

- 4. Using integration, prove that the curves $y^2 = 4x$ and $x^2 = 4y$ divide the area of the square bounded by x = 0, x = 4, y = 4 and y = 0 into three equal parts.
- 5. Using method of integration, find the area of the triangle whose vertices are (1, 0). (2, 2) and (3, 1).
- 6. Using integration, find the area of the region enclosed between the two circles $x^2 + y^2 = 4$ and $(x-2)^2 + y^2 = 4$.
- 7. Using integration, find the area of the triangular region whose sides have the equations y = 2x + 1, y = 3x + 1 and x = 4.
- 8. Find the area of the region in the first quadrant enclosed by the X-axis, the line y = x and the circle $x^2 + y^2 = 32$.
- **9.** Using integration, find the area of the region: $\{(x, y): 0 \le 2y \le x^2, 0 \le y \le x, 0 \le x \le 3\}$.
- 10. Using integration, find the area of region bounded by the triangle whose vertices are (-2, 1), (0, 4) and (2, 3).
- 11. Find the area bounded by the circle $x^2 + y^2 = 16$ and the line $\sqrt{3}y = x$ in the first quadrant, using integration.
- 12. Using the method of integration, find the area of the $\triangle ABC$, coordinates of whose vertices are A(4,1), B(6,6) and C(8,4).
- **13.** Find the area enclosed between the parabola $4y = 3x^2$ and the straight line 3x 2y + 12 = 0.
- 14. Using integration, find the area of the region $\{(x,y): x^2 + y^2 \le 2ax, y^2 \ge ax; x, y \ge 0\}$.
- **15.** Using integration, find the area of the triangular region whose vertices are (2, -2), (4, 3) and (1, 2).

R6 Marks Questions

- 1. Using integration, find the area of $\triangle ABC$, the coordinates of whose vertices are A(2, 5), B(4, 7) and C(6, 2).
- 2 Using integration, find the area of triangle whose vertices are (2, 3), (3, 5) and (4, 4).
- I find the area of the region lying above X-axis and included between the circle $r^2 + y^2 = 8x$ and inside the parabola $y^2 = 4x$.

- **16.** Using integration, find the area of the region bounded by the curves $y = \sqrt{4 x^2}$, $x^2 + y^2 4x = 0$ and the X-axis.
- 17. Using integration, find the area of the region in the first quadrant enclosed by the Y-axis, the line y = x and the circle $x^2 + y^2 = 32$.
- **18.** Using integration, find the area of the triangle formed by positive X-axis and tangent and normal to the circle $x^2 + y^2 = 4$ at $(1, \sqrt{3})$.
- **19.** Using integration, find the area of the region bounded by the line x y + 2 = 0, the curve $x = \sqrt{y}$ and Y-axis.
- **20.** Find the area of the region $\{(x, y): y^2 \le 4x, 4x^2 + 4y^2 \le 9\}$, using method of integration.
- **21.** Using integration, find the area of the region in the first quadrant enclosed by the X-axis, the line y = x and the circle $x^2 + y^2 = 18$.
- **22.** Using integration, find the area of the region bounded by the curves y = |x+1| + 1, x = -3, x = 3 and y = 0.
- **23.** Using integration, find the area of $\triangle PQR$, coordinates of whose vertices are P(2, 0), Q(4, 5) and R(6, 3).
- 24. Using integration, find the area of the region bounded by the triangle whose vertices are (-1, 2), (1, 5) and (3, 4).
- **25.** Find the area of the smaller region bounded by the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and the line $\frac{x}{3} + \frac{y}{2} = 1$.
- Or Using integration, find the area of the following region.

following region.
$$\left\{ (x, y) : \frac{x^2}{9} + \frac{y^2}{4} \le 1 \le \frac{x}{3} + \frac{y}{2} \right\}$$

- **26.** Using integration, find the area of the region bounded by the lines 2x + y = 4, 3x 2y = 6 and x 3y + 5 = 0.
- 27. Using integration, find the area bounded by the curve $x^2 = 4y$ and the line x = 4y 2.
- **28.** Using integration, find the area of the region bounded by the curves $y = x^2$ and y = x.
- 29. Find the area of the region $\{(x, y): y^2 \le \theta_{0x}$ and $x^2 + y^2 \le 16a^2\}$, using method of integration.
- 30. Find the area of the region bounded by the parabola $y = x^2$ and the line y = |x|.
- Or Find the area of the region given by $\{(x, y): x^2 \le y \le |x|\}.$
- **31.** Using integration, find the area of the circle $x^2 + y^2 = 16$, which is exterior to the parabola $y^2 = 6x$.
- 32. Using method of integration, find the area of region bounded by lines 3x 2y + 1 = 0, 2x + 3y 21 = 0 and x 5y + 9 = 0.
- **33.** Using integration, find the area of the region bounded by the lines 3x y 3 = 0, 2x + y 12 = 0, x 2y 1 = 0.
- **34.** Using integration, find the area of the region bounded by the lines 5x 2y 10 = 0, x + y 9 = 0 and 2x 5y 4 = 0.
- **35.** Find the area of the region $\{(x, y): x^2 + y^2 \le 4, x + y \ge 2\}.$
- **36.** Find the area of the region $\{(x, y): (x^2 + y^2) \le 1 \le x + y\}.$
- **37.** Sketch the graph of y = |x + 3| and evaluate the area under the curve y = |x + 3| above X-axis and between x = -6 to x = 0.

- Using integration, find the area of the region $\{(x, y): x^2 + y^2 \le 16^{-2} = 16^{-2} = 16^{-2}$ 75. region $\{(x, y): x^2 + y^2 \le 16, x^2 \le 6y\}$
 - 39. Find the area of circle $4x^2 + 4y^2 = 9$ which is interior to the parabola $x^2 = 4y$.
- Using integration, find the area of the following region. $\{(x, y): |x - 1| \le y \le \sqrt{5 - x^2}\}$

$$||x-1| \le y \le \sqrt{5-x^2}$$

Answers

- 1) 7 89 unit.
- 2) 3/2 8q. Unit-
- 3) 4 (8+3x) sq.vni+.
- 4) 16 89- Unif
- 5) 3, 89. unit
- 6) <u>81</u>-2 J3
- 7) 8
- 8) 4x
- 9) $\frac{23}{6}$
- 10) 4
- 11) 47
- 12) 7
- 13) 27
- 14) $\alpha^2 \left(\frac{\overline{L}}{4} \frac{2}{3} \right)$
- 15) 13
- 16) 4/ 53
- 17) 42
- F8) 2 \(\sqrt{3} \)
- 19) 10/3

- 20) $\frac{1}{3\sqrt{2}} + \frac{9\bar{a}}{8} \frac{9}{4} \sin^{-1}(\frac{1}{3})$
- 21) 94
- 22) 16
- 23) 7
- 24) 4
- $\frac{3}{2}(\bar{x}-2)$
- 26) 7/2
- 27) 9/8
- 28) 1/6
- $\frac{29)}{3} \frac{4\sqrt{3}}{3} a^{2} + \frac{16a^{2}\pi}{3}$
- 30) 1/3
- $\frac{31)}{3} \frac{4}{3} (8\pi \sqrt{3})$
- 32) 13/2
- 33) 10
- 34) 21/2
- $35) \pi 2$
- $\frac{36}{4} \frac{1}{2}$
- 37) 9

38.)
$$\frac{4\sqrt{3}}{3} + \frac{16\sqrt{3}}{3}$$

39)
$$\frac{\sqrt{2}}{6} + \frac{9}{4} \sin^{-1}\left(\frac{2\sqrt{2}}{3}\right)$$

$$(40)$$
 $\left[\frac{5}{2}\left(\sin^{-1}\frac{2}{\sqrt{5}} + \sin^{-1}\frac{1}{\sqrt{5}}\right) - \frac{1}{2}\right]$

