DCAM classes Dynamic Classes for Academic Mastery

CHEMISTRY FOR JEE MAIN & ADVANCED

HINTS & SOLUTIONS

EXERCISE - 1

Single Choice

- **26.** Leaving group ability ∞ Stability of anion.
- 27. Carbocation Stability

$$CH_3 \bigoplus CH_3 \\ CH_3 > \bigcirc \bigoplus$$

leaving group ability is $Br^{\ominus} > CI^{\ominus}$ over all reaction order $r_1 > r_3 > r_2$

28. On the basis of carbocation stability.

In aryl halides the C–X bond has partial double bond character due to resonance so it will not give S_N reaction.

- 34. According to stability of carbocation and leaving ability of leaving group.
- **35.** According to stability of carbocation

36. β -Hydrogen is absent.

38.
$$CH_3 \xrightarrow[C]{I} CH_3 \xrightarrow[C]{I}$$

- 41. Rate of E2 reaction ∞ Stability of alkene
- 42. 1° R-X gives S_N^2 reaction fastest and 3° R-X gives S_N^1 reaction fastest.
- **43.** In aryl halides the C X bond has partial double bond character due to resonance so the cleavage of C X bond becomes difficult.

44. I^{Θ} is not a strong base so it do not gives E2 reaction.

- 46. Rate of S_N^2 reaction : $1^\circ > 2^\circ > 3^\circ$, as β -branching increases steric crowding increases in transition state so it makes less stable T.S.
- 47. Strong anionic Nucleophile so mechanism is S_N^2 .
- **48.** According to stability of carbocation because mechanism is $S_N 1$.

Two transition states are formed and one stable carbocation is formed in the reaction.

52. I \Rightarrow Only one T.S. So it is for S_N2 and $\Delta H = -ve$. II \Rightarrow Only one T.S. So it is for S_N2 and $\Delta H = +ve$.

III \Rightarrow More than one T.S. so it is for $S_N 1$ and 1st step is rds.

53.
$$\begin{array}{c} CH_{3} \\ CH_{3}-CH_{2}-CH_{-}OH \\ Optically active \end{array} \xrightarrow{\begin{array}{c} H_{3} \\ Acid Base \end{array}} CH_{3}-CH_{2}-CH_{-}ONa \xrightarrow{\begin{array}{c} CH_{3} \\ S_{N}2 \end{array}} CH_{3}-CH_{2}-CH_{-}OCH_{3} \\ Retention of product. \\ CH_{3}-CH_{2}-CH_{-}OH + TsCI \xrightarrow{\begin{array}{c} CH_{3} \\ H_{3}-CH_{2}-CH_{-}OTs \end{array}} \xrightarrow{\begin{array}{c} CH_{3} \\ CH_{3}-CH_{2}-CH_{-}OCH_{3} \\ S_{N}2 \end{array} \xrightarrow{\begin{array}{c} CH_{3} \\ H_{3}-CH_{2}-CH_{-}OCH_{3} \\ H_{3}-CH_{2}-CH_{-}OCH_{3} \end{array} \xrightarrow{\begin{array}{c} CH_{3} \\ H_{3}-CH_{2}-CH_{-}OCH_{3} \\ S_{N}2 \end{array} \xrightarrow{\begin{array}{c} CH_{3} \\ H_{3}-CH_{2}-CH_{-}OCH_{3} \\ H_{3}-CH_{2}-CH_{-}OCH_{3} \\ H_{3}-CH_{2}-CH_{-}OCH_{3} \\ \end{array} \xrightarrow{\begin{array}{c} CH_{3} \\ H_{3}-CH_{2}-CH_{-}OCH_{3} \\ H_{3}-CH_{2}-CH_{-}OCH_{3} \\ H_{3}-CH_{2}-CH_{-}OCH_{3} \\ H_{3}-CH_{2}-CH_{-}OCH_{3} \\ \end{array} \xrightarrow{\begin{array}{c} CH_{3} \\ H_{3}-CH_{2}-CH_{-}OCH_{3} \\ H_{3}-CH_{2}-CH_{2}-CH_{-}OCH_{3} \\ H_{3}-CH_{2}-CH_{2}-CH_{-}OCH_{3} \\ H_{3}-CH_{2}-CH_{2}-CH_{-}OCH_{3} \\ H_{3}-CH_{2}-CH_{-}OCH_{3} \\ H_{3}-CH_{2}-CH_{2}-CH_{-}OCH_{3} \\ H_{3}-CH_{2}-CH_{2}-CH_{-}OCH_{3} \\ H_{3}-CH_{2}-CH_{2}-CH_{-}OCH$$

M = Retention product and M' = inversion product, so they are enantiomers.

Less substituted product is formed as major product because of steric hindrance of t-Butyl group.

- 2. $1^{\circ} > 2^{\circ} > 3^{\circ}$ Anion of acetic acid is more stabilised by resonance than phenoxide ion.
- 3. 1-chlorohexane Because it follows Sn2 path.

9. Ease of backside attack (less steric hindrance) decides which undergoes S_N^2 faster (except in (b) in which iodide is better leaving group). In all cases first one is fater than the other for S_N^2 reaction.

10. Gas B is
$$CH_4$$
, hence A is CH_3MgBr . CH_3Br forms CH_3 on reaction with benzene

CH₃

11. Only II can be used for successful synthesis of Grignard reagent, rest all contain acidic proton and will react with R^{-} (from Grignard reagent) forming alkane.

(decarboxylation takes place on heating when there is a keto group at β - position)

14.

(a) Though neopentylbromide is primary, bulky tertiary butyl group possess very large steric hindrance to the attack of bulky nucleophile N_3^- .

(b)
$$H \xrightarrow{Br} CH_3 + N_3^- \xrightarrow{S_N 2} CH_3 \xrightarrow{N_3} H$$

(c) Rate will double

(d) Rate will double

(e) not related

(f) Recemization occur through carbocation intermediate

18.

In Vinyl chloride, C – Cl bond is stable due to resonance (as in chlorobenzene)

$$CH_2 \stackrel{\frown}{=} CH \stackrel{\frown}{-} CH \stackrel{\frown}{=} CH \stackrel{\ominus}{-} CH \stackrel{\ominus}{=} CH \stackrel{\ominus}{-} CH \stackrel{\ominus}{=} CH$$

Hence S_N reaction in which Cl is replaced by nucleophile is not possible. In addition to this, sp²- hybridised carbon is more acidic than sp³- carbon, hence removal of proton (H⁺) is easier than removal of halide (Cl⁻)

In allyl chloride, S_N reaction is easier since allyl carbocation formed after removal of Cl^- is stabilised by resonance.

$$CH_2 = CHCH_2CI \longrightarrow CH_2 = CHCH_2 + CI$$

Allyl carbocation

$$CH_2 \stackrel{\textcircled{}{=}}{=} CH \stackrel{\textcircled{}{=}}{CH_2} \stackrel{\textcircled{}{\leftarrow}}{CH_2} \stackrel{\textcircled{}{\leftarrow}}{CH_2} \stackrel{\textcircled{}{=}}{CH_2} CH \stackrel{\textcircled{}{=}}{CH_2} CH$$

19. (a)
$$CF_3^- < CH_3O^- < CH_3S^-$$
; (b) $CH_3COO^- < CH_3SO_3^- < CF_3SO_3^-$

20. As [CN]⁻ is an ambident nuicleophile which abve two nucleophile which have two nucleophilic sites and can attack from either side. In a highly polar solvent, AgCN promotes the formation of carbocation R⁺, precipitation of AgBr.

$$R - BR + Ag^{+} [CN^{-}] \xrightarrow{\Theta} C = \stackrel{\longrightarrow}{N} C = \stackrel{\Theta}{N} R^{+} + CN^{-} + Ag \stackrel{\longrightarrow}{Br} \downarrow \xrightarrow{fast} R^{-}N^{+} \equiv C^{-}$$

In the absence of such promotion by Ag^+ , with $Na+[CN]^-$, the resulting S_N^2 reaction is found to proceed with preferential attack on the atom in the nucleophile which is more polarisable i.e. C.

 $NC^{-}+R-Br \longrightarrow [NC^{\delta-}....Br^{\delta-}] \longrightarrow N \equiv C-R+Br^{-}$ Transition State

- **11.** Elimination reaction is highly favoured if
 - (a) Bulkier base is used

12.

(b) Higher temperature is used

Hence in given reaction biomolecular elimination reaction provides major product.

Reaction is dehydrohalogenation E^2 - elimination reaction. Elimination takes place in single step and proceed by formation of transition state from anti position.

$$L \xleftarrow{H_2O}_{-H^+} CH_3O \xrightarrow{CH_3}H CH_3 \xrightarrow{CH_3}NO_2 \xleftarrow{rearrangement}_{H CH_3}$$

7. A.
$$CH_3 - CHBr - CD_3 \xrightarrow{Alc. KOH} CH_2 = CH - CD_3$$

E2 reaction is a single-step reaction in which both deprotonation from β -C and loss of leaving group from α -C occur simultaneously in the rate-determining step.

C-D bond is stronger than C—H bond, C—H, is preferably broken in elimination.

B. Ph—CHBr—CH₃ reacts faster than Ph—CHBr—CD₃ in E2 reaction because in latter case, stronger C—D bond is to be broken in the rate determining step.

C. Ph-CH₂-CH₂Br
$$\xrightarrow{C_2H_3OD}$$
 Ph-CD=CH₂

Deuterium incorporation in the product indicates E1CB mechanism

$$Ph-CH_{2}-CH_{2}Br \xrightarrow{C_{2}H_{5}O^{-}} Ph-\overline{CH}_{carbanion}CH_{2}Br \xrightarrow{C_{2}H_{5}OD} Ph-CHD_{1}-CH_{2}Br$$

$$I \xrightarrow{C_{2}H_{5}O^{-}} Ph - \overset{D}{C} \xrightarrow{C_{2}H_{5}O^{-}} Ph - \overset{D}{C} \xrightarrow{C_{2}H_{5}OD} Ph - CHD_{2}CH_{2}$$

77

- **D.** Both $PhCH_2CH_2Br$ and $PhCD_2CH_2Br$ will react at same rate in E1 reaction because C—H bond is broken in fast non rate determining step. Also E1 reaction follow first order kinetics.
- 8. Nucleophile PhS⁻ substitute the Br⁻ through S_N^2 mechanism with inversion of configuration at α -C.

It is S_N^2 reaction so back side attack is possible.

12.		Column	I			Colum	nII	Expla	nation	
	P.	→ CI	>>)		NaOEt((2)	ō Et	(strong nucleophile) causes	
		•	•					dehyd	rohalogenation of 3° alkyl halide	
	Q.	\rightarrow 01	Na —	► } _ C)Et	EtBr(3))	3° but	oxide undergoes S_N reaction with 1° alkyl	
								halide		
	R.	$\langle \gamma \rangle$	─►{	γ^{0}	H	(i) Hg(0	DAC) ₂	Mercu	ration-demercuration adds H2O by	
		<i>″</i>		/		(ii) NaE (I)	BH4	Marko	ownikoff's rule without rearrangement	
	S.				(i) BH ₃		Hydroboro-oxidation adds H ₂ O by.			
						(ii) H_2O_2/OH^-		anti-Markownikoff's rule		
	Thus, $P - (2)$, $Q - (3)$, $R - (1)$, $S - (4)$									
						MOCH	K TEST			
1.	В	2.	D	3.	D	4.	В	5.	D	
6.	Leaving	group ab	ility ∝ S	Stability o	f anion.					
				CH₃∖⊕	CH₃	\frown	⊕			

7. Carbocation Stability

 $CH_{3} \oplus CH_{3} > CH_{3}$ $CH_{3} > CH_{3}$ $Br^{\Theta} > CI^{\Theta}$

leaving group ability is $Br^{\Theta} > 0$

