SOLVED EXAMPLES

Ex. 1 Which of the following does not undergo Hell-volhard Zelinsky reaction ?
(A) HCOOH
(B) $\mathrm{CCl}_{3} \mathrm{COOH}$
(C) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$
(D) All
(D) None of these contain alpha H -atom.

Sol.
Ex. 2 Which of the following compound would be expected to decarboxylate when heated :
(A)

(B)

(C)

(D)

Sol.
(A)

In case of β-keto acid, the decarboxylation occurs radily due to 6-membered low energy transition state formation.

Ex. 3

(A)

(B)

(C) both are correct
(D) None is correct

Sol.
(A)
 This bond breaks hence intermediate is

Ex. 4 End product of the following sequence of reaction is :

(A) Yellow ppt. of CHI_{3},

(B) Yellow ppt. of CHI_{3},

(C) Yellow ppt. of CHI_{3},

(D)

Sol.
(C)

Intermediate is
 ; which loses CO_{2} on heating (β-keto acid)

Ex. 5

(A)

(B)

(C)

(D)

Sol. (A)
NaBH_{4} reduces reactant to

Ex. 6 When acetic acid reacts with ketene, product formed is :
(A) ethyl acetate
(B) aceto-acetic ester
(C) acetic anhydride
(D) no reaction

Sol. (C)
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{2}=\mathrm{C}=\mathrm{O} \longrightarrow$ acetc anhydride
Ketene

Ex. $7 \quad \mathrm{R}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{OH}$ can be converted in $\mathrm{R}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$. The correct sequence of reagents is :
(A) $\mathrm{PBr}_{3}, \mathrm{KCN}, \mathrm{H}^{\oplus}$
(B) $\mathrm{PBr}_{3}, \mathrm{KCN}, \mathrm{H}_{2}$
(C) $\mathrm{KCN}, \mathrm{H}^{\oplus}$
(D) $\mathrm{HCN}, \mathrm{PBr}_{3}, \mathrm{H}^{\oplus}$

Sol. (A)

Ex. 8 The final product obtained in the reaction :

(A)

(B) $\mathrm{HOCH}_{2}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
(C)

(D)

Sol.
(C)

Ex. 9 On subjecting mesityl oxide to the iodoform reaction, one of the products is the sodium salt of an organic acid. Which acid is obtained ?
(A) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{COOH}$
(B) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{COOH}$
(C) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}-\mathrm{COOH}$
(ID) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CO}-\mathrm{COOH}$

Sol. (C)

CHEMISTRY FOR JEE MAIN \& ADVANCED

Ex. 10 The ease of alkaline hydrolysis is more for :

Sol.
(A)

(B)

(C)

(D)

There is more electron deficiency on carbonyl carbon.

[Single Correct Choice Type Questions]

1. The acid D obtained through the following sequence of reactions is

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br} \xrightarrow{\text { Alc. } \mathrm{KOH}} \mathrm{~A} \xrightarrow[\mathrm{CCl}_{4}]{\mathrm{Br}_{2}} \mathrm{~B} \xrightarrow[\text { (excess) }]{\mathrm{KCN}} \mathrm{C} \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}} \mathrm{D}
$$

(A) Succinic acid
(B) Malonic acid
(C) Maleic acid
(D) Oxalic acid
2. Pure acetic acid is known as glacial acetic acid because :
(A) It is white liquid below $16.6^{\circ} \mathrm{C}$
(B) It is solid as Ice below $16.6^{\circ} \mathrm{C}$
(C) It form ester with methanol
(D) None of the above
3. In which of the following reaction the final product is neither an acid nor an acid salt.
$(\mathrm{A}) \mathrm{Ph}-\mathrm{CHO} \xrightarrow{\text { Tollen's reagent }}$
(B) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH} \xrightarrow{\mathrm{KMnO}_{4} / \overline{\mathrm{O}} \mathrm{H}}$
(C) $\mathrm{Ph}-\mathrm{CHO} \xrightarrow{\text { Fehling solution }}$
(D) $\mathrm{Ph}-\mathrm{CH}_{2}-\mathrm{OH} \xrightarrow{\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}^{+}}$
4.

Reagent [X$]$ is :
(A) HCN
(B) $\mathrm{O}_{3} / \mathrm{H}_{2} \mathrm{O}$
(C) PCC
(D) LiAlH_{4}
5. In the following reaction final product is :

(A) Benzoic acid
(B) Benzaldehyde
(C) Benzamide
(D) Benzene
6. Which of the following does not give benzoic acid salt on oxidation with hot alkaline KMnO_{4}.
(A) $\mathrm{Ph}-\mathrm{CH}_{3}$
(B) $\mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3 z z z}$
(C) $\mathrm{Ph}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$
(D) $\mathrm{Ph}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$
7. Which of the following will not undergo Hell-Volhard Zelinsky (HVZ) reaction ?
(A) HCOOH
(B) $\mathrm{CH}_{3} \mathrm{COOH}$
(C) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
(D) $\mathrm{CH}_{3} \mathrm{CHBrCOOH}$.
8.

This reaction is called
(A) Cannizzaro reaction
(B) Schmidt reaction
(C) Hell Volhard Zelinsky reaction
(D) Reimer tiemann reaction
9. What product is formed when acetic acid heated with $\mathrm{P}_{2} \mathrm{O}_{5}$.
(A) Acetyl chloride
(B) Acetate ester
(C) Acetic anhydride
(D) Acetaldehyde
10. Formic acid can be distinguish from acetic acid because formic acid :
(A) release H_{2} with sodium
(B) gives ester with alcohol
(C) reduces AgNO_{3}
(D) turns red litmus to blue

CHEMISTRY FOR JEE MAIN \& ADVANCED

11. Sodium bicarbonate reacts with salicylic acid to form:
(A) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ONa}$
(B)

(C)

(D)

12. Which of the following methods is not used for the conversion of carboxylic acids into acid halides ?
(A) $\mathrm{RCOOH}+\mathrm{SOCl}_{2} \longrightarrow$
(B) $\mathrm{RCOOH}+\mathrm{PCl}_{5} \longrightarrow$
(C) $\mathrm{RCOOH}+\mathrm{Cl}_{2} \longrightarrow$
(D) $\mathrm{RCOOH}+\mathrm{PCl}_{3} \longrightarrow$
13. For the following acids the rate of decarboxylation on heating would be :
I. $\mathrm{C}_{6} \mathrm{H}_{5}-\stackrel{\mathrm{Cl}}{\mathrm{C}}-\mathrm{CH}_{2}-\mathrm{COOH}$
II. $\mathrm{C}_{6} \mathrm{H}_{5}-\stackrel{\mathrm{O}}{\mathrm{C}}-\mathrm{COOH}$
III. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{COOH}$
IV. $\mathrm{HOOC}-\mathrm{CH}_{2}-\mathrm{COOH}$
(A) III $>$ I $>$ IV $>$ II
(B) I $>$ III $>$ IV $>$ II
(C) III $>$ IV $>$ I $>$ II
(D) I $>$ IV $>$ II $>$ III
14. Which of the following will not yield a cyclic compound on heating :
(A)

(B)

(C)

(D)

15. Which optically active compound on reduction with LiAlH_{4} will give optically inactive compound?
(A)

(B)

(C)

(D)

16. $\mathrm{RCOOH} \longrightarrow \mathrm{RCH}_{2} \mathrm{COOH}$. This conversion is known as reaction :
(A) Arndt-Eistert reaction
(B) Favorskii reaction
(C) HVZ reaction
(D) Schmidt reaction
17. The reaction: $\mathrm{RCOOAg}+\mathrm{Br}_{2} \xrightarrow{\mathrm{CCl}_{4}, \mathrm{Reflux}} \mathrm{R}-\mathrm{Br}+\mathrm{AgBr}+\mathrm{CO}_{2}$ is called
(A) Wurtz reaction
(B) Hunsdiecker reaction
(C) Friedel-Crafts reaction
(D) Kolbe's reaction
18. Benzoyl chloride on treatment with ammonia gives
(A) Benzamide
(B) Acetamide
(C) Benzylamine
(D) Benzoic acid
19. The product formed by the reaction of acetamide with Br_{2} in presence of NaOH is :
(A) $\mathrm{CH}_{3} \mathrm{CN}$
(B) $\mathrm{CH}_{3} \mathrm{CHO}$
(C) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
(D) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
20. Arrange following compounds in decreasing order of reactivity for hydrolysis reaction :
(I) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$
(II)

(A) II $>$ IV $>$ I $>$ III
(B) II $>$ IV $>$ III $>$ I
(C) I $>$ II $>$ III $>$ IV
(D) IV $>$ III $>$ II $>$ I
21. The decreasing order of reactivity towards nucleophilic acyl substitution is
(i) $\mathrm{CH}_{3} \mathrm{COCl}$
(ii) $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$,
(iii) $\mathrm{CH}_{3} \mathrm{CONH}_{2}$
(iv) $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$
(A) (i) $>$ (iv) $>$ (iii) $>$ (ii)
(B) (i) $>$ (iv) $>$ (ii) $>$ (iii)
(C) (iv) $>$ (iii) $>$ (i) $>$ (ii)
(D) (iii) $>$ (i) $>$ (iv) $>$ (ii)
22. Acetic anhydride is prepared in the laboratory by heating sodium acetate with
(A) ethyl chloride
(B) acetyl chloride
(C) conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
(D) zinc dust
23. Synthesis of an ester involves the reaction of alcohols with
(A) a ketone
(B) an amide
(C) $\mathrm{CH}_{3} \mathrm{MgBr}$
(D) RCOCl
24. The reaction, $\mathrm{RCOOR}^{\prime}+\mathrm{R}^{\prime \prime} \mathrm{OH}$ (excess) $\xrightarrow{\mathrm{H}^{+} \text {or } \mathrm{OH}^{-}} \mathrm{RCOOR}^{\prime \prime}+\mathrm{R}^{\prime} \mathrm{OH}$ is called.
(A) Esterification
(B) Trans-esterification
(C) Saponification
(D) Hydrolysis
25. Ethanol on heating with acetic acid in the presence of a few drops of sulphuric acid gives the smell of
(A) Oil of wintergreen
(B) Oil of mustard
(C) Fruity smell
(D) Oil of bitter almonds
26. The reduction of benzoyl chloride with Pd and $\mathrm{BaSO}_{4} / \mathrm{CaCO}_{3}$ produces:
(A) Benzyl chloride
(B) Benzoic acid
(C) Benzaldehyde
(D) All of these
27. Consider the following statements for hydrolysis reaction :
(I)

(II)

(III)

Of these the correct statements are
(A) I and II
(B) I, II and III
(C) II and III
(D) I and III
28. An organic compound $\mathrm{X}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right)$ gives positive test with NaOH and phenolphthalein. Structure of X will be :
(A)

(B)

(C)

(D)

CHEMISTRY FOR JEE MAIN \& ADVANCED

29. Which one of the following esters is the most reactive for saponification?
(A)

(B)

(C)

(D)

30.

Product is/are
(A)

(B)

(C)

(D)

31. Given three acids

The correct order of ease of acid catalysed esterification is :
(A) $\mathrm{X}>\mathrm{Z}>\mathrm{Y}$
(B) $\mathrm{Y}>\mathrm{X}>\mathrm{Z}$
(C) $\mathrm{Z}>\mathrm{X}>\mathrm{Y}$
(D) $\mathrm{Y}>\mathrm{Z}>\mathrm{X}$
32. A compound with molecular formula $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{4}$ on acylation with acetic anhydride gives a compound with molecular formula $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{8}$. How many hydroxyl groups are present in the compound?
(A) one
(B) Two
(C) Three
(D) Four
33.

(A)

(B)

(D)

34. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}_{2}$ is boiled with aqueous NaOH , then the reaction mixture is acidified with HCl . The products obtained are
(A) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{NH}_{3}$
(B) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COONa}+\mathrm{NH}_{3}$
(C) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{NH}_{4} \mathrm{Cl}$
(D) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{NH}_{4} \mathrm{Cl}$.
35. The regents A and B in the reaction sequence

$$
\begin{gathered}
\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5} \xrightarrow{\mathrm{~A}} \mathrm{CH}_{3} \mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3} \\
\underset{\mathrm{~B}}{\longrightarrow} \mathrm{CH}_{3} \mathrm{CONHNH}_{2}
\end{gathered}
$$

are given by the set :-
(A) Isopropyl alcohol, hydrazine
(B) Isopropyl alcohol, hydroxylamine
(C) t-butyl alcohol, hydrazine
(D) t-butyl alcohol, hydroxylamine
36. The carboxylic acids react with hydrazoic acid in presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$ to form a primary amine. This reaction is called as
(A) Curtius rearrangement
(B) Lossen rerrangement
(C) Schmidt reaction
(D) Schotten-Boumann reaction
37. Ethyl acetate $\xrightarrow[\text { Excess }]{\mathrm{CH}_{3} \mathrm{MgBr}} \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}} \mathrm{P}$

The product P will be :-
(A)

(B)

(C)

(D)

38. Acids have much higher boiling points than isomeric esters because :-
(A) Acids form dimers by H -Bonding
(B) Acids are volatile in steam
(C) Ester are non-volatile
(D) Acids can ionise to give protons in aqueous solution
39. Which of the following acids have the lowest pK_{a} value :-
(A)

(B) $\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OOOH}$
(C) $\mathrm{CCl}_{3} \mathrm{COOH}$
(D) $\mathrm{CHCl}_{2} \mathrm{COOH}$
40. The reaction of an amide with bromine and alkali to form a primary amine is called :-
(A) Hunsdiecker reaction
(B) Hofmann mustard oil reaction
(C) Hoffmann degradation of amides
(D) Hell-Volhard-Zelinski reaction
41. HVZ reaction is specific for -
(A) Replacement of β-hydrogens
(B) Replacement of α-hydrogens
(C) Replacement of β - carbons
(D) Replacement of α - carbons
42. Decreasing order of acidity of p-methoxy benzoic acid (A), p-nitrobenzoic acid (B) and benzoic acid (C) is-
(A) B, C, A
(B) A, B, C
(C) C, A, B
(D) None
43. Benzoic acid reacts with $\mathrm{Ca}(\mathrm{OH})_{2}$. The product obtained on dry distillation gives-
(A) Benzophenone
(B) Acetophenone
(C) Benzaldehyde
(D) None of these
44. Ethyl acetate on treatment with hydrazine gives -
(A)

(B)

(C)

(D)

CHEMISTRY FOR JEE MAIN \& ADVANCED

45. Among the following, which is the strongest acid?
(A) $\mathrm{CHF}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COOH}$
(B) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CF}_{2}-\mathrm{COOH}$
(C) $\mathrm{CH}_{2} \mathrm{~F}-\mathrm{CHF}-\mathrm{CH}_{2}-\mathrm{COOH}$
(D) $\mathrm{CH}_{3}-\mathrm{CF}_{2}-\mathrm{CH}_{2}-\mathrm{COOH}$
46. In the Rosenmund reduction, the catalyst used is:
(A) $\mathrm{Pd} / \mathrm{BaSO}_{4}$
(B) Raney Ni
(C) $\mathrm{Sn} / \mathrm{HCl}$
(D) $\mathrm{Zn} / \mathrm{HCl}$
47. In a set of the given reactions, acetic acid yielded a product C .
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{PCl}_{5} \longrightarrow \mathrm{~A} \xrightarrow[\mathrm{AlCl}_{3}]{\mathrm{C}_{6} \mathrm{H}_{6}} \mathrm{~B} \xrightarrow[\text { (ii) } \mathrm{H}_{3} \mathrm{O}^{\oplus}]{\text { (i) } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgBr} / \text { ether }} \mathrm{C}$; product C would be:-
(A) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{C}_{2} \mathrm{H}_{5}$
(B) $\mathrm{CH}_{3} \mathrm{COC}_{6} \mathrm{H}_{5}$
(C) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{C}_{6} \mathrm{H}_{5}$
(D)

48. The correct reactivity order with the nucleophile is :
(A) $\mathrm{CH}_{3} \mathrm{COCl}>\mathrm{CH}_{3} \mathrm{CONH}_{2}>\mathrm{CH}_{3} \mathrm{COOCH}_{3}$
(B) $\mathrm{CH}_{3} \mathrm{COCl}>\mathrm{CH}_{3} \mathrm{COOCH}_{3}>\mathrm{CH}_{3} \mathrm{CONH}_{2}$
(C) $\mathrm{CH}_{3} \mathrm{CONH}_{2}>\mathrm{CH}_{3} \mathrm{COOCH}_{3}>\mathrm{CH}_{3} \mathrm{COCl}$
(D) $\mathrm{CH}_{3} \mathrm{COOCH}_{3}>\mathrm{CH}_{3} \mathrm{COCl}>\mathrm{CH}_{3} \mathrm{CONH}_{2}$
49.

In the above sequence $\mathrm{A} \& \mathrm{~B}$ respectively are -
(A) $\mathrm{Br}_{2} / \mathrm{KOH}, \mathrm{NaOH}$
(B) $\mathrm{Br}_{2} / \mathrm{KOH}, \mathrm{HNO}_{2}$
(C) $\mathrm{KMnO}_{4}, \mathrm{KOH}$
(D) $\mathrm{HNO}_{2}, \mathrm{Br}_{2} / \mathrm{KOH}$
50. Which of the following carboxylic acids undergoes decarboxylation easily?
(A) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{2} \mathrm{COOH}$
(B) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCOOH}$
(C)

(D)

51. The reactivities of acid halides (I), anhydrides (II), esters (III) and amides (IV) with nucleophilic reagents follow the order
(A) I $>$ II $>$ III $>$ IV
(B) IV $>$ III $>$ II $>$ I
(C) I $>$ III $>$ II $>$ IV
(D) III $>$ II $>$ I $>$ IV
52. In the following sequence of reactions

the product (\mathbb{B}) is:
(A) $\mathrm{PhCOCH}_{2} \mathrm{CH}_{3}$
(B) $\mathrm{PhCHOHCH}_{2} \mathrm{CH}_{3}$
(C) $\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
(D) $\mathrm{PhCH}=\mathrm{CHCH}_{3}$
53. Kolbe electrolysis of potassium succinate gives CO_{2} and \qquad ...
(A) $\mathrm{C}_{2} \mathrm{H}_{6}$ and KOH
(B) $\mathrm{C}_{2} \mathrm{H}_{2}$ and KOH
(C) $\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{KOH}$ and H_{2}
(D) $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}$ and $\mathrm{C}_{2} \mathrm{H}_{4}$
54. In the following reaction identify compounds $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D :
$\mathrm{PCl}_{5}+\mathrm{SO}_{2} \longrightarrow \mathrm{~A}+\mathrm{B}$;
$\mathrm{A}+\mathrm{CH}_{3} \mathrm{COOH} \longrightarrow \mathrm{C}+\mathrm{SO}_{2}+\mathrm{HCl}$
$2 \mathrm{C}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Cd} \longrightarrow \mathrm{D}+\mathrm{CdCl}_{2}$
(A) $\mathrm{SOCl}_{2}, \mathrm{POCl}_{3}, \mathrm{CH}_{3} \mathrm{COCl}, \mathrm{CH}_{3} \mathrm{COCH}_{3}$
(B) $\mathrm{SOCl}_{2}, \mathrm{HCl}, \mathrm{CH}_{3} \mathrm{Cl}, \mathrm{CH}_{3} \mathrm{CHO}$
(C) $\mathrm{SO}_{2}, \mathrm{Cl}_{2}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}, \mathrm{CH}_{3} \mathrm{COCH}_{3}$
(D) None of these
55. What are A and B in the following sequence of reactions :
(i) C

(A)

(B) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COBr}, \mathrm{CH}_{2}=\mathrm{CHCOOH}$
(C) ${\underset{\mathrm{Br}}{\mathrm{Br}}}_{\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OOOH}, \mathrm{CH}_{2}=\mathrm{CHOOOH}}$
(D)

56. Consider the following reaction.

The product (\mathbf{A}) is :
(A)

(B)

(C)

(D)

57. Which of the following orders regarding the base strength of a leaving group in a reaction of an acid derivative with a nucleophile is correct :
(A) $\mathrm{Cl}^{\ominus}>\mathrm{RCOO}^{\ominus}>\mathrm{RO}^{\ominus}$
(B) $\mathrm{Cl}^{\ominus}>\mathrm{RO}^{\ominus}>\mathrm{RCOO}^{\ominus}$
(C) $\mathrm{RO}^{\ominus}>\mathrm{RCOO}^{\ominus}>\mathrm{Cl}^{\ominus}$
(D) $\mathrm{RO}^{\ominus}>\mathrm{Cl}^{\ominus}>\mathrm{RCOO}^{\ominus}$
58. The correct sequence of decreasing order of reactivity of hydrolysis of acid chlorides is :
(A) $\mathrm{PhCOCl}>\mathrm{p}-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{COCl}>\mathrm{p}-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{COCl}$
(B) $\mathrm{PhCOCl}>\mathrm{p}-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{COCl}>\mathrm{p}-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{COCl}$
(C) $\mathrm{p}-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{COCl}>\mathrm{PhCOCl}>\mathrm{p}-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{COCl}$
(D) $\mathrm{p}-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{COCl}>\mathrm{p}-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{COCl}>\mathrm{PhCOCl}$
59. Which of the following compound would be expected to decarboxylates when heated :-
(A)

(B)

(C)

(D)

CHEMISTRY FOR JEE MAIN \& ADVANCED

60.

Product (Q) of the reaction is
(A) Ethylene glycol
(B) Glycerol
(C) Glyceryl tri nitrate (explosive)
(D) Cumene hydrogen peroxides
61. Starting from propanoic acid, the following reactions were carried out

Propanoic acid $\xrightarrow{\mathrm{SOCl}_{2}} \mathrm{X} \xrightarrow{\mathrm{NH}_{3}} \mathrm{Y} \xrightarrow{\mathrm{Br}_{2}+\mathrm{KOH}} \mathrm{Z}$
What is the compound Z
(A) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Br}$
(B) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$
(C)

(D) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$
62. Identify the final product in the following sequence of reaction.

(A)

(B)

(C)

(D)

63. Which of the following does not give benzoic acid on hydrolysis ?
(A) Phenyl cyanide
(B) Benzoyl chloride
(C) Benzyl chloride
(D) Methyl benzoate
64. When excess of chlorine is passed through acetic acid in presence of red phosphorus, it forms
(A) Acetic anhydride
(B) Chloral
(C) Trichloroacetic acid
(D) Methyl chloride.
65. Acetamide and ethyl acetate can be distinguished by reacting with
(A) Aqueous HCl and heat
(B) Aqueous NaOH and heat
(C) Acidified KMnO_{4}
(D) Bromine water.
66. Which of the following acids remains unaffected on heating
(A) Malonic acid
(B) Malic acid
(C) Fumaric acid
(D) Succinic acid
67. Identify the final product in the following sequence of reaction.

(A)

(B)

(C)

(D)

68. Esterification of the acid (P) with the alcohol (Q) will gives

(A) only one enantiomer
(B) a mixture of diastereomer
(C) a mixture of enantiomer
(D) only one fraction on fractional distillation
69.

(A)

(B)

(C)

(D)

70. The compound (A) in the following sequence of reactions is a silver salt of

$$
\mathrm{A} \xrightarrow[\mathrm{CCl}_{4}]{\mathrm{Br}_{2}} \mathrm{~B} \xrightarrow[\mathrm{EtOH}]{\mathrm{KOH}} \text { propene }
$$

(A) Propanoic acid
(B) Butyric acid
(C) isobutyric acid
(D) Both (B) and (C)
71. In the esterification of propanoic acid with methanol in the presence of a mineral acid, which is not the expected intermediate species?
(A)

(B)

(C)

(D)

72. Which of the following ester have most acidic α-hydrogen atom.
(A) $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$
(B)

(C)

(D)

$(\mathrm{A}) \xrightarrow{\mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{H}_{2} \mathrm{O}}(\mathrm{B})$
73.

(A) $\mathrm{CH}_{3}-\underset{\|}{\mathrm{C}}-\mathrm{O}-\underset{\|}{\mathrm{O}}-\mathrm{CH}_{3}(\mathrm{~B}) \mathrm{CH}_{3}-\mathrm{COOH}$
(C) $\mathrm{CH}_{3}-\mathrm{COCl}$
(D) $\mathrm{CH}_{3}-\mathrm{CONH}_{2}$

CHEMISTRY FOR JEE MAIN \& ADVANCED

74.

In this reaction the product (E) is :
(A) o-nitrobenzoic acid
(B) Salicylic acid
(C) anthranilic acid
(D) Crotonic acid
75. ${\stackrel{\mid}{\mathrm{CH}} \mathrm{H}_{2}-\mathrm{CONH}_{2}}_{\mathrm{CH}_{2}-\mathrm{CONH}_{2}}^{\Delta} \xrightarrow[\Delta]{\mathrm{P}_{2} \mathrm{O}_{5}}(\mathrm{P}) \xrightarrow[\Delta]{\mathrm{H}_{3} \mathrm{O}^{\oplus}}(\mathrm{Q})$

The product (Q) is
(A) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{COOH}$
(B) ${ }_{\mathrm{CH}}^{\mathrm{CH}} \mathrm{CH}_{2}-\mathrm{COOH}$
(C)

(D) $\mathrm{CH}_{3}-\mathrm{COOH}$
76. Which of the following is correct order of esterification of following acids with $\mathrm{CH}_{3} \mathrm{OH}$:

I
II
III
IV
(A) $\mathrm{I}=\mathrm{II}=\mathrm{III}=\mathrm{IV}$
(B) I $>$ II $>$ III $>$ IV
(C) I $<$ II $<$ III $<$ IV
(D) I $>$ IV $>$ III $>$ II
77. Identify final product in the following reaction

(A)

(B) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{COOH}$
(C)

(D) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH}$
78. Which of the following reaction represents incorrect product.
(A)

(B)

(C)

(D)

79. $\stackrel{\mathrm{O}}{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}-\mathrm{C}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CN} \xrightarrow[\text { (excess) }]{\mathrm{LiAlH}_{4}} \mathrm{X}, \mathrm{X} \text { is : }}$
(A)

(B)

(C)

(D)

80.

(A)

(B)

(C)

(D)

81.

Select the correct statement.
(A) X gives effervescence of CO_{2} with NaHCO_{3}
(B) X will produce alkane when treated with $\mathrm{Zn}-\mathrm{Hg} / \mathrm{HCl}$
(C) X will produce symmetrical diketone when treated with soda lime
(D) All of these
82. In order to prepare acetone from $\mathrm{CH}_{3} \mathrm{COCl}$ in one step, which of the reagent is best?
(A) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{BaSO}_{4}$
(B) HI
(C) $\mathrm{CH}_{3} \mathrm{MgCl}$
(D) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Cd}$

Exercise \# 2
 Part \# I [Multiple Correct Choice Type Questions]

1. Which of them liberate a gas which turns lime water milky.
(A)

(B)

(C) $\mathrm{HOOC}-\left(\mathrm{CH}_{2}\right)_{5}-\mathrm{COOH} \xrightarrow{\mathrm{Ca}(\mathrm{OH})_{2} / \Delta}$
(D)

2. Which pair of compounds on heating give isomeric products
(A)

(B)

(C)

(D) None of these
3. The correct option for products P, Q and R, S in the following sequence of reaction is / are :

(A) P \& Q are

(B) P \& Q are

 $+$

(C) R \& S are

(D) $\mathrm{R} \& \mathrm{~S}$ are

4. The correct order/s of decreasing reactivity of the given compound towards hydrolysis under identical condition is/ are:
(A) $\mathrm{CH}_{3} \mathrm{COCl}>\mathrm{CH}_{3} \mathrm{CONH}_{2}$
(B) $\mathrm{CH}_{3} \mathrm{COCl}>\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$
(C) $\mathrm{CH}_{3} \mathrm{COOCH}_{3}>\mathrm{CH}_{3} \mathrm{COCl}$
(D) $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}>\mathrm{CH}_{3} \mathrm{CONH}_{2}$
5. The correct statements about following reaction are :

(A) It is an equilibrium reaction
(B) O^{18} is found in ester
(C) One of the intermediate is

(D) $\mathrm{EtO}^{18} \mathrm{H}$ ionises to Et^{\oplus} in this reaction
6. In which reaction product is hydrocarbon?
$(\mathrm{A}) \mathrm{CH}_{3} \mathrm{COOK} \xrightarrow{\text { Electrolysis }}$
(B) $\mathrm{CH}_{3} \mathrm{COOAg} \xrightarrow{\mathrm{Br}_{2} / \mathrm{CCl}_{4}}$
(C) $\mathrm{Ph}-\mathrm{COOH} \xrightarrow[\mathrm{CaO}, \Delta]{\mathrm{NaOH}}$
(D)

7. Which are correct against property mentioned ?
(A) $\quad \mathrm{CH}_{3} \mathrm{COCl}>\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}>\mathrm{CH}_{3} \mathrm{COOEt}>\mathrm{CH}_{3} \mathrm{CONH}_{2} \quad$ (Rate of hydrolysis)
(B)

(C)

(D)

CHEMISTRY FOR JEE MAIN \& ADVANCED

8. In which of the following reactions correct major product is mentioned ?
(A)

(B)

(C)

(D)

9. Consider the following reaction.

The product (\mathbf{A}) is
(A)

(B)

(C)

(D)

10. Which of the following methods are used for the conversion of carboxylic acids into acid chlorides ($\mathrm{RCOOH} \longrightarrow \mathrm{RCOCl}$)?
(A) $\mathrm{RCOOH}+\mathrm{SOCl}_{2} \longrightarrow$
(B) $\mathrm{RCOOH}+\mathrm{PCl}_{5} \longrightarrow$
(C) $\mathrm{RCOOH}+\mathrm{Cl}_{2} \longrightarrow$
(D) $\mathrm{RCOOH}+\mathrm{P}+\mathrm{Cl}_{2} \longrightarrow$
11. Which of the following statements are correct for benzoic acid ?
(A) Nitration gives o-and p-nitrobenzoic acid.
(B) Bromination $\left(\mathrm{Br}_{2} / \mathrm{FeBr}_{3}\right)$ gives m-bromobenzoic acid.
(C) The Friedel-Crafts reaction with $\mathrm{CH}_{3} \mathrm{COCl} / \mathrm{AlCl}_{3}$ gives m-carboxyacetophenone.
(D) The reaction with concentrated sulphuric acid gives 3-carboxybenzenesulphonic acid.
12. Which of the following reactions involve a decrease in the length of the carbon chain :-
(A) Schmidt reaction
(C) Hofmann's bromamide reaction
(C) Hell-Volhard-Zelinski reaction
(D) All of these
13. Dry distillation of a mixture of calcium formate and the calcium acetate gives -
(A) HCHO
(B) $\mathrm{CH}_{3} \mathrm{CHO}$
(C) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
(D) None
14. Consider the following sequence of reactions.

The products (A) and (B) are, respectively,
(A)

(B)

and

(C)
 and

(D)

15. Which of the following compounds react with aniline to give acetanilide : Which of the following compounds react with aniline to give acetanilide.

Aniline Acetanilide
(A) $\mathrm{CH}_{3} \mathrm{COCl}$
(B)

(C) $\mathrm{CH}_{3} \mathrm{CHO}$
(D)

16. What is the final product (\mathbb{B}) of this sequence :

(A)

(B)

(C)

(D)

CHEMISTRY FOR JEE MAIN \& ADVANCED

17. What is compound Z :

(A)

(B) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{NOCH}_{2} \mathrm{CH}_{3}$
(C) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)_{2}$
(D)

18. The treatment of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ with chlorine in the presence of phosphorus gives :
(A) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}$
(B) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
(C) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{Cl}) \mathrm{COOH}$
(D) $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
19. Which of the following sequences of rate of alkaline hydrolysis of esters is correct :
(A) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{3}<\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOCH}_{3}<\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOCH}_{3}$
(B) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{3}>\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOCH}_{3}>\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOCH}_{3}$
(C) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{3}>\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOCH}_{3}<\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOCH}_{3}$
(D) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{3}<\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOCH}_{3}>\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOCH}_{3}$
20. Which of the following is used to perform following transformation :

(A) SOCl_{2}
(B) PCl_{5}
(C) PCl_{3}
(D) $\mathrm{SO}_{2} \mathrm{Cl}_{2}$
21.

 $\xrightarrow{\mathrm{CH}_{3} \mathrm{OH}} \mathrm{A}$, A is :
(A)

(B)

(C) Both are correct
(D) None is correct
22. Which of the following orders of acid strength is correct :
(A) $\mathrm{RCOOH}>\mathrm{ROH}>\mathrm{HOH}>\mathrm{HC} \equiv \mathrm{CH}$
(B) $\mathrm{RCOOH}>\mathrm{HOH}>\mathrm{ROH}>\mathrm{HC} \equiv \mathrm{CH}$
(C) $\mathrm{RCOOH}>\mathrm{HOH}>\mathrm{HC} \equiv \mathrm{CH}>\mathrm{ROH}$
(D) $\mathrm{RCOOH}>\mathrm{HC} \equiv \mathrm{CH}>\mathrm{HOH}>\mathrm{ROH}$
23. The relative order of esterification of alcohols is :-
(A) $1^{\circ}<2^{\circ}<3^{\circ}$
(B) $1^{\circ}>2^{\circ}>3^{\circ}$
(C) $1^{\circ}>3^{\circ}>2^{\circ}$
(D) $1^{\circ}<3^{\circ}<2^{\circ}$
24. Which of the following does not give iodoform :
(A) Acetic acid
(B) lactic acid
(C) Acetophenone
(D) propionic acid
25. One can distinguish between HCOOH and $\mathrm{CH}_{3} \mathrm{COOH}$ with :
(A) NaHCO_{3}
(B) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(C) tollens reagent
(D) fehling's solution
26. Which of the following reagents are involved in the following transformation ?

(A) $\mathrm{H}_{3} \mathrm{O}^{+}$
(B) LiAlH_{4}
(C) Ethylene glycol
(D) Acetone
27.

Identify the correct statement(s) about the above sequence of reactions:
(A) Compound (A) is formed through S_{N} reaction
(B) Compound (C) on reduction with LiAIH_{4} forms a product which on dehydration given cyclohexene.
(C) compound (A) requires two moles of hydrogen for complete reduction.
(D) Compound (C) on Schmidt's reaction gives a product which reacts with HNO_{2} to give (D) as major product. Compound (D) on dehydration gives cyclopentene
28. Which of the following on reduction with LiAIH_{4} will give ethyl alcohol ?
(A) $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$
(B) $\mathrm{CH}_{3} \mathrm{COCl}$
(C) $\mathrm{CH}_{3} \mathrm{CONH}_{2}$
(D) $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$

Part \# II [Assertion \& Reason Type Questions]

These questions contains, Statement-I (assertion) and Statement-II (reason).
(A) Statement-I is True, Statement-II is True ; Statement-II is a correct explanation for Statement-I
(B) Statement-I is True, Statement-II is True ; Statement-II is NOT a correct explanation for Statement-I
(C) Statement-I is True, Statement-II is False.
(D) Statement-I is False, Statement-II is True.

1. Statement-I: Benzoic acid on nitration will give $\mathrm{m}-$ Nitro benzoic acid.

Statement-II : - COOH group will increase e^{-}density on meta position.
2. Statement-I : Acyl halide are more reactive than acid substance amide towards nucleophillic substitution.

Statement-II: X^{-}are better leaving group than NH_{2}.
3. Statement-I: Unlike the $>\mathrm{C}=\mathrm{O}$ group of aldehydes and ketones, the $>\mathrm{C}=\mathrm{O}$ of $\mathrm{R}-\stackrel{\|}{\mathrm{C}}-\mathrm{OH}$ does not undergo nucleophilic addition reactions.
Statement-III: Carboxylic acids exist as dimers due to intermolecular hydrogen bonding in aprotic medium.
4. Statement-I : $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5}$ will give iodoform test.

Statement-II : It contains $\mathrm{CH}_{3} \mathrm{C}$ - group linked to a carbon atom.
5. Statement-I: Acetic acid does not undergo haloform reaction.

Statement-III : Acetic acid has no α hydrogen.
6. Statement-I: Carboxylic acids have a carbonyl group but they do not give the test of carbonyl group.

Statement-III : Due to resonance, the double bond character of carbonyl group is greatly reduced.
7. Statement-I: The order of base catalysed hydrolysis of ester is
(1) $\mathrm{CH}_{3}-\mathrm{COOCH}_{3}>\mathrm{CH}_{3}-\mathrm{COOC}_{2} \mathrm{H}_{5}>\mathrm{CH}_{3}-\mathrm{COOCH}\left(\mathrm{CH}_{3}\right)_{2}$.
(2)

Statement-III: $\mathrm{S}_{\mathrm{N}} 2$ The reaction is sterically as well as electronically controlled reaction.

CHEMISTRY FOR JEE MAIN \& ADVANCED

8. Statement-I: Acid catalysed hydrolysis of ester is reversible while base catalysed hydrolysis is irreversible.

Statement-III: In acid catalysed ester hydrolysis carboxylic acid is formed on which nucleophilic attack of alcohol is possible but in base catalysed ester hydrolysis carboxylate anion is formed on which nucleophilic attack is not possible.
9. Statement-I: 1° Amides react with Br_{2} in presence of NaOH to form1 1°-amine having one carbon atom less than amide.
Statement-III: It is degradative reduction involving N-bromoalkanamide intermediate.
10. Statement-I : Acetic acid does not give haloform reaction.

Statement-III : Acetic acid has no α-hydrogen.
11. Statement-I: Formic acid reduces mercuric chloride.

Statement-III: Formic acid has reducing aldehydic group.
12. Statement-I: Acetate ion is more basic than the methoxide ion.

Statement-III : The methoxide ion is resonance stabilized.
13. Statement-I: p-Hydroxybenzoic acid has a lower boiling point than o-hydroxybenzoic acid.

Statement-III : o-Hydroxybenzoic acid has intermolecular hydrogen bonding.

Exercise \# 3

Part \# I

 [Matrix Match Type Questions]1. Match the column I with column II.

Column-I
(A) Schimdt reaction
(B) Curtius reaction
(C) Decarboxylation
(D) HVZ reaction
2. Match the column I with column II.

Column-I (Acid)
(A) Benzoic acid
(B)

(C)

(D)

(E)

3. Match the column I with column II.

Column-I (Reaction)
(A) Arndt Eistert synthesis
(B) Hunsdiecker reaction
(C) Claisen condensation
(D) Esterification reaction
4. Select the correct name for the given reactions :
(A)

(B)

(C)

(D)

Column-II
(p) $\mathrm{RCOOH} \xrightarrow[\Delta]{\mathrm{NaOH} / \mathrm{CaO}} \mathrm{RH}$
(q) $\mathrm{R}-\mathrm{CH}_{2} \mathrm{COOH} \xrightarrow[\Delta]{\text { Red } \mathrm{P} / \mathrm{X}_{2}} \mathrm{R}-\left.\right|_{\mathrm{X}} ^{\mathrm{CH}} \mathrm{HOOOH}$
(r) $\mathrm{RCOCl} \xrightarrow[\Delta]{\mathrm{NaN}_{3}} \mathrm{RNH}_{2}$
(s) $\mathrm{RCOOH} \xrightarrow[\Delta]{\mathrm{N}_{3} \mathrm{H}} \mathrm{RNH}_{2}$

Column-II $\left(\mathbf{K}_{\mathrm{a}}\right)$
(p) 3.3×10^{-5}
(q) 10.2×10^{-5}
(r) 30.6×10^{-5}
(s) 6.4×10^{-5}
(t) 4.2×10^{-5}

Column-II (Possible products)
(p) Carbanion
(q) Carbocation
(r) Ketene
(s) Free radical
(p) Curtius reaction
(q) Hoffmann's reaction

CHEMISTRY FOR JEE MAIN \& ADVANCED

5. Match the column

Column-I
Column-II
(A)

(p) Hydrolysis
(B)

(q) Esterification
(r) Saponification
(s) Acid base reaction

Part \# II $\geq \geq$ [Comprehension Type Questions]

Comprehension \# 1

In the Hofmann rearrangement an unsubstituted amide is treated with sodium hydroxide and bromine to give a primary amine that has one carbon lesser than starting amide.

General reaction :

Mechanism :

If the migrating group is chiral then its cofiguration is retained. Electron releasing effects in the migrating group increases reactivity of Hofmann rearrangement.

1. Which of the following compound(s) cannot give Hoffmann rearrangement :
(A)

(B)

(C)

(D)

2. Arrange the following amides according to their relative reactivity when reacted with Br_{2} in excess of strong base

I

II

III

IV
(A) IV $>$ I $>$ II $>$ III
(B) II $>$ I $>$ III $>$ IV
(C) II $>$ IV $>$ III $>$ I
(D) II $>$ I $>$ IV $>$ III
3.

(A)

(S)

(R)
(B)

(S)

(R)
(C)

(R)
(S)
(D) $\mathrm{B} \& \mathrm{C}$ both are correct

Comprehension \# 2

Observe the following sequence of reaction and answer the questions based on it
Phenylacetylene $\xrightarrow[-\mathrm{CH}_{4}]{\mathrm{CH}_{3} \mathrm{MgBr}} \mathrm{x} \xrightarrow[\text { ii) } \mathrm{H}^{\oplus}]{\text { i) } \mathrm{CO}_{2}}$ y $\xrightarrow[\mathrm{HgSO}_{4}]{\mathrm{H}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{z} \xrightarrow{\Delta}$ w

1. Compound z is :
(A)

(B)

(C)

(D) $\mathrm{Ph}-\mathrm{CH}_{2}-\mathrm{COOH}$
2. Which of the following statement is not correct
(A) y decolourises $\mathrm{Br}_{2} / \mathrm{H}_{2} \mathrm{O}$ solution
(B) z on heating liberates CO_{2} gas
(C) w on reaction with NaOI gives yellow ppt
(D) x liberates H_{2} gas with Na metal
3. Which of the following compound give benzoic acid on KMnO_{4} oxidation
(A) w
(B) y
(C) z
(D) all

Comprehension \#3
Observe the esterification mechanisms for primary and tertiary alcohols.

Type. 1

Mechanism

Type. 2

Mechanism

1. $\mathrm{CH}_{3}-\mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}^{18} \mathrm{H} \xrightarrow{\text { Conc. } \mathrm{H}_{2} \mathrm{SO}_{4}}(\mathrm{P})$
$\mathrm{CH}_{3}-\mathrm{COOH}+\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\stackrel{18}{\mathrm{O}} \mathrm{H} \xrightarrow{\text { Conc. } \mathrm{H}_{2} \mathrm{SO}_{4}}(\mathrm{Q})$
In the above reaction (P) and (Q) are respectively :
(A)

(B)

(C)

(D)

2.

(A) (X) is optically active while (Y) is optically inactive
(B) Both (X) and (Y) are optically active
(C) Both (X) and (Y) are optically inactive
(D) (X) is optically inactive while (Y) is optically active.
3. $(+)$ Octan-2-ol esterifies with Acetic acid to give optically inactive racemised product. It must have gone by
(A) Type I mechanism
(B) Type II mechanism
(C) Mix type I and type II mechanism
(D) More by type I and less by type II mechanism

Comprehension \# 4

The reactivity of acid derivatives in general follows the order :

The above order of reactivity can be explained in terms of the :
(i) Basicity of leaving group (ii) Resonance effect (iii) Inductive effect

Weaker is the basic character of leaving group, more is the reactivity of acid derivative. In general, all the acid derivatives show resonance as follows:

More is the stabilization, lesser is the reactivity and vice-versa.

1. Which among the following anions is the most basic ?
(A) $\overline{\mathrm{N}} \mathrm{H}_{2}$
(B) $\overline{\mathrm{O} R}$
(C) $\mathrm{R}-\mathrm{CO} \overline{\mathrm{O}}$
(D) Cl^{-}
2. Which of the most reactive acid derivative?
(A) $\mathrm{R}-\mathrm{COCl}$
(B) $(\mathrm{RCO})_{2} \mathrm{O}$
(C) RCOOR
(D) RCONH_{2}
3. Which among the following ester is most reactive towards nucleophilic attack ?
(A) $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$
(B) HCOOCH_{3}
(C) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOC}_{6} \mathrm{H}_{5}$
(D) All are equally reactive
4.

 It is due to:
(A) inductive effect
(B) resonance
(C) eletromeric effect
(D) all of these

CHEMISTRY FOR JEE MAIN \& ADVANCED

5. Which of the following compounds will be most easily hydrolysed ?
(A) Acid halide
(B) Acid amide
(C) Ester
(D) Acid anhydride

Comprehension \# 5

Ester gives nucleophilic addition reaction followed by elimination reaction with carbon nucleophile. When carbon nucleophile is of an ester then the reaction is known as Claisen condensation reaction. This reaction is also carried out between ester and a ketone. A successful Claisen condensation requires an ester with two α-hydrogens and an equivalent amount of base rather than a catalytic amount of base.

1. Consider the given reaction
$\mathrm{CH}_{3}-\mathrm{COOC}_{2} \mathrm{H}_{5} \xrightarrow[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}]{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}}$ enolate ion $\xrightarrow[\text { Claisen condensation }]{\text { ester }(\mathrm{X})}$ Product
For the above reaction the most reactive ester is:
(A) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOC}_{2} \mathrm{H}_{5}$
(B) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}-\stackrel{\mathrm{O}}{\mathrm{C}}-\stackrel{\mathrm{O}}{\mathrm{C}} \mathrm{C}-\mathrm{OC}_{2} \mathrm{H}_{5}$
(C) $\mathrm{HCOOC}_{2} \mathrm{H}_{5}$
(D)

2. Intramolecular Claisen condensation given by diester is known as:
(A) Stobbe condensation
(B) Dieckmann condensation
(C) Mannich reaction
(D) Reformatsky reaction
3. In the given reaction :

$[\mathrm{X}]$ is :
(A)

(B)

(C)

(D)

4. In the given reaction

(A) $\stackrel{\stackrel{\mathrm{O}}{\mathrm{O}}-\mathrm{C}}{\mathrm{C}}-\mathrm{Cl}$
(B) $\mathrm{HCl}+\mathrm{CO}$
(C) $\mathrm{HCOOC}_{2} \mathrm{H}_{5}$
(D) $\mathrm{COOC}_{2} \mathrm{H}_{5}$

Comprehension \# 6

Amides undergo hydrolysis to yield carboxylic acid plus amine on heating in either aqueous acid or aqueous base. The conditions required for amide hydrolysis are more severe than those required for the hydrolysis of esters, anhydrides or acid chlorides, but the mechanism is similar (nucleophilic acyl substitution). Nucleophilic acyl substitutions involve a tetrahedral intermediate, hence these are quite different from alkyl substitution $\left(\mathrm{RCH}_{2} \mathrm{Br}\right.$ $\xrightarrow{\mathrm{NaCN}} \mathrm{RCH}_{2} \mathrm{CN}$) which involves a pentavalent intermediate or transition state.
One of the important reactions of esters is their reaction with two equivalent of Grignard reagent to give tertiary alcohols.

1. The mechanism involved during the hydrolysis of acid derivatives is :
(A) elimination-addition
(B) addition-elimination
(C) nucleophilic addition elimination
(D) electrophilic addition elimination
2. Which of the following constitutes the best substrate during the acidic hydrolysis of amides ?
(A)

(B) $\mathrm{R}-\mathrm{C}-\stackrel{\oplus}{\mathrm{N}} \mathrm{H}^{-}$
(C) $\mathrm{R}-\mathrm{C}-\mathrm{NH}_{2}$
(D)

3. For which functional derivative of carboxylic acids, acidic hydrolysis is avoided?
(A) Acid chlorides
(B) Acid amides
(C) Acid anhydrides
(D) Esters
4.

When
(A)

(B)

(C)

(D)

Exercise \# 4

[Subjective Type Questions]

1. Which acid of each pair shown here would you expect to be stronger?
(A) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ or $\mathrm{CH}_{2} \mathrm{FCO}_{2} \mathrm{H}$
(B) $\mathrm{CH}_{2} \mathrm{ClCO}_{2} \mathrm{H}$ or $\mathrm{CH}_{2} \mathrm{BrCO}_{2} \mathrm{H}$
(C) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHFCO}_{2} \mathrm{H}$ or $\mathrm{CH}_{3} \mathrm{CHFCH}_{2} \mathrm{CO}_{2} \mathrm{H}$
(D)

or

2. What are A and B in the following ?

3. In the following reaction, trace the position of isotopic O^{18}.

4. Carbon-oxygen bond length in formic acid are $1.23 \AA$ and $1.36 \AA$ but in sodium formate both the carbon-oxygen bonds have same value, i.e., 1.27Å. Explain.
5. The second dissociation constant of fumaric acid is greater than maleic acid. Explain.
6. Which is stronger conjugate base in each pair?
(A) $\overline{\mathrm{O}} \mathrm{H}$ or NH_{2}
(B) $\overline{\mathrm{C}} \mathrm{H}_{3}$ or $\mathrm{CH}_{3} \mathrm{COO}^{-}$
(C) HCOO^{-}or $\mathrm{CH}_{3} \mathrm{COO}^{-}$
(D) $\mathrm{CF}_{3} \mathrm{COO}^{-}$or $\mathrm{CCl}_{3} \mathrm{COO}^{-}$
7.

Write the reagents to carry out following conversions:

9.

Write down the structure of A ? What is the use of A ?
10.

What are X and Y ?
11. Which is more reactive in each pair towards S_{N} reaction?
(A)

(B)
 or

(C) $\mathrm{CH}_{3} \mathrm{COCCH}_{3}$ or $\mathrm{CH}_{3} \mathrm{OCH}_{3}$
12.

Identify A to H .
13.

reacts with :
γ-Butyrolactone (ester)
(A) NH_{3}
(B) LiAlH_{4}
(C) $\mathrm{EtOH}, \mathrm{H}^{+}$
(D) $\mathrm{NaBH}_{4} / \mathrm{EtOH}$

What are the product in each case ?
14. Identify $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E in the following sequence of reactions:

15. When the compound shown was heated in refluxing hydrochloric acid, a compound with the molecular formula $\mathrm{A}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{3}\right)$ was isolated. Identify this product. Along with this product, three other carbon-containing substances are formed. What are they ?

What happens when $\mathrm{A}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{3}\right)$ reacts with
(A) HCN follwed by hydrolysis
(B) soda lime/ Δ
(C) $\mathrm{NH}_{2} \mathrm{NH}_{2} /$ glycol, OH^{-}
(D) $\mathrm{P} / \mathrm{Br}_{2}$
(E) $\mathrm{N}_{3} \mathrm{H}$
16. $\mathrm{CH}_{3} \mathrm{COO}^{-}$(acetate ion) is more stable than $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}$(ethoxide ion). Explain.
17. In case of aldehydes and ketones there is addition of nucleophile but in case of acyl compound there is nucleophilic substitution. Explain.

CHEMISTRY FOR JEE MAIN \& ADVANCED

18.

(i) What are $\mathrm{A} \& \mathrm{~B}$?
(ii) Which reagent will convert B into A ?
19. Complete the following sequence of reactions :

20. What happens when?

(ii)
 is reduced by using LiAlH_{4} and by using Lindlar's catalyst.
21. How will you distinguish between Benzoic acid and Ethyl benzoate?
22. Ethyl isocyanide on acidic hydrolysis generates :
23. The correct sequence of decreasing order of reactivity of hydrolysis of acid chlorides PhCOCl , $p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{COCl}$ and $\mathrm{p}-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{COCl}$ is :
24. Write Decarboxylation reaction.
25. How an acid amide may be converted to the parent acid.
26. How the acetic acid is converted into ethanamine ?
27. Which of the following acid has the smallest dissociation constant ?
(a)

(b) $\mathrm{O}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COOH}$,
(c) $\mathrm{Cl}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COOH}$,
(d) $\mathrm{NC}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COOH}$
28. Arrange the following compounds in increasing order of their acidic strength with reason.

Benzoic acid, 4-Nitrobenzoic acid, 3,4-Dinitrobenzoic acid, 4-Methoxybenzoic acid.
29. How will you distinguish between Phenol and Benzoic acid?
30. Write a suitable chemical equation to complete each of the following transformations :
(i) Butan-1-ol to butanoic acid
(ii) 4-Methylacetophenone to benzene-1,4-dicarboxylic acid.
31. Write reactions for obtaining :
(i) Acetone from acetic acid
(ii) Benzene from toluene
32. How will you prepare acetic anhydride and acetyl chloride from acetic acid. Write the reaction involved in each case.
33. Explain the order of the rate of esterification of the following acid with MeOH :

$$
\mathrm{MeCH}_{2} \mathrm{COOH}>\mathrm{Me}_{2} \mathrm{CHCOOH}>\mathrm{Me}_{3} \mathrm{CCOOH}>\mathrm{Et}_{3} \mathrm{CCOOH} \gg(\mathrm{i}-\mathrm{Pr})_{2} \mathrm{CHCOOH}
$$

34. Describe the preparation of
(i) Acetylene to Acetic acid
(ii) Acetaldehyde to But-2-enoic acid
35. (a) List three reagents for converting a carboxylic acid to its acyl chloride.
(b) Select the most convenient of the three reagents, give a reason for your choice and write a balanced equation for its reaction with $\mathrm{R}-\mathrm{COOH}$.
36. Predict the products of the following reactions.
(a) Aniline + phthallic anhydride on heating.
(b) Phenol + acetic anhydride in presence of lewis acid.
(c) Benzaldehyde + acetic anhydride in presence of acetate ion.
37. During the preparation of esters from a carboxylic acid and an alcohol in the presence of an acid catalyst, the water or the ester should be removed as soon as it is formed, why?
38. An organic compound (A) (molecular formula $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$) was hydrolysed with dilute sulphuric acid to give a carboxylic $\operatorname{acid}(\mathrm{B})$ and an alcohol (C). Oxidation of (C) with chromic acid produced (B). (C) on dehydration gives but-1-ene. Write equations for the reactions involved.
39.

40. In the given reaction sequence

(A) and (B) respectively are :
41. An acidic compound (A), $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{3}$ looses its optical activity on strong heating yielding (B), $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}$ which reacts readily with KMnO_{4} and decolourises it. (B) forms a derivative (C) with SOCl_{2} which on reaction with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ gives (D). The compound (A) also forms unstable compound (E) on treatment with dilute chromic acid. (E) decarboxylate readily to give (F) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ which on treatment with amlgumated zinc and HCl gives hydrocarbon (G). Give structures of (A) to (G).
42. Give the product of each of the following reactions :

$$
\mathrm{MeCH}\left(\mathrm{CH}_{2} \mathrm{COOH}\right)_{2} \xrightarrow{\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right) \mathrm{O}} \mathrm{~F} \text {. }
$$

43. Both cis- and trans-1,2-cyclohexanedicarboxylic acids form anhydrides on heating, but the anhydride formed from the cis-1,2-cyclopentanedicarboxylic acid only. explain.

CHEMISTRY FOR JEE MAIN \& ADVANCED

44. 30 g of monobasic carboxylic acid A consumed 0.5 moles of NaOH for its neutralisation. A is subjected to following treatments :
$[\mathrm{A}] \xrightarrow{\mathrm{Cl}_{2} / \mathrm{P}}\binom{$ Monochloro }{ derivative }$\xrightarrow[\text { with } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}]{\text { Esterification }}($ Ester $) \xrightarrow{\mathrm{KCN}(\text { alc. })}[\mathrm{B}] \xrightarrow[\text { Acid }]{\text { Hydrolysis }}$ Dicarboxylicacid $[\mathrm{C}] \xrightarrow[150^{\circ} \mathrm{C}]{\text { Heat }} \mathrm{A}$
Give structures of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ providing the sequence of reactions.
45. How many compounds out of the following are more reactive than ethyl acetate towards hydrolysis.

(I)

(II)

(III)

(IV)

(V)

(VI)

(VII)

(VIII)

(IX)

(X)
46. Complete the folliowing reaction
(a) Toluene + phthalic anhydride $+\mathrm{AlCl}_{3}$
(b) Product from (a) + Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}+\Delta$
47. Complete the following by reactions. Find the unknown A to F :

48.

The products can be :
49. The respective boiling points and molecular weights (in/gmol) of the following amides are : $\mathrm{MeCONH}_{2}, 221^{\circ} \mathrm{C}$ and 59 ; MeCONHMe, $204^{\circ} \mathrm{C}$ and 73 ; $\mathrm{MeCONMe}_{2}, 165^{\circ} \mathrm{C}$ and 87 . Explain.
50. In the following ester there are three carbon oxygen bonds denoted by x, y and z. Then bond length of (i) x, y (ii) y, z and (iii) x, z orders are :

51. The number of isomeric products formed in the following reaction is :

52. Explain briefly the formation of the products giving the structures of the intermediates.

53.

Exercise \# 5 Part \# I [Previous Year Questions] [AIEEE/JEE-MAIN]

1. Rate of the reaction is fastest when Z is :
[AIEEE-2004]

(1) Cl
(2) OCOCH_{3}
(3) $\mathrm{OC}_{2} \mathrm{H}_{5}$
(4) NH_{2}
2. Consider the acidity of the carboxylic acids :
[AIEEE-2004]
(A) PhCOOH
(B) $\mathrm{o}-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COOH}$
(C) $\mathrm{p}-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COOH}$
(D) $\mathrm{m}-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COOH}$
which of the following order is correct?
(1) $a>b>c>d$
(2) $b>c>d>a$
(3) $b>d>a>c$
(4) $b>d>c>a$
3. On mixing ethyl acetate with aqueous sodium chloride, the composition of the resultant solution is :
(1) $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{NaCl}$
(2) $\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COONa}$
(3) $\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{NaOH}$
(4) $\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
[AIEEE-2004]
4. p-cresol reacts with chloroform in alkaline medium to give the compound A which adds hydrogen cyanide to form, the compound B. The latter on acidic hydrolysis gives chiral carboxylic acid. The structure of the carboxylic acid is:
[AIEEE-2005]
(1)

(2)

(3)

(4)

5. An organic compound having molecular mass 60 is found to contain $\mathrm{C}=20 \%, \mathrm{H}=6.67 \%$ and $\mathrm{N}=46.67 \%$ while rest is oxygen. On heating it gives NH_{3} along with a solid residue. The solid residue give violet colour with alkaline copper sulphate solution. The compound is :
[AIEEE-2005]
(1) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CONH}_{2}$
(2) $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$
(3) $\mathrm{CH}_{3} \mathrm{CONH}_{2}$
(4) $\mathrm{CH}_{3} \mathrm{NCO}$
6. A liquid was mixed with ethanol and a drop of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ was added. A compound with a fruity smell was formed. The liquid was :
[AIEEE-2009]
(1) HCHO
(2) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
(3) $\mathrm{CH}_{3} \mathrm{COOH}$
(4) $\mathrm{CH}_{3} \mathrm{OH}$
7. Sodium ethoxide has reacted with ethanoyl chloride. The compound that is produced in the above reaction is:
[AIEEE-2011]
(1) Diethyl ether
(2) 2-Butanone
(3) Ethyl chloride
(4) Ethyl ethanoate
8. A compound with molecular mass 180 is acylated with $\mathrm{CH}_{3} \mathrm{COCl}$ to get a compound with molecular mass 390. The number of amino groups present per molecule of the former compound is :
[JEE(Mains) 2013]
(1) 2
(2) 5
(3) 4
(4) 6
9. Compound (A), $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{Br}$, gives a white precipitate when warmed with alcoholic AgNO_{3}. Oxidation of (A) gives an acid (B), $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}_{4}$. (B) easily forms anhydride on heating. Identify the compound (A).
[JEE (Mains) 2013]
(1)

(2)

(3)

(4)

10. An organic compound A upon reacting with NH_{3} gives B . On heating B gives C . C in presence of KOH reacts with Br_{2} to given $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$. A is :
[JEE (Mains) 2013]
(1) $\mathrm{CH}_{3} \mathrm{COOH}$
(2) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
(3)

(4) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
11. In the Hofmann bromamide degradation reaction, the number of moles of NaOH and Br_{2} used per mole of amine produced are :
[JEE (Mains) 2016]
(1) Four moles of NaOH and two moles of Br_{2}
(2) Two moles of NaOH and two moles of Br_{2}
(3) Four moles of NaOH and one mole of Br_{2}
(4) One mole of NaOH and one mole of Br_{2}
12. Which of the following compounds will form significant amount of meta products during mono-nitration reaction?
[JEE (Mains) 2017]
(1)

(2)

(3)

(4)

13. Sodium salt of an organic acid ' X ' produces effervescene with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$. ' X ' reacts with the acidified aqueous CaCl_{2} solution to give a white precipitate which decolourises acidic solution of KMnO_{4} ' X ' is :
[JEE (Mains) 2017]
(1) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}$
(2) HCCONa
(3) $\mathrm{CH}_{3} \mathrm{COONa}$
(4) $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
14. The major product obtained in the following reaction is
[JEE (Mains) 2017]

(1)

(2)

(3)

(4)

15. Which of the following compounds will be suitable for Kjeldahl's method for nitrogen estimation ?
[JEE (Mains) 2018]
(1)

(2)

(3)

(4)

16. The increasing order of basicity of the following compounds is :
[JEE (Mains) 2018]
(a)

(b)

(c)

(d)

(1) (b) $<$ (a) $<$ (c) $<$ (d)
(2) (b) $<$ (a) $<$ (d) $<$ (c)
(3) (d) $<$ (b) $<$ (a) $<$ (c)
(4) (a) $<$ (b) $<$ (c) $<$ (d)

Part \# II [Previous Year Questions][IIT-JEE ADVANCED]

1. Statement-1 : Acetate ion is more basic than the methoxide ion.

Statement-2 : The acetate ion is resonance stabilized.
[JEE-2004]
(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
(B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
(C) Statement-1 is True, Statement-2 is False
(D) Statement-1 is False, Statement-2 is True
2. In conversion of 2-butanone to propanoic acid which reagent is used.
[JEE-2005]
(A) $\mathrm{NaOH}, \mathrm{NaI} / \mathrm{H}^{\oplus}$
(B) Fehling solution
(C) $\mathrm{NaOH}, \mathrm{I}_{2} / \mathrm{H}^{\oplus}$
(D) Tollen's reagent

Passage

3. Which reagent (X) is used to convert I to II
[JEE 2006]
(A) $\mathrm{KBr} / \mathrm{NaOH}$
(B) $\mathrm{Br}_{2} / \mathrm{NaOH}$
(C) NaHCO_{3}
(D) N -Bromo succinimide
4. Which step is rate determining step
[JEE 2006]
(A) Formation of II
(B) Formation of III
(C) Formation of V
(D) Formation of IV
5.

[JEE 2006]
(A)

(B)

(C)

$+$

(D)

6. Statement-1 : p-Hydroxybenzoic acid has a lower boiling point that o-hydroxybenzoic acid.

Statement-2 : o-Hydroxybenzoic acid has intramolecular hydrogen bonding.
[JEE 2007]
(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
(B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
(C) Statement-1 is True, Statement-2 is False
(D) Statement-1 is False, Statement-2 is True.

[JEE-2010]
(A)

(B)

(C)

(D)

8. The major product of the following reaction is :
[JEE-2011]

(A)

(B)

(C)

(D)

9. The carboxyl functional group $(-\mathrm{COOH})$ is present in :
[JEE-2012]
(A) picric acid
(B) barbituric acid
(C) ascorbic acid
(D) aspirin
10. The compound that undergoes decarboxlylation most readily under mild condition is :
[JEE-2012]
(A)

(B)

(C)

(D)

CHEMISTRY FOR JEE MAIN \& ADVANCED

11. With reference to the scheme given, which of the given statements(s) about $\mathrm{T}, \mathrm{U}, \mathrm{V}$ and W is (are) correct?

[JEE-2012]
(A) T is soluble in hot aqueous NaOH
(B) U is optically active
(C) Molecular formula of W is $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{4}$
(D) V gives effervescence on treatment with aqueous NaHCO_{3}
12. The total number of carboxylic acid groups in the product P is
[JEE(Advanced)-2013]

Paragraph for Question 13 and 15
P and Q are isomers of dicarboxylic acid $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$. Both decolorize $\mathrm{Br}_{2} / \mathrm{H}_{2} \mathrm{O}$. On heating, \mathbb{P} forms the cyclic anhydride.
Upon treatment with dilute alkaline $\mathrm{KMnO}_{4}, \mathrm{P}$ as well as Q could produce one or more than one from S, T and U .

S

T

U
13. Compounds formed form P and Q are, respectively
[JEE(Advanced)-2013]
(A) Optically active S and optically active pair (T, U)
(B) Optically inactive S and optically inactive pair (T, U)
(C) Optically active pair (T, U) and optically active S
(D) Optically inactive pair (T, U) and optically inactive S
14. In the following reaction sequences \mathbf{V} and \mathbf{W} are respectively :
[JEE(Advanced)-2013]

$$
\mathrm{Q} \xrightarrow[\Delta]{\mathrm{H}_{2} / \mathrm{Ni}} \mathrm{~V}
$$

(A)

(B)

(C)

W
(D)

15. The major product of the following reaction is
[JEE(Advanced)-2017]

(A)

(B)

(C)

(D)

PARAGRAPH (16-17)

An organic acid $\mathrm{P}\left(\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2}\right)$ can easily be oxidized to a dibasic acid which reacts with ethyleneglycol to produce a polymer decron. Upon ozonolysis, P gives an aliphatic ketone as one of the products. P undergoes the following reaction sequences to furnish R via Q. The compound P also undergoes another set of reactions to produce S.

[JEE(Advanced)-2018]

CHEMISTRY FOR JEE MAIN \& ADVANCED

16. The compound R is
(A)

(B)

(C)

(D)

17. The compound S is
(A)

(B)

(C)

(D)

18. Aniline reacts with mixed acid (conc. HNO_{3} and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$) at 288 K to give $\mathrm{P}(51 \%), \mathrm{Q}(47 \%)$ and $\mathrm{R}(51 \%), \mathrm{Q}(47 \%)$ and $\mathrm{R}(2 \%)$. The major product(s) of the following reaction sequence is/are

(A)

(B)

(C)

(D)

MOCK THEST

SECTION - I : STRAIGHT OBJECTIVE TYPE

1. $\mathrm{PhCOOH}, \mathrm{PhMe}$ can be seperated by
(A) NaHCO_{3}
(B) aq. $\mathrm{NaHCO}_{3}+$ n-hexane
(C) $\mathrm{H}_{2} \mathrm{O}$
2. Reactivity order towards a nucleophile is
(A) $\mathrm{RCOCl}>\mathrm{RCOOEt}>(\mathrm{RCO})_{2} \mathrm{O}>\mathrm{RCONH}_{2}$
(B) $\mathrm{RCOCl}>(\mathrm{RCO})_{2} \mathrm{O}>\mathrm{RCOOEt}>\mathrm{RCONH}_{2}$
(C) $(\mathrm{RCO})_{2} \mathrm{O}>\mathrm{RCOCl}>\mathrm{RCOOEt}>\mathrm{RCONH}_{2}$
(D) $(\mathrm{RCO})_{2} \mathrm{O}>\mathrm{RCOOEt}>\mathrm{RCOCl}>\mathrm{RCONH}_{2}$
3. When phenyl glyoxal is kept in a solution of aq. NaOH it is converted to
(A) P

(B)

(C)

(D)

4.

The basically order of I, II and III is
(A) III $>$ I $>$ II
(B) I $>$ II $>$ III
(C) III $>$ II $>$ I
(D) II $>$ III $>$ I
5. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{COOH}+\mathrm{PCL}_{3} \longrightarrow \mathrm{X} \xrightarrow{\mathrm{AlCl}_{3} / \mathrm{CS}_{2}} \mathrm{Y} \xrightarrow{\mathrm{N}_{2} \mathrm{H}_{4} / \mathrm{OH}^{\ominus}} \mathrm{Z}\right.$

Identify the correct set of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$

	(A)	(B)	(C)	(D)
(X)	$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{OCl}$	$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{OCl}$	$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{OCl}$	$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{Cl}$
(Y)	$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}$	$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}$	$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}$	$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}$
(Z)	$\mathrm{C}_{11} \mathrm{H}_{14}$	$\mathrm{C}_{11} \mathrm{H}_{12}$	$\mathrm{C}_{10} \mathrm{H}_{12}$	$\mathrm{C}_{11} \mathrm{H}_{14}$

6. What will be the most probable product when compound ' X ' is treated with two equivalents of NaOH ,

(A)

(B)

CHEMISTRY FOR JEE MAIN \& ADVANCED

(C)

(D)

7. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}-\stackrel{\mathrm{O}}{\mathrm{C}}-\mathrm{O}-\mathrm{CH}_{3} \xrightarrow[(1)]{\mathrm{NBS}} \xrightarrow[(2)]{\mathrm{Ag}_{2} \mathrm{O} \text { (moist) }} \xrightarrow[(3)]{\mathrm{CrO}_{3} / \mathrm{Py}} \xrightarrow[(4)]{\mathrm{NaOH}, \Delta}$
(A)

(B)

(C)

(D) $\mathrm{CH}_{3}-\mathrm{C}-\mathrm{CH}=\mathrm{CH}-\mathrm{COO}^{\ominus}$
8.

(A)

(B)

(C)

(D) None of these
9.

X, Y are
(A)

(B)

(C)

(D) All of these
10.
 , Product 'W' is :-

(B)

(C)

(D)

11. $\mathrm{CH}_{2}(\mathrm{COOEt})_{2}$

(A)

(B)

(C)

(D)

12. Which of the following undergoes decarboxylation most readily on being heated ?
(A)

(B)

(C)

(D)

SECTION-II : MULTIIPLE CORRECT ANSWER TYPE
13. $\mathrm{Ph}-\left(\mathrm{CH}_{2}\right)_{5}-\stackrel{\mathrm{\|} \mathrm{C}-\mathrm{Cl}}{ } \mathrm{AlCl}_{3}(\mathrm{X}) \xrightarrow{\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{H}^{+} \text {heat }}(\mathrm{Y}) \xrightarrow{\text { heat }}(\mathrm{Z})$
(A) X is

(B) Y is

(C) Z is

(D) Y is

14. trans-2-methylcyclohexanol + acetyl chloride $\longrightarrow \mathrm{X}$

$$
\mathrm{X}+\mathrm{NaOH}(\mathrm{aq}) \xrightarrow{\Delta} \mathrm{Y}+\text { sodium acetate }
$$

(A) X is

(B) X is

(C) Y is

(D)

SECTION - III : ASSERTION AND REASON TYPE

Read the following question and choose the correct answer :
(A) Statement-1 is True, Statement-2 is True ; Statement-2 is a correct explanation for Statement-1
(B) Statement-1 is True, Statement-2 is True ; Statement-II is NOT a correct explanation for Statement-1
(C) Statement-1 is True, Statement-2 is False.
(D) Statement-1 is False, Statement-2 is True.
15. Statement-1: Halogen atom in a-halogeno acid is more reactive than that in alkyl halide.

Statement-2: It is due to -M effect of -COOH group.
16. Statement-1: The halogeno acids donot form Grignard reagent.

Statement-2: This is because of the presence of -COOH group (acidic H).
17. Statement-1: The base catalysed hydrolysis of easter order is
(1) $\mathrm{CH}_{3}-\mathrm{COOCH}_{3}>\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}>\mathrm{CH}_{3}-\mathrm{COOCH}\left(\mathrm{CH}_{3}\right)_{2}$
(2)

Statement-2: $\quad \mathrm{S}_{\mathrm{N}} 2 \mathrm{Th}$ is sterically as well as electronically controlled reaction.
18. Statement-1: $\mathrm{C}-\mathrm{O}$ bond length is shorter in an easter as compared with an anhydride.

Statement-2: A degree of cross conjugation exist in the hydride which decreases the delocalisation to each carbonyl oxygen.
19. Statement - 1: Acid catalysed hydrolysis of easter is reversible while base catalysed hydrolysis is irriversible.

Statement-2: In acid catalysed ester hydrolysis

SECTION - IV : COMPREHENSION TYPE

Read the following comprehensions carefully and answer the questions.

Comprehension \# 1

Observe the estrification mechanisms for primary and tertiary alcohols.

Type. $1 \mathrm{CH}_{3} \mathrm{COOH}+\underbrace{\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}}_{\text {Propyl }=\mathrm{Pr}}-\mathrm{OH} \xrightarrow{\text { Conc. } \mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{CH}_{3}-\stackrel{\mathrm{O}}{\mathrm{C}}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
Mechanism

Type. 2

Mechanism

20.

In the above reaction (\mathbb{P}) and (\mathbb{Q}) are respectively :
(A)

(B)

(C)

(D)

21.

CHEMISTRY FOR JEE MAIN \& ADVANCED

(A) (X) is optically active while (Y) is optically inactive
(B) Both (X) and (Y) are optically active
(C) Both (X) and (Y) are optically inactive
(D) (X) is optically inactive while (Y) is optically active
22. (+) Octan-2-ol esterifies with Acetic acid to give optically racemised product. It must have gone by
(A) Type I mechanism
(B) Type II mechanism
(C) Mix type I and type II mechanism
(D) More by type I and less by type II mechanism

Comprehension \# 2

Hofmann rearrangement

In the Hofmann rearrangement an unsubstituted amide is treated with sodium hydroxide and bromine to give a primary amine that has one carbon lesser than starting amide.
General reaction.

Mech :

If the migrating group is chiral then its configuration is retained. Electron releasing effects in the migrating group increases reactivity of Hofmann rearrangement.
23. Which of the following compound(s) cannot give Hofmann rearrangement :
(A)

(B)

(C)

(D)

24. Arrange the following amides according to their relative reactivity when react with Br_{2} in excess of strong base

(A) IV $>$ I $>$ II $>$ III
(B) II $>$ I $>$ III $>$ IV
(C) II $>$ IV $>$ III $>$ I
(D) II $>$ I $>$ IV $>$ III
25.

(A) $\begin{array}{r}\mathrm{H}_{3} \mathrm{C}-\mathrm{H}_{2} \mathrm{C}-\stackrel{*}{\stackrel{+}{\mathrm{C}} \mathrm{H}}-\mathrm{NH}_{2} \\ \stackrel{+}{\mathrm{C}} \mathrm{H}_{3}\end{array}$
(S)

(R)
(B)

(S)
(R)

(D) $\mathrm{B} \& \mathrm{C}$ both are correct

SECTION - V : MATRIX - MATCH TYPE
26.

Column -I
(A)

(B)

(D) $\mathrm{C}_{2} \mathrm{H}_{5}-\stackrel{\mathrm{\|}}{\mathrm{C}}-\mathrm{OC}_{2} \mathrm{H}_{5} \xrightarrow{\mathrm{OH}^{\ominus}}$

Column - II
(p) Hydrolysis
(q) Esterification
(r) Saponification
(s) Acid base reaction
27.

S.No.	X	Y
1		(p)
2		(q)
3		(r)
4		(s)

CHEMISTRY FOR JEE MAIN \& ADVANCED

28. Match the column I with column II.
Column - I
Column - II
(A)

(p) Diastereomer
(q) Racemic mixture
(C) HOOC

(r) Optically active
(D) $\begin{array}{cl}\mathrm{Ph}-\mathrm{C}-\mathrm{CD}-\mathrm{C}-\mathrm{OH} \\ \| & \stackrel{1}{\|} \\ \mathrm{O} & \mathrm{CH}_{3} \\ \mathrm{O}\end{array}$
$\xrightarrow{\Delta}$
(s) CO_{2} gas will evolve

ANSWER KEY

EXERCISE - 1

1. A
2. B
3. C
4. B
5. A
6. D
7. A
8. C
9. C
10. C
11. B
12. C
13. D
14. A
15. C
16. A
17. B
18. A
19. D
20. B
21. B
22. B
23. D
24. B
25. C
26. C
27. A
28. C
29. A
30. B
31. B
32. D
33. C
34. C
35. C
36. C
37. A
38. A
39. C
40. C
41. B
42. A
43. A
44. A
45. B
46. A
47. D
48. B
49. B
50. A
51. A
52. C
53. C
54. A
55. A
56. C
57. C
58. C
59. A
60. B
61. B
62. C
63. C
64. C
65. B
66. C
67. D
68. B
69. C
70. D
71. D
72. B
73. B
74. C
75. C
76. B
77. A
78. D
79. D
80. B
81. B
82. D

EXERCISE - 2 : PART \# I

1. $\mathrm{A}, \mathrm{B}, \mathrm{C}$
2. A, B
3. B, C
4. $\mathrm{A}, \mathrm{B}, \mathrm{D}$
5. $\mathrm{A}, \mathrm{B}, \mathrm{C}$
6. A, C
7. A, B
8. $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$
9. A
10. A, B, D
11. B,D
12. A, B
13. A, B, C
14. C
15. A, B, D
16. D
17. D
18. C
19. B
20. A, B, C
21. A
22. B
23. B
24. A, D
25. C, D
26. A, B, C
27. A, B, D
28. A, B, D

PART \# II

1. C
2. A
3. C
4. D
5. C
6. A
7. A
8. A
9. A

EXERCISE - 3 : PART \# I

10. C
11. A
12. E
13. E
14. $\mathrm{A} \rightarrow \mathrm{s}, \mathrm{B} \rightarrow \mathrm{r}, \mathrm{C} \rightarrow \mathrm{p}, \mathrm{D} \rightarrow \mathrm{q}$
15. $\mathrm{A} \rightarrow \mathrm{s}, \mathrm{B} \rightarrow \mathrm{r}, \mathrm{C} \rightarrow \mathrm{q}, \mathrm{D} \rightarrow \mathrm{p}, \mathrm{E} \rightarrow \mathrm{t}$
16. $\mathrm{A} \rightarrow \mathrm{r}, \mathrm{B} \rightarrow \mathrm{s}, \mathrm{C} \rightarrow \mathrm{p}, \mathrm{D} \rightarrow \mathrm{q}$
17. $\mathrm{A} \rightarrow \mathrm{s}, \mathrm{B} \rightarrow \mathrm{q}, \mathrm{s}, \mathrm{C} \rightarrow \mathrm{p}, \mathrm{s}, \mathrm{D} \rightarrow \mathrm{p}, \mathrm{r}, \mathrm{s}$
18. $\mathrm{A} \rightarrow \mathrm{s}, \mathrm{B} \rightarrow \mathrm{p}, \mathrm{C} \rightarrow \mathrm{q}, \mathrm{D} \rightarrow \mathrm{r}$

PART \# II

Comprehension \# 1: 1. B 2. D 3. B
Comprehension \# 2 :

1. C
2. D
3. D

Comprehension \#3 :

1. B
2. A
3. B

Comprehension \# 4 :

1. A
2. A
3. B
4. B
5. A

Comprehension \# 5 :

1. B
2. B
3. A
4. C

Comprehension \# 6 :

1. C
2. C
3. A
4. B

EXERCISE - 5 : PART \# I

1. 1
2. 2
3. 1
4. 3
5. 2
6. 3
7. 4
8. 2
9. 4
10. 4
11. 3
12. 3
13. 4
14. 2
15. 1
16. 2

PART \# II

1. D 2. C
2. B
3. D
4. A
5. D 7. C
6. A
7. D
8. B
9. $\mathrm{A}, \mathrm{C}, \mathrm{D}$
10. 2
11. B
12. A
13. C
14. A
15. B
16. D

MOCK-TEST

1. B 2. B 3. B 4. A 5. A 6. D 7. C 8. B 9. B 10. A 11. D 12. D 13. ABC
2. AD 15. C 16. A 17. A 18. A 19. A 20. B 21. A 22. B
3. $\mathrm{A} \rightarrow \mathrm{s} \quad \mathrm{B} \rightarrow \mathrm{q} \quad \mathrm{C} \rightarrow \mathrm{p} \quad \mathrm{D} \rightarrow \mathrm{r} \quad$ 27. $1 \rightarrow \mathrm{r}, \quad 2 \rightarrow \mathrm{q}, ~ 3 \rightarrow \mathrm{p}, 4 \rightarrow \mathrm{~s}$
4. $\mathrm{A} \rightarrow \mathrm{p}, \mathrm{r}, \mathrm{s} ; \mathrm{B} \rightarrow \mathrm{p}, \mathrm{r}, \mathrm{s} ; \mathrm{C} \rightarrow \mathrm{q}, \mathrm{s} ; \mathrm{D} \rightarrow \mathrm{q}, \mathrm{s}$
