\square Solutions

1. Let direction cosines of the line be l, m and n.

Given, $\alpha=90^{\circ}, \beta=135^{\circ}$ and $\gamma=45^{\circ}$
Then, $l=\cos \alpha=\cos 90^{\circ}=0$,

$$
m=\cos \beta=\cos 135^{\circ}=\frac{-1}{\sqrt{2}}
$$

and $\quad n=\cos \gamma=\cos 45^{\circ}=\frac{1}{\sqrt{2}}$
Hence, the direction cosines of a line are

$$
0, \frac{-1}{\sqrt{2}} \text { and } \frac{1}{\sqrt{2}} \text {. }
$$

2. Equation of a line passing through a point with position vector \vec{a} and parallel to a vector \vec{b} is

$$
\vec{r}=\vec{a}+\lambda \vec{b}
$$

Since, line passes through $(3,4,5)$
$\therefore \quad \vec{a}=3 \hat{i}+4 \hat{j}+5 \hat{k}$
Since, line is parallel to $2 \hat{i}+2 \hat{j}-3 \hat{k}$

$$
\therefore \quad \vec{b}=2 \hat{i}+2 \hat{j}-3 \hat{k}
$$

Equation of line is $\vec{r}=\vec{a}+\lambda \vec{b}$, i.e.

$$
\vec{r}=(3 \hat{i}+4 \hat{j}+5 \hat{k})+\lambda(2 \hat{i}+2 \hat{j}-3 \hat{k})
$$

which is the required vector equation.
3. Given, line makes equal angles with coordinate axes. Let α, β and γ be the angles made by the line with coordinate axes.
$\begin{aligned} \text { Then, } & & \alpha=\beta & =\gamma \Rightarrow \cos \alpha=\cos \beta=\cos \gamma \\ \Rightarrow & & l & =m\end{aligned}$

$$
\begin{equation*}
l=m=n \tag{i}
\end{equation*}
$$

$[\because l=\cos \alpha, m=\cos \beta, n=\cos \gamma]$
We know that, $l^{2}+m^{2}+n^{2}=1$

$$
\begin{aligned}
\therefore & & l^{2}+l^{2}+l^{2} & =1 \quad \text { [from Eq. (i)] } \\
\Rightarrow & 3 l^{2} & =1 & \Rightarrow l^{2}=\frac{1}{3} \Rightarrow l= \pm \frac{1}{\sqrt{3}}
\end{aligned}
$$

From Eq. (i), direction cosines of a line are

$$
\begin{equation*}
\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) \text { or }\left(\frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}\right) \tag{1}
\end{equation*}
$$

4. The given line passes through the point A having position vector $\vec{a}_{1}=2 \hat{i}-\hat{j}+4 \hat{k}$ and is parallel to the vector $\vec{b}=(\hat{i}+\hat{j}-2 \hat{k})$
\therefore The equation of the given line is

$$
\begin{equation*}
\vec{r}=\vec{a}_{1}+\lambda \vec{b} \Rightarrow \vec{r}=(2 \hat{i}-\hat{j}+4 \hat{k})+\lambda(\hat{i}+\hat{j}-2 \hat{k}) \tag{i}
\end{equation*}
$$

For cartesian equation put $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ in Eq. (i), we get
$\Rightarrow \quad(x \hat{i}+y \hat{j}+z \hat{k})=(2 \hat{i}-\hat{j}+4 \hat{k})+\lambda(\hat{i}+\hat{j}-2 \hat{k})$
$\Rightarrow \quad x \hat{i}+y \hat{j}+z \hat{k}=(2+\lambda) \hat{i}+(\lambda-1) \hat{j}+(4-2 \lambda) \hat{k}$
$\Rightarrow \quad x=2+\lambda, y=\lambda-1$ and $z=4-2 \lambda$
$\Rightarrow \quad \frac{x-2}{1}=\frac{y+1}{1}=\frac{z-4}{-2}=\lambda$
Hence, $\frac{x-2}{1}=\frac{y+1}{1}=\frac{z-4}{-2}$ is the required
equation of the given line in cartesian form.
5. Let a line makes angles α, β and γ with the X-axis, Y-axis and Z-axis, respectively.
$\therefore \quad \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$
$\Rightarrow \cos ^{2} 90^{\circ}+\cos ^{2} 60^{\circ}+\cos ^{2} \gamma=1$
(1/2)

$$
\begin{array}{lr}
\Rightarrow & 0+\left(\frac{1}{2}\right)^{2}+\cos ^{2} \gamma=1 \\
\Rightarrow & \frac{1}{4}+\cos ^{2} \gamma=1
\end{array}
$$

$$
\Rightarrow \quad \cos ^{2} \gamma=1-\frac{1}{4}=\frac{3}{4}
$$

$$
\Rightarrow \quad \cos \gamma= \pm \frac{\sqrt{3}}{2}
$$

$$
\therefore \quad \gamma=30^{\circ}, 150^{\circ}
$$

6. Let l, m and n be the direction cosines of the given line. Then, we have

$$
\begin{aligned}
l & =\cos 90^{\circ}=0 \\
m & =\cos 60^{\circ}=\frac{1}{2}
\end{aligned}
$$

and

$$
n=\cos \theta
$$

$$
\because \quad l^{2}+m^{2}+n^{2}=1
$$

$$
\therefore 0+\left(\frac{1}{2}\right)^{2}+\cos ^{2} \theta=1
$$

$$
\Rightarrow \quad \cos ^{2} \theta=1-\frac{1}{4}=\frac{3}{4}
$$

$$
\Rightarrow \quad \cos \theta= \pm \frac{\sqrt{3}}{2}
$$

$[\because \cos \theta$ cannot be negative as θ is an acute angle]

$$
\begin{array}{lll}
\Rightarrow & \cos \theta & =\cos 30^{\circ} \\
\therefore & \theta & =30^{\circ} \tag{1}
\end{array}
$$

7. Given equations of a line is

$$
\begin{equation*}
5 x-3=15 y+7=3-10 z \tag{i}
\end{equation*}
$$

Let us first convert the equation in standard for

$$
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}
$$

Let us divide Eq. (i) by LCM (coefficients of x, y and z), i.e. $\operatorname{LCM}(5,15,10)=30$

$$
\begin{aligned}
& \text { Now, the Eq. (i) becomes } \\
& \begin{array}{l}
\frac{5 x-3}{30}=\frac{15 y+7}{30}=\frac{3-10 z}{30} \\
\Rightarrow \frac{5\left(x-\frac{3}{5}\right)}{30}=\frac{15\left(y+\frac{7}{15}\right)}{30}=\frac{-10\left(z-\frac{3}{10}\right)}{30} \\
\Rightarrow \quad \frac{x-\frac{3}{5}}{6}=\frac{y+\frac{7}{15}}{2}=\frac{z-\frac{3}{10}}{-3}
\end{array} .
\end{aligned}
$$

On comparing the above equation with Eq.(ii). we get $6,2,-3$ are the direction ratios of the given line.
Now, the direction cosines of given line are
$\frac{6}{\sqrt{6^{2}+2^{2}+(-3)^{2}}}, \frac{2}{\sqrt{6^{2}+2^{2}+(-3)^{2}}}$ and

$$
\frac{-3}{\sqrt{6^{2}+2^{2}+(-3)^{2}}}
$$

i.e. $\frac{6}{7}, \frac{2}{7}, \frac{-3}{7}$.
8. Given, if a line makes angles α, β, γ with the coordinate axes.
Then, direction cosine of a line are $\cos \alpha, \cos \beta, \cos \gamma$.

$$
\begin{aligned}
\therefore \sin ^{2} & \alpha+\sin ^{2} \beta+\sin ^{2} \gamma \\
& =1-\cos ^{2} \alpha+1-\cos ^{2} \beta+1-\cos ^{2} \gamma \\
& =3-\left(\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma\right) \\
& =3-1=2 \quad\left[\because \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1\right]
\end{aligned}
$$

9.

Firstly, consider any point on X-axis be $Q(x, 0,0)$. Then, use the formula for distance of points

$$
\begin{aligned}
& R\left(x_{1}, y_{1}, z_{1}\right) \text { from } S\left(x_{2}, y_{2}, z_{2}\right) \\
& \quad=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}} .
\end{aligned}
$$

Given point is $P(a, b, c)$.
Then, the coordinates of the point on X-axis be ($a, 0,0$).
$[\because x$-coordinate of both points will be same]
\therefore Required distance $=\sqrt{(a-a)^{2}+(0-b)^{2}+(0-c)^{2}}$

$$
=\sqrt{0+b^{2}+c^{2}}=\sqrt{b^{2}+c^{2}}
$$

- Given cartesian equation of a line is

$$
\frac{3-x}{5}=\frac{y+4}{7}=\frac{z-6}{4}
$$

on rewriting the given equation in standard form, we get

$$
\begin{aligned}
\frac{x-3}{-5} & =\frac{y+4}{7}=\frac{z-3}{2}=\lambda \text { (let) } \\
\Rightarrow \quad x & =-5 \lambda+3 y=7 \lambda-4 \text { and } z=2 \lambda+3 \\
& \text { (12) }
\end{aligned}
$$

Now, $\quad x \hat{i}+y \hat{j}+z \hat{k}=(-5 \lambda+3) \hat{i}+(7 \lambda-4) \hat{j}$

$$
+(2 \lambda+3) \hat{k}
$$

$$
=3 \hat{i}-4 \hat{j}+3 \hat{k}+\lambda(-5 \hat{i}+7 \hat{j}+2 \hat{k})
$$

$\therefore \quad \vec{r}=(3 \hat{i}-4 \hat{j}+3 \hat{k})+\lambda(-5 \hat{i}+7 \hat{j}+2 \hat{k})$
which is the required equation of line in vector form.
11. The vector equation of a line parallel to Z-axis is $\vec{m}=0 \hat{i}+0 \hat{j}+\hat{k}$. Then, the required line passes through the point $A(\alpha, \beta, \gamma)$ whose position vector is $\vec{r}_{1}=\alpha \hat{i}+\beta \hat{j}+\gamma \hat{j}$ and is parallel to the vector $\vec{m}=(0 \hat{i}+0 \hat{j}+\hat{k})$.
\therefore The equation is $\vec{r}=\vec{r}_{1}+\lambda \vec{m}$

$$
\begin{align*}
& =\left(\alpha \hat{i}+\hat{\beta} \hat{j}+\gamma^{k}\right)+\lambda(0 \hat{i}+0 \hat{j}+\hat{k}) \\
& =\left(\alpha \hat{i}+\beta \hat{j}+\gamma^{\hat{k}}\right)+\lambda(\hat{k}) \quad(1 / 2) \tag{1/2}
\end{align*}
$$

12. Given equation of line is

$$
\frac{4-x}{2}=\frac{y}{6}=\frac{1-z}{3}
$$

It can be rewritten in standard form as

$$
\frac{x-4}{-2}=\frac{y}{6}=\frac{z-1}{-3}
$$

Here, DR's of the line are $(-2,6,-3$.
\therefore Direction cosines of the line are

$$
\frac{-2}{\sqrt{(-2)^{2}+6^{2}+(-3)^{2}}}, \frac{6}{\sqrt{(-2)^{2}+6^{2}+(-3)^{2}}}
$$

and $\frac{-3}{\sqrt{(-2)^{2}+6^{2}+(-3)^{2}}}$ i.e. $\frac{-2}{\sqrt{49}}, \frac{6}{\sqrt{49}}$ and $\frac{-3}{\sqrt{49}}$
Thus, DC's of line are $\left(-\frac{2}{7}, \frac{6}{7},-\frac{3}{7}\right)$
13. We know that, the vector equation of a line passing through a point with position vector \vec{a} and parallel to a given vector \vec{b} is $\vec{r}=\vec{a}+\lambda \vec{b}$.
where $\lambda \in R$. Here, $\vec{a}=\hat{i}-\hat{j}+2 \hat{k}$ and
$\vec{b}=\hat{i}+2 \hat{j}-2 \hat{k} .[\because$ DR's of given line is 1,2 and -2$]$ \therefore Required vector equation of line is $\vec{r}=(\hat{i}-\hat{j}+2 \hat{k})+\lambda(\hat{i}+2 \hat{j}-2 \hat{k})$, where $\lambda \in R$.
14. If two lines are parallel, then direction ratios of both lines are proportional. Use this result and simplity it.
Given, the required line is parallel to the line

$$
\frac{x+3}{3}=\frac{4-y}{5}=\frac{z+8}{6} \text { or } \frac{x+3}{3}=\frac{y-4}{-5}=\frac{z+8}{6}
$$

\therefore DR's of both lines atre proportional to each other.
(1/2)
The required equation of the line passing through $(-2,4,-5)$ having DR's $(3,-5,6)$ is

$$
\begin{equation*}
\frac{x+2}{3}=\frac{y-4}{-5}=\frac{z+5}{6} \tag{1/2}
\end{equation*}
$$

15. Given, DR 's of the line are $(2,-1,-2)$.
\therefore Direction cosines of the line are

$$
\begin{gather*}
\left(\frac{2}{\sqrt{(2)^{2}+(-1)^{2}+(-2)^{2}}} \cdot \frac{-1}{\sqrt{(2)^{2}+(-1)^{2}+(-2)^{2}}},\right. \\
{\left[\because l= \pm \frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}, m= \pm \frac{-2}{\sqrt{(2)^{2}+(-1)^{2}+(-2)^{2}}}\right)} \\
n= \pm \frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}} \\
=\left(\frac{2}{\sqrt{a^{2}+b^{2}+c^{2}}}\right] \\
=\left(\frac{-1}{\sqrt{9}}, \frac{-1}{\sqrt{9}}, \frac{-2}{\sqrt{9}}\right)=\left(\frac{2}{3}, \frac{-1}{3}, \frac{-2}{3}\right) \quad
\end{gather*}
$$

16. Clearly, the direction ratios of line joining the points $(1,0,0)$ and $(0,1,1)$ are $0-1,1-0$ and -0 i.e. $-1,1$ and 1
\therefore Direction cosines are $\frac{-1}{\sqrt{(-1)^{2}+1^{2}+1^{2}}}$.
$\frac{1}{\sqrt{(-1)^{2}+1^{2}+1^{2}}}$ and $\frac{1}{\sqrt{(-1)^{2}+1^{2}+1^{2}}}$
i.e., $\frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$ and $\frac{1}{\sqrt{3}}$
17. Do same as Q.No. 10 .

$$
[\text { Ans. } \vec{r}=(5 \hat{i}-4 \hat{j}+6 \hat{k})+\lambda(3 \hat{i}+7 \hat{j}+2 \hat{k})]
$$

18. Given equation of line can be written as

$$
\frac{x-4}{-2}=\frac{y+3}{2}=\frac{z+2}{1}
$$

Here, DR's of a line are ($-2,2,1$).
$\therefore \mathrm{DC}$'s of line parallel to above line are given by
$\ddot{(} \frac{-2}{\sqrt{(-2)^{2}+(2)^{2}+(1)^{2}}} \cdot \frac{2}{\sqrt{(-2)^{2}+(2)^{2}+(1)^{2}}}$,

$$
\begin{aligned}
& =\left(\frac{-2}{\sqrt{(-2)^{2}+(2)^{2}+(1)^{2}}}\right) \\
& =\left(\frac{2}{\sqrt{9}}, \frac{2}{\sqrt{9}}, \frac{1}{\sqrt{9}}\right)=\left(-\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right)
\end{aligned}
$$

Hence, required DC^{\prime} s of a line parallel to the given line are $\left(-\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right)$.
NOTE Before we can use the DR's of a line, first we ensure that coefficients of x, y and z are unity with positive sign.
19. Given equation of line can be written as

$$
\frac{x-3}{-1}=\frac{y+2}{-2}=\frac{z-5}{4}
$$

\therefore DR's of the line parallel to above line are ($-1,-2,4$).
[\because direction ratios of two parallel lines are proportional] (1)
20. Do same as Q. No. 9 .
[Ans. 5 units]
21. Do same as Q. No. 10 .

$$
[\text { Ans. } \vec{r}=(5 \hat{i}-4 \hat{j}+6 \hat{k})+\lambda(3 \hat{i}+7 \hat{j}-2 \hat{k})]
$$

22. Given line is $5 x-25=14-7 y=35 z$.
$\Rightarrow \frac{x-5}{1 / 5}=\frac{2-y}{1 / 7}=\frac{z}{1 / 35} \Rightarrow \frac{x-5}{1 / 5}=\frac{y-2}{-1 / 7}=\frac{z}{1 / 35}$
\Rightarrow Direction ratio of the given line are $\frac{1}{5},-\frac{1}{7}, \frac{1}{35}$ (1)
\Rightarrow Direction ratio of a line parallel to the given
line are $\frac{1}{5},-\frac{1}{7}, \frac{1}{35}$.
\therefore The required equation of a line passing through the point $A(1,2,-1)$ and parallel to the given line is

$$
\begin{equation*}
\frac{x-1}{1 / 5}=\frac{y-2}{-1 / 7}=\frac{z+1}{1 / 35} \tag{1}
\end{equation*}
$$

23. The equation of line joining the points

$$
\begin{aligned}
& P(2,2,1) \text { and } Q(5,1,-2) \text { is } \\
& \frac{x-2}{5-2}=\frac{y-2}{1-2}=\frac{z-1}{-2-1} \\
& \Rightarrow \quad \frac{x-2}{3}=\frac{y-2}{-1}=\frac{z-1}{-3}
\end{aligned}
$$

Since, x-coordinate is 4 .

$$
\therefore \quad \frac{4-2}{3}=\frac{z-1}{-3} \Rightarrow z=-1
$$

24. Given equation of lines can be written in stand form as
and

$$
\begin{align*}
& \frac{x-1}{-3}=\frac{y-2}{\lambda / 7}=\frac{z-3}{2}=r_{1} \text { (let) } \\
& \frac{x-1}{\frac{-3 \lambda}{7}}=\frac{y-5}{1}=\frac{z-6}{-5}=r_{2} \text { (let) } \tag{ii}
\end{align*}
$$

These lines will intersect at right angle, if

$$
-3\left(\frac{-3 \lambda}{7}\right)+\frac{\lambda}{7}(1)+2(-5)=0
$$

$\left[\because\right.$ two lines with DR's a_{1}, b_{1}, c_{1} and a_{2}, b_{2}, c_{2} Ire perpendicular if $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$]
$\Rightarrow \quad \frac{9 \lambda}{7}+\frac{\lambda}{7}=10 \Rightarrow \frac{10 \lambda}{7}=10 \Rightarrow \lambda=7$,
which is the required value of λ.
Now, let us check whether the lines are intersecting or not.
Coordinates of any point on line (i) are

$$
\left(-3 r_{1}+1, r_{1}+2,2 r_{1}+3\right)
$$

and coordinates of any point on line (ii) are

$$
\left(-3 r_{2}+1, r_{2}+5 ;-5 r_{2}+6\right)
$$

Clearly, the line will intersect if
$\left(-3 r_{1}+1, r_{1}+2,2 r_{1}+3\right)=\left(-3 r_{2}+1, r_{2}+5,-5 r_{2}+6\right.$
For some $r_{1}, r_{2} \in R$
$\Rightarrow-3 r_{1}+1=-3 r_{2}+1 ; r_{1}+2=r_{2}+5 ;$
$2 r_{1}+3=-5 r_{2}+6$
$2 r_{1}+3=-5 r_{2}+6$
$\Rightarrow \quad r_{1}=r_{2} ; r_{1}-r_{2}=3 ; 2 r_{1}+5 r_{2}=3$
which is not possible simultaneously for any $r_{1}, r_{2} \in R$.
Hence, the lines are not intersecting.
25. Do same as Q. No. 24.
[Ans. $\lambda=-2$ do not intersef]
26. Given equation of lines are

$$
\begin{aligned}
& \vec{r}=(4 \hat{i}-\hat{j})+\lambda(\hat{i}+2 \hat{j}-3 \hat{k}) \\
& \vec{r}=\hat{i}
\end{aligned}
$$

and $\vec{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(2 \hat{i}+4 \hat{j}-5 \hat{k})$

On comparing Eqs. (i) and (ii) with $\vec{r}=\vec{a}_{1}+\lambda \vec{b}_{1}$ and $\vec{r}=\vec{a}_{2}+\mu \vec{b}_{2}$ respectively, we get

$$
\vec{a}_{1}=4 \hat{i}-\hat{j}, \vec{b}_{1}=\hat{i}+2 \hat{j}-3 \hat{k}
$$

and $\vec{a}_{2}=\hat{i}-\hat{j}+2 \hat{k}, \vec{b}_{2}=2 \hat{i}+4 \hat{j}-5 \hat{k}$
Here $\vec{a}_{2}-\vec{a}_{1}=-3 \hat{i}+2 \hat{k}$
and $\vec{b}_{1} \times \vec{b}_{2}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -3 \\ 2 & 4 & -5\end{array}\right|$

Now, the shortest distance between the given lines is given by

$$
\begin{align*}
d & =\frac{\left|\left(\vec{b}_{1} \times \vec{b}_{2}\right) \cdot\left(\vec{a}_{2}-\vec{a}_{1}\right)\right|}{\left|\vec{b}_{1} \times \vec{b}_{2}\right|} \\
& =\frac{|(2 \hat{i}-\hat{j}) \cdot(-3 \hat{i}+2 \hat{k})|}{\sqrt{5}} \tag{1}\\
& =\frac{|-6|}{\sqrt{5}}=\frac{6}{\sqrt{5}} \text { units } \tag{1}
\end{align*}
$$

27. Given lines are $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$
and . $\quad \frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}$
On comparing the given equations of lines with

$$
\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}
$$

and

$$
\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}
$$

we get $x_{1}=1, y_{1}=2, z_{1}=3 ; a_{1}=2, b_{1}=3, c_{1}=4$.
and $\quad x_{2}=2, y_{2}=4, z_{2}=5 ; a_{2}=3, b_{2}=4, c_{2}=5$ (1)
On putting these values in
On putting these values in
$\left|\begin{array}{ccc}x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right|$ we get

$$
\begin{array}{ccc}2-1 & 4-2 & 5-3 \\ 2 & 3 & 4 \\ 3 & 4 & 5\end{array}\left|=\left|\begin{array}{lll}1 & 2 & 2 \\ 2 & 3 & 4 \\ 3 & 4 & 5\end{array}\right|\right.
$$

$=1(15-16)-2(0-12)+2(8-9)$

$=-1+4-2=1$

Now,
\therefore SD
\therefore SD
$\sqrt{\left(b_{1} c_{2}-b_{2} c_{1}\right)^{2}+\left(c_{1} a_{2}-c_{2} a_{1}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}}$
$=\frac{1}{\sqrt{6}}$ units,
which is the required shortest distance.
(1)
28. Given equations of lines are

$$
\vec{r}=(8 \hat{i}-19 \hat{j}+10 \hat{k})+\lambda(3 \hat{i}-16 \hat{j}+7 \hat{k})
$$

and $\vec{r}=(15 \hat{i}+29 \hat{j}+5 \hat{k})+\mu(3 \hat{i}+8 \hat{j}-5 \hat{k})$
On comparing with vector form of equation of a line, i.e. $\vec{r}=\vec{a}+\lambda \vec{b}$, we get

$$
\overrightarrow{b_{1}}=3 \hat{i}-16 \hat{j}+7 \hat{k}
$$

and $\quad \vec{b}_{2}=3 \hat{i}+8 \hat{j}-5 \hat{k}$
[1/2]
Now, we determine

$$
\begin{align*}
\vec{b} & =\overrightarrow{\vec{b}}_{1} \times \overrightarrow{b_{2}}=\left|\begin{array}{rrr}
\hat{i} & \hat{j} & \hat{k} \\
3 & -16 & 7 \\
3 & 8 & -5
\end{array}\right| \\
& =\hat{i}(80-56)-\hat{j}(-15-21)+\hat{k}(24+48) \\
& =24 \hat{i}+36 \hat{j}+72 \hat{k}=12(2 \hat{i}+3 \hat{j}+6 \hat{k}) \tag{1}
\end{align*}
$$

Since, the required line is perpendicular to the given lines. So, it is parallel to $\vec{b}_{1} \times \vec{b}_{2}$. Now, the equation of a line passing through the point $(1,2,-4)$ and parallel to $24 \hat{i}+36 \hat{j}+72 \hat{k}$ or $(2 \hat{i}+3 \hat{j}+6 \hat{k})$ is

$$
\begin{equation*}
\vec{r}=(\hat{i}+2 \hat{j}-4 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k}) \tag{1}
\end{equation*}
$$

which is required vector equation of a line. For cartesian equation, put $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$, we get

$$
\begin{aligned}
x \hat{i}+y \hat{j}+z \hat{k}=(l+2 \lambda) \hat{i} & +(2+3 \lambda) \hat{j} \\
& +(-4+6 \lambda) \hat{k}
\end{aligned}
$$

[1/2]

On comparing the coefficients of \hat{i}, \hat{j} and \hat{k}, we get

$$
\begin{array}{rlrl}
x & =1+2 \lambda, y=2+3 \lambda \text { and } z=-4+6 \lambda \\
\Rightarrow \quad & \frac{x-1}{2} & =\lambda, \frac{y-2}{3}=\lambda \text { and } \frac{z+4}{6}=\lambda \\
\therefore \quad & \frac{x-1}{2} & =\frac{y-2}{3}=\frac{z+4}{6} \tag{1}
\end{array}
$$

which is the required cartesian equation of a line.

Alternate Method

Let the equation of line passing through
$(1,2,-4)$ is

$$
\begin{equation*}
\vec{r}=(\hat{i}+2 \hat{j}-4 \hat{k})+\lambda_{1}\left(b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\right) \tag{i}
\end{equation*}
$$

Since, the line (i) is perpendicular to the given lines

$$
\vec{r}=(8 \hat{i}-19 \hat{j}+10 \hat{k})+\lambda(3 \hat{i}-16 \hat{j}+7 \hat{k})
$$

and $\vec{r}=(15 \hat{i}+29 \hat{j}+5 \hat{k})+\mu(3 \hat{i}+8 \hat{j}-5 \hat{k})$
Therefore, we have

$$
\begin{align*}
\Rightarrow & \left(b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\right) \cdot(3 \hat{i}-16 \hat{j}+7 \hat{k})=0 \\
\Rightarrow & 3 b_{1}-16 b_{2}+7 b_{3}=0 \tag{ii}
\end{align*}
$$

and $\quad\left(b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\right) \cdot(3 \hat{i}+8 \hat{j}-5 \hat{k})=0$
$\Rightarrow \quad 3 b_{1}+8 b_{2}-5 b_{3}=0 \quad \ldots$ (iii)(1)
[\because if two lines $\vec{r}=\vec{a}_{1}+\lambda \vec{b}_{1}$ and $\vec{r}=\vec{a}_{2}+\lambda \vec{b}_{2}$ are perpendicular, then $\overrightarrow{b_{1}} \cdot \overrightarrow{b_{2}}=0$.]
Now, on solving Eqs. (ii) and (iii), we get

$$
\begin{equation*}
\frac{b_{1}}{80-56}=\frac{b_{2}}{21+15}=\frac{b_{3}}{24+48} \tag{1}
\end{equation*}
$$

$\Rightarrow \quad \frac{b_{1}}{24}=\frac{b_{2}}{36}=\frac{b_{3}}{72}$
$\Rightarrow \quad \frac{b_{1}}{2}=\frac{b_{2}}{3}=\frac{b_{3}}{6}$ [multiplying by 12] (1)
$\Rightarrow b_{1}=2 k, b_{2}=3 k$ and $b_{3}=6 k$, for some constant k. Thus, the required vector equation of line is

$$
\begin{equation*}
\vec{r}=(\hat{i}+2 \hat{j}-4 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k}) \tag{1}
\end{equation*}
$$

where $\lambda=\lambda_{1} k$ is any constant.
Now, for cartesian equation do same as in above method.
29. Clearly, the equation of a line joining the points
$B(0,-1,3)$ and $C(2,-3,-1)$ is

$$
\begin{aligned}
& \vec{r}=(0 \hat{i}-\hat{j}+3 \hat{k})+\lambda[(2-0) \hat{i}+(-3+1) \hat{j} \\
& \vec{r}=(-1-j \hat{j}+3 \hat{k})+\lambda(2 \hat{i}-2 \hat{j}-4 \hat{k})
\end{aligned}
$$

$\Rightarrow \quad \vec{r}=(2 \lambda) \hat{i}+(-2 \lambda-1) \hat{j}+(-4 \lambda+3) \hat{k}$
So, any point on line $B C$ is to the form

$$
(2 \lambda,-2 \lambda-1,-4 \lambda+3)
$$

Let foot of the perpendicular drawn from point A to the line $B C$ be $T(2 \lambda,-2 \lambda-1,-4 \lambda+3)$.

Now, DR^{\prime} s of line $A T$ is $(2 \lambda+1,-2 \lambda-1-8$, $-4 \lambda+3-4)$ or $(2 \lambda+1,2 \lambda-9,-4 \lambda-1)$.
Since, $A T$ is perpendicular to $B C$.

$$
\begin{array}{rlrl}
\therefore & & 2 \times(2 \lambda+1)+(-2) \times(-2 \lambda-9) & \\
& & +(-4)(-4 \lambda-1)=0 & \\
{\left[\because a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0\right.} \\
\Rightarrow & & 4 \lambda+2+4 \lambda+18+16 \lambda+4 & =0 \\
\Rightarrow & & 24 \lambda+24 & =0 \\
& & \lambda & =-1
\end{array}
$$

\therefore Coordinates of foot of perpendicular is
$T(2 \times(-1)),-2 \times(-1)-1,-4 \times(-1)+3)$ or $T(-2,1,7)$
Let $P(x, y, z)$ be the image of a point A with respect to the line $B C$. So, point T is the mid-point of $A P$.
\therefore Coordinates of $T=$ Coordinates of mid-point of $A P$

$$
\Rightarrow \quad(-2,1,7)=\left(\frac{x-1}{2}, \frac{y+8}{2}, \frac{z+4}{2}\right)
$$

On equating the corresponding coordinates, we get

$$
-2=\frac{x-1}{2}, 1=\frac{y+8}{2} \text { and } 7=\frac{z+4}{2}
$$

$\Rightarrow \quad x=-3, y=-6$ and $z=10$
Hence, coordinates of the foot of perpendicular is $T(-2,1,7)$ and image of the point A is $P(-3,-6,10)$.
30. The equation of line through $A(0,-1,-1)$ and $B(4,5,1)$ is

$$
\frac{x-0}{4-0}=\frac{y+1}{5+1}=\frac{z+1}{1+1}
$$

i.e.

$$
\frac{x}{4}=\frac{y+1}{6}=\frac{z+1}{2}
$$

and equation of line through $C(3,9,4)$ and $D(-4,4,4)$ is

$$
\begin{equation*}
\frac{x-3}{-4-3}=\frac{y-9}{4-9}=\frac{z-4}{0} \tag{ii}
\end{equation*}
$$

i.e., $\quad \frac{x-3}{-7}=\frac{y-9}{-5}=\frac{z-4}{0}$

We know that, the lines

$$
\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}} \text { and }
$$

$$
\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}} \text { will intersect, }
$$

if $\left|\begin{array}{ccc}x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right|=0$
\therefore The given lines will intersect, if

$$
\left|\begin{array}{ccc}
3-0 & 9-(-1) & 4-(-1) \tag{1}\\
4 & 6 & 2 \\
-7 & -5 & 0
\end{array}\right|=0
$$

Now consider,

$$
\begin{align*}
& \left|\begin{array}{ccc}
3-0 & 9-(-1) & 4-(-1) \\
4 & 6 & 2 \\
-7 & -5 & 0
\end{array}\right|=\left|\begin{array}{ccc}
3 & 10 & 5 \\
4 & 6 & 2 \\
-7 & -5 & 0
\end{array}\right| \\
& =3(0+10)-10(0+14)+5(-20+42) \\
& =30-140+110=0 \tag{1}
\end{align*}
$$

Hence, the given lines intersect.
31. Given lines can be rewritten as

$$
\begin{equation*}
\vec{r}=(3 \lambda+1) \hat{i}+(a-\lambda) \hat{j}-\hat{k} \tag{i}
\end{equation*}
$$

and $\quad \vec{r}=(4+2 \mu) \hat{i}+0 \hat{j}+(3 \mu-1) \hat{k}$
Clearly, any point on line (i) is of the form $P(3 \lambda+1,1-\lambda,-1)$ and any point on line (ii) is of the form $Q(4+2 \mu, 0,3 \mu-1)$
If lines (i) and (ii) intersect, then these points must coincide for some λ and μ.
Consider,

$$
3 \lambda+1=4+2 \mu
$$

\Rightarrow

$$
\begin{align*}
3 \lambda-2 \mu & =3 \tag{iii}\\
1-\lambda & =0 \tag{iv}\\
3 \mu-1 & =-1 \tag{v}
\end{align*}
$$

and
From Eq. (iv), we get $\lambda=1$ and put the value of λ in Eq. (iii), we get

$$
\text { 3(1) } \begin{aligned}
-2 \mu & =3 \\
-2 \mu & =3-3 \Rightarrow \mu=0
\end{aligned}
$$

On putting the value of μ in Eq. (v), we get

$$
\Rightarrow \quad-1=-1, \text { which is true }
$$

Hence, both lines intersect each other.
The point of intersection of both lines can be obtained by putting $\lambda=1$ in coordinates of P. So, the point of intersection is $(3+1,1-1,-1)$, i.e. $(4,0,-1)$.
(1)
32. Given equation of line is

$$
\frac{x+2}{2}=\frac{2 y-7}{6}=\frac{5-z}{6}
$$

This equation can be written as

$$
\frac{x+2}{2}=\frac{y-7 / 2}{3}=\frac{z-5}{-6}
$$

So, direction ratios of line are ($2,3,-6$).
(1)

Now, direction cosines of a line are

$$
\left(l=\frac{2}{\sqrt{2^{2}+3^{2}+(-6)^{2}}}, m=\frac{3}{\sqrt{2^{2}+3^{2}+(-6)^{2}}}\right.
$$

$$
\left.n=\frac{-6}{\sqrt{2^{2}+3^{2}+(-6)^{2}}}\right)
$$

$$
\left[\begin{array}{rl}
\because l=\frac{ \pm a}{\sqrt{a^{2}+b^{2}+c^{2}}}, m=\frac{ \pm b}{\sqrt{a^{2}+b^{2}+c^{2}}} \tag{1}\\
n & =\frac{ \pm c}{\sqrt{a^{2}+b^{2}+c^{2}}}
\end{array}\right]
$$

$\Rightarrow \quad l=\frac{2}{\sqrt{49}}, m=\frac{3}{\sqrt{49}}, n=-\frac{6}{\sqrt{49}}$
So, direction cosines of given line are $\left(\frac{2}{7}, \frac{3}{7}, \frac{-6}{7}\right)$.

Here, DR's of a line parallel to given line are $(2,3,-6)$. So, the required equation of line passes through the point $A(-1,2,3)$ and parallel to given line is

$$
\begin{equation*}
\frac{x+1}{2}=\frac{y-2}{3}=\frac{z-3}{-6} \tag{1}
\end{equation*}
$$

33.

Given equations of lines are

$$
\begin{equation*}
\vec{r}=(2 \hat{i}-5 \hat{j}+\hat{k})+\lambda(3 \hat{i}+2 \hat{j}+6 \hat{k}) \tag{i}
\end{equation*}
$$

and $\vec{r}=(7 \hat{i}-6 \hat{j}-6 \hat{k})+\mu(\hat{i}+2 \hat{j}+2 \hat{k})$

On compurity Pas (i) and (ii) with vector form of equation of line to

$$
\begin{align*}
& \vec{i}-\vec{a}+\lambda \vec{k} \text {, we get } \\
& \vec{a}=2 \vec{i}=\vec{j}+\vec{k} \vec{A}-\vec{i}+2 \vec{j}+\vec{k} \\
& \text { and } \vec{a}_{2}-\vec{\lambda}-\hat{j}-\hat{a} \hat{c}_{1} \vec{b}_{2}-\hat{i}+2 \hat{j}+\vec{x} \tag{i}
\end{align*}
$$

We know that the angle between wo lines is siven by

$$
\begin{aligned}
& \cos \theta=\frac{\left|\overrightarrow{\vec{a}} \cdot \overrightarrow{\vec{A}_{2}}\right|}{|\overrightarrow{\vec{A}}|\left|\overrightarrow{A_{2}}\right|} \\
& \therefore \quad \cos \theta=\left|\frac{(\hat{i}+2 \hat{i}+(\hat{)} \cdot(\hat{i}+2 \hat{a}+2 \hat{x}}{\sqrt{(3)^{2}+(2)^{2}+(6)^{2}} \cdot \sqrt{(1)^{2}+(2)^{2}+(2)^{2}}}\right|(1) \\
& \Rightarrow \cos \theta=\left|\frac{3+4+12}{\sqrt{49} \times \sqrt{\theta}}\right| \\
& \Rightarrow \cos \theta=\left|\frac{19}{7 \times 3}\right| \Rightarrow \cos \theta=\frac{19}{21}
\end{aligned}
$$

Hence, the angle between given two lines is

$$
\begin{equation*}
\theta=\cos ^{-1}\left(\frac{19}{21}\right) \tag{I}
\end{equation*}
$$

34. Given lines are

$$
\begin{equation*}
\frac{x+1}{3}=\frac{y+3}{5}=\frac{z+5}{7}=\lambda \quad(\mathrm{let}) \tag{1}
\end{equation*}
$$

and $\frac{x-2}{1}=\frac{y-4}{3}=\frac{z-0}{5}=\mu$ (let)
Then, any point on line (i) is of the form

$$
P(3 \lambda-1,5 \lambda-3,7 \lambda-5)
$$

and any point on line (ii) is of the form

$$
\begin{equation*}
Q(\mu+23 \mu+4,5 \mu+6) \tag{III}
\end{equation*}
$$

If lines (i) and (ii) intersect, then these points must coincide for some λ and μ.
Consider,

$$
\begin{aligned}
& 3 \lambda-1=\mu+2 \\
& 5 \lambda-3=3 \mu+4
\end{aligned}
$$

and

$$
\begin{equation*}
7 \lambda-5=5 \mu+6 \tag{v}
\end{equation*}
$$

\Rightarrow
$3 \lambda-\mu=3$
$5 \lambda-3 \mu=7$
$7 \lambda-5 \mu=11$
and

$$
\begin{equation*}
7 \lambda-5 \mu=11 \tag{vi}
\end{equation*}
$$

On multiplying Eq. (v) by 3 and then subtracting Eq. (vi), we get

$$
\begin{aligned}
& & 9 \lambda-3 \mu-5 \lambda+3 \mu & =9-7 \\
\Rightarrow & & 4 \lambda & =2 \\
\Rightarrow & & \lambda & =\frac{1}{2}
\end{aligned}
$$

On puiting the value of λ in tiq. (v) we sot

$$
\begin{array}{ll}
& 3 \times 1 \\
\Rightarrow & 2 \mu-1 \\
\Rightarrow & \mu=3 \\
\Rightarrow & \mu=-1
\end{array}
$$

On puring the values of λ and $\mu \mathrm{in}$ Eq. (vii), we set

$$
\begin{aligned}
& \text { We get } \quad 7 \times \frac{1}{2}=9\binom{1}{2}=11 \\
& \Rightarrow
\end{aligned} \quad \frac{7}{2}+\frac{15}{2}=11 \Rightarrow \frac{22}{2}=11
$$

$\Rightarrow \quad 11=11$, which is true.
Hence, lines (i) and (ii) interseet and thetr point of intersection is

$$
P\left(3 \times \frac{1}{2}-1.5 \times \frac{1}{2}-3.7 \times \frac{1}{2}-5\right)
$$

[put $\lambda=\frac{1}{2} \ln \operatorname{Eq}$, (iii))
i.e. $P\left(\frac{1}{2},-\frac{1}{2},-\frac{3}{2}\right)$,
35. Do same as Q. No. 24.

Also, we know that, the equation of a line which passes through the point $\left(x_{1}, y_{1}, z_{1}\right)$ with difection ratios a, b, c is given by

$$
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z+z_{1}}{c}
$$

Since, required line is parallel to line t_{1}.
So, $a=-3 b=\frac{7}{7}=1$ and $c=2$
Now, equation of line passing through the point (3,2,-4) and having direction ratios $(-3,1,2)$ is

$$
\begin{array}{ll}
& \frac{x-3}{-3}=\frac{y-2}{1}=\frac{z+4}{2} \\
\therefore & \frac{3-x}{3}=\frac{y-2}{1}=\frac{z+4}{2}
\end{array}
$$

36. Do same as Q. No. 28.
[Ans. $\vec{r}=(2 \hat{i}-\hat{j}+3 \hat{k})+\lambda(-6 \hat{i}-3 \hat{j}+6 \hat{k})$

$$
\text { and } \frac{2-x}{6}=\frac{-y-1}{3}=\frac{z-3}{6}
$$

37. Given equations of lines are

$$
\text { and } \quad \begin{align*}
\vec{r} & =(\hat{i}+\hat{j}+\lambda(2 \hat{l}-\hat{j}+\hat{k}) \tag{i}\\
r & =(2 \hat{i}+\hat{j}-\hat{k})+\mu(\hat{k}-5 \hat{j}+2 \hat{k}) \tag{ii}
\end{align*}
$$

On comparing above equations with vector equation $\vec{r}=\vec{a}+\lambda \vec{b}$, we get
and $\quad \vec{a}_{2}=2 \hat{i}+\hat{j}-\hat{k}, \overrightarrow{b_{2}} \doteq 3 \hat{i}-5 \hat{j}+2 \hat{k}$
We know that, the shortest distance between two lines is given by

$$
\begin{equation*}
d=\left|\frac{\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right) \cdot\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right)}{\left|\overrightarrow{b_{1}} \times \vec{b}_{2}\right|}\right| \tag{iii}
\end{equation*}
$$

Now, $\vec{b}_{1} \times \vec{b}_{2}=\left|\begin{array}{rrr}\hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 1 \\ 3 & -5 & 2\end{array}\right|$
$\Rightarrow \quad \overrightarrow{b_{1}} \times \vec{b}_{2}=3 \hat{i}-\hat{j}-7 \hat{k}$

$$
\begin{equation*}
=\hat{i}(-2+5)-\hat{j}(4-3)+\hat{k}(-10+3) \tag{iv}
\end{equation*}
$$

and $\left|\vec{b}_{1} \times \vec{b}_{2}\right|=\sqrt{(3)^{2}+(-1)^{2}+(-7)^{2}}$

$$
\begin{equation*}
=\sqrt{9+1+49}=\sqrt{59} \tag{v}
\end{equation*}
$$

Also, $\quad \vec{a}_{2}-\vec{a}_{1}=(2 \hat{i}+\hat{j}-\hat{k})-(\hat{i}+\hat{j})$

$$
=\hat{i}-\hat{k}
$$

From Eqs. (iii), (iv), (v) and (vi), we get

$$
\begin{array}{ll}
\Rightarrow & d=\left|\frac{(3 \hat{i}-\hat{j}-7 \hat{k}) \cdot(\hat{i}-\hat{k})}{\sqrt{59}}\right| \\
\Rightarrow & d=\left|\frac{3-0+7}{\sqrt{59}}\right|=\frac{10}{\sqrt{59}}
\end{array}
$$

Hence, required shortest distance is $\frac{10}{\sqrt{59}}$ units. (1)
38. Do same as Q.No. 37.
$\left[\right.$ Ans. $\frac{9}{\sqrt{171}}$ units]
39. Given equations of lines are

$$
\begin{equation*}
\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1} \tag{i}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1} \tag{ii}
\end{equation*}
$$

On comparing above equations with one point form of equation of line, i.e.

$$
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}, \text { we get }
$$

$$
a_{1}=1, b_{1}=-2, c_{1}=1, x_{1}=3, y_{1}=5, z_{1}=7
$$

$$
\text { and } a_{2}=7, b_{2}=-6, c_{2}=1, x_{2}=-1
$$

$$
y_{2}=-1, z_{2}=-1
$$

We know that, the shortest distance between two lines is given by

$$
\begin{align*}
& \text { lines is given by } \\
& d=\frac{\left|\begin{array}{ccc}
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right|}{\sqrt{\left(b_{1} c_{2}-b_{2} c_{1}\right)^{2}+\left(c_{1} a_{2}-c_{2} a_{1}\right)^{2}}} \begin{array}{r}
+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}
\end{array} \tag{1}\\
& \therefore d=\frac{\left|\begin{array}{rrr}
-1-3 & -1-5 & -1-7 \\
1 & -2 & 1 \\
7 & -6 & 1
\end{array}\right|}{\sqrt{(-2+6)^{2}+(7-1)^{2}+(-6+14)^{2}}} .
\end{align*}
$$

$$
=\frac{\left|\begin{array}{rrr}
-4 & -6 & -8 \\
1 & -2 & 1 \\
7 & -6 & 1
\end{array}\right|}{\sqrt{(4)^{2}+(6)^{2}+(8)^{2}}}
$$

$$
=\left|\frac{-4(-2+6)+6(1-7)-8(-6+14)}{\sqrt{(4)^{2}+(6)^{2}+(8)^{2}}}\right|
$$

$$
=\left|\frac{-4(4)+6(-6)-8(8)}{\sqrt{16+36+64}}\right|
$$

$$
=\left|\frac{-16-36-64}{\sqrt{116}}\right|
$$

$$
=\left|\frac{-116}{\sqrt{116}}\right|=\frac{116}{\sqrt{116}}=\sqrt{116}
$$

Hence, the required shortest distance is $\sqrt{116}$ units.
40. Given equations of lines are

$$
\vec{r}=\hat{i}+2 \hat{j}-4 \hat{k}+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})
$$

and $\quad \vec{r}=3 \hat{i}+3 \hat{j}-5 \hat{k}+\mu(4 \hat{i}+6 \hat{j}+12 \hat{k})$
On comparing with $\vec{r}=\vec{a}+\lambda \vec{b}$, we get

$$
\begin{equation*}
a_{1}=\hat{i}+2 \hat{j}-4 \hat{k}, \vec{b}_{1}=2 \hat{i}+3 \hat{j}+6 \hat{k} \tag{1}
\end{equation*}
$$

and $\quad \vec{a}_{2}=3 \hat{i}+3 \hat{j}-5 \hat{k}, \vec{b}_{2}=4 \hat{i}+6 \hat{j}+12 \hat{k}$
Now, $\vec{a}_{2}-\vec{a}_{1}=(3 \hat{i}+3 \hat{j}-5 \hat{k})-(\hat{i}+2 \hat{j}-4 \hat{k})$

$$
=2 \hat{i}+\hat{j}-\hat{k}
$$

and $\vec{b}_{1} \times \vec{b}_{2}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 6 \\ 4 & 6 & 12\end{array}\right|$

$$
\begin{equation*}
=\hat{i}(36-36)-\hat{j}(24-24)+\hat{k}(12-12)=\overrightarrow{0} \tag{1}
\end{equation*}
$$

So, both given lines are parallel and

$$
\vec{b}=2 \hat{i}+3 \hat{j}+6 \hat{k}
$$

Then, $\vec{b} \times\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right)=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 6 \\ 2 & 1 & -1\end{array}\right|$

$$
=\hat{i}(-3-6)-\hat{j}(-2-12)+\hat{k}(2-6)
$$

$$
\begin{equation*}
=-9 \hat{i}+14 \hat{j}-4 \hat{k} \tag{i}
\end{equation*}
$$

Now, required distance between given lines is

$$
\begin{align*}
d & =\left|\frac{\vec{b} \times\left(\overrightarrow{a_{1}}-\overrightarrow{a_{2}}\right)}{|\vec{b}|}\right|=\left|\frac{-9 \hat{i}+14 \hat{j}-4 \hat{k}}{\sqrt{(2)^{2}+(3)^{2}+(6)^{2}}}\right| \\
& =\frac{\sqrt{81+196+16}}{\sqrt{4+9+36}}=\frac{\sqrt{293}}{\sqrt{49}}=\frac{\sqrt{293}}{7} \text { units } \tag{1}
\end{align*}
$$

41. Any line through the point $(2,1,3)$ can be written as

$$
\begin{equation*}
\frac{x-2}{a}=\frac{y-1}{b}=\frac{z-3}{c} \tag{i}
\end{equation*}
$$

where, a, b and c are the direction ratios of line (i).
Now, the line (i) is perpendicular to the lines

$$
\begin{aligned}
\frac{x-1}{1} & =\frac{y-2}{2}=\frac{z-3}{3} \\
\text { and } \quad \frac{x-0}{-3} & =\frac{y-0}{2}=\frac{z-0}{5} .
\end{aligned}
$$

Direction ratios of these two lines are $(1,2,3)$ and $(-3,2,5)$, respectively.
We know that, if two lines are perpendicular, then

$$
\begin{align*}
& a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2} & =0 \\
\therefore & a+2 b+3 c & =0 \tag{ii}\\
\text { and } & -3 a+2 b+5 c & =0 \tag{iii}
\end{align*}
$$

In Eqs. (ii) and (iii), by cross-multiplication, we get

$$
\frac{a}{10-6}=\frac{b}{-9-5}=\frac{c}{2+6}
$$

$$
\begin{array}{ll}
\Rightarrow & \frac{a}{4}=\frac{b}{-14}=\frac{c}{8} \\
\Rightarrow & \frac{a}{2}=\frac{b}{-7}=\frac{c}{4}=\lambda(\text { say }) \\
\therefore & a=2 \lambda, b=-7 \lambda \\
\text { and } & c=4 \lambda
\end{array}
$$

On substituting the values of a, b and c in Eq. (i), we get

$$
\frac{x-2}{2 \lambda}=\frac{y-1}{-7 \lambda}=\frac{z-3}{4 \lambda} \Rightarrow \frac{x-2}{2}=\frac{y-1}{-7}=\frac{z-3}{4} \mathrm{ct}
$$

which is the required cartesian equation of the line.
The vector equation of line which passes through $(2,1,3)$ and parallel to the vector $2 \hat{i}-7 \hat{j}+4 \hat{k}$ is

$$
\vec{r}=2 \hat{i}+\hat{j}+3 \hat{k}+\lambda(2 \hat{i}-7 \hat{j}+4 \hat{k})
$$

which is the required vector equation of the line. (1)
42. Given equation of line is

$$
\begin{aligned}
& 6 x-2=3 y+1=2 z-2 \\
& \text { or } \quad \\
& \frac{x-2 / 6}{1 / 6}=\frac{y+1 / 3}{1 / 3}=\frac{z-2 / 2}{1 / 2} \\
\Rightarrow \quad & \frac{x-1 / 3}{1 / 6}=\frac{y+1 / 3}{1 / 3}=\frac{z-1}{1 / 2} \\
\Rightarrow \quad & \frac{x-1 / 3}{1}=\frac{y+1 / 3}{2}=\frac{z-1}{3}
\end{aligned}
$$

[on dividing each by 6]
Here, $\mathrm{DR}^{\prime} \mathrm{s}$ of the line are ($1,2,3$).
\therefore Direction cosines of the line are
$\frac{1}{\sqrt{(1)^{2}+(2)^{2}+(3)^{2}}} \cdot \frac{2}{\sqrt{(1)^{2}+(2)^{2}+(3)^{2}}}, \frac{3}{\sqrt{(1)^{2}+(2)^{2}+(3)^{2}}}$
$=\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$
The equation of a line passing through $(2,-1,-1)$ and parallel to the given line is

$$
\begin{aligned}
& \quad \frac{x-2}{1}=\frac{y+1}{2}=\frac{z+1}{3}=\lambda \text { (say) } \\
& \quad\left[\because \frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}\right] \\
& \Rightarrow \quad x=2+\lambda, y=-1+2 \lambda \text { and } z=-1+3 \lambda \\
& \text { Now, } x \hat{i}+y \hat{j}+z \hat{k}=(2+\lambda) \hat{i}+(-1+2 \lambda) \hat{j}
\end{aligned}
$$

$$
+(-1+3 \lambda) \hat{k}(1)
$$

$\therefore \quad \vec{r}=(2 \hat{i}-\hat{j}-\hat{k})+\lambda(\hat{i}+2 \hat{j}+3 \hat{k})$ which is the required equation of line in vector form.
43. Do same as Q. No. 37.
[Ans. 9 units]
44. Do same as Q. No. 31 .
[Ans. (-1, -6, -12)]
45. The vector equation of line $A B$ is

$$
\vec{r}=(-2 \hat{i}+3 \hat{j}+5 \hat{k})+\lambda((7+2) \hat{i}
$$

$$
+(0-3 \hat{j}+(-1-5 \hat{k})]
$$

i.e. $\vec{r}=(-2 \hat{i}+3 \hat{j}+5 \hat{k})+\lambda(9 \hat{i}-3 \hat{j}-6 \hat{k})$
$\Rightarrow \quad(9 \lambda-2) \hat{i}+(-3 \lambda+3) \hat{j}+(-6 \lambda+5) \hat{k}$
and vector equation of line $C D$ is

$$
\vec{r}=(-3 \hat{i}-2 \hat{j}-5 \hat{k})+\mu[(3+3) \hat{i}
$$

$$
+(4+2) \hat{j}+(7+5) \hat{k}]
$$

i.e. $\vec{r}=(-3 \hat{i}-2 \hat{j}-5 \hat{k})+\mu(6 \hat{i}+6 \hat{j}+12 \hat{k}) \quad \ldots$ (ii) (1)
$\Rightarrow \quad(6 \mu-3) \hat{i}+(6 \mu-2) \hat{j}+(12 \mu-5) \hat{k}$
Clearly, any point on the line (i) is of the form

$$
P(9 \lambda-2,-3 \lambda+3,-6 \lambda+9
$$

and any point on the line (ii) is of the form

$$
\begin{equation*}
Q 16 \mu-3,6 \mu-2,12 \mu-9 \tag{1}
\end{equation*}
$$

If lines (i) and (ii) intersect, then these points must coincide for some λ and μ.
Consider, $9 \lambda-2=6 \mu-3,-3 \lambda+3=6 \mu-2$ and $-6 \lambda+5=12 \mu-5$

$$
\begin{array}{ll}
\Rightarrow & 9 \lambda-6 \mu=-1 \\
& 3 \lambda+6 \mu=5 \\
\text { and } & 6 \lambda+12 \mu=10
\end{array}
$$

On adding Eqs. (iii) and (iv), we get

$$
\begin{array}{rlrl}
& & 12 \lambda & =4 \\
\Rightarrow & \lambda & =\frac{1}{3}
\end{array}
$$

On substituting $\lambda=\frac{1}{3}$ in Eq. (iv), we get

$$
\begin{array}{rlrl}
& & 6 \mu & =5-1 \\
\Rightarrow & \mu & =\frac{4}{6}=\frac{2}{3}
\end{array}
$$

Now, on substituting $\lambda=\frac{1}{3}$ and $\mu=\frac{2}{3}$ in Eq. (v),

$$
\begin{aligned}
& \text { we get } \\
& \qquad 6 \cdot \frac{1}{3}+12 \cdot \frac{2}{3}=10 \Rightarrow 2+8=10
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow \quad 10=10, \text { which is true } \tag{1}
\end{equation*}
$$

Thus, $A B$ and $C D$ intersect and their point of intersection is given by

$$
P\left(9 \cdot \frac{1}{3}-2,-3 \cdot \frac{1}{3}+3,-6 \cdot \frac{1}{3}+5\right) \text { i.e. } P(1,2,3)
$$

Hence proved. (1/2)
46. Do same as Q. No. 37. [Ans. lines do not intersect] Hint : A pair of lines will intersect, if the shortest distance between them is zero.
47. Do same as Q.No. 41 .

$$
\left[\text { Ans. } \frac{x+1}{2}=\frac{y-3}{-7}=\frac{z+2}{4}\right]
$$

48.

Firstly, convert the given lines in standard form and then use the formula

$$
\cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \cdot \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}
$$

to get the required angle.
Given equations of two lines are

$$
\frac{-x+2}{-2}=\frac{y-1}{7}=\frac{z+3}{-3}
$$

and

$$
\frac{x+2}{-1}=\frac{2 y-8}{4}=\frac{z-5}{4}
$$

Above equations can be written as

$$
\frac{x-2}{2}=\frac{y-1}{7}=\frac{z+3}{-3}
$$

and

$$
\begin{equation*}
\frac{x+2}{-1}=\frac{y-4}{2}=\frac{z-5}{4} \tag{ii}
\end{equation*}
$$

On comparing Eqs. (i) and (ii) with one point form of equation of line

$$
\begin{gathered}
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}, \text { we get } \\
a_{1}=2, b_{1}=7, c_{1}=-3 \\
a_{2}=-1, b_{2}=2, c_{2}=4
\end{gathered}
$$

and
We know that, angle between two lines is given by

$$
\begin{aligned}
& \cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \cdot \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}} \\
& \therefore \quad \cos \theta=\frac{(2)(-1)+(7)(2)+(-3)(4)}{\left[\begin{array}{c}
\sqrt{(2)^{2}+(7)^{2}+(-3)^{2}} \\
\cdot \sqrt{(-1)^{2}+(2)^{2}+(4)^{2}}
\end{array}\right]} \\
& \Rightarrow \quad \cos \theta=\frac{-2+14-12}{\sqrt{62} \times \sqrt{21}}=\frac{0}{\sqrt{62} \times \sqrt{21}}=0 \\
& \Rightarrow \quad \cos \theta=\cos \frac{\pi}{2} \\
& \Rightarrow \quad \theta=\frac{\pi}{2} \quad\left[\because 0=\cos \frac{\pi}{2}\right]
\end{aligned}
$$

Hence, the angle between them is $\frac{\pi}{2}$. Therefore, the given pair of lines are perpendicular to each other.
NOTE Please be careful while taking DR's of a line, the line should be in symmetrical or in standard form, otherwise there may be chances of error.

Firstly, corvert both the vector equations in the form $\vec{r}=\vec{a}+\lambda \vec{b}$. Then, apply the shortest distance formula,
i.e. $d=\left|\frac{\left(\overrightarrow{b_{1}} \times \vec{b}_{2}\right) \cdot\left(\overrightarrow{a_{2}}-\vec{a}_{1}\right)}{\left|\vec{b}_{1} \times \vec{b}_{2}\right|}\right|$.

Given equations of lines are

$$
\begin{align*}
\vec{r} & =(1-t) \hat{i}+(t-2) \hat{j}+(3-2 t) \hat{k} \tag{i}\\
\text { and } \vec{r} & =(s+1) \hat{i}+(2 s-1) \hat{j}-(2 s+1) \hat{k} \tag{ii}
\end{align*}
$$

Firstly, we convert both equations in the vector
form as $\vec{r}=\vec{a}+\lambda \vec{b}$
So, Eq. (i) can be written as

$$
\begin{equation*}
\vec{r}=(\hat{i}-2 \hat{j}+3 \hat{k})+t(-\hat{i}+\hat{j}-2 \hat{k}) \tag{iii}
\end{equation*}
$$

and Eq. (ii) can be written as

$$
\begin{equation*}
\vec{r}=(\hat{i}-\hat{j}-\hat{k})+s(\hat{i}+2 \hat{j}-2 \hat{k}) \tag{iv}
\end{equation*}
$$

From Eqs. (iii), (iv) and (v). we get

$$
\begin{align*}
\vec{a}_{1} & =\hat{i}-2 \hat{j}+3 \hat{k}, \overrightarrow{b_{1}}=-\hat{i}+\hat{j}-2 \hat{k} \tag{v}\\
\vec{a}_{2} & =\hat{i}-\hat{j}-\hat{k}, \overrightarrow{b_{2}}=\hat{i}+2 \hat{j}-2 \hat{k} \\
\text { Now, } \vec{b}_{1} \times \vec{b}_{2} & =\left|\begin{array}{rrr}
\hat{i} & \hat{j} & \hat{k} \\
-1 & 1 & -2 \\
1 & 2 & -2
\end{array}\right| \\
& =\hat{i}(-2+4)-\hat{j}(2+2)+\hat{k}(-2-1)(1) \\
\Rightarrow \quad \vec{b}_{1} \times \vec{b}_{2} & =2 \hat{i}-4 \hat{j}-3 \hat{k} \\
\therefore \quad\left|\vec{b}_{1} \times \vec{b}_{2}\right| & =\sqrt{(2)^{2}+(-4)^{2}+(-3)^{2}} \\
& =\sqrt{4+16+9}=\sqrt{29}
\end{align*}
$$

Also, $\quad \overrightarrow{a_{2}}-\overrightarrow{a_{1}}=(\hat{i}-\hat{j}-\hat{k})-(\hat{i}-2 \hat{j}+3 \hat{k})$

$$
\begin{equation*}
=\hat{j}-4 \hat{k} \tag{1}
\end{equation*}
$$

We know that, the shortest distance between the lines is given as

$$
d=\left|\frac{\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right) \cdot\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right)}{\left|\vec{b}_{1} \times \vec{b}_{2}\right|}\right|
$$

Hence, required shortest distance,
$d=\left|\frac{(2 \hat{i}-4 \hat{j}-3 \hat{k}) \cdot(\hat{j}-4 \hat{k})}{\sqrt{29}}\right|=\left|\frac{0-4+12}{\sqrt{29}}\right|=\frac{8}{\sqrt{29}}$
$\therefore \quad d=\frac{8 \sqrt{29}}{29}$ units
50. Do same as Q. No. 37.
[Ans. $\frac{3 \sqrt{2}}{2}$ units
51.

Firstly, determine any point P on the given line and DR's between given point Q and P, using the relation $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$, where $\left(a_{1}, b_{1}, c_{1}\right)$ and $\left(a_{2}, b_{2}, c_{2}\right)$ are DR's of $P Q$ and given line.

Given equation of line $A B$ is

$$
\begin{array}{ll}
& \frac{x}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\lambda(\text { say }) \\
\Rightarrow & x=2 \lambda, y=3 \lambda+2 \\
\text { and } & z=4 \lambda+3
\end{array}
$$

\therefore Any point P on the given line

$$
=(2 \lambda, 3 \lambda+2,4 \lambda+3)
$$

Let P be the foot of perpendicular drawn from point $Q(3,-1,11)$ on line $A B$. Now, $D R^{\prime}$ s of line

$$
\begin{aligned}
Q P & =(2 \lambda-3,3 \lambda+2+1,4 \lambda+3-11) \\
& =(2 \lambda-3,3 \lambda+3,4 \lambda-8)
\end{aligned}
$$

Here, $\quad a_{1}=2 \lambda-3, b_{1}=3 \lambda+3, c_{1}=4 \lambda-8$,
and $\quad a_{2}=2, b_{2}=3, c_{2}=4$
Since, $\quad Q P \perp A B$
\therefore We have, $\quad a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
$\Rightarrow 2(2 \lambda-3)+3(3 \lambda+3)+4(4 \lambda-8)=0$
$\Rightarrow \quad 4 \lambda-6+9 \lambda+9+16 \lambda-32=0$
$\Rightarrow \quad 29 \lambda-29=0 \Rightarrow 29 \lambda=29 \Rightarrow \lambda=1$
\therefore Foot of perpendicular $P=(2,3+2,4+3)$

$$
=(2,5,7)
$$

Now, equation of perpendicular $Q P$, where $Q(3,-1,11)$ and $P(2,5,7)$, is

$$
\frac{x-3}{2-3}=\frac{y+1}{5+1}=\frac{z-11}{7-11}
$$

[using two points form of equation of line, i.e. $\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}$

$$
\Rightarrow \quad \frac{x-3}{-1}=\frac{y+1}{6}=\frac{z-11}{-4}
$$

Now, length of perpendicular $Q P=$ distance between points $Q(3,-1,11)$ and $P(2,5,7)$

$$
\begin{aligned}
& =\sqrt{(2-3)^{2}+(5+1)^{2}+(7-11)^{2}} \\
& {[\because \text { distance }} \\
& \left.=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}\right] \\
& =\sqrt{1+36+16}=\sqrt{53}
\end{aligned}
$$

Hence, length of perpendicular is $\sqrt{53}$.
52. Do same as Q. No. 51 .
$\left[\begin{array}{l}\text { Ans. Length of perpendicular is } \sqrt{24} . \\ \text { Coordinates of foot of perpendicular }=(3,-4,-2) \\ \therefore \text { Equation of perpendicular is } \frac{x-1}{1}=\frac{y}{-2}=\frac{z}{-1} .\end{array}\right]$
53. Given equation of line is

$$
\begin{array}{rlrl}
& & \frac{x+2}{3} & =\frac{y+1}{2}=\frac{z-3}{2}=\lambda \text { (say) } \\
\Rightarrow & x & =3 \lambda-2 y=2 \lambda-1, z=2 \lambda+3
\end{array}
$$

So, we have a point on the line is

$$
\begin{equation*}
Q(3 \lambda-2,2 \lambda-1,2 \lambda+3) \tag{i}
\end{equation*}
$$

Now, given that distance between two points $P(1,3,3)$ and $Q(3 \lambda-2,2 \lambda-1,2 \lambda+3)$ is 5 units, i.e. $P Q=5$.
$\Rightarrow \sqrt{\left[\begin{array}{r}(3 \lambda-2-1)^{2}+(2 \lambda-1-3)^{2} \\ +(2 \lambda+3-3)^{2}\end{array}\right]}=5$

$$
\left[\because \text { distance }=\sqrt{\begin{array}{c}
\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2} \tag{1}\\
+\left(z_{2}-z_{1}\right)^{2}
\end{array}}\right]
$$

$\Rightarrow \sqrt{(3 \lambda-3)^{2}+(2 \lambda-4)^{2}+(2 \lambda)^{2}}=5$
On squaring both sides, we get

$$
(3 \lambda-3)^{2}+(2 \lambda-4)^{2}+(2 \lambda)^{2}=25
$$

$\Rightarrow 9 \lambda^{2}+9-18 \lambda+4 \lambda^{2}+16-16 \lambda+4 \lambda^{2}=25$
$\Rightarrow \quad 17 \lambda^{2}-34 \lambda=0 \Rightarrow 17 \lambda(\lambda-2)=0$
\Rightarrow Either $17 \lambda=0$ or $\lambda-2=0$
$\therefore \quad \lambda=0$ or 2
On putting $\lambda=0$ and $\lambda=2$ in Eq. (i), we get the required point as $(-2,-1,3)$ or $(4,3,7)$.
54. (i) Do same as Q. No. 29.
[Ans. Foot of perpendicular is $(1,6,0)$], Image of P is $(-3,8,-2)$ \}
(ii) Length of perpendicular

$$
\begin{align*}
& =\sqrt{(5-1)^{2}+(4-6)^{2}+(2-0)^{2}} \\
& =\sqrt{4^{2}+2^{2}+2^{2}} \\
& =\sqrt{24}=2 \sqrt{6} \text { units } \tag{I}
\end{align*}
$$

58. We know that, equation of line passing through the points $\left(x_{1}, y_{1}, z_{i}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ is geven by

$$
\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}
$$

Here, $A\left(x_{1}, y_{i}, z_{i}\right)=0,6,-9$
and $B\left(x_{2}, y_{2}, z_{2}\right)=(-3,-6,3)$

\therefore Equation of line $A B$ is given by

$$
\begin{align*}
& \frac{x-0}{-3-0}=\frac{y-6}{-6-6}=\frac{z+9}{3+9} \\
\Rightarrow \quad & \frac{x}{-3}=\frac{y-6}{-12}=\frac{z+9}{12} \\
\Rightarrow \quad & \frac{x}{-1}=\frac{y-6}{-4}=\frac{z+9}{4} \tag{10}
\end{align*}
$$

[diniding denominator by 3]
Next, we have to find coordinater off foot of perpendicular D.
Now, let $\frac{x}{-1}=\frac{y-6}{-4}=\frac{z+9}{4}=2$. (say $)$
$\Rightarrow \quad x=-\lambda$.
$\begin{aligned} y-6 & =-4 \lambda \text { and } z+9=4 \lambda . \\ \Rightarrow \quad x & =-\lambda, y=-4 \lambda+6 \text { and } z=4 \lambda-9 \mathrm{fin}\end{aligned}$
Let coordinates of

$$
D=(-\lambda,-4 \lambda+6,4 \lambda-9)
$$

Now, DR's of line $C D$ are

$$
\begin{aligned}
(-\lambda-7,-4 \lambda & +6-4,4 \lambda-9+1) \\
& =(-\lambda-7,-4 \lambda+24-2
\end{aligned}
$$

Now, $C D \perp A B$
$\therefore \quad a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0 \quad$ IT
where, $\quad a_{1}=-\lambda-7, b_{1}=-4+2$
and $\quad a_{2}=-1, b_{2}=-4, c_{2}=4$
[DN's of line AS]
$\Rightarrow(-\lambda-7)(-1)+(-4)+2)(-4+(4)-34=0$
$\Rightarrow \quad \lambda+7+16 \lambda-8+16 \lambda-32=0$
$\Rightarrow \quad 33 ⿺-33=0$
$\Rightarrow \quad 33 \mathrm{x}=33$
$\therefore \quad \mathbf{x}=1 \quad \mathrm{~T}$

On putting $\lambda=1 \ln \mathrm{Eq}$, (ii), we get required foot of perpendicular,

$$
D=(-1,2-5)
$$

Also, we have to find equation of line $C D$, where $C(7,4,-1)$ and $D(-1,2-5)$.
\therefore Required equation of line is

$$
\begin{align*}
& \quad \frac{x-7}{-1-7}=\frac{y-4}{2-4}=\frac{z+1}{-5+1} \\
\Rightarrow \quad & \frac{x-7}{-8}=\frac{y-4}{-2}=\frac{z+1}{-4} \\
\Rightarrow \quad & \frac{x-7}{4}=\frac{y-4}{1}=\frac{z+1}{2} \tag{1}
\end{align*}
$$

[using Eq. (i)]
[dividing denominator by -2]
Firstly, find the coordinates of foot of perpendicular Q. Then, find the image which is point T by using the fact that Q is the mid-point of line PT. Further, use the formula for equation of line $\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}$ and distance between two points
$=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$.
Let T be the image of the point $P(1,6,3) . Q$ is the foot of perpendicular drawn from the point P on the line $A B$.
Given equation of line $A B$ is

$$
\begin{equation*}
\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3} \tag{i}
\end{equation*}
$$

Let

$$
\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}=\lambda(\text { say })
$$

$$
\Rightarrow \quad x=\lambda, y-1=2 \lambda, z-2=3 \lambda
$$

$$
\Rightarrow \quad x=\lambda, y=2 \lambda+1, z=3 \lambda+2
$$

Then, coordinates of Q

$$
=(\lambda, 2 \lambda+1,3 \lambda+2) \quad \ldots(i i)(1)
$$

Now, DR's of line $P Q$

$$
\begin{aligned}
& =(\lambda-1,2 \lambda+1-6,3 \lambda+2-3) \\
& =(\lambda-1,2 \lambda-5,3 \lambda-1)
\end{aligned}
$$

Since, line $P Q \perp A B$.
Therefore, $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$,
where $a_{1}=\lambda-1, b_{1}=2 \lambda-5, c_{1}=3 \lambda-1$
and $\quad a_{2}=1, b_{2}=2 c_{2}=3$
$\therefore \quad(\lambda-1) 1+(2 \lambda-9) 2+(3 \lambda-1) 3=0$
$\begin{aligned} \Rightarrow & 14 \lambda-14 & =0 \\ \Rightarrow & \lambda & =1\end{aligned}$
On putting $\lambda=1$ in Eq. (ii), we get

$$
Q=(1,2+1,3+2)=(1,3,5)
$$

Let image of a point P be $T(x, y, z)$. Then, Q will bo the mid-point of $P T$.
By using mid-point formula,

$$
\begin{aligned}
Q= & \text { mid-point of } P(1,6,3) \text { and } T(x, y, z) \\
= & \left(\frac{x+1}{2}, \frac{y+6}{2}, \frac{z+3}{2}\right) \\
& {\left[\because \text { mid-point }=\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z}{2}\right.}
\end{aligned}
$$

But

$$
Q=(1,3,5)
$$

$\therefore \quad\left(\frac{x+1}{2}, \frac{y+6}{2}, \frac{z+3}{2}\right)=(1,3,5)$
On equating corresponding coordinates, we get

$$
\begin{array}{rlrl}
& & \frac{x+1}{2} & =1, \frac{y+6}{2}=3, \frac{z+3}{2}=5 \\
\Rightarrow & & x & =2-1, y=6-6, z=10-3 \\
\Rightarrow & x & =1, y=0, z=7
\end{array}
$$

\therefore Coordinates of $T=(x, y, z)=(1,0,7)$
Hence, coordinates of image of point $P(1,6,3)$ is $T(1,0,7)$.
Now, equation of line joining points $P(1,6,3)$ and $T(1,0,7)$ is

$$
\frac{x-1}{1-1}=\frac{y-6}{0-6}=\frac{z-3}{7-3} \Rightarrow \frac{x-1}{0}=\frac{y-6}{-6}=\frac{z-3}{4}
$$

Also, length of segment $P T$

$$
\begin{aligned}
& =\sqrt{(1-1)^{2}+(6-0)^{2}+(3-7)^{2}} \\
& =\sqrt{0+36+16}=\sqrt{52} \text { units }
\end{aligned}
$$

57. Given equations of lines are

$$
\begin{aligned}
& \frac{x-1}{2}=\frac{y-2}{3}=\frac{z+4}{6} \\
& \frac{x-3}{4}=\frac{y-3}{6}=\frac{z+5}{12}
\end{aligned}
$$

Now, the vector equation of given lines are

$$
\vec{r}=(\hat{i}+2 \hat{j}-4 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})
$$

[\because vector form of equation of line is $\vec{r}=\vec{a}+\lambda \vec{b}]$
and $\vec{r}=(3 \hat{i}+3 \hat{j}-5 \hat{k})+\mu(4 \hat{i}+6 \hat{j}+12 \hat{k})$
Here, $\vec{a}_{1}=\hat{i}+2 \hat{j}-4 \hat{k}, \vec{b}_{1}=2 \hat{i}+3 \hat{j}+6 \hat{k}$
and $\vec{a}_{2}=3 \hat{i}+3 \hat{j}-5 \hat{k}, \vec{b}_{2}=4 \hat{i}+6 \hat{j}+12 \hat{k}$
Now, $\quad \vec{a}_{2}-\vec{a}_{1}=(3 \hat{i}+3 \hat{j}-5 \hat{k})-(\hat{i}+2 \hat{j}-4 \hat{k})$

$$
\begin{equation*}
=2 \hat{i}+\hat{j}-\hat{k} \tag{iii}
\end{equation*}
$$

and $\vec{b}_{1} \times \vec{b}_{2}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 6 \\ 4 & 6 & 12\end{array}\right|$

$$
=\hat{i}(36-36)-\hat{j}(24-24)+\hat{k}(22-12)
$$

$$
\begin{equation*}
=0 \hat{i}-0 \hat{j}+0 \hat{k}=\overrightarrow{0} \tag{1}
\end{equation*}
$$

$\Rightarrow \quad \vec{b}_{1} \times \vec{b}_{2}=\overrightarrow{0}$,
i.e. Vector \vec{b}_{1} is parallel to \vec{b}_{2}.

$$
[\because \text { if } \vec{a} \times \vec{b}=\overrightarrow{0} \text {, then } \vec{a} \| \vec{b}]
$$ Thus, two lines are parallel.

$$
\therefore \quad \vec{b}=(2 \hat{i}+3 \hat{j}+6 \hat{k})
$$

[since,DR's of given lines are proportional] (1) Since, the two lines are parallel, we use the formula for shortest distance between two parallel lines

$$
\left.\begin{array}{rl}
& d
\end{array} \begin{array}{|l}
\left|\frac{\vec{b} \times\left(\vec{a}_{2}-\vec{a}_{1}\right)}{|\vec{b}|}\right| \\
\Rightarrow \tag{v}\\
\\
d
\end{array}\right)\left|\frac{(2 \hat{i}+3 \hat{j}+6 \hat{k}) \times(2 \hat{i}+\hat{j}-\hat{k})}{\sqrt{(2)^{2}+(3)^{2}+(6)^{2}}}\right| \ldots()
$$

[from Eqs. (iii) and (iv)]
Now, $(2 \hat{i}+3 \hat{j}+6 \hat{k}) \times(2 \hat{i}+\hat{j}-\hat{k})$

$$
\begin{align*}
& =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & 3 & 6 \\
2 & 1 & -1
\end{array}\right| \\
& =\hat{i}(-3-6-\hat{j}(-2-12)+\hat{k}(2-6) \\
& =-9 \hat{i}+14 \hat{j}-4 \hat{k} \tag{1}
\end{align*}
$$

From Eq. (v), we get

$$
\begin{equation*}
d=\left|\frac{-9 \hat{i}+14 \hat{j}-4 \hat{k}}{\sqrt{49}}\right|=\frac{\sqrt{(-9)^{2}+(14)^{2}+(-4)^{2}}}{7} \tag{1}
\end{equation*}
$$

$\therefore d=\frac{\sqrt{81+196+16}}{7}=\frac{\sqrt{293}}{7}$ units
58.

The vector equation of a side of a parallelogram, when two points are given, is $\vec{r}=\vec{a}+\lambda(\vec{b}-\vec{a})$. Also, the diagonals of a parallelogram intersect each other at mid-point.
Given points are $A(4,5,10), B(2,3,4)$ and $C(1,2,-1)$.

We know that, two points vector form of line is given by

$$
\begin{equation*}
\vec{r}=\vec{a}+\lambda(\vec{b}-\vec{a}) \tag{i}
\end{equation*}
$$

where, \vec{a} and \vec{b} are the position vector of points through which the line is passing through. Here, for line $A B$ position vectors are
and

$$
\begin{align*}
& \vec{a}=\overrightarrow{O A}=4 \hat{i}+5 \hat{j}+10 \hat{k} \\
& \vec{b}=\overrightarrow{O B}=2 \hat{i}+3 \hat{j}+4 \hat{k} \tag{1}
\end{align*}
$$

Using Eq. (i), the required equation of line $A B$ is

$$
\begin{align*}
& \vec{r}=(4 \hat{i}+5 \hat{j}+10 \hat{k})+\lambda[(2 \hat{i}+3 \hat{j}+4 \hat{k}) \\
&-(4 \hat{i}+5 \hat{j}+10 \hat{k})] \\
& \Rightarrow \quad \vec{r}=(4 \hat{i}+5 \hat{j}+10 \hat{k})+\lambda(-2 \hat{i}-2 \hat{j}-6 \hat{k}) \tag{1}
\end{align*}
$$

Similarly, vector equation of line $B C$, where
$B(2,3,4)$ and $C(1,2,-1)$ is

$$
\vec{r}=(2 \hat{i}+3 \hat{j}+4 \hat{k})+\mu[(\hat{i}+2 \hat{j}-\hat{k})
$$

$$
-(2 \hat{i}+3 \hat{j}+4 \hat{k})]
$$

$$
\begin{equation*}
\Rightarrow \quad \vec{r}=(2 \hat{i}+3 \hat{j}+4 \hat{k})+\mu(-\hat{i}-\hat{j}-5 \hat{k}) \tag{1}
\end{equation*}
$$

We know that, mid-point of diagonal $B D$ = Mid-point of diagonal $A C$
[\because diagonal of a parallelogram bisect each
other]
$\therefore\left(\frac{x+2}{2}, \frac{y+3}{2}, \frac{z+4}{2}\right)=\left(\frac{4+1}{2}, \frac{5+2}{2}, \frac{10-1}{2}\right)$
On comparing corresponding coordinates, we get $\frac{x+2}{2}=\frac{5}{2}, \frac{y+3}{2}=\frac{7}{2}$ and $\frac{z+4}{2}=\frac{9}{2}$

Hence, coordinates of point $D(x, y, z)$ is $(3,4,5)$ and vector equations of sides $A B$ and $B C$ are

$$
\begin{align*}
\vec{r} & =(4 \hat{i}+5 \hat{j}+10 \hat{k})+\lambda(-2 \hat{i}-2 \hat{j}-6 \hat{k}) \text { and } \\
\vec{r} & =(2 \hat{i}+3 \hat{j}+4 \hat{k})+\mu(-\hat{i}-3 \hat{j}-5 \hat{k}) \tag{1}
\end{align*}
$$

respectively.
59. Any line through $(1,2,-4)$ can be written as

$$
\begin{equation*}
\frac{x-1}{a}=\frac{y-2}{b}=\frac{z+4}{c} \tag{i}
\end{equation*}
$$

where a, b, c are the direction ratios of line (i) Now, the line (i) be perpendicular to the lines

$$
\begin{equation*}
\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7} \tag{1}
\end{equation*}
$$

(1)
and $\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$
(1)

The direction ratios of the above lines are $(3,-16,7)$ and $(3,8,-5)$, respectively which are perpendicular to the Eq. (i).

$$
\begin{array}{ll}
\therefore & \quad 3 a-16 b+7 c=0 \\
\text { and } \quad 3 a+8 b-5 c=0 \tag{iii}
\end{array}
$$

By cross-multiplication, we get

$$
\frac{a}{80-56}=\frac{b}{21+15}=\frac{c}{24+48}
$$

$$
\begin{array}{ll}
\Rightarrow & \frac{a}{24}=\frac{b}{36}=\frac{c}{72} \\
\Rightarrow & \frac{a}{2}=\frac{b}{3}=\frac{c}{6}=\lambda(\text { say }) \\
\Rightarrow & a=2 \lambda, b=3 \lambda, c=6 \lambda
\end{array}
$$

The equation of required line in cartesian form is

$$
\frac{x-1}{2 \lambda}=\frac{y-2}{3 \lambda}=\frac{z+4}{6 \lambda}
$$

or

$$
\frac{x-1}{2}=\frac{y-2}{3}=\frac{z+4}{6}
$$

and in vector form is

$$
\vec{r}=(\hat{i}+2 \hat{j}-4 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})
$$

$$
\begin{array}{lr}
\Rightarrow & 2 x-y+z=8 \\
\Rightarrow & 2 x-y+2 z-8=0 \tag{ii}
\end{array}
$$

Clearly, planes (i) and (ii) are parallel.
\therefore Distance between two parallel planes,

$$
\begin{aligned}
& d=\left|\frac{d_{2}-d_{1}}{\sqrt{a^{2}+b^{2}+c^{2}}}\right|=\left|\frac{-8-(-5)}{\sqrt{\left(2^{2}+(-1)^{2}+2^{2}\right.}}\right| \\
& {\left[\because d_{2}=-8, d_{1}=-5, a=2, b=-1 \text { and } c=2\right] } \\
&=\left|\frac{-8+5}{\sqrt{4+1+4}}\right|=\left|\frac{-3}{\sqrt{9}}\right|=|-1|=1
\end{aligned}
$$

2. Given, $\vec{n}=2 \hat{i}-3 \hat{j}+6 \hat{k}$ and $d=5$

We know that, equation of a plane having distance d from origin and normal vector \hat{n} is

$$
\begin{array}{ll}
\vec{r} \cdot \hat{n}=d \\
\therefore & \vec{r} \cdot \frac{(2 \hat{i}-3 \hat{j}+6 \hat{k})}{\sqrt{2^{2}+(-3)^{2}+(6)^{2}}}=5 \\
\Rightarrow & \vec{r} \cdot(2 \hat{i}-3 \hat{j}+6 \hat{k})=5 \sqrt{49} \\
\Rightarrow & \tag{1}\\
\Rightarrow & \vec{r} \cdot(2 \hat{i}-3 \hat{j}+6 \hat{k})=35
\end{array}
$$

3. Given, equation of plane is

$$
\vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})=5
$$

Put $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$, we get

$$
\begin{array}{lrl}
& & (x \hat{i}+y \hat{j}+z \hat{k}) \cdot(2 \hat{i}+\hat{j}-\hat{k}) \\
\Rightarrow & =5 \\
\Rightarrow & & 2 x+y-z=5 \tag{i}\\
\frac{x}{2}+\frac{y}{5}+\frac{z}{-5} & =1
\end{array}
$$

On comparing plane (i) with standard equation of plane in intercept form

$$
\begin{aligned}
& \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1, \text { we get } \\
& a=\frac{5}{2}, b=5 \text { and } c=-5
\end{aligned}
$$

Now, required sum of intercepts cut off by the plane on the three axes $=a+b+c$

$$
\begin{equation*}
=\frac{5}{2}+5-5=\frac{5}{2} \text { units } \tag{1/2}
\end{equation*}
$$

4. The equation of plane having intercepts $3,-4$ and 2 is

$$
\frac{x}{3}+\frac{y}{-4}+\frac{z}{2}=1
$$

$\Rightarrow 4 x-3 y+6 z=12$, which can be written as

$$
\begin{aligned}
& & (x \hat{i}+y \hat{j}+z \hat{k}) \cdot(4 \hat{i}-3 \hat{j}+6 \hat{k}) & =12 \\
\Rightarrow & & \vec{r} \cdot(4 \hat{i}-3 \hat{j}+6 \hat{k}) & =12
\end{aligned}
$$

which is the required vector equation of the given.(1)
5. Since, the normal to the plane is equally inclined with coordinates axes, therefore its direction cosines are $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$ and $\frac{1}{\sqrt{3}}$.
.Now, the required equation of plane is

$$
\Rightarrow \quad \begin{align*}
\frac{1}{\sqrt{3}} \cdot x+\frac{1}{\sqrt{3}} \cdot y+\frac{1}{\sqrt{3}} \cdot z & =5 \sqrt{3} \\
x+y+z & =15 \tag{1/2}
\end{align*}
$$

$[\because$ If l, m and n are DC's of normal to the plane and P is a distance of a plane from origin, then equation of plane is given by $l x+m y+n z=p$]
6. Do same as Q. No. 3.
[Ans. $\frac{5}{2}$ units]
7. Clearly, the vector equation of the line passing through a point with position vector

$$
\begin{align*}
\vec{a} & =\hat{i}+2 \hat{j}+3 \hat{k}, \text { is given by } \vec{r}=\vec{a}+\lambda \vec{b} \\
\Rightarrow \quad \vec{r} & =(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda \vec{b} \tag{1/2}
\end{align*}
$$

Since, the line is perpendicular to the plane

$$
\vec{r} \cdot(\hat{i}+2 \hat{j}-5 \hat{k})+9=0
$$

Therefore, \vec{b} will be normal to the plane and so $\vec{b}=\hat{i}+2 \hat{j}-5 \hat{k}$
Hence, the required equation of line is

$$
\begin{equation*}
\vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(\hat{i}+2 \hat{j}-5 \hat{k}) \tag{1/2}
\end{equation*}
$$

8. The required plane is passing through the point (a, b, c) whose position vector is $\vec{p}=a \hat{i}+b \hat{j}+c \hat{k}$ and is parallel to the plane $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=2$ So, it is normal to the vector

$$
\vec{n}=\hat{i}+\hat{j}+\hat{k}
$$

Hence, required equation of plane is

$$
\begin{array}{rlrl}
& & (\vec{r}-\vec{p}) \cdot \vec{n} & =0 \Rightarrow \vec{r} \cdot \vec{n}=\vec{p} \cdot \vec{n} \\
\Rightarrow & & \vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=(a \hat{i}+b \hat{j}+c \hat{k}) \cdot(\hat{i}+\hat{j}+\hat{k}) \\
\therefore & & \vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=a+b+\dot{c} \tag{1}
\end{array}
$$

9.

The distance from point $\left(x_{1}, y_{1}, z_{1}\right)$ to the plane
$A x+B y+C z+D=0$ is $\frac{A x_{1}+B y_{1}+C z_{1}+D}{\sqrt{A^{2}+B^{2}+C^{2}}}$.
Given equation of plane is

$$
\begin{equation*}
2 x-3 y+6 z+21=0 \tag{i}
\end{equation*}
$$

\therefore Length of the perpendicular drawn from the origin to this plane

$$
\begin{aligned}
& =\left|\frac{2 \cdot 0-3 \cdot 0+6 \cdot 0+21}{\sqrt{(2)^{2}+(-3)^{2}+(6)^{2}}}\right| \\
& =\left|\frac{0-0+0+21}{\sqrt{4+9+36}}\right|=\frac{21}{\sqrt{49}}=\frac{21}{7}=3 \text { units }
\end{aligned}
$$

In
10. Do same as Q.No. 9. [Ans. $\frac{3}{13}$ un
Firstly, we convert the given equation of plane in intercept form, i.e. $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$, which cut the X-axis at $(a, 0,0)$.
Given equation of plane is $2 x+y-z=5$.
On dividing both sides by 5 , we get

$$
\frac{2 x}{5}+\frac{y}{5}-\frac{z}{5}=1 \Rightarrow \frac{x}{\left(\frac{5}{2}\right)}+\frac{y}{5}+\frac{z}{(-5)}=1
$$

On comparing above equation of plane with the intercept form of equation of plane

$$
\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1
$$

where, $a=x$-intercept, $b=y$-intercept and $c=z$-intercept
we get,

$$
a=\frac{5}{2}
$$

i.e. intercept cut-off on X-axis $=\frac{5}{2}$ units
12. Do same as Q. No. 9 .
$\left[\right.$ Ans. $\frac{1}{3}$ unit $]$
13. Given, line $\frac{x-2}{6}=\frac{y-1}{\lambda}=\frac{z+5}{-4}$ is perpendicular to plane $3 x-y-2 z=7$.
Therefore, DR's of the line are proportional to the DR's normal to the plane.

$$
\begin{array}{ll}
\therefore & \frac{6}{3}=\frac{\lambda}{-1}=\frac{-4}{-2} \\
\Rightarrow & 2=-\lambda \quad \Rightarrow \quad \lambda=-2
\end{array}
$$

14. The given points are $A(2,5,-3), B(-2,-3,5)$ and $C(5,3,-3)$.
Let $\vec{a}=2 \hat{i}+5 \hat{j}-3 \hat{k}, \vec{b}=-2 \hat{i}-3 \hat{j}+5 \hat{k}$
and $\vec{c}=5 \hat{i}+3 \hat{j}-3 \hat{k}$
Now, the vector equation of the plane passing through \vec{a}, \vec{b} and \vec{c} is given by

$$
\Rightarrow \begin{align*}
(\vec{r}-\vec{a}) \cdot(\overrightarrow{A B} \times \overrightarrow{A C}) & =0 \\
\Rightarrow(\vec{r}-\vec{a}) \cdot\{(\vec{b}-\vec{a}) \times(\vec{c}-\vec{a})\} & =0 \tag{1}
\end{align*}
$$

Here, $\vec{b}-\vec{a}=-2 \hat{i}-3 \hat{j}+5 \hat{k}-2 \hat{i}-5 \hat{j}+3 \hat{k}$

$$
=-4 \hat{i}-8 \hat{j}+8 \hat{k}
$$

and $\vec{c}-\vec{a}=5 \hat{i}+3 \hat{j}-3 \hat{k}-2 \hat{i}-5 \hat{j}+3 \hat{k}=3 \hat{i}-2 \hat{j}$
$\therefore \quad\{\vec{r}-(2 \hat{i}+5 \hat{j}-3 \hat{k})\}$

$$
\cdot[(-4 \hat{i}-8 \hat{j}+8 \hat{k}) \times(3 \hat{i}-2 \hat{j})]=0(\})
$$

Now, $(-4 \hat{i}-8 \hat{j}+8 \hat{k}) \times(3 \hat{i}-2 \hat{j})=\left|\begin{array}{rrr}\hat{i} & \hat{j} & \hat{k} \\ -4 & -8 & 8 \\ 3 & -2 & 0\end{array}\right|$
$=\hat{i}(0+16)-\hat{j}(0-24)+\hat{k}(8+24)$
$=16 \hat{i}+24 \hat{j}+32 \hat{k}$
$\therefore\{\vec{r}-(2 \hat{i}+5 \hat{j}-3 \hat{k})\} \cdot(16 \hat{i}+24 \hat{j}+32 \hat{k})=0$
This is the required vector equation of plane. (1)
For cartesian equation put $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ in
Eq. (i), we get
$\begin{aligned} \Rightarrow(x \hat{i}+y \hat{j}+z \hat{k}) & \cdot(16 \hat{i}+24 \hat{i}+32 \hat{k}) \\ & =(2 \hat{i}+5 \hat{j}-3 \hat{k}) \cdot(16 \hat{i}+24 \hat{j}+32 \hat{k})\end{aligned}$
$\Rightarrow \quad 16 x+24 y+32 z=32+120-96$
$\Rightarrow \quad 16 x+24 y+32 z=56$
$\Rightarrow \quad 2 x+3 y+4 z=7$
which is the required cartesian equation of plane.
15. We have, $\frac{x-2}{3}=\frac{y_{t}+1}{4}=\frac{z-2}{12}$
and

$$
\begin{equation*}
x-y+z=5 \tag{i}
\end{equation*}
$$

Let

$$
\begin{equation*}
\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}=\lambda(\text { say }) \tag{ii}
\end{equation*}
$$

$\Rightarrow \quad x=3 \lambda+2, y=4 \lambda-1, z=12 \lambda+2$ (1)
Any point on the line is

$$
\begin{equation*}
P(3 \lambda+2,4 \lambda-1,12 \lambda+2) \tag{iii}
\end{equation*}
$$

Since, lines and plane intersect, so point P satisfy the plane.
$\therefore \quad(3 \lambda+2)-(4 \lambda-1)+(12 \lambda+2)=5$
[put coordinates of P in Eq..(ii)]
$\Rightarrow 3 \lambda+2-4 \lambda+1+12 \lambda+2=5$
$\Rightarrow \quad 11 \lambda=0 \Rightarrow \lambda=0$
Put $\lambda=0$ in Eq. (iii), we get point of intersection $P(2,-1,2)$.
Now, distance between points ($-1,-5,-10$)
and $(2,-1,2)$ is given by

$$
\sqrt{(2+1)^{2}+\left(-1+9^{2}+(2+10)^{2}\right.}
$$

$\left[\because\right.$ distance $\left.=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}\right]$

$$
\begin{equation*}
=\sqrt{9+16+144}=\sqrt{169}=13 \text { units } \tag{1}
\end{equation*}
$$

16. Let the equation of plane passing through the point $(-1,2,0)$ is

$$
\begin{equation*}
a(x+1)+b(y-2)+c(z-0)=0 \tag{i}
\end{equation*}
$$

where, a, b and c are direction ratios of normal to the plane.
Since, the plane passes through ($2,2,-1$), therefore we have

$$
\begin{align*}
& & a(2+1)+b(2-2)+c(-1-0) & =0 \\
\Rightarrow & & 3 a+0 \cdot b-c & =0 \tag{ii}
\end{align*}
$$

Also, the plane is parallel to the line

$$
\begin{align*}
& \frac{x-1}{1}=\frac{2 y+1}{2}=\frac{z+1}{-1} \\
& \frac{x-1}{1}=\frac{y+\frac{1}{2}}{1}=\frac{z+1}{-1} \tag{1}
\end{align*}
$$

Therefore, we have

$$
\begin{equation*}
a+b-c=0 . \tag{iii}
\end{equation*}
$$

$[\because$ the normal to the plane will be perpendicular to the line,

$$
\text { i.e. } \left.a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0\right]
$$

On solving Eqs. (ii) and (iii), we get

$$
\begin{equation*}
\frac{a}{0+1}=\frac{b}{-1+3}=\frac{c}{3-0} \tag{1}
\end{equation*}
$$

$\Rightarrow \frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\lambda$ (say).
On substituting the values of a, b and c in Eq. (i), we get the required equation of plane is

$$
\begin{array}{rlrl}
& & 1(x+1)+2(y-2)+3 z & =0 \\
\Rightarrow & x+1+2 y-4+3 z & =0 \\
\therefore & x+2 y+3 z & =3 \tag{1}
\end{array}
$$

17. The equation of a plane passing through a point $(3,2,0)$ is

$$
\begin{equation*}
a(x-3)+b(y-2)+c(z-0)=0 \tag{i}
\end{equation*}
$$

Since, the above plane contains the line

$$
\frac{x-3}{1}=\frac{y-6}{5}=\frac{z-4}{4}
$$

So, the point $(3,6,4)$ satisfies the equation of plane (i).

$$
\begin{align*}
\therefore & & a(3-3)+b(6-2)+c(4-0) & =0 \\
\Rightarrow & & 0+4 b+4 c & =0 \\
\Rightarrow & & b+c & =0 \tag{ii}\\
\Rightarrow & & b & =-c
\end{align*}
$$

As the plane contains the line, therefore normal to the plane is perpendicular to the line, iie.
$a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$, where, $a_{1}=a, b_{1}=b, c_{1}=c$ and $a_{2}=1, b_{2}=5$ and $c_{2}=4$

$$
\begin{aligned}
\therefore & & a \times 1+b \times 5+c \times 4 & =0 \\
\Rightarrow & & a+5 b+4 c & =0 \\
\Rightarrow & & a-5 c+4 c & =0 \\
\Rightarrow & & a & =c
\end{aligned} \quad \text { [from Eq.(ii)] }
$$

On putting the values of a, b and c in Eq.(i), we get

$$
\begin{align*}
& & c(x-3)-c(y-2)+c(z-0) & =0 \\
\Rightarrow & & 1(x-3)-1(y-2)+1(z-0) & =0 \\
& & & \text { [divide by } c] \tag{1}\\
& x-y+z & =1 &
\end{align*}
$$

18. Given, intercepts on the coordinate axes are $(-6,3,4)$, then equation of plane will be

$$
\begin{equation*}
\frac{x}{-6}+\frac{y}{3}+\frac{z}{4}=1 \text { or } \frac{x}{-6}+\frac{y}{3}+\frac{z}{4}-1=0 \tag{1}
\end{equation*}
$$

We know that, the distance of a point $\left(x_{1}, y_{1}, z_{1}\right)$ from plane $a x+b y+c z+d=0$ is given by

$$
\begin{equation*}
D=\left|\frac{a x_{1}+b y_{1}+c z_{1}+d}{\sqrt{a^{2}+b^{2}+c^{2}}}\right| . \tag{1}
\end{equation*}
$$

\therefore The distance of origin from given plane

$$
\begin{aligned}
& =\left|\frac{\left(\frac{-1}{6}\right) \cdot 0+\left(\frac{1}{3}\right) \cdot 0+\left(\frac{1}{4}\right) \cdot 0-1}{\sqrt{\left(\frac{-1}{6}\right)^{2}+\left(\frac{1}{3}\right)^{2}+\left(\frac{1}{4}\right)^{2}}}\right| \\
& =\left|\frac{-1}{\sqrt{\frac{1}{36}+\frac{1}{9}+\frac{1}{16}}}\right|=\left|\frac{-1}{\sqrt{\frac{4+16+9}{144}}}\right|=\left|\frac{-1}{\sqrt{\frac{29}{144}}}\right|=\frac{12}{\sqrt{29}}
\end{aligned}
$$

Hence, required length of the perpendicular from origin to plane is $\frac{12}{\sqrt{29}}$ units.
19. Given lines can be written as

$$
\begin{align*}
& \frac{x-5}{4}=\frac{y-7}{4}=\frac{z+3}{-5} \\
& \frac{x-8}{7}=\frac{y-4}{1}=\frac{z-5}{3} \tag{1}
\end{align*}
$$

and
On comparing both lines with,

$$
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{b} \text { respectively, we get }
$$

$x_{1}=5, y_{1}=7, z_{1}=-3, a_{1}=4, b_{1}=4, c_{1}=-5$ and
$x_{2}=8, y_{2}=4, z_{2}=5, a_{2}=7, b_{2}=1, c_{2}=3$
If given lines are coplanar, then

$$
\left|\begin{array}{ccc}
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right|=0
$$

$$
\begin{aligned}
\text { LHS } & =\left|\begin{array}{ccc}
8-5 & 4-7 & 5+3 \\
4 & 4 & -5 \\
7 & 1 & 3
\end{array}\right|=\left|\begin{array}{ccc}
3 & -3 & 8 \\
4 & 4 & -5 \\
7 & 1 & 3
\end{array}\right| \\
& =3(12+5+3(12+35+8(4-28) \\
& =3 \times 17+3 \times 47+8(-24) \\
& =51+141-192=192-192=0=\text { RHS }
\end{aligned}
$$

Therefore, given lines are coplanar.
Hence proved
20. Given, position vector of point is $(\hat{i}+3 \hat{j}+4 \hat{k})$. So, coordinates of point P are $(1,3,4)$ and vector equation of plane is $\vec{r} \cdot(2 \hat{i}-\hat{j}+\hat{k})+3=0$, then cartesian equation of plane is $2 x-y+z+3=0$. Let Q be the foot of perpendicular from P on the plane.

Since, $P Q$ is perpendicular to the plane. Hence, $D R^{\prime} s$ of $P Q$ will be $(2,-1,1)$.
So, the equation of $P Q$ will be

$$
\frac{x-1}{2}=\frac{y-3}{-1}=\frac{z-4}{1}=\lambda(\text { say })
$$

Coordinates of $Q=(2 \lambda+1,-\lambda+3, \lambda+4)$, also Q lies on plane, so it will satisfy the equation of plane.

$$
\begin{array}{ll}
\therefore & 2(2 \lambda+1)-1(-\lambda+3)+(\lambda+4)+3 \\
\Rightarrow & 4 \lambda+2+\lambda-3+\lambda+4+3=0 \\
\Rightarrow &
\end{array}
$$

$$
6 \lambda=-6 \Rightarrow \lambda=-1
$$

So, coordinates of Q will be $(-2+1,1+3,-1+4)$, i.e. ($-1,4,3$).

Let $R(x, y, z)$ be the image of a point P, then point C will be the mid-point of $P R$.
Therefore, coordinates of Q will be

$$
\left(\frac{x+1}{2}, \frac{y+3}{2}, \frac{z+4}{2}\right)=(-1,4,3)
$$

On comparing corresponding coordinates, we get

$$
\begin{aligned}
& \frac{x+1}{2}=-1 \Rightarrow x+1=-2 \Rightarrow x=-3 \\
& \frac{y+3}{2}=4 \Rightarrow y+3=8 \Rightarrow y=5
\end{aligned}
$$

and $\frac{z+4}{2}=3 \Rightarrow z+4=6 \Rightarrow z=2$
Hence, required coordinates of image point R is
21. The required plane passes through two points $P(21,-1)$ and $Q(-1,3,4)$.
Let \vec{a} and \vec{b} be the position vectors of points P and Q, respectively.
Then, $\vec{a}=\hat{2}+\hat{j}-\hat{k}$
and $\quad \vec{b}=-\hat{i}+3 \hat{j}+4 \hat{k}$
Now, $\overrightarrow{P Q}=\vec{b}-\vec{a}=(-\hat{i}+3 \hat{j}+4 \hat{k})-(2 \hat{i}+\hat{j}-\hat{k})$

$$
\begin{equation*}
=-3 \hat{i}+2 \hat{j}+5 \hat{k} \tag{1}
\end{equation*}
$$

Let \vec{n}_{1} be the normal vector to the given plane,
$x-2 y+4 z=10$, then $\vec{n}_{1}=\hat{i}-2 \hat{j}+4 \hat{k}$.
Let \vec{n} be the normal vector to the required plane.
Then,

$$
\begin{align*}
\vec{n} & =\overrightarrow{n_{1}} \times \overrightarrow{P Q}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & -2 & 4 \\
-3 & 2 & 5
\end{array}\right| \\
& =\hat{i}(-10-8)-\hat{j}(5+12)+\hat{k}(2-6) \\
& =-18 \hat{i}-17 \hat{j}-4 \hat{k} \tag{1}
\end{align*}
$$

The required plane passes through a point having position vector $\vec{a}=2 \hat{i}+\hat{j}-\hat{k}$ and normal vector $\vec{n}=-18 \hat{i}-17 \hat{j}-4 \hat{k}$. So, its vector equation is

$$
\begin{align*}
& \quad(\vec{r}-\vec{a}) \cdot \vec{n} \Rightarrow \vec{r} \cdot \vec{n}=\vec{a} \cdot \vec{n} \\
& \Rightarrow \quad \vec{r} \cdot(-18 \hat{i}-17 \hat{j}-4 \hat{k})=(2 \hat{i}+\hat{j}-\hat{k}) \\
& \Rightarrow \quad \vec{r} \cdot(-18 \hat{i}-17 \hat{j}-4 \hat{k})=-36-17+4 \\
& \Rightarrow \quad \vec{i}-17 \hat{j}-4 \hat{k}) \\
& \therefore \quad \vec{r} \cdot(18 \hat{i}+17 \hat{j}+4 \hat{k})=49 \tag{1}
\end{align*}
$$

22. Given equation of line is

$$
\left.\begin{array}{rl}
& \frac{x-2}{3} \\
=\frac{y+1}{4}=\frac{z-2}{2}=\lambda(\text { say }) . \\
\Rightarrow & x
\end{array}\right)=3 \lambda+2, y=4 \lambda-1, z=2 \lambda+2
$$

Then, $[(3 \lambda+2),(4 \lambda-1),(2 \lambda+2)]$ be any point on the given line.
Since, line intersect the plane, therefore any point on the given line $(3 \lambda+2,4 \lambda-1,2 \lambda+2)$ lies on the plane $x-y+z-5=0$.
$\therefore \quad(3 \lambda+2)-(4 \lambda-1)+(2 \lambda+2)-5=0$
$\begin{aligned} \Rightarrow \quad 3 \lambda+2-4 \lambda+1+2 \lambda+2-5 & =0 \\ \lambda & =0\end{aligned}$
\therefore Point of intersection of the line and the plane

$$
\begin{equation*}
\text { - }=(3 \times 0+2,4 \times 0-1,2 \times 0+2)=(2,-1,2) \tag{1/2}
\end{equation*}
$$

Let ϕ be the angle between line and plane.

Then,

$$
\sin \phi=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}
$$

Here, $a_{1}=3, b_{1}=4, c_{1}=2 ; a_{2}=1, b_{2}=-1, c_{2}=1$.
$\therefore \quad \sin \phi=\left|\frac{(3)(1)+4(-1)+2(1)}{\sqrt{9+16+4} \sqrt{1+1+1}}\right|$
$\Rightarrow \quad \sin \phi=\left|\frac{3-4+2}{\sqrt{29} \sqrt{3}}\right|=\frac{1}{\sqrt{87}} \Rightarrow \phi=\sin ^{-1} \frac{1}{\sqrt{87}}$
which is the required angle.
23.

Firstly, use the intersection equation of planes $\vec{r} \cdot \vec{n}_{1}=d_{1}$ and $\vec{r} \cdot \vec{n}_{2}=d_{2}$ is $\vec{r}\left(\vec{n}_{1}+\lambda \vec{n}_{2}\right)=d_{1}+\lambda d_{2}$. Further, use the relation $\left(\vec{n}_{1}+\lambda \vec{n}_{2}\right) \cdot \vec{n}=0$ as above plane is perpendicular to the plane $\vec{r} \cdot \vec{n}=d$.

The intersection equation of planes
$\vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})=4$ and $\vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})=-5$ is

$$
\vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda[\vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k}]=4-\lambda 5
$$

$[\because$ intesection of two planes is

$$
\left.\vec{r}_{1}+\lambda \vec{r}_{2}=d_{1}+\lambda d_{2}\right]
$$

$\Rightarrow \quad \vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k}+2 \lambda \hat{i}+\lambda \hat{j}-\lambda \hat{k})=4-5 \lambda$
$\Rightarrow \quad \vec{r} \cdot[(1+2 \lambda) \hat{i}+(2+\lambda) \hat{j}+(3-\lambda) \hat{k}]=4-5 \lambda$
Here, $\vec{n}_{1}=(1+2 \lambda) \hat{i}+(2+\lambda) \hat{j}+(3-\lambda) \hat{k}$
Since, the required plane is perpendicular to the plane $\vec{r} \cdot(5 \hat{i}+3 \hat{j}-6 \hat{k})+8=0$.
$\therefore \quad \vec{n}_{2} \cdot \vec{n}_{1}=0$, where $\vec{n}_{2}=5 \hat{i}+3 \hat{j}-6 \hat{k}$
$\Rightarrow(5 \hat{i}+3 \hat{j}-6 \hat{k}) \cdot[(1+2 \lambda) \hat{i}+(2+\lambda) \hat{j}+(3-\lambda) \hat{k}]=0$ (1)

$$
\therefore \quad 5(1+2 \lambda)+3(2+\lambda)-6(3-\lambda)=0
$$

$$
\Rightarrow \quad \cdot 5+10 \lambda+6+3 \lambda-18+6 \lambda=0
$$

$$
\Rightarrow \quad 19 \lambda-7=0 \Rightarrow \lambda=\frac{7}{19}
$$

On putting $\lambda=\frac{7}{19}$ in Eq. (i), we get the equation of plane

$$
\begin{array}{ll}
& \vec{r} \cdot\left[\left(1+\frac{14}{19}\right) \hat{i}+\left(2+\frac{7}{19}\right) \hat{j}+\left(3-\frac{7}{19}\right) \hat{k}\right]=4-\frac{35}{19} \\
\therefore & \vec{r} \cdot\left[\frac{33}{19} \hat{i}+\frac{45}{19} \hat{j}+\frac{50}{19} \hat{k}\right]=\frac{41}{19} \\
\Rightarrow & \quad \vec{r}=(33 \hat{i}+45 \hat{j}+50 \hat{k})=41 \tag{2}
\end{array}
$$

24. Let the given points be $A(3,-4,-5)$ and $B(2,-3,1)$. The equation of line $A B$ is

$$
\begin{array}{llrl}
& & \frac{x-3}{2-3} & =\frac{y+4}{-3+4}=\frac{z+5}{1+5} \tag{1}\\
\Rightarrow & \frac{x-3}{-1} & =\frac{y+4}{1}=\frac{z+5}{6}=\lambda(\text { say }) \\
\Rightarrow & x & =-\lambda+3 ; y=\lambda-4 \\
\text { and } & & z & =6 \lambda-5
\end{array}
$$

So, any point on line $A B$ is of the form

$$
(3-\lambda, \lambda-4,6 \lambda-5)
$$

Let $P(3-\lambda, \lambda-4,6 \lambda-5)$ be the point where the line crosses the plane $2 x+y+z=7$.
Clearly, P will satisfy the equation of plane.
We have.

$$
\begin{array}{rlr}
& 2(3-\lambda)+(\lambda-4)+(6 \lambda-5)=7 \\
\Rightarrow & 6-2 \lambda+\lambda-4+6 \lambda-5-7=0 \\
\Rightarrow & 5 \lambda-10=0 \Rightarrow \dot{\lambda}=2
\end{array}
$$

Thus, the coundinates of required point are (3-2,2-4,12-5), i.e., $(1,-2,7)$
(1)
25. Do same as Q.No. 24.
$\left[\right.$ Ans. $\left.\left(\frac{13}{5}, \frac{23}{5}, 0\right)\right]$
26. Do same as Q.No. 24.
[Ans. (5, -6, -17)]
27.

Firstly, write the required equation of plane as $(x+3 y+6)+\lambda(3 x-y-4 z)=0$.
Then, convert the above equation in general form of plane which is $a x+b y+c+d=0$.
Finally, use the formula for distance from a point $\left(x_{1}, y_{1}, z_{1}\right)$ to the plane $a x+b y+c z+d=0$ is $d=\frac{\left|a x_{1}+b y_{1}+c z_{1}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}$.

Let the required equation of plane passing through the intersection of planes $x+3 y+6=0$ and $3 x-y-4 z=0$ be

$$
\begin{equation*}
(x+3 y+6)+\lambda(3 x-y-4 z)=0 \tag{i}
\end{equation*}
$$

Above equation can be written as

$$
\begin{align*}
x+3 y+6+3 \lambda x-\lambda y-4 \lambda z & =0 \\
\Rightarrow \quad x(1+3 \lambda)+y(3-\lambda)-4 \lambda z+6 & =0 \tag{ii}
\end{align*}
$$

which is the general form of equation of plane.
Also, given that perpendicular distance of plane'(i) from origin, i.e. $(0,0,0)$ is unity, i.e. one.

$$
\therefore \quad\left|\frac{(1+3 \lambda)(0)+(3-\lambda)(0)-4 \lambda(0)+6}{\sqrt{(1+3 \lambda)^{2}+(3-\lambda)^{2}+(-4 \lambda)^{2}}}\right|=
$$ $\left[\because\right.$ distance of point $\left(x_{1}, y_{1}, z_{1}\right)$ from a $]$ plane $a x+b y+c z+d=0$ is given b_{y} $d=\left|\frac{a x_{1}+b y_{1}+c z_{1}+d}{\sqrt{a^{2}+b^{2}+c^{2}}}\right|$ here, $a=1+3 \lambda, b=3-\lambda, c=-4 \lambda$, $\left(x_{1}, y_{1}, z_{1}\right)=(0,0,0)$

$$
\begin{aligned}
& \Rightarrow\left|\frac{6}{\sqrt{1+9 \lambda^{2}+6 \lambda+9+\lambda^{2}-6 \lambda+16 \lambda^{2}}}\right|=1 \\
& \Rightarrow \frac{6}{\sqrt{26 \lambda^{2}+10}}=1 \Rightarrow 6=\sqrt{26 \lambda^{2}+10}
\end{aligned}
$$

On squaring both sides, we get

$$
36=26 \lambda^{2}+10
$$

$\Rightarrow 26 \lambda^{2}=26 \Rightarrow \lambda^{2}=1 \Rightarrow \lambda= \pm 1$
Now, on putting $\lambda=1$ in Eq. (i), we get

$$
\begin{array}{rlrl}
& & x+3 y+6+3 x-y-4 z & =0 \\
\Rightarrow & 4 x+2 y-4 z+6 & =0 \\
\Rightarrow & 2 x+y-2 z+3 & =0
\end{array}
$$

[divide by 2]...(融)
Again, on putting $\lambda=-1$ in Eq. (i), we get

$$
\begin{array}{ll}
& x+3 y+6-3 x+y+4 z=0 \\
\Rightarrow & -2 x+4 y+4 z+6=0 \\
\Rightarrow & x-2 y-2 z-3=0 \quad \text { [divide by }-2] \ldots \text { (iv) }
\end{array}
$$

Hence, required equations of the plane are
$2 x+y-2 z+3=0$ and $x-2 y-2 z-3=0$.
28. Equation of plane passing through the point $A(1,2,1)$ is given as

$$
\begin{equation*}
a(x-1)+b(y-2)+c(z-1)=0 \tag{i}
\end{equation*}
$$

$[\because$ equation of plane passin

$$
\begin{aligned}
& \text { through }\left(x_{1}, y_{1}, z_{1}\right) \text { having DR's } a, b, c i \\
& a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0 \text {] } \\
& \text { R's of line } P O \text {, where } p(1)
\end{aligned}
$$

Now, DR's of line $P Q$ where $P(1,4,2)$ and $Q(2,3,5)$ are $(2-1,3-4,5-2)$, i.e. $(1,-1,3)$. Since, plane (i) is perpendicular to line $P Q$.
\therefore DR's of plane (i) are $(1,-1,3)$,
$\left[\because \mathrm{DR}^{\prime}\right.$ s normal to the plane are proportional]
i.e. $\quad a=1, b=-1, c=3$.

On putting values of a, b and c in Eq. (i), we get the required equation of plane as

$$
\begin{align*}
& 1(x-1)-1(y-2)+3(z-1) \\
\Rightarrow & =0 \\
\Rightarrow & x-1-y+2+3 z-3
\end{align*}=0
$$

Now, the given equation of line is

$$
\begin{equation*}
\frac{x+3}{2}=\frac{y-5}{-1}=\frac{z-7}{-1} \tag{iii}
\end{equation*}
$$

DR'S of this line are $(2,-1,-1)$ and passing point $(-3,5,7)$.
DR'S of normal to the plane (ii) are $(1,-1,3)$.
Now, we check whether the line is perpendicular to the plane.
Here,

$$
2(1)-1(-1)-1(3)=2+1-3=0
$$

[by using $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$]
So, line (iii) is parallel to plane (i).
\therefore Required distance $=$ Distance of the point $(-3,5,7)$ from the plane (ii)

$$
\Rightarrow \quad d=\left|\frac{(-3)(1)+(5)(-1)+7(3)-2}{\sqrt{(1)^{2}+(-1)^{2}+(3)^{2}}}\right|
$$

$$
\left[\begin{array}{c}
\because \text { distance of the point }\left(x_{1}, y_{1}, z_{1}\right) \\
\text { to the plane } a x+b y+c z+d=0 \text { is } \\
d=\frac{\left|a x_{1}+b y_{1}+c z_{1}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}
\end{array}\right]
$$

$$
=\left|\frac{-3-5+21-2}{\sqrt{1+1+9}}\right|
$$

$$
=\left|\frac{11}{\sqrt{11}}\right|=\left|\frac{(\sqrt{11})^{2}}{\sqrt{11}}\right|
$$

$$
\begin{equation*}
=\sqrt{11} \text { units } \tag{1}
\end{equation*}
$$

29. The equation of any plane passing through $\left(x_{1}, y_{1}, z_{1}\right)$ is

$$
\begin{aligned}
& \left.z_{1}\right) \text { is } \\
& a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0 .
\end{aligned}
$$

This plane is parallel to the line

$$
\frac{x-x_{2}}{a_{1}}=\frac{y-y_{2}}{b_{1}}=\frac{z-z_{2}}{c_{1}}
$$

\therefore Normal to the plane is perpendicular to the line, i.e. $a a_{1}+b b_{1}+c c_{1}=0$. Use these results and solve it.
Equation of plane passing through the point $A(0,0,0)$ is

$$
\begin{align*}
a(x-0)+b(y-0)+c(z-0) & =0 \\
a x+b y+c z & =0 \tag{i}
\end{align*}
$$

[using one point form of plane

$$
\begin{aligned}
& \text { [using } \\
& \left.a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0\right] \\
& \text { a point }
\end{aligned}
$$

Given, the plane (i) passes through the point $B(3,-1,2)$.

$$
\begin{aligned}
& -1 \text { and } z=2 c=0 \\
& 3 a-b+2 c=0
\end{aligned}
$$

Also, the plane (i) is parallel to the line

$$
\frac{x-4}{1}=\frac{y+3}{-4}=\frac{z+1}{7}
$$

$\therefore \quad a(1)+b(-4)+c(7)=0$
if plane is parallel to the line, then normal to the plane is perpendicular to the line,
i.e. $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
$\Rightarrow \quad \begin{aligned} & a-4 b+7 c=0\end{aligned} \quad \ldots$ (iii) (i)
\Rightarrow On solving Eqs. (ii) and (iii) by cross multiplication, we get

$$
\begin{aligned}
\frac{a}{(-1) \times(7)-(2) \times(-4)}= & \frac{b}{(2) \times(1)-(3) \times(7)} \\
& =\frac{c}{3 \times(-4)-(-1) \times(1)} \\
\Rightarrow & \frac{a}{-7+8}
\end{aligned}=\frac{b}{2-21}=\frac{c}{-12+1} .
$$

$$
\begin{equation*}
\therefore \quad a=\lambda, b=-19 \lambda, c=-11 \lambda \tag{1}
\end{equation*}
$$

On substituting the yalues of a, b, c in Eq. (i), we get

$$
\begin{align*}
\lambda(x)+(-19 \lambda) y+(-11 \lambda) z & =0 \\
\Rightarrow \quad & x-19 y-11 z \tag{1}
\end{align*}=0
$$

This is the required equation of the plane.
30. Let the given points are $A(2,2,-1), B(3,4,2)$ and $C(7,0,6)$.
Let $\vec{a}=2 \hat{i}+2 \hat{j}-\hat{k}, \vec{b}=3 \hat{i}+4 \hat{j}+2 \hat{k}$
and $\vec{c}=7 \hat{i}+6 \hat{k}$
Now, the vector equation of the line passing through \vec{a}, \vec{b} and \vec{c} is given by

$$
\begin{align*}
& \\
\Rightarrow \quad \vec{r}-\vec{a}) & \cdot[(\vec{b}-\vec{a}) \times(\vec{c}-\vec{a})]=0 \\
& =(3 \hat{i}+4 \hat{j}+2 \hat{k})-(2 \hat{i}+2 \hat{j}-\hat{k}) \\
\Rightarrow \quad \vec{c}-\vec{a} & =(7 \hat{i}+6 \hat{k})-(2 \hat{i}+2 \hat{j}-\hat{k}) \\
& =5 \hat{i}-2 \hat{j}+7 \hat{k} \tag{1}
\end{align*}
$$

The required equation of the plane is

$$
\begin{aligned}
& {[\vec{r}-(2 \hat{i}+2 \hat{j}-\hat{k})] \cdot[(\hat{i}+2 \hat{j}+3 \hat{k})} \\
& \times(5 \hat{i}-2 \hat{j}+7 \hat{k})]=0 \\
& \Rightarrow[\vec{r}-(2 \hat{i}+2 \hat{j}-\hat{k})] \cdot\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 2 & 3 \\
5 & -2 & 7
\end{array}\right|=0
\end{aligned}
$$

$$
\Rightarrow[\vec{r}-(2 \hat{i}+2 \hat{j}-\hat{k})]
$$

$$
\cdot[\hat{i}(14+6)-\hat{j}(7-15)+\hat{k}(-2-10)]=0
$$

$$
\Rightarrow \quad[\vec{r}-(2 \hat{i}+2 \hat{j}-\hat{k})] \cdot(20 \hat{i}+8 \hat{j}-12 \hat{k})=0
$$

$$
\Rightarrow \vec{r} \cdot(20 \hat{i}+8 \hat{j}-12 \hat{k})=(2 \hat{i}+2 \hat{j}-\hat{k}) \cdot(20 \hat{i}+8 \hat{j}-12 \hat{k})
$$

$\Rightarrow \vec{r} \cdot(20 \hat{i}+8 \hat{j}-12 \hat{k})=40+16+12=68$
$\Rightarrow \vec{r} \cdot(5 \hat{i}+2 \hat{j}-3 \hat{k})=17$,
which is the required vector equation.
For cartesian equation put $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$
$\Rightarrow \quad(x \hat{i}+y \hat{j}+z \hat{k}) \cdot(5 \hat{i}+2 \hat{j}-3 \hat{k})=17$
$\Rightarrow 5 x+2 y-3 z=17$ or $5 x+2 y-3 z-17=0$
Now, the equation of any plane parallel to above plane is

$$
5 x+2 y-3 z+k=0
$$

If it passes through $(4,3,1)$, then

$$
\begin{equation*}
5(4)+2(3)-3+k=0 \Rightarrow k=-23 \tag{1}
\end{equation*}
$$

Thus, the equation of plane is

$$
5 x+2 y-3 z-23=0
$$

Hence, required vector equation of plane is

$$
\begin{equation*}
\vec{r} \cdot(5 \hat{i}+2 \hat{j}-3 \hat{k})-23=0 \tag{1}
\end{equation*}
$$

31. The required plane passes through the point $A(-1,3,-4)$ and contains the line $\vec{r}=(\hat{i}+\hat{j})+\lambda(\hat{i}+2 \hat{j}-\hat{k})$ which passes through $B(1,1,0)$ and is parallel to the vector $\vec{b}=\hat{i}+2 \hat{j}-\hat{k}$. Thus, required plane passes through two points $A(-1,3,-4)$ and $B(1,1,0)$ and is parallel to the vector $\vec{b}=\hat{i}+2 \hat{j}-\hat{k}$.

Let \vec{n} be the normal vector to the required plane.
Then, \vec{n} is perpendicular to both \vec{b} and $\overrightarrow{A B}$.
Consequently, it is parallel to $\overrightarrow{A B} \times \vec{b}$.
(1)

Let $\vec{n}_{1}=\overrightarrow{A B} \times \vec{b}$. Then,

$$
\vec{n}_{1}=\left|\begin{array}{rrr}
\hat{i} & \hat{j} & \hat{k} \\
2 & -2 & 4 \\
1 & 2 & -1
\end{array}\right|=-6 \hat{i}+6 \hat{j}+6 \hat{k}
$$

Let $\vec{\alpha}$ be the position vector of A. Then,

$$
\begin{equation*}
\vec{\alpha}=-\hat{i}+3 \hat{j}-4 \hat{k} \tag{1}
\end{equation*}
$$

Clearly, the required plane passes through $\vec{\alpha}=-\hat{i}+3 \hat{j}-4 \hat{k}$ and it is perpendicular to $\vec{n}_{1}=-6 \hat{i}+6 \hat{j}+6 \hat{k}$.
So, its vector equation is

$$
\begin{array}{cc}
& (\vec{r}-\vec{\alpha}) \cdot \vec{n}_{1}=0 \text { or } \vec{r} \cdot \vec{n}_{1}=\vec{\alpha} \cdot \vec{n}_{1} \\
\Rightarrow & \vec{r} \cdot(-6 \hat{i}+6 \hat{j}+6 \hat{k}) \\
=(-\hat{i}+3 \hat{j}-4 \hat{k}) \cdot(-6 \hat{i}+6 \hat{j}+6 \\
\Rightarrow & \vec{r} \cdot(-6 \hat{i}+6 \hat{j}+6 \hat{k})=6+18-24 \\
\Rightarrow \quad & \vec{r} \cdot(-6 \hat{i}+6 \hat{j}+6 \hat{k})=0 \Rightarrow \vec{r} \cdot(-\hat{i}+\hat{j}+\hat{k})=0
\end{array}
$$

The length of perpendicular from $P(2,1,4)$ to the above plane is given by

$$
\begin{aligned}
d & =\left|\frac{(\hat{i}+\hat{j}+4 \hat{k}) \cdot(-\hat{i}+\hat{j}+\hat{k})}{\sqrt{(-1)^{2}+(1)^{2}+(l)^{2}}}\right| \\
& =\frac{|-2+1+4|}{\sqrt{(-1)^{2}+(1)^{2}+(1)^{2}}}=\frac{3}{\sqrt{3}}=\sqrt{3} \text { units }
\end{aligned}
$$

32. Let $\vec{a}=\hat{i}+\hat{j}-2 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k}$
and $\vec{c}=\hat{i}+2 \hat{j}+\hat{k}$
Then the vector equation of a plane passing through \vec{a}, \vec{b} and \vec{c} is given by

$$
(\vec{r}-\vec{a}) \cdot[(\vec{b}-\vec{a}) \times(\vec{c}-\vec{a})]=0
$$

$\Rightarrow\{\vec{r}-(\hat{i}+\hat{j}-2 \hat{k})\} \cdot[\{(2 \hat{i}-\hat{j}+\hat{k})-(\hat{i}+\hat{j}-2 \hat{k})\}$

$$
\times\{(\hat{i}+2 \hat{j}+\hat{k})-(\hat{i}+\hat{j}-2 \hat{k})\}]=0
$$

$\Rightarrow\{\vec{r}-(\hat{i}+\hat{j}-2 \hat{k})\}[\{(\hat{i}-2 \hat{j}+3 \hat{k}) \times(\hat{j}+3 \hat{k})]=0$
Now, $\begin{aligned}(\hat{i}-2 \hat{j} & +3 \hat{k}) \times(\hat{j}+3 \hat{k})=\left|\begin{array}{rrr}\hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 3 \\ 0 & 1 & 3\end{array}\right| \\ & =\hat{i}(-6-3)-\hat{j}(3-0)+\hat{k}(l-0) \\ & =-9 \hat{i}-3 \hat{j}+\hat{k}\end{aligned}$
$\therefore\{\vec{r}-(\hat{i}+\hat{j}-2 \hat{k})\} \cdot(-9 \hat{i}-3 \hat{j}+\hat{k})=0$
$\Rightarrow \vec{r} \cdot(-9 \hat{i}-3 \hat{j}+\hat{k})=(\hat{i}+\hat{j}-2 \hat{k}) \cdot(-9 \hat{i}-3 \hat{j}+\hat{k})(1)$
$\Rightarrow \vec{r} \cdot(-9 \hat{i}-3 \hat{j}+\hat{k})=-9-3-2$
$\Rightarrow \vec{r} \cdot(-9 \hat{i}-3 \hat{j}+\hat{k})=-14$
$\Rightarrow \vec{r} \cdot(-9 \hat{i}-3 \hat{j}+\hat{k})+14=0$
por cattesian equation of that plane put ?

$$
=x i+y i+2 i
$$

$\Rightarrow \quad(x \hat{i}+\hat{y}+(z \hat{k})(-\hat{i}-\hat{i}+\hat{k})+14=0$
$\Rightarrow \quad 0 x-3 x+z+14=0$
$\Rightarrow \quad$ ax $+3 y z=14=0$
Now, any plane parallel to the given plane is

$$
\begin{equation*}
0 x+3 y-z+k=0 \tag{I}
\end{equation*}
$$

If it ts passes through (2, 3, 7), then

$$
\begin{array}{rlrl}
& & 9(7)+3+K=0 \tag{ii}\\
\Rightarrow & 18+0=7+K=0 \\
\Rightarrow & & K=-20
\end{array}
$$

Hence, required equation of the plane is

$$
\begin{equation*}
9 x+3 y=z-20=0 \tag{1}
\end{equation*}
$$

Now, we have equation of two parallel planes given by

$$
9 x+3 y-z=14=0 \text { and } 9 x+3 y-z-20=0
$$

\therefore Distance between these two planes

$$
\begin{equation*}
=\left|\frac{-20-(-14)}{\sqrt{9^{2}+3^{2}+(-1)^{2}}}\right|=\frac{6}{\sqrt{91}} \tag{I}
\end{equation*}
$$

33. We know that the equation of a line passing through the points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ is given by

$$
\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}
$$

Here, $\left(x_{1}, y_{1}, z_{1}\right)=\left(2-1,2\right.$ and $\left(x_{2}, y_{2}, z_{2}\right)=(5,3,4)$ So, the equation of the line passing through $A(2-1,2)$ and $B(5,3,4)$ is

$$
\begin{aligned}
& \frac{x-2}{5-2}=\frac{y+1}{3+1}=\frac{z-2}{4-2} \\
\Rightarrow & \frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{2}
\end{aligned}
$$

The general equation of a plane passing through $(2,0,3)$ is

$$
\begin{equation*}
a(x-2)+b(y-0)+c(z-3)=0 \tag{1}
\end{equation*}
$$

It will pass through $B(1,1,9$ and $C(3,2,4)$, if

$$
\begin{align*}
& a(1-2)+b(1-0)+c(5-3)=0 \\
& \Rightarrow-a+b+2=0 \\
& \Rightarrow a-b-2=0 \tag{ii}\\
& \text { and } a(3-2)+b(2-0)+c(4-3)=0 \\
& \Rightarrow a+2 b+c=0
\end{align*}
$$

On solving Eqs. (ii) and (iii) by
cross-multiplication, we get

$$
\frac{a}{-1+4}=\frac{b}{-2-1}=\frac{c}{2+1}
$$

$$
\begin{aligned}
& \Rightarrow \quad a-\lambda \lambda_{1} b-3 \lambda_{\text {and }} \quad-1 \lambda
\end{aligned}
$$

Substiction the values of a, b and fin By . (i). we get

$$
\begin{aligned}
& \Rightarrow \\
& x=y+z-5
\end{aligned}
$$

whifh is the required equation of plane.
Now, the coordinater of any point on the line

$$
\begin{equation*}
x=\frac{2}{1}-\frac{y+1}{4}-\frac{x^{2}-2}{2}=1(x a y) \tag{lv}
\end{equation*}
$$

are $x=3+2, y=4 r=1, z-2 r+2$

$$
3 r+2=4 r+1+2 r+2=5 \Rightarrow r=0
$$

Substituting the value of $r=0$ in Bq. (Iv), we get

$$
\begin{aligned}
& x^{2}=3 \times 0+2 y=4 \times 0=1, z=2 \times 0+2 \\
\Rightarrow \quad & x=2 y=-1, z=2
\end{aligned}
$$

Hence, the point of intersection are $(2,=1, \lambda$.
34. Given equations of line and plane are

$$
\begin{align*}
\vec{r} & =(2 \hat{i}-\hat{j}+2 \hat{k})+\lambda(\hat{3}+4 \hat{j}+2 \hat{k}) \\
& =(2+3 \lambda) \hat{i}+(=1+4 \lambda) \hat{j}+(2+2 \lambda) \hat{k} \tag{i}
\end{align*}
$$

and $\quad \vec{r} \cdot(\hat{i}=\hat{j}+\hat{k})=5$
Por point of Intersection of line and plane, the point \vec{r} satisfy the equation of plane.

$$
\begin{align*}
& \therefore[(2+3 \lambda) \hat{i}+(-1+4 \lambda) \hat{j}+(2+2 \lambda) \hat{k}] \\
& \quad(\hat{i}-j+\hat{k})=5 \\
& \Rightarrow \quad(3 \lambda+2)-(4 \lambda-1)+(2 \lambda+2)=5 \\
& \Rightarrow \quad 3 \lambda+2-4 \lambda+1+2 \lambda+2=5 \Rightarrow \lambda=0 \tag{1}
\end{align*}
$$

On putting $\lambda=0$ in $E q$, (i), we get

$$
\vec{r}=(2+0) \hat{i}+(-1+0) \hat{j}+(2+0) \hat{k}=2 \hat{i}-\hat{j}+2 \hat{k}
$$

Thus, intersection point of the line and the plane is $(2,-1,2)$.
Now, the required distance

$$
\begin{aligned}
P Q & =\sqrt{(2+1)^{2}+(-1+5)^{2}+(2+10)^{2}} \\
& {\left[\because \text { distance }=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{7}-y\right)^{2}} \begin{array}{r}
+\left(x_{2}-2\right)^{2}
\end{array}\right](1) } \\
& =\sqrt{9+10+144-\sqrt{144+25}} \\
& =\sqrt{169}=13 \text { units }
\end{aligned}
$$

Hence, the required distance is 13 units.
35. Suppose the required line is parallel to vector \vec{b} which is given by $\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$.
The position vector of the point $(1,2,3)$ is

$$
\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}
$$

The equation of line passing through $(1,2 ; 3)$ and parallel to \vec{b} is given by

$$
\begin{gather*}
\vec{r}=\vec{a}+\lambda \vec{b} \\
\Rightarrow \vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda\left(b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\right) \tag{1}
\end{gather*}
$$

The equation of the given planes are

$$
\begin{equation*}
\underset{\rightarrow}{\vec{r}} \cdot(\hat{i}-\hat{j}+2 \hat{k})=5 \tag{ii}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{r} \cdot(3 \hat{i}+\hat{j}+\hat{k})=6 \tag{iii}
\end{equation*}
$$

The line in Eq. (i) and plane in Eq. (ii) are parallel.
Therefore, the normal to the plane of Eq. (ii) is perpendicular to the given line.

$$
\begin{array}{lrl}
\therefore & (\hat{i}-\hat{j}+2 \hat{k}) \cdot\left(b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\right) & =0 \tag{1}\\
\Rightarrow & b_{1}-b_{2}+2 b_{3} & =0
\end{array}
$$

Similarly, from Eqs. (i) and (iii), we get

$$
\Rightarrow \quad \begin{array}{rlrl}
& & (3 \hat{i}+\hat{j}+\hat{k}) \cdot\left(b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\right) & =0 \\
& 3 b_{1}+b_{2}+b_{3} & =0
\end{array}
$$

On solving Eqs. (iv) and (v) by cross-multiplication, we get

$$
\Rightarrow \quad \frac{b_{1}}{(-1) \times 1-1 \times 2}=\frac{b_{2}}{2 \times 3-1 \times 1}=\frac{b_{3}}{1 \times 1-3(-1)}
$$

Therefore, the direction ratios of \vec{b} are $(-3,5,4)$.

$$
\therefore \vec{b}=-3 \hat{i}+5 \hat{j}+4 \hat{k}\left[\because \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\right]
$$

On substituting the value of \vec{b} in Eq. (i), we get

$$
\begin{equation*}
\vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(-3 \hat{i}+5 \hat{j}+4 \hat{k}) \tag{i}
\end{equation*}
$$

which is the equation of the required line.
Any point on line (i) is

$$
(1-3 \lambda, 2+5 \lambda, 3+4 \lambda)
$$

For this line (i) to intersect the plane

$$
\vec{r}(2 \hat{i}+\hat{j}+\hat{k})=4
$$

We have,

$$
\begin{aligned}
& \text { have, } \\
& \begin{array}{r}
(1-3 \lambda)(\lambda)+(2+5 \lambda) 1+(3+4 \lambda) 1=4 \\
2-6 \lambda+2+5 \lambda+3+4 \lambda=4
\end{array}
\end{aligned}
$$

$\Rightarrow 7+3 \lambda=4 \Rightarrow 3 \lambda=-3 \Rightarrow \lambda=-1$
\therefore Required point of intersection is

$$
(1-3(-1), 2+5(-1), 3+4(-1)) \text {, i.e. }(4,-3,-1)
$$

36. Any plane through the line of intersection of the two given plane is

$$
\begin{align*}
& \vec{r} \cdot(2 \hat{i}-3 \hat{j}+4 \hat{k})-1]+\lambda[\vec{r}(\hat{i}-\hat{j})+4]=0 \\
& \Rightarrow \quad \vec{r} \cdot[(2+\lambda) \hat{i}-(3+\lambda) \hat{j}+4 \hat{k}]=1-4 \lambda \tag{i}
\end{align*}
$$

If this plane is perpendicular to the plane $\vec{r} \cdot(\hat{i}-\hat{j}+\hat{k})+8=0$,
Then, $\quad 2(2+\lambda)+(3+\lambda)+4=0$
$\Rightarrow \quad 3 \lambda+11=0 \Rightarrow \lambda=-\frac{11}{3}$
Put $\lambda=-\frac{11}{3} \mathrm{in} \mathrm{Eq:} \mathrm{(i)}$, equation of the plane is

$$
\vec{r} \cdot(-5 \hat{i}+2 \hat{j}+12 \hat{k})=47
$$

and given that equation of line is

$$
\begin{aligned}
x-1 & =2 y-4=3 z-12 \\
\Rightarrow \quad & \frac{x-1}{1}
\end{aligned}=\frac{y-2}{1 / 2}=\frac{z-4}{1 / 3} .
$$

In vector form, equation of line is

$$
\hat{i}+2 \hat{j}+4 \hat{k}+\lambda\left(\hat{i}+\frac{1}{2} \hat{j}+\frac{1}{3} \hat{k}\right)
$$

This line $\vec{r}=\hat{i}+2 \hat{j}+4 \hat{k}+\lambda\left(\hat{i}+\frac{1}{2} \hat{j}+\frac{1}{3} \hat{k}\right)$
passes through a point with position vector $\vec{a}=\hat{i}+2 \hat{j}+4 \hat{k}$ and parallel to the vector $\vec{b}=\hat{i}+\frac{1}{2} \hat{j}+\frac{1}{3} \hat{k}$.
(1)

The plane $\vec{r} \cdot(-5 \hat{i}+2 \hat{j}+12 \hat{k})=47$ contains the given line if
(i) it passes through $\hat{i}+2 \hat{j}+4 \hat{k}$
(ii) it is parallel to the line

We have, $(\hat{i}+2 \hat{j}+4 \hat{k})(-5 \hat{i}+2 \hat{j}+12 \hat{k})$

$$
\begin{equation*}
=-5+4+48=47 \tag{1}
\end{equation*}
$$

So, the plane passes through the point $\hat{i}+2 \hat{j}+4 \hat{k}$ and, $\left(\hat{i}+\frac{1}{2} \hat{j}+\frac{1}{3} \hat{k}\right)(-5 \hat{i}+2 \hat{j}+12 \hat{k})$

$$
\begin{equation*}
=-5+1+4=0 \tag{1}
\end{equation*}
$$

Therefore, the plane is parallel to the line.
Hence, the plane contains the given line.
37. Let the equation of the variable plane is

$$
\begin{equation*}
\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 \tag{i}
\end{equation*}
$$

Since, above plane (i) meets the X-axis, Y-axis and Z-axis at the point $A(a, 0,0), B(0, b, O)$ and $C(0,0, c)$, respectively and let (α, β, γ) be the coordinates of the centroid of $\triangle A B C$.
Then, $\alpha=\frac{a+0+0}{3}, \beta=\frac{0+b+0}{3}$
and $\gamma=\frac{0+0+c}{3}$
$\Rightarrow \quad \alpha=\frac{a}{3}, \beta=\frac{b}{3}$ and $\gamma=\frac{c}{3}$
(1)
$\Rightarrow \quad a=3 \alpha, b=3 \beta$ and $c=3 \gamma$
$\therefore 3 p=$ length of the perpendicular from $(0,0,0)$ to the plane (i)
$\Rightarrow \quad 3 p=\frac{\left|\frac{0}{a}+\frac{0}{b}+\frac{0}{c}-1\right|}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}}$
$\Rightarrow \quad 3 p=\frac{1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}}$
$\Rightarrow \quad \frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{9 p^{2}}$
(1)
$\Rightarrow \quad \frac{1}{9 \alpha^{2}}+\frac{1}{9 \beta^{2}}+\frac{1}{9 \gamma^{2}}=\frac{1}{9 p^{2}}$ [using Eq. (ii)]
$\Rightarrow \quad \frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}+\frac{1}{\gamma^{2}}=\frac{1}{p^{2}}$
Hence, the locus of the centroid is

$$
\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=\frac{1}{p^{2}} \quad \text { Hence proved. }
$$

38. The equation of a plane passing through the point

$$
L(2,2,1) \text { is }
$$

$$
\begin{equation*}
a(x-2)+b(y-2)+c(z-1)=0 \tag{i}
\end{equation*}
$$

Also, it is passes through the points $M(3,0,1)$ and
$N(4,-1,0)$, respectively.
$\begin{aligned} & \therefore a(3-2)+b(0-2)+c(a-1) & =0 \\ \Rightarrow & a-2 b & =0 \\ \Rightarrow & a & =2 b\end{aligned}$
and $\quad a(4-2)+b(-1-2)+c(0-1)=0$

$$
2 a-3 b-c=0
$$

\Rightarrow
[from Eq. (ii)] (1/2)

On putting $a=2 b$ and $c=b$ in Eq. (i), we get

$$
\begin{array}{rlrl}
& & 2 b(x-2)+b(y-2)+b(z-1) & =0 \\
\Rightarrow & 2 x-4+y-2+z-1 & =0 \tag{iii}
\end{array}
$$

[divide by b]
$2 x+y+z=7$

Let the point P divide the line joining points A and B in the ratio $m: n$.
Then, coordinates of P are

$$
\begin{equation*}
P\left(\frac{2 m+3 n}{m+n}, \frac{-3 m-4 n}{m+n}, \frac{m-5 n}{m+n}\right) \tag{1}
\end{equation*}
$$

Since, the line crosses the plane at point P. So, the coordinates of point P satisfy the equation of plane $2 x+y+z=7$.
$\therefore \quad 2\left(\frac{2 m+3 n}{m+n}\right)+\left(\frac{-3 m-4 n}{m+n}\right)+\left(\frac{m-5 n}{m+n}\right)=7$
$\Rightarrow 4 m+6 n-3 m-4 n+m-5 n=7 m+7 n$
$\begin{aligned} \Rightarrow & 2 m-3 n & =7 m+7 n \\ \Rightarrow & -5 m & =10 n \\ \Rightarrow & m & =-2 n \quad \ldots \text { (iv) (1) }\end{aligned}$
Now, the coordinates of P are
$\left(\frac{2 \times(-2 n)+3 n}{-2 n+n}, \frac{-3 \times(-2 n)-4 n}{-2 n+n}, \frac{-2 n-5 n}{-2 n+n}\right)$
i.e. $\left(\frac{-n}{-n}, \frac{2 n}{-n}, \frac{-7 n}{-n}\right)$ or $(1,-2,7)$

From Eq. (iv),

$$
m=-2 n \Rightarrow \frac{m}{n}=-2
$$

Hence, P divides the line joining points A and B externally in the ratio 2:1.
NOTE If the ratio is negative, then it means that the point divides the line externally.
39. (i) Do same as Q.No. 24.

$$
\left[\text { Ans. }\left(\frac{17}{3}, 0, \frac{23}{3}\right)\right]
$$

(ii) Let θ be the angle between the line $A B$ and $X Z$ plane.

Then, $\sin \theta=\left|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right|$, where
a_{1}, b_{1}, c_{1} are DR's of line $A B$ and a_{2}, b_{2}, c_{2} are DR's of normal to plane $X Z$.
Here, $a_{1}=2, b_{1}=-3, c_{1}=5$ and $a_{2}=0, b_{2}=1, c_{2}=0$
$\therefore \sin \theta=\left|\frac{2 \cdot 0+(-3) \cdot 1+5 \cdot 0}{\sqrt{2^{2}+(-3)^{2}+5^{2}} \sqrt{0^{2}+1^{2}+0^{2}}}\right|$
$=\left|\frac{-3}{\sqrt{4+9+25}}\right|=\frac{3}{\sqrt{38}}$
$\Rightarrow \quad \theta=\sin ^{-1}\left(\frac{3}{\sqrt{38}}\right)$
(1/2)
40. Given, a point P with position vector $2 \hat{i}+3 \hat{j}+4 \hat{k}$ and the plane
$\vec{r} \cdot(2 \hat{i}+\hat{j}+3 \hat{k})-26=0$, or $2 x+y+3 z=26$
Let A be the foot of perpendicular. Then, $P A$ is the normal to the plane and so its DR's are 2,1 and 3.

Now, the equation of perpendicular line $P A$ is

$$
\begin{aligned}
\frac{x-2}{2} & =\frac{y-3}{1}=\frac{z-4}{3}=\lambda(\text { say }) \\
\Rightarrow \quad x & =2 \lambda+2 y=\lambda+3 \text { and } z=3 \lambda+4
\end{aligned}
$$

\Rightarrow Coordinates of any point on PA is of the form $(2 \lambda+2 \lambda+3,3 \lambda+4)$.
\therefore Coordinates of A are $(2 \lambda+2, \lambda+3,3 \lambda+4)$ for some λ.
Since, A lies on the plane, therefore we have

$$
\begin{array}{rlrl}
& 2(2 \lambda+2)+(\lambda+3)+3(3 \lambda+4) & =26 \\
\Rightarrow \quad 4 \lambda+4+\lambda+3+9 \lambda+12 & =26 \\
\Rightarrow & \quad 14 \lambda+19=26 \Rightarrow 14 \lambda & =7 \Rightarrow \lambda=\frac{1}{2} \tag{1/2}
\end{array}
$$

So, the coordinates of foot of perpendicular are $\left(2 \cdot \frac{1}{2}+2, \frac{1}{2}+3,3 \cdot \frac{1}{2}+4\right)$ i.e. $\left(3, \frac{7}{2}, \frac{11}{2}\right)$ and therefore its position vector is $3 \hat{i}+\frac{7}{2} \hat{j}+\frac{11}{2} \hat{k}$

Now, the required perpendicular distance

$$
\begin{aligned}
& =\sqrt{(3-2)^{2}+\left(\frac{7}{2}-3\right)^{2}+\left(\frac{11}{2}-4\right)^{2}} \\
& =\sqrt{1+\frac{1}{4}+\frac{9}{4}}=\sqrt{\frac{7}{2}} \text { units }
\end{aligned}
$$

Now, let $P^{\prime}(x, y, z)$ be the image of point P in the plane.
Then, A will be mid-point of $P P^{\prime}$.
$\therefore \quad\left(3, \frac{7}{2}, \frac{11}{2}\right)=\left(\frac{2+x}{2}, \frac{3+y}{2}, \frac{4+z}{2}\right)$
$\Rightarrow 3=\frac{2+x}{2} ; \frac{7}{2}=\frac{3+y}{2} ; \frac{11}{2}=\frac{4+z}{2}$
$\Rightarrow x=4 ; y=4$ and $z=7$
Thus, the coordinates of the image of the point P are (4, 4, 7).
41. Given equation of planes are

$$
\vec{r} \cdot(\hat{i}-2 \hat{j}+3 \hat{k})=4 \text { and } \vec{r} \cdot(-2 \hat{i}+\hat{j}+\hat{k})=-5
$$

On comparing these with $\bar{r} \cdot \vec{n}=d$, we get

$$
\begin{aligned}
& \overrightarrow{n_{1}}=\hat{i}-2 \hat{j}+3 \hat{k}, d_{1}=4 \\
& \overrightarrow{n_{2}}=-2 \hat{i}+\hat{j}+\hat{k} \text { and } d_{2}=-5
\end{aligned}
$$

Now, the equation of the plane which contains the intersection of the given planes is

$$
\vec{r} \cdot\left(\overrightarrow{n_{1}}+\lambda \overrightarrow{n_{2}}\right)=d_{1}+\lambda d_{2}
$$

$\Rightarrow \vec{r} \cdot[\hat{i}-2 \hat{j}+3 \hat{k}+\lambda(-2 \hat{i}+\hat{j}+\hat{k})]=4-5 \lambda$
$\Rightarrow \vec{r} \cdot[(1-2 \lambda) \hat{i}+(-2+\lambda) \hat{j}+(3+\lambda) \hat{k})]=4-5 \lambda$
Also, given intercept on X and Y-axes are same.
$\therefore \quad \frac{4-5 \lambda}{1-2 \lambda}=\frac{4-5 \lambda}{-2+\lambda}$
$\Rightarrow \quad 1-2 \lambda=-2+\lambda$
$\Rightarrow \quad 3 \lambda=3$
$\Rightarrow \quad \lambda=1$
[1]
On putting $\lambda=1$ in Eq. (i), we get
$\vec{r} \cdot[(1-2) \hat{i}+(-2+1) \hat{j}+(3+1) \hat{k}]=4-5 \times 1$
$\therefore \quad \vec{r} \cdot(-\hat{i}-\hat{j}+4 \hat{k})=-1$,
which is the required equation of plane.
[2]
42. Given equation of planes are
and

$$
\begin{array}{r}
x+2 y+3 z-4=0 \\
2 x+y-z+5=0 \tag{ii}
\end{array}
$$

Clearly, the equation of plane which contain the line of intersection of planes (i) and (ii), is

$$
\begin{align*}
(x+2 y+3 z-4)+\lambda(2 x+y-z+5) & =0 \tag{1}\\
\Rightarrow(1+2 \lambda) x+(2+\lambda) y+(3-\lambda) z+5 \lambda-4 & =0 \tag{iii}
\end{align*}
$$

This equation can be written in intercept form as

$$
\begin{equation*}
\frac{x}{\frac{4-5 \lambda}{1+2 \lambda}}+\frac{y}{\frac{4-5 \lambda}{2+\lambda}}+\frac{z}{\frac{4-5 \lambda}{3-\lambda}}=1 \tag{1/2}
\end{equation*}
$$

Since, it is given that the x-intercept of plane (iii) is twice its z-intercept.

$$
\begin{array}{llrl}
\therefore & \frac{4-5 \lambda}{1+2 \lambda} & =2\left(\frac{4-5 \lambda}{3-\lambda}\right) \\
\Rightarrow & 3-\lambda & =2+4 \lambda \\
\Rightarrow & 5 \lambda & =1 \Rightarrow \lambda=\frac{1}{5} \tag{1/2}
\end{array}
$$

So, the required equation of plane is

$$
\begin{array}{rlrl}
& & \left(1+\frac{2}{5}\right) x+\left(2+\frac{1}{5}\right) y+\left(3-\frac{1}{5}\right) z=4-5 \cdot \frac{1}{5} \\
\Rightarrow & \frac{7}{5} x+\frac{11}{5} y+\frac{14}{5} z=\frac{15}{5} \\
\Rightarrow & 7 x+11 y+14 z=15 \tag{iv}
\end{array}
$$

Clearly, the DR's of normal to the plane, which is parallel to plane (iv), are 7, 11 and 14.
(1/2)
\therefore The vector equation of a plane passing through the ($2,3,-1$) and parallel to the plane (iv), is

$$
\begin{align*}
& {[\vec{r}-(2 \hat{i}+3 \hat{j}-\hat{k})] \cdot(7 \hat{i}+11 \hat{j}+14 \hat{k})=0 } \tag{1}\\
\Rightarrow & \vec{r} \cdot(7 \hat{i}+11 \hat{j}+14 \hat{k})=(2 \hat{i}+3 \hat{j}-\hat{k}) \cdot(7 \hat{i}+11 \hat{j}+14 \hat{k}) \\
\Rightarrow & \vec{r} \cdot(7 \hat{i}+11 \hat{j}+14 \hat{k})=14+33-14 \\
\Rightarrow & \vec{r} \cdot(7 \hat{i}+11 \hat{j}+14 \hat{k})=33 \tag{1}
\end{align*}
$$

which is the required equation.
43. Given equation of lines are

$$
\begin{equation*}
\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4} \tag{i}
\end{equation*}
$$

and $\quad \frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$
Since, these lines intersect, therefore the shortest distance between them will be zero.
Now, on comparing these lines with

$$
\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}
$$

$$
\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}
$$

we get $x_{1}=1, y_{1}=-1, z_{1}=1$

$$
\begin{align*}
& x_{2}=3, y_{2}=k, z_{2}=0 \\
& a_{1}=2, b_{1}=3, c_{1}=4 \tag{1}\\
& a_{2}=1, b_{2}=2, c_{2}=1
\end{align*}
$$

Since; two lines are intersect, so shortest

$$
\begin{align*}
& \text { distance }=0 \text {. } \\
& \therefore\left|\begin{array}{ccc}
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right|=0 \\
& \Rightarrow \quad\left|\begin{array}{ccc}
3-1 & k+1 & 0-1 \\
2 & 3 & 4 \\
1 & 2 & 1
\end{array}\right|=0 \\
& \Rightarrow \quad\left|\begin{array}{ccc}
2 & k+1 & -1 \\
2 & 3 & 4 \\
1 & 2 & 1
\end{array}\right|=0 \tag{1}\\
& \Rightarrow \quad 2(3-8)-(k+1)(2-4)-1(4-3)=0 \\
& \Rightarrow \quad 2(-5)-(k+1)(-2)-1(1)=0 \\
& \Rightarrow \quad-10+2(k+1)-1=0 \Rightarrow 2(k+1)=11 \\
& \Rightarrow \quad k=\frac{11}{2}-1=\frac{9}{2} \tag{1}
\end{align*}
$$

Now, let the required equation of plane be $a(x-1)+b(y+1)+c(z-1)=0$.
[equation of plane

$$
\left.a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0\right]
$$

where, a, b and c are direction ratios of normal and ($1,-1,1$) is the point on the line (i).
As, plane contains the intersecting lines, so normal to the plane is perpendicular to both the lines.
$\therefore \quad 2 a+3 b+4 c=0$ and $a+2 b+c=0$
$\left[\because a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0\right]$

$$
\begin{align*}
& \Rightarrow \quad \frac{a}{3-8}=\frac{b}{4-2}=\frac{c}{4-3} \\
& \Rightarrow \quad \frac{a}{-5}=\frac{b}{2}=\frac{c}{1} \tag{1}
\end{align*}
$$

Thus, the required equation of the plane is

$$
\begin{array}{lrl}
& & -5(x-1)+2(y+1)+1(z-1) \\
\Rightarrow & -5 x+5+2 y+2+z-1 & =0 \\
\Rightarrow & 5 x-5-2 y-2-z+1 & =0 \\
\therefore & 5 x-2 y-z=6 \tag{1}
\end{array}
$$

44. The direction ratios of line joining $A(3,-4,-5)$ and $B(2,-3,1)$ are $[(2-3),(-3+4),(a+9]$ i.e. $(-1,1,6)$.

Now, the equatton of time pasxins: themat
(3. 4, and having DRs $(=1,1,0)$ is given by
$x-3=\frac{y+4}{1}-\frac{8+3}{n}$

Now let $\frac{x-3}{-1}=\frac{y+1}{1}=\frac{e^{2}+3}{0}=\lambda$ (say)
$\Rightarrow \quad x=-\lambda+1 y=\lambda=4$ and $\varepsilon=0 \lambda=5$
Thus, the general pornt on the lime is given by $(3-\lambda, \lambda-4,0 \lambda-5)$
Since, lime intersect the plane as y it $x-7$ so
seneral point on the line $\left(3=\lambda_{0} \lambda=4,0 \lambda=5\right)$
satisty the equation of plane.
$\begin{array}{ll}\therefore & 2(3-\lambda)+\lambda=4+0 \lambda-3=7\end{array}$

$$
\begin{align*}
& \therefore \quad 0-2 \lambda+\lambda-4+0 \lambda-5=7 \Rightarrow 2 \lambda=10 \\
& \text { So. thenoin. } \quad \lambda=2 \tag{1}
\end{align*}
$$

So, the point of intersection of line and plane is
(3-2,2-4, 6×2-7. l.e. (a, -2)
Now, distance between $(3,4,4)$ and $(1,-27)$ is
given by $\sqrt{(3-1)^{2}+(4+2)^{2}+(4-7)^{2}}$

$$
=\sqrt{4+36+9}=\sqrt{49}=7 \text { units }
$$

5. Let $P(1,-2$, be the given point and $Q(\alpha, \beta, \gamma)$ be
the point on the given plane

$$
\begin{equation*}
x-y+z=5 \tag{i}
\end{equation*}
$$

Such that $P Q$ is parallel to given line whose direction ratios are $(2,3,-6)$.

Now, $\overrightarrow{P Q}=$ Position vector of Q-Position vector of P

$$
\begin{align*}
& =\left(\alpha \hat{i}+\beta \hat{j}+\gamma^{k}\right)-(\hat{i}-2 \hat{j}+3 \hat{k}) \\
& =(\alpha-1) \hat{i}+(\beta+2 \hat{j}+(\gamma-3 \hat{k} \tag{1}
\end{align*}
$$

Since, $\overrightarrow{P Q}$ is parallel to \vec{b}.

$$
\begin{equation*}
\therefore \quad \frac{\alpha-1}{2}=\frac{\beta+2}{3}=\frac{\gamma-3}{-6}=\lambda(\text { say }) \tag{ii}
\end{equation*}
$$

$\Rightarrow \quad \alpha=2 \lambda+1, \beta=3 \lambda-2$ and $\gamma=-6 \lambda+3$ Since, the point $Q(\alpha, \beta, \gamma)$ lies on the plane (i), so it satisfies.

$$
\begin{array}{rlrl}
& n-\beta+\gamma & =5 \\
\Rightarrow & (3 \lambda+11+(3 \lambda-2)+(6 \lambda+3) & =5 \\
\Rightarrow & 7 \lambda+6 & =5 \\
& \lambda=\frac{1}{7}
\end{array}
$$

Now, put $\lambda=\frac{1}{7}$ in Hq. (ii), we get

$$
a-2 \times \frac{1}{7}+1, \beta=3 \times \frac{1}{7}-2 \text { and } \gamma=-6 \times \frac{1}{7}+3
$$

$\Rightarrow \alpha=\frac{9}{7}, \beta=\frac{-11}{7}$ and $\gamma=\frac{15}{7}$
Hence, coordinates of Q are $\left(\frac{9}{7},-\frac{11}{7}, \frac{15}{7}\right)$.
\therefore Required distance

$$
\begin{aligned}
P Q & =\sqrt{\left(\frac{9}{7}-1\right)^{2}+\left(\frac{-11}{7}+2\right)^{2}+\left(\frac{15}{7}-3\right)^{2}} \\
& =\sqrt{\left(\frac{2}{7}\right)^{2}+\left(\frac{3}{7}\right)^{2}+\left(\frac{-6}{7}\right)^{2}} \\
& =\frac{1}{7} \sqrt{4+9}+36=\frac{7}{7}=1 \text { unit }
\end{aligned}
$$

46. Equation of any plane through the line of Intersection of the given planes $x+y+z=1$ and $2 x+3 y+4 z=5$ is
$(x+y+z-1)+\lambda(2 x+3 y+4 z-5)=0$
$\Rightarrow(1+2 \lambda) x+(1+3 \lambda) y$

$$
\begin{equation*}
+(1+4 \lambda) z-1-5 \lambda=0 \tag{i}
\end{equation*}
$$

The direction ratios $\left(a_{1}, b_{1}, c_{1}\right)$ of the plane are $[(2 \lambda+1),(3 \lambda+1),(4 \lambda+1)]$.
Also, given that the plane, i.e. Eq. (i) is perpendicular to the plane $x-y+z=0$, whose direction ratios $\left(a_{2}, b_{2}, c_{2}\right)$ are $(1,-1,1)$.
Then,

$$
\begin{array}{lc}
\therefore & 1(1+2 \lambda)-1(1+3 \lambda)+1(1+4 \lambda)=0 \\
\Rightarrow & 1+2 \lambda-1-3 \lambda+1+4 \lambda=0 \\
\Rightarrow & 3 \lambda=-1 \Rightarrow \lambda=-\frac{1}{3}
\end{array}
$$

On substituting the value of λ in Eq. (i), we get the equation of required plane as

$$
\begin{aligned}
& \left(1-\frac{2}{3}\right) x+\left(1-\frac{3}{3}\right) y+\left(1-\frac{4}{3}\right) z-1+\frac{5}{3}=0 \\
& \Rightarrow \\
& \Rightarrow
\end{aligned} \frac{1}{3} x-\frac{1}{3} z+\frac{2}{3}=0
$$

$P\left(x_{1}, y_{1}, z_{1}\right)$ and plat, distance between a point

$$
d=\frac{A x_{1}+B y_{1}+C z_{1}-D y+C z=D \text { is }}{\sqrt{A^{2}+B^{2}+C^{2}}}
$$

Here, point is $A(1,3,6)$ and the plane is
$x-z+2=0$.
\therefore Required distance,

$$
\begin{align*}
d & =\frac{|1-6+2|}{\sqrt{(1)^{2}+(-1)^{2}}} \\
& =\frac{|-3|}{\sqrt{2}}=\frac{3}{\sqrt{2}} \text { units } \tag{1}
\end{align*}
$$

47. Given equation of planes are
$\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=1$ and $\vec{r} \cdot(2 \hat{i}+3 \hat{j}-\hat{k})=-4$
Equation of plane passing through the intersection of above two planes is
$\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})+\vec{r} \cdot \lambda(2 \hat{i}+3 \hat{j}-\hat{k})=1+\lambda(-4)$

$$
\begin{equation*}
\left[\because \vec{r}_{1}+\lambda r_{2}=d_{1}+\lambda d_{2}\right] \tag{1}
\end{equation*}
$$

$\Rightarrow \quad \vec{r} \cdot[(\hat{i}+\hat{j}+\hat{k})+\lambda(2 \hat{i}+3 \hat{j}-\hat{k})]=1-4 \lambda$
$\Rightarrow \vec{r} \cdot[(1+2 \lambda) \hat{i}+(1+3 \lambda) \hat{j}+(1-\lambda) \hat{k})]=1-4 \lambda$
Here, $\vec{n}=(1+2 \lambda) \hat{i}+(1+3 \lambda) \hat{j}+(1-\lambda) \hat{k}$
We know that, direction cosines of X-axis is 1, 0, 0.
Since, the required plane is parallel to X-axis,
therefore normal of the plane (i) is perpendicular to the X-axis.

$$
\begin{align*}
& & (1+2 \lambda) \cdot(1)+(1+3 \lambda) \cdot(0)+(1-\lambda) \cdot(0) & =0 \\
\Rightarrow & & {[(1+2 \lambda) \hat{i}+(1+3 \lambda) \hat{j}+(1-\lambda) \hat{k})] \cdot(\hat{i}) } & =0 \\
\Rightarrow & & 1+2 \lambda & =0 \\
\Rightarrow & & \lambda & =-\frac{1}{2} \tag{1}
\end{align*}
$$

On putting $\lambda=-\frac{1}{2}$ in Eq. (i), we get

$$
\begin{equation*}
\vec{r} \cdot\left[\left(1-\frac{2}{2}\right) \hat{i}+\left(1-\frac{3}{2}\right) \hat{j}+\left(1+\frac{1}{2}\right) \hat{k}\right]=1+\frac{4}{2} \tag{1}
\end{equation*}
$$

$\Rightarrow \quad \vec{r} \cdot\left[0 \hat{i}-\frac{1}{2} \hat{j}+\frac{3}{2} \hat{k}\right]=3$
$\Rightarrow \quad \vec{r} \cdot[-\hat{j}+3 \hat{k}]=3 \times 2$
$\therefore \quad \vec{r} \cdot[\hat{j}-3 \hat{k}]+6=0$
48. Do same as Q. No. 14 .

We get required equation of plane

$$
\begin{equation*}
2 x+3 y+4 z-7=0 \tag{i}
\end{equation*}
$$

Now, distance between the plane (i) and the point $(7,2,4)$ is

$$
\begin{equation*}
d=\left|\frac{2(7)+3(2)+4(4)-7}{\sqrt{(2)^{2}+(3)^{2}+(4)^{2}}}\right| \tag{1}
\end{equation*}
$$

\because distance between the plane
$a x+b y+c z+d=0$ and the point

$$
\left.\left(x_{1}, y_{1}, z_{1}\right) \text { is }\left|\frac{a x_{1}+b y_{1}+c z_{1}-d}{\sqrt{a^{2}+b^{2}+c^{2}}}\right|\right]
$$

$$
\begin{equation*}
=\left|\frac{14+6+16-7}{\sqrt{4+9+16}}\right|=\frac{29}{\sqrt{29}}=\sqrt{29} \text { units } \tag{1}
\end{equation*}
$$

49. Do same as Q. No. 46. [Ans. $x-z+2=0, \sqrt{2}$ units]
50. Do some as Q. No. 34 .
[Ans. 13 units]
51. (i)

The equation of any plane passing through
$\left(x_{1}, y_{1}, z_{1}\right)$ is

$$
a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0
$$

and if it is perpendicular to the planes

$$
\begin{aligned}
& \quad \begin{array}{l}
a_{1} x+b_{1} y+c_{1} z+d_{1}=0
\end{array} \\
& \begin{array}{l}
a_{2} x+b_{2} y+c_{2} z+d_{2}
\end{array}=0 \\
& \text { Then, } \\
& \text { and } \quad a a_{1}+b b_{1}+c c_{1}=0
\end{aligned} \quad a a_{2}+b b_{2}+c c_{2}=0.2 .
$$

Use these results and solve it.
Equation of plane passing through point (1, $-1,2$) is given by

$$
\begin{equation*}
a(x-1)+b(y+1)+c(z-2)=0 \tag{i}
\end{equation*}
$$

Now, given that plane (i) is perpendicular to planes

$$
\begin{array}{r}
2 x+3 y-2 z=5 \\
x+2 y-3 z=8 \tag{iii}
\end{array}
$$

and $\quad x+2 y-3 z=8$
We know that, when two planes

$$
a_{1} x+b_{1} y+c_{1} z=d_{1}
$$

and $a_{2} x+b_{2} y+c_{2} z=d_{2}$ are perpendicular, then

$$
\begin{equation*}
a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0 \tag{1}
\end{equation*}
$$

$\begin{array}{lll}\therefore & 2 a+3 b-2 c & =0 \\ \text { and } & \quad a+2 b-3 c & =0\end{array} \quad$ [from Eqs. (i) and (ii)]
and $a+2 b-3 c=0$ [from Eqs. (i) and (iii)]
$\Rightarrow \quad 2 a+3 b=2 c$
and $\quad a+2 b=3 c$
On multiplying Eq. (v) by 2 and subtracting it from Eq. (iv), we get

$$
\begin{aligned}
2 a+3 b & =2 c \\
=2 a+4 b & =6 c \\
\hline-b & =-4 c \Rightarrow b=4 c
\end{aligned}
$$

On putting $b=4 c$ in Eq. (v), we get

$$
a+8 c=3 c \Rightarrow a=-5 c
$$

Now, on putting $a=-5 c$ and $b=4 c$ in Eq.(i), we get the required equation of plane as

$$
\begin{aligned}
& -5 c(x-1)+4 c(y+1)+c(z-2) \\
\Rightarrow & -5(x-1)+4(y+1)+(z-2)
\end{aligned}=0
$$

[dividing both sides by c]

$$
\begin{array}{lr}
\Rightarrow & -5 x+5+4 y+4+z-2=0 \\
\therefore & 5 x-4 y-z-7=0 \tag{1}
\end{array}
$$

(ii) The distance of point $P(-2,5,5$ from the plane obtained $=\left|\frac{5(-2)-4(5)-(5)-7}{\sqrt{25+16+1}}\right|$

$$
=\left|\frac{-42}{\sqrt{42}}\right|=\sqrt{42} \text { units }
$$

52. Do same as Q. No. 44.
[Ans. 13 units]
53. Let equation of plane through $(1,2,-4)$ be

$$
\begin{equation*}
a(x-1)+b(y-2)+c(z+4)=0 \tag{i}
\end{equation*}
$$

Given lines are
and

$$
\begin{align*}
\vec{r} & =\hat{i}+2 \hat{j}-4 \hat{k}+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k}) \\
\vec{r} & =\hat{i}-3 \hat{j}+5 \hat{k}+\mu(\hat{i}+\hat{j}-\hat{k}) \tag{1}
\end{align*}
$$

The cartesian equations of given lines are

$$
\begin{equation*}
\frac{x-1}{2}=\frac{y-2}{3}=\frac{z+4}{6} \text { and } \frac{x-1}{1}=\frac{y+3}{1}=\frac{z-5}{-1} \tag{1}
\end{equation*}
$$

Since, the required plane (i) is parallel to the given lines, so normal to the plane is perpendicular to the given lines.

$$
\begin{array}{lrl}
\therefore & 2 a+3 b+6 c & =0 \\
\text { and } & a+b-c & =0 \tag{1}
\end{array}
$$

For solving these two equations by cross-multiplication, we get

$$
\begin{aligned}
& \frac{a}{-3-6}=\frac{b}{6+2}=\frac{c}{2-3} \Rightarrow \frac{a}{-9}=\frac{b}{8}=\frac{c}{-1}=\lambda(\text { say }) \\
& \therefore \quad a=-9 \lambda, b=8 \lambda, c=-\lambda
\end{aligned}
$$

On putting values of a, b and c in Eq. (i), we get $-9 \lambda(x-1)+8 \lambda(y-2)-\lambda(z+4)=0$
\therefore Equation of plane in cartesian form is

$$
\begin{array}{lrl}
& -9 \lambda(x-1)+8 \lambda(y-2)-\lambda(z+4)=0 \\
\Rightarrow & -9 x+9+8 y-16-z-4=0 \\
\Rightarrow & 9 x-8 y+z+11=0
\end{array}
$$

Now, vector form of plane is

$$
\begin{equation*}
\vec{r} \cdot(9 \hat{i}-8 \hat{j}+\hat{k})=-11 \tag{1}
\end{equation*}
$$

Also, distance of $(9,-8,-10)$ from the above plane
$=\left|\frac{9(9)-8(-8)+1(-10)+11}{\sqrt{9^{2}+(-8)^{2}+1^{2}}}\right|=\left|\frac{81+64-10+11}{\sqrt{81+64+1}}\right|$
$\left[\therefore D=\left|\frac{A x+b y+C^{2}+D}{\sqrt{A^{2}+B^{2}+C^{2}}}\right|\right]$
$=\left|\frac{146}{\sqrt{146}}\right|=\sqrt{146}$ units
(1)
54. Given lines are $\vec{r}=(\hat{i}+\hat{j}-\hat{k})+\lambda(3 \hat{i}-\hat{j})$
and

$$
\vec{r}=(4 \hat{i}-\hat{k})+\mu(2 \hat{i}+3 \hat{k})
$$

On comparing both equations of lines with
$\vec{r}=\vec{a}+\lambda \vec{b}$ respectively, we get

$$
\overrightarrow{a_{1}}=\hat{i}+\hat{j}-\hat{k}, \overrightarrow{b_{1}}=3 \hat{i}-\hat{j}
$$

and $\quad \vec{a}_{2}=4 \hat{i}-\hat{k}, \vec{b}_{2}=2 \hat{i}+3 \hat{k}$
(1)

Now, $\vec{b}_{1} \times \vec{b}_{2}=\left|\begin{array}{rrr}\hat{i} & \hat{j} & \hat{k} \\ 3 & -1 & 0 \\ 2 & 0 & 3\end{array}\right|$

$$
\begin{align*}
& =\hat{i}(-3-0)-\hat{j}(9-0)+\hat{k}(0+2) \\
& =-3 \hat{i}-9 \hat{j}+2 \hat{k} \tag{1}
\end{align*}
$$

and $\vec{a}_{2}-\vec{a}_{1}=(4 \hat{i}-\hat{k})-(\hat{i}+\hat{j}-\hat{k})=3 \hat{i}-\hat{j}$
Now, $\begin{aligned}\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right) \cdot\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right) & =(3 \hat{i}-\hat{j}) \cdot(-3 \hat{i}-9 \hat{j}+2 \hat{k}) \\ & =-9+9=0\end{aligned}$
Hence, given lines are coplanar.
Now, cartesian equations of given lines are
(1)

$$
\frac{x-1}{3}=\frac{y-1}{-1}=\frac{z+1}{0}
$$

and
Then, equation of plane containing them is

$$
\begin{align*}
& \Rightarrow \\
& \Rightarrow \tag{1}\\
& \Rightarrow \quad\left|\begin{array}{ccc}
x-x_{1} & y-y_{1} & z-z_{1} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right|=0 \\
& \Rightarrow \quad\left|\begin{array}{ccc}
x-1 & y-1 & z+1 \\
3 & -1 & 0 \\
2 & 0 & 3
\end{array}\right|=0 \\
& \Rightarrow
\end{aligned} \quad \begin{aligned}
& -3 x+3-9 y+9+2 z+2=0 \\
\therefore & 3 x+9 y-2 z=14
\end{align*}
$$

(1)
56. Do same as Q.No. 45.
57. Do same as Q. No. 27.

$$
\begin{array}{r}
\text { [Ans. } \vec{r} \cdot(2 \hat{i}+\hat{j}-2 \hat{k})-3=0 \text { and } \\
\vec{r} \cdot(-\hat{i}+2 \hat{j}+2 \hat{k}]-3=0]
\end{array}
$$

58. Do same as Q. No. 38.
[Ans. (1, - 2,7)]
59. Do same as Q. No. 32.

We get required equation of plane

$$
\begin{equation*}
\vec{r}(-9 \hat{i}-3 \hat{j}+\hat{k})+14=0 \tag{i}
\end{equation*}
$$

Also, given equation of line is

$$
\begin{equation*}
\vec{r}=3 \hat{i}-\hat{j}-\hat{k}+\lambda(2 \hat{i}-2 \hat{j}+\hat{k}) \tag{ii}
\end{equation*}
$$

This intersect the plane (i), so

$$
\begin{array}{rlrl}
& & {[(3+2 \lambda) \hat{i}+(-1-2 \lambda) \hat{j}} \\
+(-1+\lambda) \hat{k}] \cdot(9 \hat{i}-3 \hat{j}+\hat{k})+14 & =0 \\
\Rightarrow & & -9(3+2 \lambda)-3(-1-2 \lambda)+(-1+\lambda)+14 & =0 \\
\Rightarrow & -27-18 \lambda+3+6 \lambda-1+\lambda+14 & =0 \\
\Rightarrow & & -11 \lambda-11 & =0 \\
\Rightarrow & & \lambda & =-1(11 / 2)
\end{array}
$$

On putting $\lambda=-1$ in Eq. (ii), the required point of intersection is

$$
\begin{align*}
\vec{r} & =3 \hat{i}-\hat{j}-\hat{k}-1(2 \hat{i}-2 \hat{j}+\hat{k}) \\
\therefore \quad \vec{r} & =\hat{i}+\hat{j}-2 \hat{k} \tag{1}
\end{align*}
$$

Thus, intersection point of the line and the plane is $(1,1,-2)$.
60. Do same as Q. No. 48 .
[Ans. $3 x-4 y+3 z-19=0 ; \frac{6}{\sqrt{34}}$ units]
61. (i) Do same as Q. No. 28.
[Ans. $x+5 y-6 z+18=0$] (2)
(ii) Clearly, the equation of perpendicular line is

$$
\Rightarrow \quad \frac{x}{1}=\frac{y}{5}=\frac{z}{-6}
$$

Clearly, any point on the above line will be of the form ($\lambda, 5 \lambda,-6 \lambda$).
\therefore The coordinates of foot of perpendicular will be $(\lambda, 5 \lambda,-6 \lambda)$ for some λ.
Since, the foot of perpendicular lie on the plane, therefore we have

$$
\begin{aligned}
& & \lambda+5(5 \lambda)-6(-6 \lambda)+18 & =0 \\
\Rightarrow & & 26 \lambda+36 \lambda+18 & =0 \\
\Rightarrow & & 62 \lambda & =-18 \\
\Rightarrow & & \lambda & =-\frac{9}{31}
\end{aligned}
$$

So, the coordinates of foot of perpendicular are

$$
\begin{equation*}
\left(\frac{-9}{31}, \frac{-45}{31}, \frac{54}{31}\right) \tag{1}
\end{equation*}
$$

Now, the length of perpendicular

$$
\begin{aligned}
& =\sqrt{\left(\frac{-9}{31}-0\right)^{2}+\left(\frac{-45}{31}-0\right)^{2}+\left(\frac{54}{31}-0\right)^{2}} \\
& =\sqrt{\frac{5022}{31^{2}}}=\sqrt{\frac{162}{31}} \\
& =9 \sqrt{\frac{2}{31}} \text { units }
\end{aligned}
$$

[1]
62. Given equation of lines are

$$
\begin{align*}
\vec{r} & =(\hat{i}+\hat{j})+\lambda(\hat{i}+2 \hat{j}-\hat{k}) \tag{i}\\
\text { and } \quad \vec{r} & =(\hat{i}+\hat{j})+\mu(\hat{-i}+\hat{j}-2 \hat{k}) \tag{ii}
\end{align*}
$$

On comparing these equations with standard equation of line, $\vec{r}=\vec{a}+\lambda \vec{b}$, we get

$$
\begin{align*}
& \vec{a}_{1}=\hat{i}+\hat{j}, \overrightarrow{a_{2}}=\hat{i}+\hat{j}, \overrightarrow{b_{1}}=\hat{i}+2 \hat{j}-\hat{k} \text { and } \\
& \vec{b}_{2}=-\hat{i}+\hat{j}-2 \hat{k} \tag{1}
\end{align*}
$$

Now, the equation of plane containing both the lines is given by

$$
\left(\vec{r}-\overrightarrow{a_{1}}\right) \cdot \vec{n}=0
$$

where, \vec{n} is normal to both the lines.
Clearly, $\vec{n}=\vec{b}_{1} \times \vec{b}_{2}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -1 \\ -1 & 1 & -2\end{array}\right|$

$$
\begin{aligned}
& =\hat{i}(-4+1)-\hat{j}(-2+1) \hat{j}+\hat{k}(1+2) \\
& =-3 \hat{i}+3 \hat{j}+3 \hat{k}
\end{aligned}
$$

\therefore The required equation of plane is

$$
\begin{array}{cc}
& {[\vec{r}-(\hat{i}+\hat{j})] \cdot(-3 \hat{i}+3 \hat{j}+3 \hat{k})=0} \\
\Rightarrow & \vec{r} \cdot(-3 \hat{i}+3 \hat{j}+3 \hat{k})=(\hat{i}+\hat{j}) \cdot(-3 \hat{i}+3 \hat{j}+3 \hat{k}) \\
\Rightarrow & \vec{r} \cdot(-3 \hat{i}+3 \hat{j}+3 \hat{k})=-3+3=0 \\
\Rightarrow & \vec{r} \cdot(-\hat{i}+\hat{j}+\hat{k})=0 \tag{1/2}
\end{array}
$$

Now, the length of perpendicular from the point ($2,1,4$) to the above plane

$$
\begin{align*}
& =\frac{|(2 \hat{i}+\hat{j}+4 \hat{k}) \cdot(-\hat{i}+\hat{j}+\hat{k})|}{\sqrt{(-1)^{2}+1^{2}+1^{2}}} \\
& =\frac{|-2+1+4|}{\sqrt{1+1+1}} \\
& =\frac{3}{\sqrt{3}}=\sqrt{3} \text { units } \tag{1}
\end{align*}
$$

63. Given equation of lines are

$$
\begin{equation*}
\frac{x-1}{-3}=\frac{y-2}{-2 k}=\frac{z-3}{2} \tag{i}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{x-1}{k}=\frac{y-2}{1}=\frac{z-3}{5} \tag{ii}
\end{equation*}
$$

Since, the lines (i) and (ii) are perpendicular,
therefore
$(-3) \cdot k+(-2 k) \cdot(1)+2.5=0$
\Rightarrow
$-3 k-2 k+10=0$
\Rightarrow
$5 k=10$
$\Rightarrow \quad k=2$
(ii) Do same as Q. No. 43.
[Ans. $-22 x+19 y+5 z=31$]
64. Do same as Q. No. 40.
[Ans. $\sqrt{189}$ units, $(1,2,8)$ and $(-5,-10,11)$]
65. Given equations of planes are

$$
\begin{equation*}
2 x+y-z-3=0 \tag{i}
\end{equation*}
$$

and

$$
\begin{equation*}
5 x-3 y+4 z+9=0 \tag{ii}
\end{equation*}
$$

Let the required equation of plane which passes through the line of intersection of planes (i) and
(ii) be
$(2 x+y-z-3)+\lambda(5 x-3 y+4 z+9)=0$
$\Rightarrow x(2+5 \lambda)+y(1-3 \lambda)+z(-1+4 \lambda)$.

$$
\begin{equation*}
+(-3+9 \lambda)=0 \tag{iii}
\end{equation*}
$$

Here, DR's of plane are
$(2+5 \lambda, 1-3 \lambda,-1+4 \lambda)$. Also, given that the plane (iv) is parallel to the line, whose equation is

$$
\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-5}{5}
$$

$D R^{\prime} s$ of the line are $(2,4,5)$.

Since, the plane is parallel to the line.
Therefore, normal to the plane is
perpendicular to the line,
i.e.

$$
a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0
$$

Here, $\quad a_{1}=2+5 \lambda, b_{1}=1-3 \lambda, c_{1}=-1+4 \lambda$
and $\quad a_{2}=2, b_{2}=4, c_{2}=5$
$\therefore \quad(2+5 \lambda) 2+(1-3 \lambda) 4+(-1+4 \lambda) 5=0$
$\Rightarrow \quad 4+10 \lambda+4-12 \lambda-5+20 \lambda=0$
$\Rightarrow \quad 18 \lambda+3=0$
$\Rightarrow \lambda=-\frac{3}{18}=-\frac{1}{6}$
On putting $\lambda=-\frac{1}{6}$ in Eq. (iii), we get the required equation of plane as

$$
(2 x+y-z-3)-\frac{1}{6}(5 x-3 y+4 z+9)=0
$$

$\Rightarrow 12 x+6 y-6 z-18-5 x+3 y-4 z-9=0$
$\therefore \quad 7 x+9 y-10 z-27=0$
66. Do same as Q. No. 51. [Ans. $7 x-8 y+3 z+25=0$]
67. Do same as Q. No. 51. [Ans. $7 x+2 y-7 z-26=0$
68. Given equations of lines are

$$
\begin{align*}
\vec{r} & =(2 \hat{i}+\hat{j}-3 \hat{k})+\lambda(\hat{i}+2 \hat{j}+5 \hat{k}) \tag{i}\\
\text { and } \quad \vec{r} & =(3 \hat{i}+3 \hat{j}+2 \hat{k})+\mu(3 \hat{i}-2 \hat{j}+5 \hat{k}) \tag{ii}
\end{align*}
$$

On comparing Eqs. (i) and (ii) with the vector equation of line $\vec{r}=\vec{a}+\lambda \vec{b}$ respectively, we get

$$
\vec{a}_{1}=2 \hat{i}+\hat{j}-3 \hat{k}, \vec{b}_{1}=\hat{i}+2 \hat{j}+5 \hat{k}
$$

and $\quad \vec{a}_{2}=3 \hat{i}+3 j+2 \hat{k}, \vec{b}_{2}=3 \hat{i}-2 \hat{j}+5 \hat{k}$ (1)
Now, the required plane which contains the lines (i) and (ii) will pass through $\vec{a}_{1}=2 \hat{i}+\hat{j}-3 \hat{k}$.
Also, the required plane has \vec{b}_{1} and \vec{b}_{2} parallel to \therefore The normal vector to the required plane is

$$
\begin{aligned}
\vec{n} & =\vec{b}_{1} \times \vec{b}_{2}=\left|\begin{array}{rrr}
\hat{i} & \hat{j} & \hat{k} \\
1 & 2 & 5 \\
3 & -2 & 5
\end{array}\right| \\
& =\hat{i}(10+10)-\hat{j}(5-15)+\hat{k}(-2-6) \\
& =20 \hat{i}+10 \hat{j}-8 \hat{k}
\end{aligned}
$$

\therefore The vector equation of required plane is given by $(\vec{r}-\vec{a}) \cdot \vec{n}=\overrightarrow{0}$.

$$
\begin{array}{rrr}
\Rightarrow & \vec{r} \cdot \vec{n}=\vec{a}_{1} \cdot \vec{n} \\
\Rightarrow & \vec{r} \cdot(20 \hat{i}+10 \hat{j}-8 \hat{k}) \\
& =(2 \vec{i}+\hat{j}-3 \hat{a}) \cdot(20 \hat{i}+10 \hat{j}-8 \hat{k})(1)
\end{array}
$$

$\Rightarrow \vec{r} \cdot(20 \hat{i}+10 \hat{j}-8 \hat{k})=40+10+24=74$
$\Rightarrow \vec{r} \cdot(10 \hat{i}+5 \hat{j}-4 \hat{k})=37$ [dividing by 2]...(iii)
which is the required equation of plane.
Also, its cartesian equation is given by

$$
10 x+5 y-4 z=37
$$

$\left[\because\right.$ vector form of plane $\vec{r} \cdot\left(a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\right)=d$
can be written in its cartesian form as

$$
\left.a_{1} x+a_{2} y+a_{3} z=d\right]
$$

Now, we have to show that the line

$$
\begin{equation*}
\vec{r}=(2 \hat{i}+5 \hat{j}+2 \hat{k})+P(3 \hat{i}-2 \hat{j}+5 \hat{k}) \tag{iv}
\end{equation*}
$$

lies in the plane (iii).
The above line will lie on plane (iii) when it passes through the point $\vec{a}=2 \hat{i}+5 \hat{j}+2 \hat{k}$ of line (iv) and it is parallel to line (iv).

$$
\begin{array}{lrl}
\therefore & \vec{a} \cdot(10 \hat{i}+5 \hat{j}-4 \hat{k}) & =37 \\
\Rightarrow & (2 \hat{i}+5 \hat{j}+2 \hat{k}) \cdot(10 \hat{i}+5 \hat{j}-4 \hat{k}) & =37 \\
\Rightarrow & 20+25-8 & =37 \\
\Rightarrow & 37 & =37
\end{array}
$$

$\Rightarrow \vec{a}$ lies on plane whose equation is given by Eq. (iii) and $(3 \hat{i}-2 \hat{j}+5 \hat{k}) \cdot(10 \hat{i}+5 \hat{j}-4 \hat{k})$ $=30-10-20-0$
Therefore, the plane is parallel to the line.
Hence, line (iv) lies on the plane (iii).
69. Do same as Q. No. 61 .
[Ans. $x-y+3 z-2=0,(3,1,0)$ and $\sqrt{11}$ units]
70. Equation of plane passing through point $P(1,1,1)$ is given by

$$
\begin{equation*}
a(x-1)+b(y-1)+c(z-1)=0 \tag{i}
\end{equation*}
$$

$\left[\because\right.$ equation of plane passing through $\left(x_{1}, y_{1}, z_{1}\right)$ is given as $a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0$] Given equation of line is

$$
\begin{equation*}
\vec{r}=(-3 \hat{i}+\hat{j}+5 \hat{k})+\lambda(3 \hat{i}-\hat{j}-5 \hat{k}) \tag{ii}
\end{equation*}
$$

DR's of the line are $(3,-1,-5)$ and the line passes through point $(-3,1,5)$.
Now, as the plane (i) contains line (ii), so
$a(-3-1)+b(1-1)+c(5-1)=0$ as plane contains a line, it means point $]$ Lof line lies on a plane.

$$
\begin{align*}
\Rightarrow & -4 a+4 c & =0 \tag{1}\\
\Rightarrow & 4 a & =4 c \\
\Rightarrow & a & =c
\end{align*}
$$

Since, plane contains a line, so normal to the plane is perpendicular to the line.
$\left[\because a a_{1}+b b_{1}+c c_{1}=0\right]$
On putting $a=c$ in Eq. (iv), we get

$$
\begin{align*}
& & 3 c-b-5 c & =0 \tag{1}\\
\Rightarrow & & -b-2 c & =0 \\
\Rightarrow & & b & =-2 c
\end{align*}
$$

On putting $a=c$ and $b=-2 c$ in Eq. (i), we get the required equation of plane as

$$
c(x-1)-2 c(y-1)+c(z-1)=0
$$

On dividing both sides by c, we get

$$
\begin{align*}
& x-1-2 y+2+z-1 \\
\Rightarrow & x-2 y+z=0
\end{align*}
$$

Now, we have to show that the above plane (v) contains the line

$$
\begin{equation*}
\vec{r}=(-\hat{i}+2 \hat{j}+5 \hat{k})+\mu(\hat{i}-2 \hat{j}-5 \hat{k}) \tag{vi}
\end{equation*}
$$

Vector equation of plane (v) is

$$
\begin{equation*}
\vec{r} \cdot(\hat{i}-2 \hat{j}+\hat{k})=0 \tag{vii}
\end{equation*}
$$

The plane (vii) will contains line (vi), if
(i) it passes through $-\hat{i}+2 \hat{j}+5 \hat{k}$
(ii) it is parallel to the line

We have, $(-\hat{i}+2 \hat{j}+5 \hat{k}) \cdot(\hat{i}-2 \hat{j}+\hat{k})$

$$
=-1-4+5=0 \quad[\because \vec{a} \cdot \vec{n}=d]
$$

So, the plane passes through the point $-\hat{i}+2 \hat{j}+5 \hat{k})$ and $(\hat{i}-2 \hat{j}-5 \hat{k}) \cdot(\hat{i}-2 \hat{j}+\hat{k})=0$

$$
\left[\because \vec{b}_{1} \cdot \vec{b}_{2}=0\right]
$$

$\Rightarrow \quad(1)(1)-2(-2)-5(1)=0$
$\Rightarrow \quad 1+4-5=0$
$\Rightarrow \quad 0=0$, which is true.
Hence, the plane contains the given line.
(11/2)
71. Do same as Q. No. 40.
$\left[\begin{array}{l}\text { Ans. Foot of perpendicular }=(1,3,0) \\ \text { perpendicular distance }=\sqrt{6} \text { units, } \\ \text { image point }=(-1,4,-1)\end{array}\right]$

\square Solutions Objective

1. (a) Let the points be

$$
\begin{aligned}
& P=(4,3,-5) \text { and } Q=(-21,-8) . \\
& \text { w, }|P Q|=\sqrt{(-2-4)^{2}+(1-3)^{2}+(-8+5)^{2}}
\end{aligned}
$$

$$
=\sqrt{36+4+9}=\sqrt{49}=7
$$

\therefore DC's of line $P Q$ are

$$
\begin{aligned}
l & =\frac{x_{2}-x_{1}}{|P Q|}, m=\frac{y_{2}-y_{1}}{|P Q|} \text { and } n=\frac{z_{2}-z_{1}}{|P Q|} \\
\therefore \quad l & =\frac{6}{7}, m=\frac{2}{7}, n=\frac{3}{7}
\end{aligned}
$$

1. (d) Since, DC^{\prime} s of a line are $\left(\frac{1}{c}, \frac{1}{c}, \frac{1}{c}\right)$)
$\therefore\left(\frac{1}{c}\right)^{2}+\left(\frac{1}{c}\right)^{2}+\left(\frac{1}{c}\right)^{2}=1 \Rightarrow c^{2}=3 \Rightarrow c= \pm \sqrt{3}$
2. (d) Let $\frac{x-5}{3}=\frac{y-7}{-1}=\frac{z+2}{1}=k \quad$ [say]

Any point on the line is $P(3 k+5,-k+7, k-2)$.
To determine the intersection point, equation second satisfying the point

$$
\begin{array}{cc}
& P(3 k+5,-k+7, k-2) \\
& \therefore \quad \frac{3 k+5+3}{-36}=\frac{-k+7-3}{2}=\frac{k-2-6}{4} \\
\Rightarrow & \frac{3 k+8}{-36}=\frac{-k+4}{2} \Rightarrow k=\frac{16}{3}
\end{array}
$$

$$
\therefore \text { Point is } P \text { is }\left(21, \frac{5}{3}, \frac{10}{3}\right)
$$

4. (a) Equation of line passing through $\left(x_{1}, y_{1}, z_{1}\right)$ and parallel to the line $\frac{x-x_{2}}{a}=\frac{y-y_{2}}{b}=\frac{z-z_{2}}{c}$ is

$$
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}
$$

\therefore Equation of line is $\frac{x-2}{4}=\frac{y+1}{-3}=\frac{z-1}{5}$.
5. (c) Given lines are

$$
\frac{x-1}{0}=\frac{y-2}{0}=\frac{z}{1} \text { and } \frac{x}{1}=\frac{y+1}{0}=\frac{z}{0}
$$

$\therefore \cos \theta=0 \cdot 1+0 \cdot 0+1 \cdot 0=0 \Rightarrow \theta=90^{\circ}$
6. (a) Given lines can be rewritten as

$$
\frac{x-1}{-3}=\frac{y-2}{2 \alpha}=\frac{z-3}{2} \text { and } \frac{x-1}{3 \alpha}=\frac{y-1}{1}=\frac{z-6}{-5}
$$

Since, lines are perpendicular.

$$
\begin{array}{ll}
\therefore & a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0 \\
\Rightarrow & (-3)(3 \alpha)+2 \alpha(1)+2(-5)=0 \\
\Rightarrow & -9 \alpha+2 \alpha-10=0 \\
\therefore & -\alpha=-\frac{10}{7}
\end{array}
$$

7. (c) The equation of the plane perpendicular to
Z-axis and passing through $\left(x_{1}, y_{1}, z_{1}\right)$ is $z-z_{1}=0$.
$\therefore \quad z-5=0$
8. (b) Plane can be rewritten as $\frac{x}{6}+\frac{y}{-4}+\frac{z}{3}=1$

So, the intercepts are $6,-4,3$
9. (a) The distance from origin $(0,0,0)$ to the plane $6 x-3 y+2 z-14=0$ is

$$
d=\frac{|6(0)-3(0)+2(0)-14|}{\sqrt{36+9+4}}=2
$$

10. (b) The straight line joining the points $(1,1,2)$ and $(3,-2,1)$ is $\quad \frac{x-1}{2}=\frac{y-1}{-3}=\frac{z-2}{-1}=r$
Then, the point is $(2 r+1,1-3 r, 2-r)$ which lies on

$$
3 x+2 y+z=6
$$

$\therefore \quad 3(2 r+1)+2(1-3 r)+2-r=6 \Rightarrow r=1$
So, the required point is $(3,-2,1)$.
11. (d) The equation of plane containing the given line is

$$
a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0 .
$$

Since, normal to the plane is perpendicular to the line.
\therefore

$$
a l+b m+c n=0
$$

12. (b) Equation of plane is $a(x-1)+b(y+1)+c z=0$.
$[\because$ plane is passing through $(1,-1,0)]$
Above plane also passing through ($0,2,-1$).
$\therefore \quad-a+3 b-c=0$
Also, $\quad 2 a-b+3 c=0 \Rightarrow \frac{a}{8}=\frac{b}{1}=\frac{c}{-5}$
Hence, equation of plane is

$$
8 x+y-5 z-7=0
$$

13. (b) Given line can be rewritten as

$$
\frac{x-\frac{1}{3}}{\frac{2 b}{3}}=\frac{y-3}{-1}=\frac{z-1}{a}
$$

Given plane $3 x+y+2 z+6=0$ is parallel to the above line.

$$
\begin{aligned}
& \therefore \frac{2 b}{3} \cdot 3+1 \cdot(-1)+2 \cdot a=0 \Rightarrow 2 a+2 b=1 \\
& \Rightarrow \quad 3 a+3 b=\frac{3}{2}
\end{aligned}
$$

