HINTS \& SOLUTIONS

EXERCISE - 1

Single Choice

1. $\mathrm{aA}+\mathrm{bB} \longrightarrow$ Product

$$
\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{k}[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}}
$$

(i) As on doubling concentration of A rate become four time so $\mathrm{a}=2$.
(ii) On four time concentration of B rate become double so $b=\frac{1}{2}$.
So, Given equation : $2 \mathrm{a}+\frac{1}{2} \mathrm{~b} \longrightarrow$ Product
$-\frac{1}{2} \frac{\mathrm{~d}[\mathrm{~A}]}{\mathrm{dt}}=-2 \frac{\mathrm{~d}[\mathrm{~B}]}{\mathrm{dt}} \Rightarrow-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=-4 \frac{\mathrm{~d}[\mathrm{~B}]}{\mathrm{dt}}$
2. $2 \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Rate $=-\frac{1}{2} \frac{\mathrm{~d}[\mathrm{NO}]}{\mathrm{dt}}=-\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{H}_{2}\right]}{\mathrm{dt}}=\frac{\mathrm{d}\left[\mathrm{N}_{2}\right]}{\mathrm{dt}}$
$=\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{H}_{2} \mathrm{O}\right]}{\mathrm{dt}}=\mathrm{K}_{1}[\mathrm{NO}]\left[\mathrm{H}_{2}\right]$
(1) $\frac{\mathrm{d}\left[\mathrm{H}_{2} \mathrm{O}\right]}{\mathrm{dt}}=2 \mathrm{~K}_{1}[\mathrm{NO}]\left[\mathrm{H}_{2}\right]=\mathrm{K}[\mathrm{NO}]\left[\mathrm{H}_{2}\right]$

So $k=2 k 1$
(2) $-\frac{\mathrm{d}[\mathrm{NO}]}{\mathrm{dt}}=2 \mathrm{k}_{1}[\mathrm{NO}]\left[\mathrm{H}_{2}\right]=\mathrm{K}_{1}{ }^{\prime}[\mathrm{NO}]\left[\mathrm{H}_{2}\right]$

$$
\mathbf{k} 1^{\prime}=2 \mathrm{k} 1
$$

(3) $-\frac{\mathrm{d}\left[\mathrm{H}_{2}\right]}{\mathrm{dt}}=2 \mathrm{k}_{1}[\mathrm{NO}]\left[\mathrm{H}_{2}\right]=\mathrm{K}_{1}{ }^{\prime \prime}[\mathrm{NO}]\left[\mathrm{H}_{2}\right]$ k1" $=2 \mathrm{~K} 1$
4. $\mathrm{xA} \longrightarrow \mathrm{yB}$
$\frac{-1}{x} \frac{d}{d t}[A]=\frac{1}{y} \frac{d}{d t}[B] \Rightarrow \frac{-d}{d t}[A]=\frac{x}{y} \frac{d}{d t}[B]$
$\log \left(\frac{-d[A]}{d t}\right)=\log \left(\frac{x}{y}\right)\left(\frac{+d[B]}{d t}\right)$
$\Rightarrow \log \frac{-d}{d t}[A]=\log \frac{d}{d t}[B]+\log \left(\frac{x}{y}\right)$
$\log \left(\frac{x}{y}\right)=0.3 \Rightarrow \frac{x}{y}=\frac{2}{1} \Rightarrow x: y:: 2: 1$
5. $\frac{\mathrm{d}}{\mathrm{dt}}\left[\mathrm{SO}_{3}\right]=100 \mathrm{gram} / \mathrm{min}=\frac{100}{80} \mathrm{~mole} / \mathrm{min}=1.25$ mole $/ \mathrm{min}$.
$\frac{-1}{2} \frac{\mathrm{~d}}{\mathrm{dt}}\left[\mathrm{SO}_{2}\right]=\frac{-\mathrm{d}}{\mathrm{dt}}\left[\mathrm{O}_{2}\right]=\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{dt}}\left[\mathrm{SO}_{3}\right]$
$\frac{-\mathrm{d}}{\mathrm{dt}}\left[\mathrm{O}_{2}\right]=\frac{1.25}{2}$ mole $/ \mathrm{min}=\frac{1.25}{2} \times 32$ gram $/ \mathrm{min}$
$=20 \mathrm{gram} / \mathrm{min}$
8. $\mathrm{A}+\mathrm{B} \longrightarrow$ product
$\mathrm{r}=\mathrm{K}[\mathrm{A}]^{1}[\mathrm{~B}]^{2}$
$\mathrm{r}_{1}=\mathrm{K}[1]^{1}[1]^{2}=1 \times 10^{-2} \quad\left(\mathrm{~K}=1 \times 10^{-2}\right)$
$\mathrm{r}_{1}=\mathrm{K}\left[\frac{1}{2}\right]\left[\frac{1}{2}\right]^{2}=1 \times 10^{-2} \times \frac{1}{8}=1.25 \times 10^{-3}$
10. $2 \mathrm{~A}+\mathrm{B} \longrightarrow$ product

$$
\begin{array}{ll}
-\frac{\mathrm{d}[\mathrm{~A}]}{\mathrm{dt}}=\mathrm{K}[\mathrm{~A}] & \Rightarrow-\frac{\mathrm{d}[\mathrm{~A}]}{\mathrm{dt}}=\mathrm{K}[\mathrm{a}-\mathrm{x}] \\
\mathrm{C}_{\mathrm{t}}=\mathrm{C}_{0} \mathrm{e}^{-\mathrm{Kt}} & \Rightarrow \mathrm{C}_{\mathrm{t}}=\mathrm{C}_{0} \mathrm{e}^{-\mathrm{K} \times \frac{1}{\mathrm{~K}}} \\
\mathrm{C}_{\mathrm{t}}=\mathrm{C}_{0} \mathrm{e}^{-1} & \Rightarrow \mathrm{C}_{\mathrm{t}}=\frac{\mathrm{C}_{0}}{\mathrm{e}}
\end{array}
$$

11. $\mathrm{C}_{\mathrm{t}}=\mathrm{C}_{0} \mathrm{e}^{-\mathrm{Kt}}$

According to question
$\mathrm{C}_{\mathrm{A}, \mathrm{t}}=\mathrm{C}_{\mathrm{B}},{ }_{\mathrm{t}}$
$C_{A} e^{-K_{A} t}=C_{B} e^{-K_{B} t}$
$\frac{C_{A}}{C_{B}}=\frac{e^{-K_{B} t}}{e^{-K_{A} t}} \Rightarrow \frac{C_{A}}{C_{B}}=e^{\left(K_{A}-K_{B}\right) t}$
$4=\mathrm{e}^{\left[\frac{\ln 2}{5}-\frac{\ln 2}{15}\right] \times \mathrm{t}} \Rightarrow \ln 4=\left[\frac{\ln 2}{5}-\frac{\ln 2}{15}\right] \mathrm{t}$
$\ln (2)^{2}=\left[\frac{\ln 2}{5}-\frac{\ln 2}{15}\right] \mathrm{t}$
$2 \ln 2=\left[\frac{\ln 2}{5}-\frac{\ln 2}{15}\right] t$
$2=\left[\frac{1}{5}-\frac{1}{15}\right] \mathrm{t} \Rightarrow 2=\frac{2}{15} \times \mathrm{t} \Rightarrow \mathrm{t}=15$ minute.
13. time Total for drop to disappears $\left(a_{o}-a_{t}\right)=k t$ $a_{t}=0$

$$
\frac{3.0 \times 10^{-6}}{\left(0.05 \times 10^{-3}\right) \times 1.0 \times 10^{7}}=\mathrm{t}_{100 \%} \Rightarrow \mathrm{t}_{100 \%}=6 \times 10^{-9} \mathrm{sec}
$$

14. From given graph $x=K t$
i.e. it is a zero order reaction.

$$
\therefore-\frac{\mathrm{d}[\mathrm{~A}]}{\mathrm{dt}}=\mathrm{K}
$$

15. slope of graph at $20 \mathrm{sec}=\frac{d y}{d x}=\frac{0.35}{50}=7 \times 10^{-3}$

17. $\begin{aligned} & \mathrm{A} \\ & \mathrm{t}=0 \\ & \mathrm{t}=100 \mathrm{a} \\ & \mathrm{a}=0.1 \mathrm{M}\end{aligned}+\underset{\mathrm{b}=0.2 \mathrm{M}}{\longrightarrow} \quad \begin{aligned} & \mathrm{C} \\ & 0\end{aligned}$
$t=100 \mathrm{~s} a-\mathrm{x} \quad \mathrm{b}-\mathrm{x} \quad \mathrm{x}$
From question, $r=k[A][B]$ and hence

$$
\mathrm{kt}=\frac{1}{\mathrm{~b}-\mathrm{a}} \ln \frac{\mathrm{a}(\mathrm{~b}-\mathrm{x})}{\mathrm{b}(\mathrm{a}-\mathrm{x})}
$$

or $\quad 10^{-3} \times 100=\frac{1}{0.2-0.1} \times 2.303 \times \log \frac{0.1(0.2-x)}{0.2(0.1-x)}$ $x \approx 0.002$
$\therefore \quad[\mathrm{A}]=0.1-\mathrm{x}=0.098 \mathrm{M}$
19.

	A	$n B$
$t=0$	A_{0}	0
$t=t$	$A_{0}-x$	$n x$

From graph
$A_{0}-x=n x \quad \Rightarrow \quad x=\frac{A_{0}}{n+1}$
$\Rightarrow|B|=\frac{n\left|A_{0}\right|}{n+1}$
20. $\frac{1}{\mathrm{C}_{\mathrm{t}}}=\frac{1}{\mathrm{C}_{0}}+\mathrm{Kt}$.
$\Rightarrow \frac{1}{0.04}=\frac{1}{0.2}+0.002 \times \mathrm{t}$.
$\Rightarrow 25=5+0.002 \times \mathrm{t} \Rightarrow \mathrm{t}=\frac{20}{2 \times 10^{-3}}=10,000 \mathrm{sec}$.
23. $\frac{t_{1 / 2}}{t_{3 / 4}}=\frac{2^{n-1}-1}{4^{n-1}-1} \Rightarrow \frac{t_{3 / 4}}{t_{1 / 2}}=\frac{4^{n-1}-1}{2^{n-1}-1}=\frac{4^{2}-1}{2^{2}-1}=\frac{15}{3}=5: 1$
$\Rightarrow \mathrm{t}_{1 / 2}=\frac{2^{\mathrm{n}-1}-1}{|\mathrm{~A}|_{0}^{\mathrm{n}-1} \mathrm{~K}^{(\mathrm{n}-1)}}$
$\Rightarrow \mathrm{t}_{3 / 4}=\frac{4^{\mathrm{n}-1}-1}{|\mathrm{~A}|_{0}^{\mathrm{n}-1} \mathrm{~K}^{(\mathrm{n}-1)}}$.
25. Letr $=(A)^{x}(B)^{y}$
$x=\frac{\log \left(\frac{r_{1}}{r_{2}}\right)}{\log \left(\frac{a_{1}}{a_{2}}\right)}=\frac{\log \frac{0.1}{0.1}}{\log \left(\frac{0.012}{0.024}\right)}=\frac{\log \left(\frac{1}{8}\right)}{\log \left(\frac{1}{2}\right)}$
$x=3$
$y=\frac{\log \frac{r_{1}}{r_{3}}}{\log \left(\frac{b_{1}}{b_{2}}\right)}=\frac{\log \left(\frac{0.1}{0.1}\right)}{\log \left(\frac{0.035}{0.070}\right)}=\frac{\log (1)}{\log \left(\frac{1}{2}\right)}$
$y=0$
26. dt is parabolic graph

$$
\text { of } y=x^{2} \quad-\frac{d C}{d t} \underbrace{}_{C}
$$

So This the graph of second order

$$
y^{2}=x \quad y=(x) \frac{1}{2} \quad-\frac{d C}{d t}
$$

$\frac{-\mathrm{dc}}{\mathrm{dt}}=\mathrm{K}[\mathrm{C}]^{\frac{1}{2}}$ So reaction is $\left(\frac{1}{2}\right)$ order.
$\begin{array}{lllll}\text { 28. Initial pressure } & 65 & 105 & y & 185 \\ \text { Halflife } & 290 & \mathrm{x} & 670 & 820\end{array}$
Initial pressure of gas a Initial moles of gas in above question.
Half life a Initial pressure
So, it must be zero order reaction
$\mathrm{t}_{1 / 2}=\frac{\mathrm{C}_{\mathrm{O}}}{2 \mathrm{k}}=\frac{\mathrm{P}_{\mathrm{O}}}{2 \mathrm{k}} \Rightarrow 290=\frac{65}{2 \mathrm{k}} \quad \Rightarrow \mathrm{k}=\frac{65}{2 \times 290}$
$=0.112 \mathrm{~mm}$ of $\mathrm{Hg} / \mathrm{sec}$
$\mathrm{x}=\frac{105 \times 2 \times 290}{2 \times 65}=468 \mathrm{sec}$
$670=\frac{\mathrm{y} \times 2 \times 290}{2 \times 64}$
$\Rightarrow \mathrm{y}=150 \mathrm{~mm}$ of Hg
29. $\mathrm{NH}_{4} \mathrm{NO}_{2}(\mathrm{aq}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\ell)$

$$
\begin{aligned}
& \mathrm{K}=\frac{2.303}{\mathrm{t}} \log \left(\frac{\mathrm{~V}_{\infty}-\mathrm{V}_{\mathrm{O}}}{\mathrm{~V}_{\infty}-\mathrm{V}_{\mathrm{t}}}\right) \Rightarrow \mathrm{V}_{0}=0 \\
& \Rightarrow \mathrm{~K}=\frac{2.303}{20} \log \left(\frac{70-0}{70-40}\right) \\
& \Rightarrow \frac{2.303}{20} \log \left(\frac{70}{30}\right) \Rightarrow \mathrm{K}=\frac{2.303}{1200} \log \frac{7}{3} .
\end{aligned}
$$

31. $\mathrm{A}(\mathrm{s}) \longrightarrow 2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{g})$

$$
\mathrm{K}=\frac{1}{\mathrm{t}} \ln \left(\frac{\mathrm{P}_{\infty}-\mathrm{P}_{0}}{\mathrm{P}_{\infty}-\mathrm{P}_{\mathrm{t}}}\right)
$$

$$
\mathrm{P}_{0}=0 \quad \mathrm{P}_{\mathrm{t}}=150 \quad \mathrm{P}_{\infty}=225
$$

$$
\frac{1}{20} \ln \left[\frac{225}{225-150}\right] \Rightarrow \frac{1}{20} \ln \left(\frac{225}{75}\right)=0.05 \ln 3
$$

$$
\frac{1}{20} \ln \left(\frac{225}{75}\right)=\frac{1}{20} \ln \left(\frac{225}{225 \times \mathrm{P}_{40}}\right)
$$

$$
\Rightarrow\left(\frac{225}{75}\right)^{2}=\frac{225}{225 \times \mathrm{P}_{40}}
$$

$$
\frac{225}{75 \times 75}=\frac{1}{225-\mathrm{P}_{40}} \Rightarrow \mathrm{P} 40=200
$$

33. $\mathrm{kt}=\operatorname{In}\left(\frac{\mathrm{C}_{\mathrm{O}}}{\mathrm{C}_{\mathrm{t}}}\right)$

	$2 \mathrm{~N}_{2} \mathrm{O}_{5}$	$2 \mathrm{~N}_{2} \mathrm{O}_{4}$	$+\mathrm{O}_{2}$
	$200 \mathrm{~cm}^{3}$	0	0
	$20 \mathrm{~cm}^{3}$	$180 \mathrm{~cm}^{3}$	$90 \mathrm{~cm}^{3}$
$t=\infty$	0	$200 \mathrm{~cm}^{3}$	$100 \mathrm{~cm}^{3}$

because Max. volume of $\mathrm{O}_{2}=100 \mathrm{~cm}^{3}$.
$\therefore \mathrm{K} \times 500=\operatorname{In}\left(\frac{200}{20}\right) \Rightarrow \mathrm{k}=\frac{\operatorname{In} 10}{500}=\frac{2.303}{500}$.
36. $\mathrm{K}=\frac{1}{10 \times 60} \ln \frac{\mathrm{r}_{\infty}-\mathrm{r}_{0}}{\mathrm{r}_{\infty}-\mathrm{r}_{\mathrm{t}}}=\frac{1}{10 \times 60} \ln \frac{-10-40}{-10-15}$

$$
=\frac{1}{10 \times 60} \times \ln 2=\frac{0.0693}{60}=1.15 \times 10^{-3} \mathrm{sec}^{-1}
$$

38. $\%$ of $B=\frac{\mathrm{k}_{1} \times 100}{\mathrm{k}_{1}+\mathrm{k}_{2}}=\frac{1.26 \times 10^{-4} \times 100}{12.6 \times 10^{-5}+3.8 \times 10^{-5}}=76.83 \%$.
$\%$ of $\mathrm{C}=\frac{\mathrm{k}_{2} \times 100}{\mathrm{k}_{1}+\mathrm{k}_{2}}=\frac{3.8 \times 10^{-5} \times 100}{12.6 \times 10^{-5}+3.8 \times 10^{-5}}=23.17 \%$
39. $[\mathrm{B}]+[\mathrm{C}]=2 \mathrm{M}$
$\frac{[\mathrm{B}]}{[\mathrm{C}]}=\frac{2 \mathrm{k}_{1}}{3 \mathrm{k}_{2}}=\frac{4}{9}$
40. $\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D}$
$\left[\frac{\mathrm{dx}}{\mathrm{dt}}\right]=0$
$\mathrm{k}_{1}[\mathrm{~A}][\mathrm{B}]-\mathrm{k}_{2}[\mathrm{C}][\mathrm{D}]=0$
$\mathrm{k}_{1}[\mathrm{~A}][\mathrm{B}]=\mathrm{k}_{2}[\mathrm{C}][\mathrm{D}]$
$[\mathrm{A}][\mathrm{B}]=[\mathrm{C}][\mathrm{D}]$
$0.4 \times 0.25=0.2 \times 0.5$
$1=1$.
41. Equation: $\mathrm{Ag}^{+}+2 \mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}\right]$

Given, $\frac{\mathrm{dx}}{\mathrm{dt}}=2 \times 10^{7} \mathrm{~L}^{2} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}\left[\mathrm{Ag}^{+}\right]\left[\mathrm{NH}_{3}\right]^{2}$ $-1 \times 10^{-2} \mathrm{~s}^{-1}\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}\right]$
For equilibrium $\quad \frac{d x}{d t}=0$
$2 \times 10^{7}\left[\mathrm{Ag}^{+}\right]\left[\mathrm{NH}_{3}\right]^{2}-1 \times 10^{-2}\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}\right]=0$

$$
\frac{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}\right]}{\left[\mathrm{Ag}^{+}\right]\left[\mathrm{NH}_{3}\right]^{2}}=\frac{2 \times 10^{7}}{1 \times 10^{-2}}=2 \times 10^{9} \mathrm{~L}^{2} \mathrm{~mol}^{-2}
$$

45. $\mathrm{K}_{1}=\mathrm{A}_{1} \mathrm{e}^{-\mathrm{E}_{1} / R T}$ and $\mathrm{K}_{2}=\mathrm{A}_{2} \mathrm{e}^{-\mathrm{E}_{2} / R T}$
$\frac{K_{1}}{K_{2}}=\frac{A_{1}}{A_{2}}=e^{\left(E_{2}-E_{1}\right) / R T} ; A_{1}$ and A_{2} are not given.
46. $\log \mathrm{K}=\left[\frac{-\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{R}}\right] \times \frac{1}{\mathrm{~T}}+\log \mathrm{A}$
at Y axies
$\left[\frac{1}{\mathrm{~T}}\right]=0 \mathrm{~T}=\infty$
at x axis
$\log \mathrm{k}=0 \frac{-\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{R}} \times \frac{1}{T}=-\log \mathrm{A} \Rightarrow \frac{E_{a}}{R \ln A}=T$
47. For reaction, $\mathrm{A} \longrightarrow \mathrm{B}$.
$\mathrm{E}_{\mathrm{a}}=10 \mathrm{~kJ} / \mathrm{mole} \quad, \Delta \mathrm{H}=5 \mathrm{~kJ} / \mathrm{mole}$
Rxn endothermic because $\Delta H(+)$

$$
\begin{aligned}
\Delta \mathrm{H} & =\mathrm{E}_{\mathrm{a}}-\mathrm{E}_{\mathrm{b}} \\
5 & =10-\mathrm{E}_{\mathrm{b}} \\
\mathrm{E}_{\mathrm{ab}} & =10-5 \stackrel{10}{=} 5 \mathrm{~kJ} / \text { mole. Then }[\mathrm{B}] .
\end{aligned}
$$

51. $\frac{\mathrm{k}_{\mathrm{t}}}{\mathrm{k}_{0}}=(\mathrm{TC})^{\mathrm{t}-0 / 10}$

Taking log gives $\log _{\mathrm{e}} \mathrm{k}_{\mathrm{t}}-\log _{\mathrm{e}} \mathrm{k}_{0}=\frac{\mathrm{t}}{10} \log _{\mathrm{e}}(\mathrm{TC})$
$\Rightarrow \ln \mathrm{k}_{\mathrm{t}}=\ln \mathrm{k}_{0}+\left(\frac{\ln (\mathrm{TC})}{10}\right) \mathrm{t}$
Comparision indicates $\quad \ln (\mathrm{TC})=\ln 3 \Rightarrow \mathrm{TC}=3$
53. $\log \mathrm{k}=-\frac{\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{R}} \frac{1}{\mathrm{~T}}+$ constant
$=-\frac{E_{a}}{2.303 \mathrm{R}} \times 10^{-3} \times \frac{10^{3}}{T}+$ constant
thus, slope of graph will be- $\frac{\mathrm{E}_{\mathrm{a}} \times 10^{-3}}{2.303 \mathrm{R}}=-\frac{4}{0.4}$
$\Rightarrow \mathrm{E}_{\mathrm{a}}=2.303 \times 1.98 \times 10^{4}=45600 \mathrm{cal}$
56. $\mathrm{A}+\mathrm{A} \xrightarrow{\mathrm{K}_{1}} \mathrm{~A}+\mathrm{A}^{*} \quad \mathrm{~A}^{*}+\mathrm{A} \xrightarrow{\mathrm{K}_{2}} 2 \mathrm{~A}$

Rate of decomposition

$$
\mathrm{A}=\mathrm{K}_{1}[\mathrm{~A}]^{2}
$$

Rate of formation $\quad \mathrm{A}=\mathrm{K}_{2}[\mathrm{~A}]\left[\mathrm{A}^{*}\right]$
At equilibrium rate of decomposition $=$ rate of formation

$$
\begin{aligned}
\mathrm{K}_{1}[\mathrm{~A}]^{2} & =\mathrm{K}_{2}[\mathrm{~A}]\left[\mathrm{A}^{*}\right] \\
{\left[\mathrm{A}^{*}\right] } & =\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}[\mathrm{~A}]
\end{aligned}
$$

58. For Rxn rate determining step is slowest step

Then in 1st Rxn

$$
\begin{equation*}
\text { Rate }=\mathrm{k}\left[\mathrm{NO}_{2}\right]\left[\mathrm{O}_{3}\right] \tag{i}
\end{equation*}
$$

But 2nd Rxn

$$
\begin{align*}
& \mathrm{O}_{3} \stackrel{\mathrm{k}_{\mathrm{a}} \text { fast }}{\stackrel{\mathrm{k}_{\mathrm{b}}}{\longrightarrow}} \mathrm{O}_{2}+[\mathrm{O}] \tag{a}\\
& \mathrm{NO}_{2}+\mathrm{O} \xrightarrow{\text { Slow }} \mathrm{NO}_{3} \tag{b}\\
& \mathrm{NO}_{3}+\mathrm{NO}_{2} \xrightarrow{\text { fast }} \mathrm{N}_{2} \mathrm{O}_{5} \tag{c}
\end{align*}
$$

Then for Rxn (a)

$$
\begin{equation*}
\frac{\mathrm{k}_{\mathrm{a}}}{\mathrm{k}_{\mathrm{b}}}=\frac{\left[\mathrm{O}_{2}\right][\mathrm{O}]}{\left[\mathrm{O}_{3}\right]}=\mathrm{k}_{\mathrm{eq}} \tag{d}
\end{equation*}
$$

by Rxn (b)
Rate $=\mathrm{k}\left[\mathrm{NO}_{2}\right][\mathrm{O}]$
put value of [O] from (d) to (ii)

$$
\begin{aligned}
& \text { Rate }=\mathrm{k} \frac{\mathrm{k}_{\mathrm{eq}}\left[\mathrm{O}_{3}\right]}{\left[\mathrm{O}_{2}\right]} \times\left[\mathrm{NO}_{2}\right] \\
& \text { Rate }=\frac{\mathrm{k}_{1}\left[\mathrm{NO}_{2}\right]\left[\mathrm{O}_{3}\right]}{\left[\mathrm{O}_{2}\right]}
\end{aligned}
$$

59. Rate $=\mathrm{K}[\mathrm{X}]\left[\mathrm{Y}_{2}\right]$
$\mathrm{K}_{\mathrm{eq}}=\frac{[\mathrm{X}]^{2}}{\left[\mathrm{X}_{2}\right]}$
$[\mathrm{X}]=\sqrt{\mathrm{K}_{\mathrm{eq}}} \times\left[\mathrm{X}_{2}\right]^{1 / 2}$
Rate $=\mathrm{K} \times \sqrt{\mathrm{K}_{\mathrm{eq}}}\left[\mathrm{X}_{2}\right]^{1 / 2}\left[\mathrm{Y}_{2}\right]$
So the order of overall reaction is 1.5
$\mathrm{K}_{\mathrm{eq}}=\frac{[\mathrm{X}]^{2}}{\left[\mathrm{X}_{2}\right]}$

$$
[\mathrm{X}]=\sqrt{\mathrm{K}_{\mathrm{eq}}} \times\left[\mathrm{X}_{2}\right]^{1 / 2}
$$

60. $\mathrm{C}_{3}=\frac{\mathrm{C}_{0}}{2^{3}}=\frac{\mathrm{C}_{0}}{8}$
$\frac{\mathrm{C}_{3}}{\mathrm{C}_{0}}=\frac{1}{8}$
61. $\mathrm{N}=\mathrm{N}_{0}\left(\frac{1}{2}\right)^{\mathrm{n}}$
$\left(\frac{\mathrm{x} v}{20}\right)=(\mathrm{x}) \times 200\left(\frac{1}{2}\right)^{4}$
$\mathrm{V}=250 \mathrm{ml}$.
So added volume of water $=50 \mathrm{ml}$.
62. $\mathrm{t}=\frac{2.303}{\lambda} \log _{10}\left[\frac{\mathrm{n}+\mathrm{n}}{\mathrm{n}}\right]$

$$
\mathrm{t}=\frac{2.303}{0.693} \times 4.5 \times 10^{9} \log _{10}[2]=4.5 \times 10^{9} \text { years }
$$

68. $\lambda \mathrm{t}=\ln \left[\frac{\mathrm{n}_{\mathrm{x}}+\mathrm{n}_{\mathrm{y}}}{\mathrm{n}_{\mathrm{x}}}\right]$

$$
\mathrm{t}=\frac{0.693 \times 10^{9}}{0.693} \times 2.303 \log _{10}\left[\frac{1+7}{1}\right]=2.079 \times 10^{10} \text { years }
$$

72. As $\mathrm{t}_{50 \%}$ is constant. Hence order of reaction is 1 .

$$
\begin{aligned}
& \mathrm{t}_{50 \%}=\frac{0.693}{\mathrm{~K}} \\
& \mathrm{n}=1, \mathrm{t}_{1 / 2}=\frac{0.693}{\mathrm{~K}}
\end{aligned}
$$

73. $\mathrm{C}_{\mathrm{t}}=\mathrm{C}_{0} \mathrm{e}^{-\mathrm{Kt}}$
$\frac{1}{\mathrm{e}^{2}} \times \mathrm{C}_{0}=\mathrm{C}_{0} \mathrm{e}^{-\mathrm{Kt}}$
$\mathrm{e}^{-2}=\mathrm{e}^{-\mathrm{Kt}}$
$\mathrm{t}=\frac{2}{\mathrm{~K}}$
$t=2$ natural life time.
74. $\begin{array}{lll}\mathrm{A}(\mathrm{g}) \\ \mathrm{t}=00 . & 4 \mathrm{~atm} & 2 \mathrm{~B}(\mathrm{~g}) \\ 1 \mathrm{~atm}\end{array} \rightarrow \begin{aligned} & \mathrm{C}(\mathrm{g}) \\ & 0 \mathrm{~atm}\end{aligned}$
$\mathrm{t}=\mathrm{t} \quad(0.4-0.3) \mathrm{atm}(1-0.6) \mathrm{atm} \quad 0.3 \mathrm{~atm}$
Since reaction is elementary.
So, Rate of reaction w.r.t. A \& B will be of order equal to stoichiometric coefficient
Rate $=\mathrm{K}[\mathrm{A}][\mathrm{B}]^{2}$
$\operatorname{Rate}_{(\text {Initial })}=\mathrm{K}[0.4][1]^{2}$
Rate $_{(\text {aftar } t=t)}=K[0.1][0.4]^{2}$
$\frac{\mathrm{R}_{(\mathrm{t}=\mathrm{t})}}{\mathrm{R}_{(\mathrm{t}=\mathrm{o})}}=\frac{\mathrm{K}[0.1][0.4]^{2}}{\mathrm{~K}[0.4][1]}=\frac{1}{25}$
75. $\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{k}[\mathrm{A}]^{2}$
$\log \left(\frac{d x}{d t}\right)=\log k+2 \log [A]$
Slope $=2$

Intercept $=\log \mathrm{k}$.
79. nA $\longrightarrow \mathrm{B}$
a
$a-x \frac{x}{n} \quad t_{1 / 2}=24 \min$
at $\mathrm{t}=48 \quad \mathrm{a}-\mathrm{x}=\frac{\mathrm{x}}{\mathrm{n}} \quad \Rightarrow \mathrm{a}=\frac{(1+\mathrm{n}) \mathrm{x}}{\mathrm{n}} ; \frac{\mathrm{na}}{1+\mathrm{n}}=\mathrm{x}$
$\frac{\ell \mathrm{n} 2}{24}=\frac{1}{48} \ln \frac{\mathrm{a}}{\mathrm{a}-\frac{\mathrm{na}}{(1+\mathrm{n})}} \Rightarrow 4=\frac{\mathrm{a}(1+\mathrm{n})}{\mathrm{a}} \Rightarrow \mathrm{n}=3$.
80. If easter 50% hydrolysed then
$x=\frac{a_{0}}{2} \Rightarrow\left(a_{0}-x\right)=\frac{a_{0}}{2}$
We can write
$\mathrm{a}_{0} \propto\left(\mathrm{~V}_{\infty}-\mathrm{V}_{0}\right)$
$\left(a_{0}-x\right) \propto\left(V_{\infty}-V_{t}\right)$
$\frac{\mathrm{V}_{\infty}-\mathrm{V}_{0}}{2}=\left(\mathrm{V}_{\infty}-\mathrm{V}_{\mathrm{t}}\right)$
$\mathrm{V}_{\infty}-\mathrm{V}_{0}=2 \mathrm{~V}_{\infty}-2 \mathrm{~V}_{\mathrm{t}}$
$V_{t}=\frac{\left(\mathrm{V}_{\infty}-\mathrm{V}_{0}\right)}{2}$
or $V_{\infty}=2 \mathrm{~V}_{\mathrm{t}}-\mathrm{V}_{0}$
82. Given $\left(r_{\infty}-r_{0}\right)=a,\left(r_{\infty}-r_{t}\right)=(a-x)$

At 50\% Inversion
$\frac{a}{2}=(a-x)$
$\frac{\left(\mathrm{r}_{\infty}-\mathrm{r}_{0}\right)}{2}=\left(\mathrm{r}_{\infty}-\mathrm{r}_{0}\right)$
$\left(\mathrm{r}_{\infty}-\mathrm{r}_{0}\right)=2 \mathrm{r}_{\infty}-2 \mathrm{r}_{\mathrm{t}}$
$\mathrm{r}_{0}=2 \mathrm{r}_{\mathrm{t}}-\mathrm{r}_{\infty}$
85.

	$2 \mathrm{NO}_{2}(\mathrm{~g})$	+	$\mathrm{F}_{2}(\mathrm{~g})$
$\mathrm{t}=0$	$2 \mathrm{P}_{\mathrm{o}}$	P_{o}	$2 \mathrm{NO}_{2} \mathrm{~F}(\mathrm{~g})$
$\mathrm{t}=0$	2 atm	1 atm	0
$\mathrm{t}=\mathrm{t}$	0	0	2 atm
$2 \mathrm{P}_{\mathrm{o}}+\mathrm{P}_{\mathrm{o}}=3 \mathrm{~atm}$			
$\mathrm{P}_{\mathrm{O}}=1 \mathrm{~atm}$			

86.

$$
\mathrm{A} \longrightarrow \quad \mathrm{~B}+2 \mathrm{C}+3 \mathrm{D}
$$

Optical rotation -
$t=0 \quad a$ $\begin{array}{lll}\theta_{1} & \theta_{2} & \theta_{3}\end{array}$
$0 \quad 0 \quad 0$
Optical rotation at $\mathrm{t}=0$ is zero.

$$
t=t \quad a-x \quad x \quad 2 x \quad 3 x
$$

Optical rotation at time $=\mathrm{t}$ is $\left(\mathrm{x} \cdot \theta_{1}+2 \mathrm{x} \cdot \theta_{2}+3 \mathrm{x} \cdot \theta_{3}\right)$.

$$
\begin{array}{lllll}
\mathrm{t}=\infty & 0 & \mathrm{a} & 2 \mathrm{a} & 3 \mathrm{a}
\end{array}
$$

Optical rotation at time $=\infty$ is $\left(\mathrm{a} \cdot \theta_{1}+2 \mathrm{a} \cdot \theta_{2}+3 \mathrm{a} \cdot \theta_{3}\right)$.
$\left(\mathrm{x} . \theta_{1}+2 \mathrm{x} . \theta_{2}+3 \mathrm{x} . \theta_{3}\right)=\mathrm{r}_{\mathrm{t}} \quad ; \quad\left(\mathrm{a} \cdot \theta_{1}+2 \mathrm{a} \cdot \theta_{2}+3 \mathrm{a} \cdot \theta_{3}\right)=\mathrm{r}_{\infty}$

$$
\begin{aligned}
& x=\frac{r_{t}}{\theta_{1}+2 \theta_{2}+3 \theta_{3}} \quad ; \quad a=\frac{r_{\infty}}{\theta_{1}+2 \theta_{2}+3 \theta_{3}} \\
& k=\frac{1}{t} \ln \left[\frac{a}{a-x}\right]=\frac{1}{t} \ln \left[\frac{r_{\infty}}{r_{\infty}-r_{t}}\right]
\end{aligned}
$$

EXERCISE-2

Part \# I : Multiple Choice

1. $\mathrm{K}=\frac{\mathrm{K}_{1} \mathrm{~K}_{3}}{\mathrm{~K}_{2}}$
$A e \frac{-\left(E_{a}\right)_{\text {overall }}}{R T}=\frac{A_{1} e^{-\frac{E_{1}}{R T}} \times A_{3} e^{-\frac{E_{3}}{R T}}}{A_{2} e^{-\frac{E_{2}}{R T}}}$
$A e^{\frac{-\left(E_{a}\right)_{\text {overall }}}{R T}}=\left(\frac{A_{1} A_{3}}{A_{2}}\right) e^{-\frac{\left[E_{1}+E_{3}-E_{2}\right]}{R T}}$
$\left(\mathrm{E}_{\mathrm{a}}\right)_{\text {overall }}=\mathrm{E}_{1}+\mathrm{E}_{3}-\mathrm{E}_{2}=30 \mathrm{KJ} / \mathrm{mole}$
$2 \mathrm{~A} \underset{\mathrm{~K}_{2}}{\stackrel{\mathrm{~K}_{1}}{\rightleftharpoons}} \mathrm{~A}^{*}+\mathrm{A} \quad[$ Fast $]$
$\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}=\frac{[\mathrm{A} *][\mathrm{A}]}{[\mathrm{A}]^{2}}$ or $\left[\mathrm{A}^{*}\right]=\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}[\mathrm{~A}]$
rate $=K_{3}\left[A^{*}\right]=\frac{\mathrm{K}_{1} \mathrm{~K}_{3}}{\mathrm{~K}_{2}}[\mathrm{~A}]$
2. $3 \mathrm{~A}(\mathrm{~g}) \longrightarrow 2 \mathrm{~B}(\mathrm{~g})+2 \mathrm{C}(\mathrm{g})$
$\mathrm{t}=0 \quad \mathrm{P}_{0}$
$\mathrm{t}=20 \quad \mathrm{P}_{0}-\mathrm{x} \quad \frac{2 \mathrm{x}}{3} \quad \frac{2 \mathrm{x}}{3}$
$\mathrm{t}=\infty \quad \frac{2 \mathrm{P}_{0}}{3} \quad \frac{2 \mathrm{P}_{0}}{3}$
$\Rightarrow \frac{4 \mathrm{P}_{0}}{3}=4$
$\mathrm{P}_{0}=3 \mathrm{~atm}$.
$\mathrm{P}_{0}+\frac{\mathrm{x}}{3}=3.5$
$\Rightarrow \mathrm{t}_{50 \%}=20$ is the half life.
$\mathrm{x}=1.5 \quad \mathrm{t}_{75 \%}=2 \times 20=40 \mathrm{~min}$.
$\mathrm{t}_{87.5 \%}=3 \times \mathrm{t}_{50 \%}=3 \times 20=60 \mathrm{~min}$

$$
\mathrm{t}_{99 \%}=\frac{2}{3} \times \mathrm{t}_{99.9 \%}=\frac{2}{3} \times 10 \times \mathrm{t}_{50 \%}=\frac{400}{3}
$$

5. $0 \quad 30 \quad \infty$
$30 \quad 20 \quad-15$
$\mathrm{k}=\frac{1}{30} 2.0303 \log \frac{30-(-15)}{20-(-15)}$
$=\frac{1}{30} \ln \frac{45}{35} \min ^{-1}$
$\therefore \quad \mathrm{t}_{1 / 2}=\frac{30 \ln 2}{\ln \frac{9}{7}}=15 \mathrm{~min}$
$\frac{1}{30} \ln \frac{45}{35} \min ^{-1}=\frac{1}{\mathrm{t}} \ln \frac{45}{0-(-15)}$
$\mathrm{t}=120 \mathrm{~min}$
$\frac{30-(-15)}{x-(-15)}=2$ at half time
$\Rightarrow \frac{45}{x+15}=2 \Rightarrow x+15=\frac{45}{2}$
$\Rightarrow \quad \mathrm{x}=22.5-15=7.5^{\circ}$
6. (C) Given, $\log \mathrm{k}\left(\mathrm{min}^{-1}\right)=5-\frac{2000}{\mathrm{~T}(\mathrm{k})}$

Compare this with

$$
\log \mathrm{K}=\log \mathrm{A}-\frac{\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{RT}(\mathrm{k})}
$$

we find $\quad \mathrm{A}=1 \times 10^{5}$
(D) $-\frac{E_{a}}{2.303 R}=-2000$
$\mathrm{E}_{\mathrm{a}}=9.212 \mathrm{kcal}$.
8. We know, $\mathrm{E}_{\mathrm{a}}=\frac{2.303 \mathrm{RT}_{1} \mathrm{~T}_{2}}{\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)} \log \left(\frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}\right)$
10. $\mathrm{P} \rightarrow \mathrm{y}, \mathrm{z}, \mathrm{Q} \rightarrow \mathrm{x}, \mathrm{R} \rightarrow \mathrm{y}, \mathrm{z}$.
11. (a) $t_{1 / 2} \propto \frac{1}{(\text { initial conc. })^{\text {order-1 }}}$
(b) $\mathrm{t}_{\text {avg }}=\frac{\mathrm{t}_{1 / 2}}{0.693}$
(c) For second order reaction $\mathrm{t}_{1 / 2}=\frac{1}{\mathrm{KC}_{0}}$

$$
\frac{1}{\mathrm{C}_{\mathrm{t}}}=\frac{1}{\mathrm{C}_{0}}+\mathrm{Kt}
$$

At $\mathrm{t}=\mathrm{t}_{75 \%} \quad \mathrm{C}_{\mathrm{t}}=\frac{\mathrm{C}_{0}}{4} \Rightarrow \frac{4}{\mathrm{C}_{0}}=\frac{1}{\mathrm{C}_{0}}+\mathrm{Kt}_{75 \%}$
$\Rightarrow \mathrm{t}_{75 \%}=\frac{3}{\mathrm{C}_{0} \mathrm{~K}} \Rightarrow \mathrm{t}_{75 \%}=3 \times \mathrm{t}_{1 / 2}$
12. (B) Half life period independent of conc. of Zn than order w.r.t. Zn is 1 st

Rate $=\mathrm{k}[\mathrm{Zn}]\left[\mathrm{H}^{+}\right]^{\mathrm{n}}$ we can write
by data $\frac{\text { Rate }_{2}}{\text { Rate }_{1}}=\frac{[\mathrm{Zn}]}{[\mathrm{Zn}]}\left[\frac{1 \times 10^{-2}}{1 \times 10^{-3}}\right]^{\mathrm{n}}=\frac{100}{1}$
Given $n=2$
Then \quad Rate $=k[\mathrm{Zn}]\left[\mathrm{H}^{+}\right]^{2}$
(C) Conc. of Zn four times and H^{+}ion is halved

$$
\text { Rate }=\mathrm{k}[4 \times \mathrm{Zn}]\left[\frac{\mathrm{H}^{+}}{2}\right]^{2}
$$

Rate $=\mathrm{k}[\mathrm{Zn}]\left[\mathrm{H}^{+}\right]^{2}$
Rate remains and same.
(D) Similarly if conc. of H^{+}doubled and $[\mathrm{Zn}]$ constant Then \quad Rate $_{2}=\mathrm{k}[\mathrm{Zn}]\left[2 \mathrm{H}^{+}\right]^{2}$

$$
\begin{aligned}
& \operatorname{Rate}_{2}=4 \mathrm{k}[\mathrm{Zn}]\left[\mathrm{H}^{+}\right]^{2} \\
& \operatorname{Rate}_{2}=4 \times \text { Rate }_{1}
\end{aligned}
$$

13. Use $\mathrm{K}=\mathrm{Ae}^{-\mathrm{Ea} / \mathrm{RT}}$ and $\ln \mathrm{k}=\ln \mathrm{A}=\frac{-\mathrm{E}_{\mathrm{a}}}{\mathrm{R}} \times \frac{1}{\mathrm{~T}}$
$2.303 \log \mathrm{~K}=2.303 \log \mathrm{~A} \frac{-\mathrm{E}_{\mathrm{a}}}{\mathrm{R}} \frac{1}{\mathrm{~T}}$
$\log \mathrm{K}=\log \mathrm{A} \frac{-\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{R}} \frac{1}{\mathrm{~T}}$
14. Over all order of $\operatorname{Rxn}=\left(1-\frac{1}{2}\right)=+\frac{1}{2}$.
as SO_{3} for Rate of Rxn slow down.
15. $2 \mathrm{~A} \longrightarrow$ Product
$\frac{1}{[\mathrm{~A}]_{\mathrm{t}}}-\frac{1}{[\mathrm{~A}]_{0}}=k t$
$\frac{1}{[\mathrm{~A}]_{\mathrm{t}}}=\frac{1}{[\mathrm{~A}]_{0}}+\mathrm{kt}$
16.

A (aq)	B (aq)	$\mathrm{C}(\mathrm{aq})$
$t=0 \quad a$	0	0
$\mathrm{t}=\mathrm{t} \quad \mathrm{a}-\mathrm{x}$	X	x
$t=\infty \quad 0$	a	a
$\begin{aligned} & (a-x)+2 x+3 x \propto n_{1} \\ & a+4 x \propto n_{1} \\ & 2 a+3 a \propto n_{2} \end{aligned}$		
$\mathrm{a} \propto \frac{\mathrm{n}_{2}}{5}$		
$k=\frac{1}{t} \ln \left[\frac{a}{a-x}\right]$		

19. $\mathrm{A} \rightarrow \mathrm{B}$ (uncatalysed reaction) $\mathrm{A} \rightarrow \mathrm{B}$
$A \xrightarrow{\text { catalyst }} B \quad$ (catalyst reaction)
$K=A e^{-E_{a} / R T}$
$\mathrm{K}_{\text {cat. }}=\mathrm{Ae}^{-\mathrm{E}_{\mathrm{a} \text { (cat.) }} / R T}$
$\frac{K_{\text {cat. }}}{K}=e^{\left(E_{a}-E_{a}^{\prime}\right) \times \frac{1}{R T}}$
$\frac{K_{\text {cat. }}}{K}=e^{\frac{8.314 \times 10^{3}}{8.314 \times 300}}=e^{3.33}=\mathbf{2 8}$ times
20. We have,

$$
\frac{[\mathrm{B}]_{\mathrm{t}}}{[\mathrm{C}]_{\mathrm{t}}}=\frac{4 \mathrm{k}_{1}}{3 \mathrm{k}_{2}}=\frac{16}{9}
$$

so, $\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}=\frac{4}{3}$

Now, $\quad k=k_{1}+k_{2}=\left[2 \times 10^{-3}+\frac{3}{4} \times 2 \times 10^{-3}\right] \mathrm{sec}^{-1}$
$=\frac{7}{2} \times 10^{-3} \sec ^{-1}=\frac{7 \times 10^{-3} \times 60}{2} \min ^{-1}$
so, $\mathrm{T}_{1 / 2}=\frac{\ell \mathrm{n} 2}{7 \times 30 \times 10^{-3}} \min =\frac{693}{7 \times 30}=\mathbf{3 . 3} \mathbf{~ m i n}$.
22. $y=\frac{k_{1} a}{k_{2}-k_{1}}\left[e^{-k_{1} t}-e^{-k_{2} t}\right]$
$\frac{d y}{d t}=0$.
$-\mathrm{k}_{1} \mathrm{e}^{-\mathrm{k}_{1} \mathrm{t}}+\mathrm{k}_{2} \mathrm{e}^{\mathrm{k}_{2} \mathrm{t}}=0$
So $\mathrm{t}_{\max }=\frac{1}{\mathrm{~K}_{1}-\mathrm{K}_{2}} \ln \frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}$
25. Rate constant $\mathrm{K}=\frac{\text { (Rate) }}{\text { [conc.] }}=\frac{1 \times 10^{-3}}{.1}$
$=\frac{3 \times 10^{-3}}{.3}=1 \times 10^{-2} \mathrm{sec}^{-1}$
26. $\mathrm{A} \longrightarrow$ Product

We know, \quad Rate $=K$ [conc. $]^{\mathrm{n}}$

$$
\begin{align*}
& 1 \times 10^{-4}=K[.01]^{\mathrm{n}} \tag{i}\\
& 1.41 \times 10^{-4}=K[.02]^{\mathrm{n}} \tag{ii}
\end{align*}
$$

(i) / (ii) $\Rightarrow \frac{1}{1.41}=\left(\frac{1}{2}\right)^{\mathrm{n}}$

$$
\mathrm{n}=\frac{1}{2}
$$

Then $\frac{-\mathrm{d}(\mathrm{A})}{\mathrm{dt}}=\mathrm{K}[\mathrm{A}]^{1 / 2}$
27. Rate of reaction independent of conc. of A

Net Rxn Rate $=\mathrm{K}_{1}[\mathrm{~A}]^{0}-\mathrm{K}_{2}[\mathrm{~B}]^{1}$
order wrt B is 1 because rate doubles when conc. of B doubles, then Net Rxn Rate $=k_{1}-k_{2}[B]$.
28. Equation: $\mathrm{Ag}^{+}+2 \mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}\right]$

Given, $\frac{\mathrm{dx}}{\mathrm{dt}}=\left(2 \times 10^{7} \mathrm{~L}^{2} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}\right)\left[\mathrm{Ag}^{+}\right]\left[\mathrm{NH}_{3}\right]^{2}$

$$
-\left(1 \times 10^{-2} \mathrm{~s}^{-1}\right)\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}\right]
$$

For equilibrium $\quad \frac{d x}{d t}=0$
$2 \times 10^{7}\left[\mathrm{Ag}^{+}\right]\left[\mathrm{NH}_{3}\right]^{2}-1 \times 10^{-2}\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}\right]=0$
$\frac{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}\right]}{\left[\mathrm{Ag}^{+}\right]\left[\mathrm{NH}_{3}\right]^{2}}=\frac{2 \times 10^{7}}{1 \times 10^{-2}}=\mathbf{2} \times \mathbf{1 0}^{\mathbf{9}} \mathbf{L}^{\mathbf{2}} \mathbf{~ m o l}^{-2}$.
29. Given Rxn
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
$\frac{\mathrm{dx}}{\mathrm{dt}}=1 \times 10^{2}\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}-1 \times 10^{-3}\left[\mathrm{NH}_{3}\right]^{2}$
when $\frac{\mathrm{dx}}{\mathrm{dt}}=0$ then $\frac{\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}{\left[\mathrm{NH}_{3}\right]^{2}}=10^{-5}$
Hence the reaction will be at equilibrium at the given instant.
30. I represent kinetic but II represent equilibrium region

Because at equilibrium the concentration remains constant.
31. Rate depends only conc. of $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}\right]$ hence rate determining

Step

$$
\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl} \longrightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}+\mathrm{Cl}^{-}
$$

32.

Initial conc. 1

$$
\mathrm{A}+\mathrm{B} \longrightarrow \text { Product }
$$

Initially

$$
\begin{aligned}
& 1.0 \times 10^{-2}=\mathrm{K}[1][1]^{2} \\
& \mathrm{~K}=1.0 \times 10^{-21}
\end{aligned}
$$

When half of reactant reacted

$$
\begin{aligned}
& \text { Rate }=1.0 \times 10^{-2}\left[\frac{1}{2}\right]\left[\frac{1}{2}\right]^{2} \\
& \text { Rate }=1.25 \times 10^{-3}
\end{aligned}
$$

33. We know for zeroth order Rxn

For (I) $\quad \mathrm{x}=\mathrm{kt}$
For (II) $\quad \mathrm{t}_{1 / 2} \propto\left[\mathrm{~A}_{0}\right]$ [Initial concentration $]$
For (III) $\quad \mathrm{A}_{0}-\frac{\mathrm{A}_{0}}{2}=\mathrm{k} \times 100$

$$
\begin{equation*}
\mathrm{A}_{0}-\frac{\mathrm{A}_{0}}{4}=\mathrm{k} \times \mathrm{t} \tag{ii}
\end{equation*}
$$

$$
\begin{aligned}
& \frac{\frac{\mathrm{A}_{0}}{2}}{\left(\frac{3 \mathrm{~A}_{0}}{4}\right)}=\frac{\mathrm{k} \times 100}{\mathrm{k} \times \mathrm{t}} \\
& \mathrm{t}=\frac{100 \times 3}{2}=\mathbf{1 5 0} \text { minutes. }
\end{aligned}
$$

34. We know $\mathrm{t}_{\mathrm{av}}=1.44 \times \mathrm{t}_{50 \%}$ and $\mathrm{t}_{75 \%}=2 \mathrm{t}_{50 \%}$ Then $\quad \mathrm{t}_{50 \%}<\mathrm{t}_{\mathrm{av}}<\mathrm{t}_{75 \%}$
35. It is properties of Ist order Rxn and other all are properties of IInd order.
36. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ which react with I_{2}. (Iodometric titration)
37. Suppose A_{t}

We know $\quad\left(A_{0}-A_{t}\right)=k t$ for zeroth order

$$
\begin{aligned}
& \left(0.50-A_{t}\right)=0.025 \times t \\
& 0.50-A_{t}=0.025 \times 15
\end{aligned}
$$

$$
A_{t}=0.125 \mathrm{M}
$$

38. $\mathrm{K}=\frac{2.303}{90} \log \left(\frac{100}{100-90}\right)=\frac{2.303}{90} \times \log 10$
$=\frac{2.303}{90} \mathrm{~min}^{-1}$
$\mathrm{t}_{1 / 2}(50 \%$ completed $)=\frac{.6932}{2.303} \times 90=27.08$ minutes.
39. Conc. after at 2 half life (20 minute)
$=\left(\frac{1}{2}\right)^{2} \times($ Initial conc. $)=\left(\frac{1}{2}\right)^{2} \times 10=2.5 \mathrm{M}$.
Then Rate $=k\left[\mathrm{a}_{\mathrm{t}}\right]=\frac{.6932}{10} \times 2.5=.06932 \times 2.5=16$
40. ${ }_{\mathrm{Z}}^{\mathrm{M}} \mathrm{A}(\mathrm{g}) \longrightarrow{ }_{\mathrm{Z}-4}^{\mathrm{M}-8} \mathrm{~B}(\mathrm{~g})+(\alpha$ - particles $)$
${ }_{\mathrm{Z}}^{\mathrm{M}} \mathrm{A}(\mathrm{g}) \longrightarrow{ }_{\mathrm{Z}-4}^{\mathrm{M}-8} \mathrm{~B}(\mathrm{~g})+2\left({ }_{2}^{4} \mathrm{He}(\mathrm{g})\right)$
1 mole 00
$\left(1-\frac{3}{4}\right) \quad \frac{3}{4} \quad 2 \times \frac{3}{4}$
After two half life $\frac{3}{4}$ mole of A decomposes.
Total moles after 2 half life $=\left(\frac{1}{4}+\frac{3}{4}+2 \times \frac{3}{4}\right)=2.5$ mole

$$
\begin{aligned}
& \mathrm{pV}=\mathrm{nRT} \\
& \mathrm{p} \times 1=2.5 \times .082 \times 300 \\
& \mathrm{p}=61.5 \mathrm{~atm}
\end{aligned}
$$

41. There is an error of 3 dps (already exist)

Then $\quad \begin{aligned} & \mathrm{N}_{0}=(23-3)=20 \mathrm{dps} \\ & \mathrm{N}_{\mathrm{t}}=10 \mathrm{dps}\end{aligned}$
The half life $=10$ minutes
In next 10 minute $\mathrm{N}_{\mathrm{t}}=5 \mathrm{dps}$
Then value with error $=(5+3)=8 \mathrm{dps}$.
42. Saponification of ethyl acetate by NaOH is second order Rxn

$$
\text { Then } \begin{aligned}
\quad \mathrm{k} & =\frac{1}{\mathrm{t}}\left[\frac{1}{\mathrm{a}_{\mathrm{t}}}-\frac{1}{\mathrm{a}_{0}}\right] \\
\mathrm{k} & =\frac{1}{10}\left[\frac{1}{8}-\frac{1}{10}\right] .
\end{aligned}
$$

43. The rate of reaction is decided by value of rate constant which depends on energy of activation not on the value of $\Delta \mathrm{H}$, definitely the comparison of rate of reactions of backward reactions can be done if $\Delta \mathrm{H}$ values are also given to us.
44. Milk turn sour at $40^{\circ} \mathrm{C}$ three times faster as $0^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \text { Then } \frac{\text { rate at } 40^{\circ} \mathrm{C}}{\text { rate at } 0^{\circ} \mathrm{C}}=\frac{\mathrm{k}_{40^{\circ} \mathrm{C}}}{\mathrm{k}_{0^{\circ} \mathrm{C}}} \\
& \mathrm{E}_{\mathrm{a}}=\frac{2.303 \mathrm{RT}_{1} \mathrm{~T}_{2}}{\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)} \log \left(\frac{\mathrm{k}_{40^{\circ} \mathrm{C}}}{\mathrm{k}_{0^{\circ} \mathrm{C}}}\right) \\
& \mathrm{E}_{\mathrm{a}}=\frac{2.303 \times 2 \times 313 \times 273 \log (3)}{40}
\end{aligned}
$$

45. We know, $\quad \log \mathrm{K}=\log \mathrm{A}-\frac{\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{RT}}$
compare this by

$$
y=m x+c
$$

$\mathrm{m}=-\frac{\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{R}}$ slope of this
Given $-\frac{\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{R}}=-\frac{1}{2.303}$

$$
\mathrm{E}_{\mathrm{a}}=\mathrm{R}=2 \mathrm{cal}
$$

46. Initial Rate $=k[A][B]^{2}$

Rate $1=\mathrm{k}[0.60][0.80]^{2}$
Rate $2=\mathrm{k}[\mathrm{A}][\mathrm{B}]]^{2}$
Given Rxn

$\mathrm{A}(\mathrm{g})+$	$2 \mathrm{~B}(\mathrm{~g}) \longrightarrow$	$\mathrm{C}(\mathrm{g})+$	$\mathrm{D}(\mathrm{g})$	
0.60 atm	0.80 atm	0	0	$\mathrm{t}=0$
$(0.60-0.2)$	$(0.80-0.40)$	0.20	0.20 atm	
0.40 atm	0.40 atm	0.20 atm	0.20 atm	$\mathrm{t}=\mathrm{t}$

Put value of pressure of $t=t$ in rate equation (II)
Rate $2=\mathrm{k}$ [.40] [.40] ${ }^{2}$
$\frac{\text { Rate } 2}{\text { Rate } 1}=\frac{\mathrm{k}[.40][.40]^{2}}{\mathrm{k}[.60][.80]^{2}} \Rightarrow \frac{\text { Rate } 2}{\text { Rate } 1}=\frac{2}{3} \times \frac{1}{4}=\frac{1}{6}$
47. $\left(\frac{\mathrm{dx}}{\mathrm{dt}}\right)=\mathrm{k}\left[\mathrm{H}^{+}\right]^{\mathrm{n}}$

Given, pH change from 2 to 1
Then H^{+}concentration change from $10^{-2} \mathrm{M}$ to $10^{-1} \mathrm{M}$
Then $\frac{\left(\frac{\mathrm{dx}}{\mathrm{dt}}\right)_{1}}{\left(\frac{\mathrm{dx}}{\mathrm{dt}}\right)_{2}}=\frac{\mathrm{k}\left[10^{-2}\right]^{\mathrm{n}}}{\mathrm{k}\left[10^{-1}\right]^{\mathrm{n}}}$

$$
\frac{\text { Rate } 1}{\text { Rate } 2}=\frac{1}{100}=\left[\frac{1}{10}\right]^{\mathrm{n}}, \mathrm{n}=2
$$

48. Half life period independent on conc. Hence order is unity wrt Zn
Let order with respect to H^{+}ions is 'a'
Then the rate law will be Rate $=\mathrm{k}[\mathrm{Zn}]\left[\mathrm{H}^{+}\right]^{a}$
At $\mathrm{pH}=2,\left[\mathrm{H}^{+}\right]=10^{-2}$ So the rate law becomes
Rate $=\left(\mathrm{k}\left[10^{-2}\right]^{\mathrm{a}}\right)[\mathrm{Zn}]=\mathrm{k}_{1}[\mathrm{Zn}]$
so the half life will be $\mathrm{T}_{1 / 2}=\frac{\ln 2}{\mathrm{k}_{1}}=\frac{\ln 2}{\mathrm{k}\left(10^{-2}\right)^{\mathrm{a}}}=10 \mathrm{~min}$
At $\mathrm{pH}=3,\left[\mathrm{H}^{+}\right]=10^{-3}$ So the rate law becomes
Rate $=\left(\mathrm{k}\left[10^{-3}\right]^{\mathrm{a}}\right)[\mathrm{Zn}]=\mathrm{k}_{2}[\mathrm{Zn}]$
so the half life will be $\mathrm{T}_{1 / 2}=\frac{\ln 2}{\mathrm{k}_{2}}=\frac{\ln 2}{\mathrm{k}\left(10^{-3}\right)^{\mathrm{a}}}=100 \mathrm{~min}$
so we have $\frac{10}{100}=\frac{\mathrm{k}\left(10^{-3}\right)^{\mathrm{a}}}{\mathrm{k}\left(10^{-2}\right)^{\mathrm{a}}}$
which will give $10^{-1}=10^{-\mathrm{a}}$
Hence $\mathbf{a}=\mathbf{1}$
49. In 1 st order Rxn, decreases in $\%$ of concentration same in same interval of Time
$\left[\frac{(.12-.06)}{12} \times 100\right]=50 \% \Rightarrow \frac{(.06-.03)}{.06} \times 100=50 \%$
so reaction must be of first order.
50. We know, Rate $=\mathrm{k}$ [conc.]

Given Rxn catalysed by HA and HB
Rate constant $\quad \mathrm{k}_{\mathrm{A}}=\mathrm{k}_{1}\left[\mathrm{H}^{+}\right]_{\mathrm{A}} ; \quad \mathrm{k}_{\mathrm{B}}=\mathrm{k}_{1}\left[\mathrm{H}^{+}\right]_{\mathrm{B}}$
Then relative strength of acids A and B is

$$
\begin{aligned}
& \frac{\mathrm{k}_{\mathrm{A}}}{\mathrm{k}_{\mathrm{B}}}=\frac{\left[\mathrm{H}^{+}\right]_{\mathrm{A}}}{\left[\mathrm{H}^{+}\right]_{\mathrm{B}}} \\
& \frac{2}{1}=\frac{\left[\mathrm{H}^{+}\right]_{\mathrm{A}}}{\left[\mathrm{H}^{+}\right]_{\mathrm{B}}}=\text { strength of } \frac{[\operatorname{Acid} \mathrm{A}]}{[\operatorname{AcidB}]}
\end{aligned}
$$

51. Given $\mathrm{C}=\mathrm{C}_{0} \mathrm{e}^{-\mathrm{k}_{1} \mathrm{t}}$

$$
\mathrm{t}_{\mathrm{av}}=\frac{1}{\mathrm{k}_{1}}
$$

Given $\mathrm{t}=2 \mathrm{t}_{\mathrm{av}}=\frac{2}{\mathrm{k}_{1}}$

$$
\Rightarrow \mathrm{C}=\mathrm{C}_{0} \mathrm{e}^{-\mathrm{k}_{1} \times \frac{2}{\mathrm{k}_{1}}} \Rightarrow \frac{\mathrm{C}}{\mathrm{C}_{0}} \times 100=\frac{100}{\mathrm{e}^{2}}
$$

52. $\mathrm{A}(\mathrm{g}) \longrightarrow \mathrm{B}(\mathrm{g})+\mathrm{C}(\mathrm{g})$

$$
-\frac{\mathrm{d}[\mathrm{~A}]}{\mathrm{dt}}=\mathrm{k}[\mathrm{~A}]
$$

$$
\mathrm{A}(\mathrm{~g}) \longrightarrow \mathrm{B}(\mathrm{~g})+\mathrm{C}(\mathrm{~g})
$$

$$
100 \quad 0 \quad 0 \quad \mathrm{t}=0
$$

$$
(100-\mathrm{P}) \quad \mathrm{P} \quad \mathrm{P} \quad \mathrm{t}=10 \mathrm{~min} .
$$

$$
100-\mathrm{P}+\mathrm{P}+\mathrm{P}=120
$$

$$
(100+P)=120
$$

Then $k=\frac{2.303}{10} \log \frac{100}{(100-\mathrm{P})}$

$$
\mathrm{k}=\frac{2.303}{10} \log \left(\frac{100}{80}\right)
$$

53. Rate constant change on changing temperature .
54. We know
$-\frac{\mathrm{d}\left(\mathrm{BrO}_{3}^{-}\right)}{\mathrm{dt}}=-\frac{1}{5} \frac{\mathrm{~d}\left(\mathrm{Br}^{-}\right)}{\mathrm{dt}}=-\frac{1}{6} \frac{\mathrm{~d}\left(\mathrm{H}^{+}\right)}{\mathrm{dt}}=+\frac{\mathrm{d}\left(\mathrm{Br}_{2}\right)}{\mathrm{dt}}$
Then by this relation $\frac{\mathrm{d}\left(\mathrm{Br}_{2}\right)}{\mathrm{dt}}=-\frac{3}{5} \frac{\mathrm{~d}\left(\mathrm{Br}^{-}\right)}{\mathrm{dt}}$
55. We know

$$
\mathrm{k}=\frac{2.303}{\mathrm{t}} \log \frac{\mathrm{a}}{(\mathrm{a}-\mathrm{x})}
$$

99.9\% completion
$\mathrm{a}=100$
$a-x=(100-99.90)=.10$
Then: $\mathrm{t}=\frac{2.303}{\mathrm{k}} \log \left(\frac{100}{.10}\right)$

$$
\mathrm{t}=2.303 \times 3 \times\left[\frac{1}{\mathrm{k}}\right]
$$

$$
\mathrm{t}=6.9 \times \mathrm{t}_{\mathrm{av}}
$$

56. Graph I - Rate independent of time, zero order Rxn.

Graph II - Half life independent of time, Ist order Rxn.
Graph III - between $\frac{1}{(a-x)}$ and time, straight line, second order Rxn.
57. According to above data.
suppose rate law, $\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]^{\mathrm{a}}\left[\mathrm{Br}_{2}\right]^{\mathrm{b}}\left[\mathrm{H}^{+}\right]^{\mathrm{c}}$
by data (i) and (ii) conc. of $\left[\mathrm{Br}_{2}\right]$ increased 2 times and conc. of $\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]$ and $\left[\mathrm{H}^{+}\right]$constant rate remains same. Then zero order wrt Br_{2}.
Similarly conc. of $\left[\mathrm{H}^{+}\right]$increased 2 times rate increased 2 times, so first order wrt H^{+}.

Similarly 1st order wrt $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
Then, $\quad \frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]\left[\mathrm{H}^{+}\right]$
58. Rate $=k[\text { conc }]^{n} \longrightarrow$ Independent of conc. of A.
59. By diagram, $\Delta \mathrm{H}^{0}=\mathrm{y}-\mathrm{z}=\mathrm{x}$.
60. Rate determining step is slow step

Then \quad Rate $=\mathrm{k}_{2}\left[\mathrm{SO}_{3} .2 \mathrm{H}_{2} \mathrm{O}\right]$
We know by fast equation

$$
\frac{\mathrm{k}_{1}}{\mathrm{k}_{-1}}=\frac{\left[\mathrm{SO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{SO}_{3}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}
$$

$\left[\mathrm{SO}_{3} .2 \mathrm{H}_{2} \mathrm{O}\right]=\frac{\mathrm{k}_{1}}{\mathrm{k}_{-1}}\left[\mathrm{SO}_{3}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}$
put the value of $\left[\mathrm{SO}_{3} .2 \mathrm{H}_{2} \mathrm{O}\right]$ from (ii) to (i)

$$
\begin{aligned}
& \text { Rate }=\mathrm{k}_{2} \times \frac{\mathrm{k}_{1}}{\mathrm{k}_{-1}}\left[\mathrm{SO}_{3}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]^{2} \\
& \text { Rate }=\mathrm{k}\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}\left[\mathrm{SO}_{3}\right]
\end{aligned}
$$

61. $\mathrm{H}_{2} \mathrm{O}+\mathrm{O} \longrightarrow 2 \mathrm{OH} \Delta \mathrm{H}=72 \mathrm{~kg} /$ mole
and $\mathrm{E}_{\mathrm{a}}=77 \mathrm{Kg} /$ mole
Then we know $\Delta \mathrm{H}=\mathrm{E}_{\mathrm{a}}-\mathrm{E}_{\mathrm{b}}$
$72=77-E_{b}$
$\mathrm{E}_{\mathrm{b}}=5 \mathrm{KJ} / \mathrm{mole}$
62. Given, $K=\frac{k_{1} k_{3}}{\mathrm{k}_{2}}$
we know that for any reaction
$\frac{1}{\mathrm{k}} \cdot \frac{\mathrm{dk}}{\mathrm{dT}}=\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{RT}^{2}}$
so differentiating the given relation of k with $\mathrm{k}_{1}, \mathrm{k}_{2} \& \mathrm{k}_{3}$ with respect to temperature, we have

$$
\begin{aligned}
& \frac{\mathrm{dk}}{\mathrm{dT}}=\frac{\mathrm{k}_{2} \frac{\mathrm{~d}}{\mathrm{dT}}\left(\mathrm{k}_{1} \mathrm{k}_{3}\right)-\mathrm{k}_{1} \mathrm{k}_{3} \frac{\mathrm{dk}_{2}}{\mathrm{dT}}}{\mathrm{~K}_{2}^{2}} \\
& =\frac{1}{\mathrm{k}_{2}}\left\{\mathrm{k}_{1} \frac{\mathrm{dk}_{3}}{\mathrm{dT}}+\mathrm{k}_{3} \frac{\mathrm{dk}_{1}}{\mathrm{dT}}\right\}-\frac{\mathrm{k}_{1} \mathrm{k}_{3} \mathrm{k}_{2}}{\mathrm{k}_{2}^{2}} \frac{\mathrm{dk}_{2}}{\mathrm{dT}} \\
& \mathrm{k} \cdot \frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{RT}^{2}}=\frac{\mathrm{k}_{1} \mathrm{k}_{3}}{\mathrm{k}_{2}} \cdot \frac{\mathrm{E}_{\mathrm{a} 3}}{\mathrm{RT}^{2}}+\frac{\mathrm{k}_{3} \mathrm{k}_{1}}{\mathrm{k}_{2}} \cdot \frac{\mathrm{E}_{\mathrm{a} 1}}{\mathrm{RT}^{2}}-\frac{\mathrm{k}_{1} \mathrm{k}_{3}}{\mathrm{k}_{2}} \cdot \frac{\mathrm{E}_{\mathrm{a} 2}}{\mathrm{RT}^{2}} \\
& \mathrm{E}_{\mathrm{a}} \\
& =\mathrm{Ea}_{3}+\mathrm{Ea}_{1}-\mathrm{Ea}_{2} \\
& \quad=(20+40-30)=30 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

64. More is the activation energy less is the rate of reaction.
65. Rate $=K[A]^{n}[B]^{m}$

Given, doubling the concentration of A and halving the concentration of B
then Rate ${ }_{2}=\mathrm{K}[2 \mathrm{~A}]^{\mathrm{n}}\left[\frac{\mathrm{B}}{2}\right]^{\mathrm{m}}$
Rate $_{2}=K[A]^{\mathrm{n}}[B]^{\mathrm{m}} \mathrm{x} 2^{(\mathrm{n}-\mathrm{m})}$
67. $2 \mathrm{~A}+\mathrm{B} \longrightarrow \mathrm{C}$
$t=0 \quad 2 a \quad a \quad 0$
$\frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}=\mathrm{k}\left(2(\mathrm{a}-\mathrm{x})(\mathrm{a}-\mathrm{x})^{-1}\right)=2 \mathrm{k} \Rightarrow \int \mathrm{d}[\mathrm{c}]=\int \mathrm{kdt}$
$\Rightarrow \quad[\mathrm{C}]=2 \mathrm{kt}$
unit of $\mathrm{k}=\mathrm{Ms}^{-1}$
$[\mathrm{A}]=2(\mathrm{a}-\mathrm{x})$ and $[\mathrm{C}]=\mathrm{x}$
$[B]=(a-x)$.
70.

	$\mathrm{A}(\mathrm{g}) \longrightarrow$	$2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{g})$	
$\mathrm{t}=0$	400	0	0
$\mathrm{t}=20 \mathrm{~min}$	$400-\mathrm{p}$	2 p	p

Given $\quad 400-p+2 p+p=1000$
$400+2 p=1000$
$\mathrm{p}=300 \mathrm{~mm} ; \mathrm{k}=\frac{1}{20} \ln \frac{400}{400-300}=\frac{1}{20} \ln 4$
$\Rightarrow \mathrm{k}=\frac{\ln 2}{10} \min ^{-1}$
$\mathrm{T}_{1 / 2}=10 \mathrm{~min} ; \quad$ Value of $\mathrm{K}=0.0693 \mathrm{~min}^{-1}$

After 30 min Partial Pressure of A is 50 mm , After 30 min Partial Pressure of B is 700 mm
After 30 min Partial Pressure of C is 350 mm , After 30 min total pressure become 1100 mm
71. For figure-1 :

the rate of formation of B is higher than rate of formation of C. Hence $K_{1} \gg K_{2}$.

For figure-2 :

Figure 2
the rate of formation of C is greater than rate of formation of B. Hence $K_{2} \gg K_{1}$.
72. By using maxwell's velocity distribution curve the rise in temperature, increases the activated molecules to form the product therefore rate of reaction increases.

Part \# II : Assertion \& Reason

1. According to arrhenius equation $\mathrm{K}=\mathrm{Ae}^{-\mathrm{EaRT}}$ when $\mathrm{E}_{\mathrm{a}}=$ $0, K=A$
2. Number of half lives $=\mathrm{n}=\frac{\mathrm{t}}{\mathrm{T}}=\frac{200}{100}=2$
$\therefore \quad \frac{\mathrm{N}}{\mathrm{N}_{0}}=\left(\frac{1}{2}\right)^{\mathrm{n}}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4}=\frac{1}{4} \times 100 \%=25 \%$. The assertion is not true.

EXERCISE - 3

Part \# I : Matrix Match Type

1.

(A) $\mathrm{r}=\mathrm{k}[\mathrm{A}][\mathrm{B}]$
i.e. $\mathrm{II}^{\text {nd }}$ order reaction
unit of $\mathrm{k}=\mathrm{mol}^{-1}$ lt time ${ }^{-1}$
$-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=-\frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}=\mathrm{k}[\mathrm{A}][\mathrm{B}]$
$-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}$
$\left(\mathrm{t}_{1 / 2}\right)_{\mathrm{A}}=\left(\mathrm{t}_{1 / 2}\right)_{\mathrm{B}}$ if A and B are taken in stoichiometric ratio.
(B) $\mathrm{A}+\mathrm{B} \longrightarrow \mathrm{C}+\mathrm{D}$
$\mathrm{r}=\mathrm{k}_{2}[\mathrm{~B}]^{\circ}[\mathrm{A}]=\mathrm{k}_{2}[\mathrm{~A}]$
unit of $k=$ time $^{-1} \quad$ does not have concentration unit.
$-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=-\frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}=\mathrm{k}_{2}[\mathrm{~A}]$
$-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}$
(C) $\mathrm{A}+\mathrm{B} \longrightarrow \mathrm{C}+\mathrm{D}$
$\mathrm{r}=\mathrm{k}_{3}[\mathrm{~A}]^{0}[\mathrm{~B}]^{\circ}$
unit of $\mathrm{k}=$ mole litre ${ }^{-1}$ time $^{-1}$
$-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=-\frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}=\mathrm{k}_{3}$
$-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}$
(D) $2 \mathrm{~A}+\mathrm{B} \longrightarrow 2 \mathrm{C}+3 \mathrm{D}$
$\mathrm{r}=\mathrm{K}_{3}[\mathrm{~A}]^{\mathrm{o}}[\mathrm{B}]^{\circ}$
unit of $\mathrm{K}=\mathrm{mol} \mathrm{lt}^{-1}$ time $^{-1}$
$-\frac{1}{2} \frac{\mathrm{~d}[\mathrm{~A}]}{\mathrm{dt}}=-\frac{1}{2} \frac{\mathrm{~d}[\mathrm{C}]}{\mathrm{dt}} \Rightarrow-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}$
3. (A) $2.303 \log _{10} \frac{\mathrm{~K}_{2}}{\mathrm{~K}_{1}}=\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\left[\frac{\mathrm{T}_{2}-\mathrm{T}_{1}}{\mathrm{~T}_{2} \mathrm{~T}_{1}}\right] \Rightarrow \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=11$
$\mathrm{T}_{2}=298 \mathrm{~K} ; \mathrm{T}_{1}=273 \mathrm{~K}, \mathrm{E}_{\mathrm{a}}=65000 \mathrm{~J}, \mathrm{R}=8.314 \mathrm{~J} /(\mathrm{mol} \mathrm{K})$
(B) $\frac{2.5}{20}=\frac{1}{8}=\left(\frac{1}{2}\right)^{\mathrm{n}} \Rightarrow \mathrm{n}=3 \Rightarrow \mathrm{t}=3 \times \frac{0.693}{0.0693}=30$
(C) Zero order : $\mathrm{t}_{1 / 2}=\frac{\mathrm{a}}{2 \mathrm{~K}}$ I order : $\mathrm{t}_{1 / 2}=\frac{0.693}{\mathrm{~K}}$
$\frac{1}{2 \mathrm{~K}_{1}}=\frac{0.693}{\mathrm{~K}_{2}} \quad \Rightarrow \frac{\mathrm{~K}_{2}}{\mathrm{~K}_{1}}=2 \times 0.693$
(D) $\mathrm{t}_{1 / 2} \propto(\mathrm{a})^{1-\mathrm{n}}$ or $(1-\mathrm{n})=\frac{\log \mathrm{t}_{1 / 2}^{\prime}-\log \mathrm{t}^{\prime \prime}{ }_{1 / 2}}{\log \mathrm{a}^{\prime}-\log \mathrm{a}^{\prime \prime}}$

$$
\mathrm{t}_{1 / 2} \propto \frac{1}{\mathrm{a}^{\mathrm{n}-1}} \Rightarrow \frac{480}{240}=\left(\frac{0.0677}{0.136}\right)^{\mathrm{n}-1} \mathrm{n}=0
$$

Part \# II : Comprehension

Comprehension : 2
(1 to 3)

	$\mathrm{A}(\mathrm{g}) \longrightarrow 2 \mathrm{~B}(\mathrm{~g})$	$+\mathrm{C}(\mathrm{g})$	
$\mathrm{t}=0$	P_{0}		P_{C}
$\mathrm{t}=\mathrm{t}$	$\mathrm{P}_{0}-\mathrm{p}$	2 p	$\mathrm{P}_{\mathrm{C}}+\mathrm{p}$
$\mathrm{t}=\infty$	0	$2 \mathrm{P}_{0}$	$\mathrm{P}_{0}+\mathrm{P}_{\mathrm{C}}$

$$
\mathrm{P}_{\mathrm{C}}=\frac{1}{3}\left[\mathrm{P}_{0}+\mathrm{P}_{\mathrm{C}}\right]
$$

$$
3 \mathrm{P}_{\mathrm{C}}=\mathrm{P}_{0}+\mathrm{P}_{\mathrm{C}}
$$

$$
2 \mathrm{P}_{\mathrm{C}}=\mathrm{P}_{0}
$$

$$
P_{C}=\frac{P_{0}}{2}
$$

$$
\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{0}-\mathrm{p}+2 \mathrm{p}+\mathrm{P}_{\mathrm{C}}+\mathrm{p}=\mathrm{P}_{0}+\mathrm{P}_{\mathrm{C}}+2 \mathrm{p}
$$

$$
\mathrm{P}_{\infty}=2 \mathrm{P}_{0}+\mathrm{P}_{0}+\mathrm{P}_{\mathrm{C}} \quad=3 \mathrm{P}_{0}+\mathrm{P}_{\mathrm{C}}
$$

$$
P_{T}=\frac{1}{2} P_{\infty} \text { (given) }
$$

$$
\mathrm{P}_{0}+\mathrm{P}_{\mathrm{C}}+2 \mathrm{p}=\frac{1}{2}\left[3 \mathrm{P}_{0}+\mathrm{P}_{\mathrm{C}}\right]
$$

$$
\frac{3 P_{0}}{2}+2 p=\frac{1}{2}\left[3 P_{0}+\frac{P_{0}}{2}\right]
$$

$$
\frac{3 \mathrm{P}_{0}}{2}+2 \mathrm{p}=\frac{1}{2} \times \frac{1}{2} \times 7 \mathrm{P}_{0}
$$

$$
2 p=\frac{7}{4} P_{0}-\frac{3 P_{0}}{2}
$$

$$
2 p=\frac{P_{0}}{4}
$$

$$
P=\frac{P_{0}}{8}
$$

$$
\mathrm{P}_{\infty}=3 \mathrm{P}_{0}+\mathrm{P}_{\mathrm{C}}=35
$$

$$
=3 \mathrm{P}_{0}+\frac{\mathrm{P}_{0}}{2}=35
$$

$$
=\frac{7 \mathrm{P}_{0}}{2}=35
$$

$\mathrm{P}_{0}=10 \mathrm{bar}$

CHEMISTRY FOR JEE MAIN \& ADVANCED

Comprehension: 3
1.
2.

$$
\frac{[\mathrm{X}]_{\mathrm{t}}}{[\mathrm{Y}]_{\mathrm{t}}+[\mathrm{Z}]_{\mathrm{t}}}=
$$

$$
\frac{\mathrm{ae}^{-\left(k_{1}+k_{2}\right) t}}{\frac{\mathrm{k}_{1} \mathrm{a}}{\mathrm{k}_{1}+\mathrm{k}_{2}}\left[1-\mathrm{e}^{-\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{t}}\right]+\frac{\mathrm{k}_{2} \mathrm{a}}{\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)}\left[1-\mathrm{e}^{-\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{t}}\right]}
$$

$$
=\frac{\mathrm{ae}^{-\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{t}}}{\left[1-\mathrm{e}^{-\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{t}}\right]\left[\frac{\mathrm{k}_{1} \mathrm{a}+\mathrm{k}_{2} \mathrm{a}}{\mathrm{k}_{1}+\mathrm{k}_{2}}\right]}
$$

$$
=\frac{\mathrm{e}^{-\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{t}}}{1-\mathrm{e}^{-\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{t}}}
$$

$$
=\frac{1}{\left[\mathrm{e}^{\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{t}}-1\right]}=\frac{1}{\left[\mathrm{e}^{\mathrm{kt}}-1\right]} \quad\left[\text { where } \mathrm{k}=\mathrm{k}_{1}+\mathrm{k}_{2}\right]
$$

4. $\frac{[\mathrm{B}]_{\mathrm{t}}}{[\mathrm{C}]_{\mathrm{t}}}=\frac{3 \mathrm{k}_{1}}{4 \mathrm{k}_{2}}$ which depends only on temperature not on time.

Comprehension: 4

Sol. (1 to 3)

1. (I) Rate law for mechanism I

Rate $=\mathrm{k}_{1}^{1}[\mathrm{~A}][\mathrm{B}] \Rightarrow$ Rate $=1 \times 10^{-5}[0.1][0.1]$
$=1 \times 10^{-7} \mathrm{~m} / \mathrm{sec}$.

$$
\begin{aligned}
& t=0 \mathrm{a} \\
& t-t a-x-y \\
& \therefore \quad[\mathrm{~A}]_{0}=[\mathrm{A}]_{\mathrm{t}}+\frac{[\mathrm{B}]_{\mathrm{t}}}{2}+\frac{[\mathrm{C}]_{\mathrm{t}}}{3} \\
& a=a-x-y+\frac{2 x}{2}+\frac{3 y}{3} \\
& a=a
\end{aligned}
$$

2. (III) Rate $=1 \times 10^{-4} \times[1]=1 \times 10^{-4}$
3. (IIII) Rate I = Rate II

$$
\mathrm{k}_{1}^{1}[\mathrm{~A}][\mathrm{B}]=\mathrm{k}_{1}[\mathrm{~A}] \Rightarrow \mathrm{B}=\frac{\mathrm{k}_{1}}{\mathrm{k}_{1}^{1}}=10 \mathrm{M}
$$

Comprehension : 5
Sol. (1 to 3)

1. (I) Rate $=\frac{\mathrm{dc}}{\mathrm{dt}}=\left(\frac{\Delta \mathrm{c}}{\Delta \mathrm{t}}\right)=\frac{.0033}{25}=1.32 \times 10^{-4}$
(II) Rate $=\frac{\mathrm{dc}}{\mathrm{dt}}=\left(\frac{\Delta \mathrm{c}}{\Delta \mathrm{t}}\right)=\frac{.0039}{15}=2.6 \times 10^{-4}$
(III) Rate $=\left(\frac{\Delta \mathrm{c}}{\Delta \mathrm{t}}\right)=\frac{.0077}{15}=1.02 \times 10^{-3}$
2. (II) Rate of $R x n=$ Rate of formation of C.

Then we say by I data.
Suppose $\left[\right.$ Rate $\left.=k[A]^{a}[B]^{b}\right]$

By equation (ii) and (iii) we find $b=1$
By (iii) and (iv) we find $\mathrm{a}=2.97 \approx 3$.
Then \quad Rate $=k[A]^{2}[B]^{1}$
3. (III) Rate $1.32 \times 10^{-4}=\mathrm{k}[.10]^{2}[.05]$

$$
\mathrm{k}=2.6 \times 10^{-1}
$$

Comprehension : 6

1. (C) $-\frac{1}{\mathrm{a}} \frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\frac{1}{\mathrm{~b}} \frac{\mathrm{~d}[\mathrm{~B}]}{\mathrm{dt}}$
or $-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\frac{\mathrm{a}}{\mathrm{b}} \frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}$
or $\log \left[-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}\right]=\log \frac{\mathrm{a}}{\mathrm{b}}+\log \frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}$
$\therefore \quad \log \frac{a}{b}=0.3 \quad \therefore \quad \frac{a}{b}=2$
2. (A) E_{a} is always positive thus K increases with temperature.
$\Delta \mathrm{H}$ is $-\mathrm{ve}, \frac{\mathrm{K}_{\mathrm{f}}}{\mathrm{K}_{\mathrm{b}}}$ decreases with temperature.
$\Delta \mathrm{H}$ is $+\mathrm{ve}, \frac{\mathrm{K}_{\mathrm{f}}}{\mathrm{K}_{\mathrm{b}}}$ increases with temperature.
3. (D) Rate or reaction $=-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=+\frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}=+\frac{1}{2} \frac{\mathrm{~d}[\mathrm{C}]}{\mathrm{dt}}$ Also rate of reaction,

$$
-\frac{\mathrm{d}[\mathrm{~A}]}{\mathrm{dt}}=\mathrm{K}[\mathrm{~A}]^{1}=10^{-2} \times \frac{5}{2}
$$

$$
=2.5 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{t}^{-1}
$$

$\because \quad \mathrm{P}=\mathrm{CRT}$
$\therefore \quad-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=-\frac{1}{\mathrm{RT}} \cdot \frac{\mathrm{d}[\mathrm{P}]}{\mathrm{dt}}$
$\therefore \quad-\frac{\mathrm{d}\left[\mathrm{P}_{\mathrm{A}}\right]}{\mathrm{dt}}=\mathrm{RT} \frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=0.0821 \times 300 \times 2.5 \times 10^{-2}$

$$
=6.15 \times 10^{-1} \mathrm{~atm}^{-1}
$$

$$
\frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}=2\left[-\frac{\mathrm{d}[\mathrm{~A}]}{\mathrm{dt}}\right]
$$

$$
=2 \times 2.5 \times 10^{-2}=5 \times 10^{-2} \mathrm{~mole} \mathrm{~L}^{-1} \mathrm{t}^{-1}
$$

4. (A) Rate $=-\frac{\mathrm{dC}_{\mathrm{A}}}{\mathrm{dt}}=\mathrm{K} \mathrm{C}_{\mathrm{A}}^{\mathrm{a}}$
$\therefore \quad \log \left[-\frac{\mathrm{dC}_{\mathrm{A}}}{\mathrm{dt}}\right]=\log \mathrm{K}+\mathrm{a} \log \mathrm{C}_{\mathrm{A}}$
$\therefore \quad \log \mathrm{K}=0.6$
$\mathrm{K}=3.98$ time $^{-1}$ and $\mathrm{a}=1=\tan \theta\left(\theta=45^{\circ}\right)$.
Comprehension: 7
Sol. (1 to 4)
5. (A) According to the given condition reaction is I^{st} order with respect to $\mathrm{N}_{2} \mathrm{O}_{5}$.
6. (B) $2 \mathrm{~N}_{2} \mathrm{O}_{5} \longrightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$

Rate of reaction $=-\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\mathrm{dt}}=\frac{1}{4} \frac{\mathrm{~d}\left[\mathrm{NO}_{2}\right]}{\mathrm{dt}}$
$=\frac{\mathrm{d}\left[\mathrm{O}_{2}\right]}{\mathrm{dt}}=\mathrm{K}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]^{\mathrm{n}}$
$-\frac{\mathrm{d}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]}{\mathrm{dt}}=\mathrm{K}_{1}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]^{\mathrm{n}}=2 \mathrm{~K}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]^{\mathrm{n}}$
$\frac{\mathrm{d}\left[\mathrm{NO}_{2}\right]}{\mathrm{dt}}=\mathrm{K}_{2}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]^{\mathrm{n}}=4 \mathrm{~K}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]^{\mathrm{n}}$
$\frac{\mathrm{d}\left[\mathrm{O}_{2}\right]}{\mathrm{dt}}=\mathrm{K}_{3}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]^{\mathrm{n}}=\mathrm{K}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]^{\mathrm{n}}$
$\mathrm{K}_{1}=2 \mathrm{~K}, \mathrm{~K}_{2}=4 \mathrm{~K}, \mathrm{~K}_{3}=\mathrm{K}$
3. (B) $\frac{\mathrm{d}\left[\mathrm{O}_{2}\right]}{\mathrm{dt}}=16 \mathrm{~g} / \mathrm{hr}=\frac{16}{32} \mathrm{~mol} \mathrm{hr}^{-1}=\frac{1}{2} \mathrm{~mol} \mathrm{hr}^{-1}$

$$
\begin{aligned}
& \frac{\mathrm{d}\left[\mathrm{NO}_{2}\right]}{\mathrm{dt}}=\frac{4 \mathrm{~d}\left[\mathrm{O}_{2}\right]}{\mathrm{dt}}=4 \times \frac{16}{32}=2 \mathrm{~mol} \mathrm{hr}^{-1} \\
& =2 \times 46=92 \mathrm{~g} \mathrm{hr}^{-1} \\
& \frac{-\mathrm{d}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\mathrm{dt}}=\frac{2 \mathrm{~d}\left[\mathrm{O}_{2}\right]}{\mathrm{dt}}=2 \times \frac{16}{32}=1 \mathrm{~mol} \mathrm{hr}^{-1} 1 \times 108 \\
& =108 \mathrm{~g} \mathrm{hr}^{-1}
\end{aligned}
$$

4. (C)

$$
\mathrm{N}_{2} \mathrm{O}_{5} \longrightarrow 2 \mathrm{NO}_{2}+\frac{1}{2} \mathrm{O}_{2}
$$

Initial mole	4	0	0
moles after diss	0	8	2

\therefore Mole ratio $=\frac{4}{10}=2.5$
$t_{1 / 2}=\frac{0.693}{K}=\frac{0.693}{6.2 \times 10^{-4}}=1117.7 \mathrm{sec}$ but it depends upon temperature as K also depends upon temperature.
$t_{40 \%}=\frac{2.303}{6.2 \times 10^{-4}} \log \frac{100}{60}=822.98 \mathrm{sec}$
Rate $=\mathrm{K}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$; Thus $\mathrm{r}_{1}=\mathrm{K}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$
If V is doubled the concentration becomes half
$\therefore \mathrm{r}_{2}=\mathrm{K} \frac{1}{2}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right] \quad \Rightarrow \quad \therefore \frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}=\frac{2}{1}$
EXERCISE - 4

Subjective Type

2. $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{NaOH}_{(\mathrm{aq})} \longrightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

$t=0$	a	b
$t=t$	$(a-x)$	$(b-x)$
$t=\infty$	0	$(b-a)$

At time $\mathrm{t}=0 \frac{\mathrm{~b} \times 100}{1000}=\frac{0.05 \times 75}{1000}$
so $\mathrm{b}=\frac{0.05 \times 75}{100} \Rightarrow \mathrm{~b}=\frac{0.15}{4}$
At time $t=30 \min \frac{(b-x) \times 50}{1000}=\frac{0.05 \times 25}{1000}$

$$
(b-x)=\frac{0.05}{2}
$$

$\mathrm{x}=\left(\mathrm{b}-\frac{0.05}{2}\right)=\frac{0.15}{4}-\frac{0.05}{2}=\frac{0.15-0.1}{4}=\frac{0.05}{4}$
At time $\mathrm{t}=\infty \quad \frac{(\mathrm{b}-\mathrm{a}) \times 25}{1000}=\frac{0.05 \times 6.25}{1000}$
$(b-a)=\frac{0.05}{4}$
$\mathrm{a}=\mathrm{b}-\frac{0.05}{4}=\frac{0.15}{4}-\frac{0.05}{4}=\frac{0.1}{4}$
$K=\frac{1}{t(b-a)} \ln \left(\frac{a(b-x)}{b(a-x)}\right)$
$K=\frac{1 \times 4}{30 \times 0.05} \ln \left(\frac{\frac{0.1}{4} \times \frac{0.05}{2}}{\frac{0.15}{4} \times \frac{0.05}{4}}\right)$
$\mathrm{K}=\frac{4}{30 \times 0.05} \ln \left(\frac{0.1 \times 2}{0.15}\right)=\frac{4}{1.5}[2 \ln 2-\ln 3]$
Ans. $\quad k=0.736$ litre $/ \mathrm{mol} /$ minute
3.
millimole at $\mathrm{t}=0 \quad$ a $\quad 0$

$$
2 \mathrm{e}+\mathrm{B}^{\mathrm{n}+} \longrightarrow \mathrm{B}^{(\mathrm{n}-2)+}
$$

$\mathrm{t}=\mathrm{t}$

$$
(a-x) \quad x
$$

$$
5 \mathrm{e}+\mathrm{B}^{(\mathrm{n}+4)+} \longrightarrow \mathrm{B}^{(\mathrm{n}-1)+}
$$

Let normality be N for reducing agent.
Thus, at $\mathrm{t}=0 \mathrm{a} \times 2=\mathrm{N} \times 25$
$\therefore \quad a=\frac{25}{2} \mathrm{~N}$
at $\mathrm{t}=\mathrm{t} \quad(\mathrm{a}-\mathrm{x}) \times 2+\mathrm{x} .5=\mathrm{N} \times 32$
$\therefore \quad 3 \mathrm{x}=7 \mathrm{~N}$
or $\quad x=\frac{7}{3} N$
Now, $\quad K=\frac{2.303}{10} \log \frac{\frac{25}{2} \mathrm{~N}}{\left(\frac{25}{2}-\frac{7}{3}\right) \mathrm{N}}=\frac{2.303}{10} \log \frac{25 \times 6}{2 \times 61}$
$=2.07 \times \mathbf{1 0}^{-2} \mathbf{~ m i n}^{-1}$
4. $2 \mathrm{NH}_{3} \longrightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2}$
$\mathrm{r}=\mathrm{k}\left[\mathrm{NH}_{3}\right]^{0}=-\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{NH}_{3}\right]}{\mathrm{dt}}=\frac{\mathrm{d}\left[\mathrm{N}_{2}\right]}{\mathrm{dt}}=+\frac{1}{3} \frac{\mathrm{~d}\left[\mathrm{H}_{2}\right]}{\mathrm{dt}}$
$=2.5 \times 10^{-4}=\frac{\mathrm{d}\left[\mathrm{N}_{2}\right]}{\mathrm{dt}}=\frac{1}{3} \frac{\mathrm{~d}\left[\mathrm{H}_{2}\right]}{\mathrm{dt}}=\frac{\mathrm{d}\left[\mathrm{N}_{2}\right]}{\mathrm{dt}}=2.5 \times 10^{-4}$

$$
\frac{\mathrm{d}\left[\mathrm{H}_{2}\right]}{\mathrm{dt}}=7.5 \times 10^{-4}
$$

(d) $\frac{-\mathrm{d}\left[\mathrm{NH}_{3}\right]}{\mathrm{dt}}=\frac{\mathrm{k}_{1}\left[\mathrm{NH}_{3}\right]}{1+\mathrm{k}_{2}\left[\mathrm{NH}_{3}\right]}$
(i) NH_{3} is very - very Less $\frac{-\mathrm{d}\left[\mathrm{NH}_{3}\right]}{\mathrm{dt}}=\mathrm{k}_{1}\left[\mathrm{NH}_{3}\right]$
\longrightarrow First order
(ii) NH_{3} is very - very High $\frac{-\mathrm{d}\left[\mathrm{NH}_{3}\right]}{\mathrm{dt}}=\left(\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}\right)$

$$
\longrightarrow \text { zero order }
$$

6. The Rate equation $\frac{-\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\mathrm{k}[\mathrm{A}]^{\mathrm{a}}\left[\mathrm{H}^{+}\right]^{\mathrm{b}}$

During any experiment pH is constant
$\frac{-\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\mathrm{k}^{\prime}[\mathrm{A}]^{\mathrm{a}} \quad$ where $\mathrm{k}^{\prime}=\mathrm{k}\left[\mathrm{H}^{+}\right]^{\mathrm{b}}$
Since Half is independent of the Initial conc. of A Hence $\mathrm{a}=1$

First order w.r.t A. Now k^{\prime} is First order rate
constantk ${ }^{1}=\frac{0.693}{\mathrm{t}_{1 / 2}}$
$\frac{\left(\mathrm{T}_{50}\right)_{1}}{\left(\mathrm{~T}_{50}\right)_{2}}=\frac{\mathrm{k}_{2}^{\prime}}{\mathrm{k}_{1}^{\prime}}=\frac{\mathrm{k}\left[\mathrm{H}^{+}\right]_{2}^{\mathrm{b}}}{\mathrm{k}\left[\mathrm{H}^{+}\right]_{1}^{\mathrm{b}}}=\frac{\left[\mathrm{H}^{+}\right]_{2}^{\mathrm{b}}}{\left[\mathrm{H}^{+}\right]_{1}^{\mathrm{b}}} \Rightarrow\left(\frac{100}{10}\right)$
$=\left(\frac{10^{-4}}{10^{-5}}\right)^{b} \Rightarrow b=1$

So $\frac{-\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\mathrm{k}[\mathrm{A}]\left[\mathrm{H}^{+}\right]^{1}$
8. $\quad \ell$ - potassium chromo - oxalate \rightleftharpoons d potassium chromo oxalate

$$
\begin{array}{ll}
\mathrm{t}=0 & \mathrm{a} \\
\mathrm{t}=\mathrm{t}_{\text {eq. }} & \left(\mathrm{a}-\mathrm{x}_{\text {eq. }}\right)
\end{array}
$$

$$
\begin{aligned}
& \left(\mathrm{K}_{\mathrm{f}}+\mathrm{K}_{\mathrm{b}}\right)=\frac{2.303}{\mathrm{t}} \log \left(\frac{\mathrm{x}_{\mathrm{eq.}}}{\mathrm{x}_{\text {eq. }}-\mathrm{x}}\right) \\
& 2 \mathrm{~K}_{\mathrm{f}}=\frac{2.303}{560} \log \left(\frac{0.5 \mathrm{a}}{0.5 \mathrm{a}-0.12 \mathrm{a}}\right) \\
& 2 \mathrm{~K}_{\mathrm{f}}=5.42 \times 10^{-4} \\
& \mathrm{~K}_{\mathrm{f}}=\mathrm{K}_{\mathrm{b}}=2.71 \times 10^{-4}
\end{aligned}
$$

11. $\mathrm{A} \longrightarrow$ Product

$t=0$	a	0
$t=60$ min	$0.8 a$	
$t=90$ min	$0.40 a$	
$t=100$ min	$0.10 a$	
In absence of catalyst		

$$
\begin{equation*}
\mathrm{K}=\frac{2.303}{60} \log \frac{\mathrm{a}}{0.8 \mathrm{a}}=\frac{2.303}{60} \log \left(\frac{5}{4}\right) \tag{i}
\end{equation*}
$$

For I ${ }^{\text {st }}$ catalyst

$$
\begin{aligned}
& \left(\mathrm{K}_{\mathrm{cat} .}\right)_{\mathrm{I}^{\mathrm{st}}}=\frac{2.303}{30} \log \left(\frac{0.8 \mathrm{a}}{0.40 \mathrm{a}}\right)=\frac{2.303}{30} \log 2 . \\
& \frac{\left(\mathrm{K}_{\text {cat. }}\right)_{\mathrm{I}^{\mathrm{t}}}}{\mathrm{~K}}=\frac{\frac{2.303}{30} \log 2}{\left(\frac{2.303}{60}\right) \times \log \left(\frac{5}{4}\right)}=\frac{2 \log 2}{\log 5-\log 4}=\frac{2 \times 0.30}{0.1} \\
& \frac{\left(\mathrm{~K}_{\text {cat. }}\right)_{\mathrm{I}^{\mathrm{t}}}}{\mathrm{~K}}=6.21 \\
& \frac{\left(\mathrm{~K}_{\text {cat. }}\right)_{\mathrm{I}^{\mathrm{t}}}}{\mathrm{~K}}=\mathrm{e}^{\left(\frac{\mathrm{E}_{\mathrm{a}}-\mathrm{E}_{\mathrm{a}}^{1}}{\mathrm{RT}}\right)} \\
& 6.21=\mathrm{e}^{\left(\frac{\mathrm{E}_{\mathrm{a}}-\mathrm{E}_{\mathrm{a}}^{1}}{\mathrm{RT}}\right)} \\
& 2.303 \log 6.21=\frac{80-\mathrm{E}_{\mathrm{a}}^{1}}{\mathrm{RT}} \\
& \mathrm{E}_{\mathrm{a}}=80-\frac{2.303 \times 0.793 \times 8.314 \times 300}{1000}=\mathbf{8 0}-\mathbf{4 . 5 6}=\mathbf{7 5 . 4 4} \mathbf{~ k J .}
\end{aligned}
$$

12. $\frac{\mathrm{d}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]}{\mathrm{dt}}=-\mathrm{K}_{\mathrm{a}}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]+\mathrm{K}_{\mathrm{a}}{ }^{\prime}\left[\mathrm{NO}_{2}\right]\left[\mathrm{NO}_{3}\right]$

$$
\begin{align*}
& \frac{\mathrm{d}\left[\mathrm{NO}_{3}\right]}{\mathrm{dt}}=\mathrm{K}_{\mathrm{a}}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]-\mathrm{K}_{\mathrm{a}}^{\prime}\left[\mathrm{NO}_{2}\right]\left[\mathrm{NO}_{3}\right]-\mathrm{K}_{\mathrm{b}}\left[\mathrm{NO}_{2}\right]\left[\mathrm{NO}_{3}\right] \\
& -\mathrm{K}_{\mathrm{c}}[\mathrm{NO}]\left[\mathrm{NO}_{3}\right]=0 \\
& \mathrm{~K}_{\mathrm{a}}\left(\mathrm{~N}_{2} \mathrm{O}_{5}\right)=\mathrm{K}_{\mathrm{a}}^{\prime}\left[\mathrm{NO}_{2}\right]\left[\mathrm{NO}_{3}\right]+\mathrm{K}_{\mathrm{b}}\left[\mathrm{NO}_{2}\right]\left[\mathrm{NO}_{3}\right] \\
& +\mathrm{K}_{\mathrm{c}}[\mathrm{NO}]\left[\mathrm{NO}_{3}\right] \\
& \frac{\mathrm{d}[\mathrm{NO}]}{\mathrm{dt}}=+\mathrm{K}_{\mathrm{b}}\left[\mathrm{NO}_{2}\right]-\mathrm{K}_{\mathrm{c}}[\mathrm{NO}] \\
& {[\mathrm{NO}]=\frac{\mathrm{K}_{\mathrm{b}}\left[\mathrm{NO}_{2}\right]}{\mathrm{K}_{\mathrm{c}}}} \tag{3}
\end{align*}
$$

$$
\mathrm{K}_{\mathrm{a}}\left(\mathrm{~N}_{2} \mathrm{O}_{5}\right)=\mathrm{K}_{\mathrm{a}}^{\prime}\left[\mathrm{NO}_{2}\right]\left[\mathrm{NO}_{3}\right]+\mathrm{K}_{\mathrm{b}}\left[\mathrm{NO}_{2}\right]\left[\mathrm{NO}_{3}\right]+\mathrm{K}_{\mathrm{b}}\left[\mathrm{NO}_{2}\right]
$$

$$
\left[\mathrm{NO}_{3}\right]
$$

$$
\mathrm{K}_{\mathrm{a}}\left(\mathrm{~N}_{2} \mathrm{O}_{5}\right)=\mathrm{K}_{\mathrm{a}}^{\prime}\left[\mathrm{NO}_{2}\right]\left[\mathrm{NO}_{3}\right]+2 \mathrm{~K}_{\mathrm{b}}\left[\mathrm{NO}_{2}\right]\left[\mathrm{NO}_{3}\right]
$$

$$
\left[\mathrm{NO}_{3}\right]=\frac{\mathrm{K}_{\mathrm{a}}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\mathrm{K}_{\mathrm{a}}^{\prime}\left[\mathrm{NO}_{2}\right]+2 \mathrm{~K}_{\mathrm{b}}\left[\mathrm{NO}_{2}\right]}
$$

$$
\frac{\mathrm{d}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\mathrm{dt}}=-\mathrm{K}_{\mathrm{a}}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]+\frac{\mathrm{K}_{\mathrm{a}}^{\prime}\left[\mathrm{NO}_{2}\right] \times \mathrm{K}_{\mathrm{a}}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\mathrm{K}_{\mathrm{a}}^{\prime}\left[\mathrm{NO}_{2}\right]+2 \mathrm{~K}_{\mathrm{b}}\left[\mathrm{NO}_{2}\right]}
$$

$$
\frac{\mathrm{d}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\mathrm{dt}}=-\mathrm{K}_{\mathrm{a}}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]+\frac{\mathrm{K}_{\mathrm{a}}^{\prime} \times \mathrm{K}_{\mathrm{a}}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\mathrm{K}_{\mathrm{a}}^{\prime}+2 \mathrm{~K}_{\mathrm{b}}}
$$

$$
\begin{aligned}
& \frac{\mathrm{d}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\mathrm{dt}}=-\frac{\mathrm{K}_{\mathrm{a}} \mathrm{~K}_{\mathrm{a}}^{\prime}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]-2 \mathrm{~K}_{\mathrm{a}} \mathrm{~K}_{\mathrm{b}}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]+\mathrm{K}_{\mathrm{a}} \mathrm{~K}_{\mathrm{a}}^{\prime}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]}{\left[\mathrm{K}_{\mathrm{a}}^{\prime}+2 \mathrm{~K}_{\mathrm{b}}\right]} \\
& \frac{\mathrm{d}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\mathrm{dt}}=-\frac{-2 \mathrm{~K}_{\mathrm{a}} \mathrm{~K}_{\mathrm{b}}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\mathrm{K}_{\mathrm{a}}^{\prime}+2 \mathrm{~K}_{\mathrm{b}}} \\
& -\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\mathrm{dt}}=\left(\frac{\mathrm{K}_{\mathrm{a}} \mathrm{~K}_{\mathrm{b}}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\mathrm{K}_{\mathrm{a}}^{\prime}+2 \mathrm{~K}_{\mathrm{b}}}\right)
\end{aligned}
$$

13.

so $\%$ of A remaining $=42 \%$.
15. (i) $\mathrm{A} \longrightarrow$ Product
(ii) $\mathrm{B} \longrightarrow$ Product

For $I^{\text {st }}$ reaction

$$
\left(\frac{\mathrm{K}_{310}}{\mathrm{~K}_{300}}\right)_{\mathrm{A}}=2
$$

At $310 \mathrm{~K} \frac{\ln 2}{\left(\mathrm{~K}_{310}\right)_{\mathrm{A}}}$
$\left(\mathrm{K}_{310}\right)_{\mathrm{A}}=0.0231$.
$\left(\mathrm{K}_{310}\right)_{\mathrm{B}}=2\left(\mathrm{~K}_{310}\right)_{\mathrm{A}}=0.0462$.
For A $\quad \log \left(\frac{\mathrm{K}_{310}}{\mathrm{~K}_{300}}\right)_{\mathrm{A}}=\frac{\mathrm{E}_{\mathrm{A}}}{2.303 \mathrm{R}}\left[\frac{310-300}{310 \times 300}\right]$
For B $\quad \log \left(\frac{\mathrm{K}_{310}}{\mathrm{~K}_{300}}\right)_{\mathrm{B}}=\frac{\mathrm{E}_{\mathrm{B}}}{2.303 \mathrm{R}}\left[\frac{310-300}{310 \times 300}\right]$

$$
\frac{\log \left(\frac{K_{310}}{300}\right)_{A}}{\log \left(\frac{K_{310}}{K_{300}}\right)_{B}}=\left(\frac{E_{A}}{E_{B}}\right) \Rightarrow \frac{0.3}{\log \left(\frac{K_{310}}{K_{300}}\right)_{B}}=2
$$

$$
0.3=2 \log \left(\frac{\mathrm{~K}_{310}}{\mathrm{~K}_{300}}\right)_{\mathrm{B}} \quad \Rightarrow \quad\left(\frac{\mathrm{~K}_{310}}{\mathrm{~K}_{300}}\right)_{\mathrm{B}}=1.421
$$

$$
\left(\mathrm{K}_{300}\right)_{\mathrm{B}}=\frac{\mathrm{K}_{310}}{1.421}=\frac{0.0462}{1.421}=0.0327 \mathrm{~min}^{-1}
$$

16. $\frac{\mathrm{d}[\mathrm{HBr}]}{\mathrm{dt}}=\mathrm{K}_{2}\left[\mathrm{H}_{2}\right][\mathrm{Br}]+\mathrm{K}_{3}[\mathrm{H}]\left[\mathrm{Br}_{2}\right]-\mathrm{K}_{4}[\mathrm{H}][\mathrm{HBr}]$
$\frac{\mathrm{d}[\mathrm{HBr}]}{\mathrm{dt}}=\mathrm{K}_{2}\left[\mathrm{H}_{2}\right][\mathrm{Br}]+\mathrm{K}_{3}[\mathrm{H}]\left[\mathrm{Br}_{2}\right]-\mathrm{K}_{4}[\mathrm{HBr}][\mathrm{H}]$
Now, $\quad \mathrm{Br}_{2} \underset{\mathrm{~K}_{5}}{\stackrel{\mathrm{~K}_{1}}{\rightleftharpoons}} 2 \mathrm{Br}$

$$
\frac{\mathrm{K}_{1}}{\mathrm{~K}_{5}}=\frac{[\mathrm{Br}]^{2}}{\left[\mathrm{Br}_{2}\right]}
$$

so $[\mathrm{Br}]=\left(\frac{\mathrm{K}_{1}}{\mathrm{~K}_{5}}\right)^{1 / 2}\left[\mathrm{Br}_{2}\right]^{1 / 2}$
At steady state,

$$
\begin{aligned}
& \frac{\mathrm{d}[\mathrm{H}]}{\mathrm{dt}}=\mathrm{K}_{2}[\mathrm{Br}]\left[\mathrm{H}_{2}\right]-\mathrm{K}_{3}[\mathrm{H}]\left[\mathrm{Br}_{2}\right]-\mathrm{K}_{4}[\mathrm{H}][\mathrm{HBr}]=0 \\
& \text { So, } \quad[\mathrm{H}]=\frac{\mathrm{K}_{2}[\mathrm{H}][\mathrm{Br}]}{\mathrm{K}_{3}\left[\mathrm{Br}_{2}\right]+\mathrm{K}_{4}[\mathrm{HBr}]} \\
& \frac{\mathrm{d}[\mathrm{HBr}]}{\mathrm{dt}}=\mathrm{K}_{2}\left[\mathrm{H}_{2}\right][\mathrm{Br}]+\left[\mathrm{K}_{3}\left[\mathrm{Br}_{2}\right]-\mathrm{K}_{4}[\mathrm{HBr}]\right] \\
& \left.\frac{\mathrm{K}_{2}\left[\mathrm{H}_{2}\right][\mathrm{Br}]}{\mathrm{K}_{3}[\mathrm{Br}} \mathrm{r}_{2}\right]+\mathrm{K}_{4}[\mathrm{HBr}] \\
& \frac{\mathrm{d}[\mathrm{HBr}]}{\mathrm{dt}}=\mathrm{K}_{2}\left[\mathrm{H}_{2}\right][\mathrm{Br}]\left[1+\frac{\mathrm{K}_{3}\left[\mathrm{Br}_{2}\right]-\mathrm{K}_{4}[\mathrm{HBr}]}{\mathrm{K}_{3}\left[\mathrm{Br}_{2}\right]+\mathrm{K}_{4}[\mathrm{HBr}]}\right] \\
& \frac{\mathrm{d}[\mathrm{HBr}]}{\mathrm{dt}}=\mathrm{K}_{2}\left(\frac{\mathrm{~K}_{1}}{\mathrm{~K}_{5}}\right)^{1 / 2}\left[\mathrm{H}_{2}\right]\left[\mathrm{Br}_{2}\right]^{1 / 2} \\
& {\left[\frac{\mathrm{~K}_{3}[\mathrm{Br}}{2}\right]+\mathrm{K}_{4}[\mathrm{HBr}]+\mathrm{K}_{3}\left[\mathrm{Br}_{2}\right]-\mathrm{K}_{4}[\mathrm{HBr}]} \\
& \mathrm{K}_{3}[\mathrm{Br}]+\mathrm{K}_{4}[\mathrm{HBr}]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\mathrm{d}[\mathrm{HBr}]}{\mathrm{dt}}=\mathrm{K}_{2}\left(\frac{\mathrm{~K}_{1}}{\mathrm{~K}_{5}}\right)^{1 / 2}\left[\mathrm{H}_{2}\right]\left[\mathrm{Br}_{2}\right]^{1 / 2}\left[\frac{2 \mathrm{~K}_{3}\left[\mathrm{Br}_{2}\right]}{\mathrm{K}_{3}\left[\mathrm{Br}_{2}\right]+\mathrm{K}_{4}[\mathrm{HBr}]}\right] \\
& \frac{\mathrm{d}[\mathrm{HBr}]}{\mathrm{dt}}=2 \mathrm{~K}_{2}\left(\frac{\mathrm{~K}_{1}}{\mathrm{~K}_{5}}\right)^{1 / 2}\left[\mathrm{H}_{2}\right]\left[\mathrm{Br}_{2}\right]^{1 / 2}\left[\frac{1}{\left.1+\frac{\mathrm{K}_{4}}{\mathrm{~K}_{3}} \frac{[\mathrm{HBr}]}{[\mathrm{Br}]}\right]}\right] \\
& \text { So, } \frac{\mathrm{d}[\mathrm{HBr}]}{\mathrm{dt}}=\frac{2 \mathrm{~K}_{2}\left(\frac{\mathrm{~K}_{1}}{\mathrm{~K}_{5}}\right)^{1 / 2}}{1+\frac{\mathrm{K}_{4}}{\mathrm{~K}_{3}} \frac{\left[\mathrm{HBr}_{2}\right]\left[\mathrm{Hr}_{2}\right]}{\left[\mathrm{Br}_{2}\right]^{1 / 2}}}
\end{aligned}
$$

18. $\because \quad \mathrm{k}=\mathrm{Ae}^{-\mathrm{E}_{\mathrm{a}} / R T}$
case I. $\mathrm{k}_{1}=\mathrm{Ae}^{-100 / \mathrm{RT}}$
case II. $\mathrm{k}_{2}=\mathrm{Ae}^{-25 / \mathrm{RT}}$
$\therefore \quad \frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}=\frac{\mathrm{e}^{-100 / \mathrm{RT}}}{\mathrm{e}^{-25 / \mathrm{RT}}} \mathrm{e}^{-75 / \mathrm{RT}}$
or $\log _{\mathrm{e}} \frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}=\log \mathrm{e}^{+75 / \mathrm{RT}}$
$(\Delta \mathrm{H}$ in kJ$)$
$\log _{e} \frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}=\frac{75}{\mathrm{RT}}=\frac{75 \times 10^{3}}{8.314 \times 293}$
$(\Delta \mathrm{H}$ in kJ$)$
$\frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=2.35 \times 10^{3}$
Since, $\mathrm{r}=\mathrm{k}[\mathrm{A}]^{\mathrm{n}} \because \mathrm{n}$ and $[\mathrm{A}]$ are same for case I and II.
$\therefore \frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}=\frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}=2.35 \times 1013$
19. $\lambda_{\mathrm{A}}=\lambda_{1}+\lambda_{2}=1.5 \times 10^{-5}+5 \times 10^{-6}$

$$
=20 \times 10^{-6} \mathrm{sec}^{-1}
$$

$[\mathrm{C}]_{\mathrm{t}}=\frac{2 \lambda_{2}}{\lambda_{1}+\lambda_{2}}[\mathrm{~A}]_{0}\left[1-\mathrm{e}^{-\left(\mathrm{K}_{1}+\mathrm{K}_{2}\right) \mathrm{t}}\right]=\frac{2 \times 5 \times 10^{-6}}{20 \times 10^{-6}} \times 0.25$
$\left[1-\mathrm{e}^{-\left(20 \times 10^{-6} \times 5 \times 3600\right)}\right]=3.7 \times 10^{-2} \mathrm{M}$.
20. For A: \quad rate $=k_{A}[A]^{1}$

$$
\begin{equation*}
\text { and }\left(\mathrm{t}_{1 / 2}\right)_{\mathrm{A}}=\frac{0.693}{\mathrm{k}_{\mathrm{A}}} \tag{i}
\end{equation*}
$$

For B : \quad rate $=k_{B}[B]^{2}$

$$
\begin{equation*}
\text { and }\left(\mathrm{t}_{1 / 2}\right)_{\mathrm{B}}=\frac{1}{\mathrm{a} \cdot \mathrm{k}_{\mathrm{B}}} \tag{iii}
\end{equation*}
$$

where a is initial concentration.
(a) Initial rate of $A, r_{A}=k_{A} \times a$

Initial rate of $B, r_{B}=k_{B} \times a^{2}$

$$
\begin{equation*}
\therefore \quad \frac{\mathrm{r}_{\mathrm{A}}}{\mathrm{r}_{\mathrm{B}}}=\frac{\mathrm{k}_{\mathrm{A}}}{\mathrm{k}_{\mathrm{B}}} \times \frac{1}{\mathrm{a}} \tag{v}
\end{equation*}
$$

From Eq. (ii) and (iv) if $\left(\mathrm{t}_{1 / 2}\right)_{\mathrm{A}}=\left(\mathrm{t}_{1 / 2}\right)_{\mathrm{B}}$, then $\frac{0.693}{\mathrm{k}_{\mathrm{A}}}=\frac{1}{\mathrm{k}_{\mathrm{B}} \cdot \mathrm{a}}$
or $\quad \frac{\mathrm{k}_{\mathrm{A}}}{\mathrm{k}_{\mathrm{B}}}=0.693 \times \mathrm{a}$
\therefore From Eqs. (v) and (vi), $\frac{\mathrm{r}_{\mathrm{A}}}{\mathrm{r}_{\mathrm{B}}}=\frac{0.693 \mathrm{a}}{\mathrm{a}}=0.693$
(b) After lapse of I half, the new rates are $\mathrm{r}_{\mathrm{A}}^{\mathrm{t}}$ and $\mathrm{r}_{\mathrm{B}}^{\mathrm{t}}$

$$
\begin{align*}
& \mathrm{r}_{\mathrm{A}}^{\mathrm{t}}=\mathrm{k}_{\mathrm{A}} \times \frac{\mathrm{a}}{2} ; \mathrm{r}_{\mathrm{B}}^{\mathrm{t}}=\mathrm{k}_{\mathrm{B}} \times\left(\frac{\mathrm{a}}{2}\right)^{2} \\
\therefore \quad & \frac{\mathrm{r}_{\mathrm{A}}^{\mathrm{t}}}{\mathrm{r}_{\mathrm{B}}^{\mathrm{t}}}=\frac{\mathrm{k}_{\mathrm{A}}}{\mathrm{k}_{\mathrm{B}}} \times \frac{2}{\mathrm{a}} \tag{vii}
\end{align*}
$$

By Eqs. (vi) and (vii) $\frac{\mathrm{r}_{\mathrm{A}}^{\mathrm{t}}}{\mathrm{r}_{\mathrm{B}}^{\mathrm{t}}}=0.693 \times \mathrm{a} \times \frac{2}{\mathrm{a}}=1.386$
21.

	A	\longrightarrow
$t=0$	A_{0}	0
$t=t$	$A_{0}(1-X)$	$n A_{0} \cdot X$

At intersection point O obtained after time t,

$$
\begin{array}{ll}
& {[\mathrm{A}]=} \\
\therefore & \mathrm{A}_{0}(1-\mathrm{X})=\mathrm{nA}_{0} \cdot \mathrm{X} \\
\therefore & \mathrm{X}=\frac{1}{1+\mathrm{n}} \\
\therefore & {[\mathrm{~B}]=\frac{\mathrm{nA}_{0}}{1+\mathrm{n}}}
\end{array}
$$

22. (i) Rate of forward reaction $=2.0 \times 10^{-4}\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$

Rate of backward reaction $=3.0 \times 10^{5}$
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{H}_{2} \mathrm{O}\right]^{2+}\left[\mathrm{NH}_{3}\right]$
(ii) Therefore, $\mathrm{k}_{\mathrm{f}}=2.0 \times 10^{-4} \& \quad \mathrm{k}_{\mathrm{b}}=3.0 \times 10^{5}$
$\therefore \quad \frac{\mathrm{k}_{\mathrm{f}}}{\mathrm{k}_{\mathrm{b}}}=\frac{2.0 \times 10^{-4}}{3.0 \times 10^{-5}}=6.6 \times 10-19$ litre mol-1
equilibrium constant is very less therefore backward reaction is predominant.
23. For reaction (a) : $\mathrm{K}_{1}=\mathrm{A}_{1} \mathrm{e}^{-\mathrm{Ea} / \mathrm{Rt}}$ or 2.79×10^{-3}
$=A_{1} \mathrm{e}^{-\frac{12 \times 10^{3}}{\mathrm{RT}}}$
For reaction (b) : $\mathrm{K}_{2}=\mathrm{A}_{2} \mathrm{e}^{-\mathrm{Ea} / \mathrm{Rt}}$ or 1.52×10^{-4}
$=\mathrm{A}_{2} \mathrm{e}^{-\frac{24.5 \times 10^{3}}{\mathrm{RT}}}$

By Eq. (i)

$$
\begin{aligned}
& A_{1}=\frac{2.79 \times 10^{-3}}{\exp \left(-\frac{12 \times 10^{3}}{2 \times 510}\right)}=\frac{2.79 \times 10^{-3}}{7.8 \times 10^{-6}} \\
& =3.5 \times 10^{2}
\end{aligned}
$$

By Eq. (ii)

$$
\mathrm{A}_{2}=\frac{1.52 \times 10^{-4}}{\exp \left(-\frac{24.5 \times 10^{3}}{2 \times 510}\right)}=\frac{1.52 \times 10^{-4}}{3.7 \times 10^{-11}}
$$

$$
=4.1 \times 10^{6}
$$

If rate constants of two reaction are same, the reactions will give equimolar mixture of products. Let these are same at temperature T, i.e.,

$$
\begin{gathered}
\mathrm{A}_{1} \mathrm{e}^{-\mathrm{Ea} / \mathrm{Rt}}=\mathrm{A}_{2} \mathrm{e}^{-\mathrm{Ea} / \mathrm{Rt}} \\
3.5 \times 10^{2} \times \mathrm{e}^{-\frac{12 \times 10^{3}}{\mathrm{RT}}}=4.1 \times 10^{6} \times \mathrm{e}^{-\frac{24.5 \times 10^{3}}{\mathrm{RT}}}
\end{gathered}
$$

or $\quad e^{\frac{10^{3}}{R T}[24.5-12.0]}=\frac{\mathrm{A}_{2}}{\mathrm{~A}_{1}}=\frac{4.10 \times 10^{6}}{3.5 \times 10^{2}}=\mathbf{1 . 1 7} \times \mathbf{1 0}^{4}$
or $\quad \frac{10^{3}}{\mathrm{RT}} \times 12.5=9.37$
$\therefore \quad \mathrm{T}=\frac{12.5 \times 10^{3}}{9.37 \times 2}=667 \mathrm{~K}$
$\therefore \quad \mathrm{T}=394^{\circ} \mathrm{C}$
24. Given,

$$
\mathrm{A} \rightleftharpoons \mathrm{nB}
$$

Loss in concentration of A in 1 hour $=\frac{0.6-0.5}{1}=0.1$
Gain in concentration of B in 1 hour $=\frac{0.2-0}{1}=0.2$
(i) $\because 0.1$ mole of A gives to 0.2 moles of B in a given time and thus,

$$
\mathrm{n}=2
$$

(ii) \because Equilibrium is attained after 5 hrs . where [B] $=0.6$ and $[\mathrm{A}]=0.3$

Equilibrium constant, $K=\frac{[B]^{2}}{[A]}=\frac{[0.6]^{2}}{0.3}$
$=1.2$ mole litre -1
(iii) Initial rate of conversion of $\mathrm{A}=$ changes in conc. of A during 1 hour $=\frac{0.1}{1}=0.1$ mole litre -1 hour -1
25.

For II order reaction having $[\mathrm{A}] \neq\left[\mathrm{OH}^{-}\right]$

$$
\mathrm{k} \times \mathrm{t}=\frac{2.303}{[\mathrm{~A}]_{0}-\left[\mathrm{OH}^{-}\right]_{0}} \log \frac{\left[\mathrm{OH}^{-}\right]_{0}[\mathrm{~A}]_{\mathrm{t}}}{[\mathrm{~A}]_{0}\left[\mathrm{OH}^{-}\right]_{\mathrm{t}}}
$$

Using, $\mathrm{k}=\frac{2.303}{30 \times(0.002-0.3)} \log$
$\frac{0.3 \times\left[0.002-\frac{0.002 \times 1}{100}\right]}{0.002 \times\left[0.3-\frac{0.002 \times 1}{100}\right]}$
$\mathrm{k}=1.12 \times 10-3$ litre mol-1 sec-1
26. $\because \quad \mathrm{k}=\frac{2.303}{\mathrm{t}}=\log \frac{\mathrm{a}}{(\mathrm{a}-\mathrm{x})}$

Hint : Use hit and trial method.
Case I : a $\propto 200 \mathrm{~mm}$;
$x \propto 200 \times(50 / 100) \mathrm{mm}$ and $\mathrm{t}_{1 / 2}=53$ minute
$\therefore \quad \mathrm{k}_{1}=\frac{2.303}{53} \log \frac{200}{200-100}$

$$
=1.307 \times 10^{-2} \text { minute }^{-1}
$$

Case II : a $\propto 200 \mathrm{~mm}$;

$$
x \propto 200 \times(73 / 100) \mathrm{mm} \propto 146 \mathrm{~mm}
$$

and $\mathrm{t}_{73 \%}=100$ minute
$\therefore \quad \mathrm{k}_{2}=\frac{2.303}{100} \log \frac{200}{200-146}$

$$
=1.309 \times 10^{-2} \text { minute }^{-1}
$$

(a) Since, the value of k is constant for the given data using I order reaction and thus reaction is of I order.
(b) $\mathrm{k}=\frac{\mathrm{k}_{1}+\mathrm{k}_{2}}{2}=\frac{(1.309+1.307) \times 10^{-2}}{2}=1.308 \times 10-2$
(c) For a Ist order reaction $\mathrm{t}_{(1 / \mathrm{n})} \propto(\mathrm{a})^{0}$ and therefore if initial pressure is 600 mm , the decomposition in 100 minute will be 73%.
27. $\mathrm{CH}_{3} \mathrm{OCH}_{3}(\mathrm{~g}) \longrightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$

Pressure at $t=0 \quad 0.40$
Pressure at $\mathrm{t}=12 \mathrm{~min}$

$$
\begin{array}{llll}
(0.40-P) & P & P & P
\end{array}
$$

For ideal gas behaviour moles \propto pressure
$\therefore \quad a \propto 0.40,(a-X) \propto(0.40-P)$
$\because \quad K=\frac{2.303}{t} \log \frac{a}{(a-X)}$
or $\quad \frac{0.693}{14.5}=\frac{2.303}{12} \log \frac{0.40}{(0.40-\mathrm{P})}$
$\therefore \quad \mathrm{P}=0.175 \mathrm{~atm}$
Thus, total pressure after 12 minutes $=0.40-\mathrm{P}+\mathrm{P}+\mathrm{P}+\mathrm{P}$

$$
\begin{aligned}
& =0.40+2 \mathrm{P} \\
& =0.40+2 \times 0.175=0.75 \mathrm{~atm}
\end{aligned}
$$

28. $\mathrm{t}=\frac{2.303}{\mathrm{~K}} \log \frac{\mathrm{a}}{(\mathrm{a}-\mathrm{X})}$

If $\quad \mathrm{t}=\mathrm{t}_{1 / 2}, \quad \mathrm{X}=\frac{\mathrm{a}}{2}$;
$\therefore \quad t_{1 / 2}=\frac{2.303}{K} \log \frac{a}{a-(a / 2)}$
If $t=t_{99 \%}, \quad X=\frac{99 a}{100}$;

$$
\begin{equation*}
t_{99 \%}=\frac{2.303}{K} \log \frac{a}{a-(99 a / 100)} \tag{ii}
\end{equation*}
$$

By Eqs. (i) and (ii), $\mathrm{t}_{99 \%}=\frac{\log 100}{\log 2} \times \mathrm{t}_{1 / 2}=\frac{2}{0.3010} \times 2.1$
$=13.95$ hour
Also, Moles of $\mathrm{N}_{2} \mathrm{O}$ formed $=(99 / 100) \times$ moles of $\mathrm{NH}_{2} \mathrm{NO}_{2}$ taken
$=\frac{99}{100} \times \frac{6.2}{62}=0.099$
\therefore Volume of $\mathrm{N}_{2} \mathrm{O}$ formed at $\mathrm{STP}=0.099 \times 22.4$
$=2.2117$ litre
29. Let rate $=\mathrm{K}\left[\mathrm{CH}_{3} \mathrm{COF}\right]^{a}\left[\mathrm{H}_{2} \mathrm{O}\right]^{\mathrm{b}}$

It is given that in case I : $\quad\left[\mathrm{H}_{2} \mathrm{O}\right] \gg\left[\mathrm{CH}_{3} \mathrm{COF}\right]$
and in case II : $\quad\left[\mathrm{H}_{2} \mathrm{O}\right] \ll\left[\mathrm{CH}_{3} \mathrm{COF}\right]$
Thus, according to ostwald isolation method, we can assume $\left[\mathrm{H}_{2} \mathrm{O}\right]$ in excess in case I and $\left[\mathrm{CH}_{3} \mathrm{COF}\right]$ in excess case II.
Thus, for case I :
Using I order for $\mathrm{CH}_{3} \mathrm{COF}$, we have

$$
\begin{aligned}
\mathrm{K}_{\mathrm{t}} & =2.303 \log \frac{\mathrm{a}}{(\mathrm{a}-\mathrm{X})} \\
\therefore \quad \mathrm{K}_{\mathrm{t}} & =\frac{2.303}{10} \log \frac{0.01}{0.00857}=0.0154 \mathrm{~min}^{-1}
\end{aligned}
$$

and $\mathrm{K}_{2}=\frac{2.303}{10} \log \frac{0.01}{0.00735}=0.0154 \mathrm{~min}^{-1}$
Thus, $\mathrm{K}_{\mathrm{av}}=0.0154 \mathrm{~min}^{-1}$
Thus, order with respect to $\left[\mathrm{CH}_{3} \mathrm{COF}\right]$ is one or $\mathrm{a}=1$
Similarly, for case II :
Using I order for $\mathrm{H}_{2} \mathrm{O}$, we have
$K_{t}=2.303 \log \frac{a}{(a-X)}$
$\mathrm{K}_{1}^{\prime}=\frac{2.303}{10} \log \frac{0.02}{0.00176}=0.0128$

$$
\mathrm{K}_{2}^{\prime}=\frac{2.303}{20} \log \frac{0.02}{0.00156}=0.0124
$$

$\mathrm{K}_{3}^{\prime}=\frac{2.303}{40} \log \frac{0.02}{0.00122}=0.0124$
(almost constant, i.e. $\mathrm{K}_{\mathrm{av}}^{\prime}=0.0125 \mathrm{~min}^{-1}$)
Thus, order with respect to $\left[\mathrm{H}_{2} \mathrm{O}\right]$ is one or $\mathrm{b}=1$
Now rate $=\mathrm{K}_{\mathrm{T}}=\left[\mathrm{CH}_{3} \mathrm{COF}\right]^{1}\left[\mathrm{H}_{2} \mathrm{O}\right]^{1}$
Also rate $=\mathrm{K}\left[\mathrm{CH}_{3} \mathrm{COF}\right]^{1}\left[\mathrm{H}_{2} \mathrm{O}\right]^{0}$ case I

$$
\therefore \quad \frac{\mathrm{K}_{\mathrm{T}}}{\mathrm{k}}=\left[\mathrm{H}_{2} \mathrm{O}\right]^{1}
$$

or $\quad \mathrm{K}_{\mathrm{T}}=\mathrm{K} \times\left[\mathrm{H}_{2} \mathrm{O}\right]^{1}$

$$
=0.0154 \times 1.0=1.54 \times 10-2 \mathrm{~min}-1
$$

30. For 99% completion, $t_{90 \%}=\frac{2.303}{k} \times \log \frac{100}{100-99}$..

For 90% completion, $\quad t_{90 \%}=\frac{2.303}{k} \times \log \frac{100}{100-90}$.

By Eqs. (i) and (ii) $\frac{\mathrm{t}_{99 \%}}{\mathrm{t}_{99 \%}}=\frac{\log 100}{\log 10}=2$
$\therefore \quad \mathrm{t}_{99 \%}=2 \times \mathrm{t}_{90 \%}$
31. To provide a long time or heating to a reaction mixture means that reaction has gone to completion.

$\mathrm{A} \longrightarrow \mathrm{B}+2 \mathrm{C}$			
Moles before dissociation a	0	0	
Moles after dissociation	$(\mathrm{a}-\mathrm{X})$	X	2 X
Moles after complete diss 0	a	2 a	

\because Total moles at a time \propto pressure at that time

$$
\begin{array}{lll}
& a \propto P_{0} & t=0 \\
\therefore \quad & a+2 X \propto 264 \quad t=14 \text { minute } \\
3 a \propto 264 \quad t=\propto \tag{iii}
\end{array}
$$

(a) \therefore By Eqs. (i) and (ii) $\quad \mathrm{P}^{\mathrm{o}}=\mathbf{1 5 0} \mathrm{mm}$
(b) \because By Eqs. (ii) and (iii) $\mathrm{X} \propto 57$

$$
\mathrm{K}=\frac{2.303}{14} \log \frac{150}{150-57}=3.415 \times 10-2 \mathrm{~min}-1
$$

(c) $\mathrm{t}_{1 / 2}=\frac{0.693}{\mathrm{~K}}=\frac{0.693}{3.415 \times 10^{-2}}=20.29 \mathrm{~min}$
32.

$$
\begin{array}{ll}
\mathrm{A} \\
\mathrm{x}_{0} & \mathrm{~B} \\
\left(\mathrm{x}_{0}-\mathrm{a}\right) & y_{0} \\
=\mathrm{x} & \left(y_{0}+\mathrm{a}\right) \\
& =y
\end{array}
$$

$\therefore \quad x+y=x_{0}-a+y_{0}+a=x_{0}+y_{0}$

$$
-\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{Kx} . \mathrm{y}
$$

Put $x_{0}-a=x$

$$
\therefore \quad-\frac{\mathrm{da}}{\mathrm{dt}}=\frac{\mathrm{dx}}{\mathrm{dt}}
$$

$$
\frac{\mathrm{da}}{\mathrm{dt}}=\mathrm{K}\left(\mathrm{x}_{0}-\mathrm{a}\right)\left(\mathrm{y}_{0}+\mathrm{a}\right)
$$

$$
=\mathrm{K}\left[\mathrm{x}_{0} \mathrm{y}_{0}+\mathrm{ax}_{0}-\mathrm{ax}_{0}-\mathrm{a}^{2}\right]
$$

$$
=\mathrm{K}\left[\mathrm{x}_{0} \mathrm{y}_{0}+\left(\mathrm{x}_{0}-\mathrm{y}_{0}\right) \mathrm{a}-\mathrm{a}^{2}\right]
$$

$$
=K\left[\left(x_{0} y_{0}\right)-\left\{a^{2}-2\left(\frac{x_{0}-y_{0}}{2}\right) \cdot a-\left(\frac{x_{0}-y_{0}}{2}\right)^{2}+\left(\frac{x_{0}-y_{0}}{2}\right)^{2}\right\}\right]
$$

$$
=K\left[x_{0} y_{0}-\left(a-\frac{x_{0}-y_{0}}{2}\right)^{2}+\left(\frac{x_{0}-y_{0}}{2}\right)^{2}\right]
$$

$$
=K\left[\left(\frac{x_{0}+y_{0}}{2}\right)^{2}-\left(a-\left(\frac{x_{0}-y_{0}}{2}\right)\right)^{2}\right]
$$

On integrating,
$K t+C=\frac{1}{\frac{2\left(x_{0}+y_{0}\right)}{2}} \log \frac{\frac{x_{0}+y_{0}}{2}+\left[a-\frac{x_{0}-y_{0}}{2}\right]}{\frac{x_{0}+y_{0}}{2}-\left[a-\frac{x_{0}-y_{0}}{2}\right]}$
$K t+C \frac{1}{x_{0}+y_{0}} \log \frac{a+y_{0}}{\left(x_{0}-a\right)}$
at $t=0, \quad a=0$
$\mathrm{C}=\frac{1}{\mathrm{x}_{0}+\mathrm{y}_{0}} \log \frac{\mathrm{y}_{0}}{\mathrm{x}_{0}}$
$K t=\frac{1}{x_{0}+y_{0}} \log \frac{a+y_{0}}{\left(x_{0}-a\right)} \cdot \frac{x_{0}}{y_{0}}=\frac{1}{x_{0}+y_{0}} \log \frac{y \cdot x_{0}}{x \cdot y_{0}}$
$=\frac{2.303}{\left(x_{0}+y_{0}\right)} \log \frac{y \cdot x_{0}}{x \cdot y_{0}}$
33. $\log _{10} \mathrm{~K}=\frac{3163}{\mathrm{~T}}+12$
at $T(T$ पर $)=(273+43.3)=316.3 \mathrm{~K}$
$\log _{10} \mathrm{~K}=\frac{3163}{316.3}+12$
$\log _{10} \mathrm{~K}=(10+12)=22$
$\mathrm{K}=10^{22}$
Then half life period
$\mathrm{t}_{1 / 2}=\left(\frac{1}{\mathrm{~K} \times \mathrm{a}}\right)=\frac{1}{10^{22} \times .001}=\frac{1}{10^{19}}=10^{-19}$
$\mathrm{t}_{1 / 2}=10^{-19} \mathrm{~min} \quad$ Ans. 10^{-19} minute.
34. Decomposition of $\mathrm{H}_{2} \mathrm{O}_{2} \mathrm{I}^{\text {st }}$ order (Rxn)

$$
\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\frac{1}{2} \mathrm{O}_{2}
$$

Then we know

$$
\mathrm{K}=\mathrm{Ae} \frac{-\mathrm{Ea}}{\mathrm{RT}}
$$

For uncatalysed Rxn

$$
\begin{align*}
& \mathrm{K}_{1}=\mathrm{Ae} \frac{-\mathrm{Ea}}{\mathrm{RT}} \quad[\mathrm{~T}=300 \mathrm{~K}, \mathrm{R}=2] \\
& \mathrm{K}_{1}=\mathrm{Ae} \frac{-18 \times 10^{3}}{2 \times 300} \tag{i}
\end{align*}
$$

and for catalysed Rxn

$$
\begin{equation*}
\mathrm{K}_{2}=\mathrm{Ae} \frac{-6 \times 10^{3}}{2 \times 300} \tag{ii}
\end{equation*}
$$

Equation (ii) / (i)

$$
\begin{aligned}
& \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\mathrm{e} \frac{(18-6) \times 10^{3}}{2 \times 300} \\
& \frac{\mathrm{~K}_{2}}{\mathrm{~K}_{1}}=\mathrm{e}^{20} \\
& \frac{\mathrm{~K}_{2}}{\mathrm{~K}_{1}}=4.85 \times 10^{8}
\end{aligned}
$$

Then catalysed reaction is 4.85×10^{8} times faster than uncatalysed Rxn.
35. We know, $R a t e=K[c o n c]^{n}$ for $n^{\text {th }}$ order $R x n$.

Then, $\quad \frac{\text { Rate }_{2}}{\text { Rate }_{1}}=\left(\frac{\text { conc }_{2}}{\text { conc }_{1}}\right)^{\text {n }}$
given, \quad Rate $_{2}=$ Rate $_{1}, \quad$ conc $_{2}=\left(\right.$ conc $\left._{1} \times 1.5\right)$

$$
2.25=(1.5)^{\mathrm{n}}
$$

$\mathrm{n}=2$ second order Rxn
36. (a) Rxn zero order w.r.t. to A then.
when half of A reacted

$$
\mathrm{A}+\mathrm{B}+\mathrm{C} \longrightarrow \text { Product }
$$

at $t=0 \quad a_{0} \quad a_{0} \quad a_{0}$
at $\mathrm{t}=1000 \sec . \frac{\mathrm{a}_{0}}{2} \quad \frac{\mathrm{a}_{0}}{2} \quad \frac{\mathrm{a}_{0}}{2}$
Then we know for zero orders $\operatorname{Rxn}\left(a_{0}-a_{t}\right)=k t$
given $\mathrm{a}_{\mathrm{t}}=\frac{\mathrm{a}_{0}}{2}$.
Then $\quad k \times t=\frac{a_{0}}{2}$

$$
\mathrm{k}=\frac{\mathrm{a}_{0}}{2 \times \mathrm{t}}=\frac{\mathrm{a}_{0}}{2 \times 1000}=\frac{\mathrm{a}_{0}}{2000}
$$

at $\mathrm{t}=2000 \mathrm{sec}$.

$$
\begin{aligned}
a_{0}-a_{t} & =\frac{a_{0}}{2000} \times 2000 \\
a_{t} & =0 \quad \text { zero fraction left. }
\end{aligned}
$$

(b) $\mathrm{II}^{\text {nd }}$ order w.r.t. A then similarly 50% completed

$$
\begin{aligned}
& \mathrm{k}=\frac{1}{1000}\left[\frac{1}{\left(\frac{\mathrm{a}_{0}}{2}\right)}-\frac{1}{\mathrm{a}_{0}}\right] \\
& \mathrm{k}=\frac{1}{1000} \times\left(\frac{1}{\mathrm{a}_{0}}\right)
\end{aligned}
$$

Then after 2000 sec .

$$
\begin{aligned}
& \mathrm{k}=\frac{1}{2000}\left[\frac{1}{a_{t}}-\frac{1}{a_{0}}\right] \\
& \frac{1}{1000} \times \frac{1}{a_{0}}=\frac{1}{2000}\left[\frac{1}{a_{t}}-\frac{1}{a_{0}}\right] \\
& {\left[\frac{2}{a_{0}}+\frac{1}{a_{0}}\right]=\frac{1}{a_{t}}} \\
& \frac{3}{a_{0}}=\frac{1}{a_{t}} \\
& a_{t}=\frac{a_{0}}{3}
\end{aligned}
$$

Fraction left $\frac{\mathrm{a}_{\mathrm{t}}}{\mathrm{a}_{0}}=\frac{1}{3}$
37. $\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$
$\mathrm{t}=0 \quad .5$
$\mathrm{t}=\mathrm{t} \quad .4$
Then by given data

$$
\begin{aligned}
& \frac{.6932}{81}=\frac{2.303}{\mathrm{t}} \log \left(\frac{0.5}{0.4}\right) \\
& \mathrm{t}=\frac{2.303 \times 81}{.6932} \times \log (1.25) \\
& \mathrm{t}=26.07 \mathrm{sec}
\end{aligned}
$$

38. For $\mathrm{N}_{2} \mathrm{O}_{5} \longrightarrow 2 \mathrm{NO}_{2}+\frac{1}{2} \mathrm{O}_{2}$

$$
\begin{aligned}
& x \propto V_{t}, \\
& a \propto V_{\infty} \\
& a-x \propto\left(V_{\infty}-V_{t}\right)
\end{aligned}
$$

Thenfor ${ }^{\text {st }}$ order Rxn

$$
\begin{aligned}
& 0.008=\frac{2.303}{20} \log \frac{\mathrm{~V}_{\infty}}{\left(\mathrm{V}_{\infty}-\mathrm{V}_{\mathrm{t}}\right)} \\
& 0.008=\frac{2.303}{20} \log \frac{\mathrm{~V}_{\infty}}{\left(\mathrm{V}_{\infty}-16\right)} \\
& \frac{0.008 \times 20}{2.303}=\log \frac{\mathrm{V}_{\infty}}{\left(\mathrm{V}_{\infty}-16\right)} \\
& 0.06947=\log \frac{\mathrm{V}_{\infty}}{\left(\mathrm{V}_{\infty}-16\right)}
\end{aligned}
$$

Then, $\quad V_{\infty}=108.23 \mathrm{~mL}$
39. $\mathrm{A} \longrightarrow \mathrm{B}+\mathrm{C}+\mathrm{D}$.

We know for first order Rxn

$$
\mathrm{k}=\frac{2.303}{\mathrm{t}} \log \left(\frac{\mathrm{P}_{0}}{\mathrm{P}_{\mathrm{t}}}\right)
$$

$\mathrm{P}_{0}=$ Initial pressure of A
$P_{t}=$ Pressure A after time t.

$$
\begin{array}{cccc}
A & \longrightarrow C+ & D \\
P_{0} & 0 & 0 & 0 \text { at } t=0 \\
{\left[P_{t}=\left(P_{0}-x\right)\right]} & x & x & x \text { at } t=t
\end{array}
$$

Given $\left(P_{0}-x+x+x+x\right)=P$

$$
\begin{aligned}
& \left(\mathrm{P}_{0}+2 \mathrm{x}\right)=\mathrm{P} \\
& \mathrm{x}=\frac{\left(\mathrm{P}-\mathrm{P}_{0}\right)}{2}
\end{aligned}
$$

Then $\quad\left(\mathrm{P}_{0}-\mathrm{x}\right)=\left(\mathrm{P}_{0}-\frac{\left(\mathrm{P}-\mathrm{P}_{0}\right)}{2}\right)=\frac{\left(3 \mathrm{P}_{0}-\mathrm{P}\right)}{2}$
40. We know for $\mathrm{II}^{\mathrm{nd}}$ order Rxn.
$\mathrm{k}=\frac{1}{\mathrm{t}}\left[\frac{1}{(\mathrm{a}-\mathrm{x})}-\frac{1}{\mathrm{a}}\right]$ (because concentration of both reactants are equal)
when Rxn completed $20 \%=(a-x)=\frac{80}{100} \times[a]$
Then $\mathrm{k}=\frac{1}{500}\left[\frac{1}{\frac{80 \mathrm{a}}{100}}-\frac{1}{\mathrm{a}}\right] \Rightarrow \mathrm{k}=\frac{1}{500}\left[\frac{100}{80 \mathrm{a}}-\frac{1}{\mathrm{a}}\right]$

$$
\begin{gathered}
\mathrm{k}=\frac{1}{500 \times \mathrm{a}}\left[\frac{100}{80}-1\right] \\
\Rightarrow \frac{1}{500} \times \frac{20}{80} \times \frac{1}{\mathrm{a}}=\frac{1}{500 \times 4} \times \frac{1}{\mathrm{a}}=\frac{1}{2000 \mathrm{a}} \\
\mathrm{k}=\frac{1}{2000 \mathrm{a}}
\end{gathered}
$$

For 60% completed

$$
\begin{aligned}
& \qquad(a-x)=\left(a-\frac{60}{100} a\right)=\frac{40 a}{100} \\
& \text { Then } \quad k=\frac{1}{t}\left[\frac{1}{\frac{40 a}{100}}-\frac{1}{a}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{1}{2000 \mathrm{a}}=\frac{1}{\mathrm{a} \times \mathrm{t}}\left[\frac{100}{40}-1\right] \\
& \Rightarrow \frac{1}{2000}=\frac{1}{\mathrm{t}}\left[\frac{60}{40}\right] \Rightarrow \mathrm{t}=3000 \mathrm{sec}
\end{aligned}
$$

41. Suppose order of Rxn is n

Then $\quad t_{1 / 2} \propto\left(\frac{1}{P_{0}}\right)^{n}$

$$
\frac{\left(\mathrm{t}_{1 / 2}\right)_{1}}{\left(\mathrm{t}_{1 / 2}\right)_{2}}=\left(\frac{\left(\mathrm{P}_{\mathrm{o}}\right)_{2}}{\left(\mathrm{P}_{0}\right)_{1}}\right)^{\mathrm{n}}
$$

From (i) and (ii) data.

$$
\begin{aligned}
& \left(\frac{3.52}{1.82}\right)=\left(\frac{100}{50}\right)^{\mathrm{n}-1} \\
& 1.934=(2)^{(\mathrm{n}-1)} \\
& (1.9569)=(2)^{(\mathrm{n}-1)} \\
& \mathrm{n}=2 \mathrm{II}^{\text {nd }} \text { order Rxn. }
\end{aligned}
$$

42. Containing mixture of compound A and B both decomposed with first order kinetics

$$
t_{1 / 2} \text { for } A=54 \mathrm{~min}_{1 / 2} \text { for } B=18 \mathrm{~min}
$$

Given :

$$
\begin{aligned}
& A_{t}-A_{o} e^{-k_{1} t} \\
& B_{t}-B_{o} e^{-k_{2} t} \\
& A_{o}=B_{o} \\
& A_{t}-4 B_{t}
\end{aligned}
$$

by (i)/(ii)

$$
\begin{aligned}
& \frac{4 B_{t}}{B_{t}}=\left(\frac{B_{0} e^{-k_{1} t}}{B_{0} e^{-k_{2} t}}\right) \\
& 4=e^{\left(k_{2}-k_{1}\right) t} \\
& \ln 4=\left(k_{2}-k_{1}\right) t \\
& t=\frac{\ln 4}{\left(k_{2}-k_{1}\right)}=\frac{\ln 4}{\left(k_{2}-k_{1}\right)}=\frac{\ln 4}{\frac{0.6932}{18}-\frac{0.6932}{54}}=53 \mathrm{~min} .
\end{aligned}
$$

43. $\mathrm{A}+\mathrm{B} \longrightarrow \mathrm{C}+\mathrm{D}$

Second order W.R.T.A
Then $\quad t_{1 / 2}=\frac{1}{\mathrm{ka}_{0}}$

$$
\mathrm{t}_{1 / 2}=\frac{1}{0.622 \times 4.10 \times 10^{-2}}=39.2 \mathrm{~min}
$$

44. $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COOH} \xrightarrow[1^{\text {st }} \mathrm{OR}]{\mathrm{H}^{+}} \mathrm{CO}_{2}+\mathrm{CH}_{3} \mathrm{COCH}_{3}$
45. (i) $\mathrm{r}=\mathrm{K}[\mathrm{O}]\left[\mathrm{O}_{2}\right]$
$0.15=1.5 \times 10^{7}[\mathrm{O}]\left[\mathrm{O}_{2}\right]$
$0.15=1.5 \times 10^{7} \times 4.08 \times 10^{-5} \times[\mathrm{O}]$.
$[\mathrm{O}]=2.45 \times 10^{-4}$.
(ii) $\frac{\mathrm{d}\left[\mathrm{O}_{2}\right]}{\mathrm{dt}}=2 \mathrm{r}=0.15 \times 2=0.3$.
46. $\mathrm{CH}_{3} \mathrm{OCH}_{3}(\mathrm{~g}) \longrightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$
$\begin{array}{llll}\mathrm{P}_{0}=4 \mathrm{~mm} & 0 & 0 & 0 \\ \mathrm{P}_{\mathrm{t}}=\left(\mathrm{P}_{0}-\mathrm{x}\right) & \mathrm{x} & \mathrm{x} & \mathrm{x}\end{array}$
$x \quad \mathrm{x} \quad \mathrm{x}$
we known
$\mathrm{P}_{\mathrm{t}}=\mathrm{p}_{0} \mathrm{e}^{-\mathrm{Kt}}$
$\frac{\mathrm{P}_{\mathrm{t}}}{\mathrm{p}_{0}}=\mathrm{e}^{-\mathrm{Kt}}$
$\frac{P_{t}}{p_{0}}=e^{-\left(4.78 \times 10^{-3} \times 4.5 \times 60\right)}$
$\frac{\mathrm{P}_{\mathrm{t}}}{\mathrm{p}_{0}}=\mathrm{e}^{-1.29}=0.275$
Sine composition is same therefore
$\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=0.275 \quad$ Ans. $\quad 0.275$
47. Rate $=k[B][A]$

Rate $=\mathrm{k}^{\prime}[\mathrm{A}]$
$\mathrm{k}^{\prime}=\mathrm{k}[\mathrm{B}]$
$=5 \times 10^{-3} \times 6$
$=3 \times 10^{-2}$
$\left(C_{t}\right)_{\mathrm{A}}=\mathrm{C}_{0} \mathrm{e}^{-\mathrm{kt}}$
$=0.1 \mathrm{e}^{-3 \times 10^{-2} \times 100}$
$=0.1 \mathrm{e}^{-3}=0.005 \mathrm{~min}$

EXERCISE-5

Part \# I : AIEEE/JEE-MAIN

1. The concentration of the reactant decreases from 0.8 M to 0.4 M in 15 minutes, i.e., $\mathrm{t}_{1 / 2}=15$ minute. Therefore, the concentration of reactant will fall from 0.1 M to 0.025 in two half live. i.e., $2 \mathrm{t}_{1 / 2}=2 \times 15=30$ minutes.
2. $2 \mathrm{~A}+\mathrm{B} \longrightarrow \mathrm{C} \quad$ rate $=\mathrm{k}[\mathrm{A}][\mathrm{B}]$

The value of k (velocity constant) is always independent of the concentration of reactant and it is a function of temperature only.
3. $\mathrm{t}_{1 / 2}=4$ hours $\mathrm{n}=\frac{\mathrm{T}}{\mathrm{t}_{1 / 2}}=\frac{24}{4}=6 ; \quad \mathrm{N}=\mathrm{N}_{0}\left(\frac{1}{2}\right)^{\mathrm{N}}$
or, $\mathrm{N}=200 \times$
$\left(\frac{1}{2}\right)^{6}=200 \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=3.125 \mathrm{~g}$.
4. For endothermic reaction, $\Delta \mathrm{H}=\mathrm{ve}$
$\Delta \mathrm{H}=\mathrm{E}_{f}-\mathrm{E}_{\mathrm{b}}$, it means $\mathrm{E}_{\mathrm{b}}<\mathrm{E}_{f}$.
5. Generally, molecularity of simple reactions is equal to the sum of the number of molecules of reactants involved in the balanced stoichiometric equation. Thus, a reaction involving two different reactants can never be unimolecular.
6. \quad Given rate $=\mathrm{k}[\mathrm{CO}]^{2}$

Thus, according to the rate law expression doubling the concentration of CO increases the rate by a factor of 4 .
7. $\mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NOBr}_{2}(\mathrm{~g})$
$\mathrm{NOBr}_{2}(\mathrm{~g})+\mathrm{NO}(\mathrm{g}) \longrightarrow 2 \mathrm{NOBr}(\mathrm{g})$ [rate determining step]
Rate of the reaction $(\mathrm{r})=\mathrm{k}\left[\mathrm{NOBr}_{2}\right][\mathrm{NO}]$
where $\quad\left[\mathrm{NOBr}_{2}\right]=\mathrm{K}_{\mathrm{c}}[\mathrm{NO}]\left[\mathrm{Br}_{2}\right]$

$$
\begin{aligned}
\mathrm{r} & =\mathrm{k} \cdot \mathrm{~K}_{\mathrm{C}} \cdot[\mathrm{NO}]\left[\mathrm{Br}_{2}\right][\mathrm{NO}] \\
\mathrm{r} & =\mathrm{k}^{\prime}[\mathrm{NO}]^{2}\left[\mathrm{Br}_{2}\right] .
\end{aligned}
$$

The order of the reaction with respect to $\mathrm{NO}(\mathrm{g})=2$.
8. $\Delta \mathrm{H}_{\mathrm{R}}=\mathrm{E}_{f}-\mathrm{E}_{\mathrm{b}}=180-200=-20 \mathrm{~kJ} \mathrm{~mol}^{-1}$

The correct answer for this question should be -20 kJ mol^{-1}. But no option given is correct. Hence we can ignore sign and select option
9. Let A be the activity for safe working.

Given $A_{o}=10 \mathrm{~A}$
Ao \times No and $\mathrm{A} \times \mathrm{N}$
$\mathrm{t}=\frac{2.303}{\lambda} \log \frac{\mathrm{~N}_{\mathrm{o}}}{\mathrm{N}}=\frac{2.303}{\lambda} \log \frac{\mathrm{~A}_{\mathrm{o}}}{\mathrm{A}}$
$=\frac{\frac{2.303}{0.693}}{30} \log \frac{10 \mathrm{~A}}{\mathrm{~A}}=\frac{2.303 \times 30}{0.693} \log 10=\frac{2.303 \times 30}{0.693}$
$=99.69$ days ≈ 100 days.
10. $\frac{1}{2} \mathrm{~A} \longrightarrow 2 \mathrm{~B}$
$-\frac{1}{1 / 2} \frac{\mathrm{~d}(\mathrm{~A})}{\mathrm{dt}}=\frac{1}{2} \frac{\mathrm{~d}(\mathrm{~B})}{\mathrm{dt}}$
$-\frac{\mathrm{d}(\mathrm{A})}{\mathrm{dt}}=\frac{1}{4} \frac{\mathrm{~d}(\mathrm{~B})}{\mathrm{dt}}$
11. In first order reaction for $\mathrm{X} \%$ completion
$\mathrm{k}=\frac{2.303}{\mathrm{t}} \log \left(\frac{100}{100-\mathrm{x} \%}\right)$
$\frac{0.693}{t_{1 / 2}}=\frac{2.303}{t} \log \left(\frac{100}{100-99}\right)$
$=\frac{0.693}{6.93}=\frac{2.303 \times 2}{\mathrm{t}}$
So, $t=46.06 \mathrm{~min}$.
12. $\mathrm{A} \longrightarrow$ product

For zero order reaction
$t_{1 / 2} \propto \frac{1}{a^{n-1}} \quad a=$ initial concentration of reactant $\mathrm{t}_{1 / 2} \propto \mathrm{a}$
$\frac{\left(\mathrm{t}_{1 / 2}\right)_{1}}{\left(\mathrm{t}_{1 / 2}\right)_{2}}=\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}} ; \quad \frac{1}{\left(\mathrm{t}_{1 / 2}\right)_{2}}=\frac{2}{0.50}$
$\mathrm{t}_{1 / 2}=\frac{0.5}{2}=0.25 \mathrm{~h}$.
13. $\operatorname{Mechanism}(1) \quad$ rate $=\mathrm{K}\left[\mathrm{Cl}_{2}\right]\left[\mathrm{H}_{2} \mathrm{~S}\right]$

Mechanism (2) rate $=\mathrm{K}_{1}\left[\mathrm{Cl}_{2}\right]\left[\mathrm{HS}^{-}\right]$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{eq}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HS}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]} \\
& {\left[\mathrm{HS}^{-}\right]=\frac{\mathrm{K}_{\mathrm{eq}}\left[\mathrm{H}_{2} \mathrm{~S}\right]}{\left[\mathrm{H}^{+}\right]}}
\end{aligned}
$$

$$
=\mathrm{K}_{1} \mathrm{~K}_{\mathrm{eq}} \frac{\left[\mathrm{Cl}_{2}\right]\left[\mathrm{H}_{2} \mathrm{~S}\right]}{\left[\mathrm{H}^{+}\right]}
$$

\therefore Mechanism (1) is consistent with this rate equation.
14. $\frac{\text { Rate at } 50^{\circ} \mathrm{C}}{\text { Rate at } \mathrm{T}_{1}{ }^{\circ} \mathrm{C}}=(2)^{\frac{\Delta \mathrm{T}}{\mathrm{T}_{1}}}=(2)^{\frac{50}{10}}=2^{5}$

$$
=32 \text { times }
$$

15. $\mathrm{K}_{1}=\mathrm{A}_{1} \mathrm{e}^{-\mathrm{Ea}_{1} / \mathrm{RT}}$
$\mathrm{K}_{2}=\mathrm{A}_{2} \mathrm{e}^{-\mathrm{Ea}_{2} / \mathrm{RT}}$
$\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}=\frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}} \mathrm{e}^{\left(\mathrm{E}_{\mathrm{E}_{2}}-\mathrm{E}_{\mathrm{a}_{1}}\right) / \mathrm{RT}}$
$K_{1}=K_{2} A \times e^{E_{a_{1}} / R T}$
16. $\mathrm{K}=\frac{1}{40} \ln \frac{0.1}{0.025}=\frac{1}{40} \ln 4$
$\mathrm{R}=\mathrm{K}[\mathrm{A}]^{1}$
$=\frac{1}{40} \ln 4(.01)=\frac{2 \ln 2}{40}(.01)=\mathbf{3 . 4 7} \times \mathbf{1 0}^{-4}$
17. $\log \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\frac{-\mathrm{E}_{\mathrm{a}}}{2.030 \mathrm{R}}\left(\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{1}}\right)$
$\frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=2 ; \mathrm{T}_{2}=310 \mathrm{~K} \quad \mathrm{~T}_{1}=300 \mathrm{~K}$
$\Rightarrow \log 2=\frac{-\mathrm{E}_{\mathrm{a}}}{2.303 \times 8.134}\left(\frac{1}{310}-\frac{1}{300}\right)$
$\Rightarrow \mathrm{E}_{\mathrm{a}}=53598.6 \mathrm{~J} / \mathrm{mol} \quad=53.6 \mathrm{KJ} / \mathrm{mol}$
Ans is (1)
18. $\mathrm{k}=\frac{1}{50} \ln \left(\frac{0.500}{0.125}\right)=\frac{1}{50} \cdot \ln (4)=\frac{2 \ln (2)}{50}$

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\frac{1}{2} \mathrm{O}_{2} \\
& \mathrm{POR}=\frac{\mathrm{d}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]}{\mathrm{dt}}=\frac{\mathrm{d}\left[\mathrm{H}_{2} \mathrm{O}\right]}{\mathrm{dt}}=\frac{1}{1 / 2} \frac{\mathrm{~d}\left[\mathrm{O}_{2}\right]}{\mathrm{dt}} \\
& \frac{2}{50} \ln (2) \times 0.05=2 . \frac{\mathrm{d}\left[\mathrm{O}_{2}\right]}{\mathrm{dt}} \\
& \frac{\mathrm{~d}\left[\mathrm{O}_{2}\right]}{\mathrm{dt}}=0.693 \times 10^{-3}=0.93 \times 10^{-4} \mathrm{~mol} / \mathrm{min}
\end{aligned}
$$

CHEMICAL KINETICS AND NUCLEAR CHEMISTRY

19. From arrhenius equation

$$
\begin{align*}
\mathrm{K} & =\mathrm{A} \cdot \mathrm{e}^{\frac{-\mathrm{Ea}}{\mathrm{RT}}} \\
\text { so, } \mathrm{K}_{1} & =\mathrm{A} \cdot \mathrm{e}^{-\mathrm{E}_{\mathrm{a}_{1} / \mathrm{RT}}} \tag{1}\\
\mathrm{~K}_{2} & =\mathrm{A} \cdot \mathrm{e}^{-\mathrm{E}_{\mathrm{a}_{2}} / \mathrm{RT}} \tag{2}
\end{align*}
$$

so, equation $(2) /(1) \Rightarrow \frac{K_{2}}{K_{1}}=e^{\frac{\left(E_{a_{1} 1}-E_{a_{2}}\right)}{R T}}$
(As pre-exponential factors of both reactions is same)
$\ln \left(\frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}\right)=\frac{\mathrm{E}_{\mathrm{a}_{1}}-\mathrm{E}_{\mathrm{a}_{2}}}{\mathrm{RT}}=\frac{10,000}{8.314 \times 300}=4$
20. $\mathrm{CH}_{3} \mathrm{CHO} \longrightarrow \mathrm{CH}_{4}+\mathrm{CO}$
$r_{1}=1$ torr $\sec ^{-1}$, when 5% reacted (95% unreacted)

$r \propto(a-x)^{m} \quad m=$ order of reaction $a-x=$ unreacted
$\frac{r_{1}}{r_{2}}=\left[\frac{\left(a-x_{1}\right)}{\left(a-x_{2}\right)}\right]^{m} \Rightarrow \frac{1}{0.5}=\left(\frac{0.95}{0.67}\right)^{m}$
$2=(1.41)^{\mathrm{m}} \Rightarrow 2=(\sqrt{2})^{\mathrm{m}} \Rightarrow \mathrm{m}=2$

Part \# II : IIT-JEE ADVANCED

1. Since 0.01 M of X changes to 0.0025 M in 40 minutes, $\mathrm{t}_{1 / 2}$ of reaction $=40 / 2=20$ minutes Rate of reaction of

$$
\begin{aligned}
& \mathrm{r}=\mathrm{k}[\mathrm{X}]=\frac{0.693}{\mathrm{t}_{1 / 2}} \times[\mathrm{X}]=\frac{0.693}{20} \times 0.01 \\
& =3.47 \times 10^{-4} \mathrm{M} \mathrm{~min}^{-1} .
\end{aligned}
$$

2. (a) From the rate law expression, $\mathrm{R}_{0}=\mathrm{k}\left[\mathrm{A}_{0}\right]^{\mathrm{a}}\left[\mathrm{B}_{0}\right]^{\mathrm{b}}$ and from the table it is clear that :
(i) when the concentration of $\left[\mathrm{A}_{0}\right]$ is doubled, keeping $\left[\mathrm{B}_{0}\right]$ constant (see readings 1 and 2), the rate also doubles i.e. rate is directly proportional to $\left[\mathrm{A}_{0}\right]$ or a $=1$.
(ii) when the concentration of $\left[\mathrm{B}_{0}\right]$ is reduced, keeping [A_{0}] constant (see readings 1 and 3), the rate remains constant i.e., rate is independent of $\left[B_{0}\right]$ or $b=0$. Thus, rate equation becomes $\mathrm{R}_{0}=\mathrm{k}\left[\mathrm{A}_{0}\right]$.
(b) $\mathrm{k}=\frac{\mathrm{R}_{0}}{\left[\mathrm{~A}_{0}\right]}=\frac{0.05}{0.10}=0.5 \mathrm{sec}^{-1}$.
3. $2 \mathrm{X}(\mathrm{g}) \longrightarrow 3 \mathrm{Y}(\mathrm{g})+2 \mathrm{Z}(\mathrm{g})$
$\mathrm{t}=0800$
t $\quad 800-2 \mathrm{x} \quad 3 \mathrm{x} \quad 2 \mathrm{x}=(800+3 \mathrm{x})$
from given data in time 100 min the partial pressure of X decreases from 800 to 400 so $_{1 / 2} 100 \mathrm{~min}$. Also in next 100 min Px decreases from 400 to 200 to again $\mathrm{t}_{1 / 2}=100$ min . Since half left is independent of initial concentration so reaction must $\mathrm{It}^{\text {st }}$ order with respect to X .

Rate constant $\mathrm{K}=\frac{\ell \mathrm{n} 2}{\mathrm{t}_{1 / 2}}=6.93 \times 10^{-3} \mathrm{~min}^{-1}$.
Time taken for 75% completion $=2 \times \mathrm{t}_{1 / 2}=200 \mathrm{~min}$.
Now when $\mathrm{Px}=700=800-2 \mathrm{x}$ so $\mathrm{x}=50 \mathrm{~mm}$ of Hg so total pressure $=800+3 x=950 \mathrm{~mm}$ of Hg
4. Rate of exchange of ${ }^{14} \mathrm{C}$ between atmosphere and living organism is so fast that an equilibrium is set up between the intake of ${ }^{14} \mathrm{C}$ by organism and its exponential decay.
5. Fossil has 6000 year age for the determination of the age of old organism.
6. $\lambda=\frac{1}{\mathrm{~T}_{1}-\mathrm{T}_{2}} \ln \frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}$.
7. $\mathrm{aG}+\mathrm{bH} \longrightarrow$ products

Rate $=\mathrm{k}[\mathrm{G}]^{\mathrm{x}}[\mathrm{H}]^{\mathrm{y}}$
$\mathrm{R}=\mathrm{K}[\mathrm{G}]_{0}^{\mathrm{x}}[\mathrm{H}]_{0}^{\mathrm{y}} \quad\left(\right.$ Let initial conc. are $\left.[\mathrm{G}]_{0} \&[\mathrm{H}]_{0}\right)$
$8 \mathrm{R}=\mathrm{K}[2 \mathrm{G}]_{0}^{\mathrm{x}}[2 \mathrm{H}]_{0}^{\mathrm{y}}=\mathrm{K} 2^{\mathrm{x}} .2^{\mathrm{y}} \mathrm{R}$
so $2^{x+y}=8 \Rightarrow x+y=3$
8. For ${ }^{\text {It }}$ order reaction

For zero order reaction
$\mathrm{k}_{1}=\frac{\ln 2}{\mathrm{t}_{1 / 2}}=\frac{0.693}{40}$ second $^{-1}$
$\mathrm{k}_{0}=\frac{\mathrm{C}_{0}}{2 \mathrm{t}_{1 / 2}}=\frac{1.386}{2 \times 20} \Rightarrow \frac{\mathrm{k}_{1}}{\mathrm{k}_{0}}=\frac{0.693}{1.386}=0.5$.
9. From Arrhenius equation
$\mathrm{K}=\mathrm{Ae}^{\mathrm{E} / \mathrm{RT}}$
$\ell \mathrm{nk}=\ell \mathrm{nA}-\frac{\mathrm{Ea}}{\mathrm{RT}}$
$2.303 \log \mathrm{~K}=2.303 \log \mathrm{~A}-\frac{\mathrm{Ea}}{\mathrm{RT}}$
$\log \mathrm{K}=\frac{-\mathrm{Ea}}{2.303 \mathrm{R}} \times \frac{1}{\mathrm{~T}}+\log \mathrm{A}$
$\log K=-(2000) \frac{1}{\mathrm{~T}}+6$
On comparing equation (A) and (B)
$\frac{-\mathrm{Ea}}{2.303 \mathrm{R}}=-2000$.
$\mathrm{Ea}=2.303 \times 8.314 \times 2000=38.29 \mathrm{~kJ}$ and $\log \mathrm{A}=6$ $\mathrm{A}=10^{6}$
10. $\mathrm{K}=\frac{\mathrm{C}_{0}-\mathrm{C}}{\mathrm{t}}=\frac{1-0.75}{0.05}=\frac{0.25}{0.05}=5$
$\mathrm{K}=\frac{0.75-0.40}{0.07}=\frac{0.35}{0.07}=5$
So, reaction must be of zero order.
11. $\mathrm{k}=\mathrm{Ae}^{-\mathrm{E}_{\mathrm{a}} / \mathrm{RT}}$

So, variation will be

12.* $\quad \mathrm{C}_{\mathrm{t}}=\mathrm{C}_{0} \mathrm{e}^{-\mathrm{Kt}}$
$\mathrm{t}_{1 / 2} \propto \frac{1}{\mathrm{~K}}, \quad \mathrm{~K} \uparrow$ on increasing T.
After eight half lives,

$$
\mathrm{C}=\frac{\mathrm{C}_{\mathrm{o}}}{2^{8}}
$$

$$
\Rightarrow \% \text { completion }=\frac{C_{o}-\frac{C_{0}}{2^{8}}}{C_{0}} \times 100=99.6 \%
$$

13. $\mathrm{Kt}_{1 / 8}=\operatorname{In}\left\{\frac{\mathrm{C}_{\mathrm{O}}}{\mathrm{C}_{\mathrm{O}} / 8}\right\}=\operatorname{In} 8$

$$
\begin{aligned}
& \mathrm{Kt}_{1 / 10}=\operatorname{In}\left\{\frac{\mathrm{C}_{\mathrm{O}}}{\mathrm{C}_{\mathrm{O}} / 10}\right\}=\operatorname{In} 10 \\
& \text { then } \frac{\mathrm{t}_{1 / 8}}{\mathrm{t}_{1 / 10}} \times 10=\frac{\operatorname{In} 8}{\operatorname{In} 10} \times 10=\frac{\log 2}{\log 10} \times 10=9
\end{aligned}
$$

14. For P, if $\mathrm{t}_{50 \%}=\mathrm{x}$
then $\mathrm{t}_{75 \%}=2 \mathrm{x}$
This happens only in first order reaction.
so, order with respect to P is 1 .
For Q, the graph shows that concentration of Q decreases linearly with time. So rate, with respect to Q,
remains constant. Hence, it is zero order wrt Q .
So, overall order is $0+1=1 \rightarrow$ Ans. is D
15. A high activation energy usually implies a slow reaction.
16. Steric factor $(P)=\frac{(A / Z) \exp }{(A / Z) \text { theo }}$

A = frea.factor
$\mathrm{Z}=$ Collision freq.
usually $\mathrm{P}<1$
$\therefore \mathrm{A}_{\text {exp }}<\mathrm{A}_{\text {theo }}$. Assuming ' Z ' to be same Here $\mathrm{P}>1$

$$
\therefore \quad \mathrm{A}_{\exp }>\mathrm{A}_{\text {theo }}
$$

17. $\mathrm{A}(\mathrm{g}) \xrightarrow{\text { First order }} 2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{g}) \mathrm{V}=$ constant, $\mathrm{T}=300 \mathrm{~K}$

$$
\begin{aligned}
& t=0 \quad P_{0} \\
& \mathrm{t}=\mathrm{t}_{1 / 3}\left(\mathrm{P}_{0}-\frac{2 \mathrm{P}_{0}}{3}\right) \quad \frac{4 \mathrm{P}_{0}}{3} \quad \frac{2 \mathrm{P}_{0}}{3} \\
& =\frac{\mathrm{P}_{0}}{3} \\
& \mathrm{t}=\mathrm{t} \quad \mathrm{P}_{0}-\mathrm{x} \quad 2 \mathrm{x} \quad \mathrm{x}
\end{aligned}
$$

So, $P_{t}=P_{0}-x+2 x+x=P_{0}+2 x$
or $2 x=P_{t}-P_{0}$

$$
\mathrm{t}=\frac{1}{\mathrm{k}} \ln \frac{\mathrm{P}_{0}}{\left(\mathrm{P}_{0}-\mathrm{x}\right)}
$$

or $\quad \mathrm{t}=\frac{1}{\mathrm{k}} \ln \frac{\mathrm{P}_{0}}{\mathrm{P}_{0}-\frac{\left(\mathrm{P}_{\mathrm{t}}-\mathrm{P}_{0}\right)}{2}}=\frac{1}{\mathrm{k}} \ln \frac{2 \mathrm{P}_{0}}{2 \mathrm{P}_{0}-\mathrm{P}_{\mathrm{t}}+\mathrm{P}_{0}}$
or $\quad \mathrm{Kt}=\ln \frac{2 \mathrm{P}_{0}}{3 \mathrm{P}_{0}-\mathrm{P}_{\mathrm{t}}}, \mathrm{Kt}=\ln 2 \mathrm{P}_{0}-\ln \left(3 \mathrm{P}_{0}-\mathrm{P}_{\mathrm{t}}\right)$
or $\ln \left(3 \mathrm{P}_{0}-\mathrm{P}_{\mathrm{t}}\right)=-\mathrm{Kt}+\ln 2 \mathrm{P}_{0}$
Graph between $\ln \left(3 \mathrm{P}_{0}-\mathrm{P}_{\mathrm{t}}\right)$ vs ' t ' is a straight line with negative slope.
So (A) is correct option.
$\mathrm{t}_{1 / 3}=\frac{1}{\mathrm{~K}} \ln \frac{\mathrm{P}_{0}}{\left(\mathrm{P}_{0} / 3\right)}=\frac{1}{\mathrm{~K}} \ln 3 \Rightarrow$ It is independent of initial concentration.
So (B) is wrong option.
As rate constant is a constant quantity and independent of initial concentration.
So Graph (D) is correct.
18. $\mathrm{A}(\mathrm{g})+\mathrm{B}(\mathrm{g}) \rightleftharpoons \mathrm{AB}(\mathrm{g})$
$E_{a_{b}}=E_{a_{\mathrm{f}}}+2 R T \& A_{f}=4 A_{b}$
Now, Rate constant of forward reaction $\mathrm{k}_{\mathrm{f}}=\mathrm{A}_{\mathrm{f}} \mathrm{e}^{-\mathrm{Ea}_{\mathrm{f}} / \mathrm{RT}}$

Rate constant of reverse reaction $\mathrm{K}_{\mathrm{b}}=\mathrm{A}_{\mathrm{b}} \mathrm{e}^{-\mathrm{E}_{\mathrm{ab}} / \mathrm{RT}}$ Equilibrium constant

$$
\begin{aligned}
\mathrm{K}_{\mathrm{eq}} & =\frac{\mathrm{K}_{\mathrm{f}}}{\mathrm{~K}_{\mathrm{b}}}=\frac{\mathrm{A}_{\mathrm{f}}}{\mathrm{~A}_{\mathrm{b}}} \mathrm{e}^{-\left(\mathrm{E}_{\mathrm{af}}-\mathrm{E}_{\mathrm{ab}}\right) / \mathrm{RT}} \\
& =4 \mathrm{e}^{+2}=4 \mathrm{e}^{2}
\end{aligned}
$$

$$
\text { Now, } \quad \begin{aligned}
\Delta \mathrm{G}^{\circ} & =-\mathrm{RT} \ln \mathrm{~K}_{\mathrm{eq}}=-2500 \ln \left(4 \mathrm{e}^{2}\right) \\
& =-2500\left(\ln 4+\ln \mathrm{e}^{2}\right) \\
& =-2500(1.4+2)=-2500 \times 3.4 \\
& =-8500 \mathrm{~J} / \text { mole }
\end{aligned}
$$

CHEMISTRY FOR JEE MAIN \& ADVANCED

MOCK TEST

1. (C)
2. (C)
3. (C)

As only A is optically active. So conc. of A at $\mathrm{t}=20 \mathrm{~min}$ $\propto 30^{\circ}$
While concentration of A at $\mathrm{t}=50 \mathrm{~min} \propto 15^{\circ}$
So conc. has decreased to half of its value in 30 min , so $\mathrm{t}_{1 / 2}=30 \mathrm{~min}$.
So volume consumed of $\mathrm{H}_{2} \mathrm{O}_{2}$ at $\mathrm{t}=30 \mathrm{~min}=\mathrm{t}_{1 / 2}$, is according to 50% production of B .
at $t=90 \mathrm{~min}$. production of $B=87.5 \%$ (Three half lives)
So volume consumed $=(30 \mathrm{ml})+\left(\frac{30}{2} \mathrm{ml}\right)+\left(\frac{30}{4}\right) \mathrm{ml}$
$=52.5 \mathrm{ml}$ ans.
4. (B)

$$
\begin{array}{ll}
\mathrm{r}_{2}=\mathrm{k}_{2}[\mathrm{~A}]_{2}{ }^{1}[\mathrm{~B}]_{2}{ }^{1} & \text { for a certain run } \\
\mathrm{r}_{1}=\mathrm{k}_{1}[\mathrm{~A}]_{1}{ }^{1}[\mathrm{~B}]_{1}{ }^{1} & \text { for a previous run }
\end{array}
$$

dividing, we get

$$
\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}=\frac{\mathrm{k}_{2}}{\mathrm{k}_{1}} \frac{[\mathrm{~A}]_{2}}{[\mathrm{~A}]_{1}} \frac{[\mathrm{~B}]_{2}}{[\mathrm{~B}]_{1}}
$$

Substituting the given information

$$
\begin{aligned}
& 1.5=2^{\left(\frac{\mathrm{t}_{2}-27}{10}\right)} \times \frac{1}{2} \times \frac{1}{2} \\
\Rightarrow & 6=2^{\left(\frac{\mathrm{t}_{2}-27}{10}\right)} \Rightarrow \quad \frac{\mathrm{t}_{2}-27}{10} \ell \mathrm{n} 2=\ell \mathrm{n} 6 \\
\Rightarrow & \frac{\mathrm{t}_{2}-27}{10}=\frac{\ell \mathrm{n} 6}{\ell \mathrm{n} 2} \Rightarrow \quad \mathrm{t}_{2}=52.85^{\circ} \mathrm{C} \approx 53^{\circ} \mathrm{C}
\end{aligned}
$$

5. (C)
$\frac{[\mathrm{B}]}{[\mathrm{C}]}=\frac{3 \mathrm{k}_{1}}{8 \mathrm{k}_{1}}=\frac{3}{8}=\alpha$
$\frac{[\mathrm{C}]}{[\mathrm{D}]}=\frac{8 \mathrm{k}_{2}}{7.5 \mathrm{k}_{2}}=\frac{8}{7.5}=\beta$
$\therefore \alpha \beta=0.4$
6. (C)
$\mathrm{t}_{1 / 2}=\mathrm{Ka}^{(1-\mathrm{n})}, \mathrm{n}$ being order $=$ Rate constant $\log \mathrm{t}_{1 / 2}=\log \mathrm{K}+(1-\mathrm{n}) \log \mathrm{a}$
$1-\mathrm{n}=-\quad 1$
$\mathrm{n}=2$
7. (D)

Rate $\left(\mathrm{SN}^{2}\right)=5.0 \times 10^{-5} \times 10^{-2}[\mathrm{R}-\mathrm{X}]=5.0 \times 10^{-7}[\mathrm{R}-\mathrm{X}]$
Rate $\left(\mathrm{SN}^{1}\right)=0.20 \times 10^{-5}[\mathrm{R}-\mathrm{X}]$
$\%$ of $\mathrm{SN}^{2}=\frac{5 \times 10-7[\mathrm{R}-\mathrm{X}] \times 100}{5 \times 10^{-7}[\mathrm{R}-\mathrm{X}]+0.20 \times 10^{-5}[\mathrm{R}-\mathrm{X}]}=20$
8. (D)
$\frac{\mathrm{k}_{\mathrm{t}}}{\mathrm{k}_{0}}=(\mathrm{TC})^{\mathrm{t} 0 / 10}$

Taking \log gives $\log _{\mathrm{e}} \mathrm{k}_{\mathrm{t}}-\log _{\mathrm{e}} \mathrm{k}_{0}=\frac{\mathrm{t}}{10} \log _{\mathrm{e}}(\mathrm{TC})$
$\Rightarrow \ln \mathrm{kt}=\ln \mathrm{k}_{0}+\left(\frac{\ln (\mathrm{TC})}{10}\right) \mathrm{t}$

Comparision indicates $\frac{\ln (\mathrm{TC})}{10}=\frac{\ln 3}{10}$

$$
\Rightarrow \quad \mathrm{TC}=3
$$

9. (C)
$\mathrm{k}=-2.303$ (slope) $\min ^{-1}=-2.303(-0.03) \min ^{-1}=0.06909$ $\mathrm{min}^{-1}=4.14 \mathrm{hr}^{-1} \approx 4 \mathrm{hr}^{-1}$
10. (A)

$$
\frac{\mathrm{n}_{\mathrm{CH}_{4}}+\mathrm{n}_{\mathrm{CO}_{2}}}{\mathrm{n}_{\mathrm{CH}_{2} \mathrm{CO}}+\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}}=\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}
$$

$$
\Rightarrow \frac{\mathrm{n}_{\mathrm{CH}_{4}}+\mathrm{n}_{\mathrm{CO}_{2}}}{\mathrm{n}_{\mathrm{CH}_{4}}+\mathrm{n}_{\mathrm{CO}_{2}}+\mathrm{n}_{\mathrm{CH}_{2} \mathrm{CO}}+\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}}=\frac{\mathrm{k}_{1}}{\mathrm{k}_{1}+\mathrm{k}_{2}}
$$

$$
\Rightarrow \quad \frac{2 \mathrm{n}_{\mathrm{CH}_{4}}}{\mathrm{n}_{\text {total }}}=\frac{\mathrm{k}_{1}}{\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)}
$$

$$
\Rightarrow \quad \frac{\mathrm{n}_{\mathrm{CH}_{4}}}{\mathrm{n}_{\text {total }}}=\frac{\mathrm{k}_{1}}{2\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)}
$$

$$
\Rightarrow \frac{\mathrm{n}_{\mathrm{CH}_{4}}}{\mathrm{n}_{\text {total }}} \times 100=\frac{50 \mathrm{k}_{1}}{\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)}
$$

CHEMICAL KINETICS AND NUCLEAR CHEMISTRY

11. (B)

At $\mathrm{pH}=5$ the $\mathrm{t}_{1 / 2} \propto[\text { sugar }]^{0}$ or the reaction is first order w.r.t. sugar because $t_{1 / 2}$ remains same for any conc. of sugar.
so rate $=k[\text { sugar }]^{1}\left[\mathrm{H}^{+}\right]^{\mathrm{n}}$
[$\mathrm{n}=$ order w.r.t. H^{+}ion]
Also $\mathrm{t}_{1 / 2}$ for $\left[\mathrm{H}^{+}\right] \propto \frac{1}{\left[\mathrm{C}_{0}\right]^{\mathrm{n}-1}}$ or $\propto \mathrm{C}_{0}{ }^{1-\mathrm{n}}$
$\therefore \quad 600 \propto\left[10^{-5}\right]^{1-n}$
$60 \propto\left[10^{-6}\right]^{1-n}$
or $10=(10)^{1-\mathrm{n}} \quad$ or $\quad 1-\mathrm{n}=1$
$\mathrm{n}=0$
12. (C)

Rate is governed by slowest step

$$
\begin{align*}
& \mathrm{A}+\mathrm{B}_{2} \xrightarrow{\mathrm{k}_{1}} \mathrm{AB}+\mathrm{B} \\
& \mathrm{r}=\mathrm{k} 1[\mathrm{~A}]\left[\mathrm{B}_{2}\right] \tag{i}
\end{align*}
$$

From $\mathrm{A}_{2} \stackrel{\mathrm{k}_{\mathrm{c}}}{\rightleftharpoons} \mathrm{A}+\mathrm{A}$

$$
\begin{equation*}
\mathrm{k}_{\mathrm{C}}=\frac{[\mathrm{A}]^{2}}{\left[\mathrm{~A}_{2}\right]} \tag{ii}
\end{equation*}
$$

$$
[\mathrm{A}]=\sqrt{\mathrm{k}_{\mathrm{C}}}\left[\mathrm{~A}_{2}\right]^{1 / 2}
$$

$$
\mathrm{r}=\mathrm{k}_{1} \sqrt{\mathrm{k}_{\mathrm{C}}}\left[\mathrm{~A}_{2}\right]^{1 / 2}\left[\mathrm{~B}_{2}\right] \quad \text { order is }=\frac{1}{2}+1=\frac{3}{2}
$$

13. (A)
14. (B)
rate is slope of curve
at $20 \sec \frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{0.35}{50}$ (approx)
$=7 \times 10^{-3} \mathrm{M} \mathrm{sec}^{-1}$
at 40 sec rate become half because of first order
$\mathrm{r}_{40 \mathrm{sec}}=3.5 \times 10^{-3} \mathrm{M} \mathrm{sec}^{-1}$
$\mathrm{r}_{60 \mathrm{sec}}=1.75 \times 10^{-3} \mathrm{M} \mathrm{sec}^{-1}$
$\mathrm{r}_{80 \mathrm{sec}}=\frac{1.75}{2}-10^{-3}$

$$
\mathrm{A} \longrightarrow \mathrm{~B}
$$

$\mathrm{t}=00.4$
$\mathrm{t}=60 \quad 0.4-\mathrm{x} \mathrm{x}$
$=0.05 \quad 50 \mathrm{x}=0.35$
15. (B C)
16. (ABD)
17. (A B D)

0	30	x
30	20	-15

$k=\frac{1}{30} 2.3 \log \frac{45}{35}$
$\therefore \quad t_{1 / 2}=75 \mathrm{~min}$
$\mathrm{k}=\frac{1}{\mathrm{t}} 2.3 \log \frac{45}{0-(-15)}$
$\mathrm{t}=120 \mathrm{~min}$
$\frac{30-(-15)}{x-(-15)}=2$ at half time
$\Rightarrow \frac{45}{x+15}=2 \quad \Rightarrow \quad x+15=\frac{45}{2}$
$\Rightarrow \mathrm{x}=22.5-15=7.5^{\circ}$
18. (A, B, C, D)
19. (AB)
$\mathrm{r}_{\mathrm{B}}=\frac{\mathrm{dC}_{\mathrm{B}}}{\mathrm{dt}}=\frac{1}{\mathrm{~V}} \frac{\mathrm{dn}_{\mathrm{B}}}{\mathrm{dt}}=\frac{1}{\mathrm{~V}} \frac{\mathrm{~d}\left(\mathrm{C}_{\mathrm{B}} \mathrm{V}\right)}{\mathrm{dt}}$

20. (D)

According to arrhenius equation $\mathrm{K}=\mathrm{Ae}^{-\mathrm{Ea} / \mathrm{RT}}$ when $\mathrm{E}_{\mathrm{a}}=0, \mathrm{~K}=\mathrm{A}$.
21. (C)
22. (B)

It is fact
23. (B)
$\log \mathrm{K}_{\mathrm{b}}=\log \mathrm{A}-\frac{\mathrm{Ea}}{2.303 \mathrm{RT}}$
$\log \mathrm{K}_{\mathrm{b}}=12-\frac{57450}{2.303 \times 8.314 \times 300}$
$\log \mathrm{K}_{\mathrm{b}}=2$
$\mathrm{K}_{\mathrm{b}}=$ Antilog 2
$\mathrm{K}_{\mathrm{b}}=10^{2}$
$\mathrm{K}_{\mathrm{c}}=\frac{\mathrm{K}_{\mathrm{F}}}{\mathrm{K}_{\mathrm{b}}} \Rightarrow 10^{4}=\frac{\mathrm{K}_{\mathrm{F}}}{10^{2}} \quad \Rightarrow \quad \mathrm{~K}_{\mathrm{F}}=10^{6}$
24. (A)
$\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
$\Delta \mathrm{G}=20-\mathrm{T} \times 0.07$
For non-spontaneous process $\Delta \mathrm{G}>0$
hence $0<20-\mathrm{T} \times 0.07$
$\mathrm{T}<\frac{20}{0.07} \Rightarrow \mathrm{~T}<285.7 \mathrm{~K}$
25. (C)
$\mathrm{Kp}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}}$
$=10^{4}(0.082 \times 300)^{1}$
$=24.6 \times 10^{4}$
26. (A)
$-\frac{\mathrm{dA}}{\mathrm{dt}}=\mathrm{k}_{\mathrm{f}}[\mathrm{A}]-\mathrm{k}_{\mathrm{b}}[\mathrm{C}]$
and $\frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}=\mathrm{k}_{\mathrm{f}}[\mathrm{A}]-\mathrm{k}_{\mathrm{b}}[\mathrm{C}]$ at any time
and slope between conce and time is known as rate and they are always equal at any time.
27. (D)
28. (D)
$\mathrm{A} \underset{\mathrm{k}_{\mathrm{o}}}{\stackrel{\mathrm{k}_{\mathrm{t}}}{\rightleftharpoons}} \mathrm{C}$
$\mathrm{K}_{\mathrm{C}}=\frac{\mathrm{k}_{\mathrm{f}}}{\mathrm{k}_{\mathrm{b}}}=\frac{[\mathrm{C}]}{[\mathrm{A}]}=\frac{0.4}{0.6}=\frac{2}{3}$ from graph
$2 \mathrm{C} \rightleftharpoons 2 \mathrm{~A}$
$\mathrm{K}_{\mathrm{C}}^{\prime}=\left(\frac{1}{\mathrm{~K}_{\mathrm{C}}}\right)^{2}=\left(\frac{3}{2}\right)^{2}=\frac{9}{4}$
29. (A)
$[\mathrm{A}]_{\mathrm{t}}=1 \times \mathrm{e}^{-\mathrm{kt}}=\mathrm{e}^{-3 \times 33.33 \times 10^{-2}}=\mathrm{e}^{-0.999}=\frac{1}{\mathrm{e}}$
30. (C)

$\mathrm{k}=\frac{1}{\mathrm{t}} \ln \left(\frac{\frac{\mathrm{b}}{5}}{\frac{\mathrm{~b}-\mathrm{a}}{4}}\right)$
31. (A)
$\mathrm{A} \longrightarrow \mathrm{nC}$
$[\mathrm{A}]_{0}-\frac{7[\mathrm{~A}]_{0}}{8}=\frac{7[\mathrm{~A}]_{0}}{8} \mathrm{n} \Rightarrow \frac{[\mathrm{A}]_{0}}{8}=\frac{7[\mathrm{~A}]_{0}}{8} \mathrm{n}$
$\Rightarrow \mathrm{n}=\frac{1}{7} \quad$ or $\quad \frac{1}{\mathrm{n}}=7$.
32. $(\mathrm{A} \rightarrow \mathrm{p}, \mathrm{r}) ;(\mathrm{B} \rightarrow \mathrm{p}, \mathrm{r}, \mathrm{s}) ;(\mathrm{C} \rightarrow \mathrm{q}) ;(\mathrm{D} \rightarrow \mathrm{p}, \mathrm{r}, \mathrm{s})$
(A) IInd order reaction
(B) \& (D) Ist order reaction
(C) zero order reaction
33. $(\mathrm{A} \rightarrow \mathrm{p}, \mathrm{q}) ;(\mathrm{B} \rightarrow \mathrm{p}, \mathrm{r}, \mathrm{s}) ;(\mathrm{C} \rightarrow \mathrm{s}) ;(\mathrm{D} \rightarrow \mathrm{p}, \mathrm{q})$
34. $(\mathrm{A} \rightarrow \mathrm{q}),(\mathrm{B} \rightarrow \mathrm{s}),(\mathrm{C} \rightarrow \mathrm{r}),(\mathrm{D} \rightarrow \mathrm{p})$
35. Arrhenius equation $k=A e^{-E_{a} / R T}$
or $\log _{10} \mathrm{k}=\log \mathrm{A}-\frac{\mathrm{Ea}}{2.303 \mathrm{RT}}$
Conparing the given equation with equation (i),
$\frac{\mathrm{Ea}}{2.303 \mathrm{RT}}=\frac{1.25 \times 10^{4}(\mathrm{~K})}{\mathrm{T}}$
$\Rightarrow \mathrm{Ea}=2.303 \times 1.25 \times 10^{4} \times 8.3=238936.25 \mathrm{~J} \mathrm{~mol}^{-1}$
$\mathrm{k}=\operatorname{antilog}\left[12.37-\frac{1.25 \times 10^{4}}{750}\right]=\operatorname{antilog}(-4.3) \mathrm{sec}^{-1}$
$=5 \times 10^{-5} \mathrm{sec}^{-1}$
\therefore Eak $=238936.25 \times 5 \times 10^{-5}=11.95 \Rightarrow 12$
Hence Ans. 12
36. $\mathrm{t}: \quad 0 \quad 5 \quad 15 \quad 35$
$\begin{array}{lllll}\text { [A] : } & 1 & 0.5 & 0.25 & 0.125\end{array}$
IInd order of the reaction
Ans. 2
37. $\frac{d x(1+b x)}{(a-x)}=K d t$
$d x \frac{[1-b(a-x)+a b]}{(a-x)}=K d t$
$\int d x \frac{1+a b}{(a-x)}-\int d x . b=k \int d t$
$-(1+a b) \log (a-x)-b x=K t-(1+a b) \log a$
$K t=(1+a b) \log \frac{a}{(a-x)}-b x$
at $\mathrm{t}=\mathrm{t}_{1 / 2} \quad \mathrm{x}=\frac{\mathrm{a}}{2}$
$K_{1 / 2}=(1+\mathrm{ab}) \log \frac{\mathrm{a}}{\mathrm{a}-\frac{\mathrm{a}}{2}}-\frac{\mathrm{b} \cdot \mathrm{a}}{2}=(1+\mathrm{ab}) \log 2-\frac{\mathrm{ba}}{2}$
$=\log 2+\mathrm{ab} \log 2-\mathrm{ba} \times 0.5$
$\mathrm{t}_{1 / 2}=\frac{\log 2+\mathrm{ab}(\log 2-0.5)}{\mathrm{K}}$
38. (a) It is obvioius that $\mathrm{t}_{1 / 2}$ is inversely proportional to the initial concentration.
Thus the reaction is of order 2 .

$$
K=\frac{1}{t}\left(\frac{1}{a-x}-\frac{1}{a}\right)
$$

When $(a-x)=\frac{a}{2}, t=t_{1 / 2}$ we have $K t_{1 / 2}=\frac{1}{a}$
$\therefore \mathrm{K}=\frac{1}{\mathrm{at}_{1 / 2}}=\frac{1}{0.1 \times 135} \mathrm{~atm}^{-1} \mathrm{~min}^{-1}$
(b) We may write, viscosity $=\eta=($ constant $) e^{-\frac{E_{a}}{R T}}$
$\therefore \ln \eta=\ln ($ constant $)-\frac{E_{a}}{R T}$
$\frac{\mathrm{d} \ln \eta}{\mathrm{dT}}=\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{RT}^{2}} ; \frac{1}{\eta} \frac{\mathrm{~d} \eta}{\mathrm{dT}}=\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{RT}^{2}}$
The left hand side of this equation is the fractional change of viscosity per degree-temperature change.
This is given as $0.02 \mathrm{deg}^{-1}$.
$\therefore 0.02=\frac{\mathrm{E}_{\mathrm{a}}}{1.987 \times(298)^{2}}$
$\mathrm{E}_{\mathrm{a}}=0.02 \times 1.987 \times(298)^{2} \mathrm{cal} / \mathrm{mol}$
$\mathrm{Ea}=3529$ cal mol
39. $\mathrm{k}=\frac{1}{30 \min } \ln$
$\left\{\frac{400-200}{400-375}\right\}=\frac{1}{30 \min } \ell \mathrm{n}\left\{\frac{200}{0.25}\right\}=\frac{\ell \mathrm{n} 2}{\mathrm{~T}_{1 / 2}}$
$\mathrm{T}_{1 / 2}=(30 \mathrm{~min}) \frac{\ell \mathrm{n} 2}{\ell \mathrm{n} 8}=10 \mathrm{~min}$
So, we will have

Time (min)	$\mathrm{t}=0$	10	30
Pressure (in $\left.\mathrm{mm} \mathrm{of}_{\mathrm{Hg}}\right)$	200	300	375
Volume of KMnO_{4}	40	2	5

Ans.
(a) 40 ,
(b) 300,
(c) 375,
(d) 5

