

Ex. 1	A solution containing 0.319 gm of complex $CrCl_3$. $6H_2O$ was passed through cation exchanger and the solution given out was neutralised by 28.5 ml of 0.125 M NaOH. The correct formula of the complex will be: [molecular weight of complex = 266.5]									
	(A) [CrCl((H.O).]ClH.O		(B) [Cr(H.O),]C].						
	(C) [CrCl.	(H.O)]Cl. 2H.O		(D) All are correct						
Ans.	(B)	2(2 -)4]2 -		(_)						
Sol.	Cl-=HCl	=NaOH								
	nCl⁻+nH	$^{+} \longrightarrow \text{nHCl}$								
	Thus 1 mol of complex will form n mol of HCl									
	1 mole of complex = n mol of HCl = n mole of NaOH									
	mole of complex = $\frac{0.319}{266.5}$ = 0.0012; mole of NaOH used = $\frac{28.5 \times 0.125}{1000}$ = 0.0036									
	So 0.0012	mole of complex	= 0.0036 mole of NaOH $= 0.0036$	0036 mole of HCl						
	1 mole of	complex = $\frac{0.003}{0.001}$	$\frac{36}{2} = 3$ mole of HCl							
		0.001	12							
	So comple	ex is $[Cr(H_2O)_6]Cl$	l ₃ .							
Ex. 2	Calculate	the effective ator	mic number of the metal ato	ms in the following com	plexes / complex ions.					
	(A) [Cr(Co	O) ₆]	(B) $[Fe(CN)_6]^{3-}$	(C) $[Co(CN)_6]^{4-}$	(D) $[Ni(NH_3)_6]^{2+}$					
	[Cr = 24;	Fe = 26; Co = 27	and $Ni = 28$ as atomic numb	pers]						
Ans.	(A) 36		(B) 35	(C) 37	(D) 38					
Sol.	EAN = N	umber of electron	ns in metal atom or ion + Nu	umber of electrons dona	ted by ligands to metal.					
	$(\mathbf{A}) [Cr^0(\mathbf{C})]$	$CO)_6$]; EAN = 24 -	+12=36;	(B) $[\text{Fe}^{\text{III}}(\text{CN})_6]^{3-}; \text{EAN}$	= 23 + 12 = 35					
	(C) [Co ^{II} ($(CN)_6]^{4-}; EAN = 2$	5+12=37;	(D) $[Ni^{II}(NH_3)_6]^{2+}; EAN$	J = 26 + 12 = 38					
Ex. 3	Consider	the following cor	nplexes :							
	(i) K,PtCl	6	(ii) $PtCl_4$. $2NH_3$	(iii) $PtCl_4$. $3NH_3$	(iv) $PtCl_4$. $5NH_3$					
	their elec	trical conductanc	ce in aqueous solutions are	:						
	(A) 256, 0	,97,404	(B) 404, 0, 97, 256	(C) 256, 97, 0, 404	(D) 404, 97, 256, 0					
Ans.	(A)									
Sol.	The elect solutions	rical conductanc	ce of the complexes depen	d upon the number of	ions given by them in the aqueous					
	(i) K ₂ [Pt0	$\operatorname{Cl}_6] \stackrel{\operatorname{aq}}{\swarrow} 2K^+(\operatorname{aq})$	$(q) + [PtCl_6]^{2-}(aq)$	(ii) $[Pt(NH_3)_2Cl_4] \stackrel{aq}{\smile}$	$[Pt(NH_3)_2Cl_4](aq)$					
	(iii) [Pt(N	$H_3)_3Cl_3]Cl \stackrel{aq}{{\leftarrow}}$	$[Pt(NH_3)_3Cl_3]^+(aq) + Cl^-(aq)$	(iv) [Pt(NH ₃) ₅ Cl]Cl ₃ $\stackrel{aq}{\leftarrow}$	$\geq [Pt(NH_3)_5Cl]^{3+} + 3Cl^{-}$					
	•	Complex	Number of ions	Expected elec	trical conductance					
	(i)]	K ₂ [PtCl ₆]	3		256					
	(ii)	$[Pt(NH_3)_2Cl_4]$	0		0					
	(iii)	[Pt(NH ₃) ₃ Cl ₃]Cl	2		97					
	(iv)	$[Pt(NH_3)_5Cl]Cl_3$	4		404					

So, the correct option is (A).

Ex.4	Give the order o	f chelating effect of following ligat	nds.	
	(i) $C_2 O_4^{2-}$	(ii) EDTA	(iii) dien	
	(A) $iii > ii > i$	(B) i > ii > iii	(\mathbf{C}) ii>iii>i	(D) $i > iii > ii$
Ans.	(C)			
Sol.	As number of do oxalato, dien and	onor atoms increases the number of EDTA has two, three and six dor	of bonds increase. So the che nor atoms respectively.	elating effect of ligands increase as
Ex. 5	Write the structu	ural formula corresponding to each	of the following IUPAC nan	nes :
	(A) potassium te	etracyanidozincate (II)	(B) tetracarbonyl nickel ((0)
	(C) potassium te	tracyanonickelate (0)	(D) potassium tris(oxalat	o)aluminate (III)
Ans.	(A) $K_2[Zn^{II}(CN)]$	(B) $[Ni^0(CO)_4]$	(C) $K_4[Ni^0(CN)_4]$	(D) $K_3[Al^{III}(C_2O_4)_3]$
Sol.	Refer IUPAC rule	e.		
Fx 6	Write II IPAC na	mes of the following :		
LA. U	(A) [Cr(acac),]	(B) [V(H_O)_]C].	(\mathbf{C}) (NH ₂), $[C_0(\mathbf{C},\mathbf{O}_2)_2]$	(\mathbf{D}) K ₂ [CrO.]
Ans.	(A) tris (acetylac	$(1)_{1}^{(1)}(1)_{2}^{(1)}(1)_{3}^{(1)}$		
	(B) hexaaqua va	nadium (III) chloride		
	(C) ammonium t	ris(oxalato)cobaltate(III) or ammor	nium trioxalatocobaltate(III)	
	(D) potassium te	traoxidochromate(VI)		
Sol.	Refer IUPAC not	menclature rule.		
Fx 7	Explain the follo	wing .		
	(i) All the octabe	edral complexes of Ni ²⁺ must be ou	ter orbital complexes	
	(ii) $[CoF_{.}]^{3-}$ is pa	aramagnetic but $[Co(CN),]^{3-}$ is diar	nagnetic.	
		3d 4s	4p 4d	
Sol.	(i) $Ni^{2+} cor$			
	During	rearrangement only one 3d-orbita	l may be made available for p	pairing of the electrons.
	Thus, d	l ² sp ³ hybridization is not possible.	. So only sp ³ d ² (outer) hybrid	lization can occur.
	(ii) ln [CoF parama	${}^{7}_{6}$] ³⁻ , Co ³⁺ undergoes sp ³ d ² hybridi ignetic.	ization. Four d-orbitals are si	ngly occupied. Hence, it is
		3d 4s. [CoF ₆] ³⁻ 111111 Rearrangement sp	4d 11/11/11/11/11/11/11/11/11/11/11/11/11/	
	In $[Co(CN)_6]^{3-}$,	Co3+ undergoes d2sp3 hybridization	n. All electrons are paired and	d thus it is diamagnetic.
		3d	4s 4p	
		[Co(CN) ₆] ³⁻ [1/1/1/1/1/1/1/ Rearrangement	d ² sp ³ hybridization	
Ex. 8	You are given the given that 'spin of	e following two complexes X and Y only' magnetic moment of X is fou	which are isomers of each oth ind to be 3.78 B.M. and that o	er ; X is Hg $[Co(SCN)_4]$. It is further of Y is 1.73 B.M. Then which of the

following is correct?

(A) Anion of X will be tetrahedral and that of Y will be square planar.

(B) Anion of X will be square planar but that of Y will be tetrahedral

(C) Both the anions will be tetrahedral

(D) Both the anions will be square planar

Ans. (A)

sp³ hybrid orbitals

Four pairs of electrons from four SCN⁻ ions.

In Hg $[Co(NCS)_4]$ (Y), the cobalt is in +2 oxidation state. Further 'spin only' magnetic moment of complex, Hg $[Co(NCS)_4]$ is 1.73 B.M. So,

So, X is tetrahedral and Y is square planar.

Ex. 9 All the following complexes show a decreases in their weights when placed in a magnetic balance. Then which of the these has square planar geometry ?
 (A) Ni(CO)₄
 (B) K[AgF₄]
 (C) Na₂[Zn(CN)₄]
 (D) None of these

Ans. (B)

Sol. In K [AgF₄], Ag(III) has 4d⁸ configuration. This has higher CFSE which favours pairing of electrons and thus complex is diamagnetic and square planar.

Ex. 10 Which of the following statements is not correct?

- (A) $[Ni(H_2O)_6]^{2+}$ and $[Ni(NH_3)_6]^{2+}$ have same value of CFSE
- (B) $[Ni(H_2O)_6]^{2+}$ and $[Ni(NH_3)_6]^{2+}$ have same value of magnetic moment
- (A) Only a(B) Only b(C) Both a and b(D) None of these

Ans. (A)

- Sol. (A) Ammonia is a stronger field ligand than water. So [Ni(NH₃)₆]²⁺ will have higher CFSE than [Ni(H₂O)₆]²⁺.
 (B) Both complexes [Ni(H₂O)₆]²⁺ and [Ni(NH₃)₆]²⁺ have sp³d² hybridisation with two unpaired electrons. So, they possess same magnetic moment ('spin only')
- **Ex. 11** Statement-1 : $[Co^{II}(NH_3)_6]^{2+}$ is not readily oxidized to $[Co^{III}(NH_3)_6]^{3+}$ when air is bubbled through it. Statement-2 : Crystal field stabilization energy of Co(+III) with a d⁶ configuration is higher than for Co(+II) with a d⁷ arrangement.
 - (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
 - (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
 - (C) Statement-1 is True, Statement-2 is False
 - (D) Statement-1 is False, Statement-2 is True

Ans. (D)

Sol. Statement 1 is false statement. $[Co^{II}(NH_3)_6]^{2+}$ is readily oxidised in $[Co^{III}(NH_3)_6]^{3+}$ in presence of air due to the higher CFSE value (-2.4 Δ_3) of d⁶ configuration than d⁷ configuration (-0.8 Δ_3).

Ex. 12 Which of the following is true about the complex $[PtCl_2(NH_2)(OH_2)]$? [Atomic number of Pt = 78] (i) It will have two geometrical isomeric forms, cis and trans. (ii) The hybridisation state of Pt(II) is sp³. (iii) It is a square planar complex. (iv) It is a diamagnetic complex. (v) It can show hydrate isomerism. (vi) It is a tetrahedral complex. (A) (i), (iii), (iv) (C) (ii),(v),(vi) **(B)** (ii),(iv),(v) (**D**) (i), (v), (vi) Ans. **(A)** 6p 5d 6s Pt2+, [Xe]4f145d8 Sol. 11 1 [PtCl₂(NH₂)(OH₂)] 11 11 diamagnetic dsp² hybrid orbitals Four pairs of electrons from four Cl-ions.

Ma₂bc have cis- and trans isomers.

- **Ex. 13** It is an experimental fact that $Cs_2[CuCl_4]$ is orange coloured but $(NH_4)_2[CuCl_4]$ is yellow. It is further known that total paramagnetic moment of a unpaired electron is due to spin as well as due to nature of orbital; 'd' orbital contributing more than 's' or 'p'. Thus the total paramagnetic moment of orange compound is found to be more than that of yellow compound. Then which of the following is correct ?
 - (A) Anion of orange compound is tetrahedral and that of yellow is square planar
 - (B) Anion of orange compound is square planar and that of yellow is tetrahedral
 - (C) Both the anions are tetrahedral
 - (D) Both the anions are square planar

Ans.

(A)

- **Sol.** $Cs_2[CuCl_4]$ (orange) is tetrahedral because in Cu(II) the unpaired electron is in 3d. But (NH₄)₂ [CuCl₄] (yellow) is square planar because the unpaired electron is not in 3d rather in some promoted state 's' or 'p'.
- **Ex. 14** It is an experimental fact that :

DMG + Ni(II)salt + $NH_4OH \longrightarrow Red precipitate$

Which of the following is wrong about this red precipitate?

- (A) It is a non-ionic complex.
- (B) It involves intra molecular H-bonding.
- (C) Ni(II) is sp³ hybridised.
- (D) It is a diamagnetic complex.

Ans. (C)

Sol. In complex [Ni(DMG),], the nickel is in +2 oxidation state; the ion has the electronic configuration $3d^8$ and dimethylglyoxime is a chelating ligand. So, the hybridisation scheme is as shown in figure.

Ex. 15 The correct order for the CFSE (numerical value) for the following complexes is :

	Complex	Р	Q	R	S
	Formula	$[CoF_{6}]^{3-}$	[Co(CN) ₆] ³⁻	$[Co(NH_3)_6]^{3+}$	$[Co(H_2O)_6]^{3+}$
	$(\mathbf{A}) \mathbf{P} > \mathbf{Q} > \mathbf{R} > \mathbf{S}$	$(\mathbf{B}) \mathbf{Q} > \mathbf{R} > \mathbf{S} > \mathbf{P}$	(C) S	>R>P>Q	(D) $R \ge Q \ge P > S$
ns	(B)				

- Ans.
- CFSE depends on the relative magnitude of crystal field splitting, Δ_{a} and pairing energy, p and in turns Δ_{a} depends Sol. upon the field produced by ligand and charge on the metal ion. So, the order of increasing crystal field strength is $F^- < H_2O < NH_3 < CN^-$. (Co is in +3 oxidation state in all complexes). Thus the (B) option is correct.

Ex. 16	π -bonding is not involved in :							
	(A) ferrocene	(B) dibenzenechromium	(C) Zeise's salt	(D) Grignard's reagent				
Ans.	(D)							
Sol.	RMgX i.e. Grignard	's reagent is σ bonded complex.						
Ex. 17	Wilkinson's catalyst	contains :						
	(A) rhodium	(B) iron	(C) aluminium	(D) cobalt				
Ans.	(A)							
Sol.	Wilkinson's catalyst	is [Rh(I)Cl(PPh ₃) ₃]. So it contain	is rhodium.					
Ex 18	Among [Ni(CN) 14-	[Ni(PPh) Br] and [Ni(dmg)] st	vecies the hybridisation	states of the Ni-atoms are resp				

- $\begin{array}{c} \text{Among} \left[\text{Ni}(\text{CN})_4 \right]^{4-}, \left[\text{Ni}(\text{PPh}_3)_3 \text{Br} \right] \text{ and} \left[\text{Ni}(\text{dmg})_2 \right] \text{ species, the hybridisation states of the Ni-atoms are respectively:} \\ \textbf{(A)} \ d\text{sp}^2, \ d\text{sp}^2, \ \text{sp}^3, \ \text{sp}^3, \ \text{sp}^3, \ \text{sp}^3, \ \text{dsp}^2 \\ \textbf{(C)} \ \text{sp}^3, \ \text{dsp}^2, \ \text{dsp}^2 \\ \textbf{(D)} \ \text{dsp}^2, \ \text{sp}^3, \ \text{dsp}^2 \\ \textbf{(D)} \ \text{dsp}^2, \ \text{sp}^3, \ \text{dsp}^2 \\ \end{array} \right.$
- Sol. $[Ni(CN)_{4}]^{4-}$ - Ni is in zero oxidation state. The CN⁻ is strong field ligand and, therefore, rearrangement of electrons occur. So,

sp³ hybridisation

 $[Ni(dmg)_2]$ - Ni is in +2 oxidation state with 3d⁸ configuration. (dmg is a chelating ligand). So,

Ex. 19 For the reaction $Ni^{2+} + 4NH_3 \implies [Ni(NH_3)_4]^{2+};$

at equilibrium, if the solution contains 1.6 \times 10⁻⁴% of nickel in the free state, and the concentration of NH₃ at equilibrium is 0.5 M. Then the instability constant of the complex will be approximately equal to :

(A) 1.0×10^{-5} (B) 1.5×10^{-16} (C) 1.0×10^{-7} (D) 1.5×10^{-17}

Ans. (C)

Sol. $Ni^{2+} + 4 NH_3 \Longrightarrow [Ni(NH_3)_4]^{2+}$

$$k = \frac{[Ni(NH_3)_4]^{2+}}{[Ni^{2+}][NH_3]^4}$$

But
$$\frac{[Ni^{2^+}]}{[Ni^{2^+}] + [Ni(NH_3)_4]^{2^+}} = 1.6 \times 10^{-6}$$

$$k = \frac{10^6}{1.6 \times (0.5)^4} = 10^7$$

or
$$\frac{\text{Ni}^{2+}}{[\text{Ni}(\text{NH}_3)_4]^{2+}} \approx 1.6 \times 10^{-6}$$

Hence instability constant = 10^{-7}

Ex. 20 In metal carbonyls the metal carbon bond length is found to be less than the expected bond length. Explain why ?Sol. It is due to synergic interaction between metal and CO which develops partial double bond character between metal and CO.

Synergic bonding

(C) It has magnetic moment of 3.87 B. M. confirming three unpaired electrons in Fe.

(D) All the above are correct statements.

9.	Which of the following l	has dsp ² hybridisation and	is diamagnetic in nature?	
	(I) $Na_4[Cr(CO)_4]$	(II) [Ni(DI	MGH) ₂] (III)	$[PtHBr(PEt_3)_2]$
	(IV) $[Ag(SCN)_4]^{3-}$	(V) [AuBr	·]_	
	(A) I, II, IV only	(B) I, III, IV, V only	(C) II, III, V only	(D) III, V only
10.	Of the following comple	x ions, one exhibits isomeri	sm. That is :	
	(A) $[Ag(NH_3)_2]^+$	(B) $[Co(NH_3)_5NO_2]^{2+}$	(C) [Pt(en)Cl ₂]	(D) $[Co(NH_3)_5Cl]^{2+}$
11.	Which of the following of	compounds show optical iso	omerism ?	
	1. cis - $[Co(NH_3)_4 Cl_2]^+$		2. trans - $[Co(en)_2Cl_2]^+$	
	3. cis - $[Co(en)_2Cl_2]^+$		4. $[Co(en)_3]^{3+}$	
	Select the correct answe	r using the codes given bel	ow :	
	(A) 1 and 2	(B) 2 and 3	(C) 3 and 4	(D) 1, 3 and 4
12.	Which one of the follow	ing high-spin complexes ha	s the largest CFSE (Crystal	field stabilization energy)?
	(A) $[Mn(H_2O)_6]^{2+}$	(B) $[Cr(H_2O_6)]^{2+}$	(C) $[Mn(H_2O)_6]^{3+}$	(D) $[Cr(H_2O)_6]^{3+}$
13.	Which one of the follow	ing will be able to show cis	-trans isomerism ?	
	(A) Ma_3b	(B) $M(AA)_2$	(C) M(AB)(CD)	(D) Ma ₄
14.	The number of geometric	cal isomers for octahedral	$Co(NH_3)_2Cl_4]^-$, square plana	$r AuCl_2Br_2^- are:$
	(A) 4, 2	(B) 2, 2	(C) 3, 2	(D) 2, 3
15.	Which of the following s	statements is not true about	the complex ion $[Pt(en)_2Cl_2]$	<u>]</u> ²⁺ ?
	(A) It has two geometric	al isomers – cis and trans.		
	(B) Both the cis and tran	is isomers display optical a	ctivity.	
	(C) Only the cis isomer of	displays optical activity.		
	(D) Only the cis isomer h	as non–superimposable mi	rror image.	
16.	Which of the following is	s/are inner orbital complex	(es) as well as diamagnetic in	n nature ?
	(A) $[Zn(NH_3)_6]^{2+}$	(B) $[Ni(NH_3)_6]^{2+}$	(C) $[Cr(NH_3)_6]^{3+}$	(D) $[Co(NH_3)_6]^{3+}$
	[Atomic Number : $Cr = 24$	4, Mn = 25, Fe = 26, Co = 27	'].	
17.	Both geometrical and op	tical isomerism are shown l	ру :	
	(A) $[\mathrm{Co(en)}_2\mathrm{Cl}_2]^+$	(B) $[Co(NH_3)_5Cl]^{2+}$	(C) $[Co(NH_3)_4Cl_2]^+$	(D) $[Cr(OX)_3]^{3-}$
18.	Which of the following is	s/are inner orbital complexe	es as well as paramagnetic w	ith magnetic moment equal to 3.78
	(approximate)?			
	(A) $[Co(ox)_3]^{3-}$	(B) $[Cr(NH_3)_6]^{3+}$	(C) $[Fe(H_2O)_5NO]^{2+}$	(D) $[Zn(NH_3)_6]^{2+}$
19.	Among TiF_6^{2-} , CoF_6^{3-} ,	Cu_2Cl_2 and $NiCl_4^{2-}$ the co	lourless species are :	
	(A) CoF_6^{3-} and $NiCl_4^{2-}$	(B) TiF_6^{2-} and CoF_6^{3-}	(C) NiCl ₄ ^{2–} and Cu ₂ Cl ₂	(D) TiF_6^{2-} and Cu_2Cl_2
20.	Among the following, m	etal carbonyls, the C—O b	ond is strongest :	
	$(\mathbf{A}) [\mathrm{Mn}(\mathrm{CO})_6]^+$	$(B) [Cr(CO)_6]$	$(\mathbb{C}) [V(CO)_6]^-$	(D) $[Ti(CO)_6]^{2-}$
21.	A square planar complex	is formed by hybridization	of which atomic orbitals?	
	(A) s, p_x , p_y , d_{yz}	(B) s, p_x , p_y , $d_{x^2 - y^2}$	(C) s, p_x, p_y, d_{z^2}	(D) s, p_x, p_y, d_{xy}

22.	A complex anion is formed by Osmium (in some oxidation state) with ligands (in proper number so that coordination number of osmium becomes six). Which of the following can be its correct IUPAC name?								
	(A) pentachloridonitridoos	smium(VI)	(B) pentachloridonitridoo	osmate(VI)					
	(C) azidopentachloridoosi	mate(VI)	(D) None of these						
23.	Complex ion [$FeN_3(O_2)(S_1)$	$[SCN)_4]^{4-}$ is named as : (coc	ordination number of central	metal ion in complex is six)					
	(A) azidosuperoxidotetrat	hiocyanato-S-ferrate(II)	(B) azidodioxygentetrath	iocyanatoferrate(III)					
	(C) azidoperoxidotetrathio	ocyanato-S-ferrate(II)	(D) azidodioxidotetrathiocyanato-S-ferrate(III)						
24.	Trioxalatoaluminate(III) a	and tetrafluoro-borate(III) ic	ons are:						
	(A) $[Al(C_2O_4)_3], [BF_4]^{3-}$		(B) $[Al(C_2O_4)_3]^{3+}, [BF_4]^3$	+					
	(C) $[Al(C_2O_4)_3]^{3-}, [BF_4]^{-}$		(D) $[Al(C_2O_4)_3]^{2-}, [BF_4]^2$	2-					
25.	Which of the following an	re bidentate monoanion lig	ands ?						
	(1) Acetylacetonato								
	(2) Oxalato ion	(2) Oxalato ion							
	(3) Dimethylglyoximato								
	Select the correct answer	using the codes given belo	ow :						
	(A) 1 only	(B) 1 and 3 only	(C) 3 only	(D) 2 and 3 only					
26.	Diethylenetriamine is:								
	(A) chelating agent		(B) tridentate neutral mol	ecule					
	(C) tridentatemonoanion		(D) (A) and (B) both						
27.	$Na_2S + Na_2[Fe(CN)_5NO]$ (complex) are :	\longrightarrow Na ₄ [Fe(CN) ₅ NOS]; oxidation number of Fe	in reactant (complex) and product					
	(A) 2, 1	(B) 2, 2	(C) 2, 3	(D) 3,3					
28.	Consider the following st	atements:							
	According the Werner's t	heory.							
	(1) Ligands are connected to the metal ions by ionic bonds.								
	(2) Secondary valencies have directional properties								
	(3) Secondary valencies are non-ionisable								
	Of these statements:								
	(A) 1, 2 and 3 are correct	(B) 2 and 3 are correct	(C) 1 and 3 are correct	(D) 1 and 2 are correct					
29.	Which of the following is	correct for both the follow	ving coordination compound	ds ?					
	(I) CoCl ₃ .6NH ₃ and (II) PtCl ₄ .5NH ₃								
	(A) They give white precipitate with $AgNO_3$ solution.								
	(B) They have different p	(B) They have different primary valencies for the central metal ions.							
	(\mathbf{C}) Both (\mathbf{A}) and (\mathbf{B})								
	(D) None of these								
30.	In which of the following	complexes the nickel meta	l is in highest oxidation stat	e ?					
	(A) $Ni(CO)_4$	(B) $K_2 NiF_6$	(C) $[Ni(NH_3)_6](BF_4)_2$	(D) $K_4[Ni(CN)_6]$					

 $K_6[(CN)_5 Co - O - Co(CN)_5] \xrightarrow{\text{oxidizes}} K_5[(CN)_5 Co - O - Co(CN)_5]$ 31. **(X) (Y)** In both the complexes Co have $t_{2g}^{6}e_{g}^{0}$ configuration. The bond energy of (O - O) in X and Y is : (A) bond energy of (O - O) in Y < bond energy of (O - O) in X. **(B)** bond energy of (O - O) in X < bond energy of (O - O) in Y. (C) bond energy of (O - O) in X = bond energy of (O - O) in Y. (D) bond energy of (O - O) in X and bond energy of (O - O) in Y can't be comparable. 32. Consider the following statements and select the correct option using the codes given. (i) $[Cr(NH_3)_6][Cr(CN)_6]$ and $[Cr(NH_3)_4(CN)_2][Cr(NH_3)_2(CN)_4]$ are coordination isomers. (ii) $[Cr(py)_2(H_2O)_2Cl_2]Cl$ and $[Cr(py)_2(H_2O)Cl_2]H_2O$ are ligand isomers. (iii) $[Pt(NH_3)_4Br_2]Cl_2$ and $[Pt(NH_3)_4Cl_2]Br_2$ are linkage isomers. (iv) $[NiCl_2(PPh_2)_2]$ (tetrahedral) exhibits geometrical isomerism. (\mathbf{A}) (i) only **(B)** (i) and (ii) only (C) (ii) and (iii) only (D) (iii) and (iv) only 33. How many moles of AgCl would be obtained, when 100 ml of 0.1 M Co(NH₃)₅Cl₃ is treated with excess of AgNO₃? (A) 0.01 **(B)** 0.02 (C) 0.03(D) none of these 34. Aqueous solution of nickel sulphate on treating with pyridine and then adding a solution of sodium nitrite gives dark blue crystals of :

(A) $[Ni(py)_4]SO_4$ (B) $[Ni(py)_2(NO_2)_2]$ (C) $[Ni(py)_4](NO_2)_2$ (D) $[Ni(py)_3(NO_2)]_2SO_4$

37.

35. Given that the energy of the photons of different colours decreases in the order of vibgyor (Violet > Indigo > Blue > Green > Yellow > Orange > Red) and that if complex absorbs a photon of low energy then it shows colour of high energy photon. If an ion, M^{2+} , forms the complexes $[M(H_2O)_6]^{2+}$, $[MBr_6]^{4-}$, and $[M(en)_3]^{2+}$. The colours of the complexes, though not necessarily in order, are green, red, and blue. Match the complexes with the appropriate colour. (do not use the table of complementary colours for this question)

(A) $[MBr_6]^{4-}$ blue, $[M(H_2O)_6]^{2+}$ green, $[M(en)_3]^{2+}$ red (B) $[MBr_6]^{4-}$ green, $[M(H_2O)_6]^{2+}$ blue, $[M(en)_3]^{2+}$ red (C) $[MBr_6]^{4-}$ green, $[M(H_2O)_6]^{2+}$ red, $[M(en)_3]^{2+}$ blue (D) $[MBr_6]^{4-}$ red, $[M(H_2O)_6]^{2+}$ green, $[M(en)_3]^{2+}$ blue

36. Which of the following pairs of structures shows geometrical isomerism ?

38.	The EAN of metal atom	ns in $[Fe(CO)_2(NO^+)_2]$ and C	$o_2(CO)_8$ respectively are :	
	(A) 34, 35	(B) 34, 36	(C) 36, 36	(D) 36, 35
39.	Following Sidwick's ru	e of EAN, Co(CO) _x will be :		
	$(\mathbf{A}) \operatorname{Co}_2(\operatorname{CO})_4$	$(\mathbf{B}) \operatorname{Co}_2(\operatorname{CO})_3$	$(C) \operatorname{Co}_2(CO)_8$	(D) $Co_2(CO)_{10}$
40.	Complexes [Co(NH ₃) ₅	SO ₄]Br and [Co(NH ₃) ₅ Br]SO	D_4 can be distinguished by :	
	(A) conductance meas	urement	(B) using BaCl_2	
	(C) using $AgNO_3$		(D) all of these	
41.	50 ml of 0.2 M solution yields 1.435 g of AgCl. is:	n of a compound with empirio Ammonia is not removed by t	cal formula CoCl ₃ .4NH ₃ on reatment with concentrated	treatment with excess of $AgNO_3(aq)$ H ₂ SO _{4.} The formula of the compound
42.	(A) Co(NH ₃) ₄ Cl ₃ Which of the following	(B) $[Co(NH_3)_4Cl_2]Cl$ g is non-conducting ?	(C) $[Co(NH_3)_4Cl_3]$	(D) [CoCl ₃ (NH ₃)]NH ₃
	(A) $CoCl_{2.6}NH_{2}$	5 10 11011 001144001159 .	(B) CoCl. 5NH	
	(C) $\operatorname{CoCl}_3.4\operatorname{NH}_3$		(D) $\operatorname{CoCl}_3.3\operatorname{NH}_3$	
43.	 Which of the following (A) bis(dimethylglyoxin (B) potassium ethylened (C) tetramminediazidoo (D) trans-diglycinatopl 	g complexes is not a chelate nato)nickel(II) diaminetetrathiocyanatochron cobalt(III) nitrate atinum(II)	? nate (III)	
44.	Select the correct state (A) $[Sc (H_2O)_6]^{3+}$ and (B) Co $(NH_3)_4 Br_2Cl sl$ (C) $[Pd(NO_2)_2(NH_3)_2]$ (D) Both (B) and (C) and	ment from the following . [Ti $(H_2O)_6$] ³⁺ both are color now ionization isomers and g is square planar and shows e correct.	urless. eometrical isomers. geometrical as well as linka	age isomers.
45.	 Which of the following (A) It is d²sp³ hybridis (B) The chromium is in (C) It is heteroleptic c (D) All of these. 	statements is correct for cor ed . n + I oxidation state omplex and its aqueous solu	nplex [Cr(NH ₃)(CN) ₄ (NO) ttion is coloured	$]^{2-}(given that n = 1)?$
46.	Which of the following	is correct for the complex []	$\operatorname{NiBr}_2(\operatorname{PPh}_3)_2]?$	
	(A) It is square planar	with one unpaired electron		
	(B) It is tetrahedral with	h two unpaired electrons		
	(C) It is square planar	and diamagnetic		
	(D) It is tetrahedral with	h one unpaired electron.		
47.	Which of the following	pairs will show the same m	agnetic moment ('spin only	y')?
	(A) [$Cr(H_2O)_6$] ³⁺ and	[Fe(H ₂ O) ₅ NO] ²⁺	-	
	(B) $[Mn(CN)_6]^{4-}$ and	$[Fe(CN)_{6}]^{3-}$		
	(C) [Ni (CO) ₄] and	$[\operatorname{Zn}(\operatorname{NH}_3)_4]^{2+}$		
	(D) All of these.			

48.	Consider the following statements S1 : $[Cr(NH_3)_6]^{3+}$ is a inner orbital complex with crystal field stabilization energy equal to $-1.2 \Delta_0$ S2 : The complex formed by joining the CN ⁻ ligands to Fe ³⁺ ion has theoretical value of 'spin only' magnetic moment equal to 1.73 B.M.											
	S3: $Na_2S + Na_2[Fe(CN)_5 NO] \longrightarrow Na_4[Fe(CN)_5 NOS]$, In reactant and product the oxidation states of iron are same and arrange in the order of true/false											
	(A) F 7	ΓF		(B) T 7	ΓF		(C) T	ТТ		(D) F F	F	
10					C (· ·	1 .						,
49.	What w	will be the	e theoretic	al value o	of spin of	nly' magn	etic moi	ment when	n Fe(SCN	$()_3$ reacts	with a solutio	n containing
	(A) 2.8	s to yield 3 B.M.	a colouri	(B) 3.8	7 B.M.		(C) 5.9	92 B.M.		(D) 1.7.	3 B.M.	
50.	Match below	Column:	-I with Co	olumn-II a	and select	the corre	ct answ	er with re	spect to h	nybridisati	on using the	codes given
		Colun	m - I			Colum	ı-II					
		(Com	olex)			(Hybri	disation)				
	(I)	[Au F	4 ^{]-}		(p)	dsp ² hy	bridisa	tion				
	(II)	[Cu(C	N) ₄] ^{3–}		(q)	sp ³ hyb	oridisati	on				
	(III)	[Co(C	${}_{2}O_{4})_{3}]^{3-}$		(r)	sp ³ d ² h	ybridisa	ation				
	(IV)	[Fe(H ₂	$_{2}^{2}O)_{5}NO]^{24}$	-	(s)	d ² sp ³ h	ybridisa	ation				
	Codes	: 	Д	Ш				Ф	Ш	Ш		
		(1)	(11)	(111)	(IV)			(1)	(11)	(111)	(1V)	
	(A) (C)	q	p	r	S		(B)	p G	q	S	r r	
	(C)	р	q	1	8		(D)	q	р	8	1	
51.	[(NH	3)5 Co -	-0-0	O — Co B	(NH ₃) ₅]' Frown	$\frac{[S_2C]}{oxic}$	$\frac{08]^{2-}}{\text{dise}}$	[(NH ₃)	5 Co —	0-0-	— Co(NH ₃ Gree	$[5]_{5}^{5+}$
	The ma	agnetic m	noment of	green con	mplex is 1	.7 BM &	for brov	vn comple	exes magi	netic mom	ent is zero.	
	(0-0) is same	in all res	pect in bo	oth the cor	nplexes.						
	The ox	idation s	tate of Co	in brown	n complex	& green	complex	x respecti	vely are –	-		
	(A)	III III		&	IV III		(B)	III II		&	III III	
		brown	l	-	green			brown		-	green	
	(C)			&	III II		(D)	III IV		&	III III	
		brown	l		green			brown			green	
52.	The co comple	omplex [l ex.	$Fe(H_2O)_5$	NO] ²⁺ is	formed ir	n the 'brow	vn ring t	est' for ni	trates. Cł	noose the i	ncorrect state	ement for the
	(A) Its	magnetic	e moment	is approx	imately 3.	9 B.M.						
	(B) Th	e oxidati	on state o	f iron is +	-1							
	(C) Th	ne hybrid	isation of	f central r	netal ion i	is sp ³ d ²						
	(D) Th	he brown	colour of	the ring	is due to c	1 – d trans	sition.					
53.	Which	of the fo	llowing c	omplexes	s is correc	tly match	ed with	their geoi	netries?			
	(A) [C	$o(py)_4]^{2+}$	- square	planar			(B) [C	$u(CN)_4]^3$	- tetrahe	dral		
	(C) [Fe	$e(CO)_4]^{2-1}$	- tetrahed	iral			(D) A	ll of these				
54.	What v	will be th	e correct	order for	the wave	length of	light ob	served fo	r the foll	owing ?		
	(I) [Ni	$(NO_2)_6]^2$	4- ,(II)[]	Ni (NH ₃) ₆] ²⁺ ;(III)	[Ni (H ₂ O	$)_{6}]^{2+}$			-		
	(A) I >	II > III		(B) II >	III < I	-	(C) III	I > II > I		(D) Ⅱ>	III>I	

55.	 Which one of the follo (A) The stability of co (B) The complex is sta (C) The complex is sta (D) A and B both. 	owing statement is false for r omplex is only due to the pro- able because tridentate dime able as it has five membered	nickel-dimethylglyoximate of esence of intra-molecular h hthyl glyoxime ligand forms d chelate rings as well as int	complex ? ydrogen bonding. a five membered chelate rings. tra molecular hydrogen bonding.
56.	 Which of the following Cobalt is in +III ox Cobalt is in +III ox It shows ionisation It also shows geom 	g statements are correct for t tidation state involving d ² sp tidation state involving sp ³ d as well as linkage isomerism etrical isomerism.	he complex [Co(NH ₃) ₄ (Cl) ³ hybridisation. ¹² hybridisation. m.	(NO ₂)]Cl?
	(A) 1, 3 and 4 only	(B) 2, 3 and 4 only	(C) 1 and 4 only	(D) 2 and 4 only.
57.	Which of the followin (1) $K_4[Os(CN)_6]$ Select the correct ans (A) 1, 2 and 3	g complexes are low spin ar (2) [Mo(CO) ₆] wer using the codes given b (B) 1 and 2 only	nd diamagnetic ? (3) $[Mn(CN)_6]^{4-}$ below. (C) 1 and 3 only	(D) 2 and 3 only
58.	$[Fe(en)_2(H_2O)_2]^{2+} + end (A) $ it is a low spin con (C) it shows geometric	$n \rightarrow complex(X)$. The correplex.	 (B) it is diamagnetic. (D) (A) and (B) both. 	plex (X) is :
59.	 For Co(II), (choose in (A) tetrahedral completion (B) planar complexes (C) planar complexes (D) none of these 	correct statement) : exes are generally formed w are formed with bidentate m are also formed with a neutr	ith monodentate anionic lig onoanions like dmg, o-ami al bidentate ligands like eth	ands like N ₃ ⁻ , OH ⁻ etc. nophenoxide etc. nylenediamine
60.	Which of the followin	g are square planar complex	xes ?	
	(1) [AuCl ₄] ⁻ Select the correct ans	(2) $[Pt(Cl)_4]^{2-}$ wer using the codes given b	$(3) [Mn(Br)_4]^{2-}$	(4) $[Cu(NH_3)_4]^{2+}$
	(A) 1 and 2 only	(B) 2 and 3 only	(C) 2 and 4 only	(D) 1, 2 and 4 only
61.	Which of the followin (A) Potassium ammin	ng statements is incorrect? etetracyanidonitrosoniumch	aromate(I) having $\mu = 1.73$	B.M has d ² sp ³ hybridisation.
	(B) $K_3[AlF_6] + BF_3 =$ (C) $[Cr(NH_3)_6]Cl_3$ and (D) $[Cr(NH_3)_4Cl_2]Br c$	$\longrightarrow AlF_3 + 3K[BF_4]$ I [Cu(NCCH_3)_4] [BF_4] both a can show ionisation isomeris	are coloured . m with [Cr(NH ₃) ₄ ClBr]Cl	
62.	Which of the followin	ng complex involves d ² sp ³ h	ybridisation ?	
	(A) $[Co(H_2O)_6]^{3+}$	(B) [CoF ₆] ^{3–}	(C) $[Mn(H_2O)_6]^{2+}$	(D) $[Fe(H_2O)_6]^{3+}$
63.	 Which of the followin (A) Complex of Pt (+I (B) In tetrahedral com (C) For d^o, d⁵ and d¹⁰ ligands. (D) None. 	ng statements is false ? I) and Au (+III) are square p aplex , the t _{2g} orbitals are ne arrangements the CFSE is ze	lanar - including those with arer to the direction of the l ero in both octahedral and t	weak field ligands such as halide ions. igands. etrahedral complexes with weak field

364

64.	Which of the following statements i (A) $Ti(NO_3)_4$ is a colourless compour (C) $K_3[VF_6]$ is a colourless compour	s not correct? nd. (B) d. (D)	 (B) [Cr(NH₃)₆)]Cl₃ is a coloured compound. (D) [Cu(NCCH₃)₄][BF₄] is a colourless compound. 			
65.	The [Fe(CN) ₆] ^{3–} complex ion : (A) exhibits planar geometry (C) should be very stable	(B) i (D)	(B) is diamagnetic(D) has 2 unpaired electrons			
66.	The disodium salt of ethylenediami solution. (A) Mg^{2+} ion (B) Ca^{2+}	netetracetic acid can b	e used to estimate the Na ⁺ ion	 e following ion(s) in the aqueous (D) both Mg²⁺ and Ca²⁺ 		
67.	Consider the following statements ; (I) [Mn(H ₂ O) ₄]SO ₄ is paramagnetic (II) Crystal field splitting energy (i.e. (III) Wilkinson catalyst, a red-violet (IV) Hg[Co(SCN) ₄], a deep blue correated and of these select the correct of (A) I and IV only (B) II, III	c and square planar. Δ_0 , in [Cr(H ₂ O) ₆] ³⁺ complex [RhCl(Ph ₃ P) ₃ plex is paramagnetic at ne from the given cod and IV only (C)	is higher than in [Cr(H] is diamagnetic and s nd tetrahedral. es. I, III and IV only	$[I_2O)_6]^{2+}$ quare planar. (D) I, II, III and IV		
68.	Which of the following complex will (A) trans - $[Co(NH_3)_4Cl_2]^+$ (C) cis - $[Co(NH_3)_2(en)_2]^{3+}$	show optical activity (B) [(D) 1	$Cr(H_2O)_6]^{3+}$ rans -[Co(NH ₃) ₂ (en) ₂]]3+		
69.	The structure of iron pentacarbonyl(A) square planar(B) trigon	$s: (\mu = 0)$ nal bipyramid (C) t	riangular	(D) none of these		
70.	A complex of certain metal has the n same oxidation state has zero magne (A) Co^{2+} (B) Mn^{2+}	agnetic moment of 4.9 tic moment. The metal	1 BM whereas anothe ion could be : Fe ²⁺	er complex of the same metal with (D) Fe ³⁺		
71.	The complex ion has two optical ison	ners. Their correct con	figurations are :			
	(A) en and and e e e e e e e e e e e e e e e e e e e	n (B)	I Br and Br I Br	en I		
	(C) $\begin{bmatrix} Br & en \\ I & Br \\ I & Br \end{bmatrix}$ and $\begin{bmatrix} en & I \\ I & Br \\ I & I \end{bmatrix}$	<u>Br</u> (D)	en Br Br Br and I	Br en		

72. What is the ratio of uncomplexed to complexed Zn^{2+} ion in a solution that is 10 M in NH₃, if the stability constant of $[Zn(NH_3)_4]^{2+}$ is 3×10^9 ? (A) 3.3×10^{-9} (B) 3.3×10^{-11} (C) 3.3×10^{-14} (D) 3×10^{-13}

73.	Which of the following s (A) It is paramagnetic and (C) It is diamagnetic and	tatements about Fe(CO) ₅ is d high spin complex low spin complex	 correct? (B) It is diamagnetic and high spin complex (D) It is paramagnetic and low spin complex 						
74.	Which of the following s	tatements is not true?							
	 (A) MnCl⁻/₄ ion has tetrahedral geometry and is paramagnetic. (B) [Mn(CN)₆]²⁻ ion has octahedral geometry and is paramagnetic. (C) [Cu(CN)₄]³⁻ has square planar geometry and is diamagnetic. (D) [Ni(Ph₃P)₂Br₃] has trigonal bipyramidal geometry and is paramagnetic. 								
75.	For the correct assignme measurement of :	nt of electronic configuration	ion of a complex, the valence bond theory often requires						
	(A) motal conductance	(b) optical activity	(C) magnetic moment	(D) dipole moment					
76.	The crystal field-splitting order is :	for Cr ³⁺ ion in octahedral fi	eld changes for ligands I ⁻ , H	I_2O , NH_3 , CN^- and the increasing					
	(A) $I^- < H_2O < NH_3 < CN^-$ (C) $CN^- < NH_3 < H_2O < CN^-$	- < [-	(B) $CN^- < I^- < H_2O < NH$ (D) $NH_3 < H_2O < I^- < CN$	3					
77.	Arrange the following in I : $[Fe(H_2O)_6]^{2+}$ (A) IV, I, II, III	order of decreasing number II : [Fe(CN) ₆] ^{3–} (B) I, II, III, IV	er of unpaired electrons ? III : $[Fe(CN)_6]^{4-}$ IV : $[Fe(H_2O)_6]^{3+}$ (C) III, II, I, IV (D) II, III, I, IV						
78.	Which of the following c (A) $[Co (NH_3)_4 Cl_2]^+$ (C) $[Cr (en)_3]^{3+}$								
79.	If excess of $AgNO_3$ solut chloride. How many mole	ion is added to 100 mL of a es of AgCl be precipitated ?	0.024 M solution of dichlor	obis(ethylenediamine)cobalt (III)					
	(A) 0.0012	(B) 0.0016	(C) 0.0024	(D) 0.0048					
80.	 Which is true for [Ni(en)₂ (A) Paramagnetism, dsp² (B) Diamagnetism, dsp², (C) Diamagnetism, sp³, to (D) Paramagnetism, sp³, to 	$[3,]^{2+}$? (Atomic number of nic , square planar, coordination square planar, coordination etrahedral, coordination num tetrahedral, coordination num	ekel is 28) n number of Ni = 2 number of Ni = 4 nber of Ni = 4 mber of Ni = 4						
81.	Of the following comple	x ions, the one that probably	y has the largest overall forr	nation constant, K_{f} , is :					
	(A) $[Co(NH_3)_6]^{3+}$	(B) $[Co(H_2O)_6]^{3+}$	(C) $[Co(NH_3)_2(H_2O)_4]^{3+}$	(D) $[Co(en)_3]^{3+}$					
82.	 Which kind of isomerism 1. Ionisation isomerism 3. Geometrical isomerism (A) 1, 2, 3 and 4 are corre (C) 1 and 2 are correct on 	is shown by the complex [Co ct lly	 o(NH₃)₅(ONO)]SO₄? 2. Linkage isomerism 4. Optical isomerism (B) 1, 3 and 4 are correct of (D) 2, 3 and 4 are correct of 	only					
83.	Which of the following co	omplexes show geometrical	as well as optical isomerism	1?					
	(1) $[Cr(OX)_3]^{3-}$	(2) [Rh(en) ₂ Cl ₂] ⁺	(3) $[Co(NH_3)_2(Cl)_2(en)]^+$						
	(A) 1 only	(B) 1 and 2 only	(C) 2 and 3 only	(D) All 1, 2, 3					

- 89. Which of the following statements is correct?
 (A) Geometrical isomerism is not observed in complexes of coordination number 4 having tetrahedral geometry (B) Square planar complexes generally do not show geometrical isomerism
 (C) The square planar complex of general formulae Ma₃b or Mab₃ exhibits cis–trans isomerism
 (D) The platinum glycinato complex, [Pt(gly)₂] does not show geometrical isomerism
 90. [Co(en)₃]³⁺ ion is expected to show ;
 (A) two optically active isomers: d and *l* forms
 (B) d, *l* and meso forms
 (C) four optically active isomers: cis, d and *l* isomers and trans d and *l* isomers
 (D) none of these
- 91. How many isomers are possible for the complex ion $[Cr(NH_3)Cl_3(OH)_2]^{2-?}$ (A) 2 (B) 3 (C) 4 (D) 5

92.	On trea are obta [Pt(NH (A) (I) (C) (I)	tment of ained, (I I_3) ₂ (C ₂ O cis, (II) trans, (I	$[Pt(NH_3))$ can be c (p_4)] where trans; bot I) cis; bot	$(4)_{4}^{2+}$ with converted eas (II) do th tetrahe th tetrahe	concentra into (II) l bes not re dral dral	ted HCl, two by boiling v act. Point o	o compo with dilu out the c (B) (I) (D) (I)	ounds (1) a te HCl. A orrect sta) cis, (II)) trans, (1	and (II) ha A solution atement o trans; bo II) cis; bo	ving the s of (I) rea f the foll th square th square	ame formula, octs with oxalio owing. planar planar	Pt(NH ₃) ₂ Cl ₂] c acid to form
93.	Which (A) [Cr	of the fo (NH ₃) ₆](ollowing Cl ₃	complexe (B) [C	es shows i Cr(en) ₂]C	ionization i l ₂	someris (C)[C	om ? Sr(en) ₃]Cl	3	(D) [(Co(NH ₃) ₅ Br]S	O_4
94.	 Which (A) A co (B) W (C) M (D) Al 	of the for Werner pordination ordination ilkinson etal carb l of thes	ollowing postulate on comp catalyst ponyls pc e.	statemen d the use ound. is used fo ossess bo	tts is corrected of two ty or the hydright of the standard the standa	ect ? /pes of link drogenatior π bonds.	age (pri n of alke	mary and	d seconda	ary) by a	metal atom /	ion in a
95.	Which (A) The (B) The (C) H ₂ ((D) All	of the formula $C = CH_2$ of these	ollowing ex ion is s metal io molecul	is correc square pla n, platinu es is perp	t for the 2 anar. Im is in + endicular	Zeise's salt II oxidation to the PtC	? n state. l ₃ plane					
96.	Which 1. Al ₂ (0 (A) 1 or	amongs CH ₃) ₆ nly	t the foll	lowing ar 2. K[1 (B) 3	re organor PtCl ₃ C ₂ H ₂ only	metallic co $_2^2$]	mpound 3. N(C (C) 1 a	ls ? $(H_3)_3$ and 2 on	ly	(D) 1	, 2 and 3	
97.	In whic (A) [Cr	$(en)_3]^{3+}$	acemic m	ixture is (B)[N	obtained Ni(DMG) ₂	on mixing i]	ts mirron (C) cis	r images s-[Cu(Gly	in 1 : 1 m ⁄) ₂]	olar ratio (D) Iı	? n all	
98.	Isomerism exhibited by [Cr(NH ₃) ₂ (H ₂ O) ₂ Cl ₂] ⁺ are : (A) ionisation, optical (C) geometrical, optical					$l_2]^+$ are :	(B) hydrate, optical(D) coordination, geometrical					
99.	Which	one of th	ne follow	ing comp	olexes exh	nibit chirali	ty?					
	(A) [Cr	$(0x)_{3}^{3-1}$		(B) C1	s-[PtCl ₂ (e	en)	(C) C15	s-[RhCl ₂ ($[NH_3]_4]^+$	(D) n	$er-[Co(NO_2)_3]$	(dien)]
100.	The nu (A) 4	mber of	sigma bo	onds in Z (B) 6	eise's salt	t is:	(C) 7			(D) n	one of these	
101.	Which (A) DM (C) bot	has aror 1G in dir th <mark>(A)</mark> ar	natic ring nethylgly 1d (B)	g in comp oximate	lex ?		(B) cy (D) no	clopentation of the	idienyl ar e above	nion in fe	rrocene	
102.	Match given b	List-I (C below th List-I	Complexe e lists :	es) with L	ist-II (Hy	bridization List-II) of cent	tral atom	and selec	et the corr	rect answer us	ing the codes
	Α	Ni(CC)) ₄		1.	sp ³						
	B	[Ni(C]	N) ₄] ²⁻		2.	dsp ²						
	С	[Fe(C	N) ₆]4-		3.	sp^3d^2						
	D Code:	[MnF	₆] ^{4–}		4.	d ² sp ³						
	cour i	A	В	С	D			Α	В	С	D	
	(A)	1	3	2	4		(B)	5	2	4	3	
	(U)	5	5	2	4		(U)	1	2	4	3	

103. Other than the X–ray diffractions, how could be the following pairs of isomers be distinguished from one another by ;

 $[Cr(NH_3)_6][Cr(NO_2)_6]$ and $[Cr(NH_3)_4(NO_2)_2][Cr(NH_3)_2(NO_2)_4]$

(A) cryoscopic method

(B) measurement of molar conductance

(C) measuring magnetic moments

(D) observing their colours

104. Which of the following statements is correct with respect to the metal carbonyls of Ist transition series?

(A) As $M - C\pi$ bonding increases, the C - O bond length increases.

(B) As positive charge on the central metal atom increases, the C – O bond length increases.

(C) As electron density on the central metal atom increases, the C - O bond length increases.

(D) (A) and (C) both.

105. Match List-I (complex ions) with List-II (number of unpaired electrons) and select the correct answer using the codes given below lists :

	List-l	[List-I	[
(Complex ions)				(Number of Unpaired Electrons)					
A. $[CrF_6]^{4-}$				1. One	e				
B. $[MnF_6]^{4-}$				2. Two)				
C. [Cr	$(CN)_{6}]^{4-}$				3. Three				
D. $Mn(CN)_6]^{4-}$				4. Four					
					5. Fiv	e			
Code:									
	Α	В	С	D		Α	В	С	D
(A)	4	1	2	5	(B)	2	5	3	1
(C)	4	5	2	1	(D)	2	1	3	5
Code : (A) (C)	A 4 4	B 1 5	C 2 2	D 5 1	(B) (D)	A 2 2	B 5 1	C 3 3]

106. Match List-I (complex ions) with List-II (CFSE) and select the correct answer using the codes given below the lists

	List-I				List-I	[
(P) $[Mn(H_2O)_6]^{2+}$				1. 0.6 Δ_0					
(Q) $[Cr(H_2O)_6]^{2+}$				2. 0.4 Δ ₀					
(R) $[Fe(H_2O)_6]^{2+}$				3.0					
(S) $[Cr(H_2O)_6]^{3+}$				4. 1.2 Δ ₀					
Code:									
	Р	Q	R	S		Р	Q	R	S
(A)	3	1	2	4	(B)	1	2	3	4
(C)	4	3	2	1	(D)	None	of these		

Exercise # 2 [Multiple Correct Choice Type Questions] Part # I > Which of the following will produce a white precipitate upon reacting with AgNO₃? 1. **(B)** $[Co(NH_2)_2Cl_2]$ (C) K_2 [Pt(en)₂Cl₂] **(D)** $[Fe(en)_3]Cl_3$ (\mathbf{A}) [Co(NH₃)₆]Cl₃ 2. Which of the following statements is(are) correct? (A) $[Ag(NH_3)_2]^+$ is linear with sp hybridised Ag^+ ion. **(B)** NiCl₄^{2–}, VO₄^{3–} and MnO₄[–] have tetrahedral geometry. (C) $[Cu(NH_3)_4]^{2+}$, $[Pt(NH_3)_4]^{2+}$ and $[Ni(CN)_4]^{2-}$ have dsp² hybridisation of the metal ions. (**D**) $Fe(CO)_5$ have trigonal bipyramidal structure with dsp³ hybridised iron. Which of the following exhibit geometrical isomerism (M stands for a metal, and a and b are achiral ligands)? 3. (\mathbf{A}) Ma₂ b₂ **(B)** Ma₂ b_4 (C) $Ma_5 b$ (**D**) Ma_6 Which of the following is/are paramagnetic? 4. (C) $[Ni(CN)_{4}]^{2-}$ (A) $[Fe(CN)_6]^{4-}$ **(B)** $[Ni(CO)_4]$ (**D**) $[CoF_{6}]^{3-}$ Co-ordination number of Cr in CrCl₃.5H₂O is six. The maximum volume of 0.1 N AgNO₃ needed to precipitate the 5. chlorine in outer sphere in 200 ml of 0.01 M solution of the complex is : (A) 140 ml **(B)** 40 ml (C) 80 ml **(D)** 20 ml Three arrangements are shown for the complex $[Co(en) (NH_3)_2 Cl_2]^+$. Pick up the wrong statement. 6. ŃН CI (III) () () (A) I and II are geometrical isomers (B) II and III are optical isomers (C) I and III are optical isomers (D) II and III are geometrical isomers 7. Which of the following are π -bonded organometallic compounds ? (B) Diethyl zinc (A) Ferrocene (C) Ethylmagnesium iodide (D) Bis(benzene) chromium(0) 8. Which of the following isomerisms is/are shown by the complex $[CoCl_2(OH_2)_2(NH_2)_2]Br$? (C) Geometrical (A) Ionization (B) Linkage (D) optical 9. Which statement(s) about co-ordination number of a cation is/are true ? (A) Most metal ions exhibit only a single characteristic co-ordination number (B) The co-ordination number is equal to the number of ligands bonded to the metal atom (C) The co-ordination number is determined solely by the tendency to surround the metal atom with the same number of electrons as one of the rare gases. (D) For most cations, the co-ordination number depends on the size, structure and charge of the ligands. 10. Which of the following statement(s) is /are correct ? (A) $[Co(NH_3)_6]^{3+}$, $[Co(CN)_6]^{3-}$ and $[Co(NO_2)_6]^{3-}$ are diamagnetic involving d²sp³ hybridisation. (B) $[Zn(NH_3)_4]^{2+}$, $[FeCl_4]^-$ and $[Ni(CO)_4]$ are diamagnetic involving sp³ hybridisation. (C) The magnetic moment of $[Fe(H_2O)_6]^{3+}$ is 5.92 B.M and that of $[Fe(CN)_6]^{3-}$ is 1.73.

(D) The magnetic moment of $K_4[MnF_6]$ and $K_3[FeF_6]$ are same.

11. Which of the following statement(s) is/are correct with respect to the crystal field theory ? (A) It considers only the metal ion d-orbitals and gives no consideration at all to other metal orbitals. **(B)** It cannot account for the π bonding in complexes. (C) The ligands are point charges which are either ions or neutral molecules (D) The magnetic properties can be explained in terms of splitting of d- orbitals in different crystal field. 12. Which of the following statements is/are true for $[Pt(NH_3)(H_2O)(Cl)_2]$? (A) It has diamagnetic character **(B)** It has square planar geometry (C) It shows geometrical and optical isomerism (D) It shows only geometrical isomerism 13. Which of the following statement(s) is /are correct? (A) In K_3 [Fe(CN)₆], the ligands has satisfied only the secondary valencies of ferric ion. (B) In K_3 [Fe(CN)₆], the ligands has satisfied both primary and secondary valencies of ferric ion. (C) In K_4 [Fe(CN)₆], the ligands has satisfied only the secondary valencies of ferrous ion. (**D**) In $[Cu(NH_3)_4]SO_4$, the ligands has satisfied only the secondary valencies of copper. 14. Which of the following statements is/are incorrect for the complex $[Cr(H_2O)_6]Cl_2$? (A) It has a magnetic moment of 3.83 BM. (B) The distribution of 3d electrons is $3dxy^1$, $3dyz^1$, $3dzx^1$ (C) The ligand has satisfied both primary and secondary valencies of chromium. (D) It shows ionization as well as hydrate isomerism. 15. Consider the following statements : S1: Generally square planar complexes show geometrical isomerism but do not exhibit optical isomerism because they do not possess plane of symmetry.

 $S_2: \Delta_t = \frac{4}{9} \Delta_o$

 S_3 : In octahedral complexes each electron entering the t_{2g} orbitals stabilizes the complex ion by 0.4 Δ_o and each electron entering the e_g orbital destabilizes the complex by an amount of 0.6 Δ_o .

Select the correct statement from the codes given below.

(A) S_1 and S_3 are correct	(B) S_2 and S_3 are correct
(C) S_1 is incorrect	(D) S_2 and S_3 are incorrect

16. Which complex of the following pairs has the larger value of Δ_0 ?

(i) $[Co(CN)_6]^{3-}$ and $[Co(NH_3)_6]^{3+}$	(ii) $[Co(H_2O)_6]^{3+}$ and $[Rh(H_2O)_6]^{3+}$
(iii) $[Co(H_2O)_6]^{3+}$ and $[Co(H_2O)_3]^{3+}$	(iv) $[Co(NH_3)_6]^{3+}$ and $[CoF_6]^{3-}$
Select the correct one	
(A) $[Co(CN)_6]^{3-} > [Co(H_2O)_6]^{3+}$	(B) $[Co(H_2O)_6]^{2+} < [Co(H_2O)_6]^{3+}$
(C) $[Co(H_2O)_6]^{3+} > [Rh(H_2O)_6]^{3+}$	(D) $[Co(NH_3)_6]^{3+} < [CoF_6]^{3-}$

- **17.** Tetrahedral complexes are generally favoured :
 - (A) where the ligands are bulky
 - (B) when the ligands are stronger
 - (C) where the electronic configuration of the central metal is d⁰ d⁵ or d¹⁰ (with weak field ligands) as there is no CFSE.
 - (D) when the central metal ion has pseudo noble gas electron configuration, i.e. (n-1) d¹⁰ns⁰np⁰.

Which statements is/are incorrect ? 18. (A) $[Ni(PPh_3)_2Br_2]$ - tetrahedral and paramagnetic. **(B)** $[Ni(CO)_4]$ - tetrahedral and diamagnetic. (C) $[Ni(CN)_4]^{2-}$ - square planar and diamagnetic. (**D**) $[Ni(Cl)_4]^{2-}$ square planar and diamagnetic. 19. Which of the following statements is/are true for the complexes, $[Fe(H_2O)_6]^{2+}$, $[Fe(CN)_6]^{4-}$, $[Fe(C_2O_4)_3]^{3-}$ and $[Fe(CO)_5]$? (A) Only $[Fe(C_2O_4)_3]^{3-}$ show optical isomerism. **(B)** $[Fe(C_2O_4)_3]^{3-}$ is less stable than $[Fe(CN)_6]^{2-}$ (C) All complexes have same effective atomic number. (D) [Fe(CO)₅] shows back bonding. 20. $[CoCl_2(en)_2]$ Br will show : (A) coordinate position isomerism (B) ionization isomerism (C) geometrical isomerism (D) optical isomerism. 21. In which of the following pairs both the complexes do not show optical isomerism? (A) cis- $[Cr(en)_2Cl_2]$ and cis - $[Co(NH_3)_4Cl_2]$ **(B)** $[Co(gly)_3]$ and cis- $[CoCl_2(en)_2]$ (C) $[Pt(en)Cl_2]$ and fac- $[Ni(NH_3)_3Cl_3]$ (**D**) mer - $[Co(NO_3)_3(NH_3)_3]$ and $[PtCl_2(en)]$ 22. Which of the following is true for the complex $Co(NO_2)(Cl)_2.5NH_3$ (Co is in + III oxidation state)? (A) It shows linkage isomerism. (B) It show ionisation isomerism. (C) It is inner orbital complex. **(D)** It is diamagnetic. 23. Which of the following complexes can exist as diastereoisomers ? (B) $[Co(NH_3)_5Br]^{2+}$ (C) $[FeCl_2(NCS)_2]^{2-}$ (**D**) $[PtCl_2Br_2]^{2-}$ (A) $[Cr(NH_3)_2Cl_4]^-$ 24. Select the correct statement (s). (A) [Co(EDTA)] - has two optical isomers. **(B)** $[Co(NH_3)_5(NO_2)]^{2+}$ show linkage isomerism. (C) For $[Pt(NH_3)BrCll(NO_3)py]$, theoretically fifteen different geometrical isomers are possible. (**D**) $[Cr(H_2O)_4Cl_2]Cl_2H_2O$ is an example of hydrate as well as ionisation isomerism. 25. A complex compound of one cobalt (III) ion, two 'en' molecules, two chloride ions and one nitrite ion will show: (A) linkage isomerism (B) ionisation isomerism (C) geometrical isomerism (D) optical isomerism. 26. A complex containing cobalt (III) ion is associated with two diaminopropane molecules and two chloride ions forming an octahedral geometry. The complex ion will show : (B) geometrical isomerism (C) optical isomerism (A) ligand isomerism (D) ionization isomerism 27. Which of the following statement(s) is/are correct ? (A) cis- $[Pt(NH_3)_2Cl_2]$ is used as an anticancer species. (B) Carboxypeptidase- A is an enzyme and contains zinc. (C) In the silver electroplating of copper, K[Ag(CN)₂] is used in place of AgNO₃. (D) CN⁻ ions show the reducing as well as complexing properties towards metal species.

	Part # II	>>	[Assertion & Reason Type Questions]	
	Each questi (A) Statemer (B) Statemer (C) Statemer (D) Statemer (E) Both Sta	on has 5 choices nt-1 is true, Stat nt-1 is true, Stat nt-1 is true, Stat nt-1 is false, Sta ttements are fals	es (A), (B), (C), (D) and (E) out of which only one is correct. tement-2 is true and Statement-2 is correct explanation for Statement tement-2 is true and Statement-2 is not correct explanation for State tement-2 is false atement-2 is true	ent-1. ement-1.
1.	Statement-1 Statement-2	 In the complexity valencies of a complexity of the comple	lex $[Co(NH_3)_3 Cl_3]$, chloride ions satisfy the primary valencies as cobalt metal. $Cl_3]$ shows geometrical as well as optical isomerism.	well as the secondary
2.	Statement-1 Statement-2	: The complex : SCN ⁻ is an a	x [Cr(SCN)(NH ₃) ₅]Cl ₂ is linkage isomeric with [Cr(NCS)(NH ₃) ₅]Cl ambident ligand in which there are two possible coordination site	2 [.] S.
3.	Statement-1 Statement-2	: $[Ni(CN)_4]^{2-i}$: This complex	is a paramagnetic complex. ex is heteroleptic complex.	
4.	Statement-1 Statement-2	 In the co-ord it with AgN Bromide ion 	dination complex $[Pt(NH_3)_4 Cl_2] Br_2$, a yellow precipitate of AgBr i NO ₃ (aq). ns are present as counter ions in the ionization sphere.	is obtained on treating
5.	Statement-1 Statement-2	: Co-ordinatio : Ethylenediar	on number of cobalt in the complex $[Co(en)_3]^{3+}$ is six. mine acts as a bidentate ligand.	
6.	Statement-1 Statement-2	: Charge on th : EDTA is a he	he complex of ferric ion with EDTA is minus one. exadentate ligand.	
7.	Statement-1 Statement-2	: The $[Ni(en)_3]$: In $[Ni(en)_3]$	$_{3}$] Cl ₂ has higher stability than [Ni(NH ₃) ₆] Cl ₂ Cl ₂ , the geometry around Ni is octahedral.	
8.	Statement-1 Statement-2	: Potassium fe : Crystal field	errocyanide is diamagnetic where as potassium ferricyanide is part of splitting in ferrocyanide ion is greater than that of ferricyanide ion	ramagnetic. on.
9.	Statement-I Statement-I	: K ₂ [PtCl ₆] gi II :Chloride ion	gives white ppt when reacts with $AgNO_3$ n in the complex is non-ionisable.	
10.	Statement-I Statement-I	: Trans [CoCl I: It has plane	$(l_2(en)_2]^+$ is optically inactive. e of symmetry.	
11.	Statement-I Statement-I	: Cis - [Fe(en) I: Cis - [Fe(en]	$(l)_2Cl_2]^+$ can form recemic mixture. $(l)_2Cl_2]^+$ is optically active square planar complex .	
12.	Statement-I Statement-I	: K ₂ SO ₄ . Al ₂ (I: It ionises to	$(SO_4)_3$. 24H ₂ O is a double salt compound. b give a complex ion.	
13.	Statement-I Statement-I	: [Fe(CO) ₅] is	s dimagnetic complex. en complex oxidation state of Iron is zero.	

- 14. **Statement-I**: $[Ni(CN)_4]^{-2}$ has zero unpaired electron while that of $[NiCl_4]^{-2}$ has two unpaired e-**Statement-II**: $[Ni(CN)_4]^{-2}$ has strong crystal field while $[NiCl_4]^{-2}$ has weak crystal field
- **15. Statement-I:** Potassium ferrocyanide is diamagnetic whereas potassium ferricyanide is paramagnetic. **Statement-II:** Crystal field spliting in ferrocyanide ion is greater than that of ferricyanide ion.
- Statement-I: [Co(NO₂)₃(NH₃)₃] does not show optical isomerism.
 Statement-II: It has plane of symmetry.
- 17. Statement-I: C-C bond length in zeise's salt is same as ethylen.Statement-II: Double bond is shorter as compaire to single bond.
- **18. Statement-I:** EAN of Fe in ferrocene is 36. **Statement-II :** $6\pi e^-$ are co-ordinated by each cyclo pentadien ring with central metal ion.
- 19. Statement-I: $[Ti(H_2O)_6]^{4+}$ is coloured while $[Sc(H_2O)_6]^{3+}$ is colourless. Statement-II: d-d transition is not possible in $[Sc(H_2O)_6]^{3+}$.
- Statement-I: Hydrazine is a neutral ligand.
 Statement-II: It has two N as donor atoms and behaves as a chelating ligand.

K	Exercise # 3 Part # I	[Matrix Match Type Questions]						
•	Match the complexes given in column-I and the	characteristic(s) given in column-II.						
	Column – I	Column – II						
	(Complexes)	(characteristics)						
	(A) $[Ni(CO)_4]$	(p) sp ³ hybridisation						
	(B) $[AgF_4]^-$	(q) Diamagnetic						
	(C) $[Zn(CN)_4]^{2-}$	$(\mathbf{r}) dsp^2$						
	(D) [RhCl(PPh ₃) ₃]	(s) Unidentate ligand.						
		(t) + 3 oxidation state of metal ion						
	Match the complexes given in column-I and the	magnetic properties given in column-II.						
	Column I	Column II						
	(Complexes)	(Magnetic properties)						
	(A) $[NiCl_2(PPh_3)_2]$	(p) Paramagnetic with 1 unpaired electrons						
	(\mathbf{B}) V(CO) ₆	(q) Paramagnetic with 2 unpaired electrons						
	(C) $[Cr(CN)_6]^{4-}$	(r) Paramagnetic with 3 unpaired electrons						
	(D) $Ni(CO)_4$	(s) Diamagnetic						
	Match the complexes listed in column-I with typ	e of hybridisation listed in column-II.						
	Column I	Column II						
	(A) $[Au F_4]^-$	(p) dsp ² hybridisation						
	(B) $[Cu(CN)_4]^{3-}$	(q) sp ³ hybridisation						
	(C) $[Co(NH_3)_6]^{3+}$	(r) sp ³ d ² hybridisation						
	(D) $[Fe(H_2O)_5 NO]^{2+}$	(s) d ² sp ³ hybridisation						
	Match the pair of complexes given in column-I a	Match the pair of complexes given in column-I and the characteristic(s) given in column-II.						
	Column - I	Column-II						
	(A) $(NH_4)_2[NiCl_4]$ and $(NH_4)_2[Ni(CN)_4]$	(p) Both show same electrical conductance.						
	(B) $\text{CoCl}_3.6\text{NH}_3$ and $\text{PtCl}_4.5\text{NH}_3$	(q) Both show same effective atomic number.						
	(C) $[Pt(NH_3)_2Cl_2]$ and $(NH_4)_2[PtCl_4]$	(r) Both show same primary valencies.						
	(D) $K_2[Fe(H_2O)_6]$ and $K_4[FeCl_6]$	(s) Both gives white participate with AgNO ₃ solution						
	Match the complexes given in column-I and the	characteristic(s) given in column-II.						
	Column – I	Column – II						
	(Complexes)	(characteristics)						
	$(\mathbf{A}) [\mathrm{Ni}(\mathrm{CO})_4]$	(p) Tetrahedral						
	(B) $[Fe(NO)_2(CO)_2]$	(q) π back bonding						
	(C) $[Ni(PF_3)_4]$	(r) diamagnetic						
	(D) $[PtCl_3(C_2H_4)]^-$	(s) One of the ligand is three electron donor.						
	Match the complexes given in column-I and the	characteristic(s) given in column-II.						
	Column – I	Column – II						
	(Complexes)	(characteristics)						
	(A) $[Co(H_2O)_6]^{3+}$	(p) d^2sp^3						
	(B) $[CoF_6]^{3-}$	$(\mathbf{q}) \mathrm{sp}^3 \mathrm{d}^2$						
	$(C) [Co(NO_2)_{\epsilon}]^{3-}$	(r) diamagnetic						

(r) diamagnetic

(D) $[Co(ox)_3]^{3-}$

(s) paramagnetic

7. Match the complexes listed in column-I with the characteristic(s)/hybridisation given in column-II.

-		
Column - I	Column - II	
(A) $[MnCl_6]^{2-}$	(p) One unpaired electron	
(B) $[Fe(CN)_6]^{3-}$	(q) d^2sp^3	
(C) $[CoF_6]^{3-}$	(r) sp^3d^2	
(D) $[Fe(H_2O)_6]^{2+}$	(s) Four unpaired electrons	

8. Match the pairs of the complexes listed in column (I) with the details given in column (II).

Column -I

(**D**) $[PtCl_4]^{2-}$ and $[FeF_4]^{2-}$

- (A) [Ni(CN)₄]²⁻ and [Co(C₂O₄)₃]³⁻
 (B) [Mn(CN)₆]³⁻ and [Cr(NH₃)₆]³⁺
 (C) [Cu(CN)₄]³⁻ and [Fe(CO)₄]²⁻
- (p) Central metals have same primary valences.

Column-II

- (q) Central metal atoms /ions have same 'spin only' magnetic moment.
- (r) Metal ions in complexes have same effective atomic number.
- (s) Complexes have same type of ligands i.e. neutral, cationic or anionic.

(D) 1.73 BM

Note: Spin only magnetic moment is calculated, using $\mu = \sqrt{n(n+2)}$ B.M. and it may be zero also.

Part # II

[Comprehension Type Questions]

Comprehension #1

In coordination chemistry there are a variety of methods applied to find out the structure of complexes. One method involves treating the complex with known reagents and from the nature of reaction, the formula of the complex can be predicted. An isomer of the complex $Co(en)_2(H_2O)Cl_2Br$, on reaction with concentrated H_2SO_4 (dehydrating agent) it suffers loss in weight and on reaction with AgNO₃ solution it gives a white precipitate which is soluble in NH₂(aq).

1. The correct formula of the complex is :

(A) $[CoClBr(en)_2] H_2O$ (B) $[CoCl(en)_2(H_2O)] BrCl$

- (C) $[CoBr(en)_2(H_2O)]Cl_2$
- **(D)** $[CoBrCl(en)_2]Cl.H_2O$
- 2. If all the ligands in the coordination sphere of the above complex be replaced by F⁻, then the magnetic moment of the complex ion (due to spin only) will be :

(C) 4.9 BM

(A) 2.8 BM (B) 5.9 BM

3. Similarly if all the ligands in the coordination sphere be replaced by NO_2^- , then the magnetic moment of the complex ion (due to spin only) will be :

```
(A) 1.73 BM (B) 0.0 BM (C) 4.9 BM (D) 5.9 BM
```

4. If one mole of original complex is treated with excess $Pb(NO_3)_2$ solution, then the number of moles of white precipitate (of $PbCl_2$) formed will be :

(A) 0.5 (B) 1.0 (C) 0.0 (D) 3.0

- 5. The number of geometrical isomers of the formula of the above original complex are (including the complex):
 - (A)2 (B)3 (C)4 (D)1

Comprehension #2

Double salts are addition compounds which lose their identity in aqueous solution whereas complexes which are also addition compounds do not lose their identity in aqueous solution. The coordination compounds show isomerism and find applications in photography, qualitative analysis, metallurgy, water purification and in the treatment of various diseases.

1. Which of the following statements is incorrect ?

(A) Alum is a double salt.

- (B) EDTA salt of calcium is used in the treatment of lead poisoning.
- (C) Effective atomic number of the metals in complexes $[Ni(CO)_4]$ and $[Fe(CN)_6]^4$ is same.
- (D) Chloridotris (triphenylphosphine) rhodium(I) is effective heterogeneous catalyst for hydrogenation of alkenes.
- 2. Which of the following statements is true for the complex, $[Co(NH_3)_4 Br_3] NO_3$?
 - (A) It shows ionisation, linkage and geometrical isomerism.
 - (B) It does not show optical isomerism because its cis and trans forms each have at least one plane of symmetry.
 - (C) Its ionisation isomers cannot be differentiated by silver nitrate solution.
 - (\mathbf{D}) (A) and (B) both.
- 3. Choose the correct option for the complex $[Pt CI_2(en)_2]^{2+}$.
 - (A) Platinum is in +2 oxidation state
 - (B) Racemic mixture is obtained on mixing mirror images of its trans form in 1 : 1 molar ratio.
 - (C) It has two five membered chelating rings
 - **(D) (B)** and **(C)** both

Comprehension #3

 $\operatorname{Co}^{2+}(\operatorname{aq.}) + \operatorname{SCN}^{-}(\operatorname{aq.}) \longrightarrow \operatorname{Complex}(X).$

Ni²⁺ (aq.) + Dimethylglyoxime $\xrightarrow{\text{NH}_4\text{OH}}$ Complex (Y).

The coordination number of cobalt and nickel in complexes X and Y are four.

1. The IUPAC names of the complexes (X) and (Y) are respectively :

(A) tetrathiocyanato-S-cobalt(II) and bis(dimethylglyoximate) nickel(II).

- (B) tetrathiocyanato-S-cobaltate (II) and bis(dimethylglyoximato)nickel (II).
- (C) tetrathiocyanato-S-cobaltate (II) and bis(dimethylglyoximato)nickelate(II).
- (D) tetrathiocyanato-S-cobaltate(III) and bis(dimethylglyoximato)nickel(II).
- 2. The geometry of complexes (X) and (Y) are respectively :
 - (A) tetrahedral and square planar. (B) both tetrahedral.
 - (C) square planar and tetrahedral (D) both square planar.
- **3.** Select the correct statement for the complexes (X) and (Y).
 - (A) (X) is paramagnetic with two unpaired electrons.
 - **(B)** (Y) is diamagnetic and shows intermolecular H-bonding.
 - (\mathbf{C}) (X) is paramagnetic with three unpaired electrons and (Y) is diamagnetic.
 - **(D)** (X) and (Y) both are diamagnetic.

Comprehension #4

When degenerate d-orbitals of an isolated atom/ion come under influence of magnetic field of ligands, the degeneracy is lost. The two set $t_{2g}(d_{xy}, d_{yz}, d_{xz})$ and eg $(d_{z^2}, d_{x^2-y^2})$ are either stabilized or destrabilized depending upon the nature of magnetic field. It can be expressed diagrammatically as:

Value of CFSE depends upon nature of ligand and a spectrochemical series has been made experimentally, for tetrahedral complexes, Δ is about 4/9 times to Δ_0 (CFSE for octahedral complex). This energy lies in visible region and i.e., why electronic transition are responsible for colour. Such transitions are not possible with d⁰ and d¹⁰ configuration.

- 1.The CFSE for $[CoCl_6]^{4-}$ complex is 18000 cm⁻¹. The Δ for $[CoCl_4]^{2-}$ will be –(A) 18000 cm⁻¹(B) 16000 cm⁻¹(C) 8000 cm⁻¹(D) 2000 cm⁻¹
- 2. The d-orbitals, which are stabilised in an octahedral magnetic field, are –

(A) d_{xy} and d_{z^2} (B) $d_{x^2-v^2}$ and d_{z^2} (C) d_{xy} , d_{xz} and d_{yz} (D) d_{z^2} only

- For an octahedral complex, which of the following d-electron configuration will give maximum CFSE?
 (A) High spin d⁶
 (B) Low spin d⁴
 (C) Low spin d⁵
 (D) High spin d⁷
- 4. $Ti_{(aq)}^{3+}$ is purple while $Ti_{(aq)}^{4+}$ is colourless because –

(A) There is no crystal field effect in Ti⁴⁺

(B) There energy difference between t_{2g} and e_g of Ti⁴⁺ is quite high and does not fall in the visible region (C) Ti⁴⁺ has d⁰ configuration.

- (D) Ti^{4+} is very small in comparison to Ti^{3+} and hence does not absorb any radiation.
- 5. Crystal field stabilization energy for $[CoF_6]^{3-}$ in terms of parameter Dq is $-(\Delta = 10Dq)$ (A) 4 (B) 6 (C) 12 (D) 24

Comprehension #5

With the help of CFT number of unpaired electron in a compound can be calculated and we can calculate its paramagnetic moment (due to spin only), by the formula:

 $\mu = \sqrt{n(n+2)}$ Bohr magneton (BM), where 'n' is the number of unpaired electron in the complex. For spectral analysis the separation between t_{2g} and e_g orbitals, called ligand field splitting parameter Δ_0 (for octahedral complexes) should be known to us, which can be easily calculated by observing the absorption spectrum of one e^- complex figure shows the optical absorption spectrum of the d¹ hexaaquatitanium (III) ion [Ti(H₂O)₆]³⁺. The CFT assigns the first absorption maximum at 20,300 cm⁻¹ to the transition $e_g \leftarrow t_{2g}$. For multielectronic (d² to d¹⁰) system, the calculation of Δ_0 by absorption spectrum is not that easy as the absorption spectrum will also be affected by electron-electron repulsions.

1. The crystal field stabilization energy (CFSE) for complex given in the passage, $[Ti(H_2O)_6]^{3+}$ will be (in kJ/mol) –

(A) 243 kJ/mole (B) 97 kJ/mole

- (C) 194 kJ/mole
- (D) 143 kJ/mole
- 2. The complex for which the calculation of crystal field splitting can be most easily done, by knowing its absorption spectrum, will be –

(A) $[TiCl_6]^{2-}$ (B) $[Fe(H_2O)_6]^{2+}$ (C) $[Ti(CN)_6]^{3-}$ (D) $[CoF_6]^{3-}$

3. The magnetic moments of following, arranged in increasing order will be (atomic number of Co = 27)

(1) Co^{3+} (octahedral complex with a strong field ligand)

- (2) Co^{3+} (octahedral complex with a weak field ligand)
- (3) Co²⁺ (tetrahedral complex)
- (4) Co²⁺ (square planar complex)

(A) 1 > 2 > 3 > 4 (B) 2 > 3 > 4 > 1 (C) 3 > 2 > 4 > 1 (D) 2 > 4 > 3 > 1

	Exercise # 4 [Subjective Type Questions]
1.	Deduce the value of x in the formulae of following complexes (i) $Mo(CO)_x$ (ii) $H_xCr(CO)_5$ (iii) $H_xCo(CO)_4$
2.	Predict the hybridisation and geometry of the following complexes.(a) $[NiBr_4]^{2-}$ (b) $[Fe(CN)_6]^{3-}$ (c) $[MnBr_4]^{2-}$ (d) $[AuCl_4]^{-}$ (e) $[Fe(H_2O)_6]^{2+}$ (f) $[Pt(NH_3)_4]^{2+}$ (g) $[Co(SCN)_4]^{2-}$
3.	Write the IUPAC nomenclature of the given complex along with its hybridizations and structure. $[Cr(NH_3)_6](NO_3)_3$. $\mu = 3.83$ B.M
4.	Name the following compounds. (a) $[CoBr(en)_2(ONO)]^+$ (b) $[Co(NH_3)_6][Co(ONO)_6]$ (c) $[Co(NH_3)_5(CO_3)]Cl$ (d) $[Pt(NH_3)_4Cl_2][PtCl_4]$ (e) $[Co(en)_3]_2(SO_4)_3$ (f) $[(NH_3)_5Co-NH_2-Co(NH_3)_4(H_2O)]Cl_5$ (g) $[Cr(CO)_5(PPh_3)]$ (h) $[(CO)_5Mn-Mn(CO)_5]$ (i) $K[PtCl_3(\eta 2-C_2H_4)]$ (j) $Cr(\eta 6-C_6H_6)_2$ (k) $[Co(NH_3)_4(OH_2)_2][BF_4]_3$ (l) $K[(NH_3)_5Co-NC-Co(CN)_5]$ (m) $Na_4[Cu_6(S_2O_3)_5]$ (n) $Ba[Zr(OH)_2(ONO)_2(ox)]$ (o) $[Co(NH_3)_6][Co(C_2O_4)_3]$ (b) $K[O(D_2O(D)_2(ONO)_2(ON)]$
5.	 Write down the formulae of the following compounds (a) Tetraamminezinc(II) Nitrate, (b) Tetracarbonylnickel(0), (c) Potassium amminetrichloridoplatinate(II) (d) Dicyanidoaurate(I) ion (e) Sodium bexafluoridoaluminate(III)
	(f) Diamminesilver(I) ion Ion formed when AgCl is dissolved in excess of ammonia
6.	Arrange the following compounds in order of increasing molar conductivity. (i) $K[Co(NH_3)_2(NO_2)_4]$ (ii) $[Cr(NH_3)_3(NO_2)_3]$ (iii) $[Cr(NH_3)_5(NO_2)]_3[Co(NO_2)_6]_2$ (iv) $[Cr(NH_3)_6]Cl_3$
7.	A complex having empirical formula $PtCl_2 2NH_3$ is an insoluble solid that, when ground with AgNO ₃ , gives a solution containing $[Pt(NH_3)_4](NO_3)_2$ and an insoluble solid, $Ag_2[PtCl_4]$. Give the formula, IUPAC name and structure of the Pt(II) compound.
8.	For each of the following complexes, draw a crystal field energy-level diagram, assign the electrons to orbitals, and predict the number of unpaired electrons: (a) $[CrE]^{3-}$ (b) $[V(H O)]^{3+}$ (c) $[Fe(CN)]^{3-}$ (d) $[Cu(en)]^{2+}$ (e) $[FeE]^{3-}$
0	$[Fe(CN]^{3-} is weakly paramagnetic while [Fe(CN]^{4-} is diamagnetic why?]$
10.	 (a) Draw all possible constitutional isomers of the compound Ru(NH₃)₅(NO₂)Cl. Label the isomers as linkage isomers or ionization isomers. (b) There are six possible isomers for a square planar palladium(II) complex that contains two Cl⁻ and two SCN⁻ ligands. Sketch the structures of all six, and label them according to the classification.

11. Tell how many diastereoisomers are possible for each of the following complexes, and draw their structures.

(a) $[Cr(NH_3)_2Cl_4]^-$ (b) $[Co(NH_3)_5Br]^{2+}$ (d) $[PtBr_2Cl_2]^{2-}$ (e) $[Co(en)(SCN)_4]^-$ (g) $[Ru(NH_3)_2I_3]$

 $H_{3}_{5}Br]^{2+} (c)[FeCl_{2}(NCS)_{2}]^{2-} (f)[Cr(NH_{3})_{3}(H,O),Cl_{3}]^{+} (f)[Cr(NH_{3})_{3}(H,O),Cl_{3}]^{+}$

The figure represents the synergic bonding interaction in metal carbonyl complex. On the basis of this explain the following:

(i) Strength of Metal-ligand bond

(ii) Bond order of CO in carbonyl complex as compared to bond order in carbon monoxide.

- 13. All the octahedral complexes of Ni^{2+} must be high spin complexes why ?
- 14. Cobalt (II) is stable in aqueous solution but in the presence of complexing reagents(strong field ligands) it is readily oxidised. Why ?
- 15. $[Ni(CO)_4]$ is tetrahedral whereas $[Ni(CN)_4]^2$ & $[Pt(NH_3)_4]^{2+}$ are square planar why?
- 16. Deduce the structure of $[NiCl_4]^{2-}$ and $[Ni(CN)_4]^{2-}$ considering the hybridisation of the metal ion. Calculate the magnetic moment (spin only) of the species.

17. (A), (B) and (C) are three complexes of chromium(III) with the empirical formula H₁₂O₆Cl₃Cr. All the three complexes have water or chloride ion as ligands. Complex (A) does not react with concentrated H₂SO₄, whereas complexes (B) and (C) lose 6.75% and 13.5% of their original weight, respectively, on treatment with concentrated H₂SO₄.
(i) Identify (A), (B) and (C)
(ii) Write their formulae
(iii) Calculate their EAN.

- (vi) By the addition of $AgNO_3$ what happens with each complex.
- 18. A solution containing 0.319 g of complex CrCl₃.6H₂O was passed through cation exchanger and the solution given out was neutralised by 28.5 mL of 0.125 M NaOH.
 - (i) Deduce the structure of the compound ?
 - (ii) How many constitutional isomers are possible?
 - (iii) What is the magnetic moment (μ) ?
 - (iv) Is the complex is coloured or colourless?
 - (v) What will be the EAN of complex?
 - (vi) What is the correct formula of complex ?
 - (vii) Write the IUPAC name of each isomers.
- **19.** Draw the structures of $[Co(NH_3)_6]^{3+}$, $[Ni(CN)_4]^{2-}$ and $[Ni(CO)_4]$. Write the hybridisation of atomic orbitals of the transition metal in each case.
- **20.** Comment on the fact that, while an aqueous solution of cobalt(III) sulphate is diamagnetic, the solution becomes paramagnetic when a larger excess of fluoride ion is added.

12.

- 21. Use the crystal field model to write the electron configuration i.e., distribution of d-electrons of each ion. (A) $[Fe(CN)_6]^{4-}$ (B) $[MnF_6]^{4-}$ (C) $[Cr(en)_3]^{3+}$
- 22. The cobalt (III) ion with ammonia $[Co(NH_3)_6]^{3-}$ absorbs light with a wave length of about 475 nm. What is the colour of the solution ?
- 23. For the $[Cr(H_2O)_6]^{2+}$ ion, the mean pairing energy P, is found to be 23,500 cm⁻¹. The magnitude of Δ_0 is 13,900 cm⁻¹. Calculate the CFSE for this complex ion corresponding to high spin and low spin state. Which is more stable.
- 24. (a) Predict the possible coordination isomers for the empirical formula $PtCl_2.2NH_3$ and write their IUPAC name. Also mention the hybridisation and magnetic moment of the complexes.
 - (b) [Fe(bipy)₃] (ClO₄)₃ complex has a magnetic moment of 1.7 BM. It is an inner orbital or outer orbital complex. Explain.
- 25. Lanthanides have a poor tendency to form complexes. Explain.
- 26. The magnitude of the crystal field splitting Δ_t in tetrahedral complex is considerably less than in octahedral field. Explain?
- 27. For which of the following tetrahedral complexes are isomers possible? Draw all the isomers. [CoBr₂Cl₂]⁻, [CoBrCl₂(OH₂)], [CoBrClI(H₂O)].
- 28. What types of isomerism are possible for the six coordinate complex $Cr(NO_2)_2.6H_2O$. Identify all isomers.
- 29. (a) Which of the complexes (a) $[Cr(edta)]^-$, (b) $[Ru(en)_3]^{2+}$ and (c) $[Pt(dien)Cl]^+$ are chiral?
 - (b) Give the IUPAC name of the complex, [IrH(CO) (PMe₃)₂] and also give the hybridisation of the central atom along with the magnetic moment.
- **30.** Give the IUPAC names and illustrate all types of isomers that are possible in an octahedral complex compound of one cobalt (III) ion, two ethylenediamine molecules, two chloride ions and one nitrite ion.
- 31. The complex first denoted β -[PtCl₂(NH₃)₂] was identified as trans isomer. It reacts slowly with solid Ag₂O to produce [Pt(NH₃)₂(OH₂)₂]²⁺. This complex does not react with ethylenediamine to give a chelated complex. Give the structure and IUPAC name of the diaqua complex.
- **32.** Draw all the possible isomers of $[Co (NH_3)_2 (en) Cl_2]^+$.

-	Exercise # 5	Part # I > [Pro	evious Year Questions]	AIEEE/JEE-M	IAIN]			
1.	In the coordination cos $(1) - 1$	mpound $K_4[Ni(CN)_4]$, the or (2) 0	xidation state of nickel is : (3) + 1	(4) + 2	[AIEEE-2004]			
2.	 The co-ordination number of a central metal atom in a complex is determined by : (1) the number of only anionic ligands bonded to metal ion (2) the number of ligands around a metal ion bonded by pi bonds (3) the number of ligands around a metal ion bonded by sigma and pi bonds (4) the number of ligands around a metal ion bonded by sigma bonds 							
3.	Which one is an outer	orbital complex ?			[AIEEE-2004]			
	(1) $[Ni(NH_3)_6]^{2+}$	(2) $[Mn(CN)_6]^{4-}$	(3) $[Co(NH_3)_6]^{3+}$	(4) $[Fe(CN)_6]^{4-}$. ,			
4.	Co-ordination compou	nds have great importance in	n biological systems. In this co	ontext, which staten	nent is incorrect ? [AIEEE-2004]			
	 (1) Carboxypeptidase- (2) Haemoglobin is th (3) Cyanocobalami (4) Chlorophylls are g 	 (1) Carboxypeptidase–A is an enzyme and contains zinc. (2) Haemoglobin is the red pigment of blood and contains iron. (3) Cyanocobalamin is B₁₂ and contains cobalt. 						
5.	Which one has largest (1) $[Co(en)_2Cl_2]^+$	t number of isomers ? (2) $[Co(NH_3)_5Cl]^{2+}$	(3) $[Ir(PhR_3)_2H(CO)]^{2+}$	(4) $[Ru(NH_3)_4C]$	[AIEEE-2004] [l ₂] ⁺			
6.	The correct order of m (1) $Fe(CN)_{6}^{4} > [CoCl_{4}]^{4}$ (3) $[Fe(CN)_{6}]^{4} > [MnC]^{4}$	nagnetic moments (only spir $]^{2-} > [MnCl_4]^{2-}$ $Cl_4]^{2-} > [CoCl_4]^{2-}$	n value in BM) among is : (2) [MnCl ₄] ²⁻ >[Fe(CN), (4) [MnCl ₄] ²⁻ >[CoCl ₄] ²	$[-]^{4-} > [CoCl_4]^{2-}$ $[Fe(CN)_6]^{4-}$	[AIEEE-2004]			
7.	The oxidation state of	Cr in [Cr(NH ₃) ₄ Cl ₂] ⁺ is :			[AIEEE-2005]			
	(1) 0	(2)+1	(3)+2	(4) +3				
8.	The IUPAC name of K	Fe(CN) is:			[AIEEE-2005]			
	(1) Potassium hexacya	inoferrate(II)	(2) Potassium hexacyan	oferrate(III)				
	(3) Potassium hexacya	noiron(II)	(4) Tripotassium hexacy	(4) Tripotassium hexacyanoiron(II)				
9.	Which of the following	g will show optical isomeris	m ?		[AIEEE-2005]			
	(1) $[Cu(NH_3)_4]^{2+}$	(2) $[ZnCl_4]^{2-}$	(3) $[Cr(C_2O_4)_3]^{3-1}$	(4) $[Co(CN)_6]^{3-1}$				
10.	The value of 'spin only	y' magnetic moment for one	of the following configuration	ons is 2.84 BM. Th	e correct one is:			
	(1) d^4 (in strong field]	igand)	(2) d^4 (in weak field ligation)	nd)	[AILEE-2003]			
	(3) d^3 (in weak as well	as strong field ligand)	(4) d ⁵ (in strong field lig	(and)				
11.	Which one of the follo	owing complexes would exh	libit the lowest value of parar	nagnetic behaviou	r ?			
	(1) $[Co(CN)_{\lambda}]^{3-}$	(2) $[Fe(CN)_{\beta}]^{3-}$	(3) $[Mn(CN)_{\lambda}]^{3-}$	(4) [Cr(CN) ₆] ³⁻	[AIEEE-2005]			

12.	Nickel ($Z = 28$) combines number of unpaired electr	with a uninegative monoder con(s) in the nickel and geom	entate ligand X ⁻ to form a paramagnetic complex $[NiX_4]^{2-}$ The ometry of this complex ion are, respectively :			
	(1) one, tetrahedral		(2) two, tetrahedral		[AIEEE-2006]	
	(3) one, square planar		(4) two, square planar			
13.	The IUPAC name for the c	omplex [Co(NH ₃) ₅ (NO ₂)]Cl	, is :		[AIEEE-2006]	
	(1) Nitrito-N-pentaammin	ecobalt(III) chloride	(2) Nitrito-N-pentaammin	ecobalt(II) chloride	;	
	(3) Pentaamminenitrito-N	-cobalt(II) chloride	(4) Pentaamminenitrito-N-	-cobalt(III) chloride	e	
14.	In $Fe(CO)_5$, the Fe – C bo	ond possesses :			[AIEEE-2006]	
	(1) π -character only		(2) both σ and π character	ſS		
	(3) ionic character only		(4) σ -character only			
15.	How many EDTA (ethyle Ca^{2+} ion ?	nediaminetetraacetic acid) r	nolecules are required to m	ake an octahedral	complex with a	
	(1) Six	(2) Three	(3) One	(4) Two		
16.	The 'spin only' magnetic number $Ni = 28$)	moment (in units of Bohr r	nagneton, $\mu_{\rm B}$) of Ni ²⁺ in aq	ueous solution wc	uld be (atomic	
	(1) 2.04	(2)4.00	$(\mathbf{J})0$	(+) 1.75		
17.	Which one of the following	ng has a square planar geon	netry?		[AIEEE 2007]	
	(1) $[NiCl_4]^{2-}$	(2) $[PtCl_4]^{2-}$	(3) $[CoCl_4]^{2-}$	(4) $[FeCl_4]^{2-}$		
	(At. no. Co = 27, Ni = 28, I)	Fe = 26, Pt = 78)				
18.	The coordination number ethylene diamine) are, res	and the oxidation state of th pectively,	e element 'E' in the complex	$\kappa \left[E(en)_2(C_2O_4) \right] N$	O ₂ (when 'en' is [AIEEE 2008]	
	(1) 4 and 2	(2) 4 and 3	(3) 6 and 3	(4) 6 and 2		
19.	In which of the following	octahedral complexes of Co	o (at no. 27), will the magnit	tude of Δ_0 be the hi	ghest? [AIEEE 2008]	
	(1) $[Co(C_2O_4)_3]^{3-}$	(2) $[Co(H_2O)_6]^{3+}$	(3) $[Co(NH_3)_6]^{3+}$	(4) $[Co(CN)_6]^{3-}$		
20.	Which of the following ha	as an optical isomer?			[AIEEE 2009]	
	(1) $[Co(en)(NH_3)_2]^{2+}$	(2) $[Co(H_2O)_4(en)]^{3+}$	(3) $[Co(en)_2(NH_3)_2]^{3+}$	$(4) [Co(NH_3)_3 Cl$]+	
21.	Which of the following pa	airs represents linkage isom	ers?		[AIEEE 2009]	
	(1) $[Pd(PPh_{3})_{2} (NCS)_{2}]$ and $[Pd(PPh_{3})_{2} (SCN)_{2}]$ (2) $[Co(NH_{3})_{5} NO_{3}] SO_{4}$ and $[Co (NH_{3})_{5} (SO_{4})] NO_{3}$ (3) $[PtCl_{2} (NH_{3})_{4} Br_{2}$ and $[Pt Br_{2} (NH_{3})_{4}] Cl_{2}$ (4) $[Cu (NH_{3})_{4}] [Pt Cl_{4}]$ and $[Pt (NH_{3})_{4}] [CuCl_{4}]$					
22.	A solution containing 2.67 chloride ions obtained in s mol ⁻¹). The formula of the	5 g of CoCl_3 . 6 NH_3 (molar r solution were treated with ex- complex is (At. mass of Ag	mass = 267.5 g mol^{-1}) is passe xcess of AgNO ₃ to give 4.78 = 108 u)	ed through a cation 8 g of AgCl (molar	exchanger. The mass = 143.5 g [AIEEE 2010]	
	(1) $[Co(NH_3)_6] Cl_3$	(2) [CoCl2 (NH3)4] Cl	(3) $[CoCl_3(NH_3)_3]$	$(4) [CoCl(NH_3)_5]$	Cl ₂	
23.	Which one of the followin (1) $[Zn(en)(NH_3)_2]^{2+}$ (en = ethylenediamine)	ng has an optical isomer ? (2) [Co(en) ₃] ³⁺	(3) $[Co(H_2O)_4(en)]^{3+}$	(4) $[Zn(en)_2]^{2+}$	[AIEEE 2010]	

24.	 Which of the following facts about the complex [Cr(NH₃)₆]Cl₃ is wrong ? [AIEEE 20 (1) The complex involves d²sp³ hybridisation and is octahedral in shape. (2) The complex is paramagnetic. (3) The complex is an outer orbital complex. (4) The complex gives white precipitate with silver nitrate solution. 					
25.	The magnetic moment (sp (1) 1.82 BM	in only) of [NiCl ₄] ^{2–} is : (2) 5.46 BM	(3) 2.82 BM	(4) 1.41 BM	[AIEEE 2011]	
26.	Which among the followi	ng will be named as dibromi	idobis (ethylene diamine) ch	nromium (III) bror	nide?	
	(1) $[Cr(en)_3]Br_3$	(2) $[Cr(en)_2Br_2]Br$	(3) $[Cr(en)Br_4]^-$	(4) $[Cr(en)Br_2]Br_2$	[
27.	Which of the following cc (1) $[Co(en)_3]^{3+}$	ism ? [JE (4) [Co(en)(NH	E(Mains) 2013] $_{3})_{2} Cl_{2}]^{+}$			
28.	Which one of the followin (1) $cis[Co(en)_2Cl_2]Cl$ (3) $[Co(NH_3)_4Cl_2]Cl$ (en = ethylenediamine)	[JE]	E(Mains) 2016]			
29.	The pair having the same $[At No : Cr = 24 Mn = 25]$	magnetic moment is: $E_{2}=26$ Co = 271		[JE	E(Mains) 2016]	
	(1) $[Cr(H_2O)_6]^{2+}$ and $[Fe(H_2O)_6]^{2+}$ (3) $[CoCl_4]^{2-}$ and $[Fe(H_2O)_6]^{2+}$	$[20]_{6}^{2+}$	(2) $[Mn(H_2O)_6]^{2+}$ and $[Cr(H_2O)_6]^{2+}$ and $[Cr(H_2O)_6]^{2+}$ and $[CoCH_2O]^{2+}$ and $[CoCH_2O]^{2+}$	$[H_2O)_6]^{2+}$		
30.	On treatment of 100 mL 0. complex is :	1 M solution of CoCl ₃ .6H ₂ C	Dwith excess AgNO ₃ , 1.2×1	0 ²² ions are precip	oitated. The E(Mains) 2017]	
	(1) $[Co(H_2O)_4Cl_2]Cl_2H_2O$		(2) [Co(H ₂ O) ₃ Cl ₃].3H ₂ O			
	(3) $[Co(H_2O)_6]Cl_3$		(4) $[Co(H_2O)_5Cl]Cl_2.H_2O$			
31.	The oxidation states of Cr	in $[Cr (H_2O)_6] Cl_3$, $[Cr (C_6 H_6)]$	$(S_{2})_{2}$], and K_{2} [Cr(CN) ₂ (O) ₂ (O) ₂	₂) (NH ₃)] respectiv	vely are : E(Mains) 2018]	
	(1)+3,+2, and $+4$	(2) + 3, 0, and + 6	(3) + 3, 0, and + 4	(4) + 3, +4, and +	-6	
32.	Consider the following re	action and statements :		[JE]	E(Mains) 2018]	
	$[\mathrm{Co(NH}_3)_4\mathrm{Br}_2]^+ + \mathrm{Br}^- \rightarrow$	$[Co(NH_3)_3Br_3] + NH_3$				
	(I) Two isomers are produ	ced if the reactant complex	ion is a cis-isomer.			
	(II) Two isomers are prod	uced if the reactant complex	ion is a trans-isomer.			
	(III) Only one isomer is pr	roduced if the reactant comp	plex ion is a trans-isomer.			
	(IV) Only one isomer is pr	roduced if the reactant comp	olex ion is a cis-isomer.			
	The correct statements are	e :				
	(1) (I) and (III)	(4) (I) and (II)				

	Part # II	>>	[Previous Y	lear Questi	ons][II]	F-JEE ADV	ANCED]	
1. 2.	The species h (A) [PdCl ₄] ^{2–} The spin mag	aving tetral	hedral shape is (B) [Ni(CN) ent of cobalt in	s: ${}_{4}^{2^{-}}$ the compound	(C) [Pd(l, Hg [Co(CN) ₄] ^{2–} SCN) ₄] is :	(D) [NiCl ₄] ^{2–}	[JEE-2004] [JEE-2004]
3.	(A) $\sqrt{3}$ When dimeth solution, a brid	yl glyoxim ght red col	(B) $\sqrt{8}$ e is added to to oured precipit	he aqueous so ate is obtained	(C) $\sqrt{1!}$	5 nickel (II) chl	(D) $\sqrt{24}$ or ide in presence of o	dilute ammonia
4. 5.	 (A) Draw the (B) Write the (C) State wh (C) State wh (A) Geometric (C) Optical ar In the given re 	e structure of oxidation ether the su f isomerism cal and ioniz ad ionization eaction seq	of bright red su state of nickel bstance is para is exhibited by zation n uence, Identify	ibstance. in the substan amagnetic or c y octahedral [C y (A) and (B).	ce and hy liamagnet $Co(NH_3)_4E$ (B) Geo (D) Geo	bridisation. ic. Br_2]Cl? metrical and op metrical only	otical	[JEE–2004] [JEE–2005]
	Fe ³⁺	$+ \frac{\text{SCN}^-}{(\text{Excess})}$	A — Blood red	$F^{-} (excess) \rightarrow C$	olourless	(B)		
6. Comj	 (A) Write the (B) Find out t The bond leng (A) 1.158 Å Orchension # (Q.7) 	IUPAC nan he spin only gth in CO is 7 to Q.9)	ne of (A) and (ly magnetic mo 1.128 Å. Wha (B) 1.128 Å	B). ment of B. at will be the be	ond length (C) 1.17	n of CO in Fe(8 Å	CO) ₅ ? (D) 1.118 Å	[JEE–2005] [JEE–2006]
	NiCl ₂ $\frac{K}{H}$	CN CN	complex A					
	NiCl ₂ $\frac{KC}{exc}$		complex B					
7.	A & B comple The IUPAC n (A) Potassium (B) Potassium (C) Potassium	ame of com tetracyano tetracyano tetracyano cyanonick	plexes 'A' & 'I nickelate(II) a nickel(II) and I elate(II) and P	B' are respective nd Potassium t Potassium tetra otassium chlor	vely : etrachloro achloronic onickelate	onickelate(II) skel(II) e(II)		[JEE-2006]
8.	(D) Potassium The hybridisa (A) dan ²	tion of both	el(II) and Potas to complexes at	ssium chloroni e :	ckel(II)	e and	(\mathbf{D}) both an^3	[JEE-2006]
9.	What are the tage	magnetic na	(b) $sp^2 \approx d$ ature of 'A' &	sp ⁻ 'B'?	(C) usp-	α sp ²	(D) both sp	[JEE –2006]
	(B) 'A' is diar (C) 'A' is diar (D) Both are r	nagnetic & nagnetic & nagnetic &	'B' is paramag 'B' is paramag	gnetic with one gnetic with two	e unpaired o unpaired	electrons. electrons.		
10.	Among the fo (A) $[Mn(CO)]$	llowing me	tal carbonyls,	the C – O bon	d order is	lowest in :	(\mathbf{D}) [Fe(CO)]	[JEE-2007]
11.	Match the cor	nplexes in C	Column-I with	their propertie	es listed in	Column-II.	$(D)[10(00)_{5}]$	[JEE-2007]
	Colu (A) [Co((B) [Pt(N (C) [Co(mn-I NH ₃) ₄ (H ₂ O) NH ₃) ₂ Cl ₂] H ₂ O) ₅ Cl]Cl	2]Cl2		(p) (q) (r)	Col Geometrical i Paramagnetic Diamagnetic	imn-II somers	
	(D) [Ni(I	$H_2O)_6$] Cl_2			(s)	Metal ion wit	h +2 oxidation state	

12.	 The IUPAC name of [Ni(NH₃)₄] [NiCl₄] is : (A) Tetrachloronickel(II) tetraamminenickel (II) (B) Tetraamminenickel(II) tetrachloronickel (II) (C) Tetraamminenickel(II) tetrachloronickelate (II) (D) Tetraamminenickel(II) tetrachloronickelate (0) Both [Ni(CO)] and [Ni(CN)]² are diamagnetic. The hybridisation of nickel in these complexes respectively. 	[JEE-2008]
15.	bour $[10(CO)_4]$ and $[10(CO)_4]$ are dramagnetic. The hybridisation of mekel in these complexes, resp	[JEE-2008]
14.	(A) sp^3 , sp^3 (B) sp^3 , dsp^2 (C) dsp^2 , sp^3 (D) dsp^2 , sp^2 Statement - 1 : The geometrical isomers of the complex $[M(NH_3)_4Cl_2]$ are optically inactive, and Statement - 2 : Both geometrical isomers of the complex $[M(NH_3)_4Cl_2]$ possess axis of symmetry.	LIEE-20081
15	 (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement. (C) Statement-1 is True, Statement-2 is False (D) Statement-1 is False, Statement-2 is True 	-1
15.	 Statement - 1: [Fe(H₂O)₅NO]SO₄ is paramagnetic, and Statement - 2: The Fe in [Fe(H₂O)₅NO]SO₄ has three unpaired electrons. (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (C) Statement-1 is True, Statement-2 is False (D) Statement-1 is False, Statement-2 is True 	[JEE–2008] -1
16.	The compound(s) that exhibit(s) geometrical isomerism is(are): (A) $[Pt(en)Cl_2]$ (B) $[Pt(en)_2]Cl_2$ (C) $[Pt(en),CL_1]CL$ (D) $[Pt(NH_1),CL_1]$	[JEE-2009]
17.	The spin only magnetic moment value (in Bohr magneton units) of $Cr(CO)_6$ is : (A) 0 (B) 2.84 (C) 4.90 (D) 5.92	[JEE-2009]
18.	The correct structure of ethylenediaminetetraacetic acid (EDTA) is : $HOOC - CH_{2} N - CH = CH - N CH_{2} - COOH$ (A) $HOOC - CH_{2} N - CH = CH - N CH_{2} - COOH$ (B) $HOOC - CH_{2} - CH_{2} - N COOH$ $HOOC - CH_{2} N - CH_{2} - CH_{2} - N CH_{2} - COOH$ (C) $HOOC - CH_{2} N - CH_{2} - CH_{2} - N CH_{2} - COOH$ (D) $HOOC - CH_{2} N - CH_{2} - CH_{2} - N CH_{2} - COOH$ (L) $HOOC - CH_{2} N - CH_{2} - CH_{2} - N CH_{2} - COOH$ (L) $HOOC - CH_{2} N - CH_{2} - CH_{2} - N CH_{2} - COOH$ (L) $HOOC - CH_{2} N - CH_{2} - CH_{2} - N CH_{2} - COOH$ (L) $HOOC - CH_{2} N - CH_{2} - CH_{2} - N CH_{2} - COOH$ (L) $HOOC - CH_{2} N - CH_{2} - CH_{2} - N CH_{2} - COOH$ (L) $HOOC - CH_{2} N - CH_{2} - CH_{2} - N CH_{2} - COOH$	[JEE-2010]

19. The ionization isomer of $[Cr(H_2O)_4Cl(NO_2)]Cl$ is : (A) $[Cr(H_2O)_4(O_2N)]Cl_2$ (B) $[Cr(H_2O)_4Cl_2](NO_2)$

 $\textbf{(C)} [Cr(H_2O)_4Cl(ONO)]Cl \textbf{(D)} [Cr(H_2O)_4Cl_2(NO_2)].H_2O$

[**JEE**-2010]

20.	The complex showing a sp	oin-only magnetic moment	of 2.82 B.M. is :	[JEE –2010	Ŋ
	(A) Ni(CO) ₄	(B) $[NiCl_4]^{2-}$	(C) Ni(PPh ₃) ₄	(D) $[Ni(CN)_4]^{2-}$	
21.	Total number of geometric	al isomers for the complex [RhCl(CO)(PPh ₃)(NH ₃)] is :	[JEE-2010]
22.	Geometrical shapes of the	complexes formed by the r	reaction of Ni ²⁺ with Cl ⁻ , CN	$-$ and H_2O , respectively, are	
				[JEE –2011]
	(A) octahedral, tetrahedra	l and square planar	(B) tetrahedral, square pl	anar and octahedral	
	(C) square planar, tetrahe	dral and octahedral	(D) octahedral, square pl	anar and octahedral	
23.	Among the following com	plexes (K–P),			
	$K_{3}[Fe(CN)_{6}](K), [Co(NH_{3})_{2}(P)]$ [Zn(H ₂ O) ₆](NO ₃) ₂ (P)	$_{6}$]Cl ₃ (L), Na ₃ [Co(oxalate) ₃]	$(M), [Ni(H_2O)_6]Cl_2(N), K_2[I]$	$Pt(CN)_4](O)$ and	
	the diamagnetic complexe	es are :		[JEE –2011]
	(A) K, L, M, N	(B) K, M, O, P	(C) L, M, O, P	(D) L, M, N, O	
24.	The volume (in mL) of 0.1	MAgNO ₃ required for com	plete precipitation of chlori	de ions present in 30 mL of 0.01 N	Л
	solution of [Cr(H ₂ O) ₅ Cl]C	Cl ₂ , as silver chloride is close	e to :	[JEE –2011	.]
25.	As per IUPAC nomenclat	ure, the name of the comple	$ex [Co(H_2O)_4(NH_3)_2]Cl_3 is:$	[JEE –2012	2]
	(A) Tetraaquadiaminecoba	alt (III) chloride	(B) Tetraaquadiammineco	obalt (III) chloride	
	(C) Diaminetetraaquacobl	at (III) chloride	(D) Diamminetetraaquaco	balt (III) chloride	
26.	NiCl ₂ {P $(C_2H_5)_2(C_6H_5)$ } coordination geometries of	, exhibits temperature depe of Ni ²⁺ in the paramagnetic	ndent magnetic behaviour (and diamagnetic states are	paramagnetic/ diamagnetic) . Th respectively [JEE-2012	.e
	(A) tetrahedral and tetrahe	edral	(B) square planar and squ	uare planar	
	(C) tetrahedral and square	e planar	(D) square planar and tet	rahedral	
27.	Consider the following co $P = [FeF_{13}]^{-}, O = [V(H, O)]$	mplex ions, P, Q and R. l^{2+} and R = [Fe(H,O)]^{2+}.		[JEE(Advanced) 2013	5]
	The correct order of the co	$\frac{1}{2}$ omplex ions, according to t	heir spin-only magnetic mo	ment values (in B.M.) is	
	(A) $R < O < P$	(B) O < R < P	(C) R < P < O	(D) O < P < R	
28.	The pair(s) of coordinatio	n complexes/ions exhibitin	g the same kind of isomerisi	m is(are) :	
			0	[JEE(Advanced) 2013	<i>i</i>]
	(A) $[Cr(NH_3)_5Cl]Cl_2$ and $[Cr(NH_3)_5Cl]Cl_2$ and $[PtBr(Cr)_5Cl]Cl_2$ and $[PtBr(Cr)_5Cl]C$	$r(NH_3)_4Cl_2)Cl_2$	(B) $[Co(NH_3)_4Cl_2]^+$ and $[P$	$t(NH_3)_2(H_2O)Cl]^+$ [Pt(NH_1) Cl]Br	
29.	$EDTA^{4-}$ is ethylenediamine	tetraacetate ion The total nu	(D) [I $(1 \times I_3)_3(1 \times O_3) \in I$ and imber of $N - Co - O$ bond angle	es in $[Co(EDTA)]^{1-}$ complex ion is	
				[JEE(Advanced) 2013	, 1
30.	The reagent(s) that can se	lectively precipitate S2- fro	m a mixture of S ^{2–} and SO ₄	^{2–} in aqueous solution is (are)	Î
				[JEE(Advanced) 2016	5]
	(A) $CuCl_2$	(B) BaCl ₂	(C) $Pb(OOCCH_3)_2$	(D) $Na_2[Fe(CN)_5NO]$	
31.	The number of geometric $(L = H NCH CH O^{-})$ is	isomers possible for the cor	nplex $[CoL_2Cl_2]^-$	[JEE(Advanced) 2016]
	$(\underline{\mathbf{L}} \underline{\mathbf{H}}_2, \underline{\mathbf{CH}}_2, \mathbf{CH$				
32.	Addition of excess aqueor octahedral complex Y in th of X with excess HCl at ro only magnetic of X and Z	us ammonia to a pink colou ne presence of air. In aqueou om temperature results in the is 3.87 B.M., whereas it is z	rred aqueous solution of M s solution, complex Y behav he formation of a blue colou ero for complex Y.	$Cl_2.6H_2O(X)$ and NH_4Cl gives a ves as 1 : 3 electrolyte. The reactio red complex Z. the calculated spi [JEE(Advanced) 2017	n n 1
32.	Addition of excess aqueor octahedral complex Y in th of X with excess HCl at ro only magnetic of X and Z Among the following opti	us ammonia to a pink colou ne presence of air. In aqueou om temperature results in the is 3.87 B.M., whereas it is z ions, which statement(s) is(ared aqueous solution of M as solution, complex Y behav the formation of a blue colou ero for complex Y. (are) correct?	Cl ₂ .6H ₂ O (X) and NH ₄ Cl gives a ves as 1 : 3 electrolyte. The reactio red complex Z. the calculated spi [JEE(Advanced) 2017	n n 1
32.	Addition of excess aqueor octahedral complex Y in th of X with excess HCl at ro only magnetic of X and Z Among the following opti (A) The hybridization of t	us ammonia to a pink colou ne presence of air. In aqueou om temperature results in th is 3.87 B.M., whereas it is z ions, which statement(s) is(he central metal ion in Y is	ared aqueous solution of M as solution, complex Y behav the formation of a blue colou ero for complex Y. (are) correct? d ² sp ³	Cl ₂ .6H ₂ O (X) and NH ₄ Cl gives a ves as 1 : 3 electrolyte. The reactio red complex Z. the calculated spi [JEE(Advanced) 2017	n n 1

- (B) Addition of silver nitrate to Y gives only two equivalents of silver chloride
- (C) when X and Z are in equilibrium at 0°C, the colour of the solution is pink
- **(D)** *Z* is a tetrahedral complex

33.	33. The correct statement (s) regarding the binary transition metal carbonyl compounds is (are)									
	(Given Atomic No. Fe - 26, Ni - 28) [JEE(ADVANCED) 2018]									
	(A) To	otal number of valence shell	electrons	at metal centre in $Fe(CO)_5$ or $Ni(CO)_4$ is	16					
(B) These are predominantly low spin in nature										
(C) Netal - carbon bond strengthens when the oxidation state of the metal is lowered										
	(D) T	he carbonyl C-O bond weak	ens when	the oxidation state of the metal is increa	sed					
34.	The c (en =] (A) It (B) It (C) It	correct option regarding the $d_2NCH_2CH_2NH_2$) is (are) thas two geometrical isomet t will have three geometrical t is paramagnetic	complex [4 rs l isomers i	$Co(en)(NH_3)_3(H_2O)]^{3+}$ if bidentate 'en' is replaced by two cyanic	[JEE(ADVANCED) 2018] de ligands					
	(D) It	(D) It absorbs light at longer wavelength as compared to $[Co(en)NH_3)_4]^{3+}$								
35.	Match	n each set of hybrid orbitals f	rom LIST	-I with complex(es) given in LIST-II.	[JEE(ADVANCED) 2018]					
	(P)	dsp ²	(1)	[FeF.] ⁴⁻						
	(Q)	sp ³	(2)	[Ti(H,O),Cl,]						
	(R)	sp ³ d ²	(3)	$[Cr(NH_3)_6]^{3+}$						
	(S)	d^2sp^3	(4)	[FeCl ₄] ²⁻						
			(5)	Ni(CO) ₄						
			(6)	$[Ni(CN)_4]^{2-}$						
	The c	orrect option is								
	(A) P	$P \rightarrow 5; Q \rightarrow 4, 6; R \rightarrow 2, 3;$	$S \rightarrow 1$							
	(B) P									

- (C) $P \to 6; Q \to 4, 5; R \to 1; S \to 2, 3$
- **(D)** $P \rightarrow 4, 6; Q \rightarrow 5, 6; R \rightarrow 1, 2; S \rightarrow 3$

			MOCK TEST	\langle	
		SECTION - I :	STRAIGHT OBJ	ECTIVE TYPE	
1.	All the following co $P : [FeF_6]^{3-}$; The correct order of (A) $P > Q > R > S$	pomplex ions are found $Q : [CoF_6]^{3-}$; f their paramagnetic m (B) P < Q < F	to be paramagnetic $R : [V(H_2O)_6]^{3+}$ moment (spin only) is R < S	; $S : [Ti(H_2O)]$ (C) $P = Q = R = S$	${}_{6}^{3^{+}}$ (D) P > R > Q > S
2.	Which of the follow (A) $Ti(NO_3)_4$ is a co (C) $[Cr(NH_3)_6]^{3+}$ 3C	ving statement(s) mos lourless compound 21- is a colourless comp	t likely to be incorrect (B) [Cu(pound (D) K ₃ [V	? NCCH ₃) ₄] ⁺ BF ₄ ⁻ is a c (F ₆] is colourless com	olourless compound pound
3.	Amongst the follow (A) $[Pd(CN)_4]^{2-}$	ving, the species with (B) [Ni(CN) ₄]	tetrahedral geometry i 2- (C) [PdC	s : l ₄] ²⁻ (D) [NiCl ₄] ²⁻
4.	 Which of the follow (A) Potassium ferror (B) Crystal field spl (C) The geometry or (D) (A) & (C) both 	ving statements is cor ocyanide is diamagnet litting in ferrocyanide f Ni(CO) ₄ and [NiCl ₂ (rect? ic where as potassium ion is greater than tha $PPh_3)_2$ are tetrahedral.	ferricyanide is param t of ferricyanide ion.	agnetic.
5.	Amongst $[Co(ox)_3]^3$ (A) $[Co(ox)_3]^{3-}$ and (B) $[Co(ox)_3]^{3-}$ and (C) $[Co(ox)_3]^{3-}$ and (D) $[Co(NH_3)_6]^{3+}$ and	¹⁻ , $[CoF_6]^{3-}$ and $[Co(N]_{1}^{3-}$ are paramagr $[CoF_6]^{3-}$ are paramagr $[Co(NH_3)_6]^{3+}$ are parama $[Co(NH_3)_6]^{3+}$ are diamaged $[CoF_6]^{3-}$ are paramaged	$H_3)_6]^{3+}$: netic and $[Co(NH_3)_6]^{3-}$ magnetic and $[CoF_6]^{3-}$ nagnetic and $[CoF_6]^{3-}$ is gnetic and $[Co(ox)_3]^{3-}$	s diamagnetic. s diamagnetic. paramagnetic. s diamagnetic.	
6.	All the following constrained complexes having the following the complexes having the following the	$\begin{array}{l} \text{omplex show decreas} \\ \text{etrahedral geometry is} \\ \text{i) } \text{K}[\text{AgF}_4] \qquad (\text{iii}) \\ \\ \hline $	es in their weights white s: $Na_2[Zn(CN)_4]$ (C) (i), (i)	en placed in a magne (iv) $K_2[PtCl_4]$ (ii), (iv) (D	tic balance then the group of (v) [RhCl(PPh ₃) ₃]) None of these
7.	$[Fe(en)_2(H_2O)_2]^{2+} +$ (A) It is a low spin c (C) It shows geometry	en \rightarrow complex(X). Th omplex trical isomerism	ne correct statement ab (B) It is a (D) (A) a	out the complex (X) is liamagnetic and (B) both	5:
8.	On treatment of [Ni(are obtained, I can [Ni(NH ₃) ₂ (C ₂ O ₄)] w (A) I cis, II trans; be (C) I trans, II cis; be	$[NH_3)_4]^{2+}$ with concent be converted into II b where as II does not read oth tetrahedral oth tetrahedral	rated HCl, two compound by boiling with dilute F act. Point out the corre (B) I cist (D) I trans	nds I and II having the ICl. A solution of I re ct statement from the II trans; both square ns, II cis; both square	e same formula, [Ni(NH ₃) ₂ Cl2 ₁ acts with oxalix acid to form following. planar planar
9.	The total number of (A) 10	isomers shown by [C (B) 6	$o(NH_3)_4(NO_2)_2](NO_3)$ (C)4	complex is :)12
10.	In which of the follo (A) $[FF_6]^{3-}$	owing complex ion, th (B) [Fe(CN) ₆]	te metal ion will never 3- (C) [Fe(C)	have t_{2g}^6 , e_g^0 configurations (D)	ation according to CFT?) None of these

SECTION - II : MULTIPLE CORRECT ANSWER TYPE

11. Which complex of the following pairs has the larger value of Δ_{c} ? (ii) $[Co(H_2O)_{\ell}]^{3+}$ and $[Rh(H_2O)_{\ell}]^{3+}$ (i) $[Co(CN)_{2}]^{3-}$ and $[Co(NH_{2})_{2}]^{3+}$ (iii) $[Co(H_2O)_6]^{3+}$ and $[Co(H_2O)_3]^{3+}$ (iv) $[Co(NH_3)_6]^{2+}$ and $[CoF_6]^{3-}$ Select the correct one (A) $[Co(CN)_{\ell}]^{3-} > [Co(H_{2}O)_{\ell}]^{2+}$ **(B)** $[Co(H_2O)_{\ell}]^{2+} < [Co(H_2O)_{\ell}]^{3+}$ (C) $[Co(H_2O)_6]^{3+} > [Rh(H_2O)_6]^{3+}$ (**D**) $[Co(NH_3)6]^{3+} < [CoF_6]^{3-}$ Wilkinson's catalyst react with H₂ to form an octahedral complex in which Rh(Z = 45) has the following electronic 12. configuration in the ligand field $t_{2g}^{2,2,2}$, $e_{g}^{0,0}$. Then which of the following is (are) correct about this new complex? (A) It is diamagnetic (B) Its IUPAC name is chlorodihydridotris (triphenylphosphine) rhodium (III) (C) Hybridisation of Rh(I) is d2sp3 (D) It is a paramagnetic complex In the crystal field of the complex $[Fe(Cl)(CN)_4(O_2)]^4$, the electronic configuration of metal is found to be $t_{2\sigma}^6$, e_{σ}^0 13. then which of the following is/are true about this complex ion : (A) It is a paramagnetic complex (B) O - O bond length will be more than found in O_2 , molecule (C) Its IUPAC name will be chloridotetracyanidosuperoxidoferrate (II) ion. (D) It will show geometrical as well as optical isomerism 14. Select the correct statement(s) for the coordination compound $K_{2}[Cr(NO^{+})(NH_{2})(CN)_{4}]$. (A) It IUPAC name is potassium amminetetracyanidonitrosoniumchromate(I). **(B)** Its 'spin only' magnetic moment is $\sqrt{8}$ B.M. (C) Its hybridisation is d²sp³. (D) Its show geometrical isomerism. 15. S_1 : [Mn Cl₂]³⁻, [FeF₆]³⁻ and [CoF₆]³⁻ are paramagnetic having four, five and four unpaired electrons respectively. S_2 : Valence bond theory gives a quantitative interpretation of the thermodynamic stabilities of coordination compounds. S_{a} : The crystal field splitting Δ_{a} , depends upon the field produced by the ligand and charge on the metal ion. (A) T T T **(B)** T F T (C) F T F **(D)** T F F 16. S.: Generally square planar complexes show geometrical isomerism but do not exhibit optical isomerism because they do not possess planer of symmetry. $\mathbf{S}_2: \Delta_t = \frac{4}{\Omega} \Delta_0$ S_3 : In octahedral complexes each electron entering the t_{2g} orbitals stabilizes the complex ion by 0.4 $\Delta 0$ and each electron entering the e.g. orbital destabilizes the complex by an amount of 0.6 Δ_{n} .

(A) FTT (B) FFT (C) TFT (D) TTF

17. S_1 : Both $[Co(ox)_3]^{3-}$ and $[CoF_6]^{3-}$ are paramagnetic. S_2 : CoCl₃ 3NH₃ complex is non-conducting. S_3 : The number of possible geometrical isomers for the complex $[Pt(NO)_2 (Py) (OH) (NH)_3]$ is six. S_4 : The oxidation state of iron in brown ring complex $[Fe(H_2O)_5NO^+]$ SO₄ is + II where NO is NO⁺(A) FTTF(B) TTTT(C) FTTF(D) TTTF

SECTION - III : ASSERTION AND REASON TYPE

- **Statement -1**: A solution of $[Ni(H_2O)_{a}]^{2+}$ is green is green but a solution of $[Ni(CN)_{a}]^{2-}$ is colourless.
 - Statement 2 : Energy difference between d levels (i.e. Δ) for H₂O complex (paramagnetic) is in the visible region and that for the cyano complex (diamagnetic) is in the UV region.
 - (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
 - (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
 - (C) Statement-1 is True, Statement -1 is False.
 - (D) Statement-1 is False, Statement-2 is True.
- 19. Statement-1: All the complexes of Pt(+II) and Au(+III) with strong field as well as with weak field ligands are square planar.
 - Statement-2: The crystal field splitting energy is larger for second and third row transition elements, and for ore highly charged species. This larger value of crystal field splitting energy energetically favorus the pairing of electron for square planar geometry.
 - (A) Statement-1 is True, Statement-2 is True; Statement-2 is True is a correct explanation for Statement-1.
 - (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
 - (C) Statement-1 is True, Statement-2 is False.
 - (D) Statement-1 is False, Statement-2 is True.
- 20. Statement 1 : In complex $[Cr(NH_3)_4BrCl]Cl$, the 'spin only' magnetic moment is close to 1.73 B.M.
 - Statement 2 : All known mononuclear complexes of chromium(III), irrespective of the strength of the ligand field, must have three unpaired electrons.
 - (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
 - (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
 - (C) Statement-1 is True, Statement 2 False.
 - **(D)** Statement-1 is False, Statement 2 True.

SECTION - IV : COMPREHENSION TYPE

Read the following comprehensions carefully and answer the questions.

Comprehension #1

18.

Double salts are addition compounds which lose their identity in aqueous solution whereas complexes which are also addition compounds do not loss their identity in aqueous solution. The coordination compounds show isomerism and find applications in photography, qualitative analysis, metallurgy, water purification and in the treatment of various diseases.

- 21. Which of the following statement(s) incorrect?
 - (A) Alum is a double salt
 - (B) EDTA salt of calcium is used in the treatment of lead poisoning.
 - (C) Effective atomic number of the metals in complexes $[Ni(CO)_{4}]$ and $[Fe(CN)_{6}]^{4-}$ is same.
 - (D) Chloridotris (triphenyl phosphine) rhodium(I) is effective heterogeneous catalyst for hydrogenation of alkenes.
- 22. Which of the following statement is true for the complex, $[Co(NH_3)_4 Br_2] NO_2?$
 - (A) It shows ionisation, linkage and geometrical isomerism.
 - (B) It does not show optical isomerism because its cis and trans forms each have at least one plane of symmetry.(C) Its ionisation isomers cannot be differentiated by silver nitrates solution.
 - (D) (A) and (B) both

- 23. Choose the correct option for the complex $[Pt Cl_2(en)_2]^{2+}$.
 - (A) Platinum is in +2 oxidation state
 - (B) Racemic mixture is obtained on mixing mirror images of its trans form in 1 : 1 molar ratio.
 - (C) It has two five membered chelating rings.
 - **(D) (B)** and **(C)** both.

Comprehension #2

 $\operatorname{Co}^{2+}(\operatorname{aq.}) + \operatorname{SCN}^{-}(\operatorname{aq.}) \longrightarrow \operatorname{Complex}(X).$

 $Ni^{2+}(aq.) + Dimetyhlglyoxime \longrightarrow Complex (Y).$

The coordination number of cobalt and nickel in complex X and Y are four.

- 24. The IUPAC names of the complex (X) and (Y) are respectively P
 - (A) tetratiocyanato-S-cobalt(II) and bis(dimethylglyoximate) nickel(II).
 - (B) tetrathiocyanato-S-cobaltate (II) and bis(dimethylglyoximato) nickel (II).
 - (C) tetrathiocyanato-S-cobaltate (II) and bis(dimethylglyoximato)nickelate(II).
 - (D) tetrathiocyanato-S-cobaltate(III) and bis(dimethylglyoximato)nickel(II).

25. The geometry of complexes (X) and (Y) are respectively :

- (A) tetrahedral and square planar(B) both tetrahedral(C) square planar and tetrahedral(D) both square planar
- **26.** Select the correct statement for the complexes (X) an (Y).
 - (A) (X) is paramagnetic with two unpaired electrons.
 - (B) (Y) is diamagnetic and shows intermolecular H-bonding.
 - (C) (X) is paramagnetic with three unpaired electrons and (Y) is diamagnetic
 - **(D)** (X) and (Y) both are diamagnetic.

Comprehension #3

Square planar complexes are formed by d⁸ ions with strong field ligands. The crystal field splitting is larger for second and third row transition elements and for more highly charged species. All the complexes having 4d⁸ and 5d⁸ configurations are mostly square planar including those with weak field ligands such as halide ions. Square planar complexes can show geometrical isomerism but they do not show optical isomerism due to the presence of plane of symmetry.

- 27. Amongst the following ions which do not form the square planar complexes?
 - (A) Ni (+II) and Rh (+I) with strong field ligands.
 - **(B)** Rh(+I) and Ag(+II) with strong field ligand.
 - (C) Pd (+II), Pt (+II) and Au(+III) with strong and weak field ligands.
 - (D) None

28.	Amongst the following complexes which has square planar geometry?					
	(A) $[RhCl(CO)(PPh_3)_2]$ (B) $K_3[Cu(CN)_4]$	$(\mathbf{C}) \mathrm{K}_{2} [\mathrm{Zn}(\mathrm{CN})_{4}]$	(D) $[Ni(CO)_4]$			
29.	29. Which one of the following square planar complexes will show geometrical isomerism?					
	(A) $[Pt(en)_2]^{2+}$	(B) $[Pt(gly)_2]$				
	(C) $[Pt(NH_3)_2 Cl(NH_2CH_3)]Cl$	(D) (B) and (C) Both				

Comprehension #4

In metal carbonyls, there is synergic bonding interaction between metal and carbon monoxide. The leads to increases in strength of metal ligand bond and decrease in bond order of CO in carbonyl complex as compared to bond order in carbon monoxide.

Simple carbonyls are invariably spin-paired complex except for vanadium metal.

- **30.** The increases in bond length in CO as compared to carbon monoxide is due to :
 - (A) the donation of lone pair of electrons on the carbon into a vacant orbital of the metal atom
 - (B) the donation of a pair of electrons from a filled d-orbital of metal into the vacant antibonding π^+ orbital of carbon monoxide.

 $(IV) Cr(CO)_{6}$

 (\mathbf{C}) (A) and (C) both

(D) None

(I) Ni (CO)₄;

31. Which amongst the following metal carbonyls are inner orbital complexes with diamagnetic property.

 $(III) V(CO)_6$

Select the correct answer from the codes gives below :					
(A) I and II only	(B) II, III and IV only				
(C) II and IV only	(D) I, II and IV only				

(II) Fe (CO)₅;

32. Which one of the following metal carbonyls involves the d^2sp^3 hybridisation for the formation of metal-carbon σ bonds and is paramagnetic.

(\mathbf{A}) [Cr(CO) ₆]	$(\mathbf{B})[\mathbf{V}(\mathbf{CO})_{6}]$	(C) [Mo(CO) ₆]	(\mathbf{D}) [W(CO) ₆]

SECTION - V: MATRIX - MATCH TYPE

33. Match the complex listed in column-I with characteristic(s) listed column-II.

Column - I	Column - II
$(\mathbf{A}) [\operatorname{Ni}(\operatorname{CO})_4]$	(p) Tetrahedral
(B) [Fe(CO) ₂ (NO) ₂]	(q) π -back bonding
(C) $[Ni(PF_3)_4]$	(r) Diamagnetic
(D) $[Ni (PPh_3)_2 Br_2]$	(s) One of the ligand is three electron donor.

34. Match the complex listed in column - I with characteristic(s) / type of hybridisation listed in column - II.

Column - I	Column - II
(A) $[Co(en)_3]^{3+}$	(p) sp ³ d ² hybridisation
(B) $[Co(OX)_3]^{3-}$	(q) Diamagnetic
(C) $[Co(H_2O)_6]^{2+}$	(r) Paramagnetic
(D) $[Co(NO_2)_6]^4$	(s) Chelating reagent

35. There are some coordination compounds given in column- I which may exist in different isomeric forms as given in column - II. Select the correct option(s) for the coordination compounds and their respective isomeric forms.

Column - I	Column - II
(A) $[Co(en)_2NH_3Cl]SO_4$	(p) Optical isomer
(B) $[Co(NH_3)_4(NO_2)_2](NO)_3$	(q) Geometrical isomers
(C) $[Co(en)(pn)(NO_3)_2]Cl$	(r) Ionization isomer
(D) $[Co(gly)_3]$	(s) Linkage isomer

SECTION - VI : SUBJECTIVE TYPE

36. Calculate the difference in net stabilisation energies (in kJ mol⁻¹) of Fe²⁺ complexes with CN⁻ ligands ($\Delta_0 = 25000 \text{ cm}^{-1}$) and with H₂O ligands ($\Delta_0 = 10000 \text{ cm}^{-1}$). Given that the pairing energy, P = 15000 cm⁻¹ for Fe²⁺ ion for both the complexes.

(Given that $h = 6 \times 10^{-34}$ J sec., Avogadro Number = 6×10^{23} , Speed of light in Vacuum = 3×10^8 m sec⁻¹).

37. A symmetrical bridged complex cation made of Co(III), NH_3 molecules and oxygen (in the proper ligand form) is found to contain the following composition [Atomic mass of Co = 59]

Co = 36.875%; $NH_3 = 53.125\%$; O = 10%

Co=36.875%; NH3=53.125%; O=10%

The complex cation exists in three ionic forms with cationic charges $A : (n^+)$; $B : (n-1)^+$ and $C : (n-2)^+$ such that O - O in all of them is found to be more than that in $O_2[PtF_6]$. Calculate the value of n, (n-1) and (n-2).

38. A metal complex having composition $Cr(NH_3)_4 Cl_2Br$ has been isolated in two forms (A) and (B). The form A reacts with AgNO₃ to give a while precipitate readily soluble in dilute aqueous ammonia, whereas (B) gives a pale yellow precipitate partial soluble in concentrated ammonia. Calculate their magnetic moments (spin-only value).

ANSWER KEY

EXERCISE - 1

1. A 2. A 3. D 4. C 5. A 6. D 7. D 8. D 9. C 10. B 11. C 12. D 13. C 14. B 15. B 16. D 17. A 18. B 19. D 20. A 21. B 22. B 23. A 24. C 25. B 26. D 27. B 28. B 29. C 30. B 31. B 32. A 33. B 34. C 35. A 36. C 37. B 38. C 39. C 40. D 41. B 42. D 43. C 44. D 45. D 46. B 47. D 48. C 49. C 50. B 51. A 52. D 53. D 54. A 55. A 56. A 57. B 58. D 59. D 60. D 61. C 62. A 63. D 64. C 65. C 66. D 67. D 73. C 74. C 75. C 76. A 77. A 78. C 68. C 69. B 70. C 71. D 72. C 79. C 80. B 81. D 82. C 83. C 84. C 85. C 86. C 87. D 88. C 89. A 90. A 91. B 92. B 93. D 94. D 95. D 96. C 97. A 98. C 99. A 100. D 101. B 102. D 103. B 104. D 105.C 106. А

EXERCISE - 2 : PART # I

1.	A, D	2.	A, B, C, D	3.	A, B	4.	D	5.	B,D	6.	B,C,D	7.	A, D
8.	A, C, D	9.	B,D	10.	A, C, D	11.	A, B, C, D	12.	A, B, D	13.	B,D	14.	C, D
15.	B,C	16.	A, B	17.	A, C	18.	D	19.	A, D	20.	B,C,D		
21.	A, C	22.	A, B, C, D	23.	A, D		24. A, B, C		25. A, B, C,	D	26. A, E	8, C	
27.	A, B, C, D												

PART # II

1. C 2. A 3. E 4. A 5. A 6. B 7. B 8. C 9. D 10. A 11. C 12. C 13. B 14. A 15. C 16. A 17. D 18. A 19. D 20. C

EXERCISE - 3 : PART # I

1.	$A \rightarrow p, q, s, B \rightarrow q, r, s, t, C \rightarrow p, q, s, t, D \rightarrow q, r, s$	2.	$A \rightarrow q, B \rightarrow p, C \rightarrow q, D \rightarrow s$
3.	$A \rightarrow p, B \rightarrow q, C \rightarrow s, D \rightarrow r$	4.	$A \rightarrow p, q, r, B \rightarrow p, s, C \rightarrow q, r, D \rightarrow q, r$
5.	$A \rightarrow p, q, r, B \rightarrow p, q, r, s, C \rightarrow p, q, r, D \rightarrow q, r$	6.	$A \rightarrow p, r, B \rightarrow q, s, C \rightarrow p, r, D \rightarrow q, r$
7.	$A \rightarrow q, B \rightarrow p, C \rightarrow q, D \rightarrow s$	8.	$A \rightarrow q, s, B \rightarrow p, C \rightarrow q, r, D \rightarrow p, s$

PART # II

Comprehension #1:						1.	D	2.	С	3.	В	4.	А	5.	А					
Comprehension # 2 :						1.	D	2.	D	3.	С									
Co	mpre	ehen	sion	#3:		1.	В	2.	А	3.	С									
Co	mpre	ehen	sion	#4:		1.	С	2.	С	3.	С	4.	А							
Co	mpre	ehen	sion	#5:		1.	В	2.	С	3.	В									
EXERCISE - 5 : PART # I																				
1.	2	2.	4	3.	1	4.	4	5.	1	6.	4	7.	4	8.	2	9. 3	10. 1	11. 1	12. 2	13. 4
14.	2	15.	3	16.	1	17.	2	18.	3	19.	. 4	20.	3	21.	1	22. 1	23. 2	24. 3	25. 3	26. 2
27.	3	28.	1	29.	1	30.	4	31.	2	32.	. 1									

PART # II

- 1. D 2. C
- 3. Ni²⁺ + 2dmg $\xrightarrow{\text{NH}_4\text{OH}}$ [Ni(dmg₂] \downarrow (bright red).

It acquires stability through chelation and intra molecular H-bonding.

In $[Ni(dmg_2]]$ the nickel is in +2 oxidaiton state and to have square planar geometry because of chelation the pairing of electrons takes place. So

As all electrons are paired, so complex is diamagnetic. Nickel with coordination number four will have the structure as given below.

rosy red ppt

4. A

5. (a) $\operatorname{Fe}^{3+} \xrightarrow{\operatorname{SCN}^{-}} \operatorname{blood} \operatorname{red}[\operatorname{Fe}((\operatorname{H}_2\operatorname{O}_5(\operatorname{SCN})^{2+}(\operatorname{A}) \xrightarrow{\operatorname{F}^{-}(\operatorname{excess})} \operatorname{colourless}(\operatorname{B}[\operatorname{Fe}(\operatorname{F}_6]^{3-} + \operatorname{SCN}^{-} + 5\operatorname{H}_2\operatorname{O}).$

(A) Pentaaquathiocyanato-S-iron(III); (B) Hexafluoridoferrate(III)

(b) Fe³⁺CFSE electron configuration, $t_{2g}^{1,1,1}e_{g}^{1,1}$; as F⁻ being weak field ligand does not compel for pairing of electrons. So it contains five unpaired electrons.

So, $\mu = \sqrt{5(5+2)} = 5.93$ B.M.

The magnetic moment value of B is 5.93 B.M.

6. A 7. A 8. C 9. C 10. B 11. $A \rightarrow p, q, s; B \rightarrow p, r, s; C \rightarrow q, s; D \rightarrow q, s$ 12. C 13. B 14. B 15. A 16. C,D 17. A 18. C 19. B 20. B 21. 3 22. B 23. C 24. 6 25. D 26. C 30. A or A,C 31. 5 32. A,C,D 33. B,C 34. A,B,D 35. C

MOCK-TEST

1. A2. D3. D4. D5. C6. D7. D8. B9. A10. C11A, B12. A, B13. A, B, C14. A, C, D15. B16. A17. C18. A19. A20. D21. D22. D23. C24. B25. A26. C27. D28. A29. D30. B31. C32. B33. A \rightarrow p, q, r; B \rightarrow p, q, r, s; C \rightarrow p, q, r; D \rightarrow p34. A \rightarrow q, r, t; B \rightarrow q, r, t; C \rightarrow p, s; D \rightarrow r, s35. A \rightarrow p, q, r; B \rightarrow q, r, s; C \rightarrow p, q, r, s; D \rightarrow p, q

