Question 1:

Find the area of the region bounded by the curve $y^{2}=x$ and the lines $x=1, x=4$ and the x -axis in the first quadrant.

Solution 1:

The area of the region bounded by the curve, $y^{2}=x$, the lines, $x=1$ and $x=4$, and the x -axis is the area ABCDA .
Area $\mathrm{ABCDA}=\int_{1}^{4} \sqrt{x} d x$
Area of $\mathrm{ABCDA}=$
$=\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{1}^{4}$
$=\frac{2}{3}\left[(4)^{\frac{3}{2}}-(1)^{\frac{3}{2}}\right]$
$=\frac{2}{3}[8-1]$
$=\frac{14}{3}$ sq. units

Question 2:

Find the area of the region bounded by $y^{2}=9 x, x=2, x=4$ and the x-axis in the first quadrant.

Solution 2:

The area of the region bounded by the curve, $y^{2}=9 x, x=2$, and $x=4$, and the x -axis is the area ABCDA .
Area $\mathrm{ABCDA}=\int_{2}^{4} 3 \sqrt{x} d x$
$=3\left[\frac{x^{3 / 2}}{3 / 2}\right]_{2}^{4}$
$=2\left[x^{\frac{3}{2}}\right]_{2}^{4}$
$=2\left[4^{3 / 2}-2^{3 / 2}\right]$
$=2\left[2^{3}-8^{1 / 2}\right]=2[8-2 \sqrt{2}]$
$=16-4 \sqrt{2}$ sq. units

Question 3:

Find the area of the region bounded by $x^{2}=4 y, y=2, y=4$ and the y-axis in the first quadrant.

Solution 3:

The area of the region bounded by the curve, $x^{2}=4 y, y=2$, and $y=4$, and the y-axis is the area ABCDA.
Area of ABCDA $=\int_{2}^{4} x d y$
$x^{2}=4 y$
$x=2 \sqrt{y}$
$\int_{2}^{4} x d y=\int_{2}^{4} 2 \sqrt{y} d y=2 \int_{2}^{4} \sqrt{y} d y$
$=2\left[\frac{\frac{y^{\frac{3}{2}}}{3}}{2}\right]^{4}$
$=\frac{4}{3}\left[(4)^{\frac{3}{2}}-(2)^{\frac{3}{2}}\right]$
$=\frac{4}{3}[8-2 \sqrt{2}]$
$=\left(\frac{32-8 \sqrt{2}}{3}\right)$ sq.units

Question 4:

Find the area of the region bounded by the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$

Solution 4:

The given equation of the ellipse, $\frac{\mathrm{x}^{2}}{16}+\frac{y^{2}}{9}=1$, can be represented as

It can be observed that the ellipse is symmetrical about x -axis and y -axis.
\therefore Area bounded by ellipse $=4 \times$ Area of OABO
Area $\mathrm{OABO}=\int_{0}^{4} y d x$
$\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
$\Rightarrow \frac{y^{2}}{9}=1-\frac{x^{2}}{16} \Rightarrow y^{2}=9\left(1-\frac{x^{2}}{16}\right)$
$y=3 \sqrt{1-\frac{x^{2}}{16}}$
Area $\mathrm{OABO}=\int_{0}^{4} 3 \sqrt{1-\frac{x^{2}}{16}} d x$
$=\frac{3}{4} \int_{0}^{4} \sqrt{16-x^{2}} d x$
Substitute $x=4 \sin \theta, \theta=\sin ^{-1} \frac{x}{4}$
$d x=4 \cos \theta d \theta$
when, $x=0 \quad \theta=0 \& x=4 \quad \theta=\frac{\pi}{2}$
$=\frac{3}{4} \int_{0}^{\pi / 2} \sqrt{16-16 \sin ^{2} \theta} \cdot 4 \cos \theta d \theta$
$=12 \int_{0}^{\pi / 2} \sqrt{1-\sin ^{2} \theta}, \cos \theta d \theta$

$$
\begin{aligned}
& =12 \int_{0}^{\pi / 2} \cos ^{2} \theta d \theta=12 \int_{0}^{\pi / 2} \frac{1+\cos 2 \theta}{2} d \theta \\
& =6 \int_{0}^{\pi / 2}(1+\cos 2 \theta) d \theta=6\left[\theta+\frac{\sin 2 \theta}{2}\right]_{0}^{\pi / 2} \\
& =6\left[\frac{\pi}{2}+\frac{\sin \pi}{2}-0-\frac{\sin 0}{2}\right]=6\left[\frac{\pi}{2}\right]=3 \pi
\end{aligned}
$$

Therefore, area bounded by the ellipse $=4 \times 3 \pi=12 \pi$ sq. units

Question 5:

Find the area of the region bounded by the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$

Solution 5:

The given equation of the ellipse can be represented as

$\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$
$\frac{y^{2}}{9}=1-\frac{x^{2}}{4}$
$y^{2}=9\left(1-\frac{x^{2}}{4}\right)$
$\Rightarrow y=3 \sqrt{1-\frac{x^{2}}{4}}$
It can be observed that the ellipse is symmetrical about x -axis and y -axis.
\therefore Area bounded by ellipse $=4 \times$ Area OABO
\therefore Area of $\mathrm{OABO}=\int_{0}^{2} \mathrm{ydx}$
$=\int_{0}^{2} 3 \sqrt{1-\frac{x^{2}}{4}} d x \quad[\operatorname{Using}(1)]$
$=\frac{3}{2} \int_{0}^{2} \sqrt{4-x^{2}} d x$
Substitute $x=2 \sin \theta \Rightarrow \theta=\sin ^{-1}\left(\frac{x}{2}\right)$
$d x=2 \cos \theta d \theta$
when, $x=0 \quad \theta=0 \& x=2 \quad \theta=\frac{\pi}{2}$
$\therefore \frac{3}{2} \int_{0}^{2} \sqrt{4-x^{2}} d x=\frac{3}{2} \int_{0}^{\pi / 2} \sqrt{4-4 \sin ^{2} \theta} \cdot 2 \cos \theta d \theta$
$=3 \int_{0}^{\pi / 2} \sqrt{4-4 \sin ^{2} \theta} \cdot \cos \theta d \theta=6 \int_{0}^{\pi / 2} \sqrt{1-\sin ^{2} \theta} \cos \theta d \theta$
$=6 \int_{0}^{\pi / 2} \cos 2 \theta d \theta=6 \int_{0}^{\pi / 2} \frac{1+\cos 2 \theta}{2} d \theta$
$=\frac{6}{2} \int_{0}^{\pi / 2}(1+\cos 2 \theta) d \theta=3\left[0+\frac{\sin 2 \theta}{2}\right]_{0}^{\pi / 2}$
$=3\left[\frac{\pi}{2}+\frac{\sin \pi}{2}-0\right]=3 \times \frac{\pi}{2}=\frac{3 \pi}{2}$
Therefore, area bounded by the ellipse $=4 \times \frac{3 \pi}{2}=6 \pi$ sq. units

Question 6:

Find the area of the region in the first quadrant enclosed by x-axis, line $x=\sqrt{3} y$ and the circle

$$
x^{2}+y^{2}=4
$$

Solution 6:

The area of the region bounded by the circle, $x^{2}+y^{2}=4, x=\sqrt{3} y$, and the x-axis is the area OAB.

Substituting $x=\sqrt{3} y$ in $x^{2}+y^{2}=4$, for finding the point of intersection.
$\therefore(\sqrt{3} y)+y^{2}=4 \Rightarrow y^{2}=1 \Rightarrow y= \pm 1, x= \pm \sqrt{3}$
The point of intersection of the line and the circle in the first quadrant is $(\sqrt{3}, 1)$.
Area $\mathrm{OABO}=$ Area $\triangle \mathrm{OCA}+$ Area ACBA
Area of $\mathrm{OAC}=\frac{1}{2} \times O C \times A C=\frac{1}{2} \times \sqrt{3} \times 1=\frac{\sqrt{3}}{2}$
Area of $\mathrm{ABCA}=\int_{\sqrt{3}}^{2} y d x$
$\int_{\sqrt{3}}^{2} y d x=\int_{\sqrt{3}}^{2} \sqrt{4-x^{2}} d x$
$x=2 \sin \theta \quad \theta=\sin ^{-1}\left(\frac{x}{2}\right)$

$$
\begin{align*}
& \text { when } x=2 \quad \theta=\frac{\pi}{2} \\
& \quad x=\sqrt{3} \quad \theta=\frac{\pi}{3} \\
& \therefore \int_{\sqrt{3}}^{2} \sqrt{4-x} d x=\int_{\pi / 3}^{\pi / 2} \sqrt{4-4 \sin ^{2} \theta}(2 \cos \theta) d \theta \\
& =4 \int_{\pi / 3}^{\pi / 2} \cos ^{2} \theta d \theta=4 \int_{\pi / 3}^{\pi / 2} 1+\frac{\cos 2 \theta}{2} d \theta \\
& =2 \int_{\pi / 3}^{\pi / 2}(1+\cos 2 \theta) d \theta=2\left[\theta+\frac{\sin 2 \theta}{2}\right]_{\pi / 3}^{\pi / 2} \\
& =2\left[\frac{\pi}{2}+\frac{1}{2} \sin \pi-\frac{\pi}{3}-\frac{1}{2} \sin \frac{2 \pi}{3}\right] \\
& =2\left[\frac{\pi}{2}-\frac{\pi}{3}-\frac{1}{2} \times \frac{\sqrt{3}}{2}\right]=2\left[\frac{\pi}{6}-\frac{\sqrt{3}}{4}\right] \tag{2}
\end{align*}
$$

From (1) \& (2)
Area of $\mathrm{OAB}=\frac{\sqrt{3}}{2}+2\left[\frac{\pi}{6}-\frac{\sqrt{3}}{4}\right]=\frac{\pi}{3}$
Therefore, area enclosed by x-axis, the line $x=\sqrt{3} y$, and the circle $x^{2}+y^{2}=4$ in the first quadrant $=\frac{\pi}{3}$ sq.units

Question 7:

Find the area of the smaller part of the circle $x^{2}+y^{2}=a^{2}$ cut off by the line $x=\frac{a}{\sqrt{2}}$.

Solution 7:

The area of the smaller part of the circle, $x^{2}+y^{2}=a^{2}$, cut off by the line $x=\frac{a}{\sqrt{2}}$, is the area ABCDA.

It can be observed that the area ABCDA is symmetrical about x -axis.
\therefore Area $\mathrm{ABCDA}=2 \times$ Area ABCA
Area of $\mathrm{ABCA}=\int_{\frac{a}{\sqrt{2}}}^{a} y d x$
$\int_{a / \sqrt{2}}^{a} \sqrt{a^{2}-x^{2}} d x$
$x=a \sin \theta \quad d x=a \cos \theta d \theta$
$x=\frac{a}{\sqrt{2}} \quad \theta=\sin ^{-1}\left(\frac{x}{a}\right)=\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=\frac{\pi}{4}$
$x=a, \theta=\sin ^{-1}\left(\frac{a}{a}\right)=\frac{\pi}{2}$
$\therefore \int_{a / \sqrt{2}}^{a} \sqrt{a^{2}-x^{2}} d x=\int_{\pi / 4}^{\pi / 2} \sqrt{a^{2}-a^{2} \sin ^{2} \theta} \cdot(a \cos \theta) d \theta$
$\Rightarrow \mathrm{a}^{2} \int_{\pi / 4}^{\pi / 2} \cos ^{2} \theta=\mathrm{a}^{2} \int_{\pi / 4}^{\pi / 2} \frac{1+\cos 2 \theta}{2} d \theta$
$=\frac{a^{2}}{2}\left[\theta+\frac{\sin 2 \theta}{2}\right]_{\pi / 4}^{\pi / 2}$
$=\frac{a^{2}}{2}\left[\frac{\pi}{2}+\frac{\sin \pi}{2}-\frac{\pi}{4}-\frac{\sin \frac{\pi}{2}}{2}\right]$
$=\frac{a^{2}}{2}\left[\frac{\pi}{4}-\frac{1}{2}\right]$
$=\frac{a^{2}}{4}\left[\frac{\pi}{2}-1\right]$
\Rightarrow Area $A B C D=2\left[\frac{a^{2}}{4}\left(\frac{\pi}{2}-1\right)\right]=\frac{a^{2}}{2}\left(\frac{\pi}{2}-1\right)$
Therefore, the area of smaller part of the circle, $x^{2}+y^{2}=a^{2}$, cut off by the line $x=\frac{a}{\sqrt{2}}$, is $\frac{a^{2}}{2}\left(\frac{\pi}{2}-1\right)$ sq. units.

Question 8:

The area between $x=y^{2}$ and $x=4$ is divided into two equal parts by the line $x=a$, find the value of a.

Solution 8:

The line $x=a$, divides the area bounded by the parabola $x=y^{2}$ and $x=4$ into two equal parts.
\therefore Area OADO $=$ Area ABCDA

It can be observed that the given area is symmetrical about x -axis.
Area of $\mathrm{OEDO}=1 / 2$ Area of OADO
Area of $\mathrm{EFCDE}=1 / 2$ Area of ABCDA
Therefore, Area OEDO = Area EFCDE
Area OEDO $=\int_{0}^{a} y d x$
$=\int_{0}^{a} \sqrt{x} d x$

$$
\left.\left.\begin{array}{l}
=\left[\frac{x^{\frac{3}{2}}}{3}\right. \\
2 \tag{1}
\end{array}\right]_{0}^{a}\right]^{3}(a)^{\frac{3}{2}}
$$

Area of $\mathrm{EFCDE}=\int_{a}^{4} y d x=\int_{a}^{4} \sqrt{x} d x$
$=\left[\frac{x^{3 / 2}}{3 / 2}\right]_{a}^{4}$
$=\frac{2}{3}\left[4^{3 / 2}-a^{3 / 2}\right]$
$=\frac{2}{3}\left[8-a^{\frac{3}{2}}\right]$
From (1) and (2), we obtain
$\frac{2}{3}(a)^{\frac{3}{2}}=\frac{2}{3}\left[8-(a)^{\frac{3}{2}}\right]$
$\Rightarrow 2 .(a)^{\frac{3}{2}}=8$
$\Rightarrow(a)^{\frac{3}{2}}=4$
$\Rightarrow a=(4)^{\frac{2}{3}}$
Therefore, the value of a is $(4)^{\frac{2}{3}}$.

Question 9:

Find the area of the region bounded by the parabola $y=x^{2}$ and $y=|x|$.

Solution 9:

The area bounded by the parabola, $x^{2}=y$, and the line, $y=|x|$, can be represented as

The given area is symmetrical about y-axis.
\therefore Area OACO $=$ Area ODBO
The point of intersection of parabola $x^{2}=y$ and line $y=x$ is $\mathrm{A}(1,1)$.
Area of $\mathrm{OACO}=$ Area $\triangle \mathrm{OAM}-$ Area OMACO
\therefore Area of $\triangle \mathrm{OAM}=\frac{1}{2} \times O M \times A M=\frac{1}{2} \times 1 \times 1=\frac{1}{2}$
Area of OMACO $=\int_{0}^{1} y d x=\int_{0}^{1} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{0}^{1}=\frac{1}{3}$
\Rightarrow Area of $\mathrm{OACO}=$ Area of $\triangle \mathrm{OAM}-$ Area of OMACO

$$
\begin{array}{r}
=\frac{1}{2}-\frac{1}{3} \\
=\frac{1}{6}
\end{array}
$$

Therefore, required area $=2\left[\frac{1}{6}\right]=\frac{1}{3}$ sq. units.

Question 10:

Find the area bounded by the curve $x^{2}=4 y$ and the line $x=4 y-2$.

Solution 10:

The area bounded by the curve, $x^{2}=4 y$, and line, $x=4 y-2$, is represented by the shaded area OBAO.

Let A and B be the points of intersection of the line and parabola.
Substituting $x=4 y-2$ in $x^{2}=4 y$
$(4 y-2)^{2}=4 y$
$16 y^{2}-16 y+4=4 y$
$16 y^{2}-20 y+4=0$
$4 y^{2}-5 y+1=0$
$(4 y-1)(y-1)=0$
$y=1 / 4, x=-1$
$y=1, x=2$
Coordinates of point A are $\left(-1, \frac{1}{4}\right)$.
Coordinates of point B are $(2,1)$.
We draw AL and BM perpendicular to x-axis.
It can be observed that,
Area $\mathrm{OBAO}=$ Area $\mathrm{OBCO}+$ Area OACO

Area $\mathrm{OMBCO}=$ Area under the line $x=4 y-2$ between $x=0$ and $x=2$

Area $\mathrm{OMBCO}=\int_{0}^{2} \frac{x+2}{4} d x$

Area $\mathrm{OMBO}=$ Area under the curve $x^{2}=4 y$ between $x=0$ and $x=2$

Area $\mathrm{OMBO}=\int_{0}^{2} \frac{x^{2}}{4} d x$

Then, Area $\mathrm{OBCO}=$ Area $\mathrm{OMBCO}-$ Area OMBO
$=\int_{0}^{2} \frac{x+2}{4} d x-\int_{0}^{2} \frac{x^{2}}{4} d x$
$=\frac{1}{4}\left[\frac{x^{2}}{2}+2 x\right]_{0}^{2}-\frac{1}{4}\left[\frac{x^{3}}{3}\right]_{0}^{2}$
$=\frac{1}{4}[2+4]-\frac{1}{4}\left[\frac{8}{3}\right]$
$=\frac{3}{2}-\frac{2}{3}$
$=\frac{5}{6}$

Area OLACO $=$ Area under the line $x=4 y-2$ between $x=-1$ and $x=0$

Area OLACO $=\int_{-1}^{0} \frac{x+2}{4} d x$

Area $\mathrm{OLAO}=$ Area under the curve $x^{2}=4 y$ between $x=-1$ and $\mathrm{x}=$

Area $\mathrm{OMBO}=\int_{0}^{2} \frac{x^{2}}{4} d x$

Area $\mathrm{OACO}=$ Area OLACO - Area OLAO
$=\int_{-1}^{0} \frac{x+2}{4} d x-\int_{-1}^{0} \frac{x^{2}}{4} d x$
$=\frac{1}{4}\left[\frac{x^{2}}{2}+2 x\right]_{-1}^{0}-\frac{1}{4}\left[\frac{x^{3}}{3}\right]_{-1}^{0}$
$=\frac{1}{4}\left[\frac{0}{2}+0-\frac{(-1)^{2}}{2}-2(-1)\right]-\frac{1}{4}\left[\frac{0^{3}}{3}-\frac{(-1)^{3}}{3}\right]$

$$
\begin{aligned}
& =-\frac{1}{4}\left[\frac{(-1)}{2}+2(-1)\right]-\left[-\frac{1}{4}\left(\frac{(-1)^{3}}{3}\right)\right] \\
& =-\frac{1}{4}\left[\frac{1}{2}-2\right]-\frac{1}{12} \\
& =\frac{1}{2}-\frac{1}{8}-\frac{1}{12} \\
& =\frac{7}{24}
\end{aligned}
$$

Therefore, required area $=\left(\frac{5}{6}+\frac{7}{24}\right)=\frac{9}{8}$ sq. units

Question 11:

Find the area of the region bounded by the curve $y^{2}=4 x$ and the line $x=3$.

Solution 11:

The region bounded by the parabola, $y^{2}=4 x$, and the line, $x=3$, is the area OACO

The area OACO is symmetrical about x -axis.
\therefore Area of $\mathrm{OACO}=2$ (Area of OABO)
Area $\mathrm{OACO}=2\left[\int_{0}^{3} y d x\right]$

$$
\begin{aligned}
& =2\left[\int_{0}^{3} 2 \sqrt{x} d x\right] \\
& =4\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{3} \\
& =\frac{8}{3}\left[(3)^{\frac{3}{2}}\right] \\
& =8 \sqrt{3}
\end{aligned}
$$

Therefore, the required area is $8 \sqrt{3}$ sq. units.

Question 12:

Area lying in the first quadrant and bounded by the circle $x^{2}+y^{2}=4$ and the lines $x=0$ and $x=2$ is
A. π
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$

Solution 12:

The area bounded by the circle and the lines, $x=0$ and $x=2$, in the first quadrant is represented as

\therefore Area $\mathrm{OAB}=\int_{0}^{2} y d x$
$=\int_{0}^{2} \sqrt{4-x^{2}} d x$
$=\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right]_{0}^{2}$
$=2\left(\frac{\pi}{2}\right)$
$=\pi$ units

Alternate Solution:

Area $\mathrm{OABO}=1 / 2$ Area of circle
Radius $=2$
Area $\mathrm{OABO}=\frac{1}{4} \times \pi \times 2^{2}=\pi$ sq. units
Thus, the correct answer is A.

Question 13:

Area of the region bounded by the curve $y^{2}=4 x, y$-axis and the line $y=3$ is
A. 2
B. $\frac{9}{4}$
C. $\frac{9}{3}$
D. $\frac{9}{2}$

Solution 13:
The area bounded by the curve $y^{2}=4 x$, y-axis, and $y=3$ is represented as

Thus, the correct answer is B.

EXERCISE- 8.2

Question 1:

Find the area of the circle $4 x^{2}+4 y^{2}=9$ which is interior to the parabola $x^{2}=4 y$

Solution 1:

The required area is represented by the shaded area OBCDO.

Solving the given equation of circle, $4 x^{2}+4 y^{2}=9$, and parabola, $x^{2}=4 y$, $4(4 y)+4 y^{2}=9$
$4 y^{2}+16 y-9=0$
$y=\frac{-16 \pm \sqrt{16^{2}-4 * 4 *(-9)}}{2 * 4}$
$y=1 / 2$ or -4.5
The value of y cannot be negative as $x^{2}=4 y$.
We obtain the point of intersection as $\mathrm{B}\left(\sqrt{2}, \frac{1}{2}\right)$ and $\mathrm{D}\left(-\sqrt{2}, \frac{1}{2}\right)$.
It can be observed that the required area is symmetrical about y-axis.
\therefore Area $\mathrm{OBCDO}=2 \times$ Area OBCO
We draw BM perpendicular to OA.
Therefore, the coordinates of M are $(\sqrt{2}, 0)$.
Therefore, Area OBCO = Area OMBCO - Area OMBO

Area $\mathrm{OMBCO}=$ Area under the circle $4 x^{2}+4 y^{2}=9$ between $x=0 \& x=\sqrt{2}$
Area $\mathrm{OMBCO}=\int_{0}^{\sqrt{2}} \sqrt{\frac{9-4 x^{2}}{4}} d x$
$=\int_{0}^{\sqrt{2}} \sqrt{\frac{9}{4}-x^{2}} d x$
substitute $x=\frac{3}{2} \sin \theta, \mathrm{dx}=\frac{3}{2} \cos \theta d \theta$
$\int \sqrt{\frac{9}{4}-\frac{9}{4} \sin ^{2} \theta} \cdot \frac{3}{2} \cos \theta d \theta$
$=\frac{9}{4} \int \sqrt{1-\sin ^{2} \theta} \cos \theta d \theta=\frac{9}{4} \int \cos ^{2} \theta d \theta$
$=\frac{9}{4} \int \frac{1+\cos 2 \theta}{2} d \theta$
$=\frac{9}{4} \int \frac{1}{2}+\frac{\cos 2 \theta}{2} d \theta$
$=\frac{9}{8}\left[0+\frac{\sin 2 \theta}{2}\right]$
$=\frac{9}{8}\left[\sin ^{-1} \frac{2 x}{3}+\frac{\not \partial \cdot \sin \theta \cos \theta}{\not 2}\right]$
$=\frac{9}{8}\left[\sin ^{-1} \frac{2 x}{3}+\frac{2 x}{3} \sqrt{1-\frac{4 x^{2}}{9}}\right]$
$=\frac{9}{8}\left[\sin ^{-1} \frac{2 x}{3}+\frac{2 x}{9} \sqrt{9-4 x^{2}}\right]$
Applying the limits
$=\frac{9}{8}\left[\sin ^{-1} \frac{2 x}{3}+\frac{2 x}{9} \sqrt{9-4 x^{2}}\right]_{0}^{\sqrt{2}}$
$=\frac{9}{8}\left[\sin ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)+\frac{2 \sqrt{2}}{9}\right]$

Area $\mathrm{OMBCO}=\frac{1}{4}\left[\sqrt{2}+\frac{9}{2} \sin ^{-1} \frac{2 \sqrt{2}}{3}\right]$
Area $\mathrm{OMBCO}=$ Area under $\mathrm{x}^{2}=4 \mathrm{y}$ between $\mathrm{x}=0$ and $\mathrm{x}=\sqrt{2}$
Area $\mathrm{OMBO}=\int_{0}^{\sqrt{2}} \frac{x^{2}}{4} d x$
Area $\mathrm{OMBO}=\frac{1}{4}\left[\frac{x^{3}}{3}\right]_{0}^{\sqrt{2}}$
Area $\mathrm{OMBO}=\frac{1}{12}[2 \sqrt{2}]=\frac{\sqrt{2}}{6}$
From (1) and (2)
Area $\mathrm{OBCO}=$
$=\frac{\sqrt{2}}{4}+\frac{9}{8} \sin ^{-1} \frac{2 \sqrt{2}}{3}-\frac{\sqrt{2}}{6}$
$=\frac{\sqrt{2}}{12}+\frac{9}{8} \sin ^{-1} \frac{2 \sqrt{2}}{3}$
$=\frac{1}{2}\left(\frac{\sqrt{2}}{6}+\frac{9}{4} \sin ^{-1} \frac{2 \sqrt{2}}{3}\right)$
Therefore, the required area OBCDO is
$\left(2 \times \frac{1}{2}\left[\frac{\sqrt{2}}{6}+\frac{9}{4} \sin ^{-1} \frac{2 \sqrt{2}}{3}\right]\right)=\left[\frac{\sqrt{2}}{6}+\frac{9}{4} \sin ^{-1} \frac{2 \sqrt{2}}{3}\right]$ sq. units

Question 2:

Find the area bounded by curves $(x-1)^{2}+y^{2}=1$ and $x^{2}+y^{2}=1$

Solution 2:

The area bounded by the curves, $(x-1)^{2}+y^{2}=1$ and $x^{2}+y^{2}=1$, is represented by the shaded area as

On solving the equations, $(x-1)^{2}+y^{2}=1$ and $x^{2}+y^{2}=1$,
$(x-1)^{2}+1-x^{2}=1$
$-2 x+1=0$
$x=1 / 2$
$y^{2}=1-x^{2}=1-1 / 4=3 / 4$
we obtain the point of intersection as $\mathrm{A}\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ and $\mathrm{B}\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$
It can be observed that the required area is symmetrical about x -axis.
\therefore Area $\mathrm{OBCAO}=2 \times$ Area OCAO
We join $A B$, which intersects $O C$ at M, such that $A M$ is perpendicular to $O C$.
The coordinates of M are $\left(\frac{1}{2}, 0\right)$
\Rightarrow Area $O C A O=$ Area $O M A O+$ Area $M C A M$
$=\left[\int_{0}^{\frac{1}{2}} \sqrt{1-(x-1)^{2}} d x+\int_{\frac{1}{2}}^{1} \sqrt{1-x^{2}} d x\right]$
$=\left[\frac{x-1}{2} \sqrt{1-(x-1)^{2}}+\frac{1}{2} \sin ^{-1}(x-1)\right]_{0}^{\frac{1}{2}}+\left[\frac{x}{2} \sqrt{1-x^{2}}+\frac{1}{2} \sin ^{-1} x\right]_{\frac{1}{2}}^{1}$
$=\left[-\frac{1}{4} \sqrt{1-\left(-\frac{1}{2}\right)^{2}}+\frac{1}{2} \sin ^{-1}\left(\frac{1}{2}-1\right)-\frac{1}{2} \sin ^{-1}(-1)\right]+\left[\frac{1}{2} \sin ^{-1}(+1)-\frac{1}{4} \sqrt{1-\left(+\frac{1}{2}\right)^{2}}-\frac{1}{2} \sin ^{-1}\left(\frac{1}{2}\right)\right]$
$=\left[-\frac{\sqrt{3}}{8}+\frac{1}{2}\left(-\frac{\pi}{6}\right)-\frac{1}{2}\left(-\frac{\pi}{2}\right)\right]+\left[\frac{1}{2}\left(\frac{\pi}{2}\right)-\frac{\sqrt{3}}{8}-\frac{1}{2}\left(\frac{\pi}{6}\right)\right]$

$$
\begin{aligned}
& =\left[-\frac{\sqrt{3}}{4}-\frac{\pi}{12}+\frac{\pi}{4}+\frac{\pi}{4}-\frac{\pi}{12}\right] \\
& =\left[-\frac{\sqrt{3}}{4}-\frac{\pi}{6}+\frac{\pi}{2}\right] \\
& =\left[\frac{2 \pi}{6}-\frac{\sqrt{3}}{4}\right]
\end{aligned}
$$

Therefore, required area $\mathrm{OBCAO}=2 \times\left(\frac{2 \pi}{6}-\frac{\sqrt{3}}{4}\right)=\left(\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}\right)$ sq. units

Question 3:

Find the area of the region bounded by the curves $y=x^{2}+2, y=x, x=0$ and $x=3$.

Solution 3:

The area bounded by the curves, $y=x^{2}+2, y=x, x=0$, and $x=3$, is represented by the shaded area OCBAO as

Then, Area OCBAO $=$ Area ODBAO - Area ODCO
$=\int_{0}^{3}\left(x^{2}+2\right) d x-\int_{0}^{3} x d x$
$=\left[\frac{x^{3}}{3}+2 x\right]_{0}^{3}-\left[\frac{x^{2}}{2}\right]_{0}^{3}$
$=[9+6]-\left[\frac{9}{2}\right]$
$=15-\frac{9}{2}$
$=\frac{21}{2}$ sq. units

Question 4:

Using integration find the area of the region bounded by the triangle whose vertices are $(-1,0)$, $(1,3)$ and $(3,2)$.

Solution 4:

BL and CM are drawn perpendicular to x -axis.
It can be observed in the following figure that,
$\operatorname{Area}(\triangle \mathrm{ACB})=\operatorname{Area}(\mathrm{ALBA})+\operatorname{Area}(\mathrm{BLMCB})-\operatorname{Area}(\mathrm{AMCA}) \ldots(1)$

Equation of line segment $A B$ is
$y-0=\frac{3-0}{1+1}(x+1)$
$y=\frac{3}{2}(x+1)$
\therefore Area $(\operatorname{ALBA})=\int_{-1}^{1} \frac{3}{2}(x+1) d x=\frac{3}{2}\left[\frac{x^{2}}{2}+x\right]_{-1}^{1}=\frac{3}{2}\left[\frac{1}{2}+1-\frac{1}{2}+1\right]=3$ sq. units
Equation of line segment BC is
$y-3=\frac{2-3}{3-1}(x-1)$
$y=\frac{1}{2}(-x+7)$
\therefore Area $($ BLMCB $)=\int_{1}^{3} \frac{1}{2}(-x+7) d x=\frac{1}{2}\left[-\frac{x^{2}}{2}+7 x\right]_{1}^{3}=\frac{1}{2}\left[-\frac{9}{2}+21+\frac{1}{2}-7\right]=5$ sq. units
Equation of line segment AC is
$y-0=\frac{2-0}{3+1}(x+1)$
$y=\frac{1}{2}(x+1)$
$\therefore \operatorname{Area}(\mathrm{AMCA})=\frac{1}{2} \int_{-1}^{3}(x+1) d x=\frac{1}{2}\left[\frac{x^{2}}{2}+x\right]_{-1}^{3}=\frac{1}{2}\left[\frac{9}{2}+3-\frac{1}{2}+1\right]=4$ sq. units
Therefore, from equation (1), we obtain
Area $(\triangle \mathrm{ABC})=(3+5-4)=4$ sq. units

Question 5:

Using integration find the area of the triangular region whose sides have the equations $y=2 x+1, y=3 x+1$ and $x=4$.

Solution 5:

The equations of sides of the triangle are $y=2 x+1, y=3 x+1$ and $x=4$.
On solving these equations, we obtain the vertices of triangle as $\mathrm{A}(0,1), \mathrm{B}(4,13)$, and $\mathrm{C}(4,9)$.

It can be observed that,
Area $(\triangle A C B)=$ Area $(O L B A O)-$ Area $(O L C A O)$
$=\int_{0}^{4}(3 x+1) d x-\int_{0}^{4}(2 x+1) d x$
$=\left[\frac{3 x^{2}}{2}+x\right]_{0}^{4}-\left[\frac{2 x^{2}}{2}+x\right]_{0}^{4}$
$=(24+4)-(16+4)$
$=28-20$
$=8$ sq. units

Question 6:

Smaller area enclosed by the circle $x^{2}+y^{2}=4$ and the line $x+y=2$ is
A. $2(\pi-2)$
B. $\pi-2$
C. $2 \pi-1$
D. $2(\pi+2)$

Solution 6:

The smaller area enclosed by the circle, $x^{2}+y^{2}=4$, and the line, $x+y=2$, is represented by the shaded area ACBA as

It can be observed that,
Area $\mathrm{ACBA}=$ Area $\mathrm{OACBO}-$ Area $(\triangle \mathrm{OAB})$
$=\int_{0}^{2} \sqrt{4-x^{2}} d x-\int_{0}^{2}(2-x) d x$
$=\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right]_{0}^{2}-\left[2 x-\frac{x^{2}}{2}\right]_{0}^{2}$
$=\left[2 \cdot \frac{\pi}{2}\right]-[4-2]$
$=(\pi-2)$ sq. units
Thus, the correct answer is B.

Question 7:

Area lying between the curves $y^{2}=4 x$ and $y=2 x$ is
A. $\frac{2}{3}$
B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{3}{4}$

Solution 7:

The area lying between the curves, $y^{2}=4 x$ and $y=2 x$, is represented by the shaded area OBAO as

The points of intersection of these curves are $O(0,0)$ and $\mathrm{A}(1,2)$.
We draw AC perpendicular to x-axis such that the coordinates of C are $(1,0)$.
\therefore Area $\mathrm{OBAO}=$ Area $(\triangle \mathrm{OCA})-$ Area (OCABO)
$=\int_{0}^{1} 2 x d x-\int_{0}^{1} 2 \sqrt{x} d x$
$=2\left[\frac{x^{2}}{2}\right]_{0}^{1}-2\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{1}$
$=\left|1-\frac{4}{3}\right|$
$=\left|-\frac{1}{3}\right|$
$=\frac{1}{3}$ sq.units
Thus, the correct answer is B.

Miscellaneous Exercise

Question 1:

Find the area under the given curves and given lines:
(i) $y=x^{2}, x=1, x=2$ and x-axis
(ii) $y=x^{4}, x=1, x=5$ and x -axis

Solution 1:
i. The required area is represented by the shaded area ADCBA as

Area $\mathrm{ADCBA}=\int_{1}^{2} y d x$
$=\int_{1}^{2} x^{2} d x$
$=\left[\frac{x^{3}}{3}\right]_{1}^{2}$
$=\frac{8}{3}-\frac{1}{3}$
$=\frac{7}{3}$ sq.units
ii. The required area is represented by the shaded area ADCBA as

$$
\begin{aligned}
& \text { Area of } \mathrm{ADCBA}=\int_{1}^{5} x^{4} d x \\
& =\left[\frac{x^{5}}{5}\right]_{1}^{5} \\
& =\frac{(5)^{5}}{5}-\frac{1}{5} \\
& =(5)^{4}-\frac{1}{5} \\
& =625-\frac{1}{5} \\
& =624.8 \text { sq.units }
\end{aligned}
$$

Question 2:

Find the area between the curves $y=x$ and $y=x^{2}$
Solution 2:
The required area is represented by the shaded area OBAO as

The points of intersection of the curves, $y=x$ and $y=x^{2}$, is $\mathrm{A}(1,1)$.
We draw AC perpendicular to x-axis.
\therefore Area $(\mathrm{OBAO})=$ Area $(\triangle \mathrm{OCA})$ - Area $(\mathrm{OCABO}) \ldots$ (1)
$=\int_{0}^{1} x d x-\int_{0}^{1} x^{2} d x$
$=\left[\frac{x^{2}}{2}\right]_{0}^{1}-\left[\frac{x^{3}}{3}\right]_{0}^{1}$
$=\frac{1}{2}-\frac{1}{3}$
$=\frac{1}{6}$ sq.units

Question 3:

Find the area of the region lying in the first quadrant and bounded by $y=4 x^{2}, x=0, y=1$ and $y=4$

Solution 3:

The area in the first quadrant bounded by $y=4 x^{2}, x=0, y=1$, and $y=4$ is represented by the shaded area ABCDA as

Area $\mathrm{ABCDA}=\int_{1}^{4} x d y$
$=\int_{1}^{4} \frac{1}{2} \sqrt{y} d y$
$=\frac{1}{2}\left[\frac{y^{\frac{3}{2}}}{\frac{3}{2}}\right]_{1}^{4}$
$=\frac{1}{3}\left[(4)^{\frac{3}{2}}-1\right]$

$$
\begin{aligned}
& =\frac{1}{3}[8-1] \\
& =\frac{7}{3} \text { sq.units }
\end{aligned}
$$

Question 4:

Sketch the graph of $y=|x+3|$ and evaluate $\int_{-6}^{0}|x+3| d x$

Solution 4:

The given equation is $y=|x+3|$
The corresponding values of x and y are given in the following table.

\boldsymbol{x}	-6	-5	-4	-3	-2	-1	0
\boldsymbol{y}	3	2	1	0	1	2	3

On plotting these points, we obtain the graph of $y=|x+3|$ as follows.

It is known that, $(x+3) \leq 0$ for $-6 \leq \mathrm{x} \leq-3$ and $(x+3) \geq 0$ for $-3 \leq \mathrm{x} \leq 0$

$$
\begin{aligned}
& \therefore \int_{-6}^{0}|(x+3)| d x=-\int_{-6}^{-3}(x+3) d x+\int_{-3}^{0}(x+3) d x \\
& =-\left[\frac{x^{2}}{2}+3 x\right]_{-6}^{-3}+\left[\frac{x^{2}}{2}+3 x\right]_{-3}^{0}
\end{aligned}
$$

$$
\begin{aligned}
& =-\left[\left(\frac{(-3)^{2}}{2}+3(-3)\right)-\left(\frac{(-6)^{2}}{2}+3(-6)\right)\right]+\left[0-\left(\frac{(-3)^{2}}{2}+3(-3)\right)\right] \\
& =-\left[-\frac{9}{2}\right]-\left[-\frac{9}{2}\right] \\
& =9
\end{aligned}
$$

Question 5:

Find the area bounded by the curve $\mathrm{y}=\sin \mathrm{x}$ between $\mathrm{x}=0$ and $x=2 \pi$

Solution 5:

The graph of $y=\sin x$ can be drawn as

\therefore Required area $=$ Area $\mathrm{OABO}+$ Area BCDB
$=\int_{0}^{\pi} \sin x d x+\left|\int_{\pi}^{2 \pi} \sin x d x\right|$
$=[-\cos x]_{0}^{\pi}+\left|[-\cos x]_{\pi}^{2 \pi}\right|$
$=[-\cos \pi+\cos 0]+|-\cos 2 \pi+\cos \pi|$
$=1+1+|(-1-1)|$
$=2+|-2|$
$=2+2=4$ sq. units

Question 6:

Find the area enclosed between the parabola $y^{2}=4 a x$ and the line $y=m x$.

Solution 6:

The area enclosed between the parabola, $y^{2}=4 a x$ and the line $y=m x$., is represented by the shaded area OABO as

$y^{2}=4 a x, y=m x$
$m^{2} x^{2}=4 a x$
$m^{2} x^{2}-4 a x=0$
$x\left(m^{2} x-4 a\right)=0$
$x=0$ or $x=4 / m^{2}$
The points of intersection of both the curves are $(0,0)$ and $\left(\frac{4 a}{m^{2}}, \frac{4 a}{m}\right)$.
We draw AC perpendicular to x-axis.
\therefore Area $\mathrm{OABO}=$ Area $\mathrm{OCABO}-\operatorname{Area}(\triangle \mathrm{OCA})$
$=\int_{0}^{\frac{4 a}{m^{2}}} 2 \sqrt{a x} d x-\int_{0}^{\frac{4 a}{m^{2}}} m x d x$
$=2 \sqrt{a}\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{\frac{4 a}{m^{2}}}-m\left[\frac{x^{2}}{2}\right]_{0}^{\frac{4 a}{m^{2}}}$
$=\frac{4}{3} \sqrt{a}\left(\frac{4 a}{m^{2}}\right)^{\frac{3}{2}}-\frac{m}{2}\left[\left(\frac{4 a}{m^{2}}\right)^{2}\right]$
$=\frac{32 a^{2}}{3 m^{3}}-\frac{m}{2}\left(\frac{16 a^{2}}{m^{3}}\right)$
$=\frac{32 a^{2}}{3 m^{3}}-\frac{8 a^{2}}{m^{3}}$

$$
=\frac{8 a^{2}}{3 m^{3}} \text { sq.units }
$$

Question 7:

Find the area enclosed by the parabola $4 y=3 x^{2}$ and the line $2 y=3 x+12$.

Solution 7:

The area enclosed between the parabola $4 y=3 x^{2}$ and the line $2 y=3 x+12$, is represented by the shaded area OBAO as

From the given equation of line, we have
$2 y=3 x+12$
$y=\frac{3 x+12}{2}$
From the given equation of parabola, we have
$4 y=3 x^{2}$
$4\left(\frac{3 x+12}{2}\right)=3 x^{2} \quad[$ From (1)]
$6 x+24=3 x^{2}$
$x^{2}-2 x-8=0$
$(x-4)(x+2)=0$
$x=4, x=-2$
The points of intersection of the given curves are $\mathrm{A}(-2,3)$ and $(4,12)$.
We draw AC and BD perpendicular to x -axis.
\therefore Area $\mathrm{OBAO}=$ Area $\mathrm{CDBAC}-($ Area $\mathrm{ODBO}+$ Area OACO$)$
$=\int_{-2}^{4} \frac{1}{2}(3 x+12) d x-\int_{-2}^{4} \frac{3 x^{2}}{4} d x$
$=\frac{1}{2}\left[\frac{3 x^{2}}{2}+12 x\right]_{-2}^{4}-\frac{3}{4}\left[\frac{x^{3}}{3}\right]_{-2}^{4}$
$=\frac{1}{2}[24+48-6+24]-\frac{1}{4}[64+8]$
$=\frac{1}{2}[90]-\frac{1}{4}[72]$
$=45-18$
$=27$ sq. units

Question 8:

Find the area of the smaller region bounded by the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and the line $\frac{x}{3}+\frac{y}{2}=1$

Solution 8:

The area of the smaller region bounded by the ellipse, $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$, and the line, $\frac{x}{3}+\frac{y}{2}=1$, is represented by the shaded region BCAB as
\therefore Area $\mathrm{BCAB}=$ Area $(\mathrm{OBCAO})-$ Area (OBAO)
$=\int_{0}^{3} 2 \sqrt{1-\frac{x^{2}}{9}} d x-\int_{0}^{3} 2\left(1-\frac{x}{3}\right) d x$
$=\frac{2}{3}\left[\int_{0}^{3} \sqrt{9-x^{2}} d x\right]-\frac{2}{3} \int_{0}^{3}(3-x) d x$

Question 9:

Find the area of the smaller region bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the line $\frac{x}{a}+\frac{y}{b}=1$

Solution 9:

The area of the smaller region bounded by the ellipse, $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, and the line, $\frac{x}{a}+\frac{y}{b}=1$, is represented by the shaded region BCAB as
\therefore Area $\mathrm{BCAB}=$ Area $(\mathrm{OBCAO})-$ Area (OBAO)
$=\int_{0}^{a} b \sqrt{1-\frac{x^{2}}{a^{2}}} d x-\int_{0}^{a} b\left(1-\frac{x}{a}\right) d x$

Question 10:

Find the area of the region enclosed by the parabola $x^{2}=y$, the line $y=x+2$ and x axis

Solution 10:

The area of the region enclosed by the parabola, $x^{2}=y$, the line, $y=x+2$, and x -axis is represented by the shaded region OABCO as

$y=x+2, x^{2}=y$
$\therefore x^{2}=x+2$
$\Rightarrow x^{2}-x-2=0$
$\Rightarrow(x-2)(x+1)=0$
$\Rightarrow x=2$ or $x=-1$
The point of intersection of the parabola, $x^{2}=y$, and the line, $y=x+2$, is $\mathrm{A}(-1,1)$.
\therefore Area $\mathrm{OABCO}=$ Area $(\mathrm{BCAB})+$ Area COAC
$=\int_{-2}^{-1}(x+2) d x+\int_{-1}^{0} x^{2} d x$
$=\left[\frac{x^{2}}{2}+2 x\right]_{-2}^{-1}+\left[\frac{x^{3}}{3}\right]_{-1}^{0}$
$=\left[\frac{(-1)^{2}}{2}+2(-1)-\frac{(-2)^{2}}{2}-2(-2)\right]+\left[-\frac{(-1)^{3}}{3}\right]$
$=\left[\frac{1}{2}-2-2+4+\frac{1}{3}\right]$
$=\frac{5}{6}$ sq. units

Question 11:

Using the method of integration find the area bounded by the curve $|x|+|y|=1$
[Hint: the required region is bounded by lines $x+y=1, x-y=1,-x+y=1$ and $-x-y=11$]

Solution 11:

The area bounded by the curve, $|x|+|y|=1$, is represented by the shaded region ADCBA as

The curve intersects the axes at points $\mathrm{A}(0,1), \mathrm{B}(1,0), \mathrm{C}(0,-1)$, and $\mathrm{D}(-1,0)$.
It can be observed that the given curve is symmetrical about x -axis and y -axis.
\therefore Area $\mathrm{ADCBA}=4 \times$ Area OBAO
$=4 \int_{0}^{1}(1-x) d x$
$=4\left(x-\frac{x^{2}}{2}\right)_{0}^{1}$
$=4\left[1-\frac{1}{2}\right]$
$=4\left(\frac{1}{2}\right)$
$=2$ sq. units

Question 12:

Find the area bounded by curves $\left\{(x, y): y \geq x^{2}\right.$ and $\left.\mathrm{y}=|\mathrm{x}|\right\}$

Solution 12:

The area bounded by the curves, $\left\{(x, y): y \geq x^{2}\right.$ and $\left.\mathrm{y}=|\mathrm{x}|\right\}$, is represented by the shaded region as

It can be observed that the required area is symmetrical about y-axis.
Required area $=2[$ Area $(\mathrm{OCAO})-$ Area (OCADO) $]$
$=2\left[\int_{0}^{1} x d x-\int_{0}^{1} x^{2} d x\right]$
$=2\left[\left[\frac{x^{2}}{2}\right]_{0}^{1}-\left[\frac{x^{3}}{3}\right]_{0}^{1}\right]$
$=2\left[\frac{1}{2}-\frac{1}{3}\right]$
$=2\left[\frac{1}{6}\right]=\frac{1}{3}$ sq. units

Question 13:

Using the method of integration find the area of the triangle ABC , coordinates of whose vertices are $\mathrm{A}(2,0), \mathrm{B}(4,5)$ and $\mathrm{C}(6,3)$

Solution 13:

The vertices of $\triangle \mathrm{ABC}$ are $\mathrm{A}(2,0), \mathrm{B}(4,5)$, and $\mathrm{C}(6,3)$.

Equation of line segment AB is

$$
\begin{align*}
& y-0=\frac{5-0}{4-2}(x-2) \\
& y=\frac{5}{2}(x-2) \quad \ldots(1) \tag{1}
\end{align*}
$$

Equation of line segment BC is

$$
\begin{align*}
& y-5=\frac{3-5}{6-4}(x-4) \\
& 2 y-10=-2 x+8 \\
& 2 y=-2 x+18 \\
& y=-x+9 \tag{2}
\end{align*}
$$

Equation of line segment CA is

$$
\begin{align*}
& y-3=\frac{0-3}{2-6}(x-6) \\
& -4 y+12=-3 x+18 \\
& 4 y=3 x-6 \\
& y=\frac{3}{4}(x-2) \quad \ldots(3) \tag{3}\\
& \text { Area }(\Delta \mathrm{ABC})=\text { Area (ABLA) }+ \text { Area (BLMCB) - Area (ACMA) } \\
& =\int_{2}^{4} \frac{5}{2}(x-2) d x+\int_{4}^{6}(-x+9) d x-\int_{2}^{6} \frac{3}{4}(x-2) d x \\
& =\frac{5}{2}\left[\frac{x^{2}}{2}-2 x\right]_{2}^{4}+\left[\frac{-x^{2}}{2}+9 x\right]_{4}^{6}-\frac{3}{4}\left[\frac{x^{2}}{2}-2 x\right]_{2}^{6}
\end{align*}
$$

$$
\begin{aligned}
& =\frac{5}{2}[8-8-2+4]+[-18+54+8-36]-\frac{3}{4}[18-12-2+4] \\
& =5+8-\frac{3}{4}(8) \\
& =13-6 \\
& =7 \text { sq. units }
\end{aligned}
$$

Question 14:

Using the method of integration find the area of the region bounded by lines:
$2 x+y=4,3 x-2 y=6$ and $x-3 y+5=0$

Solution 14:

The given equations of lines are
$2 x+y=4$...(1)
$3 x-2 y=6 \ldots$ (2)
And, $x-3 y+5=0$

The area of the region bounded by the lines is the area of $\triangle \mathrm{ABC}$. AL and CM are the perpendiculars on x -axis.
Area $(\triangle \mathrm{ABC})=\operatorname{Area}(\mathrm{ALMCA})-\operatorname{Area}(\mathrm{ALBA})-\operatorname{Area}(\mathrm{CMBC})$
$=\int_{1}^{4}\left(\frac{x+5}{3} d x\right)-\int_{1}^{2}(4-2 x) d x-\int_{2}^{4}\left(\frac{3 x-6}{2}\right) d x$

$$
\begin{aligned}
& =\frac{1}{3}\left[\frac{x^{2}}{2}+5 x\right]_{1}^{4}-\left[4 x-x^{2}\right]_{1}^{2}-\frac{1}{2}\left[\frac{3 x^{2}}{2}-6 x\right]_{2}^{4} \\
& =\frac{1}{3}\left[8+20-\frac{1}{2}-5\right]-[8-4-4+1]-\frac{1}{2}[24-24-6+12] \\
& =\left(\frac{1}{3} \times \frac{45}{2}\right)-(1)-\frac{1}{2}(6) \\
& =\frac{15}{2}-1-3 \\
& =\frac{15}{2}-4=\frac{15-8}{2}=\frac{7}{2} \text { sq. units }
\end{aligned}
$$

Question 15:

Find the area of the region $\left\{(x, y): y^{2} \leq 4 x, 4 x^{2}+4 y^{2} \leq 9\right\}$

Solution 15:

The area bounded by the curves, $\left\{(x, y): y^{2} \leq 4 x, 4 x^{2}+4 y^{2} \leq 9\right\}$ is represented as

$$
\begin{aligned}
& y^{2}=4 x \\
& \Rightarrow 4 x^{2}+4(4 x)=9 \\
& \Rightarrow 4 x^{2}+16 x-9=0 \\
& \Rightarrow 4 x^{2}+18 x-2 x-9=0 \\
& \Rightarrow 2 x(2 x+9)-(2 x+9)=0 \\
& \Rightarrow(2 x-1)(2 x+9)=0 \\
& \therefore x=\frac{1}{2} \& y= \pm \sqrt{4 x}= \pm \sqrt{2}
\end{aligned}
$$

The points of intersection of both the curves are $\left(\frac{1}{2}, \sqrt{2}\right)$ and $\left(\frac{1}{2},-\sqrt{2}\right)$.
The required area is given by OABCO .
It can be observed that area OABCO is symmetrical about x -axis.

\therefore Area $\mathrm{OABCO}=2 \times$ Area OBCO

Area $\mathrm{OBCO}=$ Area $\mathrm{OMCO}+$ Area MBCM
$=\int_{0}^{\frac{1}{2}} 2 \sqrt{x} d x+\int_{\frac{1}{2}}^{\frac{3}{2}} \frac{1}{2} \sqrt{9-4 x^{2}} d x$
$=\int_{0}^{\frac{1}{2}} 2 \sqrt{x} d x+\int_{\frac{1}{2}}^{\frac{3}{2}} \frac{1}{2} \sqrt{(3)^{2}-(2 x)^{2}} d x$
Let $2 x=t, d x=\frac{d t}{2}$
When $x=\frac{1}{2}, t=1$ and when $x=\frac{3}{2}, t=3$

$$
\begin{aligned}
& \Rightarrow \int_{0}^{\frac{1}{2}} 2 \sqrt{x} d x+\frac{1}{4} \int_{1}^{3} \sqrt{9-t^{2}} d t \\
& \Rightarrow 2\left[\frac{2}{3} x^{3 / 2}\right]_{0}^{1 / 2}+\frac{1}{4}\left[\frac{t}{2} \sqrt{9-t^{2}}+\frac{9}{2} \sin ^{-1}\left(\frac{t}{3}\right)\right]_{1}^{3} \\
& \Rightarrow \frac{4}{3}\left[\frac{1}{2 \sqrt{2}}\right]+\frac{1}{4}\left[\frac{9}{2} \cdot \frac{\pi}{2}-\frac{1}{2} \sqrt{8}-\frac{9}{2} \sin ^{-1}\left(\frac{1}{3}\right)\right] \\
& \Rightarrow \frac{2}{3 \sqrt{2}}+\frac{9 \pi}{16}-\frac{1}{2 \sqrt{2}}-\frac{9}{8} \sin ^{-1}\left(\frac{1}{3}\right) \\
& \Rightarrow \frac{1}{6 \sqrt{2}}+\frac{9 \pi}{16}-\frac{9}{8} \sin ^{-1}\left(\frac{1}{3}\right)
\end{aligned}
$$

Area of $\mathrm{OABCD}=2$ Area of OBCO
\therefore Required area $=2\left[\frac{1}{6 \sqrt{2}}+\frac{9 \pi}{16}-\frac{9}{8} \sin ^{-1}\left(\frac{1}{3}\right)\right]$
$=\frac{9 \pi}{8}+\frac{1}{3 \sqrt{2}}-\frac{9}{4} \sin ^{-1}\left(\frac{1}{3}\right)$ sq. units

Question 16:

Area bounded by the curve $y=x^{3}$, the x -axis and the ordinates $x=-2$ and $x=1$ is
A. -9
B. $-\frac{15}{4}$
C. $\frac{15}{4}$
D. $\frac{17}{4}$

Solution 16:

Required area $=\int_{-2}^{1} y d x$
$=\int_{-2}^{1} x^{3} d x$
$=\left[\frac{x^{4}}{4}\right]_{-2}^{1}$
$\left[\frac{1}{4}-\frac{(-2)^{4}}{4}\right]$
$\left(\frac{1}{4}-4\right)=-\frac{15}{4}$
\therefore Area $=\left|\frac{-15}{4}\right|=\frac{15}{4}$ sq. units
Thus, the correct answer is C.

Question 17:

The area bounded by the curve $y=x|x|$, x -axis and the ordinates $x=-1$ and $x=1$ is given by
[Hint: $y=x^{2}$ if $x>0$ and $y=-x^{2}$ if $x<0$]
A. 0
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. $\frac{4}{3}$

Solution 17:

Required area $=\int_{-1}^{1} y d x$

$$
\begin{aligned}
& =\int_{-1}^{1} x|x| d x=\left|\int_{-1}^{0} x^{2} d x\right|+\left|\int_{0}^{1} x^{2} d x\right| \\
& =\left|\int_{-1}^{0}-x^{2} d x\right|+\left|\int_{0}^{1} x^{2} d x\right| \\
& =\left|\left[\frac{-x^{3}}{3}\right]_{-1}^{0}\right|+\left|\left[\frac{x^{3}}{3}\right]_{0}^{1}\right| \\
& =\left|-\left(-\frac{1}{3}\right)\right|+\frac{1}{3} \\
& =\frac{2}{3} \text { sq. units }
\end{aligned}
$$

Thus, the correct answer is C.

Question 18:

The area of the circle $x^{2}+y^{2}=16$ exterior to the parabola $y^{2}=6 x$ is
A. $\frac{4}{3}(4 \pi-\sqrt{3})$
B. $\frac{4}{3}(4 \pi+\sqrt{3})$
C. $\frac{4}{3}(8 \pi-\sqrt{3})$
D. $\frac{4}{3}(8 \pi+\sqrt{3})$

Solution 18:
The given equations are

$$
\begin{aligned}
& x^{2}+y^{2}=16 \ldots(1) \\
& y^{2}=6 x \ldots(2)
\end{aligned}
$$

$y^{2}=6 x$
$\Rightarrow x^{2}+6 x=16$
$\Rightarrow x^{2}+6 x-16=0$
$\Rightarrow(x+8)(x-2)=0$
$\Rightarrow x=-8 \& x=2$
when $x=2 \quad y= \pm \sqrt{15}= \pm 2 \sqrt{3}$
Area bounded by the circle and parabola (unshaded portion)
$=$ Area (OCBAC)
$=2[$ Area $(\mathrm{OBCO})]$
$=2[\mathrm{Area}(\mathrm{OMCO})+$ Area $(\mathrm{BMCB})]$
$=2\left[\int_{0}^{2} \sqrt{16 x d x}+\int_{2}^{4} \sqrt{16-x^{2}} d x\right]$
$=2 \sqrt{6} \int_{0}^{2} \sqrt{x} d x+2 \int_{2}^{4} \sqrt{16-x^{2}} d x$
$=2 \sqrt{6} \times \frac{2}{3}\left[(x)^{3 / 2}\right]_{0}^{2}+2\left[\frac{x}{2} \sqrt{16-x^{2}}+\frac{16}{2} \sin ^{-1} \frac{x}{4}\right]_{2}^{4}$
$=2 \sqrt{6} \times \frac{2}{3}\left[x^{\frac{3}{2}}\right]_{0}^{2}+2\left[8 \cdot \frac{\pi}{2}-\sqrt{16-4}-8 \sin ^{-1}\left(\frac{1}{2}\right)\right]$
$=\frac{4 \sqrt{6}}{3}(2 \sqrt{2})+2\left[4 \pi-\sqrt{12}-8 \frac{\pi}{6}\right]$
$=\frac{16 \sqrt{3}}{3}+8 \pi-4 \sqrt{3}-\frac{8}{3} \pi$
$=\frac{4}{3}[4 \sqrt{3}+6 \pi-3 \sqrt{3}-2 \pi]$
$=\frac{4}{3}[\sqrt{3}+4 \pi]$
$=\frac{4}{3}[4 \pi+\sqrt{3}]$ sq. units
Area of circle $=\pi(r)^{2}$
$=\pi(4)^{2}$
$=16 \pi$ sq. units
\therefore Area of the circle $x^{2}+y^{2}=16$ exterior to the parabola $y^{2}=6 \mathrm{x}$
$=$ Area of circle $-\frac{4}{3}[4 \pi+\sqrt{3}]$
$=\pi(4)^{2}-\frac{4}{3}[4 \pi+\sqrt{3}]$
$=\frac{4}{3}[4 \times 3 \pi-4 \pi-\sqrt{3}]$
$=\frac{4}{3}(8 \pi-\sqrt{3})$ sq. units
Thus, the correct answer is C.

Question 19:

The area bounded by the y -axis, $\mathrm{y}=\cos \mathrm{x}$ and $\mathrm{y}=\sin \mathrm{x}$ when $0 \leq x \leq \frac{\pi}{2}$
A. $2(\sqrt{2}-1)$
B. $\sqrt{2}-1$
C. $\sqrt{2}+1$
D. $\sqrt{2}$

Solution 19:
The given equations are
$y=\cos x \ldots$
And, $\mathrm{y}=\sin \mathrm{x} \ldots$ (2)

Required area $=$ Area $(\mathrm{ABLA})+\operatorname{area}(\mathrm{OBLO})$
$=\int_{\frac{1}{\sqrt{2}}}^{1} x d y+\int_{0}^{\frac{1}{\sqrt{2}}} x d y$
$=\int_{\frac{1}{\sqrt{2}}}^{1} \cos ^{-1} y d y+\int_{\frac{1}{\sqrt{2}}}^{1} \sin ^{-1} y d y$
Integrating by parts, we obtain

$$
\begin{aligned}
& =\left[y \cos ^{-1} y-\sqrt{1-y^{2}}\right]_{\frac{1}{\sqrt{2}}}^{1}+\left[y \sin ^{-1} y+\sqrt{1-y^{2}}\right]_{0}^{\frac{1}{\sqrt{2}}} \\
& =\left[\cos ^{-1}(1)-\frac{1}{\sqrt{2}} \cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)+\sqrt{1-\frac{1}{2}}\right]+\left[\frac{1}{\sqrt{2}} \sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)+\sqrt{1-\frac{1}{2}}-1\right] \\
& =\frac{-\pi}{4 \sqrt{2}}+\frac{1}{\sqrt{2}}+\frac{\pi}{4 \sqrt{2}}+\frac{1}{\sqrt{2}}-1 \\
& =\frac{2}{\sqrt{2}}-1 \\
& =\sqrt{2}-1 \text { sq. units }
\end{aligned}
$$

\therefore The correct answer is option B.

