

SOLVED EXAMPLES

1. Find out unknown in following reactions.

Sol. Since E is obtained on dry distillation of calcium salt of acetic acid hence E will be CH₃-C-CH₃. Thus other unknowns are

$$H$$

$$A = CH_{3} - C - CH_{3}$$

$$OH$$

$$B = CH_{3} - CH = CH_{2}$$

$$C = CH_{3} - CH - CH_{2}$$

$$D = CH_{3} - C \equiv C - H$$

$$Br$$

$$Br$$

- 2. What will be structure of aromatic $C_8H_8Cl_2$ (A), which on aqueous alkalihydrolysis gives product (B). (B) gives positive iodoform test.
- Sol. Since (B) is showing iodoform test hence it will be methylketone only as it is obtained on aqueous alkali hydrolysis of (A) which will be non-terminal gem dihalides as –

$$\begin{array}{c} \mathsf{R} - \mathsf{C} \mathsf{I} \\ \mathsf{I} \\ \mathsf{C} \mathsf{I} \\ \mathsf{C} \mathsf{I} \\ \mathsf{C} \mathsf{I} \\ \mathsf{C} \mathsf{I} \end{array} \xrightarrow{\mathsf{KOH}} \mathsf{R} - \mathsf{C} \mathsf{C} - \mathsf{CH}_{3} \xrightarrow{\mathsf{KOH}} \mathsf{R} - \mathsf{C} - \mathsf{ONa} + \mathsf{CHI}_{3} \xrightarrow{\mathsf{C}} \mathsf{O} \\ \overset{\mathsf{I}}{\mathsf{O}} \overset{\mathsf{O}}{\mathsf{O}} \xrightarrow{\mathsf{I}} \mathsf{R} - \mathsf{C} - \mathsf{ONa} + \mathsf{CHI}_{3} \xrightarrow{\mathsf{C}} \mathsf{O} \xrightarrow{\mathsf{I}} \mathsf{R} \xrightarrow{\mathsf{O}} \mathsf{O} \xrightarrow{\mathsf{I}} \mathsf{I} \xrightarrow{\mathsf{O}} \mathsf{O} \xrightarrow{\mathsf{I}} \mathsf{I} \xrightarrow{\mathsf{O}} \mathsf{O} \xrightarrow{\mathsf{I}} \mathsf{I} \xrightarrow{\mathsf{O}} \mathsf{O} \xrightarrow{\mathsf{I}} \mathsf{I} \xrightarrow{\mathsf{O}} \xrightarrow{\mathsf{O}} \mathsf{I} \xrightarrow{\mathsf{O}} \xrightarrow{\mathsf{O}} \xrightarrow{\mathsf{O}} \mathsf{I} \xrightarrow{\mathsf{O}} \xrightarrow{\mathsf{$$

Now unknown 'R' can be known as :

$$R - C_{B}^{I} - C_{B}^{I} = C_{B}^{I} H_{B}^{I} Cl_{2}$$

$$R = C_{B}^{I} H_{B}^{I} Cl_{2} - C_{2}^{I} H_{3}^{I} Cl_{2} = C_{B}^{I} H_{5}$$
Hence 'A' is $C_{B}^{I} H_{5} - C_{B}^{I} - C_{B}^{I}$

3. Write the products of the following reactions.

4. What will be hydration and hydroboration product for Cyclohexylethyne.

$$\bigcup_{Cyclohexylethyne} C C - H \xrightarrow{Hg^{2+} / H_2SO_4} \bigcup_{Cyclohexylmethylketone} C - CH_3$$

Sol. Cyclohexylethyne

(i)
$$B_2H_6$$
 or Sia_2BH
(ii) H_2O_2 (OH⁻)
Cyclobexylethanal

- 5. Which hydrocarbon on ozonolysis gives acetone only ?
- **Sol.** Acetone only, means two moles of acetone.

$$CH_{3} - C = C - CH_{3} \xrightarrow{1. \text{ PCI}_{6}/\text{Ether}} A \xrightarrow{H_{2}O} B + C CH_{3} - C = O + O = C - CH_{3}$$
$$\underset{CH_{3}}{\overset{I}{\longrightarrow}} H_{2}O \xrightarrow{I} B + C CH_{3} - C = O + O = C - CH_{3}$$

6. Predict the structure of (A) in the following sequence :

- **Sol.** Since (B) is alcohol and (C) is alkene hence (B) is 3° alcohol only according to question (It is known that alkene can only be obtained from 3° alcohol when heated with copper). Thus structure of (B) is $(CH_3)_3C$ -OH and its corresponding. alkyl bromide will be $(CH_3)_3C$ -Br (tertiarybutylbromide)
- 7. What will be structure of $C_4H_8O_2$ which on treating with excess CH_3 -MgBr followed by acidification gives sole alcohol (A). (A) on treating with sodium hypoiodite solution gives positive iodoform test.
- Sol. Since (A) gives positively iodoform test hence it will be alkanol-2. 2° alcohol can be obtained only when alkylformate is treated with Grignard's reagent via aldehyde where alkyl part is alkyl part of Grignard's reagent. As Grignard's reagent is CH_3 -MgBr hence 2° alcohol will be CH_3 -CH-OH (propanol-2). Thus $C_4H_8O_2$ is either CH_3 -CH-OH (propanol-2).

$$\begin{array}{c} O & CH_3 \\ \parallel & \parallel \\ H-C-OCH_2-CH_2-CH_3 & \text{or} & H-C-O-CH-CH_3 \end{array}$$
Reactions:

Here we get two alcohols propanol-2 and propanol-1. Alkyl part of formic acid ester which gives propanol-2 will

be isopropyl only. Thus structure of $C_4H_8O_2$ is $H - C - OCH (CH_3)_2$

$$Ph \qquad C = N \qquad \xrightarrow{OH} \qquad \underbrace{1. \operatorname{PCl}_{6}/\operatorname{Ether}}_{2. \operatorname{H}_{2}O} A \xrightarrow{\operatorname{H}_{3}O^{+}} B + C$$

$$P-CH_{3}C_{6}H_{4} \qquad \underbrace{2. \operatorname{H}_{2}O} A \xrightarrow{\operatorname{H}_{3}O^{+}} B + C$$

$$A, B, C \text{ are}$$

$$(A) \operatorname{PhCONH-p} - \operatorname{CH}_{3}C_{6}H_{4} \qquad (B) \operatorname{PhCOOH}$$

$$(C) \operatorname{pCH}_{3}C_{6}H_{4}\operatorname{NH}_{2} \qquad (D) \operatorname{PhCHO}$$

Sol. (A,B,C)

9. Which carbonyl compound on heated with dilute alkali gives 1- acetylcyclopentene.

- 11. (A) on treating with (B) in the presence of dry ether gives (C) which on acids hydrolysis gives (D). (D) on oxidation gives 2,5-dimethylhexan-3-one.
- Sol.

By knowing structure of given product (D) will be $CH_3 - CH - CH_2 - CH - CH - CH_3$ hence (C) will be $\begin{vmatrix} I \\ I \\ CH_3 \end{vmatrix}$ OH CH_3

 $CH_3 - CH - CH_2 - CH - CH_3$ and finally A & B will have following two structures. $| I - CH_3 = 0$ $CH_3 = 0$ $CH_3 = 0$

$$A = CH_3 - CH - CH_2 - CH = O \quad or \quad A = CH_3 - CH - CH = O$$

$$\begin{array}{ccc} B = \mathsf{CH}_3 - \mathsf{CH} - \mathsf{MgBr} & \text{or} & B = \mathsf{CH}_3 - \mathsf{CH} - \mathsf{CH}_2 - \mathsf{MgB} \\ & & & & \\ \mathsf{CH}_3 & & & \mathsf{CH}_3 \end{array}$$

12. Predict the product for the followings :

Sol. Witting reaction

13. Predict Product –

Sol. Benzoin condensation reaction

14. Predict product for the following

$$C_{6}H_{5} C = O \xrightarrow[C_{6}H_{5} - C - O - H]{H_{5} - C - O - H} Product$$

Sol. Baeyer-villiger oxidation

$$CH_{3}-C-OC_{6}H_{5} + C_{6}H_{5} - C - OH$$

- 9. Aromatic carbonyl compounds having molecular formula C₈H₈O react with NH₂OH how many oximes can be formed :
 - (A) 8 (B) 10 (C) 12 (D) 6
- 10.Arrange the following compounds in decreasing orders of rate of exchange of O^{18} with H_2O^{18} (X) CCl_3CHO(Y) CH_3CHO(Z) CH_3COCH_3(W) CF_3CHO

(A) W > Z > X > Y (B) W > X > Y > Z (C) W > Y > Z > X (D) W > Z > Y > X

11. Which of the following compound has the largest equilibrium constant for the addition of water ?

12. Acetaldehyde on reaction with sodium hydrogen sulphite produces

Compound (X) in the above reaction.

14.

The correct order of reactivity of PhMgBr with following compounds will be.							
$(C_6H_5)_2CO,$	CH	$CH_3 - CH = O$,		$(CH_3)_2 C = O$			
(1)	(2)		(3)				
(A) $1 > 2 > 3$	(B) $2 > 3 > 1$	(C) $3 > 2 > 1$		(D) $1 > 3 > 2$			

15.The cyanohydrin of a carbonyl compound on hydrolysis gives lactic acid. The carbonyl compound is(A) HCHO(B) CH₃CHO(C) CH₃COCH₃(D) CH₃COCH₂CH₃

17. In the given reaction the product is :

$$CH_{3}-CH_{2}-C-OCH_{3} + CH_{3}-C-OCH_{3} \frac{(1) CH_{3}O^{\Theta} Na^{*}}{(2) CH_{3}OH} \xrightarrow{H_{2}O}{\Delta}$$

$$(A) CH_{3}-CH_{2}-C-CH_{2}-C-OCH_{3} \qquad (B) CH_{3}-C-CH-COOCH_{3}$$

$$(C) H-C-CH_{2}-CH-COOCH_{3} \qquad (D) CH_{3}-C-CH_{2}-CH_{3}$$

18. The compounds that undergo Aldol condensation is :

- 19.Which of the following will not undergo aldol condensation ?(A) CH₃CHO(B) CH₃CH₂CHO(C) CD₃CHO(D) PhCHO
- 20. (X) is the product of cross aldol condensation between benzaldehyde (C_6H_5CHO) and acetone What is its structure ?

$$\begin{array}{c} O \\ \parallel \\ (A) C_6H_5-CH=CH-C-CH_3 \\ (C) C_6H_5-CO-CH_2-C=(CH_3)_2 \\ \end{array}$$

$$\begin{array}{c} O \\ (B) C_6H_5-CH=C-(CH_3)_2 \\ (D) \text{ None of these} \\ \end{array}$$

- In which of the following compounds the methylene hydrogens are the most acidic ?
 (A) CH₃COCH₂CH₃
 (B) CH₃CH₂COOC₂H₅
 (C) CH₃CH₂CH(COOC₂H₅)
- (D) CH₃COCH₂CN.
- 22. In the cannizzaro's reaction the intermediate that will be the best hydride donor ?

23. Product of following reaction is

25. Cannizzaro reaction does not take place with

(A) (CH₃)₃CCHO.

С)

26. In the reaction, $(CH_3)_3CCHO + HCHO \xrightarrow{\text{NaOH}} A + B$.

the products (A) and (B) are respectively :

- (A) $(CH_3)_3CCH_2OH$ and $HCOO^-$ Na⁺.
- (B) (CH₃)₃CCOONa and CH₃OH.
- (C) (CH₃)₃CCH₂OH and CH₃OH.
- **(D)** $(CH_3)_3$ COONa and HCOO⁻ Na⁺.

28. 2-Methyhlcyclohexanone is allowed to react with metachloroperbenzoic acid. The major product in the reaction is

29. In the following conversion

Which of the following regents is suitable ?(A) NH2NH2,KOH, DMSO(B) NaBH4(C) Zn-Hg, concentrated H2SO4(D) LiAlH4

Above conversion can be achieved by (A) NH₂-NH₂/ NaOH (B) Zn-Hg/HCl (C) LiAlH₄

(D) NaBH₄.

The products of the above reaction is / are :

33. What will be the product of the following reaction

(A) Ph-CH-O-C-Me (B) Ph C -CH
$$\stackrel{\text{RCO}_{3}H}{\underset{\text{Me}}{\overset{\text{RCO}_{3}H}{\overset{\text{RCO}_{$$

In which of the following reaction deuterium exchange is observed ? 34.

(A)
$$CH_{3} - C - CH_{2} - CH_{3} \xrightarrow{H_{1}O/OH^{\Theta}} CD_{3} - C - CD_{2} - CH_{3}$$

(B) $CH_{3} - CH - C - H \xrightarrow{D_{2}O/OH} CH_{3} - CD - C - H$
Ph O
(C) $\xrightarrow{P_{1}} D_{2}O/OH \xrightarrow{P_{2}} D \xrightarrow{P_{1}} H$
(D) $H - C - H \xrightarrow{D_{2}O/OH} D - C - D$

In which of the following reaction deuterium exchange is not observed ?

40. 2-pentanone can be distinguished from 3- pentanone by the reagent ?
(A) 2, 4- Dinitrophenyl hydrazine
(B)Tollen's reagent
(C) I₂ and dilute NaOH
(D) NaHSO₃

41.
$$\begin{array}{c} & \bigoplus_{i=1}^{Q} + (C_{6}H_{5})_{3}P = CHCH_{3} \longrightarrow \\ & \bigoplus_{i=1}^{Q} - CH_{3} & \bigoplus_{i=$$

$$C_{6}H_{5}CHO + CH_{3}NO_{2} \xrightarrow{\text{NaOH}} (X)$$
(A) $C_{6}H_{5} - CH - CH - NO_{2}$
(B) $C_{6}H_{5}CHCH_{2}NO_{2}$
(C) $C_{6}H_{5}CH = CH - NO_{2}$
(D) $C_{6}H_{5}CH \xrightarrow{CH_{2}NO_{2}} CH_{2}NO_{2}$.

43. What is the final product of this sequence of reactions ?

44. Ph-CH₂-COOEt +
$$\begin{array}{c} O\\ EtO\end{array}$$
 (B) Ph-CH₂-COOEt (C) Ph-CH (D) None of these (D) None of these

45. Which of the following will gives iodoform with NaOI ?

54. How many functional group produced CH_4 gas by the reaction of compound (I) with CH_3MgBr .

OH HO--CH₃ οŢ___ SO[®]H HOOC-۰N **(I**) **(A)** 3 **(B)** 4 **(C)** 5 **(D)** 6 $\begin{array}{c} O \\ \parallel \\ Ph-MgBr + (CH_3)_2CH - C - CI \longrightarrow [X] \xrightarrow{Zn-Hg/HCI} [Y] \end{array}$ 1 mole Identify structure of [Y]. $\begin{array}{c} \textbf{(B)} \ \mathsf{Ph}-\mathsf{CH}-\mathsf{CH}_2-\mathsf{CH}_3\\ & \downarrow\\ \mathsf{CH}_3 \end{array}$ (A) $Ph - CH_2 - CH - CH_3$ | CH3 $(C) Ph-C-CH_3 \\ | \\ CH_3 \\ CH_3$ (**D**) \bigcirc $-CH_2 - CH_2 - CH_3$ CH_3

56. Predict the major product in the following reaction:

57. A compound X $(C_5H_{12}O_4)$ upon treatment with CH₃MgX gives 4 mole of methane. Identify the structure of (X).

(C) $CHD_2 - CH_2 - OH$, $CD_2 = CH_2$ (D) $CHD - CH_2 - OH$, $CD_2 = CH_2$

ÒН

63. For the given reaction
$$F \longrightarrow CH_2Br + Mg \xrightarrow{dry \text{ ether}} A \xrightarrow{(i)CH_3CHO}_{(ii)H_3O^+} B$$

product **B** is :

64. Consider the following sequence of reactions-.

$$PhC \equiv CH \xrightarrow{HgSO_4} A \xrightarrow{NH_2OH} B + C.$$

The products (A), (B) and (C) are respectively,

(A) PhCHO, $\stackrel{Ph}{\longrightarrow} C = N \quad OH$ and $\stackrel{Ph}{\longrightarrow} C = N \quad OH$ (B) PhCH₂CHO, $\stackrel{PhCH_2}{\longrightarrow} C = N \quad OH$ and $\stackrel{PhCH_2}{\longrightarrow} C = N \quad OH$ (C) $\stackrel{Ph}{\longrightarrow} C = O$, $\stackrel{Ph}{\longrightarrow} C \stackrel{OH}{\longrightarrow} OH$ and $\stackrel{Ph}{\longrightarrow} C = N - OH$ (D) $\stackrel{Ph}{\longrightarrow} C = O$, $\stackrel{Ph}{\longrightarrow} C = N \quad OH$ and $\stackrel{Ph}{\longrightarrow} C = N - OH$

69.
$$CH_3 \xrightarrow{\text{KOH, H}_2O} Product (C_7H_{10}O) :$$

 $CH_3 \xrightarrow{\text{CH}_3} CH_3 \xrightarrow{\text{KOH, H}_2O} Product (C_7H_{10}O) :$

70. Consider the following sequence of reactions :

The products (A) and (B) are, respectively :

71. Compound (X) $C_9H_{10}O$ gives yellow coloured ppt with 2,4 DNP but does not give red coloured ppt with Fehling's solution. (X) on treatment with NH_2OH/H^+ gives compound (Y) $C_9H_{11}NO$. (Y) when treated with PCl_5 gives isomeric compound (Z). (Z) on hydrolysis gives propanoic acid and aniline. What will be the correct structure of (X), (Y) and (Z) ?

(A)
$$C_{6}H_{5} - C - C_{2}H_{5};$$
 $C_{6}H_{5} - C - C_{2}H_{5};$ $C_{6}H_{5} - C - C_{2}H_{5};$ $C_{6}H_{5} - C - NH - C_{2}H_{5}$
 $|| O OH - N O$

(C)
$$C_6H_5 - CH_2 - C - CH_3$$
; $C_6H_5 - CH_2 - C - CH_3$; $CH_3 - C - CH_2 - NH - C_6H_5$
 $\| \\ O \\ N - OH \\ O \\ O$

(D)
$$C_6H_5 - C - C_2H_5$$
; $C_6H_5 - C - C_2H_5$; $C_6H_5 - C - NH - C_2H_5$
 $|| \\ O \\ N - OH \\ || \\ O$

72.
$$CI - \bigcirc -CHO + CH \swarrow CN \longrightarrow Product$$
(A)
$$CI - \bigcirc -CH = C \swarrow CN$$
(B)
$$CI - \bigcirc -CH - CH \swarrow CN$$
(C)
$$OHC - \bigcirc -CH \swarrow CN$$
(D)
$$CI - \bigcirc -CH \swarrow CN$$
(D)
$$CI - \bigcirc -CH \swarrow CN$$
(D)
$$CI - \bigcirc -CH \swarrow CN$$
(E)
$$CI - \bigcirc -CH \checkmark CN$$
(E)
$$CI - \bigcirc -CH \land CN$$
(E)
$$CI - \bigcirc -CH \land$$

A and B respectively are :

(A)
$$\bigcirc$$
 + CH₃COOC₂H₅

∠CN

The incorrect statement is

- (A) Total five alkenes are obtained
- (B) Total six different carbonyl compounds are obtained on ozonolysis
- (C) All carbonyl compounds can give aldol reaction when treated with dil KOH
- (D) Only two carbonly compounds give positive iodoform test

78. (i)
$$H_3C \xrightarrow{CH_3} H_3C \xrightarrow{Mg/Ether} [A] \xrightarrow{(i)CO_2} [B] \xrightarrow{SOCl_2} [C] \xrightarrow{(i)} (C_6H_5CH_2)_2CuLi [D]$$

Identify (**D**) in the following sequence of reaction.

80. The suitable reagent for the following reaction is :

SOLVED EXAMPLES

1. Find out unknown in following reactions.

Sol. Since E is obtained on dry distillation of calcium salt of acetic acid hence E will be CH₃-C-CH₃. Thus other unknowns are

$$\begin{array}{l} \mathsf{H} \\ \mathsf{A} = \mathsf{C}\mathsf{H}_{3} - \overset{\mathsf{C}}{\mathsf{C}} - \mathsf{C}\mathsf{H}_{3} \\ \mathsf{O}\mathsf{H} \end{array} \qquad \qquad \mathsf{B} = \mathsf{C}\mathsf{H}_{3} - \mathsf{C}\mathsf{H} = \mathsf{C}\mathsf{H}_{2} \\ \mathsf{O}\mathsf{H} \qquad \qquad \mathsf{D} = \mathsf{C}\mathsf{H}_{3} - \mathsf{C} = \mathsf{C} - \mathsf{H} \\ \mathsf{B}\mathsf{r} \quad \overset{\mathsf{H}}{\mathsf{B}\mathsf{r}} \qquad \qquad \mathsf{D} = \mathsf{C}\mathsf{H}_{3} - \mathsf{C} = \mathsf{C} - \mathsf{H} \\ \end{array}$$

- 2. What will be structure of aromatic $C_8H_8Cl_2$ (A), which on aqueous alkalihydrolysis gives product (B). (B) gives positive iodoform test.
- Sol. Since (B) is showing iodoform test hence it will be methylketone only as it is obtained on aqueous alkali hydrolysis of (A) which will be non-terminal gem dihalides as –

$$\begin{array}{ccc}
 & \mathsf{CI} & & \mathsf{KOH} \\
 & \mathsf{R} - \overset{\mathsf{C}}{\mathsf{C}} - \mathsf{CH}_3 & & \overset{\mathsf{KOH}}{\longrightarrow} & \mathsf{R} - \overset{\mathsf{C}}{\mathsf{C}} - \mathsf{CH}_3 & & \overset{\mathsf{KOH}}{\longrightarrow} & \mathsf{R} - \overset{\mathsf{O}}{\mathsf{C}} - \mathsf{ONa} + \mathsf{CHI}_3 \\
 & \mathsf{(A)} & & \mathsf{O} & & \mathsf{O} & \mathsf{O} & \mathsf{O} & \mathsf{O} \\
\end{array}$$

Now unknown 'R' can be known as :

$$R = C_8 H_8 C I_2 - C_2 H_3 C I_2 = C_6 H_5$$
Hence 'A' is $C_6 H_5 - C_1 C H_3$

3. Write the products of the following reactions.

4. What will be hydration and hydroboration product for Cyclohexylethyne.

$$\bigcup_{Cyclohexylethyne} C C - H \xrightarrow{Hg^{2+} / H_2SO_4} \bigcup_{Cyclohexylmethylketone} C - CH_3$$

Sol. Cyclohexylethyne

(i)
$$B_2H_6$$
 or Sia_2BH
(ii) H_2O_2 (OH⁻)
Cyclobexylethanal

- 5. Which hydrocarbon on ozonolysis gives acetone only ?
- **Sol.** Acetone only, means two moles of acetone.

$$CH_{3} - C = C - CH_{3} \xrightarrow{1. \text{ PCI}_{6}/\text{Ether}} A \xrightarrow{H_{2}O} B + C CH_{3} - C = O + O = C - CH_{3}$$
$$\underset{CH_{3}}{\overset{I}{\longrightarrow}} H_{2}O \xrightarrow{I} B + C CH_{3} - C = O + O = C - CH_{3}$$

6. Predict the structure of (A) in the following sequence :

- **Sol.** Since (B) is alcohol and (C) is alkene hence (B) is 3° alcohol only according to question (It is known that alkene can only be obtained from 3° alcohol when heated with copper). Thus structure of (B) is $(CH_3)_3C$ -OH and its corresponding. alkyl bromide will be $(CH_3)_3C$ -Br (tertiarybutylbromide)
- 7. What will be structure of $C_4H_8O_2$ which on treating with excess CH_3 -MgBr followed by acidification gives sole alcohol (A). (A) on treating with sodium hypoiodite solution gives positive iodoform test.
- Sol. Since (A) gives positively iodoform test hence it will be alkanol-2. 2° alcohol can be obtained only when alkylformate is treated with Grignard's reagent via aldehyde where alkyl part is alkyl part of Grignard's reagent. As Grignard's reagent is CH_3 -MgBr hence 2° alcohol will be CH_3 -CH-OH (propanol-2). Thus $C_4H_8O_2$ is either CH_3 -CH-OH (propanol-2).

$$\begin{array}{c} O & CH_3 \\ \parallel & \parallel \\ H-C-OCH_2-CH_2-CH_3 & \text{or} & H-C-O-CH-CH_3 \end{array}$$
Reactions:

Here we get two alcohols propanol-2 and propanol-1. Alkyl part of formic acid ester which gives propanol-2 will

be isopropyl only. Thus structure of $C_4H_8O_2$ is $H - C - OCH (CH_3)_2$

$$Ph \qquad C = N \qquad \xrightarrow{OH} \qquad \underbrace{1. \operatorname{PCl}_{6}/\operatorname{Ether}}_{2. \operatorname{H}_{2}O} A \xrightarrow{\operatorname{H}_{3}O^{+}} B + C$$

$$P-CH_{3}C_{6}H_{4} \qquad \underbrace{2. \operatorname{H}_{2}O} A \xrightarrow{\operatorname{H}_{3}O^{+}} B + C$$

$$A, B, C \text{ are}$$

$$(A) \operatorname{PhCONH-p} - \operatorname{CH}_{3}C_{6}H_{4} \qquad (B) \operatorname{PhCOOH}$$

$$(C) \operatorname{pCH}_{3}C_{6}H_{4}\operatorname{NH}_{2} \qquad (D) \operatorname{PhCHO}$$

Sol. (A,B,C)

9. Which carbonyl compound on heated with dilute alkali gives 1- acetylcyclopentene.

- 11. (A) on treating with (B) in the presence of dry ether gives (C) which on acids hydrolysis gives (D). (D) on oxidation gives 2,5-dimethylhexan-3-one.
- Sol.

By knowing structure of given product (D) will be $CH_3 - CH - CH_2 - CH - CH - CH_3$ hence (C) will be $\begin{vmatrix} I \\ I \\ CH_3 \end{vmatrix}$ OH CH_3

 $CH_3 - CH - CH_2 - CH - CH_3$ and finally A & B will have following two structures. $| I - CH_3 = 0$ $CH_3 = 0$ $CH_3 = 0$

$$A = CH_3 - CH - CH_2 - CH = O \quad or \quad A = CH_3 - CH - CH = O$$

$$\begin{array}{ccc} B = \mathsf{CH}_3 - \mathsf{CH} - \mathsf{MgBr} & \text{or} & B = \mathsf{CH}_3 - \mathsf{CH} - \mathsf{CH}_2 - \mathsf{MgB} \\ & & & & \\ \mathsf{CH}_3 & & & \mathsf{CH}_3 \end{array}$$

12. Predict the product for the followings :

Sol. Witting reaction

13. Predict Product –

Sol. Benzoin condensation reaction

14. Predict product for the following

$$C_{6}H_{5} C = O \xrightarrow[C_{6}H_{5} - C - O - H]{H_{5} - C - O - H} Product$$

Sol. Baeyer-villiger oxidation

$$CH_{3}-C-OC_{6}H_{5} + C_{6}H_{5} - C - OH$$

- 9. Aromatic carbonyl compounds having molecular formula C₈H₈O react with NH₂OH how many oximes can be formed :
 - (A) 8 (B) 10 (C) 12 (D) 6
- 10.Arrange the following compounds in decreasing orders of rate of exchange of O^{18} with H_2O^{18} (X) CCl_3CHO(Y) CH_3CHO(Z) CH_3COCH_3(W) CF_3CHO

(A) W > Z > X > Y (B) W > X > Y > Z (C) W > Y > Z > X (D) W > Z > Y > X

11. Which of the following compound has the largest equilibrium constant for the addition of water ?

12. Acetaldehyde on reaction with sodium hydrogen sulphite produces

Compound (X) in the above reaction.

14.

The correct order of reactivity of PhMgBr with following compounds will be.							
$(C_6H_5)_2CO,$	CH	$CH_3 - CH = O$,		$(CH_3)_2 C = O$			
(1)	(2)		(3)				
(A) $1 > 2 > 3$	(B) $2 > 3 > 1$	(C) $3 > 2 > 1$		(D) $1 > 3 > 2$			

15.The cyanohydrin of a carbonyl compound on hydrolysis gives lactic acid. The carbonyl compound is(A) HCHO(B) CH₃CHO(C) CH₃COCH₃(D) CH₃COCH₂CH₃

17. In the given reaction the product is :

$$CH_{3}-CH_{2}-C-OCH_{3} + CH_{3}-C-OCH_{3} \frac{(1) CH_{3}O^{\Theta} Na^{*}}{(2) CH_{3}OH} \xrightarrow{H_{2}O}{\Delta}$$

$$(A) CH_{3}-CH_{2}-C-CH_{2}-C-OCH_{3} \qquad (B) CH_{3}-C-CH-COOCH_{3}$$

$$(C) H-C-CH_{2}-CH-COOCH_{3} \qquad (D) CH_{3}-C-CH_{2}-CH_{3}$$

18. The compounds that undergo Aldol condensation is :

- 19.Which of the following will not undergo aldol condensation ?(A) CH₃CHO(B) CH₃CH₂CHO(C) CD₃CHO(D) PhCHO
- 20. (X) is the product of cross aldol condensation between benzaldehyde (C_6H_5CHO) and acetone What is its structure ?

$$\begin{array}{c} O \\ \parallel \\ (A) C_6H_5-CH=CH-C-CH_3 \\ (C) C_6H_5-CO-CH_2-C=(CH_3)_2 \\ \end{array}$$

$$\begin{array}{c} O \\ (B) C_6H_5-CH=C-(CH_3)_2 \\ (D) \text{ None of these} \\ \end{array}$$

- In which of the following compounds the methylene hydrogens are the most acidic ?
 (A) CH₃COCH₂CH₃
 (B) CH₃CH₂COOC₂H₅
 (C) CH₃CH₂CH(COOC₂H₅)
- (D) CH₃COCH₂CN.
- 22. In the cannizzaro's reaction the intermediate that will be the best hydride donor ?

23. Product of following reaction is

25. Cannizzaro reaction does not take place with

(A) (CH₃)₃CCHO.

С)

26. In the reaction, $(CH_3)_3CCHO + HCHO \xrightarrow{\text{NaOH}} A + B$.

the products (A) and (B) are respectively :

- (A) $(CH_3)_3CCH_2OH$ and $HCOO^-$ Na⁺.
- (B) (CH₃)₃CCOONa and CH₃OH.
- (C) (CH₃)₃CCH₂OH and CH₃OH.
- **(D)** $(CH_3)_3$ COONa and HCOO⁻ Na⁺.

28. 2-Methyhlcyclohexanone is allowed to react with metachloroperbenzoic acid. The major product in the reaction is

29. In the following conversion

Which of the following regents is suitable ?(A) NH2NH2,KOH, DMSO(B) NaBH4(C) Zn-Hg, concentrated H2SO4(D) LiAlH4

Above conversion can be achieved by (A) NH₂-NH₂/ NaOH (B) Zn-Hg/HCl (C) LiAlH₄

(D) NaBH₄.

The products of the above reaction is / are :

33. What will be the product of the following reaction

(A) Ph-CH-O-C-Me (B) Ph C -CH
$$\stackrel{\text{RCO}_{3}H}{\underset{\text{Me}}{\overset{\text{RCO}_{3}H}{\overset{\text{RCO}_{$$

In which of the following reaction deuterium exchange is observed ? 34.

(A)
$$CH_{3} - C - CH_{2} - CH_{3} \xrightarrow{H_{1}O/OH^{\Theta}} CD_{3} - C - CD_{2} - CH_{3}$$

(B) $CH_{3} - CH - C - H \xrightarrow{D_{2}O/OH} CH_{3} - CD - C - H$
Ph O
(C) $\xrightarrow{P_{1}} D_{2}O/OH \xrightarrow{P_{2}} D \xrightarrow{P_{1}} H$
(D) $H - C - H \xrightarrow{D_{2}O/OH} D - C - D$

In which of the following reaction deuterium exchange is not observed ?

40. 2-pentanone can be distinguished from 3- pentanone by the reagent ?
(A) 2, 4- Dinitrophenyl hydrazine
(B)Tollen's reagent
(C) I₂ and dilute NaOH
(D) NaHSO₃

41.
$$\begin{array}{c} & \bigoplus_{i=1}^{Q} + (C_{6}H_{5})_{3}P = CHCH_{3} \longrightarrow \\ & \bigoplus_{i=1}^{Q} - CH_{3} & \bigoplus_{i=$$

$$C_{6}H_{5}CHO + CH_{3}NO_{2} \xrightarrow{\text{NaOH}} (X)$$
(A) $C_{6}H_{5} - CH - CH - NO_{2}$
(B) $C_{6}H_{5}CHCH_{2}NO_{2}$
(C) $C_{6}H_{5}CH = CH - NO_{2}$
(D) $C_{6}H_{5}CH \xrightarrow{CH_{2}NO_{2}} CH_{2}NO_{2}$.

43. What is the final product of this sequence of reactions ?

44. Ph-CH₂-COOEt +
$$\begin{array}{c} O\\ EtO\end{array}$$
 (B) Ph-CH₂-COOEt (C) Ph-CH (D) None of these (D) None of these

45. Which of the following will gives iodoform with NaOI ?

54. How many functional group produced CH_4 gas by the reaction of compound (I) with CH_3MgBr .

OH HO--CH₃ οŢ___ SO[®]H HOOC-۰N **(I**) **(A)** 3 **(B)** 4 **(C)** 5 **(D)** 6 $\begin{array}{c} O \\ \parallel \\ Ph-MgBr + (CH_3)_2CH - C - CI \longrightarrow [X] \xrightarrow{Zn-Hg/HCI} [Y] \end{array}$ 1 mole Identify structure of [Y]. $\begin{array}{c} \textbf{(B)} \ \mathsf{Ph}-\mathsf{CH}-\mathsf{CH}_2-\mathsf{CH}_3\\ & \downarrow\\ \mathsf{CH}_3 \end{array}$ (A) $Ph - CH_2 - CH - CH_3$ | CH3 $(C) Ph-C-CH_3 \\ | \\ CH_3 \\ CH_3$ (**D**) \bigcirc $-CH_2 - CH_2 - CH_3$ CH_3

56. Predict the major product in the following reaction:

57. A compound X $(C_5H_{12}O_4)$ upon treatment with CH₃MgX gives 4 mole of methane. Identify the structure of (X).

ÒН

234

63. For the given reaction
$$F \longrightarrow CH_2Br + Mg \xrightarrow{dry \text{ ether}} A \xrightarrow{(i)CH_3CHO} B$$

product **B** is :

64. Consider the following sequence of reactions-.

$$PhC \equiv CH \xrightarrow{HgSO_4} A \xrightarrow{NH_2OH} B + C.$$

The products (A), (B) and (C) are respectively,

(A) PhCHO, $\stackrel{Ph}{\longrightarrow} C = N \quad OH$ and $\stackrel{Ph}{\longrightarrow} C = N \quad OH$ (B) PhCH₂CHO, $\stackrel{PhCH_2}{\longrightarrow} C = N \quad OH$ and $\stackrel{PhCH_2}{\longrightarrow} C = N \quad OH$ (C) $\stackrel{Ph}{\longrightarrow} C = O$, $\stackrel{Ph}{\longrightarrow} C \stackrel{OH}{\longrightarrow} OH$ and $\stackrel{Ph}{\longrightarrow} C = N - OH$ (D) $\stackrel{Ph}{\longrightarrow} C = O$, $\stackrel{Ph}{\longrightarrow} C = N \quad OH$ and $\stackrel{Ph}{\longrightarrow} C = N - OH$

69.
$$CH_3 \xrightarrow{\text{KOH, H}_2O} Product (C_7H_{10}O) :$$

 $CH_3 \xrightarrow{\text{CH}_3} CH_3 \xrightarrow{\text{KOH, H}_2O} Product (C_7H_{10}O) :$

70. Consider the following sequence of reactions :

The products (A) and (B) are, respectively :

71. Compound (X) $C_9H_{10}O$ gives yellow coloured ppt with 2,4 DNP but does not give red coloured ppt with Fehling's solution. (X) on treatment with NH_2OH/H^+ gives compound (Y) $C_9H_{11}NO$. (Y) when treated with PCl_5 gives isomeric compound (Z). (Z) on hydrolysis gives propanoic acid and aniline. What will be the correct structure of (X), (Y) and (Z) ?

(A)
$$C_{6}H_{5} - C - C_{2}H_{5};$$
 $C_{6}H_{5} - C - C_{2}H_{5};$ $C_{6}H_{5} - C - C_{2}H_{5};$ $C_{6}H_{5} - C - NH - C_{2}H_{5}$
 $|| O OH - N O$

(C)
$$C_6H_5 - CH_2 - C - CH_3$$
; $C_6H_5 - CH_2 - C - CH_3$; $CH_3 - C - CH_2 - NH - C_6H_5$
 $\| \\ O \\ N - OH \\ O \\ O$

(D)
$$C_6H_5 - C - C_2H_5$$
; $C_6H_5 - C - C_2H_5$; $C_6H_5 - C - NH - C_2H_5$
 $|| \\ O \\ N - OH \\ || \\ O$

72.
$$CI - \bigcirc -CHO + CH \swarrow CN \longrightarrow Product$$
(A)
$$CI - \bigcirc -CH = C \swarrow CN$$
(B)
$$CI - \bigcirc -CH - CH \swarrow CN$$
(C)
$$OHC - \bigcirc -CH \swarrow CN$$
(D)
$$CI - \bigcirc -CH \swarrow CN$$
(D)
$$CI - \bigcirc -CH \swarrow CN$$
(D)
$$CI - \bigcirc -CH \swarrow CN$$
(E)
$$CI - \bigcirc -CH \checkmark CN$$
(E)
$$CI - \bigcirc -CH \land CN$$
(E)
$$CI - \bigcirc -CH \land$$

A and B respectively are :

(A)
$$\bigcirc$$
 + CH₃COOC₂H₅

∠CN

The incorrect statement is

- (A) Total five alkenes are obtained
- (B) Total six different carbonyl compounds are obtained on ozonolysis
- (C) All carbonyl compounds can give aldol reaction when treated with dil KOH
- (D) Only two carbonly compounds give positive iodoform test

78. (i)
$$H_3C \xrightarrow{CH_3} \xrightarrow{Mg/Ether} [A] \xrightarrow{(i)CO_2} [B] \xrightarrow{SOCl_2} [C] \xrightarrow{(i) (C_6H_5CH_2)_2CuLi} [D]$$

Identify (**D**) in the following sequence of reaction.

80. The suitable reagent for the following reaction is :

240

