Since, highest order derivative occurring in the differential equation is $\frac{d^{2} y}{d x^{2}}$ therefore order is 2 and as given equation can be expressed as a polynomial in derivatives so its degree is 1 , which is the power of $\frac{d^{2} y}{d x^{2}}$.
2. Do same as Q . No. I.
[Ans. Order $=2$ and degree $=2]$
3. Since highest order derivative occuring in the differential equation is $\frac{d^{2} y}{d x^{2}}$, therefore order is 2 and as the differential equation is not a polynomial in derivatives, therefore its degree is not defined.
(1)
4. Given, $\quad y=a e^{2 x}+5 \ldots$ (i)

Differentiating w.r.t. x, we get

$$
y^{\prime}=a e^{2 x} \cdot 2 \Rightarrow a e^{2 x}=\frac{y^{\prime}}{2} \Rightarrow y-5=\frac{y^{\prime}}{2}
$$

[from Eq. (i)]
$\Rightarrow \quad 2 y-10=y^{\prime} \Rightarrow y^{\prime}-2 y+10=0$,
which is the required equation.
5. Given equation of family of curves
$V=\frac{A}{r}+B$, where A and B are arbitrary constants.
On differentiating both sides w.r.t. r, we get

$$
\begin{equation*}
\frac{d V}{d r}=\frac{-A}{r^{2}}+0 \Rightarrow \frac{d V}{d r}=\frac{-A}{r^{2}} \tag{i}
\end{equation*}
$$

Now, again differentiating both sides w.r.t. r, we get

入 Solutions

1. Given differential equation is

$$
x^{2} \frac{d^{2} y}{d x^{2}}=\left\{1+\left(\frac{d y}{d x}\right)^{2}\right\}^{4}
$$

$$
\begin{array}{ll}
\quad \frac{d^{2} V}{d r^{2}}=\frac{2 A}{r^{3}} \\
\Rightarrow \quad & \frac{d^{2} V}{d r^{2}}=\frac{2}{r^{3}} \times\left(-r^{2} \frac{d V}{d r}\right) \tag{i}\\
\Rightarrow \quad & \frac{d^{2} V}{d r^{2}}=-\frac{2}{r} \frac{d V}{d r}
\end{array}
$$

Thus, the required differential equation is

$$
\frac{d^{2} V}{d r^{2}}+\frac{2}{r} \frac{d V}{d r}=0
$$

6. The degree of the differential equation is the degree of the highest order derivative, when differential coefficients are made free from radicals and fractions sign.
Given differential equation is $\frac{d}{d x}\left\{\left(\frac{d y}{d x}\right)^{3}\right\}=0$
$\Rightarrow \quad 3\left(\frac{d y}{d x}\right)^{3-1} \frac{d}{d x}\left(\frac{d y}{d x}\right)=0$
$\Rightarrow \quad 3\left(\frac{d y}{d x}\right)^{2} \frac{d^{2} y}{d x^{2}}=0$
Here, order $=2$ and degree $=1$
\therefore Sum of the order and degree $=2+1=3$
7. Given differential equation is

$$
\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\left(\frac{d y}{d x}\right)^{3}+x^{4}=0
$$

Here, we see that the highest order derivative is $\frac{d^{2} y}{d x^{2}}$, whose degree is 2 .
Here, order $=2$ and degree $=2$
\therefore Sum of the order and degree $=2+2=4$
8. Given equation of family of curves is $x y=C \cos x$.

On differentiating both sides w.r.t. x, we get

$$
\begin{align*}
& 1 \cdot y+x \frac{d y}{d x}=C(-\sin x) \tag{i}\\
\Rightarrow \quad & y+x \frac{d y}{d x}=-\left(\frac{x y}{\cos x}\right) \sin x \quad \text { [from Eq. (i)] } \\
\therefore \quad & y+x \frac{d y}{d x}+x y \tan x=0 \tag{1}
\end{align*}
$$

9. Given differential equation is

$$
\left(\frac{d y}{d x}\right)^{4}+3 x \frac{d^{2} y}{d x^{2}}=0
$$

Here, highest order derivative is $d^{2} y / d x^{2}$, whose degree is one. So, the degree of differential equation is 1 .
10. Do same as Q . No. 9 .
[Ans. 3]
11. Do same as Q. No. 9 .
[Ans. 1]
12. Given family of curves is $y=m x$.

On differentiating Eq. (i) w.r.t. x, we get

$$
\frac{d y}{d x}=m
$$

On putting $m=\frac{d y}{d x}$ in Eq. (i), we get

$$
\begin{equation*}
y=x \frac{d y}{d x} \tag{1}
\end{equation*}
$$

which is the required differential equation.
13. Do same as Q. No. 9 .
[Ans. 1]
14. Given, $y=e^{2 x}(a+b x)$

On differentiating both sides w.r.t. x, we get

$$
\begin{aligned}
& \\
\Rightarrow \quad \frac{d y}{d x} & =e^{2 x} \frac{d}{d x}(a+b x)+(a+b x) \frac{d}{d x} e^{2 x} \\
\Rightarrow \quad & \frac{d y}{d x}
\end{aligned}=e^{2 x}(b)+(a+b x) 2 \cdot e^{2 x}, ~ \quad y^{\prime}=b \cdot e^{2 x}+2 \cdot e^{2 x}(a+b x), \text { (ii) }
$$

Again differentiating w.r.t. x, we get

$$
y^{\prime \prime}=2 y^{\prime}+2 b e^{2 x}
$$

On multiplying Eq. (ii) by 2 and then subtracting from Eq. (iii), we get

$$
\begin{aligned}
y^{\prime \prime}-2 y^{\prime} & =2 y^{\prime}-4 y \\
y^{\prime \prime} & =2 y^{\prime}+2 y^{\prime}-4 y \\
y^{\prime \prime}-4 y^{\prime}+4 y & =0
\end{aligned}
$$

which is the required equation.
15. Given equation of farnily of curves is

$$
y=A \cdot e^{2 x}+B \cdot e^{-2 x}
$$

$y=A \cdot e^{2 x}+B \cdot e^{-2 x}$
Differentiating Eq. (i) w.r.t. x, we get

$$
\begin{equation*}
\frac{d y}{d x}=2 A \cdot e^{2 x}-2 B \cdot e^{-2 x} \tag{ii}
\end{equation*}
$$

Again differentiating eq. (ii) w.r.t. x, we get

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =4 A e^{2 x}+4 B e^{-2 x} \\
& =4\left(A e^{2 x}+B e^{-2 x}\right) \\
\Rightarrow \quad \frac{d^{2} y}{d x^{2}} & =4 y \Rightarrow \frac{d^{2} y}{d x^{2}}-4 y=0
\end{aligned}
$$

which is the required equation.
16. We have, $y=a e^{b x+5}$

On differentiating both sides w.r.t. x, we get $\frac{d y}{d x}=a e^{b x+5} \cdot b \Rightarrow \frac{d y}{d x}=b y$ [using Eq. (i)] ...(ii) if
Again, on differentiating both sides w.r.t. x, we get

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=b \frac{d y}{d x} \\
& \Rightarrow \quad \frac{d^{2} y}{d x^{2}} \\
& \Rightarrow \quad\left(\frac{1}{y} \cdot \frac{d y}{d x}\right)\left(\frac{d y}{d x}\right) \quad \text { [using Eq. (i)] } \\
& \Rightarrow \quad \frac{d^{2} y}{d x^{2}}=\frac{1}{y}\left(\frac{d y}{d x}\right)^{2}
\end{aligned}
$$

$\Rightarrow y \frac{d^{2} y}{d x^{2}}-\left(\frac{d y}{d x}\right)^{2}=0$.
which is the required differential equation.

The equation of family of circles in second quadrant, which touch the coordinate axes, is $(x+a)^{2}+(y-a)^{2}=a^{2}$, where a is radius of
$\mathcal{L e t}^{\text {a }}$ be the radius of family of circles in the second quadrant, which touch the coordinate axes.

Then, coordinates of centre of circle $=(-a, a)$. we know that, equation of circle whose centre (h, k) and radius r is given by

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

Here, $(h, k)=(-a, a)$ and $r=a$
\therefore Equation of family of such circles is

$$
\begin{equation*}
(x+a)^{2}+(y-a)^{2}=a^{2} \tag{i}
\end{equation*}
$$

On differentiating both sides w.r.t. x, we get

$$
\begin{align*}
2(x+a)+2(y-a) \frac{d y}{d x} & =0 \\
\Rightarrow \quad x+a+(y-a) \cdot y^{\prime} & =0 \quad\left[\because \frac{d y}{d x}=y^{\prime}\right] \\
\Rightarrow x+y y^{\prime}=-a+a y^{\prime} \Rightarrow a & =\frac{x+y y^{\prime}}{-1+y^{\prime}} \tag{1}
\end{align*}
$$

On putting above value of a in Eq. (i), we get
$\left[x+\frac{x+y y^{\prime}}{y^{\prime}-1}\right]^{2}+\left[y-\frac{x+y y^{\prime}}{y^{\prime}-1}\right]^{2}=\left(\frac{x+y y^{\prime}}{y^{\prime}-1}\right)^{2}$
$\Rightarrow\left[\frac{x y^{\prime}-x+x+y y^{\prime}}{y^{\prime}-1}\right]^{2}+\left[\frac{y y^{\prime}-y-x-y y^{\prime}}{y^{\prime}-1}\right]^{2}$

$$
=\left(\frac{x+y y^{\prime}}{y^{\prime}-1}\right)^{2}
$$

On multiplying both sides by $\left(y^{\prime}-1\right)^{2}$, we get

$$
\left.\begin{array}{rlrl}
& & \left(x y^{\prime}+y y^{\prime}\right)^{2}+(y+x)^{2} & =\left(x+y y^{\prime}\right)^{2} \\
\Rightarrow & & (x+y)^{2}\left(y^{\prime}\right)^{2}+(x+y)^{2} & =\left(x+y y^{\prime}\right)^{2} \\
& \therefore & & (x+y)^{2}\left[\left(y^{\prime}\right)^{2}+1\right]
\end{array}=\left(x+y y^{\prime}\right)^{2}\right)
$$

which is the required differential equation
10. We know that, equation of parabola having vertex at origin and axis along positive Y-axis is $x^{2}=4 a y$, where a is the parameter.

On differentiating Eq. (i) w.r.t. ' x ', we get

$$
\Rightarrow \quad\left[\begin{array}{rl}
2 x=4 a y^{\prime} \\
\Rightarrow & 4 a=\frac{2 x}{y^{\prime}} \tag{ii}
\end{array}\right.
$$

On substituting the value of $4 a$ from Eq. (ii) to
Eq. (i), we get

$$
x^{2}=\frac{2 x}{y^{\prime}} y
$$

$\Rightarrow x y^{\prime}-2 y=0$, which is the required differential equation.
19.

The equation of family of circles touching
y-axis at origin is given by $(x-a)^{2}+y^{2}=a^{2}$, where a is radius of circle.
Differentiate this equation once, as one arbitrary constant is present in the equation and eliminate a.

Lat a be the radius of family of circles which touch Y-axis at origin.
\therefore Centre of circle $=(a, 0)$
Now, equation of family of circles with centre ($a, 0$) and radius a is

$$
(x-a)^{2}+y^{2}=a^{2}
$$

[putting $(h, k)=(a, 0)$ and $r=a$
in $\left.(x-h)^{2}+(y-k)^{2}=r^{2}\right]$

$$
\begin{align*}
\Rightarrow & x^{2}+a^{2}-2 a x+y^{2} & =a^{2} \tag{1}\\
\Rightarrow & x^{2}-2 a x+y^{2} & =0 \tag{i}
\end{align*}
$$

On differentiating both sides w.r.t. x, we get

$$
\begin{align*}
2 x-2 a+2 y \frac{d y}{d x} & =0 \\
\Rightarrow \quad a & =x+y \frac{d y}{d x} \tag{1}
\end{align*}
$$

On putting above value of a in Eq. (1), we get

$$
\begin{array}{ll}
& x^{2}+y^{2}-2\left(x+y \frac{d y}{d x}\right) x=0 \\
\Rightarrow & x^{2}+y^{2}-2 x^{2}-2 x y \frac{d y}{d x}=0 \\
\Rightarrow & 2 x y \frac{d y}{d x}+x^{2}-y^{2}=0
\end{array}
$$

which is the required differential equation.
20. Let a be the radius of family of circles which touch X-axis at origin.

\therefore Centre of circle $=(0, a)$
Now, equation of family of such circles is

$$
\begin{equation*}
x^{2}+(y-a)^{2}=a^{2} \tag{1}
\end{equation*}
$$

[putting $(h, k)=(0, a)$ and $r=a$

$$
\begin{equation*}
\text { in } \left.(x-h)^{2}+(y-k)^{2}=r^{2}\right] \tag{i}
\end{equation*}
$$

$\Rightarrow \quad x^{2}+y^{2}-2 a y=0$
On differentiating both sides w.r.t. x, we get

$$
\begin{array}{rlrl}
& & 2 x+2 y \frac{d y}{d x}-2 a \frac{d y}{d x} & =0 \\
\Rightarrow & x+y \frac{d y}{d x}-a \frac{d y}{d x} & =0 \quad & \text { [divide by 2] (1] } \\
\Rightarrow & x+y y^{\prime}-a y^{\prime} & =0 \quad\left[\text { where, } y^{\prime}=\frac{d y}{d x}\right] \\
\Rightarrow & a & =\frac{x+y y^{\prime}}{y^{\prime}} \tag{1}
\end{array}
$$

On putting above value of a in Eq. (i), we get

$$
\begin{array}{rlrl}
& x^{2}+y^{2}-2 y\left(\frac{x+y y^{\prime}}{y^{\prime}}\right) & =0 \\
\Rightarrow & & x^{2} y^{\prime}+y^{2} y^{\prime}-2 x y-2 y^{2} y^{\prime} & =0 \\
\Rightarrow & & x^{2} y^{\prime}-2 x y-y^{2} y^{\prime} & =0 \\
\Rightarrow & & y^{\prime}\left(x^{2}-y^{2}\right) & =2 x y \\
\therefore & & y^{\prime}=\frac{2 x y}{x^{2}-y^{2}} \text { or } \frac{d y}{d x} & =\frac{2 x y}{x^{2}-y^{2}}
\end{array}
$$

which is the required differential equation.
21. Do same as Q. No. 17 .

Hint Equation of family of circles in the first quadrant which touch the coordinate axes is

$$
(x-a)^{2}+(y-a)^{2}=a^{2}
$$

[Ans. $\left.(x-y)^{2}\left[(y)^{2}+1\right]=(x+y y)^{2}\right]$
22. $\begin{aligned} & \text { The equation of family of ellipses having foci on } \\ & x \text {-axis and centre at origin is } \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b .\end{aligned}$

Differentiate this equation two times and eliminate two arbitrary constants a and b to get the required result.
We know that, the equation of family of ellipse having foci on X-axis and centre at origin is given by

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, \quad \text { where } a>b \quad \cdots \text { (i) }(x)
$$

On differentiating both sides of Eq. (i) w.r.t. x, we get

$$
\begin{array}{rlrl}
& & \frac{2 x}{a^{2}}+\frac{2 y y^{\prime}}{b^{2}} & =0 \\
\Rightarrow & \quad \frac{x}{a^{2}} & =\frac{-y y^{\prime}}{b^{2}} \\
\Rightarrow & \frac{y y^{\prime}}{x} & =\frac{-b^{2}}{a^{2}} &
\end{array}
$$

Again, on differentiating both sides of Eq. (ii) w.r.t. x, we get

$$
\frac{\left[x \cdot \frac{d}{d x}\left(y y^{\prime}\right)-y y^{\prime} \cdot \frac{d}{d x}(x)\right]}{x^{2}}=0
$$

$$
\left[\begin{array}{l}
\text { using quotient rule of derivative } \\
\text { in LHS and } \frac{d}{d x}\left(\frac{-b^{2}}{a^{2}}\right)=0
\end{array}\right]
$$

$$
\begin{gathered}
\Rightarrow \quad x\left[y \cdot \frac{d}{d x}\left(y^{\prime}\right)+y^{\prime} \cdot \frac{d}{d x}(y)\right]-y y^{\prime} \cdot 1=0 \\
\Rightarrow \quad x\left[y y^{\prime \prime}+y^{\prime} y^{\prime}\right]-y y^{\prime}=0 \\
{\left[\because \frac{d}{d x}\left(y^{\prime}\right)=y^{\prime \prime} \text { and } \frac{d}{d x}(y)=y^{\prime}\right]}
\end{gathered}
$$

$$
\begin{array}{lr}
\Rightarrow & x y y^{\prime \prime}+x\left(y^{\prime}\right)^{2}-y y^{\prime}=0 \\
\therefore & x y \frac{d^{2} y}{d x^{2}}+x\left(\frac{d y}{d x}\right)^{2}-y \frac{d y}{d x}=0
\end{array}
$$

which is the required differential equation.

$\boxed{\int}$ Solutivis

1. First, write the given differential equation in the form of $\frac{d y}{d x}+P y=Q$. Then, determine integrating factor by using formula, IF $=e^{\int P d x}$

Given differential equation can be rewritten as

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{c^{-2 \sqrt{x}}}{\sqrt{x}}-\frac{y}{\sqrt{x}} \\
\Rightarrow \quad \frac{d y}{d x}+\frac{y}{\sqrt{x}} & =\frac{r^{-2 \sqrt{x}}}{\sqrt{x}}
\end{aligned}
$$

which is a linear differential equation of the form $\frac{d y}{d x}+P y=Q$, here $P=\frac{1}{\sqrt{x}}$ and $Q=\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}$.
\therefore Integrating Factor, IF $=e^{\int n d x}=e^{\int \frac{1}{\sqrt{x}} d}=e^{2 \sqrt{x}}$ io
2. Given differential equation is

$$
\left(1+y^{2}\right)+(2 x y-\cot y) \frac{d y}{d x}=0
$$

The above equation can be rewritten as

$$
\begin{aligned}
& (\cot y-2 y) \frac{d y}{d x} & =1+y^{2} \\
\Rightarrow & \frac{\cot y-2 x y}{\left(1+y^{2}\right)} & =\frac{d x}{d y} \\
\Rightarrow & \frac{d x}{d y} & =\frac{\cot y}{1+y^{2}}-\frac{2 x y}{1+y^{2}}
\end{aligned}
$$

$$
\frac{d x}{d y}+\frac{2 y}{1+y^{2}} \cdot x=\frac{\cot y}{1+y^{2}}
$$

(1/2)
which is a linear differential equation of the form $\frac{i}{d}+P X=Q$ here $P=\frac{2 y}{1+y^{2}}$ and $Q=\frac{\cot y}{1+y^{2}}$.
Now, integrating factor $=e^{\int P d y}=e^{\int \frac{2 y}{1+y^{2}} d y}$
put

$$
1+y^{2}=t
$$

$\Rightarrow \quad 2 y d y=d t$
$\therefore \quad \mathrm{IF}=e^{\int \frac{t}{t}}=e^{\log |t|}=t=1+y^{2}$
3. Giver differential equation is

$$
\frac{d y}{d x}=2^{-y}
$$

On separating the variables, we get

$$
2^{y} d y=d x
$$

On integrating both sides, we get

$$
\begin{aligned}
& \int 2^{y} d y \\
= & \frac{2^{y}}{\log 2} \\
= & x+C_{1} \\
\Rightarrow \quad & 2^{y}
\end{aligned}=x \log 2+C_{1} \log 2
$$

$\therefore \mathbf{2}^{y}=x \log 2+C$,
where $C=C_{1} \log 2$
4. Given differential equation is

$$
\frac{d y}{d x}=x^{3} e^{-2 y}
$$

On separating the variables, we get

$$
e^{2 y} d y=x^{3} d x
$$

On integrating both sides, we get

$$
\begin{align*}
& & \int e^{2 y} d y & =\int x^{3} d x \\
\Rightarrow & & \frac{e^{2 y}}{2} & =\frac{x^{4}}{4}+C_{1}=2 e^{2 y}=x^{4}+4 C_{1} \\
\therefore & & 2 e^{2 y} & =x^{4}+C, \text { where } C=4 C_{1} \tag{1}
\end{align*}
$$

5. The given differential equation is

$$
\begin{aligned}
& \frac{d y}{d x}=e^{x+y} \Rightarrow \frac{d y}{d x}=e^{x} \cdot e^{y} \\
\Rightarrow & d y=e^{x} \cdot e^{y} d x \Rightarrow e^{-y} d y=e^{x} d x \\
\Rightarrow & \int e^{-y} d y=\int e^{x} d x \\
\Rightarrow & -e^{-y}=e^{x}+C
\end{aligned}
$$

which is the required solution.
6. Given equation is $\cos \left(\frac{d y}{d x}\right)=a$
which can be rewritten as $\frac{d y}{d x}=\cos ^{-1} a$
$\Rightarrow \quad d y=\cos ^{-1} a d x$
$\Rightarrow \quad \int d y=\int \cos ^{-1} a d x$
$\Rightarrow \quad y=\cos ^{-1} a \cdot x+C$
which is the required solution.
7. We have, $(x+1) \frac{d y}{d x}=2 e^{-y}-1$
$\begin{array}{ll}\Rightarrow & (x+1) d y=\left(2 e^{-y}-1\right) d x \\ \Rightarrow & \frac{1}{x+1} d x=\frac{1}{2 e^{-y}-1} d y\end{array}$
[separating the variables]
$\Rightarrow \quad \int \frac{1}{x+1} d x=\int \frac{1}{22^{-y}-1} d y$
$\Rightarrow \quad \int \frac{1}{x+1} d x=\int \frac{e^{y}}{2-e^{y}} d y$
$\Rightarrow \quad \int \frac{1}{x+1} d x=-\int \frac{e^{y}}{e^{y}-2} d y$
$\Rightarrow \quad \log |x+1|=-\log \left|e^{y}-2\right|+\log C$
$\Rightarrow \quad \log |x+1|+\log \left|e^{y}-2\right|=\log C$
$\Rightarrow \quad \log \left|(x+1)\left(e^{y}-2\right)\right|=\log C$
$\Rightarrow \quad\left[(x+1)\left(e^{y}-2\right)\right]=C$
(11/2)
It is given that $y(0)=0$ i.e., $y=0$ when $x=0$.
Putting $x=0$ and $y=0$ in Eq. (i), we get

$$
\begin{equation*}
|(0+1)(1-2)|=C \Rightarrow C=-1 \tag{1/2}
\end{equation*}
$$

Putting $C=-1$ in Eq. (i), we get

$$
\begin{aligned}
& \left|(x+1)\left(e^{y}-2\right)\right|=-1 \\
\Rightarrow & (x+1)\left(e^{y}-2\right)= \pm 1 \\
\Rightarrow & \quad e^{y}-2=-\frac{1}{x+1} \Rightarrow e^{y}=\left(2-\frac{1}{x+1}\right) \\
\Rightarrow & y=\log \left(2-\frac{1}{x+1}\right)
\end{aligned}
$$

which is the required solution.
8. Given differential equation is

$$
\begin{array}{rlrl}
x d y-y d x & =\sqrt{x^{2}+y^{2}} d x \\
\Rightarrow & & \left(y+\sqrt{x^{2}+y^{2}}\right) d x & =x d y \\
\Rightarrow & & \frac{d y}{d x} & =\frac{y}{x}+\sqrt{1+\frac{y^{2}}{x^{2}}} \tag{i}
\end{array}
$$

which is a homogeneous differential equation as $\frac{d y}{d x}=F\left(\frac{y}{x}\right)$.
On putting $y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$

$$
\begin{align*}
& \text { in Eq. (i), we get } \\
& \qquad v+x \frac{d v}{d x}=v+\sqrt{1+v^{2}} \\
& \Rightarrow \quad x \frac{d v}{d x}=\sqrt{1+v^{2}} \Rightarrow \frac{d v}{\sqrt{1+v^{2}}}=\frac{d x}{x} \tag{1}
\end{align*}
$$

On integrating both sides, we get

$$
\begin{equation*}
\therefore y+\sqrt{x^{2}+y^{2}}=A x^{2}, \tag{iii}
\end{equation*}
$$

where $A=e^{c}$
Now, as $y=0$, when $x=1$

$$
\therefore \quad 0+\sqrt{1^{2}+0^{2}}=A \cdot 1 \Rightarrow A=1
$$

Put the value of A, in Eq. (iii), we get

$$
y+\sqrt{x^{2}+y^{2}}=x^{2}
$$

which is the required solution
9. Given, differential equation is

$$
\begin{aligned}
\quad & \left.1+x^{2}\right) \frac{d y}{d x}+2 x y-4 x^{2}=0 \\
\Rightarrow \quad & \frac{d y}{d x}+\frac{2 x}{1+x^{2}} y=\frac{4 x^{2}}{1+x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{d v}{\sqrt{1+v^{2}}}=\int \frac{d x}{x} \\
& \Rightarrow \quad \log \left|v+\sqrt{1+v^{2}}\right|=\cdot \log |x|+C \\
& {\left[\because \int \frac{d x}{\sqrt{a^{2}+x^{2}}}=\log \left|x+\sqrt{x^{2}+a^{2}}\right|\right.} \\
& \text { and } \left.\int \frac{d x}{x}=\log |x|\right] \\
& \Rightarrow \log \left|\frac{y}{x}+\sqrt{1+\frac{y^{2}}{x^{2}}}\right|=\log |x|+C \quad\left[\text { put } v=\frac{y}{x}\right](1) \\
& \Rightarrow \quad \log \left|\frac{y+\sqrt{x^{2}+y^{2}}}{x}\right|-\log |x|=C \\
& \Rightarrow \quad \log \frac{\left|\frac{y+\sqrt{x^{2}+y^{2}}}{x}\right|}{x}=C \\
& {\left[\because \log m-\log n=\log \left(\frac{m}{n}\right)\right]} \\
& \Rightarrow \quad \frac{y+\sqrt{x^{2}+y^{2}}}{x^{2}}=e^{c}\left[\begin{array}{l}
\text { if } \log y=x_{1} \\
\text { then } y=e^{x}
\end{array}\right] \\
& \Rightarrow \quad y+\sqrt{x^{2}+y^{2}}=x^{2} \cdot e^{c}
\end{aligned}
$$

which is the equation of the form

$$
\frac{d y}{d x}+P y=Q
$$

where $P=\frac{2 x}{1+x^{2}}$ and $Q=\frac{4 x^{2}}{1+x^{2}}$
Now, IF $=e^{\int \frac{2 x}{1+x^{2}} d x}=e^{\log \left(1+x^{2}\right)}=1+x^{2}$
The general solution is

$$
\begin{array}{ll}
& y \cdot\left(1+x^{2}\right)=\int\left(1+x^{2}\right) \frac{4 x^{2}}{\left(1+x^{2}\right)} d x+C \tag{III}\\
\Rightarrow \quad & \left(1+x^{2}\right) y=\int 4 x^{2} d x+C \\
\Rightarrow \quad & \left(1+x^{2}\right) y=\frac{4 x^{3}}{3}+C \\
\Rightarrow \quad & y=\frac{4 x^{3}}{3\left(1+x^{2}\right)}+C\left(1+x^{-},-1 \ldots(i)\right. \\
\text { Now, } y(0)=0 \\
\Rightarrow \quad & 0=\frac{4 \cdot 0^{3}}{3\left(1+0^{2}\right)}+C\left(1+0^{2}\right)^{-1} \Rightarrow C=0
\end{array}
$$

Put the value of C in Eq. (i), we get

$$
\begin{equation*}
y=\frac{4 x^{3}}{3\left(1+x^{2}\right)} \tag{1/2}
\end{equation*}
$$

which is the required solution.
10. $\frac{d y}{d x}-\frac{2 x}{1+x^{2}} y=x^{2}+2$

This is a linear differential equation with

$$
\begin{align*}
& P=\frac{-2 x}{1+x^{2}} \text { and } Q=x^{2}+2 \\
& \therefore \quad \mathrm{IF}=e^{\int \frac{-2 x}{x^{2}+1} d x} \\
&=e^{-\int \frac{2 x}{x^{2}+1} d x}=e^{-\log \left(x^{2}+1\right)}=\frac{1}{x^{2}+1} \\
& \therefore \quad y \cdot \frac{1}{\left(x^{2}+1\right)}=\int\left(x^{2}+2\right) \cdot \frac{1}{\left(x^{2}+1\right)} d x+C \\
& \Rightarrow \quad \quad \frac{y}{x^{2}+1}=\int \frac{\left(x^{2}+1\right)+1}{x^{2}+1} d x+C \\
& \Rightarrow \quad \frac{y}{x^{2}+1}=\int 1 d x+\int \frac{1}{x^{2}+1} d x+C \tag{i}\\
& \Rightarrow \quad \frac{y}{x^{2}+1}=x+\tan ^{-1} x+C \\
& \Rightarrow y=x\left(x^{2}+1\right)+\left(\tan ^{-1} x\right)\left(x^{2}+1\right)+C^{\prime}
\end{align*}
$$

$$
\left[\because C^{\prime}=c \cdot\left(x^{2}+1\right)\right](n)
$$

fr oiven differembal equation io

$$
\begin{align*}
& x \frac{d y}{d x}-y=x \tan \binom{y}{x} \rightarrow \frac{d y}{d x}-\frac{y}{d \tan \binom{y}{x}} \\
& d x-y \tag{i}\\
& d x \operatorname{lan}\binom{y}{x}
\end{align*}
$$

which is a
$d y-1 \prime\binom{y}{x}$
$d x$
On puting $y=v x \rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x} \ln$ Bq. (i),
we get

$$
\begin{align*}
v+x \frac{d v}{d x} & =v=\tan v \Rightarrow x \frac{d v}{d x}=-\tan v \tag{1}\\
d v & =\frac{d x}{x} \\
\tan v & \cot v d v=-\frac{d x}{x} \quad\left[\because \frac{1}{\tan v}=\cot v\right] \tag{1}
\end{align*}
$$

On integrating both sides, we get

$$
\begin{equation*}
\int \cot v d v=-\int \frac{d x}{x} \tag{1}
\end{equation*}
$$

$\Rightarrow \quad \log |\sin v|=-\log |x|+C$
$\because \because \int \cot v d v=\log |\sin v| \mid$
$\Rightarrow \quad \log |\sin v|+\log |x|=C$
$\Rightarrow \quad \log |x \sin v|=C$
$[\because \log m+\log n=\log m n]$
$\therefore \quad \log \left|x \sin \frac{y}{x}\right|=C \quad\left[p u t v=\frac{y}{x}\right]$
$\Rightarrow x \sin \frac{y}{x}=e^{c}$
$\Rightarrow x \sin \frac{y}{x}=A$
$\left[\because e^{G}=A\right]$
$\Rightarrow \sin \frac{y}{x}=\frac{A}{x} \Rightarrow y=x \sin ^{-1}\left(\frac{A}{x}\right)$.
which is the required solution.
12. Given, $\frac{d y}{d x}=-\frac{x}{1+\sin x}-\frac{y \cos x}{1+\sin x}$

$$
\begin{equation*}
\text { or } \quad \frac{d y}{d x}+\frac{y \cos x}{1+\sin x}=-\frac{x}{1+\sin x} \tag{i}
\end{equation*}
$$

which is in the linear form, $\frac{d y}{d x}+P y=Q$, where

$$
\begin{equation*}
P=\frac{\cos x}{1+\sin x}, Q=-\frac{x}{1+\sin x} \tag{1/2}
\end{equation*}
$$

Now, IF $=e^{\int \frac{\cos x}{1+\sin x} d x}=e^{\log (1+\sin x)}=1+\sin x$ (1)
and the gencral solution is
$y(1+\sin x)=\int-x d x+C$

$$
\left.f \because y \cdot(I F)=\int Q \cdot(I F) d x+C\right](W z)
$$

$$
\Rightarrow y(0+\sin x)=-\frac{x^{2}}{2}+C
$$

13. Given differential equation is

$$
e^{x} \tan y d x+\left(2-e^{x}\right) \sec ^{2} y d y=0
$$

which can be rewritten as

$$
\begin{array}{cc}
& e^{x} \tan y d x=\left(e^{x}-2\right) \sec ^{2} y d y \\
\Rightarrow \quad & \frac{\sec ^{2} y}{\tan y} d y=\frac{e^{x}}{e^{x}-2} d x \\
\Rightarrow \quad & \int \frac{\sec ^{2} y}{\tan y} d y=\int \frac{e^{x}}{e^{x}-2} d x \\
\Rightarrow \quad \log |\tan y|=\log \left|e^{x}-2\right|+C \\
\quad\left[\because \int \frac{f^{\prime}(x)}{f(x)} d x=\log |f(x)|+C\right] \\
\Rightarrow \quad & \log |\tan y|-\log \left|e^{x}-2\right|=C \\
\Rightarrow & \log \left|\frac{\tan y}{e^{x}-2}\right|=C \\
\Rightarrow & {\left[\because \log m-\log n=\log \left(\frac{m}{n}\right)\right] \quad \text { (1) }} \\
\Rightarrow & \frac{\tan y}{e^{x}-2}=e^{c} \quad\left[\because \log m=n \Rightarrow m=e^{n}\right] \\
\Rightarrow & \tan y=e^{c}\left(e^{x}-2\right)
\end{array}
$$

Now, it is given that $y=\frac{\pi}{4}$ when $x=0$
$\therefore \tan \frac{\pi}{4}=e^{c}\left(e^{0}-2\right) \Rightarrow 1=e^{c}(1-2) \Rightarrow e^{c}=-1$
Thus, the particular solution of the given differential equation is $\tan y=2-e^{x}$.
14. Given differential equation is

$$
\frac{d y}{d x}+2 y \tan x=\sin x
$$

which is a linear differential equation of the form $\frac{d y}{d x}+P y=Q$.
Here, $P=2 \tan x$ and $Q=\sin x$

$$
\begin{array}{rlr}
\therefore \quad \mathrm{IF} & =e^{\int P d x}=e^{2 \int \tan x d x}=e^{2 \log |\sec x|} \tag{1}\\
& =e^{\log \sec ^{2} x} \\
& =\sec ^{2} x \quad\left[\because m \log n=\log n^{m}\right] \\
& {\left[\because e^{\log x}=x\right]}
\end{array}
$$

The general solution is given by

$$
\begin{align*}
& y \times \mathrm{IF}=\int(Q \times \mathrm{IF}) d x+C \tag{i}\\
& \Rightarrow \quad y \sec ^{2} x=\int\left(\sin x \cdot \sec ^{2} x\right) d x+C \\
& \Rightarrow \quad y \sec ^{2} x=\int \sin x \cdot \frac{1}{\cos ^{2} x} d x+C \\
& \Rightarrow \quad y \sec ^{2} x=\int \tan x \sec x d x+C \\
& \Rightarrow \quad y \sec ^{2} x=\sec x+C
\end{align*}
$$

Also, given that $y=0$, when $x=\frac{\pi}{3}$.
On putting $y=0$ and $x=\frac{\pi}{3}$ in Eq. (ii), we get

$$
\begin{align*}
& 0 \times \sec ^{2} \frac{\pi}{3} \\
= & \sec \frac{\pi}{3}+C \tag{1}\\
\Rightarrow \quad & 0=2+C \Rightarrow C=-2
\end{align*}
$$

On putting the value of C in Eq. (ii), we get

$$
\begin{array}{rlrl}
& y \sec ^{2} x & =\sec x-2 \\
\therefore \quad y & =\cos x-2 \cos ^{2} x
\end{array}
$$

which is the required particular solution of the given differential equation.
15. Given, differential equation is

$$
\left(x^{2}-y^{2}\right) d x+2 x y d y=0
$$

which can be re-written as

$$
\begin{align*}
&\left(x^{2}-y^{2}\right) d x=-2 x y d y \\
& \Rightarrow \quad \frac{d y}{d x}=\frac{x^{2}-y^{2}}{-2 x y}=\frac{y^{2}-x^{2}}{2 x y}=\frac{\left(\frac{y}{x}\right)^{2}-1}{2\left(\frac{y}{x}\right)} \tag{1}
\end{align*}
$$

\because In RHS, degree of numerator and denominator is same.
\therefore It is a homogeneous differential equation and can be written as

$$
\frac{d y}{d x}=f\left(\frac{y}{x}\right)
$$

Now, put $y=v x$ and $\frac{d y}{d x}=v+x \frac{d v}{d x}$

$$
\begin{align*}
& \Rightarrow v+x \frac{d v}{d x}=\frac{v^{2}-1}{2 v} \tag{1}\\
& \Rightarrow \quad x \frac{d v}{d x}=\frac{v^{2}-1}{2 v}-v=\frac{v^{2}-1-2 v^{2}}{2 v}=\frac{-v^{2}-1}{2 v} \\
& \Rightarrow \quad \frac{2 v}{v^{2}+1} d v=-\frac{d x}{x} \tag{1/2}\\
& \Rightarrow \int \frac{2 v}{v^{2}+1} d v=-\int \frac{d x}{x}
\end{align*}
$$

$\Rightarrow \quad \log \left|v^{2}+1\right|=-\log |x|+\log C$

$$
\left[\because \int \frac{f(x)}{f(x)} d x=\log |f(x)|+C\right]
$$

$\Rightarrow \log \left|\frac{y^{2}}{x^{2}}+1\right|=-\log |x|+\log C \quad\left[\because v=\frac{y}{x}\right](1)$
$\Rightarrow \log \left|\frac{y^{2}+x^{2}}{x^{2}} \cdot x\right|=\log C$
$\Rightarrow \quad \frac{y^{2}+x^{2}}{x}=C \Rightarrow y^{2}+x^{2}=C x$,
which is the required solution.
(1/2)
16.

> First, divide the given differential equation by $\left(x^{2}+1\right)$ to convert it into the form of linear differential equation and then solve it.

Given differential equation is

$$
\begin{equation*}
\left(x^{2}+1\right) \frac{d y}{d x}+2 x y=\frac{1}{x^{2}+1} \tag{I}
\end{equation*}
$$

On dividing both sides by $\left(x^{2}+1\right)$, we get

$$
\frac{d y}{d x}+\frac{2 x}{x^{2}+1} y=\frac{1}{\left(x^{2}+1\right)^{2}}
$$

which is a linear differential equation of the form $\frac{d y}{d x}+P y=Q$ here $P=\frac{2 x}{x^{2}+1}$ and $Q=\frac{1}{\left(x^{2}+1\right)^{2}}$
Now, integrating factor, IF $=e^{\int P d x}=e^{\int \frac{2 x}{x^{2}+1} d x}$

$$
\begin{gathered}
=e^{\log \left|x^{2}+1\right|}=x^{2}+1 \\
{\left[\begin{array}{l}
\text { put } x^{2}+1=t \Rightarrow 2 x d x=d t, \text { then } \\
\int \frac{2 x}{x^{2}+1} d x=\int \frac{1}{t} d t=\log |t|=\log \left|x^{2}+1\right|
\end{array}\right]}
\end{gathered}
$$

So, the required general solution is

$$
\begin{align*}
& y \times \mathrm{IF}=\int(Q \times \mathrm{IF}) d x+C \\
& \Rightarrow \quad y\left(x^{2}+1\right)=\int \frac{1}{\left(x^{2}+1\right)^{2}} \times\left(x^{2}+1\right) d x+C(1) \\
& \Rightarrow \quad y\left(x^{2}+1\right)=\int \frac{1}{x^{2}+1} d x+C \\
& \Rightarrow \quad y\left(x^{2}+1\right)=\tan ^{-1} x+C \tag{i}
\end{align*}
$$

when $x=1$, then $y=0$
$\therefore 0=\tan ^{-1} 1+C \Rightarrow C=\frac{-\pi}{4}$
Now, $y\left(x^{2}+1\right)=\tan ^{-1} x-\frac{\pi}{4}$
fr wame as Q. No 15.
ts given differential equation can be rewritten as

$$
\begin{equation*}
\frac{d y}{d x}=\frac{x^{3}-3 x y^{2}}{y^{3}-3 x^{2} y} \tag{i}
\end{equation*}
$$

This is a homogencous differential equation, so, put $y=x$

$$
\Rightarrow \quad \frac{d y}{d x}=v+x \frac{d v}{d x}
$$

thru. Eq. (i) becomes

$$
\begin{align*}
& v+x \frac{d v}{d x}=\frac{x^{3}-3 x(v x)^{2}}{(v x)^{3}-3 x^{2}(v x)} \\
\Rightarrow \quad & v+x \frac{d v}{d x}=\frac{1-3 v^{2}}{v^{3}-3 v} \\
\Rightarrow \quad & x \frac{d v}{d x}=\frac{1-3 v^{2}}{v^{3}-3 v}-v \\
\Rightarrow & \quad x \frac{d v}{d x}=\frac{1-3 v^{2}-v^{4}+3 v^{2}}{v^{3}-3 v} \\
\Rightarrow \quad & \quad x \frac{d v}{d x}=\frac{1-v^{4}}{v^{3}-3 v} \tag{1}\\
\Rightarrow & \quad\left(\frac{v^{3}-3 v}{1-v^{4}}\right) d v=\frac{d x}{x}
\end{align*}
$$

On integrating both sides, we get

$$
\begin{gathered}
\int\left(\frac{v^{3}-3 v}{1-v^{4}}\right) d v=\int \frac{d x}{x} \\
\Rightarrow \int \frac{v^{3}}{1-v^{4}} d v-3 \int \frac{v}{1-v^{4}} d v=\log x+\log C \ldots \text { (ii) } \\
\Rightarrow-\frac{1}{4} \log \left(1-v^{4}\right)-\frac{3}{4} \log \left[\frac{\left|+v^{2}\right|}{1-\left.v^{2}\right|^{2}}=\log x+\log C\right. \\
\Rightarrow \quad-\frac{1}{4} \log \left[\left(1-v^{4}\right)\left(\frac{1+v^{2}}{1-v^{2}}\right)^{3}\right]=\log (C x) \\
\Rightarrow-\frac{1}{4} \log \left[\left(a-v^{2}\right)\left(1+v^{2}\right) \times \frac{\left(1+v^{2}\right)^{3}}{\left(1-v^{2}\right)^{3}}\right]=\log (C x) \\
\Rightarrow \quad \log \left[\frac{\left(1+v^{2}\right)^{4}}{\left(1-v^{2}\right)^{2}}\right]^{1 / 4}=\log C x \\
\Rightarrow \quad \frac{\left(1+v^{2}\right)^{4}}{\left(1-v^{2}\right)^{2}}=(C x)^{4} \\
\Rightarrow \quad \frac{\left(a+y^{2} / x^{2}\right)^{4}}{\left(1-y^{2} / x^{2}\right)^{2}}=\frac{1}{C^{4} x^{4}}
\end{gathered}
$$

$$
\begin{array}{ll}
\Rightarrow & \frac{\left(x^{2}+y^{2}\right)^{4}}{x^{4}\left(x^{2}-y^{2}\right)^{2}}=\frac{1}{C^{4} x^{4}} \\
\Rightarrow & \left(x^{2}-y^{2}\right)=C^{2}\left(x^{2}+y^{2}\right)^{2}
\end{array}
$$

[taking square root]

$$
\Rightarrow \quad\left(x^{2}-y^{2}\right)=c_{1}\left(x^{2}+y^{2}\right)^{2}
$$

where $C_{1}=c^{2}$
Hence proved. (1)
19. Given differential equation is

$$
\begin{aligned}
x \frac{d y}{d x}+y & =x \cos x+\sin x \\
\Rightarrow \quad & \frac{d y}{d x}+\frac{y}{x}=\cos x+\frac{\sin x}{x}
\end{aligned}
$$

[dividing both sides by x]
which is a linear differential equation of the form $\frac{d y}{d x}+P y=Q$, here $P=\frac{1}{x}$ and $Q=\cos x+\frac{\sin x}{x}$
$\therefore \quad \quad \mathrm{IF}=\mathrm{e}^{j \mathrm{Pdx}}=e^{\int^{\frac{1}{x} d \mathrm{t}}=e^{|\log | x \mid}=x}$
The general solution is given by

$$
\begin{align*}
& y \times \mathrm{IF}=\int(Q \times \mathrm{IF}) d x+C \\
& \Rightarrow \quad y x=\int\left(\cos x+\frac{\sin x}{x}\right) x d x+C \\
& \Rightarrow \quad y x=\int(x \cos x+\sin x) d x+C \\
& \Rightarrow \quad x y=\int_{1} x \cos x d x+\int \sin x d x+C \\
& \Rightarrow \quad x y=x \int \cos x d x-\int\left[\frac{d}{d x}(x) \int \cos x d x\right] d x \\
& +\int \sin x d x+C \\
& \text { [using integration by parts] } \\
& \Rightarrow \quad x y=x \sin x-\int 1 \cdot \sin x d x-\cos x+C \\
& \Rightarrow \quad x y=x \sin x+\cos x-\cos x+C \\
& \Rightarrow \quad x y=x \sin x+C \\
& \Rightarrow \quad y=\sin x+C \cdot \frac{1}{x} \tag{i}
\end{align*}
$$

Also. given that at $x=\frac{\pi}{2} ; y=1$
On putting $x=\frac{\pi}{2}$ and $y=1$ in Eq. (i), we get

$$
\begin{equation*}
1=1+C \cdot \frac{2}{\pi} \Rightarrow C=0 \tag{1}
\end{equation*}
$$

On putting the value of C in Eq. (i), we get

$$
y=\sin x
$$

which is the required solution of given differential equation.
20. Given, $\left(\tan ^{-1} x-y\right) d x=\left(a+x^{2}\right) d y$
$\Rightarrow \frac{d y}{d x}=\frac{\tan ^{-1} x-y}{\left(1+x^{2}\right)} \Rightarrow \frac{d y}{d x}=\frac{\tan ^{-1} x}{1+x^{2}}-\frac{1}{1+x^{2}} y$
$\Rightarrow \quad \frac{d y}{d x}+\frac{1}{1+x^{2}} y=\frac{\tan ^{-1} x}{1+x^{2}}$
which is a linear differential equation of the form
$\frac{d y}{d x}+P y=Q$, here $P=\frac{1}{1+x^{2}}$ and $Q=\frac{\tan ^{-1} x}{1+x^{2}}$
Now, IF $=e^{\int P d x}=e^{\int \frac{1}{1+x^{2}} d x}=e^{\tan ^{-1} x}$
\therefore The general solution is given by

$$
\begin{aligned}
& y \cdot \mathrm{IF}=\int Q \cdot \mathrm{IF} d x+C \\
& \Rightarrow \quad y \cdot e^{\tan ^{-1} x}=\int \frac{\tan ^{-1} x}{1+x^{2}} \cdot e^{\tan ^{-1} x} d x+C
\end{aligned}
$$

Put $\tan ^{-1} x=t \Rightarrow \frac{1}{1+x^{2}} d x=d t$
$\therefore \quad y e^{\tan ^{-1} x}=\int t \cdot e^{t} d t+C=t \cdot e^{t}-\int 1 \cdot e^{t} d t+C$
(1)
[using integration by parts]
$\Rightarrow y e^{\tan ^{-1} x}=t \cdot e^{t}-e^{t}+C$
$\Rightarrow y^{\tan ^{-1} x} x=\tan ^{-1} x \cdot e^{\tan ^{-1} x}-e^{\tan ^{-1} x}+C$
$\left[\because t=e^{\tan ^{-1} x}\right]$
$\Rightarrow x^{\tan ^{-1} x}=\left(\tan ^{-1} x-1\right) e^{\tan ^{-1} x}+C$
21. We have, $y d x-\left(x+2 y^{2}\right) d y=0$
$\Rightarrow y \frac{d x}{d y}=x+2 y^{2} \Rightarrow \frac{d x}{d y}-\frac{1}{y} x=2 y$
which is a linear differential equation of the form $\frac{d x}{d y}+P x=Q$ here $P=\frac{-1}{y}$ and $Q=2 y$.

$$
\begin{equation*}
\therefore \quad \mathrm{IF}=e^{\int P d y}=e^{\int-\frac{1}{y} d y}=e^{-\log y}=\frac{1}{y} \tag{1}
\end{equation*}
$$

Hence, required general solution of the differential equation is

$$
\begin{equation*}
x \cdot \mathrm{IF}=\int(Q \cdot \mathrm{IF}) d y+C \Rightarrow x \times \frac{1}{y}=\int 2 y \times \frac{1}{y} d y+C \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\Rightarrow \quad \frac{x}{y}=2 y+C \Rightarrow x=2 y^{2}+C y \tag{1}
\end{equation*}
$$

22. We have, $\frac{d y}{d x}-y=\sin x$, which is a linear differential equation of the form
$\frac{d y}{d x}+P y=Q$ here $P=-1$ and $Q=\sin x$
$\therefore \quad I F=e^{\int P d x}=e^{\int(-1) d x}=e^{-x}$
Now, the general solution of given differential equation is given by

$$
\begin{align*}
y \cdot(\mathrm{IF}) & =\int(\mathrm{IF}) \cdot Q d x+C \\
\Rightarrow \quad y \cdot e^{-x} & =\int e^{-x} \sin x d x+C \tag{i}\\
\text { Let } \quad I & =\int e_{\text {II }}^{-x} \sin _{I} x \cdot d x \tag{ii}
\end{align*}
$$

By using the method of integration by parts, we get

$$
\begin{aligned}
I & =\sin x \frac{e^{-x}}{(-1)}-\int \cos x \frac{e^{x}}{(-1)} d x \\
& =-\sin x e^{-x}+\int e_{11}^{-x} \cos x d x
\end{aligned}
$$

Again, by using integration by parts, we get

$$
\begin{align*}
I & =-\sin x e^{-x}+\cos x \frac{e^{-x}}{(-1)}-\int(-\sin x) \frac{e^{-x}}{(-1)} d x \\
& =-\sin x e^{-x}-\cos x e^{-x}-\int e^{-x} \sin x d x \\
& \left.=-\sin x e^{-x}-\cos x e^{-x}-I \quad \text { [from Eq. (ii) }\right] \\
\Rightarrow 2 & =-e^{-x}(\sin x+\cos x) \\
\Rightarrow I & =-\frac{e^{-x}}{2}(\sin x+\cos x) \tag{i}
\end{align*}
$$

Then, from Eq. (i), we get

$$
\begin{align*}
y \cdot e^{-x} & =-\frac{e^{-x}}{2}(\sin x+\cos x)+C \\
\Rightarrow \quad y & =-\frac{1}{2}(\sin x+\cos x)+C e^{x} \tag{1}
\end{align*}
$$

23. Given differential equation is
$\left(1-y^{2}\right)(a+\log |x|) d x+2 x y d y=0$.
On separating the variables, we get

$$
\frac{(1+\log |x|)}{x} d x+\frac{2 y}{1-y^{2}} d y=0
$$

[dividing both sides by $x\left(1-y^{2}\right)$]
(V2)
On integrating, we get

$$
\begin{equation*}
\int\left(\frac{1}{x}+\frac{\log |x|}{x}\right) d x+\int \frac{2 y}{1-y^{2}} d y=0 \tag{i}
\end{equation*}
$$

$\Rightarrow \log |x|+\frac{(\log |x|)^{2}}{2}-\log \left|1-y^{2}\right|=\log C$
Also, given $y=0$ and $x=1$
$\therefore \log 1+\frac{(\log 1)^{2}}{2}-\log |1-0|=\log C$
$\Rightarrow 0+0-0=\log C \Rightarrow \log C=0$
on putting $\log C=0$ in Eq. (i), we get
$\log |x|+\frac{(\log |x|)^{2}}{2}-\log \left|1-y^{2}\right|=0$
4. Given differential equation is

$$
\left(1+y^{2}\right)+\left(x-e^{\tan ^{-1} y}\right) \frac{d y}{d x}=0
$$

It can be rewritten as
or

$$
\left(1+y^{2}\right) \frac{d x}{d y}+x-e^{\tan ^{-1} y}=0
$$

$$
\frac{d x}{d y}+\frac{1}{\left(1+y^{2}\right)} x=\frac{e^{\tan -1} y}{1+y^{2}}
$$

[dividing both sides by $\left(1+y^{2}\right)$]
It is a linear differential equation of the form

$$
\frac{d x}{d y}+P x=Q
$$

here, $P=\frac{1}{1+y^{2}}$ and $Q=\frac{e^{\tan ^{-1} y}}{1+y^{2}}$
Now, integrating factor, $I F=e^{\int P d y}$

$$
\begin{equation*}
=e^{\int \frac{1}{1+y^{2}} d y}=e^{\tan ^{-1} y} \tag{1/2}
\end{equation*}
$$

\therefore The general solution of linear differential equation is given by

$$
\begin{align*}
x \times I F & =\int(Q \times I F) d y+C \\
\Rightarrow x \times e^{\tan ^{-1} y} & =\int \frac{e^{\tan ^{-1} y}}{1+y^{2}} \times e^{\tan ^{-1} y} d y+C \tag{1/2}\\
\Rightarrow \quad x e^{\tan ^{-1} y} & =\int \frac{e^{2 \tan ^{-1} y}}{1+y^{2}} d y+C \tag{i}
\end{align*}
$$

On putting $\tan ^{-1} y=t \Rightarrow \frac{1}{1+y^{2}} d y=d t$ in
Eq. (i), we get

$$
\begin{align*}
& x e^{\tan ^{-1} y} \tag{1}\\
&=\int e^{2 t} d t+C \\
& \Rightarrow \quad x e^{\tan ^{-1} y}=\frac{e^{2 t}}{2}+C \tag{1}\\
& \Rightarrow \quad x e^{\tan ^{-1} y}=\frac{e^{2 \tan ^{-1} y}}{2}+C \quad\left[\text { put } t=\tan ^{-1} y\right]
\end{align*}
$$

25. Do same as Q. No. 12 .

The general solution is

$$
\begin{equation*}
y(1+\sin x)=-\frac{x^{2}}{2}+C \tag{i}
\end{equation*}
$$

Since, $y=1$, when $x=0$

$$
\begin{aligned}
& \text { Since, } y=1, \text { when } x=0 \\
& \therefore \quad 1(1+\sin 0)=-\frac{0}{2}+C \Rightarrow C=1+0=1
\end{aligned}
$$

On putting $C=1$ in Eq. (i), we get

$$
y(x+\sin x)=-\frac{x^{2}}{2}+1
$$

Hence, particular solution of the given differential equation is $y(1+\sin x)=-\frac{x^{2}}{2}+1$.
26. First, replace x by ix and y by λy in $F(x, y)$ of given differential equation to check that it is homogeneous. If it is homogeneous, then put $x=v$ and $\frac{d f}{d y}=v+y \frac{d v}{d y}$ and then solve it.

Given differential equation is

$$
\begin{aligned}
& \text { ntial equation is } \\
& 2 y e^{x / y} d x+\left(y-2 x e^{x / y}\right) d y=0 \text {. }
\end{aligned}
$$

It can be written as

Let

$$
\begin{equation*}
\frac{d x}{d y}=\frac{2 x e^{x / y}-y}{2 y e^{x / y}} \tag{i}
\end{equation*}
$$

On replacing x by λx and y by λy both sides, we get

$$
\begin{aligned}
& F(\lambda x, \lambda y)= \\
&\left(2 \lambda y e^{\frac{\lambda x}{\lambda y}}\right) \\
& \Rightarrow F(\lambda x, \lambda y)=\frac{\left(2 x e^{\frac{i x}{j-y}}-\lambda y\right.}{\lambda\left(2 y e^{x / y}\right)}=\lambda^{0}[F(x, y)]
\end{aligned}
$$

Thus, $F(x, y)$ is a homogeneous function of degree zero. Therefore, the given differential equation is a homogeneous differential equation.
To solve it, put $x=v y$

$$
\begin{array}{ll}
\Rightarrow & \frac{d x}{d y}=v+y \frac{d v}{d y} \text { in Eq.(i), we get } \\
\Rightarrow & v+y \frac{d v}{d y}=\frac{2 v e^{v}-1}{2 e^{v}} \\
\Rightarrow \quad y \frac{d v}{d y}=\frac{2 v e^{v}-1}{2 e^{v}}-v=\frac{2 v e^{v}-1-2 v e^{v}}{2 e^{v}} \\
\Rightarrow & 2 e^{v} d v=\frac{-d y}{y} \tag{1}
\end{array}
$$

On integrating both sides, we get

$$
\begin{array}{rlrl}
& \int 2 e^{v} d v & =-\int \frac{d y}{y} \\
\Rightarrow \quad & 2 e^{v}=-\log |y|+C \\
\Rightarrow \quad & 2 e^{x / y}+\log |y| & =C \quad\left[\text { put } v=\frac{x}{y}\right] \ldots(\tag{ii}
\end{array}
$$

Also, given that $x=0$, when $y=1$.
On substituting $x=0$ and $y=1$ in Eq. (ii), we get

$$
2 e^{0}+\log |1|=C \Rightarrow C=2
$$

On substituting the value of C in Eq. (ii), we get

$$
2 e^{x / y}+\log |y|=2
$$

which is the required particular solution of the given differential equation.
27. We have, $y+x \frac{d y}{d x}=x-y \frac{d y}{d x}$

$$
\begin{align*}
\Rightarrow \quad x \frac{d y}{d x}+y \frac{d y}{d x} & =x-y \\
\frac{d y}{d x} & =\frac{x-y}{x+y} \tag{i}
\end{align*}
$$

This is a homogeneous differential equation.
On putting $y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$ in Eq. (i), we get

$$
\begin{aligned}
& v+x \frac{d v}{d x}=\frac{x-v x}{x+v x} \\
& \Rightarrow x \frac{d v}{d x}=\frac{1-v}{1+v}-v=\frac{1-v-v-v^{2}}{1+v}=\frac{1-2 v-v^{2}}{1+v} \\
& \Rightarrow \frac{1+v}{v^{2}+2 v-1} d v=-\frac{1}{x} d x
\end{aligned}
$$

On integrating both sides, we get

$$
\begin{equation*}
\int \frac{1+v}{v^{2}+2 v-1} d v=-\int \frac{1}{x} d x \tag{1}
\end{equation*}
$$

$$
\Rightarrow \frac{1}{2} \log \left|v^{2}+2 v-1\right|=-\log |x|+\log C
$$

$$
\left[\because \frac{d}{d v}\left(v^{2}+2 v-1\right)=2 v+2=2(v+1)\right]
$$

$\Rightarrow \frac{1}{2} \log \left|v^{2}+2 v-1\right|+\log |x|=\log C$
$\Rightarrow \log \left|v^{2}+2 v-1\right|+2 \log |x|=2 \log C$
$\Rightarrow \log \left|\frac{y^{2}}{x^{2}}+\frac{2 y}{x}-1\right|+\log x^{2}=\log C^{2}$
[put $v=y / x$ and $n \log m=\log m^{n}$]
$\Rightarrow \log \left(\frac{y^{2}}{x^{2}}+\frac{2 y}{x}-1\right) x^{2}=\log C^{2}$
$\left[\because \log m+\log n=\log _{\left.m_{n}\right]}\right.$
$\begin{array}{ll}\Rightarrow & y^{2}+2 x y-x^{2}=C^{2} \\ \therefore & y^{2}+2 x y-x^{2}=C_{1} \text { where, } C_{1}=C^{2}\end{array}$
28. We have, $y^{2} d x+\left(x^{2}-x y+y^{2}\right) d y=0$

$$
\begin{equation*}
\Rightarrow \quad \frac{d y}{d x}=\frac{-y^{2}}{x^{2}-x y+y^{2}} \tag{i}
\end{equation*}
$$

This is homogeneous differential equation. Now, on putting $y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$ in Eq. (i). we get

$$
\begin{equation*}
v+x \frac{d v}{d x}=\frac{-v^{2} x^{2}}{x^{2}-v x^{2}+v^{2} x^{2}} \tag{1}
\end{equation*}
$$

$\Rightarrow v+x \frac{d v}{d x}=\frac{-v^{2}}{1-v+v^{2}}$
$\Rightarrow \quad x \frac{d v}{d x}=\frac{-v^{2}}{1-v+v^{2}}-v \Rightarrow x \frac{d v}{d x}=\frac{-v-v^{3}}{1-v+v^{2}}$
$\therefore \frac{1-v+v^{2}}{v\left(1+v^{2}\right)} d v=-\frac{1}{x} d x$
On integrating both sides, we get

$$
\begin{array}{ll}
\int \frac{1+v^{2}}{v\left(1+v^{2}\right)} d v-\int \frac{v}{v\left(1+v^{2}\right)} d v=-\int \frac{1}{x} d x \\
\Rightarrow & \int \frac{1}{v} d v-\int \frac{1}{1+v^{2}} d v=-\int \frac{1}{x} d x \\
\Rightarrow & \log |v|-\tan ^{-1} v=-\log |x|+\log C \\
\Rightarrow & \log \left|\frac{v x}{C}\right|=\tan ^{-1} v \Rightarrow\left|\frac{v x}{C}\right|=e^{\tan ^{-1} v} \\
\Rightarrow & \left|\frac{y}{C}\right|=e^{\tan ^{-1}(y / x)}[\because v x=y]
\end{array}
$$

$\therefore|y|=C e^{\tan ^{-1}(y / x)}$, which is the required solution.
29. We have, $\left(\cot ^{-1} y+x\right) d y=\left(1+y^{2}\right) d x$

$$
\begin{align*}
& \Rightarrow \quad \frac{d x}{d y}=\frac{\cot ^{-1} y+x}{1+y^{2}} \\
& \Rightarrow \quad \frac{d x}{d y}+\left(-\frac{1}{1+y^{2}}\right) x=\frac{\cot ^{-1} y}{1+y^{2}} \tag{1/2}
\end{align*}
$$

This is a linear differential equation of the form $\frac{d x}{d y}+P x=Q$ here $P=\frac{-1}{1+y^{2}}$ and $Q=\frac{\cot ^{-1} y}{1+y^{2}}$.

$$
\mathrm{IF}=e^{-\int \frac{1}{1+y^{2}} d y}=e^{\cos ^{-1} y}
$$

\therefore
Now, the solution of linear differential equation is given by $x \cdot I F=\int(Q \times I F) d y+C$
$\therefore \quad x e^{\cot ^{-1} y}=\int \frac{\cot ^{-1} y}{\left(1+y^{2}\right)} e^{\cot ^{-1} y} d y+C$
On putting $\cot ^{-1} y=t \Rightarrow \frac{1}{1+y^{2}} d y=-d t$ in Eq. (i).
we get

$$
\begin{align*}
x e^{\cot ^{-1} y} & =-\int t e^{t} d t+C \tag{1}\\
& =-e^{t}(t-1)+C \\
\Rightarrow \quad x e^{\cot ^{-1} y} & =e^{\cot ^{-1} y}\left(1-\cot ^{-1} y\right)+C \tag{-1}
\end{align*}
$$

which is the required solution.
30. Given differential equation is

$$
x \frac{d y}{d x}+y-x+x y \cot x=0, x \neq 0
$$

Above equation can be written as

$$
x \frac{d y}{d x}+y(1+x \cot x)=x
$$

On dividing both sides by x, we get

$$
\begin{align*}
& \frac{d y}{d x}+y\left(\frac{1+x \cot x}{x}\right) \\
=\quad & \frac{d y}{d x}+y\left(\frac{1}{x}+\cot x\right) \tag{1}\\
\Rightarrow \quad & =1
\end{align*}
$$

which is a linear differential equation of the form $\frac{d y}{d x}+P y=Q$
here, $P=\frac{1}{x}+\cot x$ and $Q=1$.
$\therefore \quad$ IF $=e^{\int \text { Pdtr }}=e^{\int\left(\frac{1}{x}+\cot x\right) d x}=e^{\log |x|+\log \sin x}$
$\left[\because \int \frac{1}{x} d x=\log |x|\right.$ and $\left.\int \cot x d x=\log |\sin x|\right]$

$$
\begin{equation*}
=e^{\log |x \sin x|}[\because \log m+\log n=\log m n] \tag{1}
\end{equation*}
$$

$\Rightarrow \quad \mathrm{IF}=x \sin x$
The solution of given linear differential equation

$$
\begin{array}{lc}
\text { is } & y \times \mathrm{IF}=\int(Q \times \mathrm{IF}) d x+C \\
\therefore & y \times x \sin x=\int 1 \times x \sin x d x+C \\
\Rightarrow & y \times x \sin x=\int_{1} x \sin x d x+C
\end{array}
$$

$\Rightarrow \quad y \cdot x \sin x=x \int \sin x d x$

$$
-\int\left(\frac{d}{d x}(x) \cdot \int \sin x d x\right) d x+C
$$

[using integration by parts]
$\Rightarrow y x \sin x=-x \cos x-\int 1(-\cos x) d x+C$
$\Rightarrow y x \sin x=-x \cos x+\int \cos x d x+C$
$\Rightarrow y x \sin x=-x \cos x+\sin x+C$
On dividing both sides by $x \sin x$, we get
which is the required solution.
31. Given differential equation is

$$
\begin{array}{ll}
& x^{2} d y+\left(x y+y^{2}\right) d x=0 \\
\Rightarrow \quad & x^{2} d y=-\left(x y+y^{2}\right) d x \\
\Rightarrow \quad & \frac{d y}{d x}=\frac{-\left(x y+y^{2}\right)}{x^{2}}=-\left(\frac{y}{x}+\frac{y^{2}}{x^{2}}\right) \tag{i}
\end{array}
$$

which is a homogeneous differential equation as $\frac{d y}{d x}=F\left(\frac{y}{x}\right)$.
On putting $y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$ in Eq (i), we get

$$
\begin{align*}
& v+x \frac{d v}{d x}=-\left(v+v^{2}\right) \Rightarrow x \frac{d v}{d x}=-v-v^{2}-v \\
& \Rightarrow x \frac{d v}{d x}=-v^{2}-2 v \Rightarrow \frac{d v}{v^{2}+2 v}=\frac{d x}{-x} \tag{1}
\end{align*}
$$

On integrating both sides, we get

$$
\begin{aligned}
& \int \frac{d v}{v^{2}+2 v}=-\int \frac{d x}{x} \Rightarrow \int \frac{d v}{v^{2}+2 v+1-1}=-\int \frac{d x}{x} \\
& \Rightarrow \int \frac{d v}{(v+1)^{2}-(1)^{2}}=-\int \frac{d x}{x} \\
& \Rightarrow \frac{1}{2} \log \left|\frac{v+1-1}{v+1+1}\right|=-\log |x|+C \\
& \Rightarrow \quad\left[\because \int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \log \left|\frac{x-a}{x+a}\right|+C\right] \\
& \Rightarrow \frac{1}{2} \log \left|\frac{v}{v+2}\right|=-\log |x|+C \\
& \Rightarrow \frac{1}{2} \log \left|\frac{\frac{y}{x}}{\frac{y}{x}+2}\right|=-\log |x|+C\left[\text { put } v=\frac{y}{x}\right]
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow \quad \frac{1}{2} \log \left|\frac{y}{y+2 x}\right|=-\log |x|+c \tag{ii}
\end{equation*}
$$

Also given that at $x=1, y=1$.
On putting $x=y=1 \mathrm{in}$ Eq. (ii), we get

$$
\begin{aligned}
\frac{1}{2} \log \left|\frac{1}{1+2}\right| & =-\log 1+C \\
\Rightarrow \quad \frac{1}{2} \log \left|\frac{1}{3}\right| & =-\log 1+C \\
\Rightarrow \quad C & =\frac{1}{2} \log \frac{1}{3} \quad[\because \log 1=0](1)
\end{aligned}
$$

On purting the value of C in Eq. (ii), we get

$$
\begin{array}{rlrl}
& \quad \frac{1}{2} \log \left|\frac{y}{y+2 x}\right|= & -\log |x|+\frac{1}{2} \log \frac{1}{3} \\
\Rightarrow \quad & \log \left|\frac{y}{y+2 x}\right|= & -2 \log |x|+\log \frac{1}{3} \\
\Rightarrow \quad & \log \left|\frac{y}{y+2 x}\right|=\log |x|^{2}+\log \frac{1}{3} \\
& \quad\left[\because x \log |m|=\log |m|^{n \prime} \mid\right. \\
\Rightarrow \quad & \log \frac{y}{y+2 x}=\log \frac{1}{x^{2}}+\log \frac{1}{3} \\
\Rightarrow \quad & \log \left|\frac{y}{y+2 x}\right|=\log \frac{1}{3 x^{2}}
\end{array}
$$

$$
[\because \log m+\log n=\log m n]
$$

$$
\Rightarrow \quad \frac{y}{y+2 x}=\frac{1}{3 x^{2}} \Rightarrow y \cdot 3 x^{2}=y+2 x
$$

$$
\Rightarrow \quad y\left(3 x^{2}-1\right)=2 x
$$

$$
\begin{equation*}
\therefore \quad y=\frac{2 x}{3 x^{2}-1} \tag{1}
\end{equation*}
$$

which is the required particular solution.
32. Given differential equation is

$$
\begin{aligned}
\left(\frac{2+\sin x}{1+y}\right) \frac{d y}{d x} & =-\cos x \\
\Rightarrow \quad \frac{1}{1+y} d y & =-\frac{\cos x}{2+\sin x} d x
\end{aligned}
$$

On integrating both sides, we get

$$
\int \frac{1}{1+y} d y=-\int \frac{\cos x}{2+\sin x} d x
$$

$\Rightarrow \quad \log |1+y|=-\log |2+\sin x|+\log C$

$$
\left[\begin{array}{c}
\text { put } 2+\sin x=t \Rightarrow \cos x d x=d t \tag{1}\\
\text { then } \int \frac{\cos x}{2+\sin x} d x=\int \frac{d t}{t}=\log |t|+C \\
=\log |2+\sin x|+C
\end{array}\right]
$$

$\Rightarrow \quad \log |1+y|+\log |2+\sin x|=\log C$
$\Rightarrow \quad \log (|1+y||2+\sin x|)=\log C$

$$
\begin{align*}
& {\left[\because \log m+\log n=\log _{m n}\right]} \tag{i}\\
& 2+\sin x)=C
\end{align*}
$$

$\Rightarrow \quad(1+y)(1)+1$
Also, given that at $x=0, y=1$
On putting $x=0$ and $y=1$ in Eq. (i). we get

$$
\begin{equation*}
(1+1)(2+\sin 0)=C \Rightarrow C=4 \tag{i}
\end{equation*}
$$

On putting $C=4$ in Eq. (i), we get

$$
\text { Now, at } x=\frac{\pi}{2}, y\left(\frac{\pi}{2}\right)=\frac{2-\sin \frac{\pi}{2}}{2+\sin \frac{\pi}{2}}
$$

$$
\therefore \quad y\left(\frac{\pi}{2}\right)=\frac{1}{3} \quad\left[\because \sin \frac{\pi}{2}=1\right](1)
$$

33. Given differential equation is

$$
\frac{d y}{d x}=\frac{x(2 \log |x|+1)}{\sin y+y \cos y}
$$

On separating the variables, we get
$(\sin y+y \cos n) d y=x(2 \log |x|+1) d x$
$\Rightarrow \sin y d y+y \cos y d y=2 x \log |x| d x+x d x$
On integrating both sides, we get

$$
\begin{aligned}
& \int \sin y d y+\int_{1}^{y} \cos y d y \\
& \quad=2 \int_{11} x \log |x| d x+\int x d x
\end{aligned}
$$

$\Rightarrow-\cos y+\left[y \int \cos y d y-\int\left\{\frac{d}{d y}(y) \int \cos y d y\right\} d y\right]$
$=2\left[\log |x| \int x d x-\int\left\{\frac{d}{d x}(\log |x|) \int x d x\right\} d x\right]+\frac{x^{2}}{2}$
[by using integration by parts] (1)
$\Rightarrow \quad-\cos y+y \sin y-\int \sin y d y$ $=2\left[\frac{x^{2}}{2} \log |x|-\int\left\{\frac{1}{x} \cdot \frac{x^{2}}{2}\right\} d x\right]+\frac{x^{2}}{2}$

$$
\begin{aligned}
\Rightarrow & -\cos y+y \sin y+\cos y \\
& =x^{2} \log |x|-\int x d x+\frac{x^{2}}{2} \\
\Rightarrow \quad y \sin y & =x^{2} \log |x|-\frac{x^{2}}{2}+\frac{x^{2}}{2}+C
\end{aligned}
$$

$$
\Rightarrow \quad y \sin y=x^{2} \log |x|+C
$$

$$
\begin{aligned}
& (1+y)(2+\sin x)=4 \\
& \Rightarrow \quad 1+y=\frac{4}{2+\sin x} \\
& \Rightarrow \quad y=\frac{4}{2+\sin x}-1 \\
& \Rightarrow y=\frac{4-2-\sin x}{2+\sin x} \Rightarrow y=\frac{2-\sin x}{2+\sin x}
\end{aligned}
$$

Also, given that $y=\frac{\pi}{2}$, when $x=1$.
on putting $y=\frac{\pi}{2}$ and $x=1$ in Eiq. (i), we get

$$
\begin{aligned}
\frac{\pi}{2} \sin \left(\frac{\pi}{2}\right) & =(1)^{2} \log (1)+C \\
C & =\frac{\pi}{2} \quad\left[\because \sin \frac{\pi}{2}=1, \log 1=0\right]
\end{aligned}
$$

2
on substituting the value of C in Biq. (i), we get

$$
y \sin y=x^{2} \log |x|+\frac{\pi}{2}
$$

which is the required particular solution.
Do same as Q . No. 16.

$$
\left[\text { Ans. } y\left(x^{2}-1\right)=\log \left|\frac{x-1}{x+1}\right|+C\right]
$$

95.

Given differential equation is

$$
c^{1} \sqrt{1-y^{2}} d x+\frac{y}{x} d y=0
$$

$\Rightarrow \quad e^{x} \sqrt{1-y^{2}} d x=\frac{-y}{x} d y$
On separating the variables, we get

$$
\begin{equation*}
\frac{-y}{\sqrt{1-y^{2}}} d y=x e^{x} d x \tag{1}
\end{equation*}
$$

On integrating both sides, we get

$$
\int \frac{-y}{\sqrt{1-y^{2}}} d y=\int x e^{x} d x
$$

On putting $1-y^{2}=t \Rightarrow-y d y=\frac{d t}{2}$ in LHS, we get

$$
\begin{aligned}
& \int \frac{1}{2 \sqrt{t}} d t=\iint_{1} e^{x} d x \\
\Rightarrow \quad & \frac{1}{2}[2 \sqrt{t}]=x \int e^{x} d x-\int\left[\frac{d}{d x}(x) \int e^{x} d x\right] d x
\end{aligned}
$$

[using integration by parts]
$\Rightarrow \sqrt{1-y^{2}}=x e^{x}-\int e^{x} d x \quad\left[\right.$ put $\left.t=1-y^{2}\right](t)$
$\Rightarrow \sqrt{1-y^{2}}=x e^{x}-e^{x}+C$
Also, given that $y=1$, when $x=0$
On putting $y=1$ and $x=0$ in Eq. (i), we get

$$
\begin{array}{rlrl}
& & \sqrt{1-1} & =0-e^{0}+C \\
& C & C & {\left[\because e^{0}=1\right](1)}
\end{array}
$$

On substituting the value of C in Eq. (i), we get

$$
\sqrt{1-y^{2}}=x e^{x}-e^{x}+1
$$

which is the required particular solution of given differential equation.

3a. First, soparate the variablos, then integrato by using intogration by parts.

Given differential equation is

$$
\begin{equation*}
\operatorname{cosec} x \log |y| \frac{d y}{d x}+x^{2} y^{2}=0 \tag{1}
\end{equation*}
$$

It can be rewritten as

$$
\operatorname{cosec} x \log |y| \frac{d y}{d x}=-x^{2} y^{2}
$$

On separating the variables, we get

$$
\frac{\log |y|}{y^{2}} d y=\frac{-x^{2}}{\operatorname{cosec} x} d x
$$

On integrating both/sides, we get

$$
\begin{align*}
\int \frac{\log |y|}{y^{2}} d y & =-\int \frac{x^{2}}{\operatorname{cosec} x} d x \\
\Rightarrow \quad I_{1} & =-I_{2} \tag{ii}
\end{align*}
$$

where, $l_{1}=\int \frac{\log |y|}{y^{2}} d y$
and $\quad I_{2}=\int \frac{x^{2}}{\operatorname{cosec} x} d x=\int x^{2} \sin x d x$
Consider, $I_{1}=\int \frac{\log |y|}{y^{2}} d y$
Put $\log y=t \Rightarrow y=c^{\prime}$, then $\frac{d y}{y}=d t$
$\therefore I_{1}=\int t e_{11}^{-t} d t=t \int e^{-t} d t-\int\left[\frac{d}{d t}(t) \int e^{-t} d t\right] d t$
[using integration by parts]

$$
\begin{align*}
& =-t e^{-t}-\int\left(-e^{-t}\right) d t \\
& =-t e^{-t}+\int e^{-t} d t=-t e^{-t}-e^{-t}+C_{1} \\
& =-\frac{\log |y|}{y}-\frac{1}{y}+C_{1} \tag{iii}
\end{align*}
$$

$$
\left[\because t=\log |y| \text { and } e^{-t}=\frac{1}{y}\right]
$$

and $I_{2}=\int x_{1}^{2} \sin _{11} x d x$

$$
=x^{2} \int \sin x d x-\int\left[\frac{d}{d x}\left(x^{2}\right) \int \sin x d x\right] d x
$$

[using integration by parts]
$=x^{2}(-\cos x)-\int[2 x(-\cos x)] d x$
$=-x^{2} \cos x+2 \int_{11}^{x} \cos x d x$
$=-x^{2} \cos x+2\left[x \int \cos x d x\right.$
$-\int\left\{\frac{d}{d x}(x) \int \cos x d x\right\} d x$

 atid (in) in ly. (ii). We sel

ZCos P f

$$
(1+\log |y|)-x^{2} \cos +-2 x \sin x
$$

whers $C=-C_{2}-i_{i}$

$$
\begin{aligned}
&(1+\log |y|)-2 \cos x-C_{2}-C_{1} \\
& y \quad=2 \sin x \\
&-2 \cos x+C
\end{aligned}
$$

Whish is the rexpited solution of given
differential eypuation.
57. Liven differential eypation is

$$
\begin{equation*}
x \cos \binom{y}{x}_{d}^{d}=y \cos \binom{y}{x}+x \tag{i}
\end{equation*}
$$

Which is a homogencous differential equation as

$$
\frac{d}{d}=E\binom{v}{v}
$$

On purting $y=v \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$ in Eq. (i).
we set

$$
\begin{array}{rlrl}
x \cos v\left[v+x \frac{d v}{d x}\right] & =v \cos v+x \tag{1}\\
& v \cos v+x^{2} \cos v \frac{d v}{d x} & =v x \cos v+x \\
\Rightarrow \quad x^{2} \cos v \frac{d v}{d x} & =x \\
\Rightarrow \quad \cos v d v & =\frac{d x}{x}
\end{array}
$$

On integrating both sides, we get

$$
\begin{aligned}
\int \cos v d v & =\int \frac{d x}{x} \\
\Rightarrow \quad \sin v & =\log |x|+C \\
\Rightarrow \quad \sin \left(\frac{y}{x}\right) & =\log |x|+C\left[\text { put } v=\frac{y}{x}\right]
\end{aligned}
$$

which is the required solution of given
differential equation.
38. Given differential equation is

$$
\begin{align*}
& x \frac{d y}{d x}-y+x \operatorname{cosec}\left(\frac{y}{x}\right)=0 \tag{1}\\
& \Rightarrow \quad \frac{d y}{d x}-\frac{y}{x}+\operatorname{cosec}\left(\frac{y}{x}\right)=0
\end{align*}
$$

[dividing both sides by x]
$\rightarrow \quad d y-y=\operatorname{cosec}\binom{y}{x}$
which is a homogencoun differential equation as

$$
\frac{d y}{d}-x\binom{y}{x}
$$

$$
\begin{align*}
& \text { On pulting } \begin{array}{rl}
y & =v x_{1} \\
\Rightarrow \quad d y & =v+x \frac{d v}{d x} \ln \text { Bq. (1), we get } \\
d x & v+x \\
\frac{d v}{d x} & =\frac{v x}{x}-\operatorname{cosec}\left(\frac{v x}{x}\right) \\
\Rightarrow \quad v+x \frac{d v}{d x} & =v-\operatorname{cosec} v \\
\Rightarrow \quad x \frac{d v}{d x} & =-\operatorname{cosec} v \Rightarrow \frac{d v}{\operatorname{cosec} v}=\frac{-d x}{x}
\end{array}
\end{align*}
$$

On integrating both sides, we get

$$
\begin{align*}
& \int \frac{d v}{\operatorname{cosec} v}=\int-\frac{d x}{x} \\
\Rightarrow \quad \int \sin v d v & =\int-\frac{d x}{x} \\
\Rightarrow \quad-\cos v & =-\log |x|+C \\
\Rightarrow \quad-\cos \frac{y}{x} & =-\log |x|+C \quad\left[\text { put } v=\frac{y}{x}\right] \\
\Rightarrow \quad \cos \frac{y}{x} & =(\log |x|-C) \tag{ii}
\end{align*}
$$

[multiply both sides by -1]
Also, given that $x=1$ and $y=0$.
On putting above values in Eq. (ii), we get

$$
\begin{aligned}
\Rightarrow & \cos 0 & =\log |1|-C \\
\Rightarrow & 1 & =0-C \Rightarrow C=-1
\end{aligned}
$$

$$
\therefore \quad \cos \frac{y}{x}=\log |x|+1 \quad \text { [from Eq. (ii)] }
$$

which is required particular solution of given differential equation.
39. Given differential equation is

$$
\begin{align*}
& \quad \frac{d y}{d x}=1+x+y+x y \\
& \Rightarrow \quad \\
& \frac{d y}{d x}=1(1+x)+y(1+x) \tag{i}\\
& \frac{d y}{d x}=(1+x)(1+y)
\end{align*}
$$

On separating variables, we get

$$
\begin{equation*}
\frac{1}{(1+y)} d y=(1+x) d x \tag{ii}
\end{equation*}
$$

On integrating both sides of Eq. (ii), we get

$$
\int \frac{1}{1+y} d y=\int(1+x) d x
$$

$$
\begin{equation*}
\Rightarrow \log |1+y|=x+\frac{x^{2}}{2}+C \tag{iii}
\end{equation*}
$$

also, given that $y=0$, when $x=1$.
on substituting $x=1, y=0$ in Eq. (iii), we get
$\log |1+0|=1+\frac{1}{2}+C \Rightarrow C=-\frac{3}{2}[\because \log 1=0]$
Now, on substituting the value of C in Eq. (iii),
we get

$$
\log |1+y|=x+\frac{x^{2}}{2}-\frac{3}{2}
$$

which is the required particular solution of given differential equation.
20. Solve as Q. No. 24.

Hint Given differential equation is a linear differential equation of the form $\frac{d y}{d x}+P y=Q$ and its solution is given by $y \cdot(\mathrm{IF})=\int Q \cdot(\mathrm{IF})+C$, where IF $=e^{\int P d x}$.
$\left[\right.$ Ans. $\left.y e^{\tan ^{-1} x}=\frac{e^{2 \tan ^{-1} x}}{2}+C\right]$
41. Given differential equation is

$$
\begin{align*}
& & \log \left(\frac{d y}{d x}\right) & =3 x+4 y \\
\Rightarrow & & \frac{d y}{d x} & =e^{3 x+4 y} \quad\left[\because \log m=n \Rightarrow e^{n}=m\right] \\
\Rightarrow & & \frac{d y}{d x} & =e^{3 x} e^{4 y} \tag{1}
\end{align*}
$$

On separating the variables, we get

$$
\frac{1}{e^{4 y}} d y=e^{3 x} d x
$$

On integrating both sides, we get

$$
\begin{equation*}
\int e^{-4 y} d y=\int e^{3 x} d x \Rightarrow \frac{e^{-4 y}}{-4}=\frac{e^{3 x}}{3}+C \tag{i}
\end{equation*}
$$

Also, given that $y=0$, when $x=0$.
On putting $y=0$ and $x=0$ in Eq. (i), we get

$$
\frac{e^{-+(0)}}{-4}=\frac{e^{3(0)}}{3}+C \Rightarrow-\frac{1}{4}=\frac{1}{3}+C\left[\because e^{-0}=e^{0}=1\right]
$$

$\Rightarrow \quad C=-\frac{1}{4}-\frac{1}{3}$
$\therefore \quad C=-\frac{7}{12}$
On substituting the value of C in Eq. (i), we get

$$
\frac{e^{-4 y}}{-4}=\frac{e^{3 x}}{3}-\frac{7}{12} \Rightarrow 4 e^{3 x}+3 e^{-4 y}-7=0
$$

which is the required particular solution of given differential equation.
42. Given differential equation is

$$
\begin{aligned}
& x\left(1+y^{2}\right) d x-y\left(1+x^{2}\right) d y \\
\Rightarrow \quad x\left(1+y^{2}\right) d x & =y\left(1+x^{2}\right) d y
\end{aligned}
$$

On separating the variables, we get

$$
\begin{equation*}
\frac{y}{\left(1+y^{2}\right)} d y=\frac{x}{\left(1+x^{2}\right)} d x \tag{1}
\end{equation*}
$$

On integrating both sides, we get

$$
\begin{gather*}
\int \frac{y}{1+y^{2}} d y=\int \frac{x}{\left(1+x^{2}\right)} d x \\
\Rightarrow \quad \frac{1}{2} \log \left|1+y^{2}\right|=\frac{1}{2} \log \left|1+x^{2}\right|+C \tag{i}\\
{\left[\begin{array}{l}
\text { put } 1+y^{2}=u \Rightarrow 2 y d y=d u, \\
\text { then } \int \frac{y}{1+y^{2}} d y=\int \frac{1}{2 u} d u=\frac{1}{2} \log |u| \\
\text { and put } 1+x^{2}=v \Rightarrow 2 x d x=d v, \\
\text { then } \int \frac{x}{1+x^{2}} d x=\frac{1}{2} \int \frac{1}{v} d v=\frac{1}{2} \log |v|
\end{array}\right]}
\end{gather*}
$$

Also, given that $y=1$, when $x=0$.
On substituting the values of x and y in Eq. (i), we get

$$
\begin{aligned}
& \frac{1}{2} \log \left|1+(1)^{2}\right|=\frac{1}{2} \log \left|1+(0)^{2}\right|+C \\
\Rightarrow \quad & \frac{1}{2} \log 2=C \quad[\because \log 1=0]
\end{aligned}
$$

On putting $C=\frac{1}{2} \log 2$ in Eq. (i), we get

$$
\begin{array}{cc}
& \frac{1}{2} \log \left|1+y^{2}\right|=\frac{1}{2} \log \left|1+x^{2}\right|+\frac{1}{2} \log 2 \\
\Rightarrow & \log \left|1+y^{2}\right|=\log \left|1+x^{2}\right|+\log 2 \\
\Rightarrow & \log \left|1+y^{2}\right|-\log \left|1+x^{2}\right|=\log 2 \\
\Rightarrow & \log \left|\frac{1+y^{2}}{1+x^{2}}\right|=\log 2 \\
& {\left[\because \log m-\log n=\log \frac{m}{n}\right]} \\
\Rightarrow & \frac{1+y^{2}}{1+x^{2}}=2 \\
\Rightarrow & 1+y^{2}=2+2 x^{2} \\
\Rightarrow & y^{2}-2 x^{2}-1=0
\end{array}
$$

which is the required particular solution of given differential equation.
43. Given differential equation is

$$
\left(x \log |x| \frac{d y}{d x}+y=\frac{2}{x} \log |x|\right.
$$

On dividing both sides by $x \log x$, we get

$$
\frac{d y}{d x}+\frac{y}{x \log |x|}=\frac{2}{x^{2}} \log |x| \frac{2}{\log |x|}=\frac{2}{x^{2}}
$$

which is a linear differential equation of first order and is of the form $\frac{d y}{d x}+P y=Q$.
here, $P=\frac{1}{x \log |x|}$ and $Q=\frac{2}{x^{2}}$

$$
\left.\begin{array}{l}
\mathrm{IF}=e^{\mid P d x}=e^{\frac{1}{\mathrm{rbg}|x|}}=e^{\log |\log x|} \tag{I}\\
{\left[\because t=\int \frac{1}{x \log |x|} d x \cdot \text { put } \log |x|=t \Rightarrow \frac{1}{x} d x=d t\right.} \\
\therefore I=\int^{\frac{1}{t}} d t=\log |t|=\log |\log x|
\end{array}\right]
$$

Now, solutioz of above equation is given by

$$
\begin{aligned}
& y \times I F=\int(Q \times I F) d x+C \\
& y \log |x|=\int \frac{2}{x^{2}} \log |x| d x \\
& \Rightarrow \quad y \log |x|=2\left[\log |x| \int \frac{1}{x^{2}} d x\right. \\
&\left.-\int\left(\frac{d}{d x}(\log |x|) \cdot \int \frac{1}{x^{2}} d x\right) d x\right]
\end{aligned}
$$

[by using integration by parts]
$\Rightarrow y \log |x|=2\left[\log |x| \cdot\left(-\frac{1}{x}\right)-\int \frac{1}{x} \cdot\left(-\frac{1}{x}\right) d x\right]$ (1)
$\Rightarrow y \log |x|=2\left[-\frac{1}{x} \log |x|+\int \frac{1}{x^{2}} d x\right]$
$\therefore \quad y \log |x|=-\frac{2}{x} \log |x|-\frac{2}{x}+C$,
which is the required solution.
44. Given differential equation is

$$
\frac{d y}{d x}+y \cot x=2 \cos x
$$

which is a linear differential equation of the form

$$
\frac{d y}{d x}+P y=Q
$$

Here, $P=\cot x$ and $Q=2 \cos x$
\therefore IF $=e^{\int P d x}=e^{\int \cot x d x}=e^{\log |\sin x|} \Rightarrow \mathrm{IF}=\sin x$
The general solution is given by

$$
y \times \mathrm{IF}=\int(\mathrm{IF} \times Q) d x+C
$$

$$
\begin{array}{ll}
\Rightarrow & y \sin x=\int 2 \sin x \cos x d x+C \\
\Rightarrow & y \sin x=\int \sin 2 x d x+C \\
\Rightarrow & y \sin x=-\frac{\cos 2 x}{2}+C \tag{i}
\end{array}
$$

Also, given that $y=0$, when $x=\frac{\pi}{2}$.
On putting $x=\frac{\pi}{2}$ and $y=0$ in Eq. (i). we get

$$
\begin{array}{rlrl}
& 0 \sin \frac{\pi}{2} & =-\frac{\cos \left(2 \frac{\pi}{2}\right)}{2}+C \\
& C & C-\frac{\cos \pi}{2} & =0 \\
& & C+\frac{1}{2} & =0 \\
& & C & =-\frac{1}{2}
\end{array} \quad[\because \cos \pi=-1]
$$

On putting the value of C in Eq. (i), we get

$$
y \sin x=-\frac{\cos 2 x}{2}-\frac{1}{2}
$$

$\therefore 2 y \sin x+\cos 2 x+1=0$
which is the required solution.
45. Given differential equation is

$$
\begin{array}{cc}
\left(x^{2}-y x^{2}\right) d y+\left(y^{2}+x^{2} y^{2}\right) d x=0 \\
\Rightarrow & x^{2}(a-y) d y+y^{2}\left(a+x^{2}\right) d x=0 \\
\Rightarrow & -x^{2}(a-y) d y=y^{2}\left(1+x^{2}\right) d x \\
\Rightarrow & x^{2}(y-1) d y=y^{2}\left(1+x^{2}\right) d x \\
\Rightarrow & \frac{y-1}{y^{2}} d y=\frac{1+x^{2}}{x^{2}} d x \tag{1}
\end{array}
$$

On integrating both sides, we get

$$
\begin{align*}
& \int \frac{y-1}{y^{2}} d y \\
&=\quad \int \frac{1+x^{2}}{x^{2}} d x \\
& \Rightarrow \quad \int \frac{1}{y} d y-\int \frac{1}{y^{2}} d y=\int \frac{1}{x^{2}} d x+\int 1 d x \tag{i}\\
& \Rightarrow \quad \log |y|+\frac{1}{y}
\end{align*}=\frac{-1}{x}+x+C
$$

Also, given that $y=1$, when $x=1$
On putting $y=1$ and $x=1$ in Eq. (i), we get

$$
\Rightarrow \quad \begin{align*}
\log !1+1 & =-1+1+C \\
\Rightarrow & C \tag{1}
\end{align*}=1
$$

On putting the value of C in Eq.(i), we get

$$
\log |y|+\frac{1}{y}=\frac{-1}{x}+x+1
$$

which is the required solution.
(i)
:
First convert the given differential equation in homogeneous and then put $y=v x$.

$$
\frac{d y}{d x}=v+x \frac{d v}{d x}
$$

Further, separate the variables and integrate it, then substitute the value of v and get the required result.

$$
\begin{array}{r}
\begin{array}{r}
\left(x \cos \frac{y}{x}+y \sin \frac{y}{x}\right) \cdot y \\
\\
-\left(y \sin \frac{y}{x}-x \cos \frac{y}{x}\right) \cdot x \frac{d y}{d x}=0 \\
\Rightarrow \quad \frac{d y}{d x}=
\end{array} \begin{array}{r}
{\left[x \cos \left(\frac{y}{x}\right)+y \sin \left(\frac{y}{x}\right)\right] \cdot y} \\
\left(y \sin \frac{y}{x}-x \cos \frac{y}{x}\right) \cdot x
\end{array} .
\end{array}
$$

which is a homogeneous differential equation.
on putting $y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$ in Eq. (i),
we get

$$
\begin{align*}
& v+x \frac{d v}{d x}=\frac{(x \cos v+v x \sin v) \cdot v x}{(v x \sin v-x \cos v) \cdot x} \tag{1}\\
\Rightarrow \quad & v+x \frac{d v}{d x}=\frac{v \cos v+v^{2} \sin v}{v \sin v-\cos v} \\
\Rightarrow \quad & x \frac{d v}{d x}=\frac{v \cos v+v^{2} \sin v}{v \sin v-\cos v}-v \\
\Rightarrow & x \frac{d v}{d x}=\frac{v \cos v+v^{2} \sin v-v^{2} \sin v+v \cos v}{v \sin v-\cos v} \tag{1}\\
\Rightarrow & x \frac{d v}{d x}=\frac{2 v \cos v}{v \sin v-\cos v} \\
\Rightarrow & \frac{v \sin v-\cos v}{v \cos v} d v=2 \frac{d x}{x}
\end{align*}
$$

On integrating both sides, we get

$$
\begin{array}{cc}
& \int \frac{v \sin v-\cos v}{v \cos v} d v=2 \int \frac{d x}{x} \\
\Rightarrow \quad & \int\left(\frac{v \sin v}{v \cos v}-\frac{\cos v}{v \cos v}\right) d v=2 \int \frac{d x}{x} \\
\Rightarrow \quad & \int\left(\tan v-\frac{1}{v}\right) d v=2 \int \frac{d x}{x} \\
\Rightarrow \quad & \log |\sec v|-\log |v|=2 \log |x|+C
\end{array}
$$

$$
\Rightarrow \quad \log |\sec v|-\log |v|-2 \log |x|=C
$$

$$
\Rightarrow \quad \log |\sec v|-\log |v|-\log |x|^{2}=C
$$

$$
\left[\because n \log m=\log m^{n}\right]
$$

$$
\begin{aligned}
& \Rightarrow \log |\sec v|-\log \left|v x^{2}\right|=C \\
& {[\because \log m+\log n=\log m n]} \\
& \Rightarrow \quad \log \left|\frac{\sec v}{v x^{2}}\right|=C \\
& {\left[\because \log m-\log n=\log \left(\frac{m}{n}\right)\right]} \\
& \Rightarrow \quad \log \left|\frac{\sec \frac{y}{x}}{\frac{y}{x} \cdot x^{2}}\right|=C \quad\left[\text { put } v=\frac{y}{x}\right] \\
& \therefore \quad \log \left|\frac{\sec \frac{y}{x}}{x y}\right|=C \Rightarrow \frac{\sec \frac{y}{x}}{x y}=e^{c} \\
& \Rightarrow \quad \sec \frac{y}{x}=A x y \\
& {\left[\because e^{C}=A\right]}
\end{aligned}
$$

which is the required solution.
(1)
47. We have, $\frac{d y}{d x}-y=\cos x$

This is a linear differential equation of the form
$\frac{d y}{d x}+P y=Q$, here $P=-1$ and $Q=\cos x$
$\therefore \quad \mathrm{IF}=e^{\int P d x}=e^{\int(-1) d x}=e^{-x}$
The general solution is given by

$$
\begin{align*}
y \times \mathrm{IF} & =\int(\mathrm{IF} \times Q) d x+C \\
\Rightarrow \quad y \cdot e^{-x} & =\int e^{-x} \cos x d x+C \tag{i}
\end{align*}
$$

Now, $\int_{\text {II }}^{e_{\text {II }}} \underset{\text { II }}{\cos } x d x=e^{-x} \sin x+\int_{\text {I }}^{e^{-x}} \sin _{\text {II }} x d x$
[integrating by parts]

$$
\begin{align*}
& =e^{-x} \sin x-e^{-x} \cos x-\int e^{-x} \cos x d x \\
\Rightarrow \quad & 2 \int e^{-x} \cos x d x=e^{-x}(\sin x-\cos x) \\
\Rightarrow \quad & \int e^{-x} \cos x d x=\frac{1}{2} e^{-x}(\sin x-\cos x) \tag{2}
\end{align*}
$$

On substituting this value in Eq. (i), we get

$$
\begin{equation*}
y \cdot e^{-x}=\frac{1}{2} e^{-x}(\sin x-\cos x)+C \tag{ii}
\end{equation*}
$$

On putting $x=0, y=1$ in Eq. (ii), we get

$$
\begin{align*}
1 \cdot e^{-0} & =\frac{1}{2} e^{-0}(\sin 0-\cos 0)+C \\
1 & =\frac{1}{2}(-1)+C \Rightarrow C=\frac{3}{2} \tag{1}
\end{align*}
$$

On putting $C=\frac{3}{2}$ in Eq; (ii), we get

$$
\begin{align*}
y \cdot e^{-x} & =\frac{1}{2} e^{-x}(\sin x-\cos x)+\frac{3}{2} \\
\Rightarrow \quad y & =\frac{1}{2}(\sin x-\cos x)+\frac{3}{2} e^{x} \tag{1}
\end{align*}
$$

which is the required particular solution.
4. We have, $x \frac{d y}{d x}+2 y=x^{2},(x \neq 0)$

$$
\begin{equation*}
\Rightarrow \quad \frac{d y}{d x}+\left(\frac{2}{x}\right) \cdot y=x \tag{i}
\end{equation*}
$$

This is linear differential equation of the form $\frac{d y}{d x}+P y=Q$ here $P=\frac{2}{x}$ and $Q=x$.
$\therefore \mathrm{IF}=e^{\int P d x}=e^{\int(2 / x) d x}=e^{2 \log x}=e^{\log x^{2}}=x^{2}$
The general solution is given by

$$
\begin{array}{ll}
& y \cdot \text { IF }=\int(\text { IF } \times Q) d x+C \\
\Rightarrow & y \cdot x^{2}=\int x^{2} \times x d x+C \\
\Rightarrow & y \cdot x^{2}=\int x^{3} d x+C \\
\therefore & y \cdot x^{2}=\frac{x^{4}}{4}+C \tag{ii}
\end{array}
$$

On putting $x=2, y=1$ in Eq. (ii), we get

$$
\begin{aligned}
1 \cdot 2^{2} & =\frac{2^{4}}{4}+C \Rightarrow 4=4+C \Rightarrow C=0 \\
\therefore \quad y \cdot x^{2} & =\frac{x^{4}}{4} \quad \quad \text { from E } \\
\Rightarrow \quad y & =\frac{x^{2}}{4}
\end{aligned}
$$

[from Eq. (ii)]
which is the required particular solution.
49. We have, $\frac{d y}{d x}+y \cot x=2 x+x^{2} \cot x,(x \neq 0)$

This is a linear differential equation of the form $\frac{d y}{d x}+P y=Q$.
Here, $P=\cot x$ and $Q=2 x+x^{2} \cot x$.
$\therefore \quad$ IF $=e^{\int P d x}=e^{\int \cot x d x}=e^{\log |\sin x|}=\sin x$
The general solution is given by
$y \cdot I F=\int(I F \times Q) d x+C$
$\Rightarrow y \cdot \sin x=\int\left(2 x+x^{2} \cdot \cot x\right) \sin x d x+C$

$$
\begin{aligned}
& =2 \int x \sin x d x+\int x^{2} \cos x d x+C \\
& =2 \int x \sin x d x+x^{2} \sin x-\int 2 x \sin x d x+C
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow \quad y \cdot \sin x=x^{2} \sin x+C \tag{i}
\end{equation*}
$$

On putting $x=\frac{\pi}{2}$ and $y=0$ in Eq. (i), we get

$$
\begin{equation*}
0 \cdot \sin \frac{\pi}{2}=\left(\frac{\pi}{2}\right)^{2} \cdot \sin \frac{\pi}{2}+C \Rightarrow C=-\frac{\pi^{2}}{4} \tag{1}
\end{equation*}
$$

On putting $C=\frac{-\pi^{2}}{4}$ in Eq. (i), we get

$$
\begin{aligned}
y \cdot \sin x & =x^{2} \sin x-\frac{\pi^{2}}{4} \\
\therefore \quad y & =x^{2}-\frac{\pi^{2}}{4} \operatorname{cosec} x
\end{aligned}
$$

[dividing both sides by $\sin x$] (I)
50. Given differential equation is

$$
\frac{d y}{d x}+y \cot x=4 x \operatorname{cosec} x
$$

which is a linear differential equation of the form $\frac{d y}{d x}+P y=Q$, here $P=\cot x$ and $Q=4 x \operatorname{cosec} x(1)$

$$
\begin{align*}
\therefore \quad \mathrm{IF} & =e^{\int P d x}=e^{\int \cot x d x} \\
& =e^{\log |\sin x|}=\sin x \quad\left[\because e^{\log |x|}=x\right] \tag{1}
\end{align*}
$$

The solution of linear differential equation is given by

$$
\begin{align*}
& y \times \mathrm{IF}=\int(Q \times \mathrm{IF}) d x+C \\
\Rightarrow & y \times \sin x=\int 4 x \operatorname{cosec} x \cdot \sin x d x+C \\
\Rightarrow & y \sin x=\int 4 x \cdot \frac{1}{\sin x} \cdot \sin x d x+C \\
\Rightarrow & y \sin x=\int 4 x d x+C \\
\Rightarrow \quad & y \sin x=2 x^{2}+C \tag{i}
\end{align*}
$$

Also, given that $\quad y=0$, when $x=\frac{\pi}{2}$.
On putting $y=0$ and $x=\frac{\pi}{2}$ in Eq. (i), we get

$$
0=2 \times \frac{\pi^{2}}{4}+C \Rightarrow C=\frac{-\pi^{2}}{2}
$$

On putting $C=-\frac{\pi^{2}}{2}$ in Eq. (i), we get

$$
y \sin x=2 x^{2}-\frac{\pi^{2}}{2}
$$

$\therefore \quad y=2 x^{2} \operatorname{cosec} x-\frac{\pi^{2}}{2} \operatorname{cosec} x$
[dividing both sides by $\sin x$] which is the required solution.
51. We have, $x y \frac{d y}{d x}=(x+2)(y+2)$

On separating the variables, we get

$$
\frac{y d y}{y+2}=\frac{x+2}{x} d x
$$

$\Rightarrow\left(\frac{y+2-2}{y+2}\right) d y=\left(1+\frac{2}{x}\right) d x$
$\Rightarrow\left(1-\frac{2}{y+2}\right) d y=\left(1+\frac{2}{x}\right) d x$
on integrating both sides, we get

$$
\begin{equation*}
\int\left(1-\frac{2}{y+2}\right) d y=\int\left(1+\frac{2}{x}\right) d x \tag{1}
\end{equation*}
$$

$\Rightarrow y-2 \log |y+2|=x+2 \log |x|+C$
Given that $y=-1$, when $x=1$
On putting $x=1$ and $y=-1$ in Eq. (i), we get

$$
\begin{aligned}
-1-2 \log (1) & =1+2 \log |1|+C \\
-1 & =1+C \Rightarrow C=-2
\end{aligned}
$$

\Rightarrow on putting $C=-2$ in Eq. (i), we get

$$
\begin{equation*}
y-2 \log |y+2|=x+2 \log |x|-2 \tag{1}
\end{equation*}
$$

which is required particular solution.
52. Given differential equation is

$$
\begin{equation*}
2 x^{2} \frac{d y}{d x}-2 x y+y^{2}=0 \Rightarrow \frac{d y}{d x}=\frac{y}{x}-\frac{y^{2}}{2 x^{2}} \tag{i}
\end{equation*}
$$

which is a homogeneous differential equation as $\frac{d y}{d x}=F\left(\frac{y}{x}\right)$
On putting $y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$ in Eq. (i).
we get
$\Rightarrow v+x \frac{d v}{d x}=v-\frac{v^{2}}{2} \Rightarrow x \frac{d v}{d x}=\frac{-v^{2}}{2} \Rightarrow \frac{2 d v}{v^{2}}=-\frac{1}{x} d x$
On integrating both sides, we get

$$
\begin{array}{rlrl}
& & 2 \int v^{-2} d v & =-\log |x|+C \\
\Rightarrow & \frac{2 v^{-1}}{-1} & =-\log |x|+C \\
\Rightarrow & \frac{-2}{v} & =-\log |x|+C \\
\Rightarrow & & \frac{-2 x}{y} & =-\log |x|+C \quad\left[\text { put } v=\frac{y}{x}\right] \\
\Rightarrow & & -2 x & =y(-\log |x|+C \\
& \therefore & y & =\frac{-2 x}{-\log |x|+C} \tag{1}
\end{array}
$$

which is the required solution.
53. Given differential equation is

$$
\begin{align*}
\frac{d y}{d x} & =1+x^{2}+y^{2}+x^{2} y^{2} \\
\Rightarrow \quad & \frac{d y}{d x} \tag{1}
\end{align*}=1\left(1+x^{2}\right)+y^{2}\left(1+x^{2}\right)
$$

$\Rightarrow \quad \frac{d y}{d x}=\left(1+x^{2}\right)\left(1+y^{2}\right)$
On separating the variables, we get
$\Rightarrow \quad \frac{d y}{1+y^{2}}=\left(1+x^{2}\right) d x$
On integrating both sides, we get

$$
\begin{align*}
& \int \frac{d y}{1+y^{2}}=\int\left(1+x^{2}\right) d x \\
\Rightarrow \quad & \tan ^{-1} y \tag{i}
\end{align*}=x+\frac{x^{3}}{3}+C
$$

Also, given that $y=1$, when $x=0$.
On putting $x=0$ and $y=1$ in Eq. (i), we get

$$
\begin{array}{rlrl}
\tan ^{-1} 1 & =C \\
\Rightarrow & & \\
\Rightarrow & \tan ^{-1}(\tan \pi / 4) & =C \\
\Rightarrow & C & =\pi / 4 \tag{1}
\end{array}
$$

On putting the value of C in Eq. (i), we get

$$
\begin{aligned}
\tan ^{-1} y & =x+\frac{x^{3}}{3}+\frac{\pi}{4} \\
\therefore \quad y & =\tan \left(x+\frac{x^{3}}{3}+\frac{\pi}{4}\right)
\end{aligned}
$$

which is the required solution.
54. Given differential equation is

$$
\frac{d y}{d x}+y \sec x=\tan x
$$

which is a linear differential equation of first order and is of the form

$$
\begin{equation*}
\frac{d y}{d x}+P y=Q \tag{i}
\end{equation*}
$$

Here, $P=\sec x$ and $Q=\tan x$

$$
\begin{array}{ll}
\therefore & \quad \mathrm{IF}=\mathrm{e}^{\int P d x}=\mathrm{e}^{\int \sec x d x}=e^{\log |\sec x+\tan x|} \tag{1}\\
& {\left[\because \int \sec x d x=\log \mid \sec x+\tan x \|\right.} \\
\Rightarrow & \mathrm{IF}=\sec x^{\prime}+\tan x
\end{array}
$$

The general solution is $y \times I F=\int(Q \times I F) d x+C$

$$
\begin{align*}
& y(\sec x+\tan x)=\int \tan x \cdot(\sec x+\tan x) d x \\
\Rightarrow & y(\sec x+\tan x)=\int \sec x \tan x d x+\int \tan ^{2} x d x \\
\Rightarrow & y(\sec x+\tan x)=\sec x+\int\left(\sec ^{2} x-1\right) d x \tag{1}\\
\Rightarrow & y(\sec x+\tan x)=\sec x+\tan x-x+C \\
& \quad\left[\because \int \sec ^{2} x d x=\tan x\right]
\end{align*}
$$

On dividing both sides by $(\sec x+\tan x)$, we get

$$
\begin{equation*}
y=1-\frac{x}{\sec x+\tan x}+\frac{c}{\sec x+\tan x} \tag{1}
\end{equation*}
$$

55. Given differential equation is

$$
\begin{aligned}
& x\left(x^{2}-1\right) \frac{d y}{d x}=1 \Rightarrow \frac{d y}{d x}=\frac{1}{x\left(x^{2}-1\right)} \\
& \Rightarrow \quad \frac{d y}{d x}=\frac{1}{x(x-1)(x+1)} \\
& \Rightarrow \quad\left[\because a^{2}-b^{2}=(a-b)(a+b)\right] \\
& \Rightarrow \quad d y=\frac{d x}{x(x-1)(x+1)}
\end{aligned}
$$

On integrating both sides, we get

$$
\begin{align*}
& \int d y & =\int \frac{d x}{x(x-1)(x+1)} \\
\Rightarrow & y & =I+K \tag{i}\\
\text { where, } & I & =\int \frac{d x}{x(x-1)(x+1)} \tag{1}
\end{align*}
$$

By using partial fraction method,
let $\frac{1}{x(x-1)(x+1)}=\frac{A}{x}+\frac{B}{x-1}+\frac{C}{x+1}$
$\Rightarrow 1=A(x-1)(x+1)+B x(x+1)+C x(x-1)$
$\Rightarrow 1=A\left(x^{2}-1\right)+B\left(x^{2}+x\right)+C\left(x^{2}-x\right)$
On comparing the coefficients of x^{2}, x and constant terms from both sides, we get

$$
\begin{aligned}
A+B+C & =0 \\
B-C & =0 \\
-A & =1 \\
A & =-1
\end{aligned}
$$

and
\Rightarrow
On solving above equations, we get

$$
\begin{equation*}
A=-1, B=\frac{1}{2} \text { and } C=\frac{1}{2}, \tag{1}
\end{equation*}
$$

then $\frac{1}{x(x-1)(x+1)}=\frac{-1}{x}+\frac{1 / 2}{x-1}+\frac{1 / 2}{x+1}$
On integrating both sides w.r.t. x, we get

$$
\begin{aligned}
I=\int \frac{1}{x(x-1)(x+1)} d x & =\int \frac{-1}{x} d x \\
& +\frac{1}{2} \int \frac{d x}{x-1}+\frac{1}{2} \int \frac{d x}{x+1}
\end{aligned}
$$

$$
\Rightarrow \quad I=-\log |x|+\frac{1}{2} \log |x-1|+\frac{1}{2} \log |x+1|
$$

On putting the value of I in Eq. (i), we get

$$
\begin{equation*}
y=-\log |x|+\frac{1}{2} \log |x-1|+\frac{1}{2} \log |x+1|+K . \tag{ii}
\end{equation*}
$$

Also, given that $y=0$, when $x=2$.
On putting $y=0$ and $x=2$ in Eq. (ii), we get

$$
0=-\log 2+\frac{1}{2} \log 1+\frac{1}{2} \log 3+K
$$

$\Rightarrow \quad K=\log 2-\frac{1}{2} \log 1-\frac{1}{2} \log 3$
$\begin{aligned} \Rightarrow & K & =\log 2-\log \sqrt{3} \\ K & =\log \frac{2}{\sqrt{3}} & \quad \because \cdot \log |=0|\end{aligned}$
$\Rightarrow \quad K=\log \frac{2}{\sqrt{3}}$
On putting the value of K in Eq. (ii), we get

$$
\begin{align*}
& \begin{array}{l}
y=-\log |x|+\frac{1}{2} \log |x-1| \\
\\
\quad+\frac{1}{2} \log |x+1|+\log \frac{2}{\sqrt{3}}
\end{array} \tag{II}
\end{align*}
$$

which is the required solution.
56. Given differential equation is

$$
\begin{aligned}
& \quad\left(1+x^{2}\right) d y+2 x y d x \\
\Rightarrow \quad\left(1+x^{2}\right) d y & =(\cot x-2 x y) d x
\end{aligned}
$$

On dividing both sides by $\left(1+x^{2}\right)$, we get

$$
\begin{align*}
d y & =\frac{\cot x-2 x y}{1+x^{2}} d x \\
\Rightarrow \quad \frac{d y}{d x}+\frac{2 x y}{1+x^{2}} & =\frac{\cot x}{1+x^{2}} \tag{I}
\end{align*}
$$

which is a linear differential equation of 1 st order and is of the form

$$
\frac{d y}{d x}+P y=Q
$$

Here, $P=\frac{2 x}{1+x^{2}}$ and $Q=\frac{\cot x}{1+x^{2}}$
$\therefore \quad \mathrm{IF}=e^{\int d x}=e^{\int \frac{2 x}{1+x^{2}} d x}=e^{\log \left|1+x^{2}\right|}=1+x^{2} \quad$ (1)

$$
\left[\begin{array}{l}
\text { put } 1+x^{2}=t \Rightarrow 2 x d x=d t, \text { then } \\
\int \frac{2 x}{1+x^{2}} d x=\int \frac{d t}{t}=\log |t|=\log \left|1+x^{2}\right|
\end{array}\right]
$$

The solution of linear differential equation is given by

$$
\begin{align*}
& y \times \mathrm{IF}=\int(Q \times \mathrm{IF}) d x+C \\
& \therefore y\left(1+x^{2}\right)=\int \frac{\cot x}{1+x^{2}} \times\left(1+x^{2}\right) d x+C \\
& \Rightarrow y\left(1+x^{2}\right)=\int \cot x d x+C \tag{i}\\
& \Rightarrow \quad y\left(1+x^{2}\right)=\log |\sin x|+C
\end{align*}
$$

$$
y=\frac{\log |\sin x|}{1+x^{2}}+\frac{C}{1+x^{2}}
$$

$$
\left[\because \int \cot x d x=\log |\sin x|\right]
$$

On dividing both sides by $\left(1+x^{2}\right)$, we get
which is the required solution.
g7. We have, $x \frac{d y}{d x}-y+x \sin \left(\frac{y}{x}\right)=0$
$\Rightarrow \quad \frac{d y}{d x}-\frac{y}{x}+\sin \left(\frac{y}{x}\right)=0$
[dividing both sides by x]...(i) This is a homogeneous differential equation as $\frac{d y}{d x}=F\left(\frac{y}{x}\right)$ on putting $y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$ in Eq. (i), we get

$$
\begin{equation*}
v+x \frac{d v}{d x}-v+\sin v=0 \Rightarrow x \frac{d v}{d x}+\sin v=0 \tag{1}
\end{equation*}
$$

$\Rightarrow \quad \operatorname{cosec} v d v+\frac{d x}{x}=0$
on integrating both sides, we get

$$
\int \operatorname{cosec} v d v+\int \frac{d x}{x}=\log C
$$

$\Rightarrow \log |\operatorname{cosec} v-\cot v|+\log x=\log C$
$\Rightarrow \quad x(\operatorname{cosec} v-\cot v)=C$
$\Rightarrow \quad x\left[\operatorname{cosec}\left(\frac{y}{x}\right)-\cot \left(\frac{y}{x}\right)\right]=C$

$$
\begin{equation*}
\left[\because v=\frac{y}{x}\right] . \tag{ii}
\end{equation*}
$$

On putting $x=2$ and $y=\pi$ in Eq. (ii) we get

$$
2\left[\operatorname{cosec}\left(\frac{\pi}{2}\right)-\cot \left(\frac{\pi}{2}\right)\right]=C \Rightarrow C=2
$$

On putting $C=2$ in Eq. (ii), we get
$\therefore x\left[\operatorname{cosec}\left(\frac{y}{x}\right)-\cot \left(\frac{y}{x}\right)\right]=2$
which is the required particular solution.
58. Given differential equation is
$\Rightarrow \begin{aligned} {\left[x \sin ^{2}\left(\frac{y}{x}\right)-y\right] d x+x d y } & =0 \\ \frac{d y}{d x} & =\frac{y}{x}-\sin ^{2}\left(\frac{y}{x}\right) \ldots\end{aligned}$
which is a homogeneous differential equation as
$\frac{d y}{d x}=F\left(\frac{y}{x}\right)$.
Put $y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$ in Eq. (i), we get

$$
\begin{array}{rlrl}
& & v+x \frac{d v}{d x} & =v-\sin ^{2} v \\
\Rightarrow \quad x \frac{d v}{d x} & =-\sin ^{2} v
\end{array}
$$

$$
\Rightarrow \quad \operatorname{cosec}^{2} v d v=-\frac{d x}{x}
$$

On integrating both sides, we get

$$
\int \operatorname{cosec}^{2} v d v+\int \frac{d x}{x}=0
$$

$$
\begin{array}{ll}
\Rightarrow & -\cot v+\log |x|=C \\
\Rightarrow & -\cot \left(\frac{y}{x}\right)+\log |x|=C \tag{2}
\end{array} \quad\left[\because v=\frac{y}{x}\right]
$$

$\Rightarrow y=x \cdot \cot ^{-1}(\log x-C)$; which is the required
solution.
59. Given differential equation is
$\left(1+y^{2}\right)(1+\log |x|) d x+x d y=0$
On separating the variables, we get

$$
\begin{equation*}
\frac{1+\log |x|}{x} d x=\frac{-d y}{1+y^{2}} \tag{1}
\end{equation*}
$$

On integrating both sides, we get

$$
\begin{align*}
\int \frac{1+\log |x|}{x} d x & =-\int \frac{d y}{1+y^{2}} \\
\Rightarrow \quad \int \frac{1}{x} d x+\int \frac{\log |x|}{x} d x & =-\int \frac{d y}{1+y^{2}} \\
\Rightarrow \quad \log |x|+I_{1}+K & =-\tan ^{-1} y \tag{i}
\end{align*}
$$

where, $I_{1}=\int \frac{\log |x|}{x} d x$
Put $\log |x|=t \Rightarrow \frac{1}{x} d x=d t$

$$
\begin{align*}
\therefore \quad I_{1} & =\int t d t \\
& =\frac{t^{2}}{2}+C_{1}=\frac{(\log |x|)^{2}}{2}+C_{1} \tag{1}
\end{align*}
$$

On putting the value of I_{1} in Eq.(i), we get

$$
\log |x|+\frac{(\log |x|)^{2}}{2}+C=-\tan ^{-1} y
$$

[where $C=C_{1}+K$]
$\Rightarrow \quad \tan ^{-1} y=-\left[\log |x|+\frac{(\log |x|)^{2}}{2}+C\right]$
$\therefore \quad y=\tan \left[-\log |x|-\frac{(\log |x|)^{2}}{2}-C\right]$
which is the required solution.
60. Do same as Q. No. 13.
$\left[\right.$ Ans. $\left.y=\tan ^{-1}\left(\frac{e^{x}-1}{C}\right)\right]$
61. First, transform the given differential equation in the form of $\frac{d y}{d x}=F(x, y)$. Now, replace $x=\lambda x$ and $y=\lambda y$ and verify whether $F(\lambda x, \lambda y)=\lambda^{n}$ $F(x, y), n \in Z$. If above equation is satisfied, then given equation is said to be homogeneous equation. Then, we use the substitution $y=v x$ and solve the differential equation by using variable separable method.

Given differential equation is

$$
\begin{array}{rlrl}
& & y d x+x \log \left|\frac{y}{x}\right| d y-2 x d y=0 \\
\Rightarrow & & y d x & =\left[2 x-x \log \left|\frac{y}{x}\right|\right] d y \\
\Rightarrow & & \frac{d y}{d x}=\frac{y}{2 x-x \log \left|\frac{y}{x}\right|} \tag{i}
\end{array}
$$

Now, let $F(x, y)=\frac{y}{2 x-x \log \left|\frac{y}{x}\right|}$
On replace x by λx and y by λy both sides, we get

$$
\begin{aligned}
F(\lambda x, \lambda y) & =\frac{\lambda y}{2 \lambda x-\lambda x \log \left|\frac{\lambda y}{\lambda x}\right|} \\
& \left.=\frac{\lambda y}{\lambda\left[2 x-x \log \left|\frac{y}{x}\right|\right.}\right] \\
\Rightarrow \quad F(\lambda x, \lambda y) & =\lambda^{0} \frac{y}{2 x-x \log \left|\frac{y}{x}\right|}=\lambda^{0} F(x, y)
\end{aligned}
$$

So, the given differential equation is homogeneous.
On putting $y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$ in Eq. (i), we get

$$
\begin{array}{ll}
& v+x \frac{d v}{d x}=\frac{v x}{2 x-x \log \left|\frac{v x}{x}\right|}=\frac{v}{2-\log |v|} \\
\Rightarrow \quad x \frac{d v}{d x}=\frac{v}{2-\log |v|}-v=\frac{v-2 v+v \log |v|}{2-\log |v|} \\
\Rightarrow \quad x \frac{d v}{d x}=\frac{-v+v \log |v|}{2-\log |v|} \\
\Rightarrow \quad & \frac{2-\log |v|}{v \log |v|-v} d v=\frac{d x}{x} \tag{1}
\end{array}
$$

On integrating both sides, we get

$$
\int \frac{2-\log |v|}{v(\log |v|-1)} d v=\int \frac{d x}{x}
$$

On putting $\log |v|=t \Rightarrow \frac{1}{v} d v=d t$
Then,

$$
\int \frac{2-t}{t-1} d t=\log |x|+C
$$

$\Rightarrow \quad \int\left(\frac{1}{t-1}-1\right) d t=\log |x|+C$
$\Rightarrow \quad \log |t-1|-t=\log |x|+C$
$\Rightarrow \log |\log v-1|-\log v=\log |x|+C$
$[$ put $t=\log |v|$]
$\Rightarrow \quad \log \left|\frac{\log v-1}{v}\right|=\log |x|+C$
$\left[\because \log m-\log n=\log \left(\frac{m}{n}\right)\right]$
$\Rightarrow \log \left|\frac{\log v-1}{v}\right|-\log |x|=C \Rightarrow \log \left|\frac{\log v-1}{v x}\right|=c$
$\therefore \quad \log \left|\frac{\log \frac{y}{x}-1}{y}\right|=C \quad\left[\because y=v x \Rightarrow v=\frac{y}{x}\right]$
which is the required solution.
62. Given differential equation is

$$
\begin{align*}
& \quad\left(y+3 x^{2}\right) \frac{d x}{d y} \\
&=x \Rightarrow \frac{d y}{d x}=\frac{y}{x}+3 x \tag{I}\\
& \Rightarrow \quad \frac{d y}{d x}-\frac{y}{x}=3 x
\end{align*}
$$

which is a linear differential equation of the form

$$
\frac{d y}{d x}+P y=Q
$$

Here, $P=\frac{-1}{x}$ and $Q=3 x$

$$
\begin{array}{ll}
\therefore & \mathrm{IF}=e^{\int P d x}=e^{\int-\frac{1}{x} d x}=e^{-\log |x|}=e^{\log x^{-1}}=x^{-1} \tag{i}\\
\Rightarrow & \mathrm{IF}=x^{-1}=\frac{1}{x}
\end{array}
$$

The solution of linear differential equation is given by

$$
\begin{align*}
& & y \times \mathrm{IF} & =\int(Q \times \mathrm{IF}) d x+C \\
\Rightarrow & & y \times \frac{1}{x} & =\int\left(3 x \times \frac{1}{x}\right) d x \tag{1}\\
\Rightarrow & & \frac{y}{x} & =\int 3 d x \Rightarrow \frac{y}{x}=3 x+C \\
& & y & =3 x^{2}+C x
\end{align*}
$$

which is the required solution.
63. Do same as Q. No. 62.
[Ans. $\left.y=2 x^{2}+c x\right]$

Do same as Q.No. 62.
6. Given differential equation is

$$
\left(1+c^{2 x}\right) d y+\left(a+y^{2}\right) e^{1} d x=0
$$

Above equation may be written as

$$
\frac{d y}{1+y^{2}}=\frac{-c^{1}}{1+c^{2 x}} d x
$$

On integrating both sides, we get

$$
\begin{equation*}
\int \frac{d y}{1+y^{2}}=-\int \frac{e^{x}}{1+e^{2 x}} d x \tag{1}
\end{equation*}
$$

On putting $c^{x}=t \Rightarrow e^{x} d x=d t$ in RHS, we get

$$
\begin{align*}
& \tan ^{-1} y=-\int \frac{1}{1+t^{2}} d t \\
\Rightarrow \quad & \tan ^{-1} y=-\tan ^{-1} t+C \\
\Rightarrow \quad & \tan ^{-1} y=-\tan ^{-1}\left(e^{x}\right)+C \tag{i}
\end{align*}
$$

[put $\left.t=e^{x}\right](t)$
Also, given that $y=1$, when $x=0$.
On putting above values in Eq. (i), we get

$$
\begin{align*}
& & \tan ^{-1} 1 & =-\tan ^{-1}\left(e^{0}\right)+C \\
\Rightarrow & & \tan ^{-1} & =-\tan ^{-1} 1+C \quad\left[\because e^{0}=1\right] \\
\Rightarrow & & 2 \tan ^{-1} 1 & =C \\
\Rightarrow & & 2 \tan ^{-1}\left(\tan \frac{\pi}{4}\right) & =C \\
\Rightarrow & & C & =2 \times \frac{\pi}{4}=\frac{\pi}{2} \tag{1}
\end{align*}
$$

On putting $C=\frac{\pi}{2}$ in Eq. (i), we get

$$
\begin{align*}
\tan ^{-1} y & =-\tan ^{-1} e^{x}+\frac{\pi}{2} \\
\Rightarrow \quad y & =\tan \left[\frac{\pi}{2}-\tan ^{-1}\left(e^{x}\right)\right]=\cot \left[\tan ^{-1}\left(e^{x}\right)\right] \\
& =\cot \left[\cot ^{-1}\left(\frac{1}{e^{x}}\right)\right] \quad\left[\because \tan ^{-1} x=\cot ^{-1} \frac{1}{x}\right] \\
\therefore \quad y & =\frac{1}{e^{x}} \tag{1}
\end{align*}
$$

which is the required solution.
66. Given differential equation is

$$
\begin{aligned}
& x y \log \left|\frac{y}{x}\right| d x+\left[y^{2}-x^{2} \log \left|\frac{y}{x}\right|\right] d y=0 \\
& x y \log \left|\frac{y}{x}\right| d x=\left[x^{2} \log \left|\frac{y}{x}\right|-y^{2}\right] d y
\end{aligned}
$$

$\Rightarrow \frac{d y}{d x}=\frac{x y \log \left|\begin{array}{l}y \\ x\end{array}\right|}{x^{2} \log \left|\begin{array}{l}y \\ x\end{array}\right|-y^{2}}=\frac{\frac{y}{x} \log \left|\frac{y}{x}\right|}{\log \left|\frac{y}{x}\right|-\frac{y^{2}}{x^{2}}}$
which is a homogeneous differential equation as $\frac{d y}{d x}=F\left(\frac{y}{x}\right)$.
On putting $y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$ in Eq. (i), we get

$$
\begin{array}{rlrl}
& v+x \frac{d v}{d x} & =\frac{v \log |v|}{\log |v|-v^{2}} \\
\Rightarrow & x \frac{d v}{d x} & =\frac{v \log |v|}{\log |v|-v^{2}}-v \\
\Rightarrow & x \frac{d v}{d x} & =\frac{v \log |v|-v \log |v|+v^{3}}{\log |v|-v^{2}} \\
\Rightarrow \quad x \frac{d v}{d x} & =\frac{v^{3}}{\log |v|-v^{2}} \\
\Rightarrow \quad & \frac{\log |v|-v^{2}}{v^{3}} d v & =\frac{d x}{x} \tag{1}
\end{array}
$$

On integrating both sides, we get

$$
\begin{array}{rlrl}
& \int \frac{\log |v|-v^{2}}{v^{3}} d v & =\int \frac{d x}{x} \\
\Rightarrow \quad & \int \frac{\log |v|}{v^{3}} d v-\int \frac{1}{v} d v & =\int \frac{d x}{x} \\
\Rightarrow \quad \int|v|^{-3} \log |v| d v-\log |v| & =\log |x|+C_{1}
\end{array}
$$

Using integration by parts, we get $\log |v| \int v^{-3} d v-\int\left[\frac{d}{d v}(\log |v|) \cdot \int v^{-3} d v\right] d v$

$$
=\log |v|+\log |x|+C_{1}
$$

$$
\Rightarrow \frac{v^{-2}}{-2} \log |v|-\int \frac{1}{v} \frac{v^{-2}}{(-2)} d v=\log |v|+\log |x|+C_{1}
$$

$$
\Rightarrow \frac{-1}{2 v^{2}} \log |v|+\frac{1}{2} \int v^{-3} d v=\log |v|+\log |x|+C_{1}
$$

$$
\Rightarrow \frac{-1}{2 v^{2}} \log |v|+\frac{1}{2} \cdot \frac{v^{-2}}{(-2)}=\log |v|+\log |x|+C_{1}
$$

$$
\begin{equation*}
\Rightarrow \quad \frac{-1}{2 v^{2}} \log |v|-\frac{1}{4 v^{2}}=\log |v x|+C_{1} \tag{1}
\end{equation*}
$$

$$
[\because \log m+\log n=\log m n]
$$

$$
\Rightarrow \quad \frac{-1}{2} \cdot \frac{x^{2}}{y^{2}} \log \left|\frac{y}{x}\right|-\frac{1}{4} \cdot \frac{x^{2}}{y^{2}}=\log \left|\frac{y}{x} \cdot x\right|+C_{l}
$$

$$
\left[\operatorname{put} v=\frac{y}{x}\right]
$$

$\Leftrightarrow \quad \frac{-x^{2}}{2 y^{2}} \log \left|\begin{array}{l}y \\ x\end{array}\right|-\frac{x^{2}}{4 y^{2}}=\log |y|+c_{1}$
$\Rightarrow \frac{-1^{2}}{y^{2}}\left[\frac{\log \left[\begin{array}{l}y \\ x\end{array}\right]}{2}+\frac{1}{4}\right]=\log |y|+c_{1}$
$\Rightarrow \frac{x^{2}}{4 y^{2}}\left[2 \log \left|\frac{y}{x}\right|+1\right]+\log |y|=-c_{1}$
$\therefore x^{2}\left[2 \log \left|\frac{y}{x}\right|+1\right]+4 y^{2} \log |y|=4 y^{2} C$,
where

$$
\begin{equation*}
C=-C_{1} \tag{1}
\end{equation*}
$$

which is the required solution.
67. Given differential equation is

$$
\begin{equation*}
\frac{d y}{d x}=y \tan x \tag{1}
\end{equation*}
$$

It can be written as $\frac{d y}{y}=\tan x d x$
On integrating both sides, we get

$$
\begin{gathered}
\int \frac{d y}{y}=\int \tan x d x \\
\Rightarrow \quad \log |y|=\log |\sec x|+c \quad \ldots \text { (i) (i) } \\
{\left[\because \int \frac{1}{y} d y=\log |y| \text { and } \int \tan x d x=\log |\sec x|\right]}
\end{gathered}
$$

Also, given that $y=1$, when $x=0$.
On putting $x=0$ and $y=1 \mathrm{in}$ Eq. (i). we get

$$
\begin{aligned}
& & \log 1 & =\log (\sec 0)+C \\
\Rightarrow & & 0 & =\log 1+C \\
\Rightarrow & C & =0 & {[\because \sec 0=1](1) } \\
\Rightarrow & & & {[\because \log 1=0] }
\end{aligned}
$$

On putting $C=0$ in Eq. (i), we get

$$
\begin{align*}
\log |y| & =\log |\sec x| \\
\therefore \quad y & =\sec x \tag{1}
\end{align*}
$$

which is the required solution.
68. Given differential equation is

$$
\left(x^{2}+1\right) \frac{d y}{d x}+2 x y=\sqrt{x^{2}+4}
$$

On dividing both sides by $\left(x^{2}+1\right)$, we get

$$
\begin{equation*}
\frac{d y}{d x}+\frac{2 x y}{x^{2}+1}=\frac{\sqrt{x^{2}+4}}{x^{2}+1} \tag{1}
\end{equation*}
$$

which is a linear differential equation of the form

$$
\frac{d y}{d x}+P y=Q
$$

Here, $\quad P=\frac{2 x}{x^{2}+1}$ and $Q=\frac{\sqrt{x^{2}+4}}{x^{2}+1}$

$$
\begin{aligned}
& \therefore \quad \mathrm{IF}=\mathrm{c}^{\int a n}=e^{\int \frac{x^{2}+1}{d x}=e^{\log \left|x^{2}+1\right|}} \\
& \qquad \text { put } x^{2}+1=t \Rightarrow 2 x d x=4 \\
& \left.\therefore \int \frac{2 x}{x^{2}+1} d x=\int \frac{d t}{t}=\log |t|=\log \left|x^{2}+1\right|\right] \\
& \Rightarrow \quad \mathrm{IF}=x^{2}+1 \\
& \text { The solution of this equation is given by }
\end{aligned}
$$

$$
\begin{align*}
& y \times I F= \int Q \times I F d x+C \\
& \therefore y\left(x^{2}+1\right)=\int \frac{\sqrt{x^{2}+4}}{x^{2}+1}\left(x^{2}+1\right) d x \tag{i}\\
& \Rightarrow y\left(x^{2}+1\right)=\int \sqrt{x^{2}+4} d x \\
& \Rightarrow y\left(x^{2}+1\right)=\int \sqrt{x^{2}+(2)^{2}} d x \\
& \Rightarrow y\left(x^{2}+1\right)=\frac{x}{2} \sqrt{x^{2}+4}+\frac{4}{2} \log \left|x+\sqrt{x^{2}+4}\right|+C \\
& \quad\left[\because \frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}\right|+C\right] \\
& \therefore y\left(x^{2}+1\right)=\frac{x}{2} \sqrt{x^{2}+4}+2 \log \left|x+\sqrt{x^{2}+4}\right|+C
\end{align*}
$$

which is the required solution.
(1)
69. Given differential equation is

$$
\begin{aligned}
\left(x^{3}+x^{2}+x+1\right) \frac{d y}{d x} & =2 x^{2}+x \\
\Rightarrow \quad \frac{d y}{d x} & =\frac{2 x^{2}+x}{x^{3}+x^{2}+x+1}
\end{aligned}
$$

It is a variable separable type differential equation.

$$
\therefore \quad d y=\frac{2 x^{2}+x}{x^{3}+x^{2}+x+1} d x
$$

On integrating both sides, we get

$$
\begin{align*}
& \int d y \\
= & \int \frac{2 x^{2}+x}{x^{3}+x^{2}+x+1} d x \\
\Rightarrow \quad y & =\int \frac{2 x^{2}+x}{x^{2}(x+1)+1(x+1)} d x+C \tag{i}\\
\Rightarrow \quad y & =\int \frac{2 x^{2}+x}{(x+1)\left(x^{2}+1\right)} d x
\end{align*}
$$

Using partial fractions method,

$$
\begin{equation*}
\text { let } \frac{2 x^{2}+x}{(x+1)\left(x^{2}+1\right)}=\frac{A}{x+1}+\frac{B x+C}{x^{2}+1} \tag{ii}
\end{equation*}
$$

$\Rightarrow \frac{2 x^{2}+x}{(x+1)\left(x^{2}+1\right)}=\frac{A\left(x^{2}+1\right)+(B x+C)(x+1)}{(x+1)\left(x^{2}+1\right)}$
$\Rightarrow \quad 2 x^{2}+x=A\left(x^{2}+1\right)+(B x+C)(x+1)$
$\Rightarrow \quad 2 x^{2}+x=A\left(x^{2}+1\right)+B\left(x^{2}+x\right)+C(x+1)$
on comparing the coefficients of x^{2}, x and
constant terms from both sides, we get

$$
\begin{aligned}
A+B=2 ; B+C & =1 \\
\text { and } A+C=0 \Rightarrow A & =-C
\end{aligned}
$$

on solving above equations, we get

$$
\begin{equation*}
A=\frac{1}{2}, B=\frac{3}{2} \text { and } C=\frac{-1}{2} \tag{1}
\end{equation*}
$$

on substituting the values of A, B and C in
Eq. (ii), we get

$$
\frac{2 x^{2}+x}{(x+1)\left(x^{2}+1\right)}=\frac{\frac{1}{2}}{x+1}+\frac{\frac{3}{2} x-\frac{1}{2}}{x^{2}+1}
$$

On integrating both sides, we get
$\int \frac{2 x^{2}+x}{(x+1)\left(x^{2}+1\right)} d x=\frac{1}{2} \int \frac{d x}{x+1}$

$$
\begin{equation*}
+\frac{3}{2} \int \frac{x}{x^{2}+1} d x-\frac{1}{2} \int \frac{d x}{x^{2}+1} \tag{iii}
\end{equation*}
$$

$\Rightarrow y=\frac{1}{2} \log |x+1|+I_{1}-\frac{1}{2} \tan ^{-1} x+C_{2}$
[from Eq. (i)] (1)
where, $I_{1}=\frac{3}{2} \int \frac{x}{x^{2}+1} d x$
Put $x^{2}+1=t \Rightarrow 2 x d x=d t \Rightarrow x d x=\frac{d t}{2}$

$$
\begin{aligned}
\therefore \quad I_{1} & =\frac{3}{4} \int \frac{d t}{t}=\frac{3}{4} \log |t|+C_{1} \\
& =\frac{3}{4} \log \left|x^{2}+1\right|+C_{1}
\end{aligned}
$$

On putting the value of I_{1} in Eq. (iii), we get

$$
y=\frac{1}{2} \log |x+1|+\frac{3}{4} \log \left|x^{2}+1\right|-\frac{1}{2} \tan ^{-1} x+C
$$

$$
\text { [where, } C=C_{1}+C_{2} \text {] }
$$

which is the required solution.
70. Do same as Q.No. 27.

$$
\begin{align*}
& \text { The general solution is } \\
& \qquad \begin{aligned}
\log |x|+C= & -\frac{1}{2} \log \left(\frac{y^{2}}{x^{2}}+\frac{y}{x}+1\right) \\
& +\sqrt{3} \tan ^{-1}\left[\left(\frac{2 y}{x}+1\right) / \sqrt{3}\right] .
\end{aligned}
\end{align*}
$$

(1)

On putting $x=1$ and $y=0$ in Eq. (i), we get

$$
\begin{aligned}
& 0+C=\frac{-1}{2} \log (0+0+1)+\sqrt{3} \tan ^{-1}\left(\frac{1}{\sqrt{3}}\right) \\
& \Rightarrow \quad C=\frac{\pi}{2 \sqrt{3}} \\
& \therefore \quad \log x+\frac{\pi}{2 \sqrt{3}}=-\frac{1}{2}\left[\log \left(y^{2}+x y+x^{2}\right)\right. \\
& \left.-\log x^{2}\right]+\sqrt{3} \tan ^{-1}\left(\frac{x+2 y}{\sqrt{3} x}\right) \\
& \Rightarrow \quad \frac{\pi}{2 \sqrt{3}}=-\frac{1}{2} \log \left(x^{2}+x y+y^{2}\right) \\
& +\sqrt{3} \tan ^{-1}\left(\frac{x+2 y}{\sqrt{3} x}\right)
\end{aligned}
$$

which is the required particular solution.
71. First, consider the function of differential equation as $\frac{d y}{d x}=F\left(\frac{y}{x}\right)$. Put $y=v x$ and convert the given differential equation in v and x.Further, integrate it and substitute $v=\frac{y}{x}$ to get the required solution.
Given differential equation is

$$
\begin{align*}
& \frac{d y}{d x}=\frac{x y}{x^{2}+y^{2}}=\frac{\frac{y}{x}}{1+\frac{y^{2}}{x^{2}}} \tag{i}
\end{align*}
$$

which is a homogeneous differential equation as $\frac{d y}{d x}=F\left(\frac{y}{x}\right)$.
Now, put $y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$ from Eq. (i).
we get

$$
\begin{array}{rlrl}
& & v+x \frac{d v}{d x} & =\frac{v}{1+v^{2}} \\
\Rightarrow & x \frac{d v}{d x} & =\frac{v}{1+v^{2}}-v \tag{1}\\
\Rightarrow & x \frac{d v}{d x} & =\frac{v-v-v^{3}}{1+v^{2}} \Rightarrow x \frac{d v}{d x}=-\frac{v^{3}}{1+v^{2}}
\end{array}
$$

$$
\begin{equation*}
\Rightarrow \quad \frac{1+v^{2}}{v^{3}} d v=-\frac{d x}{x} \tag{1}
\end{equation*}
$$

On integrating both sides, we get

$$
\begin{align*}
\int\left(\frac{1}{v^{3}}+\frac{1}{v}\right) d v & =-\int \frac{d x}{x} \\
\Rightarrow \quad-\frac{1}{2 v^{2}}+\log |v| & =-\log |x|+C \tag{1}
\end{align*}
$$

$$
\begin{gather*}
\Rightarrow \quad-\frac{x^{2}}{2 y^{2}}+\log \left|\frac{y}{x}\right|=-\log |x|+C\left[\text { put } v=\frac{y}{x}\right] \\
\Rightarrow-\frac{x^{2}}{2 y^{2}}+\log |y|-\log |x|=-\log |x|+C \\
\quad\left[\because \log \frac{m}{n}=\log m-\log n\right] \\
\Rightarrow \quad-\frac{x^{2}}{2 y^{2}}+\log |y|=C \tag{ii}
\end{gather*}
$$

Also, it is given that $y=1$, when $x=0$.
From Eq. (ii), we have

$$
0+\log |1|=C \Rightarrow C=0
$$

On putting $C=0$ in Eq. (ii), we get

$$
\begin{align*}
-\frac{x^{2}}{2 y^{2}}+\log |y| & =0 \Rightarrow \log |y|=\frac{x^{2}}{2 y^{2}} \\
\therefore \quad y & =e^{\frac{x^{2}}{2 y^{2}}} \tag{1}
\end{align*}
$$

which is the required solution.
72. Do same as Q. No. 58.

The solution of differential equation is

$$
\begin{equation*}
-\cot \left(\frac{y}{x}\right)+\log |x|=C \tag{i}
\end{equation*}
$$

Also, given that $y=\frac{\pi}{4}$, when $x=1$.
On putting $x=1$ and $y=\frac{\pi}{4}$ in Eq. (i), we get
$-\cot \left(\frac{\pi}{4}\right)+\log 1=C \Rightarrow C=-1 \quad\left[\because \cot \frac{\pi}{4}=1\right]$
On putting this value of C in Eq. (i), we get

$$
\begin{aligned}
-\cot \left(\frac{y}{x}\right)+\log |x| & =-1 \\
\therefore & 1+\log |x|-\cot \left(\frac{y}{x}\right)=0
\end{aligned}
$$

which is the required particular solution of given differential equation.
73. We have, $\frac{d y}{d x}-3 y \cot x=\sin 2 x$

This is a linear differential equation of the form
$\frac{d y}{d x}+P y=Q$, here $P=-3 \cot x$ and $Q=\sin 2 x$. (1)
$\therefore \quad \mathrm{IF}=e^{\int P d x}=e^{-3 \int \cot x d x}$
$\Rightarrow \quad \mathrm{IF}=e^{-3 \log |\sin x|}=e^{\log |\sin x|^{-3}}=|\sin x|^{-3}$ (1)
\therefore The general solution of differential equation is

$$
y \times I F=\int(I F \times Q) d x+C
$$

$\Rightarrow \quad y \cdot(\sin x)^{-3}=\int(\sin x)^{-3}(\sin 2 x) d x+C$

$$
=\int \frac{2 \sin x \cos x}{\sin ^{3} x} d x+C
$$

$\therefore \quad y \cdot(\sin x)^{-3}=\int \frac{2 \cos x}{\sin ^{2} x} d x+C$
On putting $\sin x=t \Rightarrow \cos x d x=d t$ in Eq. (i). we get

$$
\begin{array}{rlrl}
& & y \cdot(\sin x)^{-3} & =2 \int \frac{d t}{t^{2}}+C=2 \times \frac{t^{-1}}{-1}+C \\
\Rightarrow \quad y(\sin x)^{-3} & =-\frac{2}{t}+C \\
\Rightarrow \quad y(\sin x)^{-3} & =\frac{-2}{\sin x}+C \quad[\text { put } t=\sin x] \\
\Rightarrow \quad y & =-2 \sin ^{2} x+C \sin ^{3} x \ldots(\text { ii })(11 / 2)
\end{array}
$$

On putting $x=\frac{\pi}{2}$ and $y=2$ in Eq. (ii), we get

$$
2=-2 \sin ^{2} \frac{\pi}{2}+C \sin ^{3} \frac{\pi}{2} \Rightarrow 2=-2 \cdot 1+C \cdot 1
$$

$$
\Rightarrow \quad C=4
$$

$\therefore y=-2 \sin ^{2} x+4 \sin ^{3} x$, which is required particular solution.
74. Do same as Q. No. 29.

The solution of differential equation is
$x e^{\tan ^{-1} y}=e^{\tan ^{-1} y}\left(\tan ^{-1} y-1\right)+C$
Also, it is given that $x=1$, when $y=0$.
Therefore, we have $1 \cdot e^{0}=e^{0}(0-1)+C$
$\Rightarrow \quad 1=-1+C \quad \Rightarrow \quad C=2$
Hence, the required solution is

$$
x e^{\tan ^{-1} y}=e^{\tan ^{-1} y}\left(\tan ^{-1} y-1\right)+2
$$

75.

First, consider $\frac{d y}{d x}$ as equal to $F(x, y)$. Then, replace x by λx and y by λy on both sides, we get

$$
F(x, y)=\lambda^{0} F(x, y)
$$

Put $y=v x$ and convert the given equation in terms of v and x, then separate the variables and integrate it. Further put $v=\frac{y}{x}$ and simplify it to get the required result.

Given differential equation is

$$
\begin{equation*}
\frac{d y}{d x}=\frac{y^{2}}{x y-x^{2}} \tag{i}
\end{equation*}
$$

Let

$$
F(x, y)=\frac{y^{2}}{x y-x^{2}}
$$

Now, on replacing x by λx and y by λy, we get ${ }_{F}(\lambda x, \lambda y)=\frac{\lambda^{2} y^{2}}{\lambda^{2}\left(x y-x^{2}\right)}=\lambda^{0} \frac{y^{2}}{x y-x^{2}}=\lambda^{0} F(x, y)$
Thus, the given differential equation is a nomogeneous differential equation.
Now, to solve it, put $y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$

$$
\begin{align*}
& \text { From Eq. (i), we get } \\
& \qquad \begin{array}{l}
v+x \frac{d v}{d x}=\frac{v^{2} x^{2}}{v x^{2}-x^{2}}=\frac{v^{2}}{v-1} \\
\Rightarrow \quad x \frac{d v}{d x}=\frac{v^{2}}{v-1}-v=\frac{v^{2}-v^{2}+v}{v-1} \\
\Rightarrow \quad x \frac{d v}{d x}=\frac{v}{v-1} \Rightarrow \frac{v-1}{v} d v=\frac{d x}{x}
\end{array} \tag{1}
\end{align*}
$$

on integrating both sides, we get

$$
\begin{array}{cc}
& \int\left(1-\frac{1}{v}\right) d v=\int \frac{d x}{x} \\
\Rightarrow & v-\log |v|=\log |x|+C \\
\Rightarrow & \frac{y}{x}-\log \left|\frac{y}{x}\right|=\log |x|+C\left[\text { put } v=\frac{y}{x}\right] \tag{1}\\
\Rightarrow & \frac{y}{x}-\log |y|+\log |x|=\log |x|+C \\
& {\left[\because \log \left(\frac{m}{n}\right)=\log m-\log n\right]} \\
\therefore & \frac{y}{x}-\log |y|=C
\end{array}
$$

which is the required solution.
76. Given differential equation is

$$
\begin{array}{rlrl}
& \sqrt{1+x^{2}+y^{2}+x^{2} y^{2}}+x y \frac{d y}{d x} & =0 \\
\Rightarrow & \sqrt{1\left(1+x^{2}\right)+y^{2}\left(1+x^{2}\right)}=-x y \frac{d y}{d x} \\
\Rightarrow & \sqrt{\left(1+x^{2}\right)\left(1+y^{2}\right)}=-x y \frac{d y}{d x} \\
\Rightarrow & \sqrt{1+x^{2}} \cdot \sqrt{1+y^{2}}=-x y \frac{d y}{d x} \\
\Rightarrow & & \frac{y}{\sqrt{1+y^{2}}} d y=-\frac{\sqrt{1+x^{2}}}{x} d x \tag{1}
\end{array}
$$

On integrating both sides, we get

$$
\begin{equation*}
\int \frac{y}{\sqrt{1+y^{2}}} d y=-\int \frac{\sqrt{1+x^{2}}}{x^{2}} \cdot x d x \tag{1}
\end{equation*}
$$

On putting $1+y^{2}=t$ and $1+x^{2}=u^{2}$
$\Rightarrow \quad 2 y d y=d t$ and $2 x d x=2 u d u$
$\Rightarrow \quad y d y=\frac{d t}{2}$ and $x d x=u d u$

$$
\begin{aligned}
& \therefore \quad \frac{1}{2} \int \frac{d t}{\sqrt{t}}=-\int \frac{u}{u^{2}-1} \cdot u d u \\
& \Rightarrow \quad \frac{1}{2} \int t^{-1 / 2} d t=-\int \frac{u^{2}}{u^{2}-1} d u
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow \quad \frac{1}{2} \frac{t^{1 / 2}}{1 / 2}=-\int \frac{\left(u^{2}-1+1\right)}{u^{2}-1} d u \tag{1}
\end{equation*}
$$

$$
\Rightarrow \quad t^{1 / 2}=-\int \frac{u^{2}-1}{u^{2}-1} d u-\int \frac{1}{u^{2}-1} d u
$$

$$
\Rightarrow \quad \sqrt{1+y^{2}}=-\int d u-\int \frac{1}{u^{2}-(1)^{2}} d u
$$

$$
\left[\text { put } 1+y^{2}=t\right]
$$

$$
\begin{equation*}
\Rightarrow \quad \sqrt{1+y^{2}}=-u-\frac{1}{2} \log \left|\frac{u-1}{u+1}\right|+C \tag{1}
\end{equation*}
$$

which is the required solution.
$\therefore \sqrt{1+y^{2}}=-\sqrt{1+x^{2}}-\frac{1}{2} \log \left|\frac{\sqrt{1+x^{2}}-1}{\sqrt{1+x^{2}}+1}\right|+C$
77. Given differential equation is

$$
\begin{align*}
& \text { 7. Given differential } \\
& {\left[y-x \cos \left(\frac{y}{x}\right)\right] d y+\left[y \cos \left(\frac{y}{x}\right)-2 x \sin \left(\frac{y}{x}\right)\right] d x=0} \\
& \Rightarrow \frac{d y}{d x}=\frac{2 x \sin \left(\frac{y}{x}\right)-y \cos \left(\frac{y}{x}\right)}{y-x \cos \left(\frac{y}{x}\right)} \tag{i}\\
& \Rightarrow \frac{d y}{d x}=\frac{2 \sin \left(\frac{y}{x}\right)-\frac{y}{x} \cos \left(\frac{y}{x}\right)}{\frac{y}{x}-\cos \left(\frac{y}{x}\right)}
\end{align*}
$$

[divide numerator and denominator by x] which is a homogenedus differential equation as $\frac{d y}{d x}=F\left(\frac{y}{x}\right)$.
On putting $y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d y}{d x}$ in
Eq. (i), we get

$$
\begin{align*}
& v+x \frac{d v}{d x}=\frac{2 \sin v-v \cos v}{v-\cos v} \tag{1}\\
& \Rightarrow \quad x \frac{d v}{d x}=\frac{2 \sin v-v \cos v}{v-\cos v}-v \\
& \Rightarrow \quad x \frac{d v}{d x}=\frac{2 \sin v-v \cos v-v^{2}+v \cos v}{v-\cos v} \tag{1}
\end{align*}
$$

$\Rightarrow x \frac{d v}{d x}=\frac{2 \sin v-v^{2}}{v-\cos v} \Rightarrow\left(\frac{v-\cos v}{v^{2}-2 \sin v}\right) d v=-\frac{d x}{x}$
On integrating both sides, we get

$$
\begin{align*}
& \int\left(\frac{v-\cos v}{v^{2}-2 \sin v}\right) d v=-\int \frac{d x}{x} \\
& \Rightarrow \quad \frac{1}{2} \log \left|v^{2}-2 \sin v\right|=-\log |x|+\log C_{1} \\
& {\left[\because \frac{d}{d v}\left(v^{2}-2 \sin v\right)=2 v-2 \cos v=2(v-\cos v)\right]} \\
& \Rightarrow \quad \log \sqrt{v^{2}-2 \sin v}=\log \left|\frac{C_{1}}{x}\right| \\
& \Rightarrow \quad \sqrt{v^{2}-2 \sin v}=\frac{C_{1}}{x} \\
& \Rightarrow \quad \sqrt{\frac{y^{2}}{x^{2}}-2 \sin \left(\frac{y}{x}\right)}=\frac{C_{1}}{x} \quad\left[\text { put } v=\frac{y}{x}\right] \\
& \Rightarrow \quad \sqrt{y^{2}-2 x^{2} \sin \left(\frac{y}{x}\right)}=C_{1} \\
& \Rightarrow y^{2}-2 x^{2} \sin \left(\frac{y}{x}\right)=C_{1}^{2} \quad \text { [squaring both sides] } \\
& \therefore y^{2}-2 x^{2} \sin \left(\frac{y}{x}\right)=C, \text { where } C=C_{1}^{2} \tag{1}
\end{align*}
$$

78. Given differential equation is

$$
\left(3 x y+y^{2}\right) d x+\left(x^{2}+x y\right) d y=0
$$

It can be rewritten as

$$
\begin{equation*}
\frac{d y}{d x}=-\frac{3 x y+y^{2}}{x^{2}+x y} \Rightarrow \frac{d y}{d x}=-\frac{3 \frac{y}{x}+\frac{y^{2}}{x^{2}}}{1+\frac{y}{x}} \tag{i}
\end{equation*}
$$

which is a homogeneous differential equation as $\frac{d y}{d x}=F\left(\frac{y}{x}\right)$.
On putting $y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
in Eq.(i). We get

$$
\begin{array}{rlrl}
\Rightarrow & & v+x \frac{d v}{d x} & =-\frac{3 v+v^{2}}{1+v} \\
\Rightarrow & x \frac{d v}{d x} & =-\left(\frac{3 v+v^{2}+v+v^{2}}{1+v}\right) \\
\Rightarrow & x \frac{d v}{d x} & =-\left(\frac{2 v^{2}+4 v}{1+v}\right) \\
\Rightarrow & & \frac{(1+v) d v}{2\left(v^{2}+2 v\right)} & =-\frac{d x}{x}
\end{array}
$$

On integrating both sides, we get

$$
\int \frac{1+v}{2\left(v^{2}+2 v\right)} d v=-\int \frac{d x}{x}
$$

...(ii) (1)

Again, put $v^{2}+2 v=z \Rightarrow(2 v+2) d v=d z$
$\Rightarrow \quad(l+v) d v=\frac{d z}{2}$
Then, Eq. (ii) becomes,

$$
\begin{aligned}
& \int \frac{1}{2} \times \frac{d z}{2 z}=-\int \frac{d x}{x} \\
& \Rightarrow \quad \frac{1}{4} \log |z|=-\log |x|+\log |C| \\
& \Rightarrow \quad \frac{1}{4}[\log |z|+4 \log |x|]=\log |C| \\
& \Rightarrow \quad \log \left|z x^{4}\right|=4 \log |C| \\
& \Rightarrow \\
& z x^{4}=C^{4} \Rightarrow z x^{4}=C_{1} \text {, } \\
& \text { where } \\
& C_{1}=C^{4} \\
& \Rightarrow \quad x^{4}\left(v^{2}+2 v\right)=C_{1} \\
& \Rightarrow \quad x^{4}\left(\frac{y^{2}}{x^{2}}+\frac{2 y}{x}\right)=C_{1}\left[\text { put } v=\frac{y}{x}\right] \ldots \text { (iii) (i) }
\end{aligned}
$$

Also, given that $y=1$ for $x=1$.
On putting $x=1$ and $y=1$ in Eq. (iii), we get

$$
1\left(\frac{1}{1}+\frac{2}{1}\right)=C_{1} \Rightarrow C_{1}=3
$$

So, on putting $C_{1}=3$ in Eq. (iii), we get

$$
\begin{align*}
& x^{4}\left(\frac{y^{2}}{x^{2}}+\frac{2 y}{x}\right) & =3 \\
\therefore \quad & y^{2} x^{2}+2 y x^{3} & =3 \tag{1}
\end{align*}
$$

which is the required particular solution.
79. We have, $\left(x^{2}+x y\right) d y=\left(x^{2}+y^{2}\right) d x$

$$
\begin{equation*}
\Rightarrow \quad \frac{d y}{d x}=\left(\frac{x^{2}+y^{2}}{x^{2}+x y}\right) \tag{i}
\end{equation*}
$$

This is a homogeneous differential equation. On putting $y=v x \Rightarrow \frac{d y}{d x}=v \cdot 1+x \frac{d v}{d x}$ in Eq. (i),
we get

$$
\begin{align*}
\quad v+x \frac{d v}{d x} & =\left(\frac{x^{2}+v^{2} x^{2}}{x^{2}+x \cdot x v}\right) \tag{I}\\
\Rightarrow \quad x \frac{d v}{d x} & =\frac{1+v^{2}}{1+v}-v=\frac{1+v^{2}-v-v^{2}}{1+v}=\frac{1-v}{1+v} \\
\therefore\left(\frac{1+v}{1-v}\right) d v & =\frac{1}{x} d x \tag{i}
\end{align*}
$$

On integrating both sides, we get

$$
\int\left(\frac{1+v}{1-v}\right) d v=\int \frac{1}{x} d x
$$

$\Rightarrow \quad \int\left[-1+\frac{2}{1-v}\right] d v=\log |x|+\log C$

$$
\begin{array}{ll}
& -v-2 \log (1-v)=\log |x|+\log C \\
\Rightarrow & -v=2 \log (1-v)+\log |x|+\log C \\
\Rightarrow & -v=\log (1-v)^{2}+\log \{C|x|\} \\
\Rightarrow & \quad[\because \log m+\log n=\log m n] \\
\Rightarrow & -v=\log \left\{C|x|(1-v)^{2}\right\} \\
\Rightarrow & C|x|(1-v)^{2}=e^{-v} \\
\Rightarrow & C|x|\left(1-\frac{y}{x}\right)^{2}=e^{-v / x}\left[\because v=\frac{y}{x}\right] \tag{ii}
\end{array}
$$

on putting $x=1$ and $y=0$ in Eq. (ii), we get

$$
\begin{equation*}
C \cdot 1(1-0)=e^{0} \Rightarrow C=1 \tag{1}
\end{equation*}
$$

Thus, the required solution is

$$
\begin{equation*}
|x|\left(1-\frac{y}{x}\right)^{2}=e^{-y / x} \Rightarrow(x-y)^{2}=|x| e^{-y / x} \tag{1}
\end{equation*}
$$

which is the required particular solutions.
80. Given differential equation is

$$
\begin{array}{cc}
x \frac{d y}{d x} \sin \left(\frac{y}{x}\right)=y \sin \left(\frac{y}{x}\right)-x \\
\Rightarrow \quad & \frac{d y}{d x}=\frac{y}{x}-\frac{1}{\sin \frac{y}{x}} \tag{i}\\
{\left[\text { dividing both sides by } x \sin \left(\frac{y}{x}\right)\right]}
\end{array}
$$

Let $\quad F(x, y)=\frac{y}{x}-\frac{1}{\sin \frac{y}{x}}$
On replacing x by λx and y by λy both sides, we

$$
\begin{aligned}
& \text { get } \\
& F(\lambda x, \lambda y)=\frac{\lambda y}{\lambda x}-\frac{1}{\sin \frac{\lambda y}{\lambda x}}=\lambda^{0}\left(\frac{y}{x}-\frac{1}{\sin \frac{y}{x}}\right)=\lambda^{0} F(x, y)
\end{aligned}
$$

So, given differential equation is homogeneous. (2) On putting $y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$ in Eq. (i), we get

$$
\begin{align*}
& v+x \frac{d v}{d x}=v-\frac{1}{\sin v} \tag{1}\\
\Rightarrow \quad x \frac{d v}{d x} & =-\frac{1}{\sin v} \Rightarrow \sin v d v=-\frac{d x}{x}
\end{align*}
$$

0_{n} integrating both sides, we get

$$
\begin{align*}
& \int \sin v d v=-\int \frac{d x}{x} \\
& \Rightarrow \quad-\cos v=-\log |x|+C \\
& \Rightarrow \quad-\cos \frac{y}{x}=-\log |x|+C\left[\text { put } v=\frac{y}{x}\right] \ldots \tag{ii}
\end{align*}
$$

Also, given that $x=1$, when $y=\frac{\pi}{2}$.
On puting $x=1$ and $y=\frac{\pi}{2}$ in Eq. (ii), we get

$$
-\cos \left(\frac{\pi}{2}\right)=-\log |1|+C \Rightarrow-0=-0+C \Rightarrow C=0
$$

On putting the value of C in Eq. (li), we get

$$
\cos \frac{y}{x}=\log |x|
$$

which is the required solution.
(11/2)
81. Given differential equation is

$$
\frac{d x}{d y}+x \cot y=2 y+y^{2} \cot y,(y \neq 0)
$$

which is a linear differential equation of the form $\frac{d x}{d y}+P x=Q$ here $P=\cot y$ and $Q=2 y+y^{2} \cot y$
$\therefore \quad \mathrm{IF}=e^{\int P d y}=e^{\int \cot y d y}=e^{\log |\sin y|}=\sin y$
The solution of the differential equation is given by

$$
\begin{equation*}
x \times \mathrm{IF}=\int Q \times \mathrm{IF} d y+C \tag{1}
\end{equation*}
$$

$\therefore \quad x \sin y=\int\left(2 y+y^{2} \cot y\right) \sin y d y+C$

$$
\begin{aligned}
& =2 \int y \sin y d y+\int_{\text {I }}^{y^{2}} \cos y d y+C \\
& \begin{aligned}
\text { II } & 2 \int y \sin y d y+y^{2} \int \cos y d y \\
& -\int\left[\left(\frac{d}{d y} y^{2}\right) \int \cos y d y\right] d y+C
\end{aligned}
\end{aligned}
$$

[using integration by parts]

$$
\begin{align*}
& =2 \int y \sin y d y+y^{2} \sin y-\int 2 y \sin y d y \\
& =2 \int y \sin y d y+y^{2} \sin y-2 \int y \sin y d y+C \\
\Rightarrow x \sin y & =y^{2} \sin y+C \tag{i}
\end{align*}
$$

Also, given that $x=0$, when $y=\frac{\pi}{2}$.
On putting $x=0$ and $y=\frac{\pi}{2}$ in Eq. (i), we get

$$
\begin{equation*}
0=\left(\frac{\pi}{2}\right)^{2} \sin \frac{\pi}{2}+C \Rightarrow C=-\frac{\pi^{2}}{4}\left[\because \sin \frac{\pi}{2}=1\right] \tag{1}
\end{equation*}
$$

On putting the value of C in Eq. (i), we get

$$
x \sin y=y^{2} \sin y-\frac{\pi^{2}}{4} \Rightarrow x=y^{2}-\frac{\pi^{2}}{4} \cdot \operatorname{cosec} y
$$

which is required particular solution of given differential equation.
82. Do same as Q. No. 74.
[Ans. $x=\tan ^{-1} y-1+e^{-\tan ^{-1} y}$]

Objective Questions
 (For Complete Chapter)

【1 Mark Questions

1. Order of the equation
$\left(1+5 \frac{d y}{d x}\right)^{3 / 2}=10 \frac{d^{3} y}{d x^{3}}$ is
(a) 2
(b) 3
(c) 1
(d) 0
2. The order and degree of the differential equation $y=x \frac{d y}{d x}+\frac{2}{d y / d x}$, are
(a) 1,2
(b) 1,3
(c) 2,1
(d) 1,1
3. The degree of the differential equation $x=1+\left(\frac{d y}{d x}\right)+\frac{1}{2!}\left(\frac{d y}{d x}\right)^{2}+\frac{1}{3!}\left(\frac{d y}{d x}\right)^{3}+\cdots$, is
(a) 3
(b) 2
(c) 1
(d) not defined
4. The family of curves $y=e^{a \sin x}$, where a is an arbitrary constant is represented by the differential equation
(a) $\log y=\tan x \frac{d y}{d x}$
(b) $y \log y=\tan x \frac{d y}{d x}$
(c) $y \log y=\sin x \frac{d y}{d x}$
(d) $\log y=\cos x \frac{d y}{d x}$
5. $y=2 e^{2 x}-e^{-x}$ is a solution of the differential equation
(a) $y_{2}+y_{1}+2 y=0$
(b) $y_{2}-y_{1}+2 y=0$
(c) $y_{2}+y_{1}=0$
(d) $y_{2}-y_{1}-2 y=0$
6. The order of the differential equation whose solution is
$y=a \cos x+b \sin x+c e^{-x}$, is
(a) 3
(b) 1
(c) 2
(d) 4
7. Solution of $e^{d y d x}=x$, when $x=1$ and $y=0$ is
(a) $y=x(\log x-1)+4$
(b) $y=x(\log x-1)+3$
(c) $y=x(\log x+1)+1$
(d) $y=x(\log x-1)+1$
8. The general solution of the differential equation $\frac{d y}{d x}=e^{y}\left(e^{x}+e^{-x}+2 x\right)$ is
(a) $e^{-y}=e^{x}-e^{-x}+x^{2}+C$
(b) $e^{-y}=e^{-x}-e^{x}-x^{2}+C$
(c) $e^{-y}=-e^{-x}-e^{x}-x^{2}+C$
(d) $e^{y}=e^{-x}+e^{x}+x^{2}+C$
9. Solution of the differential equation $x d y-y d x=0$ represents a
(a) parabola
(b) circle
(c) hyperbola
(d) straight line
10. The solution of $\frac{d y}{d x}=\frac{a x+g}{b y+f}$ represents $_{\mathrm{a}}$ circle, when
(a) $a=b$
(b) $a=-b$
(c) $a=-2 b$
(d) $a=2 b$
11. An integrating factor of the differential equation $x \frac{d y}{d x}+y \log x=x e^{x} x^{-\frac{1}{2} \log x}(x>0)$ is
(a) $x^{\log x}$
(b) $(\sqrt{x})^{\log x}$
(c) $(\sqrt{e})^{\log x)^{2}}$
(d) $e^{x^{2}}$
12. Integrating factor (IF) of the differential equation $\frac{d y}{d x}-\frac{3 x^{2} y}{1+x^{3}}=\frac{\sin ^{2}(x)}{1+x}$ is
(a) $e^{1+x^{3}}$
(b) $\log \left(1+x^{3}\right)$
(c) $1+x^{3}$
(d) $\frac{1}{1+x^{3}}$

$\boxed{\boxed{V}}$ Solutions

1. (b) Given, $\left(1+5 \frac{d y}{d x}\right)^{3 / 2}=10 \frac{d^{3} y}{d x^{3}}$

On squaring both sides, we get

$$
\left(1+5 \frac{d y}{d x}\right)^{3}=100\left(\frac{d^{3} y}{d x^{3}}\right)^{2}
$$

$\Rightarrow 1+125\left(\frac{d y}{d x}\right)^{3}+15 \frac{d y}{d x}\left(1+5 \frac{d y}{d x}\right)=100\left(\frac{d^{3} y}{d x^{3}}\right)^{2}$
Clearly, the order of highest derivative occuring in the differential equation is 3 . Hence, the order of given differential equation is 3 .
2. (a) Given differential equation is

$$
y=x \frac{d y}{d x}+\frac{2}{d y / d x} \Rightarrow y \frac{d y}{d x}=x\left(\frac{d y}{d x}\right)^{2}+2
$$

Here, order $=1$ and degree $=2$

1) ${ }^{\text {(6) }}$ Given differential equation is

$$
x=1+\frac{d y}{d x}+\frac{1}{2!}\left(\frac{d y}{d x}\right)^{2}+\frac{1}{3!}\left(\frac{d y}{d x}\right)^{3}+\ldots
$$

$$
x=e^{\frac{d y}{d x}} \Rightarrow \frac{d y}{d x}=\log _{e} x
$$

Hence, degree of differential equation is 1 .
4. ${ }^{\text {(b) }}$ Given curve is $y=e^{a \sin x}$ on laking log both sides, we get

$$
\sin x=\frac{\log y}{a}
$$

$\therefore \frac{d y}{d x}=e^{\sin x} \cdot a \cos x \Rightarrow \frac{d y}{d x}=y \cos x \cdot \frac{\log y}{\sin x}$
$\Rightarrow y \log y=\tan x \frac{d y}{d x}$
g. (d) Given. $y=x^{2}-e^{-1}$

$$
\begin{array}{ll}
\Rightarrow & y_{1}=4^{2}+c^{-2} \Rightarrow y_{2}=8 c^{2 t}-c^{-4} \\
\Rightarrow & y_{2}=4 c^{2 x}+c^{-2}+4^{2}-x^{-2} \\
\Rightarrow & y_{2}=y_{1}+2\left(x^{2}-c^{-2}\right) \\
\Rightarrow & y_{2}=y_{1}+2 y \Rightarrow y_{2}-y_{1}-2 y=0
\end{array}
$$

Q. (a) In given equation, there are three parameters

So, its differential equation is third order differential equation

1. (d) Given. $e^{2 / \Delta t}=x$

On taking log both sides, we get

$$
\frac{d y}{d x}=\log x \Rightarrow d y=\log x \cdot d x
$$

On integrating both sides, we get

$$
\int d y=\int \log x \cdot d x
$$

$\Rightarrow \quad y=x \log x-\int \frac{x}{x}+C$

$$
\begin{equation*}
=x \log x-x+C \tag{i}
\end{equation*}
$$

Also, it is given that at $x=1, y=0$
$\therefore \quad 0=(1) \log 1-1+C \Rightarrow C=1$
On substituting it in Eq. (i), we get

$$
\begin{aligned}
& y \\
\Rightarrow \quad & y
\end{aligned}=x \log x-x+1 .
$$

2. (b) Given, $\frac{d y}{d x}=e^{y}\left(e^{x}+e^{-x}+2 x\right)$
$\Rightarrow \frac{d y}{e^{y}}=d x\left(e^{x}+e^{-x}+2 x\right)$
On integrating both sides, we get

$$
\int \frac{d y}{e^{y}}=\int d x\left(e^{x}+e^{-x}+2 x\right)
$$

$$
\begin{array}{ll}
\Rightarrow & e^{-y}=e^{x}-e^{-x}+x^{2}+C \\
\Rightarrow & e^{-y}=e^{-x}-e^{x}-x^{2}+C
\end{array}
$$

9. (d) Given differential equation is

$$
x d y=y d x \Rightarrow \frac{d y}{y}=\frac{d x}{x}
$$

$$
\Rightarrow \quad \int \frac{d y}{y}=\int \frac{d x}{x}
$$

$\Rightarrow \quad \log _{e} y=\log _{e} x+\log _{c} C$
$\Rightarrow \quad y=C x$
which is a straight line.
10. (b) We have, $\frac{d y}{d x}=\frac{a x+g}{b y+f}$
$\Rightarrow(b y+\Omega) d y=(a x+g) d x$
On integrating both sides, we get

$$
\begin{gathered}
\frac{b y^{2}}{2}+f y=\frac{a x^{2}}{2}+g x+C \\
\Rightarrow \quad a x^{2}-b y^{2}+2 g x-2 f y+C=0
\end{gathered}
$$

which represents a circle, if $a=-b$.
11. (c) Here, $\frac{d y}{d x}+y \frac{1}{x} \log x=e^{x} x^{-(1 / 2) \log x}$

$$
\therefore \quad \mathrm{IF}=e^{1 \log x d x}=e^{\frac{(\log x)^{2}}{2}}=(\sqrt{e})^{(\log x)^{2}}
$$

12. (d) Given. $\frac{d y}{d x}-\frac{3 x^{2} y}{1+x^{3}}=\frac{\sin ^{2} x}{1+x}$

From the given equation, $P=-\frac{3 x^{2}}{1+x^{3}}, Q=\frac{\sin ^{2} x}{1+x}$

$$
I F=e^{\int P d x}=e^{\int \frac{-1 x^{2}}{1+x^{3}} d x}
$$

Put $1+x^{3}=t \Rightarrow 3 x^{3} d x=d t$

$$
\begin{aligned}
\therefore \quad \mathrm{IF} & =e^{1-\frac{1}{1} d t}=e^{-\log t}=e^{-\log }\left(1+x^{3}\right) \\
& =e^{\log }\left(1+x^{3}\right)^{-1}
\end{aligned}
$$

Hence, IF $=\left(1+x^{3}\right)^{-1}=\frac{1}{1+x^{3}}$

