

Chapter 8 – Application of Integrals

EXERCISE- 8.1

Question 1:

Find the area of the region bounded by the curve $y^2 = x$ and the lines x = 1, x = 4 and the x-axis in the first quadrant.

Solution 1:

The area of the region bounded by the curve, $y^2 = x$, the lines, x = 1 and x = 4, and the x-axis is the area ABCDA.

Area ABCDA =
$$\int_{1}^{4} \sqrt{x} \, dx$$

Area of ABCDA =

$$= \left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{1}^{4}$$

$$= \frac{2}{3}\left[(4)^{\frac{3}{2}} - (1)^{\frac{3}{2}}\right]$$

$$= \frac{2}{3}[8 - 1]$$

$$= \frac{14}{3} \text{ sq. units}$$

Question 2:

Find the area of the region bounded by $y^2 = 9x$, x = 2, x = 4 and the x-axis in the first quadrant.

Solution 2:

The area of the region bounded by the curve, $y^2 = 9x$, x = 2, and x = 4, and the x-axis is the area ABCDA.

Area ABCDA =
$$\int_{2}^{4} 3\sqrt{x} \, dx$$

= $3 \left[\frac{x^{3/2}}{3/2} \right]_{2}^{4}$
= $2 \left[x^{\frac{3}{2}} \right]_{2}^{4}$
= $2 \left[4^{\frac{3}{2}} - 2^{\frac{3}{2}} \right]$
= $2 \left[2^{3} - 8^{\frac{1}{2}} \right] = 2 \left[8 - 2\sqrt{2} \right]$
= $16 - 4\sqrt{2}$ sq. units

Question 3:

Find the area of the region bounded by $x^2 = 4y$, y = 2, y = 4 and the y-axis in the first quadrant.

Solution 3:

The area of the region bounded by the curve, $x^2 = 4y$, y = 2, and y = 4, and the y-axis is the area ABCDA.

Area of ABCDA =
$$\int_{2}^{4} x dy$$
$$x^{2} = 4y$$
$$x = 2\sqrt{y}$$
$$\int_{2}^{4} x dy = \int_{2}^{4} 2\sqrt{y} dy = 2\int_{2}^{4} \sqrt{y} dy$$
$$= 2\left[\frac{\frac{y^{2}}{3}}{\frac{2}{3}}\right]_{2}^{4}$$
$$= \frac{4}{3}\left[(4)^{\frac{3}{2}} - (2)^{\frac{3}{2}}\right]$$
$$= \frac{4}{3}\left[8 - 2\sqrt{2}\right]$$
$$= \left(\frac{32 - 8\sqrt{2}}{3}\right)$$
 sq.units

Question 4:

Find the area of the region bounded by the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$

Solution 4:

$$\frac{x}{16} + \frac{y}{9} = 1$$

$$\Rightarrow \frac{y^2}{9} = 1 - \frac{x^2}{16} \Rightarrow y^2 = 9\left(1 - \frac{x^2}{16}\right)$$

$$y = 3\sqrt{1 - \frac{x^2}{16}}$$

Area OABO = $\int_0^4 3\sqrt{1 - \frac{x^2}{16}} dx$

$$= \frac{3}{4} \int_0^4 \sqrt{16 - x^2} dx$$

Substitute $x = 4\sin\theta, \theta = \sin^{-1}\frac{x}{4}$

$$dx = 4\cos\theta d\theta$$

when, $x = 0$ $\theta = 0$ & $x = 4$ $\theta = \frac{\pi}{2}$

$$= \frac{3}{4} \int_0^{\pi/2} \sqrt{16 - 16\sin^2\theta} \cdot 4\cos\theta d\theta$$

$$= 12 \int_0^{\pi/2} \sqrt{1 - \sin^2\theta}, \cos\theta d\theta$$

$$= 12 \int_{0}^{\pi/2} \cos^{2} \theta d\theta = 12 \int_{0}^{\pi/2} \frac{1 + \cos 2\theta}{2} d\theta$$
$$= 6 \int_{0}^{\pi/2} (1 + \cos 2\theta) d\theta = 6 \left[\theta + \frac{\sin 2\theta}{2} \right]_{0}^{\pi/2}$$
$$= 6 \left[\frac{\pi}{2} + \frac{\sin \pi}{2} - 0 - \frac{\sin 0}{2} \right] = 6 \left[\frac{\pi}{2} \right] = 3\pi$$

Therefore, area bounded by the ellipse $= 4 \times 3\pi = 12\pi$ sq. units

Question 5:

Find the area of the region bounded by the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$

Solution 5:

The given equation of the ellipse can be represented as

\therefore Area bounded by ellipse = 4 × Area OABO
\therefore Area of OABO= $\int_0^2 y dx$
$= \int_{0}^{2} 3\sqrt{1 - \frac{x^{2}}{4}} dx \qquad \text{[Using (1)]}$
$=\frac{3}{2}\int_{0}^{2}\sqrt{4-x^{2}}dx$
Substitute $x = 2\sin\theta \Rightarrow \theta = \sin^{-1}\left(\frac{x}{2}\right)$
$dx = 2\cos\theta d\theta$
when, $x = 0$ $\theta = 0$ & $x = 2$ $\theta = \frac{\pi}{2}$
$\therefore \frac{3}{2} \int_{0}^{2} \sqrt{4 - x^{2}} dx = \frac{3}{2} \int_{0}^{\pi/2} \sqrt{4 - 4\sin^{2}\theta} \cdot 2\cos\theta d\theta$
$=3\int_{0}^{\pi/2}\sqrt{4-4\sin^2\theta}.\cos\theta d\theta=6\int_{0}^{\pi/2}\sqrt{1-\sin^2\theta}\cos\theta d\theta$
$= 6 \int_{0}^{\pi/2} \cos 2\theta d\theta = 6 \int_{0}^{\pi/2} \frac{1 + \cos 2\theta}{2} d\theta$
$= \frac{6}{2} \int_{0}^{\pi/2} (1 + \cos 2\theta) d\theta = 3 \left[0 + \frac{\sin 2\theta}{2} \right]_{0}^{\pi/2}$
$= 3\left[\frac{\pi}{2} + \frac{\sin\pi}{2} - 0\right] = 3 \times \frac{\pi}{2} = \frac{3\pi}{2}$
Therefore, area bounded by the ellipse = $4 \times \frac{3\pi}{2} = 6\pi$ sq. units

Question 6:

Find the area of the region in the first quadrant enclosed by x-axis, line $x = \sqrt{3}y$ and the circle $x^2 + y^2 = 4$

Solution 6:

The area of the region bounded by the circle, $x^2 + y^2 = 4$, $x = \sqrt{3}y$, and the x-axis is the area OAB.

when
$$x = 2$$
 $\theta = \frac{\pi}{2}$
 $x = \sqrt{3}$ $\theta = \frac{\pi}{3}$
 $\therefore \int_{\sqrt{3}}^{2} \sqrt{4-x} \, dx = \int_{\pi/3}^{\pi/2} \sqrt{4-4\sin^{2}\theta} (2\cos\theta) d\theta$
 $= 4 \int_{\pi/3}^{\pi/2} \cos^{2}\theta d\theta = 4 \int_{\pi/3}^{\pi/2} 1 + \frac{\cos 2\theta}{2} d\theta$
 $= 2 \int_{\pi/3}^{\pi/2} (1 + \cos 2\theta) d\theta = 2 \left[\theta + \frac{\sin 2\theta}{2} \right]_{\pi/3}^{\pi/2}$
 $= 2 \left[\frac{\pi}{2} + \frac{1}{2} \sin \pi - \frac{\pi}{3} - \frac{1}{2} \sin \frac{2\pi}{3} \right]$
 $= 2 \left[\frac{\pi}{2} - \frac{\pi}{3} - \frac{1}{2} \times \frac{\sqrt{3}}{2} \right] = 2 \left[\frac{\pi}{6} - \frac{\sqrt{3}}{4} \right]$ (2)
From (1) & (2)
Area of OAB $= \frac{\sqrt{3}}{2} + 2 \left[\frac{\pi}{6} - \frac{\sqrt{3}}{4} \right] = \frac{\pi}{3}$
Therefore, area enclosed by x-axis, the line $x = \sqrt{3}y$, and the circle $x^{2} + y^{2} = 4$ in the first quadrant $= \frac{\pi}{3}$ sq. units

Question 7:

Find the area of the smaller part of the circle $x^2 + y^2 = a^2$ cut off by the line $x = \frac{a}{\sqrt{2}}$.

Solution 7:

The area of the smaller part of the circle, $x^2 + y^2 = a^2$, cut off by the line $x = \frac{a}{\sqrt{2}}$, is the area ABCDA.

$$\Rightarrow Area \ ABCD = 2\left[\frac{a^2}{4}\left(\frac{\pi}{2}-1\right)\right] = \frac{a^2}{2}\left(\frac{\pi}{2}-1\right)$$

Therefore, the area of smaller part of the circle, $x^2 + y^2 = a^2$, cut off by the line $x = \frac{a}{\sqrt{2}}$, is $a^2(\pi)$

$$\frac{a^2}{2}\left(\frac{\pi}{2}-1\right)$$
 sq. units.

Question 8:

The area between $x = y^2$ and x = 4 is divided into two equal parts by the line x = a, find the value of a.

Solution 8:

The line x = a, divides the area bounded by the parabola $x = y^2$ and x = 4 into two equal parts. \therefore Area OADO = Area ABCDA

It can be observed that the given area is symmetrical about x-axis.

Area of OEDO = $\frac{1}{2}$ Area of OADO Area of EFCDE = $\frac{1}{2}$ Area of ABCDA Therefore, Area OEDO = Area EFCDE Area OEDO = $\int_0^a y dx$ = $\int_0^a \sqrt{x} dx$ $= \begin{bmatrix} \frac{x^{\frac{3}{2}}}{3} \end{bmatrix}^{\frac{3}{2}}$ $=\frac{2}{3}(a)^{\frac{3}{2}}$...(1) Area of EFCDE = $\int_{-1}^{4} y \, dx = \int_{-1}^{4} \sqrt{x} \, dx$ $= \left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{a}^{4}$ $=\frac{2}{3}\left[4^{\frac{3}{2}}-a^{\frac{3}{2}}\right]$ $=\frac{2}{3}\left[8-a^{\frac{3}{2}}\right]$...(2) From (1) and (2), we obtain $\frac{2}{3}(a)^{\frac{3}{2}} = \frac{2}{3} \left[8 - (a)^{\frac{3}{2}} \right]$ $\Rightarrow 2.(a)^{\frac{3}{2}} = 8$ $\Rightarrow (a)^{\frac{3}{2}} = 4$ $\Rightarrow a = (4)^{\frac{2}{3}}$ Therefore, the value of a is $(4)^{\frac{2}{3}}$.

Question 9:

Find the area of the region bounded by the parabola $y = x^2$ and y = |x|.

Solution 9:

The area bounded by the parabola, $x^2 = y$, and the line, y = |x|, can be represented as

Question 10:

Find the area bounded by the curve $x^2 = 4y$ and the line x = 4y - 2.

Solution 10:

The area bounded by the curve, $x^2 = 4y$, and line, x = 4y - 2, is represented by the shaded area OBAO.

Then, Area OBCO = Area OMBCO - Area OMBO

$$= \int_{0}^{2} \frac{x+2}{4} dx - \int_{0}^{2} \frac{x^{2}}{4} dx$$

$$= \frac{1}{4} \left[\frac{x^{2}}{2} + 2x \right]_{0}^{2} - \frac{1}{4} \left[\frac{x^{3}}{3} \right]_{0}^{2}$$

$$= \frac{1}{4} \left[2 + 4 \right] - \frac{1}{4} \left[\frac{8}{3} \right]$$

$$= \frac{3}{2} - \frac{2}{3}$$

$$= \frac{5}{6}$$
Area OLACO = Area under the line $x = 4y - 2$ between $x = -1$ and $x = 0$
Area OLACO = Area under the curve $x^{2} = 4y$ between $x = -1$ and $x = 0$
Area OLAO = Area under the curve $x^{2} = 4y$ between $x = -1$ and $x =$
Area OMBO = $\int_{0}^{2} \frac{x^{2}}{4} dx$
Area OLAO = Area OLACO - Area OLAO
$$= \int_{-1}^{0} \frac{x+2}{4} dx - \int_{-1}^{0} \frac{x^{2}}{4} dx$$

$$= \frac{1}{4} \left[\frac{x^{2}}{2} + 2x \right]_{-1}^{0} - \frac{1}{4} \left[\frac{x^{3}}{3} \right]_{-1}^{0}$$

$$= \frac{1}{4} \left[\frac{0}{2} + 0 - \frac{(-1)^{2}}{2} - 2(-1) \right] - \frac{1}{4} \left[\frac{0^{3}}{3} - \frac{(-1)^{3}}{3} \right]$$

$$= -\frac{1}{4} \left[\frac{(-1)}{2} + 2(-1) \right] - \left[-\frac{1}{4} \left(\frac{(-1)^3}{3} \right) \right]$$
$$= -\frac{1}{4} \left[\frac{1}{2} - 2 \right] - \frac{1}{12}$$
$$= \frac{1}{2} - \frac{1}{8} - \frac{1}{12}$$
$$= \frac{7}{24}$$
Therefore, required area = $\left(\frac{5}{6} + \frac{7}{24} \right) = \frac{9}{8}$ sq. units

Question 11:

Find the area of the region bounded by the curve $y^2 = 4x$ and the line x = 3.

Solution 11:

The region bounded by the parabola, $y^2 = 4x$, and the line, x = 3, is the area OACO

 $= 2\left[\int_{0}^{3} 2\sqrt{x} dx\right]$ $= 4\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{3}$ $= \frac{8}{3}\left[\left(3\right)^{\frac{3}{2}}\right]$ $= 8\sqrt{3}$ Therefore, the required area is $8\sqrt{3}$ sq. units.

Question 12:

Area lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$ and the lines x = 0 and x = 2 is

A. π B. $\frac{\pi}{2}$ C. $\frac{\pi}{3}$ D. $\frac{\pi}{4}$

Solution 12:

The area bounded by the circle and the lines, x = 0 and x = 2, in the first quadrant is represented as

$$\therefore \text{ Area OAB} = \int_0^2 y dx$$
$$= \int_0^2 \sqrt{4 - x^2} dx$$
$$= \left[\frac{x}{2}\sqrt{4 - x^2} + \frac{4}{2}\sin^{-1}\frac{x}{2}\right]_0^2$$
$$= 2\left(\frac{\pi}{2}\right)$$

$$=\pi$$
 units

Alternate Solution:

Area OABO = $\frac{1}{2}$ Area of circle Radius = 2 Area OABO = $\frac{1}{4} \times \pi \times 2^2 = \pi$ sq. units Thus, the correct answer is A.

Question 13:

Area of the region bounded by the curve $y^2 = 4x$, y-axis and the line y = 3 is A. 2 B. $\frac{9}{4}$ C. $\frac{9}{3}$ D. $\frac{9}{2}$ Solution 13: The area bounded by the curve $y^2 = 4x$, y-axis, and y = 3 is represented as

EXERCISE- 8.2

Question 1:

Find the area of the circle $4x^2 + 4y^2 = 9$ which is interior to the parabola $x^2 = 4y$

Solution 1:

The required area is represented by the shaded area OBCDO.

Area OMBCO = Area under the circle
$$4x^2 + 4y^2 = 9$$
 between $x = 0$ & $x = \sqrt{2}$
Area OMBCO = $\int_0^{\sqrt{2}} \sqrt{\frac{9-4x^2}{4}} dx$
= $\int_0^{\sqrt{2}} \sqrt{\frac{9}{4} - x^2} dx$
substitute $x = \frac{3}{2} \sin\theta$, $dx = \frac{3}{2} \cos\theta d\theta$
 $\int \sqrt{\frac{9}{4} - \frac{9}{4} \sin^2 \theta} \cdot \frac{3}{2} \cos\theta d\theta$
= $\frac{9}{4} \int \sqrt{1 - \sin^2 \theta} \cos\theta d\theta = \frac{9}{4} \int \cos^2 \theta d\theta$
= $\frac{9}{4} \int \frac{1 + \cos 2\theta}{2} d\theta$
= $\frac{9}{4} \int \frac{1 + \cos 2\theta}{2} d\theta$
= $\frac{9}{8} \left[0 + \frac{\sin 2\theta}{2} \right]$
= $\frac{9}{8} \left[\sin^{-1} \frac{2x}{3} + \frac{2x}{3} \sqrt{1 - \frac{4x^2}{9}} \right]$
= $\frac{9}{8} \left[\sin^{-1} \frac{2x}{3} + \frac{2x}{9} \sqrt{9 - 4x^2} \right]$
Applying the limits
= $\frac{9}{8} \left[\sin^{-1} \frac{2x}{3} + \frac{2x}{9} \sqrt{9 - 4x^2} \right]^{\sqrt{2}}$

Area OMBCO = $\frac{1}{4} \left| \sqrt{2} + \frac{9}{2} \sin^{-1} \frac{2\sqrt{2}}{3} \right|$...(1) Area OMBCO = Area under $x^2 = 4y$ between x = 0 and $x = \sqrt{2}$ Area OMBO = $\int_{-\infty}^{\sqrt{2}} \frac{x^2}{4} dx$ Area OMBO = $\frac{1}{4} \left[\frac{x^3}{3} \right]^{\sqrt{2}}$ Area OMBO = $\frac{1}{12} \left[2\sqrt{2} \right] = \frac{\sqrt{2}}{6}$...(2) From (1) and (2)Area OBCO = $=\frac{\sqrt{2}}{4}+\frac{9}{8}\sin^{-1}\frac{2\sqrt{2}}{3}-\frac{\sqrt{2}}{6}$ $=\frac{\sqrt{2}}{12}+\frac{9}{8}\sin^{-1}\frac{2\sqrt{2}}{2}$ $=\frac{1}{2}\left(\frac{\sqrt{2}}{6}+\frac{9}{4}\sin^{-1}\frac{2\sqrt{2}}{3}\right)$ Therefore, the required area OBCDO is $\left(2 \times \frac{1}{2} \left[\frac{\sqrt{2}}{6} + \frac{9}{4} \sin^{-1} \frac{2\sqrt{2}}{3}\right]\right) = \left[\frac{\sqrt{2}}{6} + \frac{9}{4} \sin^{-1} \frac{2\sqrt{2}}{3}\right] \text{sq. units}$

Question 2:

Find the area bounded by curves $(x-1)^2 + y^2 = 1$ and $x^2 + y^2 = 1$

Solution 2:

The area bounded by the curves, $(x-1)^2 + y^2 = 1$ and $x^2 + y^2 = 1$, is represented by the shaded area as

 $= \left[-\frac{\sqrt{3}}{4} - \frac{\pi}{12} + \frac{\pi}{4} + \frac{\pi}{4} - \frac{\pi}{12} \right]$ $= \left[-\frac{\sqrt{3}}{4} - \frac{\pi}{6} + \frac{\pi}{2} \right]$ $= \left[\frac{2\pi}{6} - \frac{\sqrt{3}}{4} \right]$ Therefore, required area OBCAO = $2 \times \left(\frac{2\pi}{6} - \frac{\sqrt{3}}{4} \right) = \left(\frac{2\pi}{3} - \frac{\sqrt{3}}{2} \right)$ sq. units

Question 3:

Find the area of the region bounded by the curves $y = x^2 + 2$, y = x, x = 0 and x = 3.

Solution 3:

The area bounded by the curves, $y = x^2 + 2$, y = x, x = 0, and x = 3, is represented by the shaded area OCBAO as

Then, Area OCBAO = Area ODBAO – Area ODCO

$$= \int_{0}^{3} (x^{2} + 2) dx - \int_{0}^{3} x dx$$
$$= \left[\frac{x^{3}}{3} + 2x\right]_{0}^{3} - \left[\frac{x^{2}}{2}\right]_{0}^{3}$$

$$= [9+6] - \left[\frac{9}{2}\right]$$
$$= 15 - \frac{9}{2}$$
$$= \frac{21}{2}$$
sq. units

Question 4:

Using integration find the area of the region bounded by the triangle whose vertices are (-1, 0), (1, 3) and (3, 2).

Solution 4:

BL and CM are drawn perpendicular to x-axis. It can be observed in the following figure that, Area (ΔACB) = Area (ALBA) + Area (BLMCB) - Area (AMCA) ...(1)

Equation of line segment AB is

$$y - 0 = \frac{3 - 0}{1 + 1} (x + 1)$$

$$y = \frac{3}{2} (x + 1)$$

$$\therefore \text{ Area} (\text{ALBA}) = \int_{-1}^{1} \frac{3}{2} (x + 1) dx = \frac{3}{2} \left[\frac{x^2}{2} + x \right]_{-1}^{1} = \frac{3}{2} \left[\frac{1}{2} + 1 - \frac{1}{2} + 1 \right] = 3 \text{ sq. units}$$

Equation of line segment BC is

$$y-3 = \frac{2-3}{3-1}(x-1)$$

$$y = \frac{1}{2}(-x+7)$$

$$\therefore \text{ Area (BLMCB)} = \int_{1}^{3} \frac{1}{2}(-x+7)dx = \frac{1}{2}\left[-\frac{x^{2}}{2}+7x\right]_{1}^{3} = \frac{1}{2}\left[-\frac{9}{2}+21+\frac{1}{2}-7\right] = 5 \text{ sq. units}$$

Equation of line segment AC is

$$y-0 = \frac{2-0}{3+1}(x+1)$$

$$y = \frac{1}{2}(x+1)$$

$$\therefore \text{ Area (AMCA)} = \frac{1}{2}\int_{-1}^{3}(x+1)dx = \frac{1}{2}\left[\frac{x^{2}}{2}+x\right]_{-1}^{3} = \frac{1}{2}\left[\frac{9}{2}+3-\frac{1}{2}+1\right] = 4 \text{ sq. units}$$

Therefore, from equation (1), we obtain

Area $(\Delta ABC) = (3+5-4) = 4$ sq. units

Question 5:

Using integration find the area of the triangular region whose sides have the equations y = 2x + 1, y = 3x + 1 and x = 4.

Solution 5:

The equations of sides of the triangle are y = 2x + 1, y = 3x + 1 and x = 4.

On solving these equations, we obtain the vertices of triangle as A(0, 1), B(4, 13), and C(4, 9).

$$= \int_{0}^{4} (3x+1) dx - \int_{0}^{4} (2x+1) dx$$
$$= \left[\frac{3x^{2}}{2} + x \right]_{0}^{4} - \left[\frac{2x^{2}}{2} + x \right]_{0}^{4}$$
$$= (24+4) - (16+4)$$
$$= 28 - 20$$
$$= 8 \text{ sq. units}$$

Question 6:

Smaller area enclosed by the circle $x^2 + y^2 = 4$ and the line x + y = 2 is

- A. $2(\pi 2)$
- B. $\pi 2$
- C. $2\pi 1$
- D. $2(\pi + 2)$

Solution 6:

The smaller area enclosed by the circle, $x^2 + y^2 = 4$, and the line, x + y = 2, is represented by the shaded area ACBA as

It can be observed that, Area ACBA = Area OACBO - Area (Δ OAB)

$$= \int_{0}^{2} \sqrt{4 - x^{2}} dx - \int_{0}^{2} (2 - x) dx$$

= $\left[\frac{x}{2}\sqrt{4 - x^{2}} + \frac{4}{2}\sin^{-1}\frac{x}{2}\right]_{0}^{2} - \left[2x - \frac{x^{2}}{2}\right]_{0}^{2}$
= $\left[2.\frac{\pi}{2}\right] - [4 - 2]$
= $(\pi - 2)$ sq. units
Thus, the correct answer is B.

Question 7:

Area lying between the curves $y^2 = 4x$ and y = 2x is

A.
$$\frac{2}{3}$$
 C.
B. $\frac{1}{3}$ D.

Solution 7:

The area lying between the curves, $y^2 = 4x$ and y = 2x, is represented by the shaded area OBAO as

 $\frac{1}{4}$ $\frac{3}{4}$

The points of intersection of these curves are O (0, 0) and A (1, 2). We draw AC perpendicular to x-axis such that the coordinates of C are (1, 0). \therefore Area OBAO = Area (\triangle OCA) - Area (OCABO)

$$= \int_{0}^{1} 2x dx - \int_{0}^{1} 2\sqrt{x} dx$$
$$= 2 \left[\frac{x^{2}}{2} \right]_{0}^{1} - 2 \left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right]_{0}^{1}$$
$$= \left| 1 - \frac{4}{3} \right|$$
$$= \left| -\frac{1}{3} \right|$$
$$= \frac{1}{3} \text{ sq. units}$$
Thus, the correct answer is B

Miscellaneous Exercise

Question 1:

Find the area under the given curves and given lines:

(i)
$$y = x^2, x = 1, x = 2$$
 and x-axis

(ii) $y = x^4, x = 1, x = 5$ and x-axis

Solution 1:

i. The required area is represented by the shaded area ADCBA as

Area of ADCBA = $\int_{1}^{5} x^{4} dx$ = $\left[\frac{x^{5}}{5}\right]_{1}^{5}$ = $\frac{(5)^{5}}{5} - \frac{1}{5}$ = $(5)^{4} - \frac{1}{5}$ = $625 - \frac{1}{5}$ = 624.8 sq.units

Question 2:

Find the area between the curves y = x and $y = x^2$

Solution 2:

The required area is represented by the shaded area OBAO as

The points of intersection of the curves, y = x and $y = x^2$, is A (1, 1). We draw AC perpendicular to x-axis. \therefore Area (OBAO) = Area (\triangle OCA) - Area (OCABO) ... (1)

$$= \int_{0}^{1} x dx - \int_{0}^{1} x^{2} dx$$
$$= \left[\frac{x^{2}}{2}\right]_{0}^{1} - \left[\frac{x^{3}}{3}\right]_{0}^{1}$$

 $=\frac{1}{2} - \frac{1}{3}$ $=\frac{1}{6}$ sq.units

Question 3:

Find the area of the region lying in the first quadrant and bounded by $y = 4x^2$, x = 0, y = 1 and y = 4

Solution 3:

The area in the first quadrant bounded by $y = 4x^2$, x = 0, y = 1, and y = 4 is represented by the shaded area ABCDA as

 $= \frac{1}{3} [8-1]$ $= \frac{7}{3} \text{ sq.units}$

Question 4:

Sketch the graph of y = |x+3| and evaluate $\int_{-6}^{0} |x+3| dx$

Solution 4:

The given equation is y = |x+3|

The corresponding values of x and y are given in the following table.

x	- 6	- 5	- 4	- 3	- 2	- 1	0
y	3	2	1	0	1	2	3

On plotting these points, we obtain the graph of y = |x+3| as follows.

It is known that, $(x+3) \le 0$ for $-6 \le x \le -3$ and $(x+3) \ge 0$ for $-3 \le x \le 0$

$$\therefore \int_{-6}^{0} |(x+3)| dx = -\int_{-6}^{-3} (x+3) dx + \int_{-3}^{0} (x+3) dx$$
$$= -\left[\frac{x^{2}}{2} + 3x\right]_{-6}^{-3} + \left[\frac{x^{2}}{2} + 3x\right]_{-3}^{0}$$

$$= -\left[\left(\frac{(-3)^{2}}{2} + 3(-3)\right) - \left(\frac{(-6)^{2}}{2} + 3(-6)\right)\right] + \left[0 - \left(\frac{(-3)^{2}}{2} + 3(-3)\right)\right]$$
$$= -\left[-\frac{9}{2}\right] - \left[-\frac{9}{2}\right]$$
$$= 9$$

Question 5:

Find the area bounded by the curve $y = \sin x$ between x = 0 and $x = 2\pi$

Solution 5:

Question 6:

Find the area enclosed between the parabola $y^2 = 4ax$ and the line y = mx.

Solution 6:

The area enclosed between the parabola, $y^2 = 4ax$ and the line y = mx, is represented by the shaded area OABO as

$$=\frac{8a^2}{3m^3}$$
 sq.units

Question 7:

Find the area enclosed by the parabola $4y = 3x^2$ and the line 2y = 3x + 12.

Solution 7:

The area enclosed between the parabola $4y = 3x^2$ and the line 2y = 3x + 12, is represented by the shaded area OBAO as

2y = 3x + 12 $y = \frac{3x + 12}{2}$...(1)

From the given equation of parabola, we have

$$4y = 3x^{2}$$

$$4\left(\frac{3x+12}{2}\right) = 3x^{2} \quad [From (1)]$$

$$6x + 24 = 3x^{2}$$

$$x^{2} - 2x - 8 = 0$$

$$(x - 4)(x + 2) = 0$$

$$x = 4, x = -2$$
The points of intersection of the given curves are A (-2, 3) and (4, 12)
We draw AC and BD perpendicular to x-axis.

$$\therefore \text{ Area OBAO} = \text{ Area CDBAC} - (\text{Area ODBO} + \text{ Area OACO})$$

$$= \int_{-2}^{4} \frac{1}{2} (3x + 12) dx - \int_{-2}^{4} \frac{3x^{2}}{4} dx$$

$$= \frac{1}{2} \left[\frac{3x^{2}}{2} + 12x \right]_{-2}^{4} - \frac{3}{4} \left[\frac{x^{3}}{3} \right]_{-2}^{4}$$

$$= \frac{1}{2} [24 + 48 - 6 + 24] - \frac{1}{4} [64 + 8]$$

$$= \frac{1}{2} [90] - \frac{1}{4} [72]$$

$$= 45 - 18$$

$$= 27 \text{ sq. units}$$

Question 8:

Find the area of the smaller region bounded by the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and the line $\frac{x}{3} + \frac{y}{2} = 1$

Solution 8:

The area of the smaller region bounded by the ellipse, $\frac{x^2}{9} + \frac{y^2}{4} = 1$, and the line, $\frac{x}{3} + \frac{y}{2} = 1$, is represented by the shaded region BCAB as \therefore Area BCAB = Area (OBCAO) – Area (OBAO) $= \int_0^3 2\sqrt{1 - \frac{x^2}{9}} dx - \int_0^3 2\left(1 - \frac{x}{3}\right) dx$ $= \frac{2}{3} \left[\int_0^3 \sqrt{9 - x^2} dx\right] - \frac{2}{3} \int_0^3 (3 - x) dx$

Question 9:

Find the area of the smaller region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the line $\frac{x}{a} + \frac{y}{b} = 1$

Solution 9:

The area of the smaller region bounded by the ellipse, $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, and the line, $\frac{x}{a} + \frac{y}{b} = 1$, is

represented by the shaded region BCAB as

$$\therefore$$
 Area BCAB = Area (OBCAO) – Area (OBAO)

$$= \int_{0}^{a} b \sqrt{1 - \frac{x^{2}}{a^{2}}} dx - \int_{0}^{a} b \left(1 - \frac{x}{a}\right) dx$$

Question 10:

Find the area of the region enclosed by the parabola $x^2 = y$, the line y = x + 2 and x axis

Solution 10:

The area of the region enclosed by the parabola, $x^2 = y$, the line, y = x + 2, and x-axis is represented by the shaded region OABCO as

 $=\left[\frac{1}{2}-2-2+4+\frac{1}{3}\right]$

 $=\frac{5}{\epsilon}$ sq. units

Question 11:

Using the method of integration find the area bounded by the curve |x|+|y|=1[Hint: the required region is bounded by lines x + y = 1, x - y = 1, -x + y = 1 and -x - y = 11]

Solution 11:

The area bounded by the curve, |x| + |y| = 1, is represented by the shaded region ADCBA as

The curve intersects the axes at points A (0, 1), B (1, 0), C (0, -1), and D (-1, 0). It can be observed that the given curve is symmetrical about x-axis and y-axis. \therefore Area ADCBA = 4×Area OBAO

$$=4\int_{0}^{1}(1-x)dx$$
$$=4\left(x-\frac{x^{2}}{2}\right)_{0}^{1}$$
$$=4\left[1-\frac{1}{2}\right]$$
$$=4\left(\frac{1}{2}\right)$$
$$=2 \text{ sq. units}$$

Question 12:

Find the area bounded by curves $\{(x, y): y \ge x^2 \text{ and } y = |x|\}$

Solution 12:

The area bounded by the curves, $\{(x, y): y \ge x^2 \text{ and } y=|x|\}$, is represented by the shaded region as (1, 1)(0, 0) O It can be observed that the required area is symmetrical about y-axis. Required area = 2 [Area (OCAO) – Area (OCADO)] $= 2 \left[\int_0^1 x dx - \int_0^1 x^2 dx \right]$ $=2\left[\left[\frac{x^2}{2}\right]_0^1 - \left[\frac{x^3}{3}\right]_0^1\right]$ $=2\left[\frac{1}{2}-\frac{1}{3}\right]$ $=2\left[\frac{1}{6}\right]=\frac{1}{3}$ sq. units

Question 13:

Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A (2, 0), B (4, 5) and C (6, 3)

Solution 13:

The vertices of \triangle ABC are A (2, 0), B (4, 5), and C (6, 3).

$$=\frac{5}{2}[8-8-2+4]+[-18+54+8-36]-\frac{3}{4}[18-12-2+4]$$

= 5+8- $\frac{3}{4}(8)$
= 13-6
= 7 sq. units

Question 14:

Using the method of integration find the area of the region bounded by lines: 2x + y = 4, 3x - 2y = 6 and x - 3y + 5 = 0

Solution 14:

The given equations of lines are 2x + y = 4 ...(1) 3x - 2y = 6 ...(2) And, x - 3y + 5 = 0 ...(3)

The area of the region bounded by the lines is the area of $\triangle ABC$. AL and CM are the perpendiculars on x-axis.

Area
$$(\Delta ABC)$$
 = Area $(ALMCA)$ – Area $(ALBA)$ – Area $(CMBC)$

$$=\int_{1}^{4} \left(\frac{x+5}{3}\,dx\right) - \int_{1}^{2} \left(4-2x\right)dx - \int_{2}^{4} \left(\frac{3x-6}{2}\right)dx$$

$$= \frac{1}{3} \left[\frac{x^2}{2} + 5x \right]_1^4 - \left[4x - x^2 \right]_1^2 - \frac{1}{2} \left[\frac{3x^2}{2} - 6x \right]_2^4$$

$$= \frac{1}{3} \left[8 + 20 - \frac{1}{2} - 5 \right] - \left[8 - 4 - 4 + 1 \right] - \frac{1}{2} \left[24 - 24 - 6 + 12 \right]$$

$$= \left(\frac{1}{3} \times \frac{45}{2} \right) - (1) - \frac{1}{2} (6)$$

$$= \frac{15}{2} - 1 - 3$$

$$= \frac{15}{2} - 4 = \frac{15 - 8}{2} = \frac{7}{2} \text{ sq. units}$$

Question 15:

Find the area of the region $\{(x, y): y^2 \le 4x, 4x^2 + 4y^2 \le 9\}$

Solution 15:

The area bounded by the curves, $\{(x, y): y^2 \le 4x, 4x^2 + 4y^2 \le 9\}$ is represented as

$$y^{2} = 4x$$

$$\Rightarrow 4x^{2} + 4(4x) = 9$$

$$\Rightarrow 4x^{2} + 16x - 9 = 0$$

$$\Rightarrow 4x^{2} + 18x - 2x - 9 = 0$$

$$\Rightarrow 2x(2x + 9) - (2x + 9) = 0$$

$$\Rightarrow (2x - 1)(2x + 9) = 0$$

$$\therefore x = \frac{1}{2} & y = \pm \sqrt{4x} = \pm \sqrt{2}$$

The points of intersection of both the curves are $\left(\frac{1}{2}, \sqrt{2}\right)$ and $\left(\frac{1}{2}, -\sqrt{2}\right)$.

The required area is given by OABCO. It can be observed that area OABCO is symmetrical about x-axis. \therefore Area OABCO = 2 × Area OBCO Area OBCO = Area OMCO + Area MBCM $=\int_{0}^{\frac{1}{2}} 2\sqrt{x} dx + \int_{\frac{1}{2}}^{\frac{3}{2}} \frac{1}{2}\sqrt{9-4x^{2}} dx$ $=\int_{0}^{\frac{1}{2}} 2\sqrt{x} dx + \int_{\frac{1}{2}}^{\frac{3}{2}} \frac{1}{2} \sqrt{(3)^{2} - (2x)^{2}} dx$ Let 2x = t, $dx = \frac{dt}{2}$ When $x = \frac{1}{2}$, t = 1 and when $x = \frac{3}{2}$, t = 3 $\Rightarrow \int_{-\infty}^{\overline{2}} 2\sqrt{x} dx + \frac{1}{4} \int_{-\infty}^{3} \sqrt{9 - t^2} dt$ $\Rightarrow 2\left[\frac{2}{3}x^{\frac{3}{2}}\right]_{0}^{\frac{1}{2}} + \frac{1}{4}\left[\frac{t}{2}\sqrt{9-t^{2}} + \frac{9}{2}\sin^{-1}\left(\frac{t}{3}\right)\right]_{1}^{3}$ $\Rightarrow \frac{4}{3} \left[\frac{1}{2\sqrt{2}} \right] + \frac{1}{4} \left[\frac{9}{2} \cdot \frac{\pi}{2} - \frac{1}{2} \sqrt{8} - \frac{9}{2} \sin^{-1} \left(\frac{1}{3} \right) \right]$ $\Rightarrow \frac{2}{3\sqrt{2}} + \frac{9\pi}{16} - \frac{1}{2\sqrt{2}} - \frac{9}{8}\sin^{-1}\left(\frac{1}{3}\right)$ $\Rightarrow \frac{1}{6\sqrt{2}} + \frac{9\pi}{16} - \frac{9}{8}\sin^{-1}\left(\frac{1}{3}\right)$ Area of OABCD = 2 Area of OBCO

Class XII – NCERT – Maths

:. Required area =
$$2\left[\frac{1}{6\sqrt{2}} + \frac{9\pi}{16} - \frac{9}{8}\sin^{-1}\left(\frac{1}{3}\right)\right]$$

= $\frac{9\pi}{8} + \frac{1}{3\sqrt{2}} - \frac{9}{4}\sin^{-1}\left(\frac{1}{3}\right)$ sq. units

Question 16:

Area bounded by the curve $y = x^3$, the x-axis and the ordinates x = -2 and x = 1 is

Solution 16:

 $\left[\frac{1}{4} - \frac{(-2)^4}{4}\right]$ $\left(\frac{1}{4} - 4\right) = -\frac{15}{4}$ $\therefore \text{ Area} = \left|\frac{-15}{4}\right| = \frac{15}{4} \text{ sq. units}$ Thus, the correct answer is C.

Question 17:

The area bounded by the curve y = x|x|, x-axis and the ordinates x = -1 and x = 1 is given by [Hint: $y = x^2$ if x > 0 and $y = -x^2$ if x < 0] A.0 B. $\frac{1}{3}$ C. $\frac{2}{3}$ D. $\frac{4}{3}$ Solution 17: $x = \frac{1}{(-1,-1)D} \frac{y}{|B|(1,1)}$ Required area $= \int_{-1}^{1} y dx$ $= \int_{-1}^{1} x |x| dx = \left| \int_{-1}^{0} x^2 dx \right| + \left| \int_{0}^{1} x^2 dx \right|$ $= \left| \int_{-1}^{0} -x^2 dx \right| + \left| \int_{0}^{1} x^2 dx \right|$ $= \left| \left[\frac{-x^3}{3} \right]_{-1}^{0} \right| + \left| \left[\frac{x^3}{3} \right]_{0}^{1} \right|$ $= \left| -\left(-\frac{1}{3} \right) \right| + \frac{1}{3}$ $= \frac{2}{3} \text{ sq. units}$ Thus, the correct answer is C.

Question 18:

The area of the circle $x^2 + y^2 = 16$ exterior to the parabola $y^2 = 6x$ is

A.
$$\frac{4}{3}(4\pi - \sqrt{3})$$

B. $\frac{4}{3}(4\pi + \sqrt{3})$
C. $\frac{4}{3}(8\pi - \sqrt{3})$
D. $\frac{4}{3}(8\pi + \sqrt{3})$

Solution 18: The given equations are $x^{2} + y^{2} = 16...(1)$ $y^{2} = 6x...(2)$

$$=\frac{4}{3}\Big[4\sqrt{3}+6\pi-3\sqrt{3}-2\pi\Big]$$

$$=\frac{4}{3}\Big[\sqrt{3}+4\pi\Big]$$

$$=\frac{4}{3}\Big[4\pi+\sqrt{3}\Big] \text{ sq. units}$$

Area of circle = $\pi(r)^2$

$$=\pi(4)^2$$

$$=16\pi \text{ sq. units}$$

 \therefore Area of the circle $x^2 + y^2 = 16$ exterior to the parabola $y^2 = 6x$

$$= \text{Area of circle} -\frac{4}{3}\Big[4\pi+\sqrt{3}\Big]$$

$$=\pi(4)^2 - \frac{4}{3}\Big[4\pi+\sqrt{3}\Big]$$

$$=\frac{4}{3}\Big[4\times 3\pi - 4\pi - \sqrt{3}\Big]$$

$$=\frac{4}{3}\Big(8\pi - \sqrt{3}\Big) \text{ sq. units}$$

Thus, the correct answer is C.

Question 19:

The area bounded by the y-axis, $y = \cos x$ and $y = \sin x$ when $0 \le x \le \frac{\pi}{2}$

A. $2(\sqrt{2}-1)$ B. $\sqrt{2}-1$ C. $\sqrt{2}+1$ D. $\sqrt{2}$

Solution 19:

The given equations are $y = \cos x \dots (1)$ And, $y = \sin x \dots (2)$

