mathrm{T}_{\mathrm{f}}=\frac{1000 \mathrm{~K}_{\mathrm{f}} \mathrm{W}_{2}}{\mathrm{M}_{2} \mathrm{~W}_{1}}$
$\mathrm{M}_{2}=\frac{1000 \times 5.12 \times 2}{0.6 \times 100} \quad \mathrm{M}_{2}=170.6 \mathrm{gm} / \mathrm{mol}$
5. Given that,
$\mathrm{P}^{\circ}=640 \mathrm{~mm}, \mathrm{P}_{\mathrm{s}}=600 \mathrm{~mm}, \mathrm{w}=2.175 \mathrm{~g}, \mathrm{~W}=39.0 \mathrm{~g}, \mathrm{M}$ $=78$
$\because \quad \frac{\mathrm{P}^{0}-\mathrm{P}_{\mathrm{s}}}{\mathrm{P}_{\mathrm{s}}}=\frac{\mathrm{w} \times \mathrm{M}}{\mathrm{m} \times \mathrm{W}}$
$\therefore \quad \frac{640-600}{600}=\frac{2.175 \times 78}{\mathrm{~m} \times \mathrm{W}}$
$\therefore \quad \mathrm{m}=65.25$
6. Given
$\Delta \mathrm{T}=\frac{1000 \times \mathrm{K}_{\mathrm{f}}^{\prime} \times \mathrm{W}}{\mathrm{m} \times \mathrm{W}}$
$\mathrm{W}=\mathrm{wt}$. of benzene $=\mathrm{V} \times \mathrm{d}=50 \times 0.879 \mathrm{~g}$
$\therefore \quad 0.48=\frac{1000 \times 5.12 \times 0.643}{\mathrm{~m} \times 50 \times 0.879}$
$\Delta \mathrm{T}=5.51-5.03=0.48$
$\therefore \quad \mathrm{m}=156.06$
$\mathrm{w}=0.643 \mathrm{~g}, \mathrm{~K}_{\mathrm{f}}^{\prime}=5.12 \mathrm{~K} \mathrm{~mol}^{-1} \mathrm{~kg}$
11. $\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \mathrm{K} \mathrm{b}_{\mathrm{b}} \mathrm{m} \quad 0.46=\mathrm{i} \times 0.52 \times \frac{0.011 \times 10^{3}}{0.1 \times 261}$
$\mathrm{i}=2.098 \quad \alpha=\frac{\mathrm{i}-1}{\mathrm{n}-1}$
$\Rightarrow \frac{2.098-1}{3-1} \quad \alpha \Rightarrow 0.55$
13. $\Delta \mathrm{T}=\mathrm{K}_{\mathrm{f}} \times$ molality $\times(1+\alpha)$

For acetic acid : $\mathrm{CH}_{3} \mathrm{COOH}$

$\begin{array}{ccc}1-\alpha & \alpha & \alpha\end{array}$
Given, $\alpha=0.23$; Also, molality
$=\frac{\text { mole of acetic acid }}{\text { weight of water in } \mathrm{kg}}$
$=\frac{3 \times 10^{-3} \times 10^{3}}{60 \times \frac{500 \times 0.997}{10^{3}}}=0.10$
$\Delta \mathrm{T}=\mathrm{K}_{\mathrm{f}} \times$ molality $(1+\alpha)$
$\Delta \mathrm{T}=1.86 \times 0.1 \times 1.23=0.229$
14. $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \mathrm{K} \mathrm{f}_{\mathrm{f}} \mathrm{m} \quad 0.062=\mathrm{i} \times 1.86 \times 0.01$
$\mathrm{i}=3.33 \quad \alpha=\frac{\mathrm{i}-1}{\mathrm{n}-1}$
$\alpha \Rightarrow \frac{3.33-1}{4-1} \quad \alpha \Rightarrow 0.777$
25. For 0.01 M solution,
$\pi_{1} V_{1}=n_{1} S_{1} T_{1}$
$\pi_{1}=0.01 \times 0.0821 \times 300$
$=0.2463 \mathrm{~atm}$
For 0.001 M solution,
$\pi_{2} \mathrm{~V}_{2}=\mathrm{n}_{2} \mathrm{ST}_{2}$
$\pi_{2}=0.001 \times 0.0821 \times 300$

$$
\begin{aligned}
& \mathrm{n}_{1} / \mathrm{V}_{1}=0.01 \\
& \mathrm{~T}=300 \mathrm{~K}
\end{aligned}
$$

$=0.02463 \mathrm{~atm}$
$\mathrm{n}_{2} / \mathrm{V}_{2}=0.001$
$\mathrm{T}=300 \mathrm{~K}$

The movement of solvent particles occurs from dilute to concentrate solution, i.e., 0.001 M to 0.01 M solution. Thus, pressure should be applied on concentrated solution, i.e., on 0.01 M solution to prevent osmosis.

Also, magnitude of external pressure
$=0.2463-0.0246=0.2217 \mathrm{~atm}$ pressure on 0.01 M solution.
26. For initial solution,
$\because \quad \pi=\frac{500}{760}$ atm, $\mathrm{T}=283 \mathrm{~K}$
$\frac{500}{760} \times \mathrm{V}_{1}=\mathrm{n} \times \mathrm{S} \times 283$
After dilution, let volume becomes V_{2} and temperature is raised to $25^{\circ} \mathrm{C}$, i.e, 298 K
$\pi=\frac{105.3}{760} \mathrm{~atm}$
$\frac{105.3}{760} \times V_{2}=\mathrm{n} \times \mathrm{S} \times 298$
$\therefore \quad$ By Eqs. (i) and (ii), we get
$\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{283}{298} \times \frac{105.3}{500} \quad \frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}=\frac{1}{5}$
$\therefore \quad \mathrm{V}_{2}=5 \mathrm{~V}_{1}$
i.e., solution was diluted to 5 times.
30. $\pi=\mathrm{i}$ cST $\quad \alpha=\frac{\mathrm{i}-1}{\mathrm{n}-1}$
$0.46=\frac{i-1}{5-1} \quad i=2.84$
$\pi=2.84 \times 0.1 \times 0.082 \times 291$
$\pi=6.785 \mathrm{~atm}$
32. Beaker A:-

Mole fraction of urea $=\frac{\frac{12}{60}}{\frac{12}{60}+\frac{140.4}{18}}=\frac{0.2}{0.2+7.8}=0.025$

Beaker B :-
Mole fraction of glucose $=\frac{\frac{18}{180}}{\frac{18}{180}+\frac{178.2}{18}} \Rightarrow 0.01$
Mole fraction of glucose is less so vapour pressure above the glucose solution will be higher than the pressure above urea solution, so some $\mathrm{H}_{2} \mathrm{O}$ molecules will transfer from glucose to urea side in order to make the solutions of equal mole fraction to attain equilibrium. Let x mole of $\mathrm{H}_{2} \mathrm{O}$ transfered
$\frac{0.2}{0.2+7.8+\mathrm{x}}=\frac{0.1}{0.1+9.9-\mathrm{x}} \Rightarrow \mathrm{x}=4$
now mass of glucose solution $=196.2-18 \times 4=124.2$
wt. $\%$ of glucose $=\frac{18}{124.2} \times 100 \Rightarrow \mathbf{1 4 . 4 9} \%$
33. Let n_{B} mole of B present in 1 mole of mixture that has been vaporized.
Thus, $\mathrm{Y}_{\mathrm{B}}=\mathrm{n}_{\mathrm{B}}$
$X_{B}=1-n_{B}$
$\mathrm{P}=\mathrm{P}_{\mathrm{A}}{ }^{\circ} \mathrm{X}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}{ }^{\circ} \mathrm{X}_{\mathrm{B}}=\mathrm{P}_{\mathrm{A}}^{\circ}+\mathrm{X}_{\mathrm{B}}\left(\mathrm{P}_{\mathrm{B}}{ }^{\circ}-\mathrm{P}_{\mathrm{A}}{ }^{\circ}\right)$
$X_{B}=\frac{\mathrm{P}-\mathrm{P}_{\mathrm{A}}^{\circ}}{\mathrm{P}_{\mathrm{B}}^{\circ}-\mathrm{P}_{\mathrm{A}}^{\circ}}=1-\mathrm{n}_{\mathrm{B}}$
$Y_{B}=\frac{P_{B}^{\circ} X_{B}}{P} \Rightarrow n_{B}=\frac{P_{B}^{\circ}\left(1-n_{B}\right)}{P}$
$n_{B} P=P_{B}{ }^{\circ}-n_{B} P_{B}{ }^{\circ}$
$\mathrm{n}_{\mathrm{B}}=\frac{\mathrm{P}_{\mathrm{B}}^{\circ}}{\mathrm{P}_{\mathrm{B}}^{\circ}+\mathrm{P}}$
from equation (i) and (ii)
$1-\frac{\mathrm{P}_{B}^{\circ}}{\mathrm{P}_{\mathrm{B}}^{\circ}+\mathrm{P}}=\frac{\mathrm{P}-\mathrm{P}_{\mathrm{A}}^{\circ}}{\mathrm{P}_{\mathrm{B}}^{\circ}-\mathrm{P}_{\mathrm{A}}^{\circ}} \Rightarrow \frac{\mathrm{P}}{\mathrm{P}_{\mathrm{B}}^{\circ}+\mathrm{P}}=\frac{\mathrm{P}-\mathrm{P}_{\mathrm{A}}^{\circ}}{\mathrm{P}_{\mathrm{B}}^{\circ}-\mathrm{P}_{\mathrm{A}}^{\circ}}$
on solving
$\mathrm{P}=\sqrt{\mathrm{P}_{\mathrm{A}}^{\circ} \mathrm{P}_{\mathrm{B}}^{\circ}}=\sqrt{100 \times 900} \Rightarrow \mathbf{3 0 0} \mathbf{~ m m ~ H g}$
34. (A) $\frac{\Delta \mathrm{T}_{\mathrm{f}}}{\Delta \mathrm{T}_{\mathrm{b}}}=\frac{\mathrm{k}_{\mathrm{f}}}{\mathrm{k}_{\mathrm{b}}}=\Delta \mathrm{T}_{\mathrm{f}}=\frac{0.6 \times 31.8}{5.03}=3.793^{\circ} \mathbf{C}$
(B) Relative lowering of vapour pressure $=$
$\frac{\mathrm{n}}{\mathrm{n}+\mathrm{N}}=\frac{\frac{3}{251.5}}{\frac{3}{251.5}+\frac{100}{154}}=\mathbf{0 . 0 1 8}$
(C) $\pi=\mathrm{CRT}$
$\mathrm{n}=\frac{3}{251.5}=0.012$
$\mathrm{v}=\frac{103}{1.64}=62.8 \mathrm{~mL}$
$\pi=\frac{0.012}{0.0628} \times 0.0821 \times 298=\mathbf{4 . 6 5} \mathbf{~ a t m}$
(D) $0.6=\frac{5.03 \times 3 \times 1000}{\mathrm{M}_{\mathrm{w}} \times 100} \Rightarrow \mathrm{M}_{\mathrm{w}}=\mathbf{2 5 1 . 5}$
35. $\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \mathrm{K}_{\mathrm{b}} \mathrm{m}$
$0.15=3 \times 0.5 \times \mathrm{m} \Rightarrow \mathrm{m}=0.1$
Now, $\quad \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NaCl} \longrightarrow \mathrm{PbCl}_{2}+2 \mathrm{NaNO}_{3}$
$0.1 \quad 0.2$
$\begin{array}{llll}- & 0.1 & 0.2\end{array}$
Now, this solution contains two salts
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \times \mathrm{m} 0.83=1.86[2 \times 0.2+3 \mathrm{~s}]$
where s is molar solubility of PbCl_{2}.
$\mathrm{s}=1.54 \times 10^{-3} \quad \mathrm{~K}_{\mathrm{sp}}=4 \mathrm{~s}^{3}=\mathbf{1 . 4 6} \times \mathbf{1 0}^{-5}$
36. $\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \times \mathrm{K}_{\mathrm{b}} \times \mathrm{m}$
$5.93 \times 10^{-3}=\frac{(\mathrm{x}+1) \times 0.52 \times 0.25 \times 1000}{\mathrm{M} \times 10}$
$\frac{(\mathrm{x}+1)}{\mathrm{M}}=4.56 \times 10^{-4}$
$\frac{M}{100}=23 x$
From equation (i) and (ii)
Formula of protein $=\mathrm{H}_{20} \mathrm{P}$
$\mathrm{M}=2300 \times 20-20 \times 23+23=45563 \mathbf{a m u}$
37. $\mathrm{A}+\mathrm{B} \longrightarrow \mathrm{A}_{\mathrm{n}}+\mathrm{B}$
$\mathrm{P}_{\mathrm{M}}=\mathrm{P}_{\mathrm{A}}{ }^{\circ} \mathrm{X}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}{ }^{\circ} \mathrm{X}_{\mathrm{B}}$
Let a mole of A are left due to polymerization after 100 min .
$\mathrm{P}_{\mathrm{M}}=300\left(\frac{\mathrm{a}}{12+\mathrm{a}}\right)+500\left(\frac{12}{12+\mathrm{a}}\right)$
$\mathrm{k}=\frac{2.303}{100} \log \frac{10}{\mathrm{a}}$
after 100 minute solute is added \& final vapour pressure is 400 mm Hg i.e. $\mathrm{P}_{\mathrm{s}}=400$
$\frac{\mathrm{P}_{\mathrm{M}}-400}{400}=\frac{0.525}{(\mathrm{a}+12)}$
from equation (i) and (iii) $\quad \mathrm{a}=9.9$
putting this in eq. (ii) $\mathrm{k}=\frac{2.303}{100} \log \frac{10}{9.9}=\mathbf{1 . 0} \times \mathbf{1 0}^{-4}$
38. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \longrightarrow \mathrm{V}_{1}=20 \mathrm{~mL}, \mathrm{~d}_{1}=0.7893 \mathrm{~g} / \mathrm{mL}$
$\mathrm{m}_{1}=15.786 \mathrm{~g}$
$\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{V}_{2}=40 \mathrm{~mL}, \mathrm{~d}_{2}=0.9971 \mathrm{~g} / \mathrm{mL}$
$\mathrm{m}_{2}=39.884 \mathrm{~g}$
Total mass $=55.65 \mathrm{~g}$
$\mathrm{d}_{\text {sol. }}=0.9571 \mathrm{~g} / \mathrm{mL}$
$\mathrm{V}_{\text {sol. }}=58.14 \mathrm{~mL}$
$\%$ change $=\frac{60-58.14}{60} \times 100=\mathbf{3 . 1} \%$
$\mathrm{m}=\frac{15.766 \times 1000}{46 \times 39.884}=\mathbf{8 . 6}$
39. $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{A}}{ }^{\circ} \mathrm{X}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}{ }^{\circ} \mathrm{X}_{\mathrm{B}}=\mathrm{P}_{\mathrm{A}}{ }^{\circ} \mathrm{X}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}{ }^{\circ}\left(1-\mathrm{X}_{\mathrm{A}}\right)$
$\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{B}}^{\circ}+\mathrm{X}_{\mathrm{A}}\left(\mathrm{P}_{\mathrm{A}}^{\circ}-\mathrm{P}_{\mathrm{B}}{ }^{\circ}\right)$
$Y_{A}=\frac{P_{A}^{\circ} \times A}{P_{T}}=\frac{P_{A}^{\circ} \times A}{P_{B}^{\circ}+X_{A}\left(P_{A}^{\circ}-P_{B}^{\circ}\right)}$
$0.4=\frac{0.4 \mathrm{X}_{\mathrm{A}}}{1.2-0.8 \mathrm{X}_{\mathrm{A}}}$
$1.2=1.8 \times \mathrm{A}$
$\mathrm{X}_{\mathrm{A}}=\frac{2}{3}$
so $\quad X_{B}=\frac{1}{3}$
$\mathrm{P}_{\mathrm{T}}=0.4 \times \frac{2}{3}+1.2 \times \frac{1}{3}=\frac{2}{3}=\mathbf{0 . 6 6} \mathbf{~ a t m}$
40. $\frac{0.5}{M}=3.75 \times 10^{-3} \Rightarrow M=133.33$
$0.165=(1+\alpha) \times \frac{1.86 \times 1.5 \times 1000}{133.33 \times 150}$
$1+\alpha=1.1827$
$\alpha=0.1827=\mathbf{1 8 . 2 7 \%}$
41. $\mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{V}_{1}=30 \mathrm{~mL}, \mathrm{~d}_{1}=0.798 \mathrm{~g} / \mathrm{mL}$
$\mathrm{m}_{1}=23.94 \mathrm{~g}$
$\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{V}_{2}=70 \mathrm{~mL}, \mathrm{~d}_{2}=0.9984 \mathrm{~g} / \mathrm{mL}$
$\mathrm{m}_{2}=69.888 \mathrm{~g}$
$\mathrm{m}_{\mathrm{T}}=93.828 \mathrm{~g}$
$\begin{array}{ll}\mathrm{d}_{\text {solution }} & =0.9575 \mathrm{~g} / \mathrm{mL} \\ \mathrm{V} & =98 \mathrm{~mL}\end{array}$
$\Delta \mathrm{T}_{\mathrm{f}}=\frac{1.86 \times 23.94 \times 1000}{32 \times 69.888}=\mathbf{1 9 . 9 1}$
$\mathrm{T}_{\mathrm{f}}=-19.91^{\circ} \mathrm{C}$
$\mathrm{M}=\frac{23.94}{32 \times 0.98}=7.63 \mathrm{M}$
42. $\mathrm{P}=179 \mathrm{X}_{\mathrm{B}}+92$
$\mathrm{P}_{\mathrm{B}}{ }^{\circ}=271, \mathrm{P}_{\mathrm{T}}{ }^{\circ}=92$
$\mathrm{n}_{\mathrm{B}}=\frac{936}{78}=12, \mathrm{n}_{\mathrm{T}}=\frac{736}{92}=8$
$\mathrm{X}_{\mathrm{B}}=\frac{12}{20}=0.6 \quad \mathrm{X}_{\mathrm{T}}=0.4$
$\mathrm{P}_{\mathrm{T}}=271 \times 0.6+92 \times 0.4=199.4$
$Y_{B}=\frac{271 \times 0.6}{199.4}=0.815$
$Y_{T}=0.185$
On further condensation
$\mathrm{X}_{\mathrm{B}}=0.815, \mathrm{X}_{\mathrm{T}}=0.185$
$\mathrm{P}_{\mathrm{T}}=271 \times 0.815+92 \times 0.185=237.844$
$Y_{B}=\frac{271 \times 0.815}{237.844}=\mathbf{0 . 9 2 8 6}$
43. For two immiscible liquids
$\frac{\mathrm{W}_{1}}{\mathrm{~W}_{2}}=\frac{\mathrm{P}_{1}^{\circ} \mathrm{M}_{1}}{\mathrm{P}_{2}^{\circ} \mathrm{M}_{2}}=\frac{3.6 \times 123}{97.7 \times 18}=0.2518$
$\frac{\mathrm{w}_{2}}{\mathrm{w}_{1}}=3.971$
$\frac{\mathrm{w}_{2}+\mathrm{w}_{1}}{\mathrm{w}_{1}}=4.971$
$\frac{\mathrm{w}_{1}}{\mathrm{w}_{2}+\mathrm{w}_{1}} \times 100=\mathbf{2 0 . 1 1 \%}$
44. $\mathrm{V}_{\mathrm{B}}=\frac{78}{0.877} \times 2750 \mathrm{~mL}=244.583 \mathrm{~L}$
$\mathrm{V}_{\mathrm{T}}=\frac{92}{0.867} \times 7720 \mathrm{~mL}=819.192 \mathrm{~L}$
$P_{B}=\frac{1 \times 0.0821 \times 293 \times 760}{244.583}=74.74$ torr
$\mathrm{P}_{\mathrm{T}}=\frac{1 \times 0.0821 \times 293 \times 760}{819.192}=22.317$
$46=74.74 X_{B}+23.317\left(1-X_{B}\right)$
$52.423 \mathrm{X}_{\mathrm{B}}=23.683$
$\mathrm{X}_{\mathrm{B}}=0.451$
$Y_{B}=\frac{\mathrm{P}_{\mathrm{B}}^{\circ} \times \mathrm{X}_{\mathrm{B}}}{\mathrm{P}_{\mathrm{T}}}=\frac{74.74 \times 0.451}{46}=\mathbf{0 . 7 3 2}$
45. $\mathrm{i}=1-\frac{\alpha}{2}=1-\frac{0.84}{2}=0.48$
$\Delta \mathrm{T}_{\mathrm{b}}=\frac{0.48 \times 2.3 \times 0.61 \times 1000}{122 \times 50}=0.1104$
$\mathrm{T}_{\mathrm{b}}=46.2+0.1104=\mathbf{4 6 . 3 1}{ }^{\circ} \mathrm{C}$
46. $\mathrm{P}_{\mathrm{A}}^{\circ}=100, \mathrm{P}_{\mathrm{B}}^{\circ}=300, \mathrm{X}_{\mathrm{A}}=\mathrm{X}_{\mathrm{B}}=\frac{1}{2}$
$\mathrm{P}_{\mathrm{T}}=200$
$\mathrm{Y}_{\mathrm{A}}=\frac{100 \times \frac{1}{2}}{200}=\frac{1}{4}$
On condensation $X_{A}=\frac{1}{4}, X_{B}=\frac{3}{4}$
$\mathrm{P}_{\mathrm{T}}=100 \times \frac{1}{4}+300 \times \frac{3}{4}=250$
$\mathrm{Y}_{\mathrm{A}}=\frac{25}{250}=0.1$
on further condensation
$X_{A}=\mathbf{0 . 1}$
47. $\frac{\mathrm{d} \ln \mathrm{P}}{\mathrm{dT}}=\frac{\Delta \mathrm{H}}{\mathrm{RT}^{2}}$
$\log \mathrm{P}=3.54595-\frac{313.7}{\mathrm{~T}}+1.40655 \log \mathrm{~T}$
$\ln \mathrm{P}=3.54595 \times 2.303-\frac{313.7}{\mathrm{~T}} \times 2.303+1.40655 \ln \mathrm{~T}$

$$
\begin{equation*}
\frac{\mathrm{d} \ln \mathrm{P}}{\mathrm{dT}}=\frac{313.7 \times 2.303}{\mathrm{~T}^{2}}+\frac{1.40655}{\mathrm{~T}} \tag{ii}
\end{equation*}
$$

Compairing equation (i) \& (ii)
$\Delta \mathrm{H}=\mathbf{R}[313.7 \times 2.303+1.40655 \mathrm{~T}]$
at $\quad \mathrm{T}=\mathbf{8 0} \mathrm{K}$
$\Delta \mathrm{H}=1659.9$ Cal.
48. $\mathrm{P}_{\mathrm{s}}=20 \quad \mathrm{P}^{\circ}=20.0126$

$$
\frac{\mathrm{P}^{\circ}-\mathrm{P}_{\mathrm{s}}}{\mathrm{P}^{\circ}}=\frac{0.0126}{20}=\frac{\mathrm{n}}{\mathrm{n}+\mathrm{N}} \simeq \frac{\mathrm{n}}{\mathrm{~N}}
$$

$\frac{\text { moles of solute }}{\text { moles of } \mathrm{H}_{2} \mathrm{O}}=0.0063$
$1 \mathrm{~mole} \mathrm{H}_{2} \mathrm{O}=18 \mathrm{~g}=18 \mathrm{~mL}$
18 mL solution $=0.00063$ mole

1 L solution $=\frac{0.00063}{18} \times 1000=0.35 \mathrm{~mole} / \mathrm{L}$
Let solubility of salt $A_{3} B_{4}$ is s then
$7 \mathrm{~s}=0.035$
$\mathrm{s}=0.005 \mathrm{~mole} / \mathrm{L}$
$\mathrm{k}_{\mathrm{sp}}=3^{3} .4^{4}(\mathrm{~s})^{7}=27 \times 256 \times(0.005)^{7}$
$\mathrm{k}_{\mathrm{sp}}=\mathbf{5 . 4} \times \mathbf{1 0}^{-13}$
49. At $20^{\circ} \mathrm{C}$:

For $\mathrm{C}_{6} \mathrm{H}_{6} \rightarrow \mathrm{~V}=\frac{78}{0.877} \times 2750 \mathrm{~mL}$
$\mathrm{PV}=1 \times 0.0821 \times 293$
$\mathrm{P}=74.74 \mathrm{~mm} \mathrm{Hg}$
It vapour pressure of benzene at $27^{\circ} \mathrm{C}$ is P_{1} then
$\ln \frac{\mathrm{P}_{1}}{\mathrm{P}}=\frac{\Delta \mathrm{H}_{\mathrm{V}}}{\mathrm{R}}\left[\frac{1}{\mathrm{~T}}-\frac{1}{\mathrm{~T}_{1}}\right]$
$\ln \frac{P_{1}}{74.74}=\frac{394.57 \times 78}{8.314}\left[\frac{1}{293}-\frac{1}{300}\right]$
$\mathrm{P}_{1}=100.364 \mathrm{mmHg}$
$\mathrm{m}=\frac{\mathrm{P}^{\circ}-\mathrm{P}_{\mathrm{s}}}{\mathrm{P}_{\mathrm{s}}} \times \frac{1000}{\mathrm{M}_{\text {solvent }}}$
$\mathrm{m}=\frac{100.364-98.88}{98.88} \times \frac{1000}{78}=0.1924$
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{k}_{\mathrm{f}} \times \mathrm{m}=5.12 \times 0.1924=0.985^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{f}}=278.5-0.985=\mathbf{2 7 7 . 5 1}{ }^{\circ} \mathbf{C}$
50. $\mathrm{k}_{\mathrm{f}}=\frac{8.314 \times(278.4)^{2} \times 78}{1000 \times 10042}=5$
$\mathrm{m}=\frac{0.02 \times 1000}{0.98 \times 78}=0.2614$
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \times \mathrm{k}_{\mathrm{f}} \times \mathrm{m}$
$\mathrm{i}=1-\frac{\alpha}{2}=0.7643$
$\alpha=0.4713$
$2 \mathrm{~A} \rightleftharpoons \mathrm{~A}_{2}$
C
$\mathrm{C}-\mathrm{C} \alpha \quad \mathrm{C} \alpha / 2$
$\mathrm{k}=\frac{\mathrm{C} \alpha / 2}{(\mathrm{C}-\mathrm{C} \alpha)^{2}}=\frac{\alpha}{2 \mathrm{C}(1-\alpha)^{2}}$
$\mathrm{k}=\frac{0.4713}{2 \times 0.2614(1-0.4713)^{2}}=\mathbf{3 . 2 2 5}$
51. $\mathrm{P}^{\mathrm{T}}=1.5 \Rightarrow\left[\mathrm{~T}^{+}\right]=0.0316=\mathrm{C} \alpha$
$0.372=1.86 \times \mathrm{C}(1+\alpha)$
$\mathrm{C}+\mathrm{C} \alpha=0.2$
from equation (i) \& (ii)
$\mathrm{C}=0.1684, \alpha=0.1876$
$\mathrm{k}_{\mathrm{a}}=\frac{\mathrm{C} \alpha^{2}}{1-\alpha}=\frac{0.1684(0.1876)^{2}}{(1-0.1876)}=7.3 \times \mathbf{1 0}^{-3}$
In 600 mL solution $[\mathrm{TF}]=\mathrm{C}-\mathrm{C} \alpha=0.1368 \mathrm{~mole} / \mathrm{L}$
so moles $=0.1368 \times 0.6=0.08208$
moles left after 24.8 years $=\frac{0.08208}{4}=0.02052$
moles disinitegrated
$=0.08208-0.02052=0.06156$
moles of β-particle emittted $=0.06156$
No. of β-particle emittted $=0.06156 \times 6.023 \times 10^{23}$
$=3.7 \times 10^{22}$
52. Initial moles of $\mathrm{H}_{2} \mathrm{O}=0.9$
$\Delta \mathrm{T}_{\mathrm{f}}=6 \mathrm{~kJ}$
$\mathrm{k}_{\mathrm{f}}=\frac{\mathrm{RT}_{\mathrm{f}}^{2} \mathrm{M}}{1000 \Delta \mathrm{H}_{\mathrm{f}}}=\frac{8.314 \times(273)^{2} \times 18}{1000 \times 6000}=1.86$
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{k}_{\mathrm{f}} \times \mathrm{m}$
$\mathrm{m}=\frac{2}{1.86}=1.075$
so in $1000 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \rightarrow 1.075$ mole solute
in $1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \rightarrow \frac{1.075}{1000}$ mole solute
in $0.9 \times 18 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \rightarrow \frac{1.075}{1000} \times 0.9 \times 18$ mole solute
mole of solute $(\mathrm{n})=0.0174 .15$
$\frac{\mathrm{P}^{\circ}-\mathrm{P}_{\mathrm{s}}}{\mathrm{P}_{\mathrm{s}}}=\frac{\mathrm{n}}{\mathrm{N}}=\frac{760-700}{0.0851}=0.0857$
moles of $\mathrm{H}_{2} \mathrm{O}(\mathrm{N})=\frac{0.017415}{0.0857}=0.2032$
moles of Ice separate out $=0.9-0.2032=0.6968$
mass of Ice separate out $=0.6968 \times 18=\mathbf{1 2 . 5 4} \mathrm{g}$
53. $\Delta \mathrm{T}_{\mathrm{f}}=(1+\alpha) \mathrm{k}_{\mathrm{f}} \times \mathrm{m}$
$0.21=(1+\alpha) \times 1.86 \times 0.109$
$1+\alpha=1.0358$
$\alpha=0.0358$
$\mathrm{k}_{\mathrm{a}}=\frac{\mathrm{C} \alpha^{2}}{1-\alpha}=\frac{0.109(0.0358)^{2}}{1-0.0358}=\mathbf{1 . 4 4} \times \mathbf{1 0}^{-4}$
54. $\mathrm{NH}_{4} \mathrm{Cl} \longrightarrow \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}, \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}^{+}$
$\mathrm{C}-\mathrm{C} \alpha \quad \mathrm{C} \alpha \mathrm{C} \alpha \mathrm{C} \alpha-\mathrm{C} \alpha \mathrm{C} \quad \mathrm{C} \alpha \mathrm{C} \quad \mathrm{C} \alpha \mathrm{C}$
$\mathrm{i}=\frac{\mathrm{C}-\mathrm{C} \alpha+\mathrm{C} \alpha+\mathrm{C} \alpha-\mathrm{C} \alpha \mathrm{h}+\mathrm{C} \alpha \mathrm{h}+\mathrm{C} \alpha \mathrm{h}}{\mathrm{C}}$
$=(1+\alpha+\alpha h)$
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \times \mathrm{k}_{\mathrm{f}} \times \mathrm{m}$
$0.637=\frac{(1+\alpha+\alpha \mathrm{h}) \times 1.86 \times 10}{53.5}$
$1+\alpha+\alpha h=1.832 \quad \&$
since $\alpha=0.75, \mathrm{~h}=\mathbf{0 . 1 0 9}$
EXERCISE - 5

Part \# I : AIEEE/JEE-MAIN

1. Moles of urea $=\frac{6.02 \times 10^{20}}{6.02 \times 10^{23}}=10^{-3}$ moles

$$
\begin{aligned}
\text { Concentration (molarity) of solution } & =\frac{10^{-3}}{100} \times 1000 \\
& =0.01 \mathrm{M}
\end{aligned}
$$

2. Elevation in boiling point is a colligative property which depends upon the number of solute particles. Greater the number of solute particles in a solution, higher the extent of elevation in boiling point.

$$
\mathrm{Na}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{Na}^{+}+\mathrm{SO}_{4}^{2-}
$$

3. According to Raoult's law equimolal solutions of all the substances in the same solvent will show equal elevation in boiling points as well as equal depression in freezing point.
4. Total millimoles of solute $=480 \times 1.5+520 \times 1.2$

$$
=720+624=1344 .
$$

Total volume $=480+520=1000$.
Molarity of the final mixture $=\frac{1344}{1000}=1.344 \mathrm{M}$.
5. $\mathrm{P}_{\mathrm{B}}=\mathrm{P}_{\mathrm{B}}^{0} \mathrm{XB} \mathrm{P}_{\mathrm{B}}^{\mathrm{o}}=75$ torr

$$
X_{B}=\frac{78 / 78}{(78 / 78)+(46 / 92)}=\frac{1}{1+0.5}=\frac{1}{1.5} \mathrm{P}_{\mathrm{B}}
$$

$$
=75 \times \frac{1}{1.5}=50 \text { torr. }
$$

6. $\mathrm{Na}_{2} \mathrm{SO}_{4} \rightleftharpoons \underset{0}{2} \mathrm{Na}^{+}+\underset{0}{\mathrm{SO}_{4}{ }^{2-}}$
$\begin{array}{ccc}1-\alpha & 2 \alpha & \alpha\end{array}$
Vant Hoff factor $(\mathrm{i})=\frac{1-\alpha+2 \alpha+\alpha}{1}=1+2 \alpha$.
7. Molality, $\mathrm{m}=\frac{\mathrm{M}}{1000 \mathrm{~d}-\mathrm{MM}_{2}} \times 1000$
where $\mathrm{M}=$ molarity, $\mathrm{d}=$ density, $\mathrm{M}_{2}=$ molecular mass
$\mathrm{m}=\frac{2.05}{1000 \times 1.02-2.05 \times 60}=2.28 \mathrm{~mol} \mathrm{~kg}^{-1}$
8. According to Raoult's law

$$
\begin{aligned}
& \mathrm{P}=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}=\mathrm{P}^{0}{ }_{\mathrm{A}}^{\mathrm{x}}+\mathrm{P}_{\mathrm{B}_{\mathrm{B}} \mathrm{x}_{\mathrm{B}}} \text { or } \\
& 290=\mathrm{P}_{\mathrm{A}}^{\mathrm{o}} \times(0.6)+200 \times(1-0.6)
\end{aligned}
$$

or $290=0.6 \times \mathrm{P}_{\mathrm{A}}^{\mathrm{o}}+0.4 \times 200 \quad$ or $\quad \mathrm{P}_{\mathrm{A}}^{\mathrm{o}}=350 \mathrm{~mm}$.
9. Isotonic solutions have same osmotic pressure.
$\pi_{1}=\mathrm{C}_{1} \mathrm{RT}, \pi_{2}=\mathrm{C}_{2} \mathrm{RT}$
For isotonic solution, $\pi_{1}=\pi_{2}$
$\therefore \mathrm{C}_{1}=\mathrm{C}_{2}$.
or $\frac{1.5 / 60}{\mathrm{~V}}=\frac{5.25 / \mathrm{M}}{\mathrm{V}}$
[where $\mathrm{M}=$ molecular weight of the substance]
or $\frac{1.5}{60}=\frac{5.25}{M}$ or $\mathrm{M}=210$.
10. $\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{A}}^{0} \mathrm{x}_{\mathrm{A}}=17.5 \times \frac{\frac{178.2 / 18}{178.2}+\frac{18}{18}}{180}=17.325$
11. $\mathrm{P}_{\text {total }}=\mathrm{P}_{\mathrm{A}}^{0} \mathrm{x}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}^{0} \mathrm{x}_{\mathrm{A}}$

$$
760=520 x_{A}+1000\left(1-x_{A}\right)
$$

$$
760=520 \mathrm{x}_{\mathrm{A}}^{\mathrm{A}}+1000-1000 \mathrm{x}_{\mathrm{A}}
$$

$$
\mathrm{x}_{\mathrm{A}}=0.5 \Rightarrow \mathrm{~mol} \%=50 \%
$$

12. The solution is non-ideal, showing +ve deviation from Raoult's Law.
13. $\mathrm{P}_{\text {total }}=\mathrm{P}_{\mathrm{A}}^{\mathrm{o}} \mathrm{X}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}^{\mathrm{o}} \mathrm{X}_{\mathrm{B}}=\mathrm{P}_{\mathrm{A}}^{\mathrm{o}} \times \frac{1}{4}+\mathrm{P}_{\mathrm{B}}^{\mathrm{o}} \times \frac{3}{4}=550$
$\Rightarrow \mathrm{P}_{\mathrm{A}}^{\mathrm{o}}+3 \mathrm{P}_{\mathrm{B}}^{\mathrm{o}}=550 \times 4$
similarly
$560=\mathrm{P}_{\mathrm{A}}^{\mathrm{o}} \times \frac{1}{5}+\mathrm{P}_{\mathrm{B}}^{\mathrm{o}} \times \frac{4}{5} \Rightarrow \mathrm{P}_{\mathrm{A}}^{\mathrm{o}}+4 \mathrm{P}_{\mathrm{B}}^{\mathrm{o}}=560 \times 5$.
eq. (ii) - eq.(i)
$\mathrm{P}_{\mathrm{B}}^{\mathrm{o}}=560 \times 5-550 \times 4=600$
so $\quad \mathrm{P}_{\mathrm{A}}^{\mathrm{o}}=400$.
14. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (s) $\xrightarrow{\mathrm{H}_{2} \mathrm{O}} 2 \mathrm{Na}^{+}$(aq.) $+\mathrm{SO}_{4}^{2-}$ (aq.)
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \mathrm{K}_{\mathrm{f}} \mathrm{m}$

$$
=3 \times 1.86 \times 0.01=0.0558 \mathrm{~K}
$$

15. $\mathrm{P}_{\mathrm{T}}=\mathrm{X}_{\text {Heptane }} \mathrm{P}_{\text {Heptane }}^{\mathrm{o}}+\mathrm{X}_{\text {Octane }} \mathrm{P}_{\text {Octane }}^{\mathrm{o}}$
$=\frac{0.25}{0.557} \times 105+\frac{0.307}{0.557} \times 45$
$47.127+24.80=71.92 \approx 72 \mathrm{kPa}$
16. $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \times \mathrm{k}_{\mathrm{f}} \times \mathrm{m}$
$2.8=1 \times 1.86 \times \frac{\mathrm{x}}{62 \times 1} \Rightarrow \mathrm{x}=\frac{2.8 \times 62}{1.86}=93 \mathrm{gm}$
17. $\frac{\Delta \mathrm{p}}{\mathrm{P}^{0}}=$ mol fraction of flucose
$\frac{760-\mathrm{P}_{\text {soln. }}}{760}=\frac{18 / 180}{18 / 180+\frac{178.2}{18}}$
$=\frac{0.1}{0.1+9.9}=\frac{1}{100}=760-\mathrm{P}_{\text {soln }}=\frac{760}{100}=706$

$$
\mathrm{P}_{\text {Soln. }}=752.4 \mathrm{Ans}
$$

18. In benzene
$2 \mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons\left(\mathrm{CH}_{3} \mathrm{COOH}\right)_{2}$
$\mathrm{i}=1+\left(\frac{1}{2}+\alpha\right)$
$\mathrm{i}=1-\frac{\alpha}{2}$ Here α is degree of association $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \mathrm{K}_{\mathrm{f}} \mathrm{m}$
$0.45=\left(1-\frac{\alpha}{2}\right)(5.12) \frac{\frac{\left(\frac{0.2}{60}\right)}{20}}{1000}$
$1-\frac{\alpha}{2}=0.527 \Rightarrow \alpha=0.945$
$\%$ degree of association $=94.5 \%$
19. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}^{2}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O} \quad \mathrm{i}=3$

$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6} \mathrm{Cl}_{2}\right] \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{i}=2$
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{i}=1$
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$	$\mathrm{i}=3$

$\Delta \mathrm{T}_{\mathrm{f}} \propto \mathrm{i} \quad$ where $\Delta \mathrm{T}_{\mathrm{f}}=\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{f}}{ }^{\prime}\right)$
$\mathrm{T}_{\mathrm{f}}{ }^{\prime}=\mathrm{f}$ F.P. of solution
Freezing point of solution \uparrow as $i \downarrow$.
20.

Concentration of SO_{4}^{-2} in Ba^{+2} solution

$$
\begin{aligned}
& \mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2} \\
& 1 \times 50=\mathrm{M}_{2} \times 500 \\
& \mathrm{M}_{2}=\frac{1}{10}
\end{aligned}
$$

For just precipitation

$$
\begin{gathered}
\mathrm{I} . \mathrm{P}=\mathrm{K}_{\mathrm{sp}} \\
{\left[\mathrm{Ba}^{+2}\right]\left[\mathrm{SO}_{4}^{-2}\right]=\mathrm{K}_{\mathrm{sp}}\left(\mathrm{BaSO}_{4}\right)} \\
{\left[\mathrm{Ba}^{+2}\right] \times \frac{1}{10}=10^{-10}}
\end{gathered}
$$

$\left[\mathrm{Ba}^{+2}\right]=10^{-9} \mathrm{M}$ in 500 ml solution
For calculation of [Ba^{+2}] in original solution (450 ml)
$\mathrm{M}_{1} \times 450=10^{-9} 500$
$\mathrm{M}_{1}=\frac{500}{450} \times 10^{-9}=1.11 \times 10^{-9} \mathrm{M}$
[$\mathrm{M}_{1}=$ molarity of Ba^{+2} in original solution(450 ml)]

Part \# II : IIT-JEE ADVANCED

1. $\left(\pi_{\mathrm{obs}}\right)_{\mathrm{Na}_{2} \mathrm{SO}_{4}}=\pi_{\text {glucose }}$
or $\frac{10}{4}=\frac{1+2 \alpha}{1}$ or $10=4+8 \alpha$

$$
\alpha=\frac{10-4}{8}=0.75 \% \text { of } \alpha=75 \%
$$

2. (i) In first case,

$$
\begin{aligned}
& \Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \times \mathrm{m}=\mathrm{K}_{\mathrm{b}} \times \frac{\text { Wt. of solute }}{\text { Mol. wt. of solute }} \times \frac{1000}{\text { wt. of solvent }} \\
& \text { or } \quad 0.17=1.7 \times \frac{1.22}{\mathrm{M} \times 100 \times 10^{-3}} \\
& \text { or } \quad \mathbf{M}=\mathbf{1 2 2} \mathbf{~ g m} / \mathbf{m o l e}
\end{aligned}
$$

Thus the benzoic acid exists as a monomer in acetone (ii) In second case,

$$
\begin{aligned}
\Delta \mathrm{T}_{\mathrm{b}} & =\mathrm{K}_{\mathrm{b}} \times \frac{\text { Wt.of solute }}{\text { Mol.wt.of solute }} \times \frac{1000}{\text { wt. of solvent }} \\
\text { or } \quad 0.13 & =2.6 \times \frac{1.22}{\mathrm{M} \times 100 \times 10^{-3}} \quad \mathbf{M}=\mathbf{2 2 4}
\end{aligned}
$$

Double molecular weight of benzoic acid (244) in acetone solution indicates that benzoic acid exists as a dimer in acetone.
3. $\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \mathrm{K}_{\mathrm{b}} \mathrm{m} \quad \mathrm{i}$ (vant Haff factor) of $\mathrm{CuCI}_{2}=3$
$\Delta \mathrm{T}_{\mathrm{b}}=3 \times 0.52 \times \frac{13.44}{134.4 \times 1}=0.156=0.16$.
4. $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \times \mathrm{K}_{\mathrm{f}} \times$ molality
$\Rightarrow 2=\mathrm{i} \times 1.72 \times \frac{20}{172} \times \frac{1000}{50}$

$$
\Rightarrow 2=4 \mathrm{i} \quad \Rightarrow \quad \mathrm{i}=1 / 2=0.5
$$

5. $\Delta \mathrm{T}_{f}=\mathrm{K}_{f} \cdot \mathrm{~m}$
$=2 \times \frac{0.1}{0.9 \times 46} \times 1000=\frac{2000}{414}=\frac{1000}{207}=4.83$

$$
\begin{aligned}
& \Delta \mathrm{T}^{\prime}{ }_{f}=\mathrm{T}_{f}-4.83 \\
& \Delta \mathrm{~T}^{\prime}{ }_{f}=155.7-4.83 \\
& \Delta \mathrm{~T}^{\prime}{ }_{f}=150.9 \mathrm{~K}
\end{aligned}
$$

6. Total vapour pressure

$$
\begin{aligned}
& \mathrm{P}=\mathrm{P}^{\mathrm{o}}{ }_{\mathrm{A}} \mathrm{X}_{\mathrm{A}} \begin{array}{l}
\text { (considering solute to be non-volatile as } \\
\quad \text { given in the question) } \\
\mathrm{P}=40 \times 0.9=36 \mathrm{mmHg}
\end{array}
\end{aligned}
$$

7. $\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \cdot \mathrm{m}$
$=0.52 \times \frac{0.1}{0.9 \times 18} \times 1000=\frac{520}{9 \times 18}=3.20$
$\mathrm{T}_{\mathrm{b}}=373+3.20 \Rightarrow \mathrm{~T}_{\mathrm{b}}=376.2 \mathrm{~K}$
8. $\mathrm{P}_{\mathrm{N}_{2}}=\mathrm{K}_{\mathrm{H}} \times \mathrm{X}_{\mathrm{N}_{2}}$
$\mathrm{x}_{\mathrm{N}_{2}}=\frac{1}{10^{5}} \times 0.8 \times 5=4 \times 10^{-5}$ per mole
In 10 mole solubility is 4×10^{-4}.
9. $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \times \mathrm{K}_{\mathrm{f}} \times \mathrm{m}$
$=4 \times 1.86 \times \frac{0.1}{329 \times 0.1}=2.3 \times 10^{-2}$
$\Rightarrow \quad \mathrm{T}_{\mathrm{f}}=0-2.3 \times 10^{-2}=-2.3 \times 10^{-2{ }^{\circ}} \mathrm{C}$.
10. $\Delta \mathrm{T}_{\mathrm{b}}=2^{\circ} \mathrm{C} ; \mathrm{m}_{\mathrm{a}}=2.5 \mathrm{~g}$
$m_{\text {solvent }}=100 \mathrm{~g}$
$\mathrm{K}_{\mathrm{b}}=0.76 \mathrm{~K} . \mathrm{kg} . \mathrm{mol}^{-1}$
$\mathrm{P}_{\text {solution }}=$?
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \times \mathrm{m}$
$2=0.76 \times \mathrm{m} \quad \therefore \mathrm{m}=\frac{2}{0.76}$
$\frac{P^{0}-P}{P}=m \times M M \times 10^{-3}$
$\therefore \frac{760-P}{P}=\frac{2}{0.76} \times 18 \times 10^{-3}$
$760-\mathrm{P}=\frac{36}{760} \mathrm{P} \quad \therefore 760=\frac{796}{760} \mathrm{P}$
$\therefore \mathrm{P}=760\left(\frac{796}{760}\right)$ torr $=725.6$ torr ≈ 724 torr
11. $\frac{\mathrm{X}_{\text {solute }}}{\mathrm{X}_{\text {solvent }}}=\frac{0.1}{0.9}=\frac{1}{9}$
$\Rightarrow \frac{\mathrm{W}_{\text {solute }}}{\mathrm{W}_{\text {solvent }}} \times \frac{\mathrm{M}_{\text {solvent }}}{\mathrm{M}_{\text {solute }}}=\frac{1}{9}$
$\mathrm{W}_{\text {solute }}+\mathrm{W}_{\text {solvent }}=\mathrm{W}_{\text {solution }}=$ density \times volume
Wsolute + Wsolvent $=2 \times \mathrm{V}$
Molarity = molality
$\frac{\mathrm{n}_{\text {solute }}}{\mathrm{V}_{\text {solution }}}=\frac{\mathrm{n}_{\text {solute }}}{\mathrm{W}_{\text {solvent }}} \Rightarrow \mathrm{W}_{\text {solvent }}=\mathrm{V}_{\text {solution }}=\frac{\mathrm{W}_{\text {solute }}+\mathrm{W}_{\text {solvent }}}{2}$
$\Rightarrow 2 \mathrm{~W}_{\text {solvent }}=\mathrm{W}_{\text {solute }}+\mathrm{W}_{\text {solvent }}$
$\Rightarrow \mathrm{W}_{\text {solute }}=\mathrm{W}_{\text {solvent }}$
Using eq. (1) and (3), we get
$\frac{M_{\text {solute }}}{M_{\text {solvent }}}=9$
12. $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{ik} \times \mathrm{m}$

$$
\begin{aligned}
& =1 \times 2 \times \frac{n_{\text {ethanol }}}{\mathrm{W}_{\mathrm{H}_{2} \mathrm{O}}} \times 1000=2 \times \frac{34.5}{46 \times 500} \times 1000 \\
& =\frac{34.5 \times 2}{23}=\frac{69}{23}=3
\end{aligned}
$$

14. $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{A}}^{\circ} \mathrm{X}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}^{\circ} \mathrm{X}_{\mathrm{B}}$
$45=20(0.5)+\mathrm{P}_{\mathrm{B}}^{\circ}{ }_{\mathrm{B}}^{\mathrm{B}}(0.5)$
$\mathrm{P}_{\mathrm{B}}^{\circ}=70$
$22.5=20 \mathrm{X}_{\mathrm{A}}+70\left(1-\mathrm{X}_{\mathrm{A}}\right)$
$50 \mathrm{X}_{\mathrm{A}}=47.5$
$\mathrm{X}_{\mathrm{A}}=\frac{4.75}{5}=0.95$
$X_{B}=0.05 \quad \Rightarrow \quad \frac{X_{A}}{X_{B}}=19$
15. $2=2\left(\mathrm{~K}_{\mathrm{b}}\right)_{\mathrm{x}} \mathrm{m}$
$1=2\left(\mathrm{~K}_{\mathrm{b}}\right)_{\mathrm{y}} \mathrm{m}$
$\frac{\left(\mathrm{K}_{\mathrm{b}}\right)_{\mathrm{x}}}{\left(\mathrm{K}_{\mathrm{b}}\right)_{\mathrm{y}}}=2$
$\Delta\left(\mathrm{T}_{\mathrm{b}}\right)_{\mathrm{x}}=\left(1-\frac{\beta}{2}\right)\left(\mathrm{K}_{\mathrm{b}}\right)_{\mathrm{x}} \mathrm{m}$
$\Delta\left(\mathrm{T}_{\mathrm{b}}\right)_{\mathrm{y}}=\left(1-\frac{0.7}{2}\right)\left(\mathrm{K}_{\mathrm{b}}\right)_{\mathrm{y}} \mathrm{m}$
On taking the ratio of eq. no (1) \& (2)
$\Rightarrow 3=\frac{1-\frac{\beta}{2}}{0.65} \times 2 \Rightarrow 1-\frac{\beta}{2}=1.5 \times 0.65 \Rightarrow \beta=0.05$

MOCK TEST

1. The loss in weight should be proportional to vapour pressure above that solution :
So, $\mathrm{P}_{\mathrm{S}_{\mathrm{A}}} \propto 2 \mathrm{gm}$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{S}_{\mathrm{B}}} \propto 1.5 \mathrm{gm} \\
& \mathrm{P}_{\mathrm{S}_{\mathrm{C}}} \propto 2.5 \mathrm{gm}
\end{aligned}
$$

So, maximum vapour pressure is above C solution hence, it is having minimum lowering and hence minimum mole fraction (hence minimum number of moles of solute) So max. molar mass of substance.
2. $\mathrm{Ba}_{(\mathrm{x}-2)}\left[\mathrm{Co}(\mathrm{CN})_{\mathrm{x}}\right]_{2} \rightarrow(\mathrm{x}-2) \mathrm{Ba}^{2+}+2\left[\mathrm{Co}(\mathrm{CN})_{\mathrm{x}}\right]^{-(\mathrm{x}-2)}$
$1-\alpha \quad(x-2) \alpha \quad 2 \alpha$
$\mathrm{i}=1-\alpha+\mathrm{x} \alpha-2 \alpha+2 \alpha$
$(\mathrm{x}-1) \alpha=3 \mathrm{x}-1=\frac{3}{\alpha}$
$\alpha=0.75 \quad ; \quad x=5$.
formula of complex is $\mathrm{Ba}_{3}\left[\mathrm{Co}(\mathrm{CN})_{5}\right]_{2}$ and hybridisation is dsp^{3} as it is a inner orbital complex with strong field ligand.
3. Vapour pressure also depends on the nature of substance.
4. $\frac{\Delta \mathrm{P}}{\mathrm{P}}=\frac{\text { i. } \mathrm{n}}{\text { i. } \mathrm{n}+\mathrm{N}} \quad \Rightarrow \frac{1}{2}=\frac{\mathrm{i} .2}{\mathrm{i} .2+3}$

So, $\mathrm{i}=\frac{3}{2}=1.5 \quad \Rightarrow 1+(\mathrm{n}-1) \alpha$
$\therefore \quad \alpha=\frac{1}{2}$
So, moles of Cl^{-}ions $=2 \times \frac{1}{2}=1$ moles
So, moles of $\mathrm{AgCl} \mathrm{ppt}=1$ moles
5. $\quad(\text { molality })_{i}=\frac{\mathrm{x} \times 1000}{100}=\frac{0.2}{\mathrm{~K}_{\mathrm{f}}}$
$(\text { molality })_{\mathrm{f}}=\frac{\mathrm{x} \times 1000}{\mathrm{w}}=\frac{0.25}{\mathrm{~K}_{\mathrm{f}}}$
(1)/(2)

So, $\frac{0.2}{0.25}=\frac{w}{100}$
\Rightarrow so $\quad \mathrm{w}=80 \mathrm{gm}$
Hence ice separated $=20 \mathrm{gm}$
6. Pressure of air $=750-100=650 \mathrm{~mm}$ of Hg on compressing
$\mathrm{P}_{\mathrm{f}}=650 \times 3 \mathrm{~mm}$ of Hg
$=1950 \mathrm{~mm}$ of Hg
So, $\mathrm{P}_{\mathrm{T}}=(1950+100)=2050 \mathrm{~mm}$ of Hg
7. Let volumes taken to be ' x ' \& ' y ' litres, so
$\frac{0.1 \mathrm{x}+0.4 \mathrm{y}}{\mathrm{x}+\mathrm{y}}=0.34 \& \mathrm{~V}_{\mathrm{g}}=(\mathrm{x}+\mathrm{y})($ to be maximised $)$
so $y=4 x$
so for maximum volume
$\mathrm{y}=2 \mathrm{~L} \& \mathrm{x}=\frac{1}{2} \mathrm{~L}$
8. $\pi=\mathrm{CRT}$
$\mathrm{C}=\left[\mathrm{Cl}^{-}\right]+\left[\mathrm{Na}^{+}\right]+\left[\mathrm{Ca}^{2+}\right]$
$\mathrm{C}=\left(0.34+\frac{0.1 \times 0.5}{2.5}+\frac{0.2 \times 2}{2.5}\right)$
$=0.34+0.02+0.16=0.52$
So, $\pi=0.52 \times 0.082 \times 300 \mathrm{~atm}=12.792 \mathrm{~atm}$
9. As m $\rightarrow 0, \mathrm{NaHSO}_{4}$ will generate three particles while NaCl will generate only two particles.
10. $\mathrm{P}_{\mathrm{T}}=\frac{1}{2}(75+22)=48.5$ torr
$\mathrm{P}_{\mathrm{T}}=\frac{1}{2}(75+10)=42.5$ torr
$\mathrm{P}_{\mathrm{T}}=\frac{1}{2}(22+10)=16$ torr
$\mathrm{P}_{\mathrm{T}}=\frac{1}{3}(75+22+10)=35 \frac{2}{3}$ torr
11. $0.0558=\mathrm{i} \times \frac{3.24}{324} \times 1.86$
$\Rightarrow \quad \mathrm{i}=3 \quad(100 \%$ dissociated $)$
$0.0744=i \times \frac{21.68}{271} \times \frac{1000}{2000} \times 1.86$
$\Rightarrow \mathrm{i} \approx 1$ (almost undissociated)
12. $1.24=34.3\left[\frac{\frac{0.849}{\mathrm{M}}}{0.050}\right] \Rightarrow \mathrm{M}=469.68$
13. $\mathrm{P}_{\mathrm{T}}\left(\right.$ at $\left.100^{\circ} \mathrm{C}\right)=\frac{2}{3} \times 1350+300=900+100=1000$ torr hence $100^{\circ} \mathrm{C}$ is boiling point.
14. Gain / loss in wt. should be proportional to vapour pressure above that solution.
15. Number of particles from $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]=5$ number of particles from $\mathrm{FeSO}_{4}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}=5$ number of particles from $\mathrm{KCl} . \mathrm{MgCl}_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}=5$
16. $\frac{\mathrm{P}-20}{20}=\frac{6}{\mathrm{M}} \times \frac{18}{180}=\frac{6}{\mathrm{M}} \times \frac{1}{10}$
$\frac{P-20.02}{20.02}=\frac{6}{M} \times \frac{18}{198}=\frac{6}{M} \times \frac{1}{11}$
from (1) \& (2) calculation gives $M \simeq 54 \mathrm{gm} / \mathrm{mole}$

$$
\mathrm{P}=20.22 \text { torr }
$$

\& on dilution $\Delta \mathrm{P}$ decreases (lowering) so vapour pressure of solution increases.
17. 'S-1' is correct because fluids present inside the cell come out due to higher vapour pressure inside the cell than outside the cell.
' $\mathrm{S}-2$ ' is correct because in reverse osmosis, solvent from saline water enters the pure solvent through semipermeable membrane.
18. Extent of dissociation increases steadily with increasing dilution.
19. The benzoic acids forms a dimer due to H -bonding as

20. As degree of dissociation of HF gets changed on dilution.
21. When liquid just starts forming vapours we have Roult's law valid with $X_{b} \times X_{c}$ as mole fraction in liquid state so equation of curve obtained by collecting such points will be

$$
\begin{aligned}
\mathrm{P}= & \mathrm{X}_{\mathrm{B}}^{\ell} \mathrm{P}_{\mathrm{B}}^{\mathrm{o}}+\mathrm{X}_{\mathrm{C}}^{\ell} \mathrm{P}_{\mathrm{C}}^{\mathrm{o}} \\
& =\mathrm{X}_{\mathrm{B}}^{\ell} \mathrm{P}_{\mathrm{B}}^{\mathrm{o}}+\left(1-\mathrm{X}_{\mathrm{B}}^{\ell}\right) \mathrm{P}_{\mathrm{C}}^{\mathrm{o}} \\
& =\mathrm{P}_{\mathrm{C}}^{\mathrm{o}}+\left(\mathrm{P}_{\mathrm{B}}^{\mathrm{o}}-\mathrm{P}_{\mathrm{C}}^{\mathrm{o}}\right) \mathrm{X}_{\mathrm{B}}^{\ell}=\mathrm{P}_{\mathrm{C}}^{\mathrm{o}}+\left(\mathrm{P}_{\mathrm{B}}^{\mathrm{o}}-\mathrm{P}_{\mathrm{C}}^{\mathrm{o}}\right) \mathrm{X}_{\mathrm{B}}
\end{aligned}
$$

The second curve will not be a straight line having equation

$$
P=\frac{P_{B}^{o}-P_{C}^{o}}{X_{B}^{\ell}\left(P_{C}^{o}-P_{B}^{o}\right)+P_{B}^{o}}
$$

22. From solution of above question.
23. If initialy in liquid there are x moles od A and y moles of
B them $X_{A}=\frac{x}{x+y}, X_{B}=\frac{y}{(x+y)}$
we have $\quad 700=X_{A}$ " $\mathrm{P}_{\mathrm{A}}{ }^{\circ}+\mathrm{X}_{\mathrm{B}} \mathrm{P}_{\mathrm{B}}{ }^{\text {o }}$,
$600=\mathrm{X}_{\mathrm{A}}{ }^{\prime \prime} \mathrm{P}_{\mathrm{A}}{ }^{\mathrm{o}}+\mathrm{X}_{\mathrm{B}} \mathrm{P}_{\mathrm{B}}{ }^{\mathrm{o}}{ }^{0}$
Also

$$
\begin{equation*}
x=\frac{1}{3}(x+y) \times \frac{3}{10}+\frac{2}{3}(x+y) \times \frac{3}{4} \tag{2}
\end{equation*}
$$

which gives $\frac{x}{x+y}=0.6$
24. $\mathrm{A} \rightarrow \mathrm{p}, \mathrm{r}, \mathrm{s} \quad$ (+ve deviation from Raoult's law)
$\mathrm{B} \rightarrow \mathrm{p}, \mathrm{r} \quad$ (ideal solution)
$\mathrm{C} \rightarrow \mathrm{p}, \mathrm{q}, \mathrm{r} \quad$ (+ve deviation from Raoul's law)
$\mathrm{D} \rightarrow \mathrm{p}, \mathrm{r}, \mathrm{s} \quad$ (-ve deviation from Raoul's law)
$\mathrm{A} \rightarrow \mathrm{p}, \mathrm{r}, \mathrm{s} ; \mathrm{B} \rightarrow \mathrm{p}, \mathrm{q}, \mathrm{t} ; \mathrm{C} \rightarrow \mathrm{p} ; \mathrm{D} \rightarrow \mathrm{p}, \mathrm{q}, \mathrm{t}$
25. $(\mathrm{A} \rightarrow \mathrm{q}) ;(\mathrm{B} \rightarrow \mathrm{r}) ;(\mathrm{C} \rightarrow \mathrm{p}) ;(\mathrm{D} \rightarrow \mathrm{s})$
26. $\mathrm{P}_{\mathrm{cal}}=\mathrm{CRT}=0.01 \times 0.082 \times 300=0.246 \mathrm{~atm}$

$$
\mathrm{i}=\frac{0.984}{0.246}=4
$$

and $\quad \alpha=\frac{\mathrm{i}-1}{\mathrm{n}-1} \quad \therefore \quad 0.75=\frac{4-1}{\mathrm{n}-1} \quad \therefore \mathrm{n}=5$
It means complex must provide 5 ions per molecule
$\therefore \quad$ complex can be $\mathrm{Ba}_{3}\left[\mathrm{Co}(\mathrm{CN})_{5}\right]_{2}$
27. $\mathrm{K}_{\mathrm{IP}}\left[\mathrm{BaF}_{2}\right]=\left[\mathrm{Ba}^{+2}\right]\left[\mathrm{F}^{-}\right]^{2}$
$=4 \times 10^{-3} \times\left(6 \times 10^{-3}\right)^{2}=4 \times 36 \times 10^{-9}=1.44 \times 10^{-7}$
$\mathrm{K}_{\mathrm{IP}}<\mathrm{K}_{\mathrm{sp}} \quad$ So no ppt. formation of $\mathrm{BaF}_{2}+$ take place
$\left[\mathrm{Ba}^{2+}\right]=0.01 \times \frac{2}{5} \mathrm{M}=0.004 \mathrm{M}$
$\left[\mathrm{Cl}^{-}\right]=0.02 \times \frac{2}{5} \mathrm{M}=0.008 \mathrm{M}$
$\left[\mathrm{Na}^{+}\right]=0.01 \times \frac{3}{5} \mathrm{M}=0.006 \mathrm{M}$
$\left[\mathrm{F}^{-}\right]=0.01 \times \frac{3}{5} \mathrm{M}=0.004 \mathrm{M}$
total conc $=0.024 \mathrm{M}$
$\mathrm{p}=0.024 \times 0.082 \times 300=0.5904 \mathrm{~atm}=448.7$ Torr Ans. 448 or 449
28. $P_{T}=X_{A} P_{A}^{o}+\left(1-X_{A}\right) P_{B}^{o}$
$\frac{1}{\mathrm{P}_{\mathrm{T}}}=\frac{\mathrm{Y}_{\mathrm{A}}}{\mathrm{P}_{\mathrm{B}}^{\mathrm{o}}}+\frac{\left(1-\mathrm{Y}_{\mathrm{A}}\right)}{\mathrm{P}_{\mathrm{B}}^{\mathrm{o}}}$
calculate $\left(X_{A}-Y_{A}\right) \&$ maximise it
$X_{A}=\frac{\sqrt{\mathrm{P}_{A}^{o} \mathrm{P}_{B}^{0}}-\mathrm{P}_{B}^{o}}{\left(\mathrm{P}_{\mathrm{A}}^{0}-\mathrm{P}_{B}^{o}\right)} \quad \& \mathrm{P}_{\mathrm{T}}=\sqrt{\mathrm{P}_{\mathrm{A}}^{0} \mathrm{P}_{B}^{0}}$
Ans. $X_{A}=\frac{\sqrt{\mathrm{P}_{A}^{o} \mathrm{P}_{B}^{o}}-\mathrm{P}_{B}^{o}}{\left(\mathrm{P}_{\mathrm{A}}^{0}-\mathrm{P}_{\mathrm{B}}^{0}\right)}, \mathrm{P}=\sqrt{\mathrm{P}_{\mathrm{A}}^{0} \mathrm{P}_{\mathrm{B}}^{0}}$
29. According to Rault's law
$\frac{\Delta \mathrm{p}}{\mathrm{p}^{0}}=\mathrm{x}_{2}$
Where $-\Delta \mathrm{p}=(74.01-74.66)$ torr
And $\mathrm{p}^{0}=74.66$ torr
If M is the molar mass of hydrocarbon, then
$X_{Z}=\frac{n_{2}}{n_{1}+n_{2}}=\frac{\frac{8}{M}}{\left(\frac{100}{78}\right)+\left(\frac{2}{M}\right)}$
Hence $\frac{74.66-74.01}{74.66}=\frac{\frac{2}{M}}{\frac{100}{78}+\frac{2}{M}}$
Solving for M , we get,
$\mathrm{M}=177.6 \mathrm{~mol}^{-1}$.
Given mass ratio is $\mathrm{m}_{\mathrm{c}}: \mathrm{M}_{\mathrm{H}}:: 94.4: 5.6$
The atomic ratio is

$$
\mathrm{N}_{\mathrm{C}}: \mathrm{N}_{\mathrm{H}}:: \frac{84.4}{12}: \frac{5.6}{1} \Rightarrow 7.87: 5.6 \Rightarrow 1.4: 1 \Rightarrow 7: 5
$$

Hence. Empirical formula is $\mathrm{C}_{2} \mathrm{H}_{5}$
Molar Empirical mass $=89 \mathrm{~g} \mathrm{~mol}^{-1}$

Number of $\mathrm{C}_{2} \mathrm{H}_{5}$ unit in the given molecule
$=\frac{\text { Molar mass }}{\text { Molar empirical mass }}=\frac{177.6}{89} \cong 2$
Thus molecular formula is $\mathrm{C}_{14} \mathrm{H}_{10}$.
30. $\frac{\mathrm{p}^{0}-\mathrm{p}}{\mathrm{p}^{0}}=\mathrm{x}_{2}$
$\frac{0.04}{32}=0.00125=$ mole fraction of solute
$\mathrm{MCl}_{2} \rightleftharpoons \mathrm{M}^{2+}+2 \mathrm{Cl}^{-}$
On dissociation, the salt produces 3 ions.
$\therefore \quad$ mole fraction of undissociated salt $=\frac{0.00125}{3}$

$$
=0.00042 \mathrm{moles}
$$

Mole fraction of water $=0.99958$ moles
Mass of solvent $=0.9996 \times 18=17.993 \mathrm{~g}$
Solubility of the salt $=$

$$
\begin{aligned}
& \frac{0.00042 \times 100}{17.993}=0.2334 \mathrm{~mol} . \mathrm{lit}^{-1}=\mathrm{s} \\
& \mathrm{~K}_{\mathrm{sp}}=\mathrm{s} \times(2 \mathrm{~s})^{2}=4 \mathrm{~s}^{3} \\
&= 4 \times\left(2.334 \times 10^{-2}\right)^{3}=5.08 \times 10^{-5}
\end{aligned}
$$

