

Continuity and Differentiability

[TOPIC 1] Continuity

1.1 Continuity at a Point

A function f(x) is said to be continuous at a point x = a, if

$$(LHL)_{x=a} = (RHL)_{x=a} = f(a) \text{ or } \lim_{x \to a} f(x) = f(a)$$

where, $(LHL)_{x=a} = \lim_{x \to a} f(x)$

and
$$(RHL)_{x=a} = \lim_{x \to a^+} f(x)$$
.

NOTE To evaluate LHL and RHL of a function f(x) at x = a, put x = a - h and x = a + h respectively, where $h \rightarrow 0$.

1.2 Discontinuity of a Function

A function f(x) is said to be discontinuous at x = a, if it is not continuous at x = a, i.e. when any of the following cases arise:

- (i) $\lim_{x\to a^+} f(x)$ or $\lim_{x\to a^-} f(x)$ or $\lim_{x\to a} f(x)$ does not exist.
- (ii) $\lim_{x \to a^{-}} f(x) \neq \lim_{x \to a^{+}} f(x)$
- (iii) $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) \neq f(a) \text{ or } \lim_{x \to a} f(x) \neq f(a)$

1.3 Continuity in an Interval

A function y = f(x) is said to be continuous in an interval (a, b) iff f(x) is continuous at every point in that interval and f is said to be continuous in the interval [a, b] iff f is continuous in the interval (a, b) and also at the point a from the right and at the point b from the left.

Note A function is said to be continuous, if it is continuous on the whole of its domain.

Useful Results for Continuity

- (i) Every identity function is continuous.
- (ii) Every constant function is continuous.
- (iii) Every polynomial function is continuous.
- (iv) Every rational function is continuous.
- (v) All trigonometric functions are continuous in their domain.
- (vi) Modulus function is continuous.

Standard Results of Limits

(i)
$$\lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}$$

(ii)
$$\lim_{X\to 0} \frac{\sin x}{x} \approx 1$$

$$(iii) \lim_{x\to 0} \frac{\tan x}{x} = 1$$

(iv)
$$\lim_{x\to 0} \frac{e^x-1}{x} = 1$$

(v)
$$\lim_{x \to \infty} \frac{1}{x^p} = 0, p \in (0, \infty)$$

$$(vi) \lim_{x\to 0} \frac{\log(1+x)}{x} = 1$$

$$(vii) \lim_{x\to 0} \frac{a^x - 1}{x} = \log_e a$$

(viii)
$$\lim_{x\to 0} (1+x)^{1/x} = e$$

$$(ix) \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$$

(x) $\lim_{x \to \infty} \sin x$ and $\lim_{x \to \infty} \cos x$ oscillate between -1 to 1.

1.4 Algebra of Continuous Functions

Suppose f and g are two real functions, continuous at real number c. Then,

- (i) f + g is continuous at x = c.
- (ii) f g is continuous at x = c.
- (iii) $f \cdot g$ is continuous at x = c.
- (iv) kf is continuous at x = c, where k is any constant.
- (v) $\left(\frac{f}{g}\right)$ is continuous at x = c [provided $g(c) \neq 0$].

1.5 Composition of Two Continuous Functions

Suppose f and g are two real valued functions such that $(f \circ g)$ is defined at c. If g is continuous at c and f is continuous at g (c), then $(f \circ g)$ is continuous at c.

[TOPIC 2] Differentiability

2.1 Differentiability

A function f(x) is said to be differentiable at a point x = a, if Left hand derivative at (x = a) equals to Right hand derivative at (x = a) i.e. LHD at (x = a) = RHD (at x = a), where Right hand derivative, $Rf'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$ and

Left hand derivative, $Lf'(a) = \lim_{h \to 0} \frac{f(a-h) - f(a)}{-h}$

- **NOTE** (i) The common value of Rf'(a) and Lf'(a) is denoted by f'(a) and it is known as the derivative of f(x) at x = a.
 - Every differentiable function is continuous but every continuous function need not be differentiable.

Useful Results for Differentiability

- (i) Every polynomial, exponential and constant functions are differentiable.
- (ii) Logarithmic function is differentiable in their domain.
- (iii) Trigonometric and inverse trigonometric functions are differentiable in their domain.
- (iv) Modulus function is differentiable everywhere except at that point where it is zero.

2.2 Differentiation

The process of finding derivative of a function is called differentiation.

Rules of Derivative

- (i) Sum and Difference Rule Let $y = f(x) \pm g(x)$. Then, by using sum and difference rule, its derivative is written as $\frac{dy}{dx} = \frac{d}{dx} f(x) \pm \frac{d}{dx} g(x)$.
- (ii) **Product Rule** Let y = f(x) g(x). Then, by using product rule, it's derivative is written as $\frac{dy}{dx} = \left[\frac{d}{dx} f(x) \right] g(x) + \left[\frac{d}{dx} g(x) \right] f(x).$

- (iii) Quotient Rule Let $y = \frac{f(x)}{g(x)}$; $g(x) \neq 0$, then by using quotient rule, its derivative is written as $\frac{dy}{dx} = \frac{g(x) \times \frac{d}{dx} [f(x)] f(x) \times \frac{d}{dx} [g(x)]}{[g(x)]^2}.$
- (iv) Chain Rule Let y = f(u) and u = f(x), then by using chain rule, we may write $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$ when $\frac{dy}{du}$ and $\frac{du}{dx}$ both exist.

Some Standard Derivatives

- (i) $\frac{d}{dx}$ (constant) = 0
- $(ii) \ \frac{d}{dx} (x^n) = nx^{n-1}$
- $(iii) \ \frac{d}{dx}(e^x) = e^x$
- $(iv) \frac{d}{dx} (\log_e x) = \frac{1}{x}, x > 0$
- $(v) \frac{d}{dx} (a^x) = a^x \log_e a, a > 0$
- $(vi) \frac{d}{dx} (\sin x) = \cos x$
- (vii) $\frac{d}{dx}(\cos x) = -\sin x$
- $(viii) \frac{d}{dx} (\tan x) = \sec^2 x$
- $(ix) \frac{d}{dx} (\csc x) = -\csc x \cot x$
- (x) $\frac{d}{dx}$ (sec x) = sec x tan x
- $(xi) \frac{d}{dx} (\cot x) = -\csc^2 x$
- $(xii) \frac{d}{dx} (\sin^{-1} x) = \frac{1}{\sqrt{1 x^2}}$
- (xiii) $\frac{d}{dx} (\cos^{-1} x) = -\frac{1}{\sqrt{1-x^2}}$
- $(xiv) \frac{d}{dx} (\tan^{-1} x) = \frac{1}{1+x^2}$

$$(x^{y})\frac{d}{dx}(\cot^{-1}x)=-\frac{1}{1+x^{2}}$$

$$(x^{vi}) \frac{d}{dx} (\sec^{-1} x) = \frac{1}{x \sqrt{x^2 - 1}}$$

$$(xvii)\frac{d}{dx}(\csc^{-1}x) = -\frac{1}{x\sqrt{x^2 - 1}}$$

Derivative of Implicit Function

suppose f(x, y) = 0 is a function of x and y, which cannot express in the form of $y = \phi(x)$. Then, such function is called implicit function. For differentiation of this type of function, we

differentiate it and simplifying such that $\frac{dy}{dx}$ or $\frac{dx}{dy}$

is on left hand side and the other variable is on right hand side.

Logarithmic Differentiation

Let
$$y = [f(x)]^{g(x)}$$
 ...(1)

Then, by taking \log (to base e), we can write Eq. (i) as $\log y = g(x) \log f(x)$.

Now, by using chain rule

$$\frac{dy}{dx} = [f(x)]^{g(x)} \left[\frac{g(x)}{f(x)} f'(x) + g'(x) \log f(x) \right].$$

NOTE The logarithmic function $\log_a x (a > 0 \text{ and } a \neq 1)$ has the following properties:

(i)
$$\log_a(mn) = \log_a m + \log_a n$$

(ii)
$$\log_a \left(\frac{m}{n}\right) = \log_a m - \log_a n$$

(iii)
$$\log_a m^n = n \log_a m$$
 (iv) $\log_a m = \frac{\log m}{\log a}$

(iv)
$$\log_a m = \frac{\log m}{\log a}$$

(v)
$$\log_a a = 1$$

(vi)
$$\log_a 1=0$$

Differentiation of **Parametric Function**

If x = f(t), y = g(t), where t is a parameter, then

$$\frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)}, \text{ whenever } \frac{dx}{dt} \neq 0$$

NOTE dy/dx is expressed in terms of parameter only without directly involving the main variables x and y.

Differentiation of a Function with **Respect to Another Function**

Suppose y = f(x) and z = g(x) are two functions. Then, differentiation of y with respect to z is

$$\frac{dy}{dz} = \frac{dy / dx}{dz / dx}.$$

Second Order Derivative

It is the derivative of the first order derivative,

i.e.
$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right).$$

2.3 Rolle's and Mean Value Theorem

Rolle's Theorem

Let $f:[a,b] \to R$ be continuous on [a,b] and differentiable on (a, b) such that f(a) = f(b), where a and b are some real numbers. Then, there exists at least one number c in (a, b) such that f'(c) = 0.

Mean Value Theorem

Let $f:[a,b] \to R$ be continuous function on [a,b]and differentiable on (a, b). Then, there exists atleast one number c in (a, b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

NOTE Mean value theorem is an expansion of Rolle's theorem.

Some Useful Substitutions for **Finding Derivatives**

Expression

Substitution

(i)
$$a^2 + x^2$$

$$x=a \tan \theta$$
 or $x=a \cot \theta$

(ii)
$$a^2 - x^2$$

$$x=a\sin\theta$$
 or $x=a\cos\theta$

(iii)
$$x^2-a^2$$

$$x=a \sec \theta$$
 or $x=a \csc \theta$

(iv)
$$\sqrt{\frac{a-x}{a+x}}$$
 or $\sqrt{\frac{a+x}{a-x}}$ $x=a\cos 2\theta$

$$x = a \cos 2\theta$$

(v)
$$\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}$$
 or $\sqrt{\frac{a^2 + x^2}{a^2 - x^2}}$ $x^2 = a^2 \cos 2\theta$

$$x^2 = a^2 \cos 2\theta$$