5. The IUPAC name of the complex, $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{2}$ is hexaamminenickel (II) chloride.
6. The complex, $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NO}_{2}\right]^{2+}$ exhibits linkage isomerism as NO_{2} group being an ambidentate ligand can bind to a metal atom either through N or O atom and, hence two different isomers are formed. These are: $\left[\mathrm{Co}(\mathrm{ONO})\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$ and $\left[\mathrm{CO}\left(\mathrm{NO}_{2}\right)\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$.

pentaamminenitrito-O-cobalt
(III) ion (Red)
$\left[\mathrm{CO}(\mathrm{ONO})\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$
Pentaamminenitrito-N-cobalt (III) ion (Yellow)
$\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$
7. The complex, $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Cl}$ exhibits ionisation isomerism as it gives two different ions when dissolve in water.
Its another ionisation isomer is $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{SO}_{4}$.
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Cl} \stackrel{\mathrm{H}_{2} \mathrm{O}}{\rightleftharpoons}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right]^{+}+\mathrm{Cl}^{-}$
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{SO}_{4} \stackrel{\mathrm{H}_{2} \mathrm{O}}{\rightleftharpoons}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}+\mathrm{SO}_{4}{ }^{2-}$
8. The complex, $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$ shows coordination isomerism which is caused by the interchange of ligands between the two complex ions. Its another coordination isomer is $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$.
9. The number of coordinating or ligating sites present in a ligand is called the denticity of that ligand. e.g. Oxalate ion (ox), COO^{-}or $\mathrm{O}=\mathrm{C}-\mathrm{O}^{-}$has a
denticity of two.
10. The IUPAC name of the complex, $\mathrm{K}_{3}\left[\mathrm{CrF}_{6}\right]$ is potassium hexafluorochromate (III).
11. The IUPAC name of the complex, $\left[\mathrm{PtCl}\left(\mathrm{NH}_{2} \mathrm{CH}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}$ is diamminechlorido methylamine platinum (II) chloride.
12. The IUPAC name of the complex, $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}_{2}$ is tetraamminedichlorido platinum (IV) chloride.
13. The IUPAC name of $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$ is hexaamminechromium (III) hexacyano cobaltate (IIIO)
14. The IUPAC name of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3}(\mathrm{NO}) \mathrm{Cl}_{2}\right] \mathrm{Br}_{2}$ is triamminedichloridonitrosylplatinum (IV) bromide. (1)
15. The IUPAC name of $\left[\mathrm{CO}(\mathrm{CN})_{2}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}$ is tetraamminedicyanocobalt (III) chloride.
16. The IUPAC name of $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{NCS})\right]\left[\mathrm{ZnCl}_{4}\right]$ is pentaammineisothiocyanato chromium (III) tetrachlorozincate (II).
17. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right] \mathrm{Cl}_{2}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{ONO})\right] \mathrm{Cl}_{2}$ are examples of linkage isomerism.
18. Coordination isomerism occurs when cation and anion both are complex ions and differ in the distribution of ligands in the cation and anion. e.g.
(i) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$ and

$$
\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CN})_{6}\right]
$$

(ii) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$ and

$$
\begin{equation*}
\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right] \tag{1}
\end{equation*}
$$

19. $\left[\mathrm{Co}(\mathrm{en})_{3}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$ and $\left[\mathrm{Cr}(\mathrm{en})_{3}\right]\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$ is an example of coordination isomerism.
20. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{SO}_{4}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{SO}_{4}\right)\right] \mathrm{Cl}$ is an example of ionisation isomerism.
21. The IUPAC name of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$ is pentaamminechloridocobalt (III) chloride. (1)
22. Ambidentate ligand Ligands which can ligate through two different atoms (with any one at a time) present in it are called ambidentate ligands. e.g. $\mathrm{NO}_{2}^{-}, \mathrm{SCN}^{-}, \mathrm{CNO}^{-}$, etc. NO_{2}^{-}can ligate through two sites, e.g.

23. [$\mathrm{Pt}(\mathrm{en})_{2} \mathrm{Cl}_{2}$]

IUPAC name : dichloridobis(ethylenediamine) platinum(II). Geometrical isomers of [Pt(en) ${ }_{2} \mathrm{Cl}_{2}$]are

24. (i) Hexaamminecobalt(III) sulphate $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(ii) Potassium trioxalatochromate (III) $\mathrm{K}_{3}\left[\mathrm{Cr}(\mathrm{Ox})_{3}\right]$ or $\mathrm{K}_{3}\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$
25. (i) Potassium trioxalatoaluminate (III) $\mathrm{K}_{3}\left[\mathrm{Al}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$
(ii) Dichloridobis(ethane-1, 2-diamine)cobalt (III) $\left[\mathrm{CoCl}_{2}(\mathrm{en})_{2}\right]^{+}$
26. (i) Sodium dicyanidoaurate (I)- $\mathrm{Na}\left[\mathrm{Au}(\mathrm{CN})_{2}\right]$ (1)
(ii) Tetraamminechlorido nitrito- N -platinum (IV) sulphate $\left[\mathrm{Pl}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}\left(\mathrm{NO}_{2}\right)\right] \mathrm{SO}_{4}$
27. IUPAC name is tetraamminedichlorido chromium (III) ion.

Isomerism It shows geometical isomerism and has two isomers cis and trans that can be represented as:

cis-form

trans-form
28. (i) The IUPAC name of the complex,
[$\left.\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$ is pentaamminechloridocobalt
(III) ion.
(ii) The formula for the complex, potassium tetrachloridonickelate (II) is $\mathrm{K}_{2}\left(\mathrm{NiCl}_{4}\right)$ -
29. (i) The IUPAC name of $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl} 2(\mathrm{en})\right] \mathrm{Cl}$ is diamminedichlorido (ethane-1, 2- diamine) chromium (III) chloride.
(ii) The formula for the complex, pentaamminenitrito-O-cobalt ion is $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{ONO})\right]^{2+}$.
30. (i) The IUPAC name of the complex, $\left[\mathrm{Cr}(e r)_{3}\right] \mathrm{Cl}_{3}$ is tris (ethane-1,2-diamine) chromium (III) chloride.
(ii) The formula for the complex, potassiumtrioxalatochromate (III) is $\mathrm{K}_{3}\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right.$ •
31. (i) $\left[\mathrm{CoCl}_{2}(\text { en })_{2}\right] \mathrm{Cl}$

IUPAC name Dichlorido bis-
(ethane-1, 2-diamine) cobalt (III) chloride(1/2)
Structures There are two possible structures of $\left[\mathrm{CoCl}_{2}(\mathrm{en})_{2}\right] \mathrm{Cl}$, one is cis and other is trans that can be represented as:

(ii) $\left.\mid \mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}\left(\mathrm{NO}_{2}\right)\right]$

IUPAC name
Diamminechloridonitrito- N -platinate (II). (1/2)

Structures
There are two structures of $\left[\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}\left(\mathrm{NO}_{2}\right)\right]$ be represented as:

Cis-form

Trans-form
32. (i) IUPAC name of $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$is
tetraammine dichloride chormium(III)

cis

trans
(ii) $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$

IUPAC name

Tris-(ethane-1,2-diamine) cobalt (III) ion.
(1/2)
Structure There are two optical isomers of $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$, one is dextro and other is laevo whose structures are :

33. IUPAC name of the following coordination compounds are:
(i) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right] \mathrm{Cl}_{2}$:

Tetraammineaquachloridocobalt (III) chloride (i)
(ii) $\left[\mathrm{CrCl}_{2}(\mathrm{en})_{2}\right] \mathrm{Cl}$:

Dichlorido bis-(ethane-1,2-diamine)
chromium (III) chloride.
10
34. (i) Refer to solution 5.
(ii) $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$: Potassium hexacyano ferrate (ili).
(iii) Refer to solution 32 (ii).
35. The IUPAC name of the following complexes is
(i) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$:

Hexaamminecobalt (III) chloride
(ii) $\left[\mathrm{NiCl}_{4}\right]^{2-}$: Tetrachloridonickelate (II) ion
(iii) $\mathrm{K}, \mathrm{Fe}(\mathrm{CN})_{n} \mathrm{~F}$
potassium hexacyanoferrate (III).
(i) $\left\{\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right]^{2+}$: It exhibits linkage isomerism. [For structures refer to solution 6.1 [1]
(ii) $\left[\mathrm{Co}(\mathrm{en})_{3}\right] \mathrm{Cl}_{3}$: It exhibits optical isomerism and exists in two forms: dextro and laew that can be represented as:

(1)
(iii) $\ \mathrm{Pl}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2} \mathrm{~F}$ It exhibits geometrical isomerism and exists in two geometrical forms. cis and trans. Their structures are:

cis-isomer
(Similar groups on adjacent positions)

trans-isomer (Similar groups on opposite positions)

37 (i) (i) $\left[\mathrm{Co}\binom{\mathrm{COO}}{\mathrm{COO}}_{3}^{3-}\right]^{3}$

IUPAC name Trioxalatocobaltate (III) ion

Structure

Here, ox refers to oxalate ion, COO^{-}
COO^{-}
(1/2)
(ii) $\left[\mathrm{Cr}(\mathrm{CO})_{6}\right]$

IUPAC name Hexacarbonylchromium(0) (1/2)

Structure

(iii) $\left[\mathrm{PtCl}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$

IUPAC name : Trichoridoctheneplatinum (IV)
Structure
(1/2)

(1/2)
38. The IUPAC name of the following giten complexes are:
 (III) chloride
(ii) $\mathrm{K}_{3} \mid \mathrm{Fe}(\mathrm{CN})_{0} \mathrm{l}$

Refer to solution 35 (iii).
(iii) $\left|\mathrm{NiCl}_{4}\right|^{2-}$

Refer to solution 35 (ii).
39. (i) $\left.\mid \mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$

It exhibits two optical foms dextre and hew, whose structures are:

Deatre

Mitror Law
(ii) $\left[\mathrm{PtCl}_{2}(\mathrm{en})_{2}\right]^{2+}$

It has two geometrical isomers, cis and thats isomers among which only cis-isomer shows optical isomerism. Their structures are:

Mirror
cis- $\left|\mathrm{PHCl}_{2}(\mathrm{eH})_{2}\right|^{2+}$ isomers (optically active)
NOTE The structure of trans $\left[\mathrm{Pt} \mathrm{Cl}_{2}(\mathrm{en})_{2}\right]^{2+}$ isomer is optically inactive due to superimposable mirror images.

(iii) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}(\mathrm{en})\right]^{+}$: Its two optical isomers may be represented as:

Dextro

(1)
40. The IUPAC name of the following given compounds is:
(i) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$

Triamminetrichloridochromium (III)
(ii) $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$

Refer to solution 34 (ii).
(iii) $\left[\mathrm{CoBr}_{2}(\mathrm{en})_{2}\right]^{+}$

Dibromido bis-(ethane-1,2 diamine) cobalt (III) ion.
4.t. (i) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{SO}_{4}$: It exhibits ionisation isomer. [For detail refer to solution 7]
(ii) $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$: It shows optical isomerism. [For detail refer to solution 36 (ii).]
(iii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$: It exhibit coordination isomerism
[For detail refer to solution 8].
42. (i) Double salts dissociate completely into their constituent simple ions when dissolve in water, i.e they lose their identity in aqueous solution.
e.g. $\mathrm{KCl} \cdot \mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} \longrightarrow$

$$
\mathrm{K}^{+}+\mathrm{Mg}^{2+}+3 \mathrm{Cl}^{-}+6 \mathrm{H}_{2} \mathrm{O}
$$

While coordination compounds do not dissociate into simple ions, i.e. they retain their identity both in solid state and in aqueous solutions. e.g. $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \longrightarrow 4 \mathrm{~K}^{+}+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
(ii) The IUPAC name of the following given complexes are:
(a) $\mathrm{K}_{3}\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$:

Potassiumtrioxalatoferrate (III)
(1/2)
(b) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{4}:$ Hexaammineplatinum (IV) chloride
(iii) The structure of cis-isomer of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$ion is:

(1)
43. Goomotrical isomors aro c/s = and' trath tomis, oplicalisomers aro d-and $/ \mathrm{F}$ Iorms (mirror ifnagoses), [$M(A)_{3}$]lype complox does not oxhibit geometrical isomorism, they show optical isomerism.
(i) $\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right),\right]^{3-}$

IUPAC name Trloxalatochromate (III) ion Possible isomers Optical isomers (d and $\|$
Structure

Dextro (d).form

Laevo (1)-form
(ii) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$

IUPAC name
Diamminedichloridoplatinum (II)
Possible isomers Geometrical isomers (cis and trans)

Structure

cis

trans
(i)
(iii) $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{+}$

IUPAC name Dichlorido bis -
(ethane-1,2 diamine) cobalt (III) ion Possible isomers Geometrical isomers (cis and trans)
Structure

cis-form

trans-form
cis $-\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{+}$is optically active and existsin dextro (d) and laevo (l) forms.

Laevo-form

24. (i) Refer to solution 43 (iii).
(ii) Refer to solution 43 (i)
(1)
(iii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$

IUPAC name Triamminetrichloridocobalt (III) Possible isomers Geometrical isomers [i.e. shows cis and trans isomers] Structure

cis or facial isomer
45. (i) $\left[\mathrm{Co}(\mathrm{en})_{3}\right] \mathrm{Cl}_{3}$:

trans or meridional isomer

IUPAC name : Tris - (ethane-1.2-diamine)
cobalt (III) chloride.

Isomers optical isomers (dextro and laevo forms)
Structure Refer to solution 36 (ii).
(ii) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3} \mathrm{Cl}_{2}\right]\right.$ Refer to solution 43 (ii).
(iii) $\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$

IUPAC name

Tetraamminedichloridoiron (III) chloride
Isomers Geometrical isomers (cis and trans) Structure

π interactions increase the value of $\Delta_{\boldsymbol{v}}$. This accounts for the position of this ligand as strong field ligand. Whereas Cl^{-}cannot form π bonds by back bonding. Hence, it is a weak field ligand. (1)
7. (i) Refer to solution 1.
(ii) IUPAC name of the complex $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}^{2} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right.$ is pentaaquachloridochromium (III) chloride.
8. (i) Refer to solution 2.
(ii) IUPAC name of the complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$ is hexaamminecobalt (III) chloride. In $\left[\mathrm{CoF}_{6}\right]^{3-}$, cobalt is in + 3oxidation state. F^{-}is a weak field ligand. It does not cause pairing. Therefore, cobalt undergoes $s p^{3} d^{2}$-hybridisation and have octahedral geometry.

$s p^{3} d^{2}$-hybridised
orbital in $\mathrm{Co}^{3+\mathrm{ion}}$

Six empty
-hybrid orbitals
Formation
of
$\left[\mathrm{CoF}_{6}\right]^{3+}$
ion
(1)
(ii) In $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$, nickel is in +2 oxidation state and has the electronic configuration $3 d^{8} 4 s^{\circ}$.
$\therefore \mathrm{Ni}^{2+}=$

As CN^{-}is a strong field ligand, pairing of electrons takes place and resulting in empty one $3 d$ orbital, one $4 s$ orbital and two $4 p$ orbitals which undergoes hybridisation to form four $d s p^{2}$-hybrid orbitals. These hybrid orbitals occupied by electron pairs of four CN^{-}ions.

$$
\begin{aligned}
& \therefore\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}= \\
& \qquad \begin{array}{|l|l|l|l|}
\hline \mathbb{L} \mid \mathbb{1} & |1| & 1 / & \underbrace{\underbrace{|c|}_{x \times|\times|\times x| \times x}}_{d s p^{2} \text {-hybridisation }}
\end{array}
\end{aligned}
$$

(1)

Thus, the hybridisation involved is $d s p^{2}$ and therefore, complex is square planar.
10. (i) As CO is a good σ-sigma donor and a good π-acceptor ligand, there exists a back bonding in CO complexes in which CO accepts an appreciable amount of electron density from the filled d-orbitals of metal atom into their empty π or π^{*} orbitals. These π interactions increase the value of Δ_{0}. Whereas NH_{3} can form only σ-bonds and no π-bonds with metals, therefore CO is a better complexing reagent than NH_{3}.
(ii) $\operatorname{In}\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$, Ni has oxidation state equal to zero and involves $s p^{3}$-hybridisation hence possesses a tetrahedral shape.

As CO is a strong field ligand, pairing of electrons occurs $3 d$

$s p^{3}$-hybridisation (4 electrons pair donated by 4 CO)
In $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$, the oxidation state of Ni is +2 and it involves $d s p^{2}$-hybridisation, hence, possesses a square planar structure.

As CN^{-}is also a strong field ligand, pairing of electrons occurs

11. (i) First find the electronic configuration of Co^{3+} and Co^{2+}. Then do pairing.
The electronic configuration of Co^{3+} is $3 d^{6} 4 s^{0}$. So, pairing occurs in the presence of a strong ligand. Thus, there are no unpaired electrons and it is highly stable.

In the presence of a strong ligand,

However, in Co^{2+}, electronic configuration is $3 d^{7}$, there is one unpaired electron even after pairing occurs in the presence of a strong ligand. $\mathrm{Co}^{2+}=3 u^{7}$,

In the presence of a strong ligand

This unpaired electron can be easily lost and
shows an oxidation state of +3 Hence, Co^{2+} is oxidised to more stable $\mathrm{C}_{0}{ }^{3+}$ II (ii) Refer to solution 10 (i).
12. When ligands approach a transition metal in ${ }_{a}$ definite geometry, the degenerate d-orbitals splits into two sets, one with lower energy and the other with higher energy. The difference of energy between the two sets of d-orbitals is calle
crystal field splitting energy. It is denoted by Δ_{v} (for octahedral complexes) and Δ_{t} (for tetrahedral complexes).
The magnitude of splitting decide the actual configuration of d-orbital in an octahedral field for a coordination entity as follows.
If $\Delta_{0}<P$ (P is the energy required for pairing of electrons) then fourth electron enters one of the e_{g} orbitals giving the configuration $t_{2 g}^{3} e_{g}^{1}$. It means first four orbitals are singly occupied and no pairing will take place, forming high spin complexes. Such ligands for which $\Delta_{0}<P$ are called weak field ligands.
If $\Delta_{0}>P$, the 4th electron pairs up in one of the $t_{2 g}$ orbitals giving the configuration $t_{2 g}^{4} e_{g}^{0}$ thereby forming low spin complexes. Such ligands for which $\Delta_{0}>P$ are called strong field ligands.
13. The equilibrium constant of each step of a complex reaction is called stepwise stability constant. Overall stability constant is the equilibrium constant for net reaction. The stepwise stability constant can be given as

$$
\begin{aligned}
& M+L \rightleftharpoons M L ; k_{1}=[M L] /[M][L] \\
& M L+L \rightleftharpoons M L_{2} ; k_{2}=\left[M L_{2}\right] /[M L][L] \\
& M L_{2}+L \rightleftharpoons M L_{3} ; k_{3}=\left[M L_{3}\right] /\left[M L_{2}\right][L] \\
& M L_{3}+L \rightleftharpoons M L_{4} ; k_{4}=\left[M L_{4}\right] /\left[M L_{3}\right][L]
\end{aligned}
$$

where, k_{1}, k_{2} etc. are referred as stepwise stabiling constants.
$M+4 L \rightleftharpoons M L_{4} ; \beta_{4}=\left[M L_{4}\right] /[M][L]^{4}$ where, β_{4} is the overall stability constant. Thus, stepwise stability constants and overd constants are related as

$$
\begin{aligned}
& \beta_{4}=k_{1} \times k_{2} \times k_{3} \times k_{4} \text { or more generally, } \\
& \beta_{n}=k_{1} \times k_{2} \times k_{3} \times k_{4} \ldots k_{n}
\end{aligned}
$$

14. For shape Refer to solution 9 (ii) Magnetic behaviour As all the electrons art paired, so it is diamagrietic in nature:

- מof shape kefer to solution 9 (1)

Napuetc behaviour As there are four unpaired detrins 0 it is paramagnetic in nature.
fa ${ }^{(1)}\left(\mathrm{Cr}^{(\mathrm{H}, \mathrm{O}}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2} 1$

$\left.\left.\mid \mathrm{CrH} \mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]=$

$P:$ oxalate is a bidentate ligand, one oxalate oxcupies two orbitals].
thus, hybridisation- $d^{2} s p^{3}$
Structure Octahedral
Magnetic behaviour Paramagnetic [as three unpaired electrons are present].
(1)
(ii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{en})_{2}\right]^{3+}$

Here, Co is present as $\mathrm{Co}^{3+}\left(3 d^{6}\right)$.
(en and NH_{3} are strong field ligands and thus, pair up the electrons of $3 d$-orbitals).
Thus, $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{en})_{2}\right]^{3+}=$

Hybridisation- $d^{2} s p^{3}$
Structure Octahedral
Magnetic nature Diamagnetic (as all the electrons are paired).
Note en is also a bidentate ligand.
17. (i) Crystal field splitting In a free transition metal ion, all the five d-orbitals are degenerate (having equal energies). But when ligand approaches a metal ion, this degeneracy splits due to repulsion of electrons of ligands and electrons of metal ions.

Thus, the splitting of degencrate levels (or orbitals) due to the presence of ligands in a definite geometry is known as crystal fleld splitting in an octahedral complex.
(ii) Spectrochemical series The arrangement of ligands in the order of increasing field strengths, i.e. Increasing crystal field splitting energy values is known as spectrochemical series.
$\mathrm{Br}^{-}<\mathrm{Cl}^{-}<\mathrm{F}^{-}<\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{en}<\mathrm{CN}^{-}<\mathrm{CO}$
18.

$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right) 6\right]^{3+}$ imnear orbital or

six pairs of electrons from six NH_{3} molecules

Magnetic behaviour Because of the absence of unpaired electrons it is diamagnetic.

19. (i) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$: outer configuration of ${ }_{26} \mathrm{Fe}$ atom $=[\mathrm{Ar}] 3 d^{6} 4 s^{2}$

$$
\begin{aligned}
& \mathrm{Fe}^{2+} \text { ion }=[\mathrm{Ar}] 3 d^{6} 4 s^{0}
\end{aligned}
$$

($\mathrm{H}_{2} \mathrm{O}$ being weak field ligands, they do not cause electron pairing).
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ ion

The complex is paramagnetic in nature as it has four unpaired electrons.
(ii) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$: Outer configuration of ${ }_{28} \mathrm{Ni}$ atom $=[\mathrm{Ar}] 3 d^{8} 4 \mathrm{~s}^{2}$

Ni^{2+} ion $=[\mathrm{Ar}] 3 d^{8} 4 s^{0}$

(CN^{-}being strong field ligand pair up the d-electrons of metal atom.)
$\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ ion $=$

The complex is diamagnetic in nature as it has no unpaired electrons.
20.

$\left[\mathrm{CoF}_{6}\right]^{3-}=$

$\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}=$

$3 d$

(i) $\left[\mathrm{CoF}_{6}\right]^{3-}$ is paramagnetic since it contains 4 unpaired electrons.
(ii) $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ is more stable since ethylenediamine (en) is a chelating ligand and thus forms more stable complex.

(iii) $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ forms inner orbital complex since ethylenediamine (en) is a strong ligand which pairs up the electrons of Co^{3+}.
(iv) $\left[\mathrm{COF}_{6}\right]^{3-}$ forms high spin complex as F^{-}could not pair up the electrons of Co^{3+} being a weak ligand.
21. Crystal field splitting energy Refer to Solution 12.
(i) $\Delta_{o}>P$, (pairing energy), the 4 th electron $\mathrm{paif}_{\text {up }}$ (I) in one of the $t_{2 g}$ orbitals giving the configuration $t_{29}^{4} e_{g}^{0}$
(ii) If $\Delta_{0}<P$ the 4 th electron enters one of the e_{e} II) orbitals giving the configuration $t_{2 g}^{3} e_{g}^{1}$.
22. (i) In $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}, \mathrm{Cr}$ is present as Cr^{3+}. It in formation can be depicted as

AsCl^{-}is a weak field so no pairing of electrons takes place. Thus, two $3 d$, one $4 s$ and three $4 p$-orbitals undergo hybridisation to form $d^{2} s p^{3}$-hybrid orbitals.
Among six $d^{2} s p^{3}$-hybrid orbitals, four orbitals occupied by electron pairs of four NH_{3} molecules, and two are occupied by electron pairs of two Cl^{-}-ions.

Thus, the shape of the complex is octahedral. Because of the presence of three unpaired electrons, it is paramagnetic in nature.

(ii) $\operatorname{In}\left[\mathrm{Co}(\mathrm{en})_{3}\right] \mathrm{Cl}_{3}, \mathrm{Co}$ is present as Co^{3+}. Co^{3+} ion $=$| 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- |$\quad \square$ en being a strong field ligand, pair up the electrons of $3 d$-orbital. Thus, $\left[\mathrm{Co}(\mathrm{en})_{3}\right] \mathrm{Cl}_{3}=$

[^0](iii) $\mathrm{N}, \mathrm{N}\left(\mathrm{CH} \mathrm{CN}_{4} 1\right.$
$\mathrm{mR}_{2} \mathrm{Ni}(\mathrm{CN})_{4} 1 \mathrm{Ni}$ is present in +2 oxidation

CN^{-}is a strong ficld ligand. It causes pairing of dectrons in d-orbitals.)
$\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}=$

shape Square planar
Magnetic nature Diamagnetic
(i) in case of Ni , electronic configuration of $\mathrm{Ni}=3 i^{8} 45^{2}$ and when it forms Ni^{2+} ion its electronic configuration becomes $34^{8} 4 s^{0}$.

For low spin complexes, electrons gets pair up. Thus, will produce only one empty d-orbital. Hence, $d^{2} s p^{3}$-hybridisation is not possible in Ni to form octahedral complexes.
(ii) The transition metals/ions have empty d-orbitals into which the electron pairs can be donated by ligands containing π-electrons (e.g. $\mathrm{CH}_{2}=\mathrm{CH}_{2}$ and $\mathrm{C}_{6} \mathrm{H}_{6}$, etc.) while, the other metals do not have empty d-orbitals, hence, complexes are formed only by transition metal atom/ion.
(iii) Refer to solution 11 (i)

Explanations

1. Fur hybridisation and shape, refer to solution 9 dtopicz.
IUPAC name is : Hexafluorocobaltate (III) ion.(2)
2 In $\left.\left[\mathrm{Co}_{2} \mathrm{NH}_{3}\right)_{0}\right]^{2+}$, Coexists as Co^{3+} ion. The
formation of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{0}\right]^{3+}$ can be explained as

NH, being a strong field ligand causes pairing of $3 d^{6}$ electrons resulting in empty two $3 d$, one $4 s$ and three 4 -orbitals which undergoes hybridisation to give six $d^{2} s p^{3}$-hybrid orbitals. These six empty d^{2} sp'-hyprid orbitals would be accommodated by
electron pairs of six NH_{3} molecules resulting in the formation of complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ ion. dsp 3-hybridised
orbitals of Ca^{3+}

Formation of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ ion

Six pairs of electrons from six NH_{3} molecules, $d^{2}{ }^{2} p^{3}$-hybridisation

It is inner orbital, low spin complex due to
$d^{2} s p^{3}$-hybridisation.
Thus, its shape is octahedral
(as it is $d^{2} s p^{3}$-hybridised).
IUPAC name is : Hexaamminecobalt (III) ion. (2)
3. (i) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl} \mid \mathrm{Cl}_{2}\right.$

IUPAC name Pentaamminechloridocobalt
(III) chloride.

Stereochemistry and magnetic behaviour

$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}=$

$1 d^{2} s p^{3}$-hybridisation
In $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$, NH_{3} being a strong field ligand causes pairing of electrons in d-orbitals of Co^{3+} ion.

Hence, the compound has $d^{2} s p^{3}$-hybridisation and octahedral shape. Since, all the electrons are paired, the complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$ is diamagnetic.
(ii) $\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$

IUPAC Name

Potassium tetracyanonickelate (III)
Stereochemistry and magnetic behaviour
[COF 6$]^{3-}$ Refer to solution 9(ii) of topic 2. (1)
4. (a) Iron (III) hexacyanoferrate (II) has formula$\mathrm{Fe}_{4}\left(\mathrm{Fe}(\mathrm{CN})_{6} \mathrm{l}_{3}\right.$
(b) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{SO}_{4}$ exhibit iondsation isomers. Its ionisation isomer is $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{SO}_{4}\right] \mathrm{Cl}$
(c) $\left[\mathrm{CoF}_{0}\right]^{3-}$: Oxidation state of cobalt is +3 .

Six pairs of electrons one from each F^{-}ion occupy the six hybrid orbitals. Thus, the complex has octahedral geometry $\left(s p^{3} d^{2}\right)$.
5. Linkage isomerism arises in a coordination
compound containing ambidentate ligand. Hence,
(i) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{SCN})\right]^{2+}$ exhibit linkage isomerism due to presence of SCN which is an
ambidentate ligand and can linked with metal either through N or S . $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SCN}\right]^{2+}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NCS}\right]^{2+}$
(ii) The complex in which one or more unpaired (1) electrons are present is paramagnetic while, those which does not contain any unpaired electron is diamagnetic.
 Oxidation state of Ni is +2 in both the complexes i.e. $\left[\mathrm{NiCl}_{4}\right]^{2-}$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$.

In case of $\left[\mathrm{NiCl}_{4}\right]^{2-}, \mathrm{Cl}^{-}$is a weak field ligand so pairing of electrons in $3 d$-orbital does not occur, hence compound is paramagnetic with two unpaired electrons. In $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}, \mathrm{CN}^{-}$is a strong field ligand, hence pairing occurs and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is diamagnetic.
(iii) For tetrahedral complexes, the crystal field stabilisation energy is lower than pairing energy, so they are rarely formed in low spin state.
6. (i) Refer to solution 36 (ii) of topic 1.
(ii) In $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$, cobalt is in +3 oxidation state
$\mathrm{Co}=|\mathrm{Ar}| 3 d^{\prime} 4 s^{2}$

As $\mathrm{C}_{2} \mathrm{O}_{4}$ is a strong, field Ifzand, paing of electrons will occur
$\left.1 \mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right|^{3 \cdots \mathrm{~ms}}$

Magnetic character $=$ Diamagnetic
(all clectrons are paired) (all electrons are paired)
(iii) IUPAC name of the complex $\left[\operatorname{Cr}\left(\mathrm{NH}_{2}\right) \mathrm{C}_{3}\right]$ Triamminctrichlorochromium (III).
7. (i) The type of isomerism exhibited by the $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$ is coordination isomerism. Here, both the positive and negative ions are complex ions. Isomerism may be caused by the interchange of ligands between the anion and cation. The two isomers are $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$ and $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$
(ii) Electronic configuration of $\mathrm{Ni}(Z=28)=[\operatorname{Ar}] 3 d^{3} 4 s^{2}$

Oxidation state of Ni is +2 in both $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$.

In case of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}, \mathrm{H}_{2} \mathrm{O}$ is a weak field ligand so pairing of electrons in $3 d$-orbital does not occur. These unpaired electrons get excied from a lower energy d-orbital to a higher energy d-orbital. Due to d - d transition, $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ possess green colour, whereas CN^{-}is a strong field ligand so pairing occurs and a solution of $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is colourless. Ia
(iii) The IUPAC name of the complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{CO}_{3}\right)\right] \mathrm{Cl}$ is
8. (i) In $[\mathrm{Fe}(\mathrm{CN})]^{3-}$ (III) chloride if Conf complex, Fe is present as Fe^{3+}. Configuration of $\mathrm{Fe}=[\mathrm{Ar}] 3 d^{6} 4 s^{2} 4 p^{0}$ Outer configuration of $\mathrm{Fe}^{3+}=3 d^{5}$

CN^{-}being strong field ligand, pair up the unpaired d-electrons. Thus, two $3 d$-orbitals are now available for CN^{-}ions.

Since, one electron remains unpaired, the complex is paramagnetic.
Moreover, $(n-1) d$-orbitals are involved in bonding. So, it is an inner orbital or low spin complex.
(ii) The complex, $\left[\mathrm{Pt}(\text { ent })_{2} \mathrm{Cl}_{2}\right]^{2+}$ contains two symmetrical didentate ligands, ethylenediamine (en) and exists in two geometrical isomers, cis and trans. Trans isomer being symmetrical does not show optical isomerism and hence, this isomer is optically inactive. While cis being unsymmetrical shows optical isomerism.

Hence, the structure of geometrical isomer (i.e. trans isomer) of the complex $\left[\mathrm{Pt}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{2+}$ which is optically inactive is as follows:

trans $\left(\mathrm{Pt}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{2+}$ isomer optically inactive
(Superimposable mirror images)
9. (i) $\operatorname{Irl}\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right]^{3+}\right.$, Fe exists in +3 oxidation state having a valence shell electronic configuration of $3 d^{3} 4 s^{0}$.

As $\mathrm{H}_{2} \mathrm{O}$ is a weak field ligand, electrons in $3 d$-subshell of Fe (III) ion will not pair up. Fe (III) ion uses its one $4 s$, three $4 p$ and two $4 d$ vacant orbitals for hybridisation and forms six $s p^{3} d^{2}$-hybrid orbitals which accommodates
' electrons from six $\mathrm{H}_{2} \mathrm{O}$ molecules, thus, forming $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ complex.
The complex, $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ involves $s p^{3} d^{2}$-hybridisation and thus, it is octahedral in shape.
Since, the complex possesses five unpaired electrons in $3 d$-orbitals of Fe , therefore, the complex $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is paramagnetic in nature. Further, Fe forms an outer orbital complex by using its outer. $4 d$-orbitals for $s p^{3} d^{2}$-hybridisation. As $\mathrm{H}_{2} \mathrm{O}$ is weak field ligand, pairing of electrons will not occur which means $\Delta_{0}<P$, hence, it is a high spin complex.
Thus, for the complex, $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$,
Hybridisation - $s p^{3} d^{2}$
Magnetic character Paramagnetic
Spin High spin complex
(ii) Refer to solution 8 (ii).
10. (i) The isomerism shown by the complex $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$ is hydrate or solvate isomerism. The hydrate isomers of the given complex are
(a) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

> Blue green (two ionisable chlorine)
(b) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}\right]_{2} \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O}$

Dark green (one ionisable chlorine)
Both isomers differ in the number of molecules of water in the coordination sphere.
(ii) Refer to solution 21 (i) of topic 2
(iii) Refer to solution 9 (i) of topic 2
(1)
11. (i) Refer to solution 36 (iii) of topic 1
(ii) Refer to solution 21 (ii) of topic 2
(iii) For shape and hybridisation Refer to solution 10 (ii) of topic 2.
The complex is diamagnetic as all the electrons are paired.
12. (i) The complex $\left[\mathrm{Pt}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{2+}$ has two gecometrical isomers that are cis and trans which can be shown as

cis-isomer

trans-isomer

NOTE cis-isomer shows optical isomerism.
(ii) Refer to solution 21 (i) of topic 2.
(iii) Refer to solution 9 (ii) of topic 2.
13. (i) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl} 2\right] \mathrm{Cl}$

IUPAC name

Tetraamminedichlorido chromium (III) chloride.
(ii) Refer to solution 32 (ii) of topic 1.
(iii) In the complex $\left[\mathrm{NiCl}_{4}\right]^{2-}, \mathrm{Ni}$ is in +2 oxidation state and has the configuration $3 d^{8} 4 s^{0}$. The Cl ${ }^{-}$ ion being a weak field ligand cannot pair up the two unpaired electrons present in 3d-orbitals. That means, $3 d$-orbitals are not involved in hybridisation. Thus, the complex is $s p^{3}$-hybridised (tetrahedral) and is paramagnetic in nature.
In the complex $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ the oxidation state of nickel is zero and outer electronic configuration is $3 d^{8} 4 s^{2}$. In the presence of strong field ligand CO, the $4 s$-electrons shifts to the two half-filled $3 d$-orbitals and make all the electrons paired. The valence $4 s$ and $4 p$-orbitals are involved in hybridisation. Thus, the complex is tetrahedral but diamagnetic: in
nature.
4. (i) The IUPAC name of $\left[\mathrm{NiCl}_{4}\right]^{2-}$ is tetrachloridonickelate (II) ion.
(ii) $s p^{3}$ hybridisation
[For detail refer to solution 13 (iii)tetrahedral.
15. (i)

Magnetic behaviour Diamagnetic .
(iii) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$

IUPAC name Tetracarbonylnickel (0)
Fo structure and magnetic behaviour
Refer to solution 10 (ii) of topic 2.
17. (i) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$

IUPAC name Hexacyanoferrate (II) ion
Structure Octahedral complex due to $d^{2} s p^{3}$-hybridisation.
(ii) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$

IUPAC name
Tetraamminedichloridochromium (III) ion

Structure

Octahedral complex due to $d^{2} s p^{3}$ hybridisation.
Inner orbital complex (as inner d-orbital is involve in hybridisation) [For detail refer to solution 22 (i) of topic 2]
(iii) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$

IUPAC name Tetracyanonickelate (II) ion
Structure Square planar complex due to $d s p^{2}$ hybridisation.
8. (i) The formula of the cationic complex is written as [metal symbol + ligand (with their number as subscript)] counter ion satisfying the valency of metal or oxidation state of complex. $\left[\mathrm{CoNH}_{3} \mathrm{Cl}(\mathrm{en})_{2}\right]^{3+}$
IUPAC name Ammine bis (ethane-1,
2-diamine) chloridocobalt (III) ion
$\mathrm{Co}^{3+}=3 d^{6} 4 s^{0}$

Number of unpaired electrons $=0$
So; the complex is diamagnetic.

NOTE The formula of the anionic complex is written as counter ion satisfying valency of metal [metal symbol + ligand (with their number as subscript)].
(ii) $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]^{2-}$

IUPAC name
Diaquadioxalatonickelate (II) ion
$\mathrm{Ni}^{2+}=3 d^{8} 4 s^{0}$

$s p^{3} d^{2}$-hybridisation
Number of unpaired electrons $=2$
So, the complex is paramagnetic.
19. (i) $\mathrm{K}_{4}\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]$

IUPAC name

Potassium hexacyano manganate (II)

$$
\begin{array}{rlrl}
& & {[1 \times 4+x+(-1) 6} & =0 \\
\Rightarrow \quad x & =+2]
\end{array}
$$

Stereochemistry In this complex Mn is present as Mn^{2+}.
$\mathrm{Mn}^{2+}=[\mathrm{Ar}] 3 d^{5}$
[CN^{-}being strong field ligand, causes pairing]
$\mathrm{K}_{4}\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]=$

\Rightarrow low spin, inner orbital complex
Thus, the structure of this complex is octahedral.
Magnetic behaviour Paramagnetic (as one unpaired electron is present in the above orbital formula).
(ii) Refer to solution 3 (i).
(iii) Refer to solution 3 (ii).
20. (i) $\left[\mathrm{Fe}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$

$$
\begin{aligned}
x+2 \times 0+(-1) 2 & =+1 \\
x & =+3
\end{aligned}
$$

Thus, the oxidation number of iron $=+3 \quad(1 / 2)$
(ii) In this complex, Fe is present as Fe^{3+} and en being a strong field ligand, causes pairing.

$d^{2} w^{3}$, octahedral geometry,
(1/2)
(iii) Pammagnetic (as it contains one umpalred election)
(1/2)
(iv) Tho seometrical isomers, cis and mans.

trans

cis
(v) Yes, cis isomer will have optical isomers, due to the non-superimposable mirror images. (1/2)
(vi) Dichlorido bis-(ethane 1, 2-diamine) iron (III) chloride.
21. (i) Refer to solution 21 of topic 1.
(ii) Refer to solution 9 of topic 1 .
(iii) Refer to solution 21 of topic 2.
!2. (i) $\left[\mathrm{CoCl}_{4}\right]^{2-}$
IUPAC name Tetrachloridocobalt (II) ion In $\left[\mathrm{CoCl}_{4}\right]^{2-}$, Co is in +2 state and has an outer electronic configuration of $3 d^{7} . \mathrm{Cl}^{-}$is a weak field ligand so, pairing of electrons will not occur.
$\left[\mathrm{CoCl}_{4}\right]^{2-}=$

Four pairs of electrons one from each Cl^{-}ion occupy the four $s p^{3}$-hybrid orbitals. Therefore, the complex has tetrahedral geometry and paramagnetic nature as it contains three unpaired electrons.
Thus,
Hybridisation - $s p^{3}$
Shape - Tetrahedral
Magnetic nature - Paramagnetic
(ii) $\left|\mathrm{Ni}(\mathrm{CN})_{4}\right|^{2}$

IUPAC name Tetracyanonickelate (II) lon Hybridlsation - $d s p^{2}$
Shape Square planar
Magnetic nature Diamagnetic
fror detail structure-refer to solution 14 of topic 2.1
(iII) $\mid \mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2} l^{-}$

IUPAC name

Diaquadioxalatochromate III ion
Hybridisation $-d^{2} s p^{3}$
Shape Octahedral
Magnetic behaviour Paramagnetic
(Por detailed structure, refer to sc ${ }^{1}$ ition 16 (i) of topic 2]
23. Reler to solution 19 (i).

【 Explanations(Objectives)

1. (b) $\left[\mathrm{CoF}_{6}\right]^{3-}$

Here, Co is present in +3 oxidation state

$$
{ }_{27} \mathrm{Co}=[\mathrm{Ar}] 3 d^{7}, 4 s^{2} \Rightarrow \mathrm{Co}^{3+}=[\mathrm{Ar}] 3 d^{6}, 4 s^{0}
$$

F being a weak ligand is unable to pair up its unpaired electrons thus, occupy $4 s, 4 p$, and $4 d$ empty orbitals as

Thus, there are 4 unpaired electrons.
2. (a) Magnetic moment, μ is related with number of unpaired electrons as

$$
\mu=\sqrt{n(n+2)} \mathrm{BM}(1.73)^{2}=n(n+2)
$$

On solving, $n=1$
Thus, the complex/compound having one unpaired electron exhibit a magnetic moment of 1.73 BM .
(a) In $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+} \mathrm{Cu}^{2+}=[\mathrm{Ar}] 3 d^{9}$

(Although in the presence of strong field ligand NH_{3}, the unpaired electrons gets excited to higher energy level but it still remains unpaired.)
(b) $\operatorname{In}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-} \mathrm{Ni}^{2+}=[\mathrm{Ar}] 3 d^{4}$

But CN^{-}being strong field ligand pair up the unpaired electrons and hence, in this complex, number of unpaired electrons $=0$
(c) $\operatorname{In}\left[\mathrm{TiCl}_{4}\right] \mathrm{Ti}^{2+}=[\mathrm{Ar}]$ no unpaired electron.
(d) $\operatorname{In}\left[\mathrm{CoCl}_{6}\right]^{4-} \mathrm{Co}^{2+}=[\mathrm{Ar}] 3 d^{7}$

It contains three unpaired electrons.
[Thus, $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ is the complex that exhibits a magnetic moment of 1.73 BM .]
3. (c) Coordination number $=$ number of monodentate ligands.

$$
\operatorname{In}\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{2+}
$$

Number of monodentate ligands $=4 \mathrm{NH}_{3}+2 \mathrm{Cl}^{-}=6$
4. (a) Oxidation state of $\mathrm{NH}_{3}=0$ and $\mathrm{NO}_{2}=-1$

So, $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{2}\right)_{3}\right]$

$$
\begin{aligned}
& x+(0) 3+(-1) 3=0 \Rightarrow x-3=0 \\
& x-3=0 \quad \Rightarrow \quad x=+3
\end{aligned}
$$

5. (c) The IUPAC name of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ is potassium ferricyanide or potassium hexacyanoferrate (III).
6. (a) The IUPAC name of $\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$ is potassium tetracyanonickelate (II).
7. (c) The existence of two different coloured complexes is due to geometrical isomerism as cis and trans forms are present.
8. (b) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3} \rightleftharpoons\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}+3 \mathrm{Cl}^{-}$ Hence, four ions are produced in the solution.
9. (a) Outer electronic configuration of Pt is $5 d^{9}, 6 s^{1}$.

Outer electronic configuration of Pt^{2+} is $5 d^{3}$. As $C N$ is strong field ligand, so pairing will lake place.

5d

Hence, there is no unpaired electron in the squate planar $\left[\mathrm{Pt}(\mathrm{CN})_{4}\right]^{2-}$ ion.
10. (b) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$

Let the oxidation number of Fe in $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3}$

$$
\begin{aligned}
x+(-1) \times 6 & =-3 \\
x-6 & =-3 \\
x & =+3
\end{aligned}
$$

IUPAC name is hexacyanoferrate (III) ion.
11. (a) The IUPAC name of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{ONO}\right]^{2+}$ is pentaamminenitritocobalt (III) ion.
12. (c) $\mathrm{Ni}(\mathrm{CO})_{4}$ and $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ are tetrahedral in geometrical shape, because coordination number of Ni is 4 in both cases.

[^0]: Shape Octahedral
 Magnetic nature Diamagnetic (as all the electrons are paired)

